WO2007148459A1 - 誘電体構造及びその製造方法 - Google Patents

誘電体構造及びその製造方法 Download PDF

Info

Publication number
WO2007148459A1
WO2007148459A1 PCT/JP2007/056219 JP2007056219W WO2007148459A1 WO 2007148459 A1 WO2007148459 A1 WO 2007148459A1 JP 2007056219 W JP2007056219 W JP 2007056219W WO 2007148459 A1 WO2007148459 A1 WO 2007148459A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
electrode
resistant substrate
heat
film
Prior art date
Application number
PCT/JP2007/056219
Other languages
English (en)
French (fr)
Inventor
Masaaki Ichiki
Ryutaro Maeda
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007148459A1 publication Critical patent/WO2007148459A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer

Definitions

  • the present invention relates to an electronic device that is a main component of MEMS (Micro Electro Mechanical Systems), MST (Micro System Technology), micromachines, nanotechnology, mechatronics, electrical and electronic equipment, information communication equipment, and the like.
  • Ferroelectric films applied to circuit boards more specifically, functional transducers such as sensors, actuators, capacitors, controllers (output controllers), memories, small power sources, filters, waveguides, etc.
  • the present invention relates to a dielectric structure formed on an electronic circuit board and a manufacturing method thereof.
  • Dielectrics have useful properties such as ferroelectricity, dielectricity, pyroelectricity, piezoelectricity, electro-optical properties, photovoltaic properties, electrostriction, and optical strain, and are used for capacitors, memories, etc. It is used in optical devices such as electronic devices, drive and detection devices such as sensors and actuators, optical switches, SHG (second harmonic) elements, and optical waveguides.
  • the ferroelectric structure has a high electromechanical coupling constant and linearity of the input / output characteristics, so the power consumption is small and the thermal influence is small, so it is possible to realize a drive * detection method suitable for miniaturization. There are many advantages to applying these materials as components of small devices such as MEMS.
  • such a dielectric film has been produced by, for example, a sol-gel method, a MOD method, a sputtering method, an electron beam evaporation method, a laser evaporation method, a MOCVD method, a CVD method, or the like.
  • a film-forming substrate has been silicon or an oxide film or a base electrode formed on silicon, or a heat-resistant substrate material such as magnesium oxide or sapphire.
  • a dielectric film having electromechanical properties was formed on such a heat-resistant substrate.
  • MEMS devices such as cantilevers and optical scanners
  • a large number of semiconductor processes are required, resulting in high costs. Therefore, in order to establish future mass production technology, it is required to consider minimizing raw materials (cost reduction, simplification of manufacturing process, minimization of waste and greenhouse gas reduction).
  • FIG. 6 is a diagram showing an example of a device manufacturing method according to the prior art (microfabrication of a Pt / Ti / PZT / Pt / Ti / SiO 2 / Si multilayer structure).
  • Patent Document 1 describes a technique for producing an electronic substrate for a capacitor using an organic / inorganic oxide mixed thin film in which spherical inorganic oxide particles are dispersed.
  • Patent Document 2 describes a technique for forming a capacitor by depositing an aerosolized dielectric on a substrate on which an interlayer insulating layer and a conductor layer are stacked.
  • Patent Document 3 describes a technique in which a thick-film dielectric paste is applied and fired on a flexible metal substrate to which a conductive paste is attached, and then transferred onto an organic substrate for transfer. Yes.
  • Non-Patent Document 1 discloses a technique for implanting a PZT thick film formed on a sapphire substrate by screen printing onto silicon by irradiating it with an excimer laser from the back surface.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-56935
  • Patent Document 2 JP 2005-5645
  • Patent Document 3 JP 2001-160672
  • Non-patent literature l B. Xu et al. Appl. Phys. Lett. 87 (2005) 192902.
  • the relative dielectric constant of the organic / inorganic oxide mixed thin film obtained in Patent Document 1 is about 50 at most.
  • circuit board obtained in Patent Document 2 requires technical development for stably maintaining film formation, and it is necessary to deal with the problem of particulate contamination.
  • problems remain with respect to damage to the substrate due to the anchoring of fine particles, and in the method of obtaining this circuit board, since the fired fine particles are used, the formed dielectric film becomes a random alignment film, It is difficult to achieve the highest level of dielectric performance.
  • the dielectric constant of the dielectric obtained by the method of Patent Document 3 is about 50, and it has not been realized to produce a film having a high dielectric constant.
  • problems remain regarding dimensional control and generation of surface irregularities.
  • the transfer method using this method is a method using a dielectric paste, and can only achieve a dielectric constant that is one order of magnitude smaller than that produced by a method using thin film technology.
  • Non-Patent Document 1 requires a high-temperature process of about 1200 ° C during firing. In addition, since special laser equipment and technology are required, simpler technology development is required.
  • a dielectric film is formed on a heat-resistant substrate by a thin film formation method using an existing highly oriented thin film formation method, and then this heat resistance It is conceivable that the dielectric film is peeled off and transferred onto a non-heat resistant substrate.
  • a dielectric film having a high dielectric constant characteristic formed on a heat-resistant substrate has a very strong adhesion to the substrate, and it has been difficult to peel off.
