WO2007148535A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2007148535A1
WO2007148535A1 PCT/JP2007/061450 JP2007061450W WO2007148535A1 WO 2007148535 A1 WO2007148535 A1 WO 2007148535A1 JP 2007061450 W JP2007061450 W JP 2007061450W WO 2007148535 A1 WO2007148535 A1 WO 2007148535A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fluorine
semiconductor device
copper
heat treatment
Prior art date
Application number
PCT/JP2007/061450
Other languages
English (en)
French (fr)
Inventor
Masahiro Horigome
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to EP07744793A priority Critical patent/EP2034517A4/en
Priority to US12/305,049 priority patent/US20090134518A1/en
Publication of WO2007148535A1 publication Critical patent/WO2007148535A1/ja
Priority to IL195951A priority patent/IL195951A0/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • a fluorine-added carbon film is used as an insulating film, for example, an interlayer insulating film.
  • the present invention relates to a semiconductor device in which copper wiring is formed in the insulating film and a method for manufacturing the same.
  • JP-A-2005-109138 describes tantalum (Ta), tantalum nitride (TaN), and the like as a noria film for preventing copper diffusion.
  • a film (SiCOH film) containing silicon, carbon, oxygen, and hydrogen that has a low relative dielectric constant is drawing attention.
  • the present inventors are considering the use of a fluorine-added carbon film (fluorocarbon film) that is a compound of carbon (C) and fluorine (F), which has a lower dielectric constant than that of the SiCOH film.
  • the fluorine-added carbon film has such a property that fluorine is easily desorbed by heating.
  • a heat treatment of, for example, about 400 ° C is performed in order to stabilize defects in crystals inside the semiconductor device.
  • a fluorine-added carbon film is used as the insulating film, and the copper wiring force is also used to suppress copper diffusion into the insulating film.
  • the fluorine is diffused into the tantalum film by heat treatment, and fluorine is diffused into the tantalum film by the heat treatment, thereby producing tantalum fluoride (TaF5).
  • This tantalum fluoride will evaporate during the above heat treatment with high vapor pressure. For this reason, the density of the tantalum film is lowered and the barrier performance against copper is lowered.
  • the sheet resistance increases, and the adhesion between the fluorinated carbon film and the tantalum film also deteriorates.
  • the present invention provides a semiconductor device in which a fluorine-added carbon film is used as an insulating film, for example, an interlayer insulating film, and a copper wiring is formed in the insulating film. It is an object of the present invention to provide a semiconductor device capable of effectively suppressing diffusion of fluorine and copper between an insulating film and a copper wiring, and a manufacturing method thereof.
  • the present invention relates to a substrate, an insulating film made of a fluorine-added carbon film formed on the substrate, a copper wiring embedded in the insulating film, and a gap between the insulating film and the copper wiring.
  • the barrier film is formed between a first film made of titanium for suppressing fluorine diffusion, and between the first film and the copper wiring. And a second film having a tantalum force for suppressing copper diffusion.
  • the present invention provides a step of forming an insulating film made of a fluorine-added carbon film on a substrate, a step of forming a recess in the insulating film, and a first film having a titanium force in the recess.
  • FIG. 1A to FIG. 1C are cross-sectional views of a semiconductor device for explaining an embodiment of a method for manufacturing the semiconductor device according to the present invention.
  • FIG. 2A to 2C are cross-sectional views of a semiconductor device for explaining an embodiment of a semiconductor device manufacturing method according to the present invention, following FIG. 1C.
  • FIG. 3A and FIG. 3B are cross-sectional views of a semiconductor device for explaining an embodiment of a semiconductor device manufacturing method according to the present invention, following FIG. 2C.
  • FIG. 4 is a schematic longitudinal sectional view showing an example of a manufacturing apparatus for carrying out the semiconductor device manufacturing method according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of wafers 1 to 6 used in each experiment.
  • FIG. 6 is a characteristic diagram showing the results of wafer 3 in Experiment 3.
  • FIG. 7 is a characteristic diagram showing the results of wafer 6 in Experiment 3.
  • FIG. 8A is a characteristic diagram showing a result of the experiment 4 before the heat treatment.
  • FIG. 8B is a characteristic diagram showing the results after the heat treatment in Experiment 4.
  • the (n + 1) -th wiring is formed on the n-th wiring layer (n is an integer of 1 or more), which also has copper, for example, in the insulating film on the substrate.
  • n is an integer of 1 or more
  • FIG. 1A shows a substrate, for example, a semiconductor wafer (hereinafter referred to as WENO) in which a Cu wiring 61 as an nth wiring layer is formed in a fluorine-added carbon film (hereinafter referred to as “CF film”) 60 as an insulating film. )
  • WENO semiconductor wafer
  • CF film fluorine-added carbon film
  • FIG. 1A shows a substrate, for example, a semiconductor wafer (hereinafter referred to as WENO) in which a Cu wiring 61 as an nth wiring layer is formed in a fluorine-added carbon film (hereinafter referred to as “CF film”) 60 as an insulating film. )
  • CF film fluorine-added carbon film
  • FIG. 1A shows a substrate, for example, a semiconductor wafer (hereinafter referred to as WENO) in which a Cu wiring 61 as an nth wiring layer is formed in a fluorine-added carbon film (hereinafter
  • a film-forming gas of a compound containing carbon and fluorine for example, C
  • the atmosphere in which the F gas is turned into plasma and the wafer W is placed is the plasma atmosphere.
  • an interlayer insulating film made of the CF film 70 is formed with a film thickness of, for example, 200 nm.
  • the CF film 70 is subjected to dry etching using a conventional technique such as a photoresist mask or a node mask, as shown in FIG. 1C. Is formed. Here, detailed description of these steps is omitted.
  • a Ti film 74 which is a first film forming a part of the noria film 78 is formed on the entire surface of the wafer W by, for example, sputtering.
  • ions of Ar or the like are bombarded against the Ti target, so that titanium fine particles are generated and separated from the Ti target, and the surface of the wafer W (the exposed surface of the CF film 70 and the Cu wiring) 61), and a Ti film 74 is formed.
  • this Ti film 74 is a film having a barrier function that suppresses diffusion of fluorine in the CF film 70 to the upper layer side of the Ti film 74.
  • a film thickness of about 3 to: LOnm is sufficient. A barrier function is obtained.
  • a Ta film 75 as a second film is formed on the surface of the Ti film 74.
  • the Ta film 75 is formed using a sputtering apparatus in the same manner as the Ti film 74 described above.
  • the film thickness is preferably about 5 to: LOnm.
  • the Ta film 75 is a film having a barrier function that suppresses diffusion of copper in the Cu wiring 76 in contact with the Ta film 75 to the Ti film 74 side.
  • the barrier film 78 composed of the Ti film 74 and the Ta film 75 is formed.
  • the Cu wiring 76 is embedded.
  • the Cu wiring 76 may be formed by a CVD method using a gas obtained by vaporizing an organic material containing copper.
  • it may be formed by forming a copper seed layer by an electroless plating method and using this as an electrode to perform electrolytic plating.
  • the Ti film 74, Ta film 75, and Cu wiring 76 formed on the upper surface of the CF film 70 are removed by, for example, polishing called CMP (Chemical Mechanical Polishing) to obtain an (n + 1) layer.
  • Cu wirings 76 for the eyes are formed (see FIG. 3A).
  • a barrier film 64 made of an insulating film such as a SiN film is formed on the surface of the wafer W (see FIG. 3B).
  • circuits for a predetermined hierarchy are formed. Then, after the manufacture of the desired semiconductor device (multilayer wiring structure) is completed, a heat treatment at, for example, 400 ° C. is performed in order to terminate the crystal defects in the semiconductor device and stabilize the physical properties.
  • the (n + 1) -th layer wiring structure will be described.
  • the Ti film 74 as the first film
  • the second film The Ta film 75, which is a film, is laminated in the order of the CF film 70 side force to form the noria film 78.
  • fluorine is transferred from the CF film 70 to the Ta film 75 or Cu wiring 76. Further, it is possible to suppress the diffusion of copper into the Ti film 74 and the CF film 70 from the Cu wiring 76.
  • the Ti film 74 and the Ta film 75 do not cause a chemical reaction at about 400 ° C., and thus do not form an alloy (do not mix with each other). For this reason, the above-described Noria performance can be maintained even after the heat treatment.
  • the Ti film 74 and the Ta film 75 are each as thin as about lOnm or less. That is, the entire thickness of the barrier film 78 can be suppressed to 20 nm or less. For this reason, there is no possibility of preventing the thinning of the semiconductor device.
  • the film forming apparatus 10 includes a processing container 11 that is a vacuum chamber, a mounting table 12 that includes temperature control means, and a bias for 13.56 MHz, for example, connected to the mounting table 12. High frequency power supply 13.
  • a first gas supply unit 14 having a substantially circular shape, for example, an alumina is provided on the upper part of the processing vessel 11 so as to face the mounting table 12.
