WO2007148552A1 - アルカリ水溶液の精製方法 - Google Patents

アルカリ水溶液の精製方法 Download PDF

Info

Publication number
WO2007148552A1
WO2007148552A1 PCT/JP2007/061710 JP2007061710W WO2007148552A1 WO 2007148552 A1 WO2007148552 A1 WO 2007148552A1 JP 2007061710 W JP2007061710 W JP 2007061710W WO 2007148552 A1 WO2007148552 A1 WO 2007148552A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
alkaline aqueous
basic anion
alkaline
purifying
Prior art date
Application number
PCT/JP2007/061710
Other languages
English (en)
French (fr)
Inventor
Takahiro Yonehara
Masamitsu Iiyama
Yuusuke Maeda
Mitsugu Abe
Original Assignee
Nomura Micro Science Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co., Ltd. filed Critical Nomura Micro Science Co., Ltd.
Priority to JP2008522390A priority Critical patent/JP5555424B2/ja
Priority to KR1020087030712A priority patent/KR101167354B1/ko
Publication of WO2007148552A1 publication Critical patent/WO2007148552A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/32Purification; Separation by absorption or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/26Purification by precipitation or adsorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention relates to an alkaline aqueous solution that can be refined so that the concentration of metal impurities contained in the alkaline aqueous solution and, if necessary, the concentrations of the cationizing impurities and carbonic acid impurities are very low.
  • the present invention relates to a purification method.
  • Alkali is used in an etching process for removing a work-affected layer generated when producing a silicon wafer, or in a polishing process in combination with an abrasive such as colloidal silica for pH adjustment and buffering purposes.
  • alkali is often used in wet cleaning after the polishing process.
  • Alkali for example, sodium hydroxide is produced by electrolysis of sodium chloride, and the generated sodium hydroxide contains various metal impurities on the order of several ppm.
  • these metal impurities for example, copper and nickel permeate silicon 18 and remain to inhibit the flatness of the surface of the silicon wafer, such as changing the electrical characteristics. Therefore, alkaline aqueous solutions containing these metal impurities cannot be used as etching agents.
  • metals such as force, magnesium, manganese, iron, cobalt, zinc, ano-reminium, and lead are difficult to diffuse inside the silicon wafer, but remain as residues on the surface, which also impedes electrical properties.
  • metal impurities are contained in chemicals and polishing liquids used in the alkali etching process and polishing process, the use of the chemicals and polishing liquids imposes a load on the subsequent cleaning process.
  • metals that easily diffuse into wafers such as copper and nickel, and calcium, magnesium, manganese, iron, cobalt, zinc, and aluminum
  • the concentration of metals that are likely to diffuse is sometimes 1/10 to 1/1 compared to metals that remain on the surface. May need to be reduced to 000.
  • alkali etching sodium hydroxide or potassium hydroxide may be recycled for the purpose of reducing costs by reducing the amount used.
  • silicon silicon and oxygen dissolved in the atmosphere and the oxygen in the air atmosphere are dissolved in the alkali etching solution.
  • sodium silicate Na 2 SiO 3
  • NaOH which must originally maintain purity as an alkaline component
  • the alkaline aqueous solution it may be necessary to selectively reduce only the metal impurities contained in the alkaline aqueous solution from the state where it does not affect the state or the state where it is added as necessary.
  • means for purifying the alkali include a recrystallization method and a distillation method, all of which require considerable heat energy, require a large amount of equipment, and complicate operation management.
  • Activated carbon also elutes metal impurities such as zinc and aluminum contained in the material, Even if they are activated with nitric acid, it is difficult to reduce them. Therefore, it is sufficient that the requirement for removing metal impurities is limited to iron, but it becomes difficult to use when there are many items such as copper and nickel.
  • an alkaline aqueous solution containing sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, etc. is used alone. Besides, it is used as an additive for polishing slurry, for example.
  • a transportation means such as an alkaline aqueous solution manufacturing plant or tank truck, or an alkaline aqueous solution.
  • containers such as connecting 'supply pipes and drums' tanks must be lined with or made of expensive materials such as fluororesin with little metal elution. I must. Even if it is desired to recycle the alkaline aqueous solution used in wafer manufacturing plants or semiconductor device manufacturing plants, it must be discarded because it is contaminated by metal produced as a by-product from the manufacturing process and cannot be reused. I don't get it.
  • the alkali component when an alkali component is contained in a high concentration, the alkali component is also a metal impurity. Since it reacts with the resin in the same way as the metal impurities, metal impurities cannot be selectively removed. Therefore, the concentration of the alkali component, which is the main component, may change unless further appropriate treatment is performed.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-344715
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-317285
  • the conventional alkaline aqueous solution contains metal impurities, it is a general manufacturing method for use in applications such as silicon wafer etching, polishing process, and cleaning process, for example, It is difficult to use it as it is manufactured by only electrolytic method. Therefore, recrystallization, distillation, cation exchange membrane method, etc. must be used. However, these methods increase the cost of refining, which makes energy-efficient devices large and complex, and operation management is not easy.
  • the present invention has been made in order to solve the conventional problem, and it is a relatively high concentration alkaline water solution used for applications such as silicon etching, polishing processes, and cleaning processes. It is an object of the present invention to provide a method for purifying an alkaline aqueous solution capable of quickly removing the impurities contained in the above by a simple method.
  • the alkaline aqueous solution include those containing sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and other alkalis.
  • the method for purifying an alkaline aqueous solution of the present invention comprises converting an alkaline aqueous solution containing metal impurities into a fibrous or beaded strong basic anion exchanger, a weak basic anion exchanger, a chelating agent, and It is characterized by contacting with at least one material selected from activated carbon that has been activated and then contacted with nitric acid.
  • an alkaline aqueous solution (a typical example is a sodium hydroxide aqueous solution) is used as a regenerant for strong basic anion exchangers and weak basic anion exchangers.
  • an alkaline aqueous solution (a typical example is a sodium hydroxide aqueous solution) is used as a regenerant for strong basic anion exchangers and weak basic anion exchangers.
  • a regenerant for strong basic anion exchangers and weak basic anion exchangers is used as a regenerant for strong basic anion exchangers and weak basic anion exchangers.
  • ⁇ H type by treating the terminal groups of the strongly basic anion exchanger and weakly basic anion exchanger in advance to a ⁇ H type, many metals existing as anions in an alkaline aqueous solution can be obtained. It is possible to remove chemical species (impurities) and the concentration of the alkaline aqueous solution does not change.
  • the fibrous or bead-like strong basic anion exchanger treated in the O-type is an anion.
  • impurities such as carboxylic acid compounds, carbonate radicals, sulfate radicals, and chlorine radicals can be removed.
  • At least one selected from a fibrous or beaded strong basic anion exchanger, a weak basic anion exchanger, a chelating material, and activated carbon that has been activated and then contacted with nitric acid may be brought into contact with each other by, for example, packing these materials into a column or a column and passing an alkaline aqueous solution to be purified through or containing an alkaline aqueous solution to be purified. These materials may be added to the reaction tank and the aqueous alkali solution to be purified may be fluidized and then filtered.