  • there is a method of facilitating peeling by irradiating a high-energy beam from the back surface of the substrate using a laser but this requires special equipment, and a toxic gas of halogen. There is a difficulty that must be used.
  • the object of the present invention is low by introducing a highly peelable laminated structure in advance onto a base electrode on a heat resistant substrate on which a dielectric film is to be formed, and transferring it. It is an object of the present invention to provide a dielectric structure having a high dielectric constant at a low cost and capable of forming a force in a required place without waste, and a manufacturing method thereof.
  • the first means is the dielectric of the structure in which the second electrode and the dielectric are formed in this order on the insulating film on the heat-resistant substrate on the first electrode formed on the non-heat-resistant substrate.
  • the second means is a step of forming the second electrode metal and the dielectric film in this order on the insulating film formed on the heat resistant substrate, and patterning the second electrode metal and the dielectric film.
  • Made of It is a manufacturing method.
  • a third means is the dielectric of the structure formed in the order of the dielectric and the second electrode on the first electrode on the insulating film formed on the heat-resistant substrate in a region exceeding the heat-resistant substrate.
  • the fourth means is a step of forming a first electrode metal on an insulating film formed on a heat resistant substrate, and forming the first electrode by patterning the first electrode metal.
  • a dielectric crystallized on a heat resistant substrate can be transferred onto a non-heat resistant substrate on a silicon device by a simple method without using a special apparatus or the like. It becomes possible to form a dielectric having a high dielectric constant on a non-heat resistant substrate or silicon device. In addition to being able to use heat-resistant substrates repeatedly, it can be used as an on-demand manufacturing technology that eliminates the need for unnecessary film formation and removal processes.
  • the present invention is particularly effective for a multilayer circuit board including a high-capacitance-density capacitor required for a circuit board with a built-in passive element and a MEMS device using a dielectric.
  • FIG. 1 is a diagram showing a configuration of a dielectric structure according to the invention of the first embodiment.
  • FIG. 2 is a diagram showing a manufacturing process of the dielectric structure according to the invention of the first embodiment.
  • FIG. 3 is a diagram showing X-ray diffraction of the dielectric of the dielectric structure according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of a dielectric structure (cantilever) according to the invention of the second embodiment.
  • FIG. 5 is a diagram showing a manufacturing process of a dielectric structure (cantilever) according to the invention of the second embodiment.
  • FIG. 6 is a diagram showing an example of a device manufacturing method according to the prior art (microfabrication of a Pt / Ti / PZT / Pt / ti / SiO 2 / Si multilayer structure).
  • FIG. 1 is a diagram showing a configuration of a dielectric structure according to the invention of the present embodiment.
  • 1 is a non-heat resistant substrate made of polyimide resin, etc.
  • 2 is made of silver paste
  • 3 is a dielectric made of an oriented PZT film
  • 4 is an upper electrode made of platinum (second electrode)
  • 5 is a metal paste or solder filled in the through hole.
  • the dielectric 1 a lead-containing dielectric or a non-lead-containing dielectric is used.
  • the lead-containing dielectric material or the non-lead-containing dielectric material is a polycrystalline material or a single crystal material in which a base material composed of a single compound or a plurality of compounds is used alone, or the above-mentioned base material. This is a material with one or more traces of added force.
  • Examples of the lead-containing dielectric include PLZT, PZT, PMN, PbTiO PbTiO 2 -La (Zn
  • the non-lead-containing dielectrics include BaTiO 3, BaSrTi03, BaTiZr03, BaTi409, B
  • a2Ti9O20 Ba (Mgl / 3Ta2 / 3) 03, Ba (Znl / 3Ta2 / 3), Ba (Znl / 3Nb2 / 3), ZrSnTi04, Li NbO, KNbO, TaNbO, ZnO, SbSI, RbZnBr, TGS, PVDF, GaP, La S,
  • Gd S, D S CuPs Br, Bi SiO, Bi GeO, Bi TiO, Te, SiO, HgS,
  • the above trace additives include tungsten, tantalum, niobium, iron, copper, magnesium, bismuth, yttrium, molybdenum, vanadium, sodium, potassium, anoleminium, manganese, nickel, zinc, calcium, strontium.
  • Silicon tin, selenium, neodymium, erbium, thulium, hofium, praseodymium, promethium, samarium, plutonium, gadolinium, terbium, dysprosium, lithium, scandium, notrium, 1 or selected from the group consisting of lanthanum, actinium, cerium, ruthenium, oscium, cono-noreth, palladium, silver, force donium, boron, gallium, germanium, phosphorus, arsenic, antimony, fluorine, tenol, lutetium and ytterbium Two or more are used.
  • FIG. 2 is a diagram showing a manufacturing process of the dielectric structure.
  • 6 is a heat-resistant substrate made of a (100) silicon substrate with a film thickness of S400 ⁇ m
  • 7 is an insulating film made of silicon oxide
  • 8 is a metal for an upper electrode made of platinum
  • 9 is the arrangement It is a dielectric film made of a directional PZT film.
  • the other configurations correspond to the configurations with the same symbols shown in FIG.
  • a silicon substrate which is the heat-resistant substrate 6 is oxidized at 1200 ° C. for 20 hours in a thermal oxidation furnace and the surface is made of silicon oxide having a thickness of about 1.8 microns.
  • Film 7 was formed.
  • An upper electrode metal 8 was sputtered on the insulating film 7 by RF sputtering.
  • the back pressure was about 5 X lCT 6 Torr
  • the argon gas flow rate was 25 sccm