  • a number of first gas supply holes 15 are formed on the surface of the first gas supply unit 14 facing the mounting table 12.
  • the first gas supply hole 15 generates plasma through the gas flow path 16 and the first gas supply path 17.
  • a rare gas supply source such as argon (Ar) gas.
  • a second gas supply unit 18 made of, for example, a substantially circular conductor is provided between the mounting table 12 and the first gas supply unit 14.
  • a number of second gas supply holes 19 are formed on the surface of the second gas supply unit 18 facing the mounting table 12.
  • a gas flow path 20 communicating with the second gas supply hole 19 is formed inside the second gas supply section 18, and the gas flow path 20 is connected via a second gas supply path 21.
  • raw material gas such as CF gas
  • a large number of openings 22 are formed in the second gas supply unit 18 so as to penetrate the second gas supply unit 18 vertically.
  • the opening 22 does not communicate with the second gas supply hole 19 in the second gas supply unit 18, and causes the plasma generated above the second gas supply unit 18 to pass through the second gas supply unit 18.
  • 18 is provided for passing through the space below 18.
  • the opening 22 is formed between two adjacent second gas supply holes 19.
  • a ring-shaped opening surrounding the mounting table 12 is provided at the lower end of the processing container 11, and a vacuum exhaust means 27 is connected to the opening via an exhaust pipe 26.
  • an antenna unit 30 is provided above the first gas supply unit 14 via a cover plate 28 made of a dielectric such as alumina.
  • the antenna unit 30 includes a circular antenna body 31 and a planar antenna member (slit plate) 32 embedded in the lower end of the antenna body 31.
  • the planar antenna member 32 is formed with a large number of slits (not shown) for generating circular flat waves.
  • the antenna main body 31 and the planar antenna member 32 are made of a conductor to form a flat hollow circular waveguide.
  • a slow phase plate 33 made of a low-loss dielectric material such as alumina, oxide silicon, or nitride nitride. Yes.
  • This retardation plate 33 is for shortening the wavelength of the microwave and shortening the in-tube wavelength in the circular waveguide.
  • the antenna unit 30 configured as described above is connected to a microwave generation unit 34 that generates a microwave having a frequency of, for example, 2.45 GHz or 8.4 GHz via a coaxial waveguide 35. It has been continued.
  • the waveguide 35A outside the coaxial waveguide 35 is connected to the antenna body 31, and the central conductor 35B of the coaxial waveguide 35 is connected to the planar antenna through the opening formed in the slow phase plate 33. Connected to member 32.
  • the wafer W is loaded into the processing container 11 and placed on the mounting table 12. Then, the inside of the processing container 11 is evacuated by using the vacuum exhaust means 27, and, for example, Ar gas and F gas are supplied into the processing container 11 at a predetermined flow rate. And the inside of the processing container 11 is predetermined.
  • the wafer W is heated by the temperature control means provided on the mounting table 12.
  • a high frequency (microwave) with a frequency of 2.45 GHz is further formed on the planar antenna member 32 from the microwave generating means 34 via the cover plate 28 and the first gas supply unit 14. It radiates
  • This microwave excites high-density and uniform Ar gas plasma in the space between the first gas supply unit 14 and the second gas supply unit 18.
  • C F gas released from the second gas supply unit 18 toward the mounting table 12 flows from the upper side through the opening 22.
  • This active species is deposited on the surface of the wafer W, and the CF film 70 is formed on the noria film 64.
  • the gas used as the raw material for the fluorinated carbon film is not limited to CF gas, CF gas,
  • C F gas, C F gas, C F gas or C F gas may be used.
  • the sputtering apparatus generally includes a Ti plate as a metal source for sputtering titanium by electric discharge, and forms a Ti film 74 by depositing titanium fine particles generated from the Ti plate cover. It is.
  • Titanium fluoride has a high vapor pressure like tantalum fluoride described above
  • the density of the Ti film 74 decreases and the sheet resistance increases S.
  • titanium carbide is stable with low vapor pressure.
  • the reaction proceeds by a heat treatment, for example, an annealing process after the completion of manufacturing the semiconductor device described above.
  • the titanium carbide is selectively generated and the generation of titanium fluoride is suppressed, so that a decrease in the density of the Ti film 74 and an increase in sheet resistance can be suppressed.
  • the Ti film 74 is not necessarily limited to a film formed by sputtering, and may be formed using another film forming method, for example, the film forming apparatus 10 described above.
  • the Ta film 75 is formed.
  • various known sputtering apparatuses can be used in the same manner as the Ti film 74 described above.
  • the method for manufacturing a semiconductor device according to the present invention is not limited to the damascene method, and can also be applied to a method in which the Cu wiring 76 is formed first and then the CF film 70 is formed so as to surround the Cu wiring 76. It is.
  • wafers 1 to 6 The schematic cross sections of the No. 1 to No. 6 Weno cages (hereinafter referred to as wafers 1 to 6) used in the experiment are shown.
  • FIG. 1 This is shown in FIG.
  • These wafers 1 to 6 have a common force in that a CF film 82 having a thickness of 150 nm is formed on the Si substrate 81, which is a bare silicon wafer for experiments, using the film forming apparatus 10 described above.
  • the barrier film shown in Table 1 below is formed on the CF film 82 for each wafer.
  • a Cu film 87 (not shown) was formed on the uppermost metal (Ta, Ni, Ti, etc.) by the method described above.
  • each of the wafers 1 to 6 was subjected to heat treatment under the above conditions. And each wafer 1-6 was taken out in air
  • the Ta film 84 is in direct contact with the CF film 82 based on a comparison with wafer 2. Can be derived that is not good.
  • fluorine diffuses from the CF film 82 to the Ta film 84 by the heat treatment to generate tantalum fluoride having a high vapor pressure, and the sheet resistance is increased by evaporation of the tantalum fluoride. Conceivable.
  • a Cu film 87 was formed on wafers 2, 3, 4, and 6 as in Experiment 1.
  • each wafer was subjected to heat treatment under the above conditions. Then, the X-ray intensity of each metal was measured by X-ray fluorescence analysis (XRF), and the ratio of the number of metal atoms in each metal film before and after the heat treatment was determined. The results are shown in Table 3.
  • the TaN film 86 on the wafer 2 and the Ni film 85 on the wafer 4 allow the fluorine from the CF film 82 to pass through slightly. For this reason, tantalum fluoride is generated in the Ta film 84 and evaporated. Conceivable.
  • TEM transmission electron microscope
  • a Cu film 87 (not shown) was formed on the uppermost metal on the wafer 3 and the wafer 6 by the method described above.
  • each wafer was subjected to heat treatment under the above conditions.
  • the amount of each element (Cu, Ta, Ni, F) in the depth direction was measured using a secondary ion mass spectrometer (SIMS).
  • Figure 6 shows the results of elemental analysis of wafer 3 before and after heat treatment. Similarly, the results of elemental analysis of wafer 6 before and after heat treatment are shown in FIG.
  • the secondary ion intensity of each element of the wafer 6 hardly changes before and after the heat treatment in the depth direction. In other words, no diffusion of Cu or F occurs, and it can be seen that the film is optimal as the Noria film force S barrier film of the wafer 6.
  • FIG. 8A The experimental results before the heat treatment are shown in FIG. 8A, and the experimental results after the heat treatment are shown in FIG. 8B.
  • FIG. 8A titanium carbide and acid fluoride are formed in the lower layer of the Ti film 83 before heat treatment.
  • a peak attributed to titanium fluoride (TiOF) was confirmed.
  • TiOF titanium fluoride
  • FIG. 8B the peak intensity of titanium carbide increased after the heat treatment, but no change in the peak intensity of titanium oxyfluoride was observed. From this, it is considered that titanium carbide is selectively generated in the lower layer of the Ti film 83 by the heat treatment.
  • the peak intensity of titanium oxyfluoride remained unchanged before and after the heat treatment. From this, it can be said that the fluorine in the CF film 82 diffuses throughout the thickness of the Ti film 83 when the Ti film 83 is formed, but the diffusion by the heat treatment did not proceed. I understand that. That is, it can be seen that the Ti film 83 works effectively as a fluorine film against fluorine.
  • the peak Ti intensity of the upper layer of the Ti film 83 is reduced by the heat treatment. This is presumably because the upper layer of titanium was supplied to the lower layer because of the titanium carbide selectively generated in the lower layer of the Ti film 83.
  • the Ti film 83 in contact with the CF film 82 forms, for example, titanium fluoride having a high vapor pressure in the same manner that the Ta film 84 of the wafer 1 forms tantalum fluoride having a high vapor pressure. Guessing can also hold. However, in practice, titanium carbide is selectively formed in the vicinity of the interface between the CF film 82 and the Ti film 83. In other words, while Ti and Ta are highly common metals such as refractory metals, the Ta film does not exhibit sufficient nooria for fluorine, and the Ti film exhibits good barrier properties for fluorine. .

