JP4770627B2 - キャパシタの製造方法 - Google Patents

キャパシタの製造方法 Download PDF

Info

Publication number
JP4770627B2
JP4770627B2 JP2006202859A JP2006202859A JP4770627B2 JP 4770627 B2 JP4770627 B2 JP 4770627B2 JP 2006202859 A JP2006202859 A JP 2006202859A JP 2006202859 A JP2006202859 A JP 2006202859A JP 4770627 B2 JP4770627 B2 JP 4770627B2
Authority
JP
Japan
Prior art keywords
layer
separation
metal foil
substrate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006202859A
Other languages
English (en)
Other versions
JP2008034417A (ja
Inventor
治 篠浦
裕子 佐屋
友彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006202859A priority Critical patent/JP4770627B2/ja
Priority to US11/779,597 priority patent/US7773364B2/en
Publication of JP2008034417A publication Critical patent/JP2008034417A/ja
Priority to US12/635,838 priority patent/US8085523B2/en
Application granted granted Critical
Publication of JP4770627B2 publication Critical patent/JP4770627B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、金属箔上に誘電体薄膜層、電極層が積層された構造を有するキャパシタの製造方法に関し、特に、電子パッケージ等の基板(配線板)への内蔵に適した全厚の薄い基板埋め込み用キャパシタの製造方法に関する。
基板内蔵に適した基板埋め込み用キャパシタとして、金属箔上に薄膜誘電体層と電極層を設けた薄膜キャパシタが知られている。これらのキャパシタおいて金属箔は、その上にキャパシタを構築する基板の役割を果たしている。金属箔はさらに、完成したキャパシタの電極として作用をしている。このため、上記金属箔上に薄膜誘電体層と電極層を設けた薄膜キャパシタは、絶縁性基板上に電極層、薄膜誘電体層と電極層を設けた薄膜キャパシタと比べて構造が単純で安価に製造でき、さらには全体の厚さが薄いことから、配線板の埋め込み用キャパシタに適している。
先行技術として、例えば、特開2000−164460号公報には、銅、ニッケル等から選択された金属箔上に誘電体を有する薄膜キャパシタが開示されている(特許文献1)。
また、特開2003−526880号公報において、ジルコン酸チタン酸鉛等のペロブスカイト型結晶構造を有する誘電体薄膜は、誘電定数が高く、誘電損失が少なく、漏れ電流が少ないこと、並びに、当該誘電性薄膜は、ゾルゲル法、スパッタリング法など用いて作製することができ、真鍮、白金、チタン、ステンレス鋼などの箔の上にPZT薄膜を形成することが開示されている(特許文献2)。
また、特開2001−210789号公報には、形成温度の高いペロブスカイト型結晶構造を有する誘電体薄膜を有するキャパシタを耐熱性の低い部材上に形成するために、Si等の耐熱性の高い基板上に分離層を形成後、キャパシタ構造を作製し、そのキャパシタ構造を別途作製した耐熱性の低い部材上に接着後、Si等の耐熱性の高い基板から分離する方法が開示されている(特許文献3)。