  • the sputtering pressure was 1.5 mTorr
  • the output was 100 W DC mode.
  • the time required for forming the upper electrode metal 8 was 5 minutes.
  • the temperature of the heat-resistant substrate during sputtering was 200 degrees.
  • a titanium layer is formed as an adhesion layer between platinum, which is the metal 8 for the upper electrode, and the silicon oxide layer 7.
  • this layer is not particularly formed for the subsequent peeling step. Nare ,.
  • an oriented PZT film was applied on the upper electrode metal 8 by the MOD method.
  • the precursor solution a commercially available PZT (52/48) solution was used, and the lead overload was 10%.
  • This precursor solution was dropped onto the upper electrode metal 8 fixed to the vacuum chuck on the spin coater, and uniformly applied by rotating the spin coater. The number of revolutions was 700 rpm for 10 seconds, 2700 rpm for 10 seconds, and 4000 rpm for 40 seconds.
  • the heat-resistant substrate 6 coated with the solution was heat-treated in a high-speed firing furnace.
  • the heat treatment temperatures at this time are 120 ° C. for 2 minutes, 250 ° C. for 5 minutes, and 650 ° C. for 2 minutes, and the purpose at each temperature is drying, precursor formation, and crystallization in this order.
  • a dielectric film 9 made of an oriented PZT film having a thickness of 500 nm was formed.
  • the dielectric 3 and the upper electrode 4 were formed on the insulating film 7 on the heat resistant substrate 6 by patterning.
  • the lower electrode 2 was patterned with a silver metal paste on the non-heat-resistant substrate 1 made of polyimide resin in which the through holes 5 were previously formed. Or you may apply
  • the ferroelectric 3 that was patterned on the heat-resistant substrate 6 produced in the process of FIG.
  • a peeling operation is performed between the heat-resistant substrate 6 and the non-heat-resistant substrate 1 in the process of FIG. 2 (4). Then, the insulating film 7 and the upper electrode 4 are separated from each other, and the upper electrode 4 and the ferroelectric 3 are transferred to the non-heat-resistant substrate 1 side. In the peeling process, the transfer accuracy can be improved by performing an additional operation such as ultrasonic vibration.
  • the dielectric constant of the produced dielectric 3 was measured and evaluated at a frequency of 1 kHz using an impedance analyzer, and found to be 900. This figure shows that almost the maximum performance is achieved considering that the relative dielectric constant of the conventional thin film formation method is about 1000.
  • FIG. 3 is a diagram showing X-ray diffraction of the produced dielectric 3. As shown in the figure, it can be confirmed that this dielectric 3 forms a typical perovskite structure and forms a crystal structure necessary for a material exhibiting a high dielectric constant.
  • FIG. 4 is a diagram showing a configuration of a dielectric structure (cantilever) according to the invention of this embodiment.
  • 10 is a heat-resistant substrate made of silicon
  • 11 is an insulating film made of silicon oxide
  • 12 is a lower electrode (first electrode) made of platinum
  • 13 is a dielectric made of an oriented PZT film
  • 14 is platinum.
  • a lead-containing dielectric or a non-lead-containing dielectric is used, and the lead-containing dielectric or the non-ft-containing dielectric is a polycrystal or a single crystal and can be used alone or alone.
  • a base material composed of a plurality of compounds is used alone, or one or two or more trace additives are added to the base material.
  • the lead-containing dielectric, the non-lead-containing dielectric, and the trace additive are the same as those specifically disclosed in the first embodiment.
  • FIG. 5 is a diagram showing a manufacturing process of the dielectric structure (cantilever).
  • 15 is a heat-resistant substrate made of (100) silicon having a film thickness S400 ⁇ m
  • 16 and 17 are insulating films made of silicon oxide.
  • the other configurations correspond to the configurations with the same symbols shown in FIG.
  • the heat-resistant substrate 15 made of silicon is oxidized at 1200 ° C. for 20 hours in a thermal oxidation furnace, and an insulating film 16 made of silicon oxide having a thickness of about 1.8 microns is formed on the surface. 17 formed.
  • platinum is sputtered on the insulating film 17 by RF sputtering, and then the sputtered platinum is patterned to form a lower electrode on the insulating film 17. 12 was formed.
  • the upper electrode 14 made of platinum and the orientation are separately obtained by using the same steps as in FIGS. 2 (1) to 2 (4) of the first embodiment.
  • Ferroelectric 13 made of conductive PZT film is obtained, and ferroelectric 13 and lower electrode 12 are pressure-bonded with ferroelectric 13 as the lower surface and lower electrode 12 as the upper surface. Transplanted to the substrate 15 side.
  • the region of the insulating film 17 on the heat resistant substrate 15 corresponding to the lower electrode 12 was removed, and the insulating film 17 was removed by reactive ion etching.
  • the heat-resistant substrate 15 excluding a predetermined region (heat-resistant substrate 10) of the insulating film 17 and the heat-resistant substrate 15 from the back side of the heat-resistant substrate 15 is reactive.
  • the insulating film 11, the lower electrode 12, the dielectric 13, and the upper electrode 14 are formed in this order on the heat-resistant substrate 10 shown in FIG. 4 and beyond the heat-resistant substrate 10 after being removed by ion etching.
  • a cantilever dielectric structure (cantilever) was obtained.
  • the process steps can be simplified compared to the conventional method, and at the same time, a device can be manufactured by using the minimum necessary PZT film, and no PZT removal process is required. It becomes. As a result, the manufacturing process using the dielectric film can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Formation Of Insulating Films (AREA)
  • Micromachines (AREA)