Abstract

 本発明の半導体装置は、基板と、前記基板上に成膜された、フッ素添加カーボン膜からなる絶縁膜と、前記絶縁膜に埋め込まれた銅配線と、前記絶縁膜と前記銅配線との間に形成されたバリア膜と、を備えている。前記バリア膜は、フッ素の拡散を抑えるためのチタンからなる第1の膜と、前記第1の膜と前記銅配線との間に形成された、銅の拡散を抑えるためのタンタルからなる第2の膜と、を有している。

Description

明 細 書
半導体装置及び半導体装置の製造方法
技術分野
[0001] 本発明は、フッ素添加カーボン膜が絶縁膜、例えば層間絶縁膜、として用いられて
、当該絶縁膜に銅配線が形成される半導体装置及びその製造方法に関する。 背景技術
[0002] 近年、半導体装置の高集積ィ匕を図るために、多層配線構造が採用されているが、 半導体装置の微細化及び高集積ィ匕の進展に伴って、配線を通る電気信号の遅延( 配線遅延)力 デバイスの動作の高速ィ匕に対して問題となっている。この配線遅延は 、配線の抵抗と配線間の容量との積に比例する。
[0003] 前記配線遅延を短縮するために、電極配線材料の低抵抗化と、各層間を絶縁する 層間絶縁膜の低誘電率化と、を図ることが求められている。これに応じて、配線材料 としては、低抵抗の銅 (Cu)が好適な材料として使用されて!、る。
[0004] し力しながら、銅は拡散しやすい元素であって、銅の拡散によって層間絶縁膜中の 絶縁性が低下することが知られている。従って、銅配線と層間絶縁膜との間には、銅 の拡散防止のためのノリア膜を介在させることが必要である。
[0005] 特開 2005— 109138には、銅の拡散を防止するためのノリア膜として、タンタル( Ta)ゃ窒化タンタル (TaN)などが記載されて!ヽる。
[0006] 一方、層間絶縁膜としては、比誘電率を低くするベぐシリコン、炭素、酸素及び水 素を含む膜 (SiCOH膜)が注目されている。また、本件発明者らは、 SiCOH膜よりも さらに比誘電率が低い、炭素(C)及びフッ素 (F)の化合物であるフッ素添加カーボン 膜 (フロロカーボン膜)の採用を検討している。
[0007] し力しながら、フッ素添加カーボン膜は、加熱によってフッ素が脱離しやす 、と!/、う 性質を持っている。
[0008] ところで、半導体装置は、デバイスとして完成された後で、その内部の結晶の欠陥 を安定ィ匕させるために、例えば 400°C程度の熱処理が行われる。絶縁膜としてフッ素 添加カーボン膜が用いられ、且つ、銅配線力も絶縁膜への銅の拡散を抑えるための ノ リア膜としてタンタル膜が用いられて 、る場合には、熱処理によってフッ素添加力 一ボン膜からフッ素がタンタル膜中に拡散して、フッ化タンタル (TaF5)が生成する。 このフッ化タンタルは、蒸気圧が高ぐ上記の熱処理中に蒸発してしまう。このため、 タンタル膜の密度が低下して、銅に対するバリア性能が低下してしまう。また、シート 抵抗が増加し、更には、フッ素添加カーボン膜とタンタル膜との密着性も悪くなる。
[0009] これらのことから、薄膜でありながら銅及びフッ素の拡散を防止するようなノ リア膜が 望まれている。
[0010] 特開 2005— 302811には、フッ素添加カーボン膜について記載されている力 上 記の課題及びその解決にっ 、ては触れられて ヽな 、。
発明の要旨
[0011] 以上のような問題に鑑みて、本発明は、フッ素添加カーボン膜が絶縁膜、例えば層 間絶縁膜、として用いられて、当該絶縁膜に銅配線が形成される半導体装置におい て、絶縁膜と銅配線との間でのフッ素及び銅の拡散を効果的に抑えることができる半 導体装置、及び、その製造方法を提供することを目的とする。
[0012] 本発明は、基板と、前記基板上に成膜された、フッ素添加カーボン膜からなる絶縁 膜と、前記絶縁膜に埋め込まれた銅配線と、前記絶縁膜と前記銅配線との間に形成 されたノ リア膜と、を備え、前記バリア膜は、フッ素の拡散を抑えるためのチタンから なる第 1の膜と、前記第 1の膜と前記銅配線との間に形成された、銅の拡散を抑える ためのタンタル力もなる第 2の膜と、を有して 、ることを特徴とする半導体装置である。
[0013] この特徴によれば、絶縁膜と銅配線との間におけるフッ素及び銅の拡散を効果的 に抑えることができ、且つ、ノ リア膜の膜減りも効果的に抑えることができる。
[0014] また、本発明は、基板上にフッ素添加カーボン膜からなる絶縁膜を成膜する工程と 、前記絶縁膜に凹部を形成する工程と、前記凹部内にチタン力 なる第 1の膜を成 膜する工程と、前記第 1の膜の表面にタンタルカゝらなる第 2の膜を成膜する工程と、 前記第 2の膜の表面に銅力 なる配線を形成する工程と、を備えたことを特徴とする 半導体装置の製造方法である。
[0015] この特徴によれば、絶縁膜と銅配線との間におけるフッ素及び銅の拡散を効果的 に抑えることができ、且つ、ノ リア膜の膜減りも効果的に抑えることができるという半導 体装置を、比較的容易に製造することができる。
図面の簡単な説明
[0016] [図 1]図 1A乃至図 1Cは、本発明による半導体装置の製造方法の一実施の形態を説 明するための半導体装置の断面図である。
[図 2]図 2A乃至図 2Cは、図 1Cに引き続いて、本発明による半導体装置の製造方法 の一実施の形態を説明するための半導体装置の断面図である。
[図 3]図 3A及び図 3Bは、図 2Cに引き続いて、本発明による半導体装置の製造方法 の一実施の形態を説明するための半導体装置の断面図である。
[図 4]図 4は、本発明による半導体装置の製造方法を実施するための製造装置の一 例示す概略縦断面図である。
[図 5]図 5は、各実験に用いられたウェハ 1〜6の概略断面図である。
[図 6]図 6は、実験 3のウェハ 3の結果を示す特性図である。
[図 7]図 7は、実験 3のウェハ 6の結果を示す特性図である。
[図 8]図 8Aは、実験 4の熱処理前の結果を示す特性図である。図 8Bは、実験 4の熱 処理後の結果を示す特性図である。
発明を実施するための最良の形態
[0017] 本発明による半導体装置の製造方法の一実施の形態について、以下に説明する。
ここでは、多層配線構造を製造するために、基板上の絶縁膜内において、金属例え ば銅力もなる n(nは 1以上の整数)番目の配線層の上に、 (n+ 1)番目の配線層を形 成する場合が説明される。
[0018] 図 1Aは、絶縁膜であるフッ素添加カーボン膜 (以下「CF膜」という) 60内に、 n番目 の配線層である Cu配線 61が形成された基板、例えば半導体ウェハ(以下ウエノ、) W 、の概略断面図を示している。この場合、 n番目の回路層の表面に、当該 n番目の C u配線 61から次段の (n+ 1)番目の層間絶縁膜 (CF膜 70)に銅が拡散しな 、ように、 絶縁膜例えば SiN膜からなるバリア膜 64が形成されている。