特開2000−164460号公報 特開2003−526880号公報 特開2001−210789号公報
しかしながら、金属箔を用いるには、キャパシタの短絡防止のため表面を十分に平滑化する必要があり高コストの原因の一つとなっていた。さらに、キャパシタの全厚を薄くするために、薄い基板を用いた場合にはハンドリングが極めて困難となり、歩留り低下の主原因となっていた。
また、基板埋め込み用として電気抵抗が低く最も好ましい銅箔を金属箔として用いた場合には、銅が酸化しやすく、かつ低融点のため、高誘電率材料であるペロブスカイト型セラミックス誘電体材料と同じ組成材料を用いても、十分に高温、酸化雰囲気下で焼成することが出来なかった。そのため、結晶化が不十分で十分に容量の大きな素子を得ることができなかったり、リーク電流が大きい等の問題が生じていた。また、やや電気抵抗は高いが比較的酸化しにくいニッケル箔を用いた場合にも、やはり600℃以上の高温、酸化雰囲気での誘電体焼成工程においては、ニッケルの酸化やニッケルの誘電体への拡散の問題があり、やはり高い容量のキャパシタを製造することは困難であった。
また、予め作製したキャパシタ構造体を転写する方法では、被転写体とキャパシタ電極との電気的接続が困難であり、さらには誘電体層を形成する前に設ける電極は、耐熱、耐酸化のため、白金や金等の高価な材料を使う必要があり、高周波領域対応キャパシタとして必要な低電気抵抗電極膜を得るため、厚く成膜するにはコストが極めて高くなってしまっていた。
このような実状のもとに本発明は創案されたものであり、その目的は、高容量でかつ、全厚が薄くて埋め込みに適した形態を有し、高周波においても使用可能な薄膜キャパシタを、安価かつ高い歩留りで得ることができるキャパシタの製造方法を提供することにある。
このような課題を解決するために、本発明のキャパシタの製造方法は、基板の片面に分離層を形成する分離層形成工程と、前記分離層上に誘電体層を形成する誘電体層形成工程と、前記誘電体層上に10μm以上の厚さの金属箔を形成する金属箔形成工程と、前記基板と前記分離層の界面で分離する分離工程と、前記分離工程によって分離された前記誘電体層の前記金属箔が形成された第一の面とは反対側の第二の面に、前記分離層を介して電極層を形成する電極層形成工程と、を含み構成される。
また、本発明の前記分離工程においては、前記金属箔と前記誘電体層と前記分離層との一体化物が、前記分離層と基板との界面で基板から分離されるように構成される。
また、本発明の好ましい態様として、前記基板が熱酸化膜層付きシリコンウエハであり、前記分離層がPtであり、前記分離工程における分離界面が、シリコンウエハ上の熱酸化膜層と、Ptからなる分離層との界面であるように構成される。
また、本発明の好ましい態様として、製造対象となるキャパシタが、前記電極層、前記分離層、前記誘電体層、前記金属箔の積層体構造から構成される。
また、本発明の好ましい態様として、前記誘電体層がペロブスカイト型セラミックスであるように構成される。
また、本発明の好ましい態様として、前記電極層および前記金属箔が、Cuであるように構成される。
また、本発明の前記誘電体層形成工程において、誘電体層の焼成が行なわれ、しかる後、前記金属箔形成工程、前記分離工程、前記電極層形成工程が順次行なわれるように構成される。
本発明のキャパシタの製造方法は、基板の片面に分離層を形成する分離層形成工程と、前記分離層上に誘電体層を形成する誘電体層形成工程と、前記誘電体層上に10μm以上の厚さの金属箔を形成する金属箔形成工程と、前記基板と前記分離層の界面で分離する分離工程と、前記分離工程によって分離された前記誘電体層の前記金属箔が形成された第一の面とは反対側の第二の面に、前記分離層を介して電極層を形成する電極層形成工程と、を含むように構成されているので、高容量でかつ、全厚が薄くて埋め込みに適した形態を有し、高周波においても使用可能な薄膜キャパシタを、安価かつ高い歩留りで得ることができる。
すなわち、従来の金属箔上に誘電体層と電極層を設けたキャパシタにおいては、最初に金属箔を準備し、その上に誘電体層を形成するのに対して、本発明は誘電体層を形成後、その上に金属箔を形成(成膜)するために、上記の効果を得ることができる。