Abstract

 誘電体膜を形成する耐熱性基板上の下地電極にあらかじめ剥離性の高い積層構造を導入しておいて転写することにより、低コストで高誘電率を有し、しかも所要の場所に無駄なく形成することのできる誘電体構造体及びその製造方法を提供する。  耐熱性基板6上に形成された絶縁膜7上に、第2の電極用金属8及び誘電体膜9の順に形成する工程と、パターニングによって絶縁膜7上に第2の電極4及び誘電体3を形成する工程と、非耐熱性基板1上に第1の電極2を形成する工程と、非耐熱性基板1上に形成された第1の電極2上に耐熱性基板6上に形成された誘電体3を圧着する工程と、耐熱性基板6上に形成された酸化膜7と第2の電極4間を剥離して、非耐熱性基板上に、第1の電極、誘電体、及び第2の電極の順に形成された誘電体構造体を取得する工程とからなることを特徴とする誘電体構造体の製造方法である。

Description

明 細 書
誘電体構造及びその製造方法
技術分野
[0001] 本発明は、 MEMS (Micro Electro Mechanical Systems (微小電気機械システム) ) 、 MST(Micro System Technology),マイクロマシン、ナノテクノロジー、メカトロニクス 、電気電子機器、情報通信機器等の主要構成部品である電子回路基板に適用され る強誘電体膜、より具体的には、センサ、ァクチユエータ、キャパシタ、コントローラ(出 力制御器)、メモリ、小型電力源、フィルター、導波路等の機能性トランスデューサ(ェ ネルギ一変換)の電子回路基板上に成膜され誘電体構造およびその製造方法に関 する。
背景技術
[0002] 誘電体は、強誘電性、誘電性、焦電性、圧電性、電気光学性、光起電力性、電歪、 光歪等の有用な特性を有しており、コンデンサやメモリ等の電子デバイス、センサや ァクチユエータ等の駆動及び検知デバイス、光スィッチ、 SHG (第 2高調波)素子、光 導波路等の光デバイスに用いられてレ、る。
このような小型デバイスへの応用に際しては、誘電体への印加電圧を低くし、基板 等への集積及び実装を容易にするために、バルタ単結晶やセラミックスではなぐ基 板上に成膜した膜構造体として用レ、ることが望ましい。特に、強誘電体構造体は、電 気機械結合定数が高ぐまた入出力特性の線形性により、消費電力が小さぐ熱的な 影響が小さいため小型化に適した駆動 *検知方式が実現可能であり、これらの材料 を MEMS等の小型デバイスの構成要素として適用する利点は多い。
[0003] 従来このような誘電体膜は、例えば、ゾルゲル法、 MOD法、スパッタリング法、電子 ビーム蒸着法、レーザ蒸着法、 MOCVD法、 CVD法等によって作製されていた。こ の際、成膜基板として主として用いられてきたのは、シリコン若しくはシリコン上に酸化 膜や下地電極等を形成したもの、又は酸化マグネシウムやサファイア等の耐熱性の 基板材料であった。特に電気 ·機械特性を有する誘電体膜はこのような耐熱性の基 板上に形成されていた。 [0004] ところで、上記の技術分野においては、低コスト化'軽量化'高成形性等の優位性 を確保するために、今後はシリコン基板に加えて樹脂製の基板材料も広く用いられる こと力 S予想される。通常、薄膜の結晶化には 600°C以上の製膜基板温度とァニーリン グが必要であり、熱処理を施す基板として、エポキシ樹脂等の低融点材料を使用す ることは困難であった。
[0005] 現在、既に一部の電子回路基板において誘電体膜をコンデンサ等の受動素子とし て利用されている力 実用的な手法によって達成できる比誘電率は 50程度である。 ところで、今後のエレクトロニクスや実装技術の技術動向を俯瞰すると、高い電気'機 械特性を持つ誘電体膜を、プリント基板や樹脂基板上に形成するための技術開発の 重要性は非常に高まることが予想されるが、これに適した技術基盤が確立されていな いのが現状である。
[0006] 一方、カンチレバーや光スキャナ等の MEMSデバイスにおいては、誘電体も成膜 に加えて、半導体のプロセスを多用するために、高コストィ匕することとなる。そこで、今 後の量産化技術を確立するためには、原材料の最小化'低コスト化、製造プロセスの 簡素化、廃棄物や温室効果ガスの削減'最小化等の検討が要請される。
[0007] 図 6は、従来技術に係るデバイスの製造方法の一例(Pt/Ti/PZT/Pt/Ti/SiO /Si多 層構造の微細加工)を示す図である。
この製造方法では、誘電体膜 (Pt/Ti/PZT/Pt/Ti)を基板(SiO /Si)全面に塗布した 後に、リソグラフィ一によるリフトオフプロセスにより微細構造やパターニングを形成し ている。この製造方法は、後工程であるエッチングにより、基板及び膜の双方ともに 除去する箇所が多く存在するため原材料の無駄な使用が多ぐまた、ドライエツチン グゃウエットエッチングに際しては、温室効果ガスや有毒物質を使用するために、半 導体プロセスを多用した既存の製造技術手法の改良が望まれている。このような状 況を踏まえて以下の技術が提案されている。
[0008] 特許文献 1には、球形の無機酸化物粒子を分散させた有機 ·無機酸化物混合体薄 膜を用いてコンデンサ用の電子基板を作製する技術が記載されている。
また、特許文献 2は、層間絶縁層及び導電体層を積層させた基板上に、エアロゾノレ 化した誘電体を堆積させることによって、キャパシタを形成する技術が記載されてい る。
また、特許文献 3には、導電性ペーストを付着した可とう性金属基板上に、厚膜誘 電体ペーストを塗布'焼成した後に、有機基板上へ付着することで転写させる技術が 記載されている。