[0019] 本実施の形態では、後述の通り、炭素とフッ素とを含む化合物の成膜ガス例えば C
F ガスがプラズマ化され、ウェハ Wが載置されている雰囲気がプラズマ雰囲気とさ
5 8
れる。これにより、 C F ガス力も生成された活性種がウェハ Wの表面に堆積して、 図 IBに示すように、 CF膜 70からなる層間絶縁膜が例えば 200nmの膜厚で成膜さ れる。
[0020] 次に、当該 CF膜 70に、図 1Cに示すように、従来の手法例えばフォトレジストマスク ゃノヽードマスクなどを用いたドライエッチングによって、ダマシン構造のトレンチの溝と ビアホールとからなる凹部 71が形成される。ここでは、それらの工程の詳細な説明は 省略する。
[0021] その後、図 2Aに示すように、ウェハ Wの表面全体に、ノリア膜 78の一部をなす第 1 の膜である Ti膜 74が、例えばスパッタリングによって成膜される。このスパッタリング 工程においては、 Tiターゲットに対して例えば Ar等のイオンを打ち付けることにより、 当該 Tiターゲットからチタンの微粒子が生成され分離して、ウェハ Wの表面 (CF膜 7 0の露出面及び Cu配線 61の表面)に堆積され、これによつて Ti膜 74が成膜される。 この Ti膜 74は、後述するように、 CF膜 70内のフッ素が Ti膜 74の上層側へ拡散する ことを抑えるバリア機能を有する膜であり、例えば膜厚が 3〜: LOnm程度で十分なバリ ァ機能が得られる。
[0022] 次に、図 2Bに示すように、 Ti膜 74の表面に、第 2の膜である Ta膜 75が成膜される 。この Ta膜 75は、上述の Ti膜 74と同様に、スパッタ装置を用いて成膜される。その 膜厚は、 5〜: LOnm程度であることが好ましい。この Ta膜 75は、後述するように、当該 Ta膜 75に接する Cu配線 76内の銅が Ti膜 74側へ拡散することを抑えるバリア機能 を有する膜である。以上のようにして、 Ti膜 74及び Ta膜 75からなるバリア膜 78が形 成される。
[0023] その後、図 2Cに示すように、 Cu配線 76が埋め込まれる。当該 Cu配線 76は、例え ば、銅を含む有機材料を気化したガスを用いて、 CVD法により形成されても良い。あ るいは、無電解メツキ法によって銅のシード層を形成し、これを電極として用いて、電 解メツキを行うことによって形成されても良い。
[0024] 次 、で、 CF膜 70の上面に成膜された Ti膜 74、 Ta膜 75及び Cu配線 76が、例え ば CMP (Chemical Mechanical Polishing)と呼ばれる研磨によって除去され、( n+ 1)層目の Cu配線 76が形成される(図 3A参照)。そして、前述の図 1Aと同様に、 ウェハ Wの表面に絶縁膜例えば SiN膜からなるバリア膜 64が成膜される(図 3B参照 ) o
[0025] 以後、以上の図 IB乃至図 3Bの工程を繰り返すことによって、所定の階層分の回路 が形成される。そして、所望の半導体装置 (多層配線構造)の製造が完成した後、当 該半導体装置内の結晶の欠陥を終端させて物性を安定させるため、例えば 400°C の熱処理が行われる。
[0026] 以上の実施の形態では、例えば (n+ 1)層目の配線構造について説明すると、 CF 膜 70と Cu配線 76との間に、第 1の膜である Ti膜 74と、第 2の膜である Ta膜 75とが、 CF膜 70側力も当該順序で積層されてノリア膜 78を形成している。このため、後述の 実験結果からも明らかなように、例えば半導体装置の製造工程が完了した後に行わ れるァニール処理などの熱処理を受けても、フッ素が CF膜 70から Ta膜 75や Cu配 線 76へ拡散することが抑えられ、更には、銅が Cu配線 76から Ti膜 74や CF膜 70へ 拡散することが抑えられる。このため、熱処理によってフッ素とタンタル及び銅とが反 応することが抑えられ、後述の実験結果からも明らかなように、フッ素とタンタル及び 銅との反応によるシート抵抗の増加を抑制することができる。これにより、半導体装置 の電気的特性の劣化を抑えることができる。また、 Ti膜 74及び Ta膜 75は、 400°C程 度では化学反応を起こさないので、合金を形成しない(互いに混じり合わない)。この ため、熱処理を受けた後においても、上述のノリア性能を保ち続けることができる。
[0027] また、 Ti膜 74及び Ta膜 75は、各々およそ lOnm以下と薄い。すなわち、バリア膜 7 8全体の膜厚を、 20nm以下に抑えることができる。このため、半導体装置の薄層化 を阻むおそれもない。
次に、 CF膜 70を成膜するために好適な成膜装置の一例について、図 4を参照しな 力 簡単に説明する。図 4に示されるように、成膜装置 10は、真空チャンバである処 理容器 11、温調手段を備えた載置台 12、及び、当該載置台 12に接続された例えば 13. 56MHzのバイアス用の高周波電源 13、を備えている。
[0028] 処理容器 11の上部には、載置台 12と対向するように、例えば略円形状の例えばァ ルミナカもなる第 1のガス供給部 14が設けられている。この第 1のガス供給部 14にお ける載置台 12と対向する面には、多数の第 1のガス供給孔 15が形成されている。第 1のガス供給孔 15は、ガス流路 16及び第 1のガス供給路 17を介して、プラズマ発生 用のガスの供給源、例えばアルゴン (Ar)ガスなどの希ガス供給源、に接続されてい る。
[0029] また、載置台 12と第 1のガス供給部 14との間には、例えば略円形状の導電体から なる第 2のガス供給部 18が設けられている。この第 2のガス供給部 18における載置 台 12と対向する面には、多数の第 2のガス供給孔 19が形成されている。第 2のガス 供給部 18の内部には、第 2のガス供給孔 19に連通するガス流路 20が形成されてお り、当該ガス流路 20は、第 2のガス供給路 21を介して、 C F ガスなどの原料ガスの
5 8
供給源に接続されている。
[0030] また、第 2のガス供給部 18には、当該第 2のガス供給部 18を上下に貫通するように 、多数の開口部 22が形成されている。この開口部 22は、第 2のガス供給部 18内では 第 2のガス供給孔 19とは連通せず、第 2のガス供給部 18の上方で生成されたプラズ マを第 2のガス供給部 18の下方側の空間に通過させるために設けられている。例え ば、開口部 22は、隣接する 2つの第 2のガス供給孔 19の間に形成される。