以下、本発明を実施するための最良の形態について詳細に説明する。
本発明のキャパシタの製造方法は、(1)基板の片面に分離層を形成する分離層形成工程と、(2)前記分離層上に誘電体層を形成する誘電体層形成工程と、(3)前記誘電体層上に金属箔を形成する金属箔形成工程と、(4)前記基板と前記分離層の界面で分離する分離工程と、(5)前記分離工程によって分離された前記誘電体層の前記金属箔が形成された第一の面とは反対側の第二の面に、前記分離層を介して電極層を形成する電極層形成工程と、を有し構成されている。
以下、各工程ごとに、図1(A)〜(E)を参照しつつ詳細に説明する。図1は、本発明のキャパシタの製造方法の要部工程を経時的に示した概念断面図である。
上記の各工程に入る前の準備段階として、本発明のキャパシタの製造方法に使用される基板を準備するための基板準備工程が予め設けられる。
<基板準備工程>
本発明において使用される基板10として、その基板の表面が平滑で、誘電体焼成温度以上の耐熱性、耐酸化性を有する基板が予め準備される。具体的には、600〜1000℃の焼成工程においても、その表面性が変化することのない基板である。このような基板としては、その表面が熱酸化処理された熱酸化膜層付きのシリコンウエハが好ましい。表面平滑性に優れた基板として比較的安価に入手可能だからである。また、後述するようにこの基板の上に形成される分離層と適度の密着性を得ることが比較的容易であるという理由もある。
<分離層形成工程>
図1(A)に示されるように、準備された基板10の片面に分離層20を形成するための分離層形成工程が行なわれる。
分離層20は、上記のごとく準備された基板10と適度の密着強度、すなわち後述するように後の工程で分離層20の上に誘電体層30および金属箔40が形成される時までは、基板10と密着しているように作用する。しかる後、適度の外力を分離層20の近傍に付加すること等により、基板10と分離層20との界面10a,20aから分離できるような密着強度を有している。このような密着強度の調整は、分離層20の材料選定や成膜方法等を適宜選定して行うようにすればよい。
なお、本発明でいう「基板と分離層の界面で分離する」という文言は、基板と分離層との接合界面できれいに分離される場合、および、一部は分離層または誘電体層の内部で破壊が生じて分離される場合、の両方の場合を含むことを意味する。
このような分離層20は、後述するように基板10と分離層20との界面10a,20aから分離された後、その分離層20の反対面側に直接、電極層50を形成することができるように導電性を有する材料を用いることが好ましい。さらに、誘電体との反応を防止する機能も要求される。
基板10と分離層20との密着強度は、まず、それぞれの材料との関係で選択される。一般に酸化物同士、金属同士は密着力が強くなるため、酸化物/金属の組合せが好ましい。例えば、酸化シリコン基板10に対しては、酸化物と反応しにくい金属から分離層20の材料を選択し、特に誘電体焼成工程に置いても酸化しにくい貴金属が好ましく、具体的には、白金、金、ロジウム、イリジウム等が挙げられ、特に好ましくは、硬度、融点等の観点から白金を使用するのがよい。
このような分離層20の成膜方法としては、スパッタ、蒸着、イオンプレーティング等の公知の成膜方法を用いることができる。本発明で要求される適度の密着性を得るためには、特に、スパッタが好ましい。
分離層20の層厚は10〜100nm程度とされる。10nm未満となると、均一膜とすることが困難であるとともに分離が困難となる。100nmを超えると、コスト的な問題が生じる。
なお、一般的な薄膜キャパシタにおいても、白金は電極として広く使用されているが、基体10との密着強度を強くするために、酸化チタン、酸化タンタル等を密着層として用いる。しかし、本願発明においては基板10との適度の密着強度を得るため、そして導電性を確保するために、酸化チタン、酸化タンタル等の密着層は用いられない。