また、非特許文献 1には、スクリーン印刷によりサファイア基板上に形成した PZT厚 膜を裏面よりエキシマレーザ照射することにより、シリコン上へ移植する技術が示され ている。
[0009] 特許文献 1 :特開 2005— 56935
特許文献 2 :特開 2005— 5645
特許文献 3 :特開 2001— 160672
非特許文献 l : B.Xu et al. Appl.Phys.Lett. 87(2005)192902.
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、特許文献 1で得られる有機'無機酸化物混合体薄膜の比誘電率は せいぜい 50程度である。また、この薄膜を得る方法では形成過程における体積収縮 が大きぐ膜厚等の寸法の制御が困難であり、表面の凹凸も他の薄膜形成技術に比 ベて大きい。
また、特許文献 2で得られる回路基板においては、成膜を安定して持続させるため の技術開発が必要であり、また、微粒子汚染問題の対処が付カ卩的に必要になる。さ らに微粒子のアンカーリングによる基板の損傷に関しても課題が残っており、また、こ の回路基板を得る手法では、焼成した微粒子を用いるために、形成される誘電体膜 はランダム配向膜となり、最高レベルの誘電体性能を実現することは難しい。
また、特許文献 3の方法で得られる誘電体の比誘電率も 50程度であり、高い誘電 率の膜を作製することは実現されていない。また、特許文献 1の手法と同様に寸法制 御と表面凹凸の発生に関して課題が残っている。さらに、この手法による転写方法は 、誘電体ペーストを用いる方法であり、薄膜技術を用いる方法による作製されたもの より 1桁以下小さな比誘電率のものしか実現することができない。
また、非特許文献 1の方法では、焼成時に 1200°C程度の高温プロセスが必要であ り、また特殊なレーザ装置や技術が必要であることから、より簡素な技術開発が必要 とされる。
[0011] このような問題点を解決するために、既存の高い配向性薄膜形成手法を用いて一 旦耐熱性の基板上に薄膜形成方法により、誘電体膜を形成し、その後、この耐熱性 の基板上力 誘電体膜を剥離し、非耐熱性の基板上へ転写することが考えられる。 しかし、通常、耐熱性の基板上に形成された高誘電率特性の誘電体膜は基板との付 着力が非常に強ぐ剥離することは困難であった。これに対処するために、レーザを 用いて基板の裏面から高エネルギービームを照射して剥離することを容易化する方 法があるが、これには特殊な設備を要し、またハロゲンの有毒ガスを用いなければな らない難点がある。
[0012] 本発明の目的は、上記の問題点に鑑み、誘電体膜を形成する耐熱性基板上の下 地電極にあらかじめ剥離性の高い積層構造を導入しておいて転写することにより、低 コストで高誘電率を有し、し力も所要の場所に無駄なく形成することのできる誘電体 構造体及びその製造方法を提供することにある。
課題を解決するための手段
[0013] 上記の課題を解決するために、次のような手段を採用した。
第 1の手段は、非耐熱性基板上に形成された第 1の電極上に、耐熱性基板上の絶 縁膜上に第 2の電極及び誘電体の順に形成された構造体の前記誘電体を圧着後、 前記絶縁膜と前記第 2の電極間を剥離して形成されたことを特徴とする誘電体構造 体である。
第 2の手段は、耐熱性基板上に形成された絶縁膜上に、第 2の電極用金属及び誘 電体膜の順に形成する工程と、前記第 2の電極用金属及び誘電体膜をパターニング して前記絶縁膜上に第 2の電極及び誘電体を形成する工程と、非耐熱性基板上に 形成された第 1の電極用金属をパターニングして第 1の電極を形成する工程と、前記 非耐熱性基板上に形成された第 1の電極上に前記耐熱性基板上に形成された誘電 体を圧着する工程と、前記耐熱性基板上に形成された前記酸化膜と前記第 2の電極 間を剥離して、非耐熱性基板上に第 1の電極、誘電体、及び第 2の電極の順に形成 された誘電体構造体を取得する工程とからなることを特徴とする誘電体構造体の製 造方法である。
第 3の手段は、耐熱性基体上に該耐熱性基体を超える領域に形成された絶縁膜上 の第 1の電極上に、誘電体及び第 2の電極の順に形成された構造体の前記誘電体 を圧着して形成されたことを特徴とする誘電体構造体である。
第 4の手段は、耐熱性基板上に形成された絶縁膜上に第 1の電極用金属を形成し 、該第 1の電極用金属をパターユングすることによって第 1の電極を形成する工程と、 事前に第 2の電極上に形成された誘電体を取得する工程と、前記耐熱性基板上に 形成された第 1の電極上に前記第 2の電極上に形成された誘電体を圧着する工程と 、前記耐熱性基板の所定の領域及び前記第 1の電極に相応する前記耐熱性基板上 の酸化膜を除レ、て、前記耐熱性基板及び前記耐熱性基板上下の酸化膜をエツチン グにより除去することによって、耐熱性基体上に該耐熱性基体を超える領域に絶縁 膜、第 1の電極、誘電体、及び第 2の電極の順に形成された誘電体構造体を取得す る工程とからなることを特徴とする誘電体構造体の製造方法である。
発明の効果
[0014] 本発明によれば、耐熱性基板上で結晶化した誘電体を、非耐熱性基板上ゃシリコ ンデバイス上に、特殊な装置等を用いることなく簡便な方法で転写することができ、 非耐熱性基板やシリコンデバイス上に高誘電率を有する誘電体を形成することが可 能となる。また、耐熱性基板を繰りかえし使用することが可能であることに加えて、不 要な成膜箇所とその除去のプロセスが不要であるオンデマンド製造技術として活用 すること力 Sできる。