  • the fibrous or beaded strong basic anion exchanger, weak basic anion exchanger and chelating material may be in the form of a cartridge filter.
  • the present invention can be applied to an alkaline aqueous solution having a low concentration to a high concentration (for example, an alkali concentration of 0.01 to 50% by weight).
  • the strongly basic anion exchanger, weakly basic anion exchanger and chelating agent used in the present invention include an alkali-resistant synthetic resin fiber or synthetic resin bead and a strongly basic anion exchange group. It is possible to use a weak basic anion exchange group or a chelate functional group.
  • examples of these structures include gel type, high porous type, porous type, macroporous type, and macroreticular type. Particularly, high porous type, porous type, macroporous type, and macroreticular type having a large specific surface area are preferable. It is mentioned as.
  • the synthetic resin used as the base of the alkali-resistant synthetic resin fiber or synthetic resin bead includes polybutanol, styrene-dibutylbenzene copolymer, polysulfone, polysulfone sulfone, polyhydroxymetatalylate, polyethylene, Polypropylene, amide, PFA (tetrafluoroethylene 'perfluoroalkyl butyl ether copolymer), PTFE (polytetrafluoroethylene) resin, etc.
  • Bull alcohol, styrene-dibutylbenzene copolymer, aramid, polysulfone Polyphenylsulfone and the like are preferable.
  • These synthetic resins are highly resistant to high-concentration alkaline water solutions such as 50% aqueous sodium hydroxide. These can be used either individually or in combination.
  • Examples of the strongly basic anion exchange group bonded to the base synthetic resin include a quaternary amin group, and the weak base anion exchange group includes a primary amin group
  • Examples of secondary amine groups and tertiary amine groups include polyaminopolycarboxylic acid groups such as ethylenediamine triacetic acid groups, iminodiacetic acid groups, iminoacetic acid groups, aminophosphoric acid groups, phosphoric acid groups, and polyamines. Group, thio compound group and the like.
  • activated carbon using any material such as coconut shell, coal, petroleum pitch, phenol resin, etc. should be used in the form of fibers or beads. Can do.
  • the nitric acid concentration for treating activated carbon in the present invention is preferably in contact with activated carbon for 1 hour or longer as a treatment time of 6.5N or more.
  • the activated carbon treated with the fibrous or beaded nitric acid used in the present invention may be in the form of a force cartridge filter.
  • Examples of methods for using these include the following.
  • One or more materials selected from strong basic anion exchangers, weak salt anion exchangers, chelating materials and activated carbon treated with nitric acid are packed in a column or tower, and two or more types are packed. In some cases, they can be mixed or stacked, or two or more of them can be individually connected to a column or column and then connected, and the aqueous alkali solution to be purified can be passed through them for use.
  • one or more materials selected from strong basic anion exchangers, weak basic anion exchangers, chelating materials, and activated carbon treated with nitric acid are laminated or mixed in the same reaction vessel. It is possible to fluidize the aqueous alkaline solution to be purified and then use it after filtering with a filter.
  • the method of the present invention is characterized in that it can be used even when the alkali concentration of the aqueous alkali solution is high.
  • the alkali concentration is 0.01% by weight or more, particularly 0.1% by weight or more. Even purification is possible.
  • the metal concentration in the aqueous alkali solution subjected to the metal removal treatment for example, calcium, magnesium, manganese, iron, cobalt, nickel, copper, zinc, aluminum It is possible to refine the concentration of niobium, lead, etc. to 50ppb or less.
  • the metal forms a negatively charged hydroxide complex ion.
  • An exchanger can be used, and in addition, hydroxide complex ions having high affinity with anion exchange groups can be selectively adsorbed and removed even in the presence of hydroxide ions, which are anions present in large amounts in an alkaline aqueous solution. It is thought that it depends.
  • metal impurities contained in an alkaline aqueous solution having a low concentration to a high concentration can be quickly removed by a simple method.
  • the concentration can be 3 ppb or less, and depending on conditions, 0.1 ppb or less, and a removal rate of 50% or more can be achieved.
  • the present invention also includes sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonia, tetramethyl ammonium hydroxide solution, lithium hydroxide, hydroxide
  • alkaline metal hydroxide solutions such as cesium, alkaline earth metal hydroxide solutions such as barium hydroxide, alkaline water-soluble polymer aqueous solutions such as cellulose, and organic alkaline aqueous solutions such as ammonium acetate S it can.
  • the concentration of the alkaline aqueous solution in which the present invention is effective is 0.01 to 50% by weight for sodium hydroxide, 0.01 to 50% by weight for potassium hydroxide, and 0.0:! To 23 for sodium carbonate. wt%, 0.1 in potassium carbonate 0: to 50 wt%, 0.1 0 bicarbonate sodium:! ⁇ 8 wt%, 0.01 to 50 weight 0 / the potassium bicarbonate.
  • FIG. 1 is a diagram showing the presence of copper ions in an alkaline aqueous solution.
  • alkaline aqueous solution for the sample 50% sodium hydroxide aqueous solution manufactured by Asahi Glass Co., Ltd., 48% potassium hydroxide aqueous solution manufactured by Asahi Glass Co., Ltd., special grade sodium carbonate manufactured by Wako Pure Chemical Industries, Ltd. , Potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, 28-30% special grade ammonia water manufactured by Kanto Chemical Co., Ltd., tetramethylammonium hydroxide pentahydrate, cellulose, Toyama Pharmaceutical Co., Ltd.
  • the product was purified by the following method using 70% ammonium acetate aqueous solution.
  • ultrapure water was used for all operations such as dissolution and dilution during the experiment.
  • the metal to be studied is around lOppb for 0.1 wt% and 0.1 wt% sodium hydroxide, which were diluted to reduce the amount of metal impurities. Then, the purification treatment was performed.
  • Processing device [0032]
  • Base material Styrene 'dibulene benzene copolymer
  • Shape Bead shape with a diameter of 400-650 / im
  • Base material Styrene dibulene benzene copolymer Functional group: Quaternary amine group
  • Shape Bead shape with particle size of 500-750 ⁇ m
  • Base material Styrene 'dibulebenzene copolymer Functional group: sulfonic acid group
  • Shape Bead shape with particle size of 550 ⁇ m
  • CO ultrafiltration membrane Manufacturer: Advantech Co., Ltd.
  • the treatment bodies used were indicated by the abbreviations (A), (B),.
  • the ion exchangers (A), (B), (C), and (F) used in the treatment were those having terminal groups of 90% or more and 0H groups.
  • PTFE tank Capacity 1200ml
  • PFA column ⁇ 3/4 inch, length 200mm
  • PE polyethylene container for sampling
  • the nitric acid used for cleaning is an electronic industrial grade manufactured by Kanto Chemical Co., Ltd. (EU, diluted with ultrapure water to about 1N. Ultrapure water is produced by an ultrapure water production system.
  • the metal content of each metal is lppt or less, S Oppt or less, and inorganic carbon lOppb or less.
  • Table 1 shows the analysis results of the test system blank when ultrapure water was passed through this system and received in the PE container at the PFA column outlet. As can be seen from the table, there is no contamination by this system.
  • adsorbents (A) to (G) that had been treated on the end groups so as not to change the component concentration of the target aqueous alkaline solution were packed in a PFA column ( ⁇ 3 / 4 inch, length 200 mm).
  • the activated carbons (H) and (I) were used after being immersed and washed in 6.5N nitric acid for 1 hour in advance. Packing was performed with a well-washed PTFE push rod while gently pushing the adsorbent, and the column was packed tightly.