さらに、分離を容易にするために分離層20の端部に、最外部に行くにつれて膜厚が徐々に薄くなるような傾斜面21を設けることが望ましい。これは、膜厚が薄いと膜の内部応力による分離が起こりにくいことを利用して、最外部の零から所定膜厚へとなだらかに変化する領域から形成される傾斜面21を積極的に設けるものである。
具体的には、スパッタ法等で分離層を形成する際にメタルマスクを用い周囲に分離層を設けない領域を形成する。さらには、逆テーパーのメタルマスクを用いることで好ましい膜厚の傾斜領域(傾斜面)を設けることができる。
<誘電体層形成工程>
次いで、図1(B)に示されるように、分離層20の上に誘電体層30を形成するための誘電体層形成工程が行なわれる。
誘電体層30を構成する誘電体としては、公知のペロブスカイト型結晶構造を有する酸化物、一般式ABO3、例えば、チタン酸バリウム(BT)、ジルコン酸チタン酸鉛(PZT)、ジルコン酸チタン酸鉛ランタン(PLZT)、ニオブ酸鉛マグネシウム(PMN)、チタン酸バリウムストロンチウム(BST)等を好適例として例示することができる。中でも、特にチタン酸バリウム(BT)またはチタン酸バリウムストロンチウム(BST)を用いることが好ましい。鉛を含有しない環境に優しい材料であり、かつ高誘電率を得ることができるからである。真空装置を用いず低コストに形成可能な、ゾルゲル法、MOD法が好ましい。
このような誘電体層30は、いわゆるCVD法、ゾルゲル法、MOD法(有機金属分解法)、スパッタ等の方法により形成することができる。
本発明における誘電体層30の厚さは、0.1〜1μmであることが好ましい。この範囲内であれば、短絡が生じ易くなるという不都合もないし、十分に大きなキャパシタの容量が得られると同時にベース基板に埋め込んだ際の応力により誘電体層30にひびが入ることが防止できる。本発明の誘電体層30の誘電体の焼成温度は600〜1000℃であることが好ましい。このような焼成温度範囲内であれば、キャパシタの容量を確保でき、リーク特性、誘電損失も大きくは劣化せず、バランスの取れた特性を得ることが出来る。
本発明の誘電体層は、形成された直後、すなわち狭義の誘電体層形成工程の直後は、ペロブスカイト型セラミックスのような高い誘電率、具体的には容量密度、1μF/cm2以上、を有してはいない。これは結晶化が不十分であったり、有機物を含有する前駆体状態だからである。本願発明における誘電体層形成工程とは、狭義の誘電体層形成工程に加えて、その後、600〜1000℃での焼成を行い高誘電率材料とする工程の全体を示す。すなわち、ペロブスカイト型セラミックス誘電体とは、形成後、600〜1000℃で焼成された高誘電率材料を示す。
焼成雰囲気は、大気中や純酸素中等の酸素中雰囲気が好ましいが、前駆体状態で酸素を含有する場合には、真空中、窒素中であっても差し支えない。
<金属箔形成工程>
次いで、図1(C)に示されるように、誘電体層30の上に金属箔40を形成するための金属箔形成工程が行なわれる。
本発明においては、誘電体層30上に形成された金属箔40が、電極としての導電性機能だけでなく、基板としての機能、すなわち構造体の保持機能を有する。本発明における金属箔40とは、厚さが10μm以上の2次元金属構造のシート(Sheet)を言う。好ましくは12〜50μmである。なお、金属箔40の厚さが10μm未満となると、分離できない。つまり、本発明の分離工程が本来の機能を果たさない。この原因は明らかでないが、金属箔の応力が作用している可能性がある。さらには、基板として構造体を保持する機能が十分に果たせなくなってしまい、製造過程途中および製造後の構造体(キャパシタ)の取り扱いが困難となってしまう。この一方で、金属箔40の厚さが50μmを超えるとキャパシタ全体の厚さが厚くなり過ぎてしまい、基板への埋め込みが困難であるとともに、価格も高価になってしまう。また、誘電体層上に形成した単なる電極層(Layer)は、基板としての機能、すなわち構造体の保持機能を有しないため、本願発明でいう「金属箔」には該当しない。
このような本発明における金属箔40は、公知の各種の方法で形成できる。特に、非導電体である誘電体層30上に形成されるため、少なくとも初期段階は、無電解めっき、スパッタ等の公知の方法で形成されるが、生産性向上の観点から、スパッタまたは無電解めっきによる下地導電膜を形成した後、この導電膜を電極とした電気めっき法が特に好ましい。