さらに、本発明は、今後の受動素子内蔵型回路基板に必要とされる高い容量密度 のキャパシタを含む多層回路基板及び誘電体を用いる MEMSデバイスに特に有効 である。
図面の簡単な説明
[0015] [図 1]第 1の実施形態の発明に係る誘電体構造体の構成を示す図である。
[図 2]第 1の実施形態の発明に係る誘電体構造体の製造工程を示す図である。
[図 3]第 1の実施形態の発明に係る誘電体構造体の誘電体の X線回析を示す図であ る。 [図 4]第 2の実施形態の発明に係る誘電体構造体 (カンチレバー)の構成を示す図で ある。
[図 5]第 2の実施形態の発明に係る誘電体構造体 (カンチレバー)の製造工程を示す 図である。
[図 6]従来技術に係るデバイスの製造方法の一例 (Pt/Ti/PZT/Pt/ti/SiO /Si多層構 造の微細加工)を示す図である。
符号の説明
[0016] 1 非耐熱性基板
2 下部電極(第 1の電極)
3 誘電体
4 上部電極(第 2の電極)
5 貫通穴に充填された金属ペーストあるいは半田
6 耐熱性基板
7 絶縁膜
8 上部電極用金属
9 誘電体膜
10 耐熱性基体
11 絶縁膜
12 下部電極(第 1の電極)
13 誘電体
14 上部電極(第 2の電極)
15 耐熱性基板
16 絶縁膜
17 絶縁膜
発明を実施するための最良の形態
[0017] 本発明の第 1の実施形態を図 1ないし図 3を用いて説明する。
図 1は、本実施形態の発明に係る誘電体構造体の構成を示す図である。 同図において、 1はポリイミド樹脂等からなる非耐熱性基板、 2は銀ペーストからなる 下部電極(第 1の電極)、 3は配向性 PZT膜からなる誘電体、 4は白金からなる上部電 極(第 2の電極)、 5は貫通穴に充填された金属ペーストあるいは半田である。
なお、誘電体 1としては、鉛含有誘電体または非鉛含有誘電体が使用される。さら に、鉛含有誘電体または非鉛含有誘電体は、多結晶体または単結晶体であって、単 独もしくは複数の化合物から成る母材材料が単独で使用されているもの、または前記 母材材料に微量添力卩物を 1種もしくは 2種以上カ卩えたものである。
[0018] 上記鉛含有誘電体としては、 PLZT、 PZT、 PMN、 PbTiO PbTiO -La (Zn
3、 3 2/3
Nb )〇、 PbTiO— Pb (Mg W )〇または Pb Nb O ,Cd Nb O Pb(Nil/3Nb2
1/3 3 3 1/2 1/2 3 2 2 7 2 2 7、
/3)〇3が用いられる。
[0019] また、上記非鉛含有誘電体としては、 BaTiO 、 BaSrTi03、 BaTiZr03、 BaTi409、 B
3
a2Ti9O20、 Ba (Mgl/3Ta2/3) 03、 Ba(Znl/3Ta2/3)、 Ba(Znl/3Nb2/3)、 ZrSnTi04、 Li Nb〇、 KNbO、 TaNbO 、 ZnO、 SbSI、 RbZnBr、 TGS、 PVDF、 GaP、 La S 、
3 3 3 4 2 3
Gd S 、 D S 、 CuPs Br、 Bi SiO 、 Bi GeO 、 Bi TiO 、 Te、 SiO、 HgS、
2 3 2 3 5 12 20 12 20 12 20 2 または(Ba、 Ca)Ti〇 タンタル酸ビスマススト口チウム、タンタル酸ビスマス、 A1Nが
3
用いられる。
[0020] また、上記微量添加物としては、タングステン、タンタル、ニオブ、鉄、銅、マグネシ ゥム、ビスマス、イットリウム、モリブデン、バナジウム、ナトリウム、カリウム、ァノレミニゥ ム、マンガン、ニッケル、亜鉛、カルシウム、ストロンチウム、ケィ素、錫、セレン、ネオ ジゥム、エルべ二ゥム、ツリウム、ホフ二ゥム、プラセォジゥム、プロメチウム、サマリウム 、ユウ口ピウム、ガドリニウム、テルビウム、ジスプロシウム、リチウム、スカンジウム、ノくリ ゥム、ランタン、アクチニウム、セリウム、ルテニウム、ォスシゥム、コノくノレト、パラジウム 、銀、力ドニゥム、ホウ素、ガリウム、ゲルマニウム、リン、ヒ素、アンチモン、フッ素、テ ノレル、ルテチウム及びイッテルビウムからなる群から選択された 1又は 2以上のものが 用いられる。
[0021] 次に、上記誘電体構造体の製造方法について説明する。
図 2は、上記誘電体構造体の製造工程を示す図である。
同図にぉレ、て、 6は膜厚力 S400 μ mからなる(100)面のシリコン基板からなる耐熱 性基板、 7は酸化シリコンからなる絶縁膜、 8は白金からなる上部電極用金属、 9は配 向性 PZT膜からなる誘電体膜である。なお、その他の構成は図 1に示した同符号の 構成に対応する。
[0022] まず、図 2 (1)の工程において、耐熱性基板 6であるであるシリコン基板を熱酸化炉 中で 20時間 1200度で酸化させ表面に約 1. 8ミクロンの酸化シリコンからなる絶縁膜 7を形成した。この絶縁膜 7上に RFスパッタリング方法により、上部電極用金属 8を 50 Onmスパッタした。この際の背圧の真空度は 5 X lCT6Torr程度であり、アルゴンガス の流量は 25sccm、スパッタ時の圧力は 1. 5mTorr、出力は 100Wの DCモードを用 いた。上部電極用金属 8の成膜に要する時間は 5分であった。またスパッタリング時 の耐熱性基板の温度は 200度とした。通常は上部電極用金属 8である白金と酸化シ リコン層 7の間には、密着層としてチタン層を形成するが、本発明では後の剥離工程 のために特にこの層を形成することはしなレ、。し力 チタン層がない場合でも白金や 誘電体膜の形成時に自発的な剥離などは起きないことを実験により確認している。