  • Ultrapure water was passed through a PFA column packed with an adsorbent at 10 ml / min for 12 hours or more to sufficiently wash out the dissolved metal and organic matter. Water was thoroughly drained so that no water droplets remained inside the PTFE tank, and 50% NaOH, which is an alkaline aqueous solution of the sample, was added. A PTFE tank filled with an aqueous alkali solution and a PFA column packed with washed packing were connected with a 1Z4 inch PFA tube, and a sampling vessel was installed at the PFA column outlet.
  • Nitrogen gas is introduced from the top of the PTFE tank, the pressure inside the container is increased to 0.2 MPa, and the flow rate adjustment valve is operated to reduce the flow rate of the alkaline aqueous solution flowing out from the PFA column outlet to 5 ml / min or less. It was adjusted.
  • the pH of the flowing alkaline aqueous solution was measured with a pH test paper, and when it became the same as the supplied alkaline aqueous solution, the liquid at the outlet of the PFA column was received as a sample in a PE container. In addition, it was confirmed by analysis that the sample had the same component concentration as the supplied alkaline aqueous solution (for example, sodium hydroxide had Na concentration at the inlet and outlet).
  • the alkaline aqueous solution received in the PE container was immediately sealed and analyzed for metals, silicon compounds and inorganic carbonic acid by the ICP-MS, ICP-AES, and NDI R methods.
  • Metal analysis items were metals that easily diffused into the wafer, such as copper and nickel, and metals that remained on the wafer surface, such as calcium, magnesium, mangan, iron, cobalt, zinc, aluminum, and lead.
  • the amount of treated body is 40 ml
  • the sample flow rate is 5 ml / min or less
  • the flow rate is 1000 ml
  • the flow rate is all in one pass.
  • An alkaline aqueous solution of 25 ° C. or more can be used as long as the member used has heat resistance.
  • the ultrafiltration membrane for CO was used after washing with ultrapure water for 12 hours.
  • the activated charcoal filter (K) was preliminarily washed by immersion in 6.5N nitric acid for 1 hour, and then used after washing with ultrapure water for 12 hours.
  • the washed filter was inserted into a special cartridge, and after passing through an alkaline aqueous solution with a pump, the concentrations of metal, silicon compound and inorganic carbonic acid in the filtrate were measured by IC P_MS, ICP_AES and NDIR methods.
  • Metal analysis items were metals such as copper and nickel, which easily diffused into the wafer, and metals that remained on the wafer surface, such as calcium, magnesium, manganese, iron, cobalt, zinc, aluminum, and lead.
  • Examples 10 to 47 below are examples:! To 9 and were tested especially for metals that easily diffuse into the wafer, such as copper and nickel, with good removal results. Went.
  • the metal analysis items in the filtrate were metals that easily diffuse into the wafer, such as copper and nickel, and metals that remain on the wafer surface, such as iron, zinc, aluminum, and lead, and that are susceptible to cleaning.
  • Example 10 a sample in which the strong basic anion exchange fiber of (A) and the weakly basic anion exchange fiber of (B) were mixed as Example 10, and (A) and (D) as Example 11
  • Example 14 50% NaOH to be treated was diluted with ultrapure water and replaced with 0.1% NaOH, a sample mixed with (A) and (B) as Example 13, and a weakly basic anion of (C) as Example 14.
  • the purification treatment was performed in the same manner as in Examples 1-8.
  • Example 16 A sample in which (A) and (B) were mixed as Example 16 instead of 0.01% NaOH obtained by diluting 50% NaOH to be treated with ultrapure water, and Example 17 (C) and Example 18 As a sample in which the mixture of (A) and (B) and (D) were arranged in series as, and as a comparative example 6, (G) was packed in a column and purified in the same manner as in Examples 1 to 8. .
  • Example 19 to 21 the aqueous solution to be treated was replaced with 48% KOH, and a sample in which (A) and (B) were mixed as Example 19, Example 20 (C), Example 21 A sample in which the mixture of (A) and (B) and (D) are arranged in series, (G) as Comparative Example 8 is packed in a column, and purification is performed in the same manner as in Examples 1 to 8. I got it.
  • Example 23 As a sample in which (A) and (B) were mixed, as Example 23 (C), as Example 24, a mixture of (A) and (B) and (D) arranged in series, as Comparative Example 10 (G) was packed in a column and purified by the same method as in Examples 1-8.
  • Example 25 the alkaline aqueous solution to be treated was replaced with 50% K 2 CO, and Example 25
  • Example 26 As a sample in which (A) and (B) are mixed, (C) as Example 26, as a Example 27, a sample in which the mixture of (A) and (B) and (D) are arranged in series, as Comparative Example 12 (G) was packed in a column and purified by the same method as in Examples 1-8.
  • Example 28-30 the alkaline aqueous solution to be treated was replaced with 8% NaHCO, and Example 28
  • Example 29 As a sample in which (A) and (B) were mixed, as a sample in Example 29 (C), as a sample in Example 32, a mixture of (A) and (B) and (D) arranged in series, as Comparative Example 14 (G) was packed in a column and purified by the same method as in Examples 1-8.
  • Example 31 to 33 the alkaline aqueous solution to be treated was replaced with 50% KHCO, and Example 31
  • Example 32 As a sample in which (A) and (B) were mixed, as a sample in Example 32 (C), as a sample in Example 33, a mixture of (A) and (B) and (D) arranged in series, as Comparative Example 16 (G) was packed in a column and purified by the same method as in Examples 1-8.
  • the alkaline aqueous solution to be treated was replaced with 28% ammonia water in Examples 34 to 36, and a sample in which (A) and (B) were mixed as Example 34, (C) as Example 35, and (A) as Example 36. And the sample which arranged the mixture of (B) and (D) in series, (G) as the comparative example 18 was packed in the column, and the refinement
  • the alkaline aqueous solution to be treated was replaced with a 25% aqueous solution of tetramethylammonium hydroxide in Examples 37 to 39, and a sample in which (A) and (B) were mixed as Example 37, (C) as Example 38, and As Example 39, a mixture of (A) and (B) and (D) were arranged in series, and (G) was packed into a column as Comparative Example 20, and the same method as in Examples 1 to 8 was performed. A purification treatment was performed.
  • the PTFE tank (capacity 1200 ml) and the sampling PE (polyethylene) container (capacity 100 ml) were all immersed in 1N nitric acid for 1 hour or more and washed with ultrapure water in advance to eliminate metal contamination.
  • the nitric acid used for cleaning is an electronic industrial grade (EL) manufactured by Kanto Chemical Co., Inc., which is diluted with ultrapure water to be about 1N. Ultrapure water is produced by an ultrapure water production system.
  • the metal content of each metal is lppt or less, S Oppt or less, and inorganic carbon lOppb or less.
  • Examples 43 and 44 were purified by a batch method in which 50% NaOH and 50% KOH were contacted with (C) for 24 hours in a PTFE tank (volume: 1200 ml), respectively.
  • Example 45 to 47 50% NaOH was stored in a PTFE tank (volume: 1200 ml), 4 inch silicon wafer was added, heated at 80 ° C for 3 hours, and then gradually cooled.
  • Example 10 A 0 alkaline aqueous solution was prepared. (A) was contacted with this for 24 hours, and (A) and (B) were purified using the same column as in Examples 1-9.
  • Examples 48-49 and Comparative Example 22 (A) Strongly basic anion exchange fiber, (E) Chelate fiber, and (G) Strong acid cation exchange resin 20 ml and 70% ammonium acetate aqueous solution 20 Oml They were mixed in a PE container and purified by a batch method for 24 hours.
  • Example 50 Comparative Examples 24 to 25
  • Example 50 and Comparative Example 24 20 ml of (E) chelate fiber and (G) strong acid cation exchange resin and 200 ml of 1% cellulose aqueous solution were mixed in a PE container, and purified for 24 hours by a batch method. Went.
  • the present invention can be widely used in the purification of an alkaline aqueous solution containing metal impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 比較的高濃度のアルカリ水溶液に含まれる金属不純物を簡便な方法で速やかに除去することのできるアルカリ水溶液の精製方法を提供する。金属不純物を含むアルカリ水溶液を、繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも一種の材料中に接触させるアルカリ水溶液の精製方法。