[0031] また、処理容器 11の下端には、載置台 12を囲むようなリング状の開口が設けられ ており、当該開口には排気管 26を介して真空排気手段 27が接続されている。
[0032] また、第 1のガス供給部 14の上方には、例えばアルミナなどの誘電体により構成さ れたカバープレート 28を介して、アンテナ部 30が設けられている。このアンテナ部 30 は、円形のアンテナ本体 31と、このアンテナ本体 31の下端に埋設された平面アンテ ナ部材 (スリット板) 32と、を備えている。平面アンテナ部材 32には、円扁波を発生さ せるための多数のスリット(不図示)が形成されている。これらアンテナ本体 31と平面 アンテナ部材 32とは、導体により構成されて、扁平な中空の円形導波管を構成して いる。
[0033] また、アンテナ本体 31と平面アンテナ部材 32との間には、例えばアルミナや酸ィ匕 ケィ素、窒化ケィ素等の低損失誘電体材料により構成された遅相板 33が設けられて いる。この遅相板 33は、マイクロ波の波長を短くして、前記円形導波管内の管内波 長を短くするためのものである。
[0034] 以上のように構成されたアンテナ部 30は、同軸導波管 35を介して、例えば 2. 45G Hzあるいは 8. 4GHzの周波数のマイクロ波を発生するマイクロ波発生手段 34に接 続されている。なお、同軸導波管 35の外側の導波管 35Aが、アンテナ本体 31に接 続され、同軸導波管 35の中心導体 35Bが、遅相板 33に形成された開口部を介して 平面アンテナ部材 32に接続されて 、る。
[0035] 次に、上記の成膜装置 10を用いた CF膜 70の成膜方法について説明する。先ず、 ウェハ Wが、処理容器 11内に搬入されて、載置台 12上に載置される。そして、真空 排気手段 27を用いて処理容器 11内が排気されて、処理容器 11内に例えば Arガス とじ F ガスとがそれぞれ所定の流量で供給される。そして、処理容器 11内が所定
5 8
のプロセス圧力に設定され、載置台 12に設けられた温調手段によってウェハ Wが加 熱される。
[0036] 一方、マイクロ波発生手段 34から、周波数が 2. 45GHzの高周波(マイクロ波)が、 カバープレート 28と第 1のガス供給部 14とを介して、更に平面アンテナ部材 32に形 成された図示しないスリットを介して、下方側の処理空間に向けて放射される。
[0037] このマイクロ波により、第 1のガス供給部 14と第 2のガス供給部 18との間の空間に、 高密度で均一な Arガスのプラズマが励起される。一方、第 2のガス供給部 18から載 置台 12に向けて放出される C F ガスは、開口部 22を介して上方側から流れ込ん
5 8
でくる Arガスのプラズマと接触して、活性種を生成する。この活性種がウェハ Wの表 面に堆積して、ノ リア膜 64上に CF膜 70が形成される。
フッ化添加カーボン膜の原料となるガスとしては、 C F ガスに限らず、 CF ガス、
5 8 4
C F ガス、 C F ガス、 C F ガスまたは C F ガスなどを用いてもよい。
2 6 3 8 3 9 4 8
[0038] 尚、 Ti膜 74を成膜するには、既述の通り、公知の種々のスパッタ装置を用いること ができる。スパッタ装置は、一般に、放電によってチタンをスパッタするための金属源 としての Ti板を備えており、当該 Ti板カゝら発生されるチタンの微粒子を堆積させるこ とによって Ti膜 74を形成する装置である。
[0039] チタンの微粒子は、非常に活性が高い。このため、 CF膜 70の表面に堆積された場 合に、 CF膜 70中の元素 (炭素及びフッ素)と反応して、炭化チタン及びフッ化チタン を生成する。フッ化チタン (TiF )は、既述のフッ化タンタルと同様に、蒸気圧が高い
4
。このため、フッ化チタンの生成が進行すると、 Ti膜 74の密度の低下やシート抵抗の 上昇力 Sもたらされてしまう。一方、炭化チタンは、蒸気圧が低ぐ安定である。前記の 反応は、熱処理、例えば既述の半導体装置の製造完成後のァニール処理など、に よって進行する。しかしながら、後述の実験結果において明らかなように、炭化チタン が選択的に生成されてフッ化チタンの生成が抑えられることにより、 Ti膜 74の密度の 低下やシート抵抗の上昇が抑制され得る。このこと〖こよって、本実施の形態の Ti膜 7
4は、フッ素に対して高いバリア性を有することができる。
Ti膜 74は、必ずしもスパッタリングによって形成される膜に限られるものではなぐ 他の成膜方法、例えば上述の成膜装置 10などを用いて成膜されても良い。
[0040] Ti膜 74の成膜に続 、て、 Ta膜 75の成膜が行われる。 Ta膜 75を成膜するために は、上述の Ti膜 74と同様に、公知の種々のスパッタ装置を用いることができる。
[0041] 本発明による半導体装置の製造方法は、ダマシン法に限られず、 Cu配線 76を初 めに形成してその後 Cu配線 76を囲むように CF膜 70を形成する手法にも、適用可 能である。
[0042] <実験の説明 >
銅とフッ素とに対するノリア膜の効果にっ 、て、どのような元素が最適であるかを確 かめるベぐ以下の実験が行われた。
[0043] 実験に用いられた No. l〜No. 6のウエノヽ(以下、ウェハ 1〜6という)の概略断面が
、図 5に示されている。これらのウェハ 1〜6は、実験用のベアシリコンウェハである Si 基板 81上に、上述の成膜装置 10を用いて膜厚 150nmの CF膜 82が成膜されてい る点は共通である力 各ウェハ毎に、 CF膜 82上に、以下の表 1に示すバリア膜が形 成されたものである。
[表 1]
(表 1 )
ウェハ N o . 1 2 3 4 5 6
T a T a T a 兀素禾里 T a T a N N i N i T i T i
8 8 8 膜厚 ( n m) 8 8 6 6 1 3 3 [0044] 表 1に示された各元素種の成膜には、既述のスパッタ装置が用いられた。その成膜 条件の詳細については、ここでは説明を省略する。なお、表 1において 2種類の膜が 形成された場合 (ウェハ 2、 4及び 6)については、 Ta膜 84が上側に積層された。
[0045] また、以下の各実験において、ウエノ、 1〜6に対して、熱処理が行われた。その条件 は、以下の通りであった。
(熱処理条件)
熱処理温度 :400°C
熱処理時間 :15分
圧力 : 266. 7Pa (2000mTorr)