[0023] 次に、上部電極用金属 8上に MOD法により配向性 PZT膜を塗布した。前駆体溶 液は市販の PZT (52/48)溶液を用い、鉛の過剰添力卩量は 10%のものを用いた。こ の前駆体溶液をスピンコータの上の真空チャックに固定した上部電極用金属 8上に 滴下し、スピンコータの回転により均一に塗布を行った。回転数は 700rpmで 10秒、 2700rpmで 10秒、 4000rpmで 40秒行った。その後、溶液を塗布した耐熱性基板 6 を高速焼成炉中で熱処理した。この際の熱処理温度は 120°C2分、 250°C5分、 650 °C2分であり、各温度における目的は順に乾燥、前駆体形成、結晶化である。これに よって、厚さ 500nmの配向性 PZT膜からなる誘電体膜 9が形成された。
[0024] 次に、図 2 (2)の工程において、耐熱性基板 6上の絶縁膜 7上に、パターユングによ り、誘電体 3及び上部電極 4を形成した。
[0025] 次に、図 2 (3)の工程において、あらかじめ貫通穴 5の形成のされているポリイミド樹 脂からなる非耐熱性基板 1に下部電極 2を銀の金属ペーストによりパターニングした。 または、薄膜形成方法により作製した電極上にペーストを塗布してもよい。この非耐 熱性基板 1上の下部電極 2上に、先に、図 2 (2)の工程で作製された耐熱性基板 6上 にパターユングされてレ、る強誘電体 3を圧着した。
[0026] 次に、図 2 (4)の工程にぉレ、て、耐熱性基板 6と非耐熱性基板 1間を剥離操作する と、絶縁膜 7と上部電極 4との間が剥離し、非耐熱性基板 1側に上部電極 4と強誘電 体 3がー体に転写される。剥離工程に際しては、超音波加振等の付加的な操作を行 うことにより転写精度を向上させることができる。
[0027] ここで、作製した誘電体 3の比誘電率をインピーダンスアナライザを用いて 1kHzの 周波数で計測評価したところ 900であった。この数値は、通常の薄膜形成方法による 比誘電率が 1000程度であることを考慮するとほぼ最高性能を実現していることが分 かる。
[0028] 図 3は、作成した誘電体 3の X線回析を示す図である。同図に示すように、この誘電 体 3は、典型的なぺロブスカイト構造を形成しており、高い誘電率を示す材料に必要 な結晶構造を形成していることが確認できる。
[0029] 次に、本発明の第 2の実施形態を図 4及び図 5を用いて説明する。
図 4は、本実施形態の発明に係る誘電体構造体 (カンチレバー)の構成を示す図で ある。
同図において、 10はシリコンからなる耐熱性基体、 11は酸化シリコンからなる絶縁 膜、 12は白金からなる下部電極(第 1の電極)、 13は配向性 PZT膜からなる誘電体、 14は白金からなる上部電極(第 2の電極)である。
なお、誘電体 13としては、鉛含有誘電体または非鉛含有誘電体が使用され、鉛含 有誘電体または非 ft含有誘電体は、多結晶体または単結晶体であって、単独もしく は複数の化合物から成る母材材料が単独で使用されているもの、または前記母材材 料に微量添加物を 1種もしくは 2種以上カ卩えたものである。なお、上記鉛含有誘電体 、上記非鉛含有誘電体、及び上記微量添加物には、第 1の実施形態において具体 的に開示したものと同様のものが用いられる。
[0030] 次に、本実施形態の発明に係る誘電体構造体 (カンチレバー)の製造方法につい て説明する。
図 5は上記誘電体構造体 (カンチレバー)の製造工程を示す図である。 同図において、 15は膜厚力 S400 μ mからなる(100)面のシリコンからなる耐熱性基 板、 16, 17は酸化シリコンからなる絶縁膜である。なお、その他の構成は図 4に示し た同符号の構成に対応する。 [0031] まず、図 5 (1)の工程において、シリコンからなる耐熱性基板 15を熱酸化炉中で 20 時間 1200度で酸化させ表面に約 1. 8ミクロンの酸化シリコンからなる絶縁膜 16, 17 を形成した。
[0032] 次に、図 5 (2)の工程において、絶縁膜 17上に RFスパッタリング方法により、白金 をスパッタし、その後、スパッタされた白金をパターユングすることにより、絶縁膜 17上 に下部電極 12を形成した。
[0033] 次に、図 5 (3)の工程において、別途、第 1の実施形態の図 2 (1)ないし図 2 (4)と同 様の工程を用いて白金からなる上部電極 14及び配向性 PZT膜からなる強誘電体 1 3を取得しておいて、強誘電体 13を下面とし下部電極 12を上面として、強誘電体 13 と下部電極 12を圧着し、強誘電体 13を耐熱性基板 15側に移植した。
[0034] 次に、図 5 (4)の工程において、下部電極 12に相応する耐熱性基板 15上の絶縁 膜 17の領域を除レ、て、絶縁膜 17を反応性イオンエッチングにより除去した。
[0035] 次に、図 5 (5)の工程において、耐熱性基板 15の裏側から、絶縁膜 17及び耐熱性 基板 15の所定の領域 (耐熱性基体 10)を除く耐熱性基板 15を反応性イオンエッチ ングにより除去して、図 4に示した耐熱性基体 10上であって耐熱性基体 10を超える 領域に、絶縁膜 11、下部電極 12、誘電体 13、及び上部電極 14の順に形成された 片持ち梁の誘電体構造体 (カンチレバー)を得た。
[0036] この製造方法によれば、従来法に比べてプロセス工程の簡素化が可能となり、同時 に必要最小限の PZT膜の使用によりデバイス作製することが可能となり、 PZT除去プ 口セスが不要となる。これにより、誘電体膜を使用した製造プロセスの改善が可能とな る。