また、電気めっきの際に、初期電流を小さくし、徐々に増加していくことが好ましい。初期、すなわち下地導電膜のみでシート抵抗が高い段階で大電流が印加されると、密着強度の弱い面で分離してしまうことがあるからである。
また、下地導電膜の膜厚を通常用いられる0.1〜0.3μmに比べて厚くしておくことも好ましい態様である。具体的には、銅またはニッケル下地膜の場合には0.5μm以上、特に好ましくは1〜5μmとすることで電気めっきの初期に膜はがれによるダメージを防止することもできる。また、無電解めっきで下地導電膜を形成する場合には、公知のパラジウム/スズ触媒層、銀触媒層を形成後、無電解めっきを行う。
また、電気めっきで金属箔40を形成する際には、電気めっきの最終段階で電流値を限界電流密度以上に上昇させることで、粗面化することが可能である。限界電流密度とは金属イオンの拡散が律速段階となる電流密度であり、この電流密度以上で電気めっきを行うと水素発生等の影響でめっき膜は粗面となる。例えば、硫酸銅めっき溶液で、光沢面を得ることができる電流密度が0.5〜5A/dm2程度の場合には限界電流密度は6〜10A/dm2である。このため、これ以上の電流密度成膜することで所望の粗面を有する金属箔を得ることができる。
<分離工程>
次いで、基板10と分離層20の界面10a,20aで分離するための分離工程が行なわれる。この分離工程によって、基板10と、その上に形成されていた一体化構造体(分離層20/誘電体層30/金属箔40の積層体)とが2つに分離される。例えば、図1(D)に示されるような分離操作が行われる。
本発明においては、基板10/分離層20の密着強度は、分離層20/誘電体層30や、誘電体層30/金属箔40の密着強度と比べて小さいため、上記のごとく分離が可能となる。例えば、図1(C)の状態にあるものから、ナイフエッジを基板10と分離層20の界面に差し込むだけで、基板10と、その上に形成されていた一体化構造体(分離層20/誘電体層30/金属箔40の積層体)とに、容易に分離できる。基板10/分離層20の密着強度は、外周部において比較的強い。このため、外周部を最初に分離すれば、全体が容易に分離する。もちろん、さらに外部から力を加える方法や、熱膨張係数の差を利用しての熱衝撃による方法等、公知の分離方法を用いることもできる。
また、密着力の比較的強い外周部の金属箔40だけをエッチング等の手法で除去しておくことで、殆ど外力を加えることなく分離する方法も好ましい態様である。この場合、分離層20/誘電体層30の層厚は薄く、分離層20/誘電体層30は、通常、金属箔40の外周ラインに沿って、切断される(図1(D)の状態)。この方法は誘電体層へのダメージが最も小さいため、歩留まり向上の観点から好ましい方法である。この場合、エッチング等の手法で除去されなかった分離層20、誘電体層30の外周部に位置する材料の多くは基板10上に残存し、一部は金属箔40に付着する(残存物や付着物は図示していない)。
もちろん、上記の手法において、外周部の金属箔40だけでなく、外周部の分離層20、誘電体層30も同時にエッチング除去して図1(D)の状態を形成しやすくするようにしても差し支えない。
分離した基板10は、再利用が可能であり、何度でも高価なシリコン基板10を使い回すことができ、コストダウンを図る上で大きく貢献できる。再利用の際にはCMP(ケミカリメカニカルポリシング)によりシリコン酸化膜の表面を、より平滑化することも好ましく用いることができる。また、複数回の再利用、CMPの後にシリコン酸化膜が薄くなった場合には、再度、熱処理を行い酸化膜を厚くすることも可能である。
<電極層形成工程>
次いで、図1(E)に示されるように、前記分離工程によって分離された構造体(分離層20/誘電体層30/金属箔40の積層体)の分離層20の上に電極層50を形成するための電極層形成工程が行なわれる。すなわち、誘電体層30の金属箔40が形成された第一の面とは反対側の第二の面に、分離層20を介して電極層50が形成される。