Description

明 細 書
アルカリ水溶液の精製方法
技術分野
[0001] 本発明は、アルカリ水溶液に含まれる金属不純物の濃度を、また、必要に応じてケ ィ素化不純物及び炭酸不純物の濃度も、非常に低い濃度にまで精製することのでき るアルカリ水溶液の精製方法に関する。
背景技術
[0002] アルカリは、シリコンゥヱーハを製造する際に生成される加工変質層を除去するエツ チング工程や、 pH調整及び緩衝目的でコロイダルシリカ等の研磨剤と組み合わせて 研磨工程で用いられる。また、アルカリは、研磨工程の後のウエット洗浄でも用いられ ることが多い。エッチング工程では、水酸化ナトリウムや水酸化カリウム、研磨工程で は水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニゥム、アンモニア、 炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウム、洗浄工程で はアンモニアが用いられる。
[0003] アルカリ、例えば、水酸化ナトリウムは食塩の電解によって製造されており、生成し た水酸化ナトリウムは、数 ppmオーダーの各種金属不純物を含有している。これらの 金属不純物中で、例えば、銅とニッケルは、シリコンゥヱ一八に浸透し、残存して電気 特性を変化させるなどシリコンゥエーハ表面の平坦ィ匕を阻害する。そのため、これら 金属不純物を含むアルカリ水溶液はエッチング剤として使うことができなレ、。また、力 ノレシゥム、マグネシウム、マンガン、鉄、コバルト、亜鉛、ァノレミニゥム、鉛などの金属 は、シリコンゥエーハの内部には拡散しづらいものの表面に残渣として残り、やはり電 気特性などを阻害する。そのため、アルカリエッチング工程や研磨工程において使 用される薬液、研磨液にこれら金属不純物が含有していると、その薬液、研磨液の使 用が後段の洗浄工程の負荷となる。仮に銅、ニッケノレの様なゥエーハ内部に拡散し やすい金属とカルシウム、マグネシウム、マンガン、鉄、コバルト、亜鉛、アルミニウム
、鉛などのゥヱーハ表面に留まる金属とについて、その濃度による影響を比較した場 合、拡散しやすい金属の濃度は表面に留まる金属にくらべ、時として 1/10〜1/1 000に低減しなければならない場合がある。
[0004] また、アルカリエッチングにおいて、水酸化ナトリウムや水酸化カリウムは、使用量を 減らすことによるコスト低減を目的に、循環再利用されることがある。その場合、シリコ ンゥヱ一ハカ 溶け出したシリコンや空気雰囲気中の酸素がアルカリエッチング液に 溶解することで、例えば、アルカリ水溶液が水酸化ナトリウムの場合、ケィ酸ナトリウム (Na SiO )が発生し、ゥエー八の表面に残渣として残存し、後段の洗浄が困難にな
2 3
つてしまう。これを防止する為には、新しいアルカリ液の補充量を増加させ回収率を 落とす方法がある。
[0005] さらに、空気雰囲気中の二酸化炭素は次式のようにアルカリ水溶液に容易に溶解 する。
NaOH + CO → NaHCO
2 3
2NaHCO → Na CO +H
3 2 3 2
そのため、本来アルカリ成分として純度を保持しなければならない NaOHが Na C
2
Oとなり、エッチングに寄与しなくなるので、二酸化炭素の溶解量を低減する必要が
3
ある。また、当然の事ながら、主成分であるアルカリ金属や水酸化物等の濃度が変化 するとエッチング処理に多大な影響を及ぼす。
[0006] し力し、研磨工程のスラリー中のように Na SiOや Na COが混入していても殆ど影
2 3 2 3
響を及ぼさない状態や、あるいは必要として添加されている状態からアルカリ水溶液 に含まれる金属不純物だけを選択的に低減しなければならない場合もある。アルカリ を精製する手段として、再結晶法、蒸留法等が挙げられるが、何れもかなりな熱エネ ルギーを要し、装置も大掛かりで、運転管理も複雑となる。
[0007] これに対し、容易に低コストでアルカリを精製する手段として、例えば、金属不純物 を含んだ高濃度水酸化ナトリウム水溶液を、ヤシ殻系活性炭を硝酸で処理した後に 賦活したものと接触させ、金属不純物を吸着除去する方法が提案されている(特開 2 004— 344715号公報)。しかし、これでは専用の活性炭を準備する必要があるため 、コスト上昇を招いてしまう。また、鉄を lOOppb程度にまで精製できるが、銅や二ッケ ルについては lOOppb程度にまで精製できるだけで要求水準を満たすに至っていな レ、。また、活性炭は素材に含まれている亜鉛やアルミなどの金属不純物が溶出し、こ れらは硝酸で賦活しても低減することは困難である。従って金属不純物の除去要求 項目が鉄に限定されれば良いが、銅やニッケル等多項目になった場合は使用が困 難となる。
[0008] さらに、水酸化ナトリウム水溶液に含まれる金属不純物を低減する方法として、陽ィ オン交換膜を用いた水酸化ナトリウム水溶液の電解による精製方法が知られている( 特開 2002— 317285号公報)。この方法によれば、水酸化ナトリウム水溶液中の金 属不純物は lOppb以下にできるとされている。しかし、この方法は設備投資が高額と なり、装置が複雑になるために精製コストが高ぐ運転管理が難しいという欠点がある
[0009] さらに、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニゥム、アンモ 二了、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムなどを含 むアルカリ水溶液は、単独での使用以外に、例えば、研磨用スラリーの添加剤として 使用される。しかし、金属不純物を仮に lOOppb以下に低減した高純度のアルカリ水 溶液を使用箇所まで高純度の状態で維持する為には、アルカリ水溶液の製造工場 やタンクローリ等の移送用手段、アルカリ水溶液を使用するゥエーハ製造工場や半 導体デバイス製造工場において、接続'供給配管やドラム'タンク等の容器を金属溶 出が少ないフッ素樹脂等の高価な素材でライニングしたり、その素材を用いて製造し たりしなければならない。また、ゥエーハ製造工場や半導体デバイス製造工場で使用 したアルカリ水溶液をリサイクルしたい場合でも、製造工程等から副生成的に発生す る金属により汚染を受け、再使用が不可能な為、廃棄せざるを得ない。
[0010] また、従来、金属不純物の除去に用いられている陽イオン交換樹脂を用いた水溶 液の精製法では、高濃度にアルカリ成分が含まれている場合には、アルカリ成分も金 属不純物と同様に樹脂と反応するため、金属不純物を選択的に除去することができ なレ、。したがって、さらに適切な処理を施さないと主成分であるアルカリ成分の濃度 が変化してしまう恐れがある。
特許文献 1:特開 2004 - 344715公報
特許文献 2 :特開 2002— 317285公報
発明の開示 [0011] 上述したように、従来のアルカリ水溶液は、金属不純物を含んでいるため、シリコン ゥエーハのエッチング、研磨工程、洗浄工程のような用途に使用する為には一般的 な製造方法、例えば、電解法等、だけで製造されたままでは使用は困難である。その ため、再結晶や蒸留、陽イオン交換膜法などを用いざるを得ない。しかし、これらの 方法は、エネルギー効率が悪ぐ装置も大型、複雑で運転管理が容易ではなぐ精 製コストも高くなつてしまう。このため、特に、カルシウム、マグネシウム、マンガン、鉄、 コバルト、ニッケル、銅、亜鉛、ァノレミニゥム、鉛などの金属不純物を極力少なくするこ とができる簡便なアルカリ水溶液の精製方法の開発が望まれている。また、主成分で あるアルカリ水溶液の濃度を変化させずに、ケィ酸アルカリ、炭酸不純物の除去や、 金属不純物を選択的に除去しなければならない。
[0012] 本発明は、力かる従来の課題を解決すべくなされたもので、シリコンゥヱ一八のエツ チング、研磨工程、洗浄工程のような用途に使用される、比較的高濃度のアルカリ水 溶液に含まれる前述不純物を簡便な方法で速やかに除去することのできるアルカリ 水溶液の精製方法を提供することを目的とする。アルカリ水溶液としては、水酸化ナ トリウム、水酸化カリウム、水酸化テトラメチルアンモニゥム、アンモニア、炭酸ナトリウ ム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウム及びその他のアルカリを 含むものが挙げられる。
[0013] 本発明のアルカリ水溶液の精製方法は、金属不純物を含むアルカリ水溶液を、繊 維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレ 一ト化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも 一種の材料に接触させることを特徴とする。
[0014] また、本来アルカリ水溶液(中でも代表的ものとして水酸化ナトリウム水溶液等)は、 強塩基性陰イオン交換体及び弱塩基性陰イオン交換体等の再生剤として使用され るものである。しかし、本発明では、予め強塩基性陰イオン交換体及び弱塩基性陰ィ オン交換体の末端基を〇H型に処理しておくことで、アルカリ水溶液中では陰イオン として存在する多くの金属化学種 (不純物)を取り除くことが可能となり、かつアルカリ 水溶液の濃度が変化しなレ、ことを特徴とする。
[0015] 更に、〇H型に処理した繊維状又はビーズ状の強塩基性陰イオン交換体は、陰ィ オンとして存在する多くの金属不純物以外にも、ケィ酸化合物、炭酸根、硫酸根、塩 素根等の不純物を除去することが可能である。また、ケィ素化不純物、炭酸不純物と 金属不純物を含むアルカリ水溶液から、繊維状又はビーズ状の弱塩基性陰イオン交 換体及びキレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択され る少なくとも一種の材料中に接触させ、金属不純物だけを除去することができる。
[0016] アルカリ水溶液を、繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰 イオン交換体及びキレートィヒ材並びに賦活させた後に硝酸に接触させた活性炭から 選択される少なくとも一種、 目的によっては二種以上の材料に接触させるには、例え ば、これら材料をカラム又は塔中に充填して、この中に精製すべきアルカリ水溶液を 通水するか、精製すべきアルカリ水溶液を収容した反応槽中に、これらの材料を添 カロして精製すべきアルカリ水溶液を流動化させた後濾過すればよい。このとき、繊維 状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート 化材はカートリッジフィルター状にしてもよい。
[0017] また、本発明は、低濃度から高濃度まで (例えば、アルカリ濃度 0. 01〜50重量%) のアルカリ水溶液に対して適用することができる。