Claims

請求の範囲
[1] 非耐熱性基板上に形成された第 1の電極上に、耐熱性基板上の絶縁膜上に第 2の 電極及び誘電体の順に形成された構造体の前記誘電体を圧着後、前記絶縁膜と前 記第 2の電極間を剥離して形成されたことを特徴とする誘電体構造体。
[2] 耐熱性基板上に形成された絶縁膜上に、第 2の電極用金属及び誘電体膜の順に 形成する工程と、前記第 2の電極用金属及び誘電体膜をパターニングして前記絶縁 膜上に第 2の電極及び誘電体を形成する工程と、非耐熱性基板上に形成された第 1 の電極用金属をパターニングして第 1の電極を形成する工程と、前記非耐熱性基板 上に形成された第 1の電極上に前記耐熱性基板上に形成された誘電体を圧着する 工程と、前記耐熱性基板上に形成された前記酸化膜と前記第 2の電極間を剥離して 、非耐熱性基板上に第 1の電極、誘電体、及び第 2の電極の順に形成された誘電体 構造体を取得する工程とからなることを特徴とする誘電体構造体の製造方法。
[3] 耐熱性基体上に該耐熱性基体を超える領域に形成された絶縁膜上の第 1の電極 上に、誘電体及び第 2の電極の順に形成された構造体の前記誘電体を圧着して形 成されたことを特徴とする誘電体構造体。
[4] 耐熱性基板上に形成された絶縁膜上に第 1の電極用金属を形成し、該第 1の電極 用金属をパターユングすることによって第 1の電極を形成する工程と、事前に第 2の 電極上に形成された誘電体を取得する工程と、前記耐熱性基板上に形成された第 1 の電極上に前記第 2の電極上に形成された誘電体を圧着する工程と、前記耐熱性 基板の所定の領域及び前記第 1の電極に相応する前記耐熱性基板上の酸化膜を 除いて、前記耐熱性基板及び前記耐熱性基板上下の酸化膜をエッチングにより除 去することによって、耐熱性基体上に該耐熱性基体を超える領域に絶縁膜、第 1の 電極、誘電体、及び第 2の電極の順に形成された誘電体構造体を取得する工程とか らなることを特徴とする誘電体構造体の製造方法。
PCT/JP2007/056219 2006-06-20 2007-03-26 誘電体構造及びその製造方法 WO2007148459A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-169506 2006-06-20
JP2006169506A JP5024812B2 (ja) 2006-06-20 2006-06-20 誘電体構造及びその製造方法

Publications (1)

Publication Number Publication Date
WO2007148459A1 true WO2007148459A1 (ja) 2007-12-27

Family

ID=38833203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056219 WO2007148459A1 (ja) 2006-06-20 2007-03-26 誘電体構造及びその製造方法

Country Status (2)

Country Link
JP (1) JP5024812B2 (ja)
WO (1) WO2007148459A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976186A (zh) * 2019-12-13 2020-04-10 新昌中国计量大学企业创新研究院有限公司 一种新型电极涂覆装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152842B2 (ja) * 2007-12-17 2013-02-27 独立行政法人産業技術総合研究所 誘電体構造体の製造方法、圧着転写方法、及び保持構造
JP5499397B2 (ja) * 2009-04-13 2014-05-21 独立行政法人産業技術総合研究所 誘電体構造体の製造方法
JP6087046B2 (ja) 2011-03-01 2017-03-01 太陽誘電株式会社 薄膜素子の転写方法及び回路基板の製造方法
US9773969B2 (en) 2015-05-28 2017-09-26 The Board Of Trustees Of The Leland Stanford Junior University Electrostrictive element manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154809A (ja) * 1997-07-30 1999-02-26 Osaka Prefecture 圧電装置用積層体、圧電装置用積層体の製造方法、および圧電装置の製造方法
JP2003309301A (ja) * 2002-04-18 2003-10-31 Canon Inc デバイス製造方法
JP2005295250A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 薄膜圧電共振器及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154809A (ja) * 1997-07-30 1999-02-26 Osaka Prefecture 圧電装置用積層体、圧電装置用積層体の製造方法、および圧電装置の製造方法
JP2003309301A (ja) * 2002-04-18 2003-10-31 Canon Inc デバイス製造方法
JP2005295250A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 薄膜圧電共振器及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976186A (zh) * 2019-12-13 2020-04-10 新昌中国计量大学企业创新研究院有限公司 一种新型电极涂覆装置
CN110976186B (zh) * 2019-12-13 2022-08-05 新昌中国计量大学企业创新研究院有限公司 一种电极涂覆装置

Also Published As

Publication number Publication date
JP2008004572A (ja) 2008-01-10
JP5024812B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
KR100856326B1 (ko) 레이저 리프트 오프를 이용한 유전체 박막을 갖는 박막 커패시터 내장된 인쇄회로기판 제조방법, 및 이로부터 제조된 박막 커패시터 내장된 인쇄회로기판
JP2006344618A (ja) 機能性膜含有構造体、及び、機能性膜の製造方法
WO2011129360A1 (ja) キャパシタ及びその製造方法
JP5024812B2 (ja) 誘電体構造及びその製造方法
JP2012060034A (ja) キャパシタおよびその製造方法、回路基板、半導体装置
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
JP4770627B2 (ja) キャパシタの製造方法
JP5499397B2 (ja) 誘電体構造体の製造方法
JP4122430B2 (ja) 強誘電体膜
JP5152842B2 (ja) 誘電体構造体の製造方法、圧着転写方法、及び保持構造
WO2004055875A1 (en) Method for preparing film structure comprising ferroelectric single crystal layer
JP2007059582A (ja) 誘電体膜キャパシタおよびその製造方法
JP2009224740A (ja) 積層構造体とそれを用いたデバイス、デバイスの製造方法,液体吐出装置
JP2008258516A (ja) 圧電素子及び結晶質セラミックスの成膜方法
JP4852744B2 (ja) 誘電体膜キャパシタおよびその製造方法
JP2004168637A (ja) 基材上に圧電性厚膜を製造する方法
JP2001156351A (ja) 積層構造電極、その形成方法、及び圧電アクチュエータ
JP2008172157A (ja) 圧電素子の製造方法
JP3969178B2 (ja) 電子部品及びその製造方法
JP2006199507A (ja) (111)配向pzt系誘電体膜形成用基板、この基板を用いて形成されてなる(111)配向pzt系誘電体膜
JP5686366B2 (ja) 誘電体構造体、及びその製造方法
JP4422678B2 (ja) 蒸着法を用いた強誘電性単結晶膜構造物の製造方法
CN208240501U (zh) 薄膜器件
JP4528950B2 (ja) 強誘電体膜構造体の製造方法
JP2009280416A (ja) 誘電体薄膜の製造方法及び薄膜電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739657

Country of ref document: EP

Kind code of ref document: A1