雰囲気 : Ar= 500sccm
[0046] <実験 1 :熱処理によるシート抵抗の変化 >
図 5に示された各ウェハ 1〜6に対して、最上層の金属 (Ta、 Ni、 Ti等)上に、既述 の方法によって、 Cu膜 87 (図示せず)が成膜された。
[0047] その後、上記の条件で各ウェハ 1〜6に熱処理が施された。そして、各ウェハ 1〜6 が大気中に取り出され、それぞれ、シート抵抗が測定された。その結果が表 2に示さ れる。
[表 2]
(表 2 )
Figure imgf000011_0001
[0048] 表 2によれば、ウェハ 1及びウェハ 5のシート抵抗力、熱処理によって大きく増加して いて、好ましくない、ということがわかる。
[0049] ウェハ 1については、ウェハ 2との比較から、 Ta膜 84が CF膜 82と直接接触すること が良くない、ということが導き出せる。ウェハ 1の場合、熱処理によって CF膜 82から T a膜 84へフッ素が拡散して、蒸気圧の高いフッ化タンタルが生成してしまい、当該フッ 化タンタルが蒸発することでシート抵抗が増加したと考えられる。
[0050] ウェハ 5については、ウェハ 6との比較から、 Ti膜 83が Cu膜 87と直接接触すること が良くない、ということが導き出せる。ウェハ 5の場合、熱処理によって Cuが Ti膜中に 拡散し、更には CF膜 82のフッ素と反応して、シート抵抗の高い化合物が生成された ものと考えられる。
[0051] <実験 2 :熱処理による X線強度の変化 >
ウェハ 2、 3、 4及び 6に対して、実験 1と同様に、 Cu膜 87が成膜された。
[0052] その後、上記の条件で各ウェハに熱処理が施された。そして、蛍光 X線分析 (XRF : X-ray Fluorescence Analysis)により各金属の X線強度が測定され、熱処理 前後の各金属膜中の金属原子数の比が求められた。その結果が表 3に示される。
[表 3]
(表 3 )
Figure imgf000012_0001
[0053] 表 3によれば、ゥヱハ 2及びゥヱハ 4の Taの原子数力 熱処理によって減少していて
、好ましくない、ということがわかる。
[0054] ウェハ 2の TaN膜 86、ウェハ 4の Ni膜 85は、 CF膜 82からのフッ素を僅かながら透 過させる。このため、 Ta膜 84においてフッ化タンタルが生成され、これが蒸発したと 考えられる。なお、透過型電子顕微鏡(TEM : Transmission Electron Micro sc ope)による測定の結果、 Si基板 81上に堆積された膜の全体的な膜厚は変わってい なかった。これにより、いわゆる減膜は発生しておらず、単に膜中の元素が抜けたも のと考えられる。
[0055] <実験 3 :元素分析 >
次に、ウェハ 3とウェハ 6とに対して、最上層の金属上に、既述の方法によって、 Cu 膜 87 (図示せず)が成膜された。
[0056] その後、上記の条件で各ウェハに熱処理が施された。そして、 2次イオン質量分析 装置(SIMS: Secondary Ion Mass Spectroscopy)を用いて、深さ方向の各元 素(Cu、 Ta、 Ni、 F)の量が測定された。熱処理前後におけるウェハ 3の元素分析の 結果が図 6に示されている。同様に、熱処理前後におけるウェハ 6の元素分析の結果 が図 7に示されている。
[0057] 図 6について考察すると、熱処理前において認められた Cu、 Niのピークは、熱処 理後に消滅している。これら両金属は、熱処理によって合金化したものと考えられる。 また、合金化した金属へのフッ素の拡散も認められる。以上から、 Niは Cu、 Fの両元 素に対して十分なノリア性を持って ヽな 、ことがわかる。
[0058] 一方、図 7につ 、て考察すると、ウェハ 6の各元素の 2次イオン強度は、深さ方向に おいて、熱処理前後でほとんど変わっていない。つまり Cu、 Fの拡散は発生しておら ず、ウェハ 6のノリア膜力 Sバリア膜として最適なものであることがわかる。
[0059] <実験 4 :結合エネルギー >
次に、以上の各実験において良好な結果を示したウェハ 6に対して、ウェハ 6中の T i膜 83がどのようになっているかを調べるベぐ以下の実験が行われた。本実験では、 X線光電子分光法(XPS :X—ray Photoelectron Spectoscopy)を用いて、 Ti 膜 83の上層 (Ta膜 84付近)と、 Ti膜 83の下層(CF膜 82付近)と、のチタンィ匕合物の 結合エネルギーが、熱処理前後において測定された。尚、この実験は、 Cu膜 87が 成膜されな!、状態で行われた。
[0060] 熱処理前の実験結果が図 8Aに示され、熱処理後の実験結果が図 8Bに示されて いる。図 8Aに示すように、熱処理前の Ti膜 83の下層において、炭化チタンと酸フッ 化チタン (TiOF)とに帰属されるピークが確認された。これは、既述の通り、 Ti膜 83 が成膜される時にチタンの表面が活性ィ匕して、 CF膜 82中の元素 (炭素及びフッ素) と反応を起こしたものと考えられる。一方、図 8Bに示すように、熱処理後には、炭化 チタンのピーク強度は増加して 、たが、酸フッ化チタンのピーク強度の変化は見られ なかった。このことから、 Ti膜 83の下層では、熱処理によって炭化チタンが選択的に 生成されると考えられる。
[0061] また、 Ti膜 83の上層では、熱処理の前後において、酸フッ化チタンのピーク強度は 変化しな力つた。このことから、 CF膜 82中のフッ素は、 Ti膜 83の成膜時には Ti膜 83 の厚み方向にぉ 、て全体に亘つて拡散して 、るものの、熱処理による拡散は進行し なかった、ということが分かる。すなわち、 Ti膜 83は、フッ素に対するノ リア膜として有 効に働いていることが分かる。また、 Ti膜 83の上層の Tiのピーク強度は、熱処理によ つて減少している。これは、 Ti膜 83の下層で選択的に生成される炭化チタンのため に、上層のチタンが下層に供給されたためと考えられる。
[0062] なお、 CF膜 82と接する Ti膜 83は、例えばウェハ 1の Ta膜 84が蒸気圧の高いフッ 化タンタルを形成したのと同様に、蒸気圧の高いフッ化チタンを形成する、という推測 も成立し得る。しかし、実際には、 CF膜 82と Ti膜 83との界面付近には炭化チタンが 選択的に形成されるのである。すなわち、 Ti、 Taは、高融点金属という共通性の高い 金属同士でありながら、 Ta膜はフッ素に対し十分なノ リア性を示さず、 Ti膜はフッ素 に対し良好なバリア性を示すのである。