[0018] 本発明に使用する強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレー ト化材としては、耐アルカリ性の合成樹脂繊維又は合成樹脂ビーズに、強塩基性陰 イオン交換基、弱塩基性陰イオン交換基又はキレート官能基を結合させたものを使 用すること力 Sできる。また、これらの構造としては、ゲル型、ハイポーラス型、ポーラス 型、マクロポーラス型又はマクロレテキユラ型が挙げられ、特に、比表面積の大きいハ イポーラス型、ポーラス型、マクロポーラス型又はマクロレテキユラ型が好ましいものと して挙げられる。
[0019] 耐アルカリ性の合成樹脂繊維又は合成樹脂ビーズのベースとなる合成樹脂として は、ポリビュルアルコール、スチレン—ジビュルベンゼン共重合体、ポリサルホン、ポ リフエ二ルサルホン、ポリヒドロキシメタタリレート、ポリエチレン、ポリプロピレン、ァラミ ド、 PFA (テトラフルォロエチレン 'パーフルォロアルキルビュルエーテル共重合体)、 PTFE (ポリテトラフルォロエチレン)系樹脂等が例示される力 汎用性、価格の点で ポリビュルアルコール、スチレン—ジビュルベンゼン共重合体、ァラミド、ポリサルホン 、ポリフエ二ルサルホン等が好適である。これらの合成樹脂は、高濃度のアルカリ水 溶液、例えば、 50%水酸化ナトリウム水溶液に対しても高い耐性を有している。これ らは、単独でも複数種類を組み合わせても使用することができる。
[0020] このようなベースとなる合成樹脂に結合される強塩基性陰イオン交換基としては、第 4級ァミン基が例示され、弱塩基性陰イオン交換基としては第 1級ァミン基、第 2級ァ ミン基、第 3級ァミン基等が例示され、キレートイ匕基としてはエチレンジァミン三酢酸 基のようなポリアミノポリカルボン酸基、イミノニ酢酸基、イミノ酢酸基、アミノ燐酸基、 燐酸基、ポリアミン基、チォ化合物類基等が例示される。
[0021] 本発明で使用する硝酸で処理した活性炭の炭素材料は、ヤシ殻、石炭、石油ピッ チ、フエノール樹脂などいずれでもよぐ活性炭は繊維状又はビーズ状などの形状の ものを使用することができる。本発明で活性炭を処理する硝酸濃度は、 6. 5N以上が 好ましぐ処理時間として 1時間以上活性炭と接触させることが好ましい。また本発明 で使用する繊維状又はビーズ状の硝酸で処理した活性炭は、力ートリッジフィルター 状にしてもよい。
[0022] これらの使用方法としては次のものが挙げられる。強塩基性陰イオン交換体、弱塩 基性陰イオン交換体、キレートィヒ材及び硝酸で処理した活性炭から選ばれる材料の うち 1種又は 2種以上をカラム又は塔中に充填し、 2種以上の場合には混合又は積層 の形で充填し、あるいは 2種以上を各々個別にカラム又は塔中に充填した後に連結 し、これらに精製すべきアルカリ水溶液を通液して使用することができる。
また、強塩基性陰イオン交換体、弱塩基性陰イオン交換体、キレート化材、硝酸で 処理した活性炭から選ばれる材料のうち 1種又は 2種以上を同一反応槽内に積層又 は混合し、精製すべきアルカリ水溶液を流動化させ、次いでフィルターで濾過し使用 すること力 Sできる。
[0023] 本発明の方法は、アルカリ水溶液のアルカリの濃度が高濃度であっても使用できる ことが特徴であり、アルカリの濃度が 0. 01重量%以上、特に 0. 1重量%以上であつ ても精製が可能である。
[0024] 本発明の方法によれば、金属除去処理を行ったアルカリ水溶液中の金属濃度、例 えば、カルシウム、マグネシウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミ 二ゥム、鉛などの濃度を 50ppb以下に精製することが可能である。
本発明による金属不純物の除去は、例えば、図 1に示すようにアルカリの濃度が高 濃度のもとでは、金属は負電荷の水酸化物錯イオンを形成していることから、陰ィォ ン交換体を用いることができ、さらに、アルカリ水溶液中に多量に存在する陰イオン である水酸化物イオン共存下でも陰イオン交換基と親和性の高い水酸化物錯イオン が選択的に吸着除去されることによると考えられる。
このとき、キレートイ匕材の場合には、負電荷の水酸化物錯イオンは、その水酸化物 イオンの代わりにキレートイヒ材が金属イオンと結合することで除去されると考えられ、 金属イオンと配位子である水酸化物イオンとの結合よりも強いキレート力を有する官 能基を用いることが好ましい。
[0025] 本発明によれば、低濃度から高濃度までのアルカリ水溶液に含まれる金属不純物 を簡便な方法で速やかに除去することができる。
[0026] 具体的には、銅及びニッケルの場合、その濃度を 3ppb以下、条件によっては 0. 1 ppb以下まで、除去率では 50%以上の除去を達成することが可能である。また、本 発明は実施例で示す水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム 、炭酸水素ナトリウム、炭酸水素カリウム、アンモニア、水酸化テトラメチルアンモニゥ ム溶液の他、水酸化リチウム、水酸化セシウム等のアルカリ金属水酸化物溶液や水 酸化バリウム等のアルカリ土類金属水酸化物溶液、セルロース等のアルカリ性水溶 性高分子水溶液、酢酸アンモニゥムなどの有機アルカリ水溶液の精製にも適用する こと力 Sできる。
[0027] 本発明が有効であるアルカリ水溶液の濃度は、水酸化ナトリウムでは 0. 01〜50重 量%、水酸化カリウムでは 0. 01〜50重量%、炭酸ナトリウムでは 0. 0:!〜 23重量% 、炭酸カリウムでは 0. 0:!〜 50重量%、炭酸水素ナトリムでは 0. 0:!〜 8重量%、炭酸 水素カリウムでは 0. 01〜50重量0/。、アンモニアでは 0. 01〜30重量0 /0、水酸化テト ラメチルアンモニゥムでは 0. 0:!〜 25重量%の濃度が好ましぐより好ましくは水酸化 ナトリウムでは 0.:!〜 50重量%、水酸化カリウムでは 0.:!〜 50重量%、炭酸ナトリウ ムでは 0.:!〜 23重量%、炭酸カリウムでは 0.:!〜 50重量%、炭酸水素ナトリムでは 0.:!〜 50重量%、炭酸水素カリウムでは 0.:!〜 50重量%、アンモニアでは 0. :!〜 3 0重量%、水酸化テトラメチルアンモニゥムでは 0.:!〜 25重量%の濃度である。特に 、水酸化ナトリウムでは 5〜50重量%、水酸化カリウムでは 5〜50重量%、炭酸ナトリ ゥムでは 5〜23重量%、炭酸カリウムでは 5〜50重量%、炭酸水素ナトリムでは 5〜8 重量%、炭酸水素カリウムでは 5〜50重量%、アンモニアでは 5〜30重量%、水酸 化テトラメチルアンモニゥムでは 5〜25重量%の高濃度領域が好ましぐこのとき本発 明が最も効果を発揮する。
図面の簡単な説明
[0028] [図 1]アルカリ水溶液中における銅イオンの存在状態を示した図である。
発明を実施するための最良の形態
[0029] 次に、本発明の実施例について説明する。
[0030] 試料用のアルカリ水溶液として、旭硝子 (株)製の 50%水酸化ナトリウム水溶液、旭 硝子 (株)製の 48%水酸化カリウム水溶液、和光純薬工業 (株)製特級の炭酸ナトリウ ム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、関東化学 (株)製の 28〜3 0%の特級アンモニア水、水酸化テトラメチルアンモニゥム五水和物、セルロース、富 山薬品工業 (株)製の 70%酢酸アンモニゥム水溶液を用いて以下の方法で精製した 。なお、実験を行う際の溶解、希釈等の操作にはすべて超純水を用いた。また、特に 濃度の依存性を見る為に、希釈し金属不純物量が少なくなつた 0. 1重量%及び 0. 0 1重量%水酸化ナトリウムについては、検討対象である金属をそれぞれ lOppb前後 になる様に添加して精製処理を実施した。
[0031] 金属不純物の測定は、 ICP— MS (パーキンエルマ一社製 ELANDRC— Π)によ り行った。また、ケィ素化合物並びに無機炭酸の測定は、ケィ素化合物を ICP— AE S ( (株)リガク製 CIR〇S120)、無機炭酸を NDIR法((株)島津製作所製 TOC50 00A)にて行った。なお、以下の実施例及び比較例で使用した処理装置及び処理 体は、次の通りのものである。
[0032] 処理装置:
処理体充填カラム 3/4インチ PFAカラム 200mm
(PFA:テトラフルォロエチレン パーフルォロアルキルビニルエーテル共重 合体) 試験系及び使用タンクの材質 PTFE (ポリテトラフルォロエチレン) ポンプ ((株)イワキ社製べローズポンプ FS— 15HT) 用した処理体:
(A)強塩基性陰イオン交換繊維:
メーカー:(株)二チビ
商品名: IEF— SA
母材:ポリビュルアルコール
官能基:第 4級ァミン基
形状:直径 100 z m、長さ 2〜5mm繊維状
(B)弱塩基性イオン交換繊維:
メーカー:(株)二チビ
商品名: IEF—WA
母材:ポリビュルアルコール
官能基:第 1級〜第 3級ァミン基
形状:直径 100 /i m、長さ 2〜5mm繊維状
(C)弱塩基性陰イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株)
商品名: DUOLITE A378D
母材:スチレン'ジビュルベンゼン共重合体
官能基:第 1級〜第 3級ァミン基
形状:直径 400〜650 /i mのビーズ状
(D)エチレンジァミン三酢酸'イミノニ酢酸混合キレート樹脂
メーカー:(株)日立ハイテクノロジー
商品名:ノビァス CHELATE— PA1
母材:ポリヒドロキシメタタリレート
官能基:エチレンジァミン三酢酸基、イミノニ酢酸基 形状: 45〜90 μ mのビーズ状
(E)キレート繊維: メーカー:(株)二チビ
商品名: IEF— IAc
母材:ポリビュルアルコール
官能基:イミノ酢酸基
形状:直径 100 z m、長さ 2〜5mm繊維状
(F)強塩基性陰イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株) 商品名: A201CL
母材:スチレン'ジビュルベンゼン共重合体 官能基:第 4級ァミン基
形状:粒径 500〜750 μ mのビーズ状
(G)強酸性陽イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株) 商品名: DUOLITE C255LFH
母材:スチレン'ジビュルベンゼン共重合体 官能基:スルホン酸基
形状:粒径 550 μ mのビーズ状
(H)活性炭:
メーカー:三菱化学カルゴン (株) 商品名: W 10- 30
母材:ヤシ殻系
形状:粒径 10〜35mesh
(I)活性炭:
メーカー:三菱化学カルゴン (株) 商品名: Filtrasorb 400
母材:石炭系
形状:粒径 10〜35mesh
CO限外濾過膜: メーカー:(株)アドバンテック
商品名:ウルトラフィルター Q0100
母材:ポリサルホン
分画分子量: MWCO 10000
形状:直径 76mm薄膜
[0043] (K)活性炭フィルター:
メーカー:(株)ロキテクノ
商品名:マイクロチヤコール MCKタイプ
母材:繊維状活性炭、ヤシ殻活性炭
[0044] なお、以下の実施例及び比較例においては、使用した処理体は、上記 (A), (B), ……の略号で表示した。ここで処理に用いた (A), (B), (C) , (F)のイオン交換体は 、末端基が 90%以上〇H基となっているものを使用した。
[0045] 実施例:!〜 8、比較例 2
(使用器具等の洗浄)
PTFE製タンク (容積 1200ml)、 PFA製カラム( φ 3/4インチ、長さ 200mm)、サン プリング用 PE (ポリエチレン)製容器 (容積 1000ml)の全てを、金属汚染を排除する ため、予め、 1N硝酸に 1時間以上浸漬させた後、超純水で流水洗浄した。洗浄に用 レ、た硝酸は関東化学 (株)製の電子工業用グレード (EUであり、約 1Nとなるよう超純 水で希釈したものである。超純水は超純水製造システムで製造された金属含有量が 各金属 lppt以下、 S Oppt以下、無機炭素 lOppb以下のものである。
[0046] 上記洗浄方法で洗浄された器具を PTFE製タンク、 PFAカラム、の順に PFA配管 で接続した。このシステムに超純水を通水し PFAカラム出口で PE容器に受けた時の 試験系ブランクの分析結果を表 1に示す。表から明らかなように、このシステムによる 汚染は全くない。
[0047] (処理操作)
対象のアルカリ水溶液の成分濃度が変化しないように末端基に処理を施した (A) 〜(G)の各種吸着体を PFAカラム( φ 3/4インチ、長さ 200mm)に充填した。また、 (H)、(I)の活性炭は予め 6. 5N硝酸中に 1時間浸漬洗浄した後に使用した。 充填は十分洗浄した PTFE製の押し込み棒で軽く吸着体を押し込みながら徐々に 充填し、カラム内部が密になるようにして充填した。
[0048] 吸着体が充填された PFAカラムに超純水を 10ml/minで 12時間以上通液し、溶 出してくる金属や有機物を十分洗い流した。 PTFE製タンクの内部に水滴が残留し ないようによく水を切り、試料のアルカリ水溶液である 50%NaOHを投入した。アル カリ水溶液が投入された PTFE製タンクと洗浄済みの充填物が詰まった PFAカラム を 1Z4インチの PFAチューブで接続し、 PFAカラム出口にサンプリング容器を設置 した。
[0049] PTFE製タンクの上部から窒素ガスを導入し、容器内部の圧力を 0. 2MPaまで加 圧し流量調整バルブを操作して PFAカラム出口から流出するアルカリ水溶液の流出 速度を 5ml/min以下に調整した。流出してくるアル力リ水溶液の pHを pH試験紙で 測定し、供給したアルカリ水溶液と同じになったところでサンプルとして PFAカラム出 口の液体を PE容器に受けた。また、サンプルは供給したアルカリ水溶液と同じ成分 濃度であること(例えば水酸化ナトリウムは入口出口の Na濃度を)を分析により確認し た。
[0050] PE容器に受けたアルカリ水溶液は直ちに密栓し、 ICP— MS、 ICP— AES、 NDI R法により金属、ケィ素化合物及び無機炭酸の分析を行なった。金属分析項目は、 銅、ニッケルの様なゥエーハ内部に拡散しやすい金属とカルシウム、マグネシウム、マ ンガン、鉄、コバルト、亜鉛、アルミニウム、鉛などのゥエーハ表面に留まる金属とした
ICP— MSによる分析では、分析器導入前の処理として必要に応じて固相抽出法 による Na及び K成分の除去を行った。
[0051] なお、この実施例及び以下の各実施例並びに比較例における処理体量は 40ml、 試料通液速度は、 5ml/min以下、通液量は 1000ml、通液はすべて 1回パスで、 2 0〜25°Cの温度条件で行った力 25°C以上のアルカリ水溶液でも使用部材の耐熱 性があれば用いることができる。
結果を表 2に示す。
[0052] 実施例 9、比較例 3 (使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0053] (処理操作)
COの限外濾過膜は超純水で 12時間通水洗浄した後に使用した。また (K)の活性 炭フィルタ一は予め 6. 5N硝酸中に 1時間浸漬洗浄を行レ、、超純水で 12時間通水 洗浄をした後に使用した。洗浄したフィルタ一は専用カートリッジに揷入し、ポンプで アルカリ水溶液を通液後に濾過液の金属、ケィ素化合物及び無機炭酸の濃度を IC P_MS、 ICP_AES、 NDIR法により測定した。金属分析項目は、銅、ニッケルの様 なゥヱーハ内部に拡散しやすい金属とカルシウム、マグネシウム、マンガン、鉄、コバ ルト、亜鉛、アルミニウム、鉛などのゥヱーハ表面に留まる金属とした。
結果を表 2に示す。
[0054] 以下の実施例 10〜47は、実施例:!〜 9までで、特に銅、ニッケルの様なゥエーハ内 部に拡散しやすい金属について良好な除去結果が得られたものを対象として試験を 行った。濾過液の金属分析項目は、銅、ニッケルの様なゥエーハ内部に拡散しやす い金属と鉄、亜鉛、アルミニウム、鉛などのゥエーハ表面に留まり、洗浄の負荷となり 易い金属を対象とした。
[0055] 実施例 10〜: 12
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0056] (処理操作)
上記と同様の方法で、実施例 10として (A)の強塩基性陰イオン交換繊維及び (B) の弱塩基性陰イオン交換繊維を混合した試料、実施例 11として (A)及び (D)のェチ レンジアミン三酢酸'イミノニ酢酸混合キレート樹脂を混合した試料、実施例 12として (A)及び (B)の混合体と(D)を直列に並べた試料をカラムに充填し、実施例:!〜 8と 同様の方法で精製処理を行った。
結果を表 3に示す。
[0057] 実施例 13〜: 15、比較例 4〜5
(使用器具の洗浄) 上記と同様の方法で使用器具を洗浄した。
[0058] (処理操作)
処理対象の 50%NaOHを超純水で希釈した 0. l%NaOHに代え、実施例 13とし て (A)及び (B)を混合した試料、実施例 14として (C)の弱塩基性陰イオン交換樹脂 、実施例 15として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 4として (G)の強酸性陽イオン交換樹脂、をカラムに充填し、実施例 1〜8と同様の方法で精 製処理を行った。
結果を表 4に示す。
[0059] 実施例 16〜: 18、比較例 6〜 7
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0060] (処理操作)
処理対象の 50%NaOHを超純水で希釈した 0. 01%NaOHに代え、実施例 16と して (A)及び (B)を混合した試料、実施例 17として(C)、実施例 18として (A)及び( B)の混合体と(D)を直列に並べた試料、比較例 6として (G)をカラムに充填し、実施 例 1〜 8と同様の方法で精製処理を行つた。
結果を表 5に示す。
[0061] 実施例 19〜21、比較例 8〜9
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0062] (処理操作)
処理対象のアル力リ水溶液を実施例 19〜 21では 48 %KOHに代え、実施例 19と して (A)及び (B)を混合した試料、実施例 20として(C)、実施例 21として (A)及び( B)の混合体と(D)を直列に並べた試料、比較例 8として (G)、をカラムに充填し、実 施例 1〜 8と同様の方法で精製処理を行つた。
結果を表 6に示す。
[0063] 実施例 22〜24、比較例 10〜: 11
(使用器具の洗浄) 上記と同様の方法で使用器具を洗浄した。
[0064] (処理操作)
処理対象のアルカリ水溶液を実施例 22〜24では 23%Na COに代え、実施例 22
2 3
として (A)及び (B)を混合した試料、実施例 23として(C)、実施例 24として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 10として (G)、をカラムに充填し、 実施例 1〜 8と同様の方法で精製処理を行つた。
結果を表 7に示す。
[0065] 実施例 25〜27、比較例 12〜: 13
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0066] (処理操作)
処理対象のアルカリ水溶液を実施例 25〜27では 50%K COに代え、実施例 25
2 3
として (A)及び (B)を混合した試料、実施例 26として(C)、実施例 27として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 12として (G)、をカラムに充填し、 実施例 1〜 8と同様の方法で精製処理を行つた。
結果を表 8に示す。
[0067] 実施例 28〜30、比較例 14〜: 15
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0068] (処理操作)
処理対象のアルカリ水溶液を実施例 28〜30では 8%NaHCOに代え、実施例 28
3
として (A)及び (B)を混合した試料、実施例 29として(C)、実施例 32として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 14として (G)、をカラムに充填し、 実施例 1〜 8と同様の方法で精製処理を行つた。
結果を表 9に示す。
[0069] 実施例 31〜 33、比較例 16〜: 17
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。 [0070] (処理操作)
処理対象のアルカリ水溶液を実施例 31〜33では 50%KHCOに代え、実施例 31
3
として (A)及び (B)を混合した試料、実施例 32として(C)、実施例 33として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 16として (G)、をカラムに充填し、 実施例 1〜 8と同様の方法で精製処理を行つた。
結果を表 10に示す。
[0071] 実施例 34〜36、比較例 18〜: 19
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0072] (処理操作)
処理対象のアルカリ水溶液を実施例 34〜36では 28%アンモニア水に代え、実施 例 34として (A)及び (B)を混合した試料、実施例 35として(C)、実施例 36として (A) 及び (B)の混合体と(D)を直列に並べた試料、比較例 18として (G)、をカラムに充填 し、実施例 1〜8と同様の方法で精製処理を行った。
結果を表 11に示す。
[0073] 実施例 37〜39、比較例 20〜21
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0074] (処理操作)
処理対象のアルカリ水溶液を実施例 37〜39では 25%水酸化テトラメチルアンモニ ゥム水溶液に代え、実施例 37として (A)及び (B)を混合した試料、実施例 38として( C)、実施例 39として (A)及び (B)の混合体と(D)を直列に並べた試料、比較例 20と して (G)、をカラムに充填し、実施例 1〜8と同様の方法で精製処理を行った。
結果を表 12に示す。
[0075] 実施例 40〜42
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
[0076] (処理操作) 実施例 1〜8と同様の方法で、実施例 40の(C)及び (F)の混合体と (A)及び (B)の 混合体とをこの順番で直列に並べた試料、実施例 41の (A)及び (B)の混合体と(C) 及び (F)の混合体とをこの順番で直列に並べた試料、実施例 42の(K)と、(C)及び (F)の混合体並びに (A)及び (B)の混合体をこの順番で直列に並べた試料をカラム に充填し、実施例 1〜8と同様の方法で精製処理を行った。
結果を表 13に示す。
[0077] 実施例 43、 44
(使用器具の洗浄)
PTFE製タンク(容積 1200ml)、サンプリング用 PE (ポリエチレン)製容器 (容積 10 00ml)は全て金属汚染を排除するため予め、 1N硝酸で 1時間以上浸漬させた後超 純水で流水洗浄した。
洗浄に用いた硝酸は関東化学 (株)製の電子工業用グレード (EL)であり、約 1Nと なるよう超純水で希釈したものであり、超純水は超純水製造システムで製造された金 属含有量が各金属 lppt以下、 S Oppt以下、無機炭素 lOppb以下のものである。
[0078] (処理操作)
実施例 43、 44として PTFE製タンク (容積 1200ml)の中で 50%NaOH及び 50%K OHをそれぞれ (C)と 24時間接触させたバッチ法による精製処理を行った。
結果を表 14に示す。
[0079] 実施例 45〜47
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例 45〜47として PTFE製タンク(容積 1200ml)の中に 50%NaOHを貯留し、 4インチシリコンゥヱーハを投入し、 80°Cにて 3時間加熱後、徐冷したものを比較例 1 0のアルカリ水溶液とした。これに (A)を 24時間接触させたバッチ法及び (A)と(B) を実施例 1〜9と同様なカラムにて精製処理を行った。
結果を表 15に示す。
[0080] 実施例 48〜49、比較例 22〜23 (使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例 48〜49、比較例 22として (A)の強塩基性陰イオン交換繊維、(E)キレート 繊維及び (G)強酸性陽イオン交換樹脂を 20mlと 70%酢酸アンモニゥム水溶液を 20 Omlとを PE製容器内で混合し、 24時間、バッチ法による精製処理を行った。
結果を表 16に示す。
[0081] 実施例 50、比較例 24〜25
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例 50、比較例 24として (E)キレート繊維及び (G)強酸性陽イオン交換樹脂を 20mlと 1%セルロース水溶液を 200mlとを PE製容器内で混合し、 24時間、バッチ 法による精製処理を行った。
結果を表 17に示す。
[0082] 表 2において、比較例 1に示している金属不純物を含む未処理の 50%Na〇Hを用 いて、実施例:!〜 9の処理を行った結果、金属不純物の除去能力を確認することがで きた。しかしながら実施例 8や実施例 9、実施例 11のように 50%Na〇Hと接触するこ とで金属が溶出してくるケースも見られた。
[0083] ここで、 50%NaOHのような強アルカリ溶液中では、金属は陽イオン化学種として 存在する割合が低いため、比較例 2で示されるように、一般的な (G)の強酸性陽ィォ ン交換樹脂では金属不純物が除去できない結果が得られた。一方、実施例:!〜 3、 6 のように陰イオン交換繊維や樹脂では効果的に金属不純物が除去できた。特に 50
%NaOHのように炭酸不純物を吸収しやすレ、溶液の場合、強塩基性陰イオン交換 基よりも弱塩基性陰イオン交換基の方が効果的に金属不純物を除去できる結果が得 られた。また、実施例 4及び実施例 5のような特殊なキレート官能基を有する繊維や 樹脂も金属不純物除去効果を発揮した。
しかし、比較例 3のように限外濾過法を用いても微量な金属不純物は除去できなか つた。
[0084] 表 3において、実施例 1〜9の試験で良好であった処理方法を組み合わせた場合 の効果を調べた結果、実施例 10〜: 12のように飛躍的に金属不純物除去能力が上 力 ¾ことが示された。特に銅とニッケルについては、 1. Oppb以下までの除去が可能 であった。
[0085] 表 4及び 5では上記試験で特に良好であった実施例 3、実施例 10及び実施例 12と 同様の充填物にて実施し、比較例 4として (G)の強酸性陽イオン交換樹脂を使用し た場合を検討した。ここで比較例 4では (G)での金属除去能力は確認できなかった が、比較例 6では (G)が効果的に作用していることがわかった。すなわち、 0. 01重量 %NaOH (pH= l l . 4)以下では金属が陽イオンィ匕学種としても存在し、従来法の 陽イオン交換法によって処理可能である。し力、し、 0. l重量%NaOH (pH= 12. 4) 程度の濃度では、従来法の陽イオン交換法では金属を除去することができず、本発 明による精製方法が有効であった。
[0086] 以下の表 6〜: 12に示した実施例 19〜39でも以上の処理と同様に試験を行レ、、ほ ぼ同様の結果が得られた。ただし炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、 炭酸水素カリウムを用いた場合は、 (A)の強塩基性陰イオン交換繊維が炭酸化学種 の影響を受け、多少除去能力が低下している傾向が見られた。また、表 9及び表 10 で示されるように炭酸水素ナトリウム及び炭酸水素カリウムでは、弱塩基性であるため 、従来の陽イオン交換法も効果がある結果も得られた。
[0087] そして、表 13に示した実施例 40〜42でも、以上の処理と同様に試験を行ったとこ ろ、強塩基性陰イオン交換繊維、弱塩基性陰イオン交換繊維、強塩基性陰イオン交 換樹脂、弱塩基性陰イオン交換樹脂を組み合わせた場合には特に優れた金属不純 物除去能力を有することがわかった。
[0088] 表 14に示したバッチ法による精製処理である実施例 43及び 44でも、実施例 3及び 20と同等あるいはそれ以上に金属不純物除去能力がある結果が得られた。
[0089] 表 15に示した実施例 45〜47でも、以上の処理と同様に試験を行ったところ、特に ケィ素化合物、無機炭酸が強塩基性陰イオン交換繊維にて除去精製されていること がわかった。逆に弱塩基性陰イオン交換繊維では、ケィ素化合物、無機炭酸が除去 されていないことがわかった。これより、ケィ素化合物及び無機炭酸の除去精製の必 要性の有無によって使いわけることができることがわかった。
[0090] 表 16に示した 70%酢酸アンモニゥム水溶液(pH= 10. 0)において、実施例 48〜
49の(A)及び(E)で効果が確認でき、比較例 22の(G)では効果が確認できなかつ た。その理由として、高濃度に酢酸イオンやアンモニゥムイオンが存在するため、そ れらとの金属の錯体を形成し、(G)では除去できない金属化学種として存在している と考えられる。そして、負電荷の酢酸-金属錯体が (A)では電気的に吸着され、(E) では酢酸イオンまたはアンモニゥムイオンよりも強力な配位結合力によって吸着され たと考えられる。
[0091] 表 17に示した 1 %セルロース水溶液(pH= 11.0)において、実施例 50の(E)及び 比較例 24の(G)で効果が確認できた。この結果より、比較例 6と同様に金属が陽ィォ ン化学種としても存在してレ、ると考えられる。
[0092] [表 1] 試験系ブランク結果
Na < lppt
Li く lppt
Mg く lppt
Al く lppt
K < lppt
Ca く lppt
Cr く lppt
Mn く lppt
Fe く lppt
Co < lppt
Ni < lppt
Cu く lppt
Zn ぐ lppt
Pb く lppt
Si く 50ppt
c く lOppb
[0093] [表 2] (ppb)
Figure imgf000023_0001
[0094] [表 3]
(ppb)
Figure imgf000024_0002
[0095] [表 4]
Figure imgf000024_0003
Figure imgf000024_0001
[0096] [表 5]
(ppb)
Figure imgf000024_0004
*原液に約 1 0 p p bになる様に金属を添加
[0097] [表 6] OAV
〕8600
Figure imgf000025_0001
¾ 600s (ppb)
[0101] [:
Figure imgf000026_0001
[0102] [表 11]
(ppb)
Figure imgf000026_0002
*原液に金属 1 0 p p b添加
[0103] [表 12] (ppb)
Figure imgf000027_0001
[0104] [表 13]
(ppb)
Figure imgf000027_0002
[0105] [表 14]
(ppb)
Figure imgf000027_0003
[0106] [表 15]
Figure imgf000028_0001
[0107] [表 16]
Figure imgf000028_0002
[0108] [表 17]
Figure imgf000028_0003
産業上の利用可能性
本発明は、金属不純物を含有するアルカリ水溶液の精製において広く利用すること ができる。

Claims

請求の範囲
[1] 金属不純物を含むアルカリ水溶液を、繊維状又はビーズ状の強塩基性陰イオン交 換体、弱塩基性陰イオン交換体及びキレートィヒ材並びに賦活させた後に硝酸に接 触させた活性炭から選択される少なくとも一種の材料中に接触させることを特徴とす るアルカリ水溶液の精製方法。
[2] ケィ素化不純物と、炭酸不純物と、金属不純物とを含むアルカリ水溶液を、繊維状 又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体、及びキレート 化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも一種 の材料中に接触させ、金属不純物だけを除去することを特徴とするアルカリ水溶液の 精製方法。
[3] 精製すべきアルカリ水溶液におけるアルカリ成分は、水酸化ナトリウム、水酸化カリ ゥム、水酸化テトラメチルアンモニゥム、アンモニア、炭酸ナトリウム、炭酸水素ナトリウ ム、炭酸カリウム及び炭酸水素カリウムから選択されたものであることを特徴とする請 求項 1記載のアルカリ水溶液の精製方法。
[4] ビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレートィ匕材 力、ら選択される少なくとも一種の材料は、ハイポーラス型、ポーラス型、マクロポーラス 型又はマクロレテキユラ型であることを特徴とする請求項 1記載のアルカリ水溶液の精 製方法。
[5] 繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体、及び キレートィヒ材並びに賦活させた後に硝酸に接触させた活性炭から選択される材料を 、カラム又は塔中に一種又は二種以上で充填し、二種以上の場合は混合又は積層 の形で充填するか、あるいはカラム又は塔中に充填した後に各々を連結するかして、 精製すべきアルカリ水溶液を通液させることを特徴とする請求項 1記載のアルカリ水 溶液の精製方法。
[6] 繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及び キレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択される材料を 、精製すべきアルカリ水溶液とともに反応槽内に一種又は二種以上で収容し、二種 以上の場合は同一反応槽内に層状又は混合した形で配置し、精製すべきアル力リ 水溶液を流動化させ、次レ、で濾過されることを特徴とする請求項 1記載のアルカリ水 溶液の精製方法。
[7] アルカリ水溶液のアルカリ成分が水酸化ナトリウム又は水酸化カリウムであって、ァ ルカリの濃度が 5〜50重量%であることを特徴とする請求項 1記載のアルカリ水溶液 の精製方法。
[8] 精製されたアルカリ水溶液中の金属濃度が 50ppb以下であることを特徴とする請求 項 1記載のアルカリ水溶液の精製方法。
PCT/JP2007/061710 2006-06-19 2007-06-11 アルカリ水溶液の精製方法 WO2007148552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008522390A JP5555424B2 (ja) 2006-06-19 2007-06-11 アルカリ水溶液の精製方法
KR1020087030712A KR101167354B1 (ko) 2006-06-19 2007-06-11 알칼리 수용액의 정제 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-169420 2006-06-19
JP2006169420 2006-06-19

Publications (1)

Publication Number Publication Date
WO2007148552A1 true WO2007148552A1 (ja) 2007-12-27

Family

ID=38833293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061710 WO2007148552A1 (ja) 2006-06-19 2007-06-11 アルカリ水溶液の精製方法

Country Status (4)

Country Link
JP (1) JP5555424B2 (ja)
KR (1) KR101167354B1 (ja)
TW (1) TWI440608B (ja)
WO (1) WO2007148552A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031004A (ja) * 2006-07-31 2008-02-14 Toagosei Co Ltd 水酸化アルカリ金属の高純度製造方法
JP2008031009A (ja) * 2006-07-31 2008-02-14 Toagosei Co Ltd 高純度水酸化アルカリ金属の製造方法
JP2009167050A (ja) * 2008-01-15 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2009167036A (ja) * 2008-01-11 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2009167035A (ja) * 2008-01-11 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2011031223A (ja) * 2009-08-05 2011-02-17 Nomura Micro Sci Co Ltd 陰イオン交換体、その前処理方法及び再生方法並びにアルカリ水溶液の精製方法及び精製装置
JP2011051833A (ja) * 2009-09-02 2011-03-17 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
JP2013166150A (ja) * 2013-05-22 2013-08-29 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
JP2014188514A (ja) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp 精製アルカリ金属水溶液の製造方法
CN112999694A (zh) * 2021-03-24 2021-06-22 沧州信联化工有限公司 一种四甲基氢氧化铵加工用原料精制装置及其使用方法
CN115744934A (zh) * 2022-11-29 2023-03-07 福建省龙德新能源有限公司 一种纯化工业级纯碱生产电子级氟化钠的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149297A (en) * 1976-06-07 1977-12-12 Toyo Soda Mfg Co Ltd Purification of caustic soda aq. solution
JPS6427648A (en) * 1987-07-20 1989-01-30 Sumitomo Chemical Co Method of refining alkaline solution
WO2006018985A1 (ja) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation アルカリ水溶液の精製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789036A (en) * 1952-12-27 1957-04-16 Diamond Alkali Co Purification of concentrated alkali metal hydroxide by ion exchange
JPH10225643A (ja) * 1997-02-14 1998-08-25 Yoshihiko Kanchiku 繊維状イオン交換体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149297A (en) * 1976-06-07 1977-12-12 Toyo Soda Mfg Co Ltd Purification of caustic soda aq. solution
JPS6427648A (en) * 1987-07-20 1989-01-30 Sumitomo Chemical Co Method of refining alkaline solution
WO2006018985A1 (ja) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation アルカリ水溶液の精製方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031004A (ja) * 2006-07-31 2008-02-14 Toagosei Co Ltd 水酸化アルカリ金属の高純度製造方法
JP2008031009A (ja) * 2006-07-31 2008-02-14 Toagosei Co Ltd 高純度水酸化アルカリ金属の製造方法
JP2009167036A (ja) * 2008-01-11 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2009167035A (ja) * 2008-01-11 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2009167050A (ja) * 2008-01-15 2009-07-30 Toagosei Co Ltd 高純度アルカリ金属炭酸塩水溶液の製造方法
JP2011031223A (ja) * 2009-08-05 2011-02-17 Nomura Micro Sci Co Ltd 陰イオン交換体、その前処理方法及び再生方法並びにアルカリ水溶液の精製方法及び精製装置
JP2011051833A (ja) * 2009-09-02 2011-03-17 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
JP2014188514A (ja) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp 精製アルカリ金属水溶液の製造方法
JP2013166150A (ja) * 2013-05-22 2013-08-29 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
CN112999694A (zh) * 2021-03-24 2021-06-22 沧州信联化工有限公司 一种四甲基氢氧化铵加工用原料精制装置及其使用方法
CN115744934A (zh) * 2022-11-29 2023-03-07 福建省龙德新能源有限公司 一种纯化工业级纯碱生产电子级氟化钠的制备方法
CN115744934B (zh) * 2022-11-29 2024-03-22 福建省龙德新能源有限公司 一种纯化工业级纯碱生产电子级氟化钠的制备方法

Also Published As

Publication number Publication date
JPWO2007148552A1 (ja) 2009-11-19
TW200808663A (en) 2008-02-16
TWI440608B (zh) 2014-06-11
KR101167354B1 (ko) 2012-07-19
KR20090019843A (ko) 2009-02-25
JP5555424B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2007148552A1 (ja) アルカリ水溶液の精製方法
JP5053587B2 (ja) 水酸化アルカリ金属の高純度製造方法
CN113371683B (zh) 一种电子级双氧水生产方法
JP2008013379A (ja) 偏光フィルム製造廃液からのヨウ素回収方法
JP2019509882A (ja) 親水性有機溶媒のための精製プロセス
Pan et al. Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl (I) removal from water
TWI705937B (zh) 金屬污染防止劑、金屬污染防止膜、金屬污染防止方法及製品洗淨方法
JPWO2020013070A1 (ja) 酸性液の再生装置および再生方法
EP2874953A1 (en) A process for removal of hydrogen peroxide from an aqueous solution
JP5049528B2 (ja) 高純度水酸化アルカリ金属の製造方法
JP5648231B2 (ja) アルカリ水溶液の精製方法
JP2017035671A (ja) 希土類金属吸着剤、希土類金属吸着装置及び希土類金属吸着剤の製造方法
TWI428435B (zh) A method for the purification of the drug solution
JP5311227B2 (ja) 陰イオン交換体、その前処理方法及び再生方法並びにアルカリ水溶液の精製方法及び精製装置
JP2011051833A (ja) アルカリ水溶液の精製方法
JP2008050197A (ja) 高純度水酸化アルカリ金属の製造方法
US20240083837A1 (en) Processes for purifying organic amines
JP7248090B1 (ja) 有機溶媒の不純物除去方法
KR20190029823A (ko) 세슘정화용 전처리 필터 및 그 제조방법
JP2013103207A (ja) イオン吸着材、イオン吸着材の製造方法、吸着システム、及び吸着材の使用方法
CN118302242A (zh) 有机溶剂的纯化
JP2013176720A (ja) 六価クロム吸着除去剤およびその製造方法
CN115072899A (zh) 一种利用四乙烯五胺功能树脂去除与回收高盐水体中铜离子的方法
WO2021203255A1 (en) Organic amine purification method
CN117083124A (zh) 干燥离子交换树脂的制造方法和制造装置、以及被处理液的精制方法和精制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522390

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087030712

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745001

Country of ref document: EP

Kind code of ref document: A1