本発明において分離層20は、それ自体が導電性を有しているため、分離層20を予めある程度厚くしておき、このものを直接電極層として用いることも可能ではある。しかしながら、十分な高周波特性を得るためには低電気抵抗が要求され、分離層はかなり厚く成膜する必要がある。厚い層形成は高価となるため、コストダウンを考えると現実性は乏しい。そこで、本願発明においては、分離層20の厚さは分離が確保できる程度の薄膜に形成し、この上に安価で導電率の高い銅を電極層50として分離層20上に電気めっき法により形成することが好ましい。電極層50の層厚は5〜100μmが好ましい。この厚さが5μm未満となると十分な高周波特性を得ることが困難となり、この厚さが100μmを超えると埋め込み用のキャパシタとしての使い方が困難となる。
<付随する工程等>
また、本願発明において、金属箔40および電極層50の全てまたは主たる部分を共にCuから構成することによって、誘電体層にダメージを与えることなく双方のパターニングを同時にすることができる。すなわち、双方それぞれに所望のパターニングでマスク処理を施し過硫酸アンモニウム溶液でエッチングすることで、金属箔40および電極層50の両面が同時にパターニングされる。過硫酸アンモニウム溶液は、ニッケルや鉄のエッチャント(例えば、硫酸、塩化鉄溶液)等と異なり、誘電体層30にダメージを与えることも無い。このように、同時に金属箔40および電極層50の両面処理可能なことから、安価にパターニングすることができる。なお、同時両面エッチングの場合には、金属箔40および電極層50は、ほぼ同じ厚さが好ましい。
エッチングによるパターニングの際に、誘電体層、分離層はエッチング停止層として機能する。しかし、より確実なエッチング停止層として、銅に比べてエッチング速度が極端に遅い、あるいはエッチングされない導電性層、例えば、ニッケル、白金等の層を誘電体層上に設けておくことも可能である。しかし、これらのエッチング停止層材料は電気抵抗が銅に比べて高いため、層厚は1μm以下、好ましくは0.3μm以下とする。このように薄いエッチング停止層であれば、キャパシタ特性に及ぼす影響は非常に小さい。すなわち、本発明においては、金属箔、電極層はともに銅、特には電気めっき法により成膜された銅であることが好ましいが、その全てが銅である必要は無く、一部分が他の金属であってもよい。
なお、本願発明のキャパシタは、基板に埋め込まれることにより基板と一体化して使用されるが、キャパシタ単独でハンドリングが可能であり、中間製品として製造、販売が可能なものである。すなわち、本発明のキャパシタの製造法により製造されるキャパシタは、第一の面と、この第一の面と平行な第二の面を有する、600〜1000℃で焼成されたペロブスカイト型酸化物セラミクス誘電体からなる誘電体層の、第一の面上に成膜された10μm以上の厚さの金属箔と、第二の面上に成膜された電極層を有する基板埋め込み型キャパシタである。そして、金属箔は電気めっき法により成膜された銅であることが好ましい。また、電極層は厚さ5μm以上の電気めっき法により成膜された銅であることが好ましい。
また、本発明のキャパシタの製造法により製造されるキャパシタは、ICチップなどの電子部品を載置する電子パッケージ基板に埋め込んで使用することができる。そして、通常の銅箔を用いた配線基板の製造と類似した工程でキャパシタを埋め込むことが可能となる。すなわち、本発明のキャパシタの製造法により製造されるキャパシタは、ICチップの直下にコンデンサを配設でき、かつパッケージ基板内にキャパシタを内蔵することで、特に効果的に、ループインダクタンスのリアクタンス分を低減することができるキャパシタ内蔵電子パッケージを提供する。
以下、具体的実施例を示し本発明をさらに詳細に説明する。
〔実施例1〕
熱酸化膜層付きシリコンウエハ(6インチ径)を基板10として用いた。
最初に、スパッタ法により、50nmのPt(白金)を、分離層20として形成した。その際に板厚2mmで、45度逆テーパー形状のメタルマスクを用い、ウエハ最外周部にはPtが成膜されないようにし、Ptパターン部の周囲領域は約2mmの範