Claims

請求の範囲
[1] 基板と、
前記基板上に成膜された、フッ素添加カーボン膜からなる絶縁膜と、
前記絶縁膜に埋め込まれた銅配線と、
前記絶縁膜と前記銅配線との間に形成されたバリア膜と、
を備え、
前記バリア膜は、
フッ素の拡散を抑えるためのチタン力もなる第 1の膜と、
前記第 1の膜と前記銅配線との間に形成された、銅の拡散を抑えるためのタンタル 力 なる第 2の膜と、
を有して!/ヽることを特徴とする半導体装置。
[2] 基板上にフッ素添加カーボン膜からなる絶縁膜を成膜する工程と、
前記絶縁膜に凹部を形成する工程と、
前記凹部内にチタン力 なる第 1の膜を成膜する工程と、
前記第 1の膜の表面にタンタル力 なる第 2の膜を成膜する工程と、
前記第 2の膜の表面に銅カゝらなる配線を形成する工程と、
を備えたことを特徴とする半導体装置の製造方法。
PCT/JP2007/061450 2006-06-23 2007-06-06 半導体装置及び半導体装置の製造方法 WO2007148535A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07744793A EP2034517A4 (en) 2006-06-23 2007-06-06 SEMICONDUCTOR COMPONENT AND SEMICONDUCTOR COMPONENT MANUFACTURING METHOD
US12/305,049 US20090134518A1 (en) 2006-06-23 2007-06-06 Semiconductor device and manufacturing method of semiconductor device
IL195951A IL195951A0 (en) 2006-06-23 2008-12-15 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006174429A JP5194393B2 (ja) 2006-06-23 2006-06-23 半導体装置の製造方法
JP2006-174429 2006-06-23

Publications (1)

Publication Number Publication Date
WO2007148535A1 true WO2007148535A1 (ja) 2007-12-27

Family

ID=38833277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061450 WO2007148535A1 (ja) 2006-06-23 2007-06-06 半導体装置及び半導体装置の製造方法

Country Status (8)

Country Link
US (1) US20090134518A1 (ja)
EP (1) EP2034517A4 (ja)
JP (1) JP5194393B2 (ja)
KR (1) KR20090003368A (ja)
CN (1) CN101461043A (ja)
IL (1) IL195951A0 (ja)
TW (1) TW200811953A (ja)
WO (1) WO2007148535A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151336A1 (en) * 2009-06-26 2010-12-29 Tokyo Electron Limited Plasma treatment method
JP5364765B2 (ja) 2011-09-07 2013-12-11 東京エレクトロン株式会社 半導体装置及び半導体装置の製造方法
US8691709B2 (en) * 2011-09-24 2014-04-08 Tokyo Electron Limited Method of forming metal carbide barrier layers for fluorocarbon films
JP2015195282A (ja) * 2014-03-31 2015-11-05 東京エレクトロン株式会社 成膜方法、半導体製造方法及び半導体装置
JP5778820B1 (ja) * 2014-04-09 2015-09-16 日本特殊陶業株式会社 スパークプラグ
WO2016021533A1 (ja) * 2014-08-04 2016-02-11 Jx日鉱日石エネルギー株式会社 凹凸パターンを有する部材の製造方法
DE112015005198B4 (de) * 2014-11-18 2023-05-17 Mitsubishi Electric Corporation Signalübertragungs-isoliereinrichtung und leistungshalbleitermodul

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026386A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 半導体装置
JP2005109138A (ja) 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2005223360A (ja) * 1999-03-09 2005-08-18 Tokyo Electron Ltd 半導体装置の製造方法
JP2005302811A (ja) 2004-04-07 2005-10-27 Tokyo Electron Ltd 半導体装置の製造方法
JP2006135363A (ja) * 2006-02-14 2006-05-25 Renesas Technology Corp 半導体装置および半導体装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140496A (ja) * 1989-10-25 1991-06-14 Daido Steel Co Ltd 母材の表面着色方法
JP3158598B2 (ja) * 1991-02-26 2001-04-23 日本電気株式会社 半導体装置およびその製造方法
JP4355039B2 (ja) * 1998-05-07 2009-10-28 東京エレクトロン株式会社 半導体装置及び半導体装置の製造方法
JP2000208622A (ja) * 1999-01-12 2000-07-28 Tokyo Electron Ltd 半導体装置及びその製造方法
EP1146555B1 (en) * 1999-03-09 2007-12-12 Tokyo Electron Limited Production method for a semiconductor device
EP1077479A1 (en) * 1999-08-17 2001-02-21 Applied Materials, Inc. Post-deposition treatment to enchance properties of Si-O-C low K film
JP2004509467A (ja) * 2000-09-18 2004-03-25 エーシーエム リサーチ,インコーポレイティド 超低誘電率誘電体と金属の組み合わせ
JP3817463B2 (ja) * 2001-11-12 2006-09-06 新光電気工業株式会社 多層配線基板の製造方法
JP4413556B2 (ja) * 2003-08-15 2010-02-10 東京エレクトロン株式会社 成膜方法、半導体装置の製造方法
JP4715207B2 (ja) * 2004-01-13 2011-07-06 東京エレクトロン株式会社 半導体装置の製造方法及び成膜システム
JP4555143B2 (ja) * 2004-05-11 2010-09-29 東京エレクトロン株式会社 基板の処理方法
US20060113675A1 (en) * 2004-12-01 2006-06-01 Chung-Liang Chang Barrier material and process for Cu interconnect
JP2006190884A (ja) * 2005-01-07 2006-07-20 Toshiba Corp 半導体装置及び半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223360A (ja) * 1999-03-09 2005-08-18 Tokyo Electron Ltd 半導体装置の製造方法
JP2005026386A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 半導体装置
JP2005109138A (ja) 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2005302811A (ja) 2004-04-07 2005-10-27 Tokyo Electron Ltd 半導体装置の製造方法
JP2006135363A (ja) * 2006-02-14 2006-05-25 Renesas Technology Corp 半導体装置および半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034517A4

Also Published As

Publication number Publication date
CN101461043A (zh) 2009-06-17
TW200811953A (en) 2008-03-01
KR20090003368A (ko) 2009-01-09
US20090134518A1 (en) 2009-05-28
EP2034517A1 (en) 2009-03-11
JP5194393B2 (ja) 2013-05-08
EP2034517A4 (en) 2010-07-21
JP2008004841A (ja) 2008-01-10
IL195951A0 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
KR102542758B1 (ko) 상호접속부를 위한 루테늄 금속 피처 충전
JP5674669B2 (ja) ルテニウム金属キャップ層を形成する方法
JP4734467B2 (ja) 半導体装置の製造方法
WO2007148535A1 (ja) 半導体装置及び半導体装置の製造方法
KR20010012742A (ko) 응력 동조가능한 탄탈륨 및 탄탈륨 질화물 박막
TW200818269A (en) Method of forming film, film forming device and memory medium as well as semiconductor device
WO2010084759A1 (en) Surface treatment for a fluorocarbon film
JP4473824B2 (ja) 半導体装置の製造方法
KR20040031013A (ko) 반도체 장치 및 그 제조 방법
JP5082411B2 (ja) 成膜方法
JP5268104B2 (ja) 窒化金属膜、酸化金属膜、炭化金属膜またはその複合膜の製造方法、およびその製造装置
JP2020536395A (ja) 相互接続のためのルテニウム金属機能フィリング
US6479897B2 (en) Semiconductor device having fluorine-added carbon dielectric film and method of fabricating the same
JP3737366B2 (ja) 半導体装置及びその製造方法
KR20180068328A (ko) 구리 배선의 제조 방법
WO2010082517A1 (ja) 半導体装置とその製造方法
TWI467067B (zh) 改善間隙填充窗的銅表面電漿處理方法
JP2006073612A (ja) レジスト除去方法
US20030214039A1 (en) Method for fabricating semiconductor device having tertiary diffusion barrier layer for copper line
US8691709B2 (en) Method of forming metal carbide barrier layers for fluorocarbon films

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020627.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087029046

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 195951

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12305049

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007744793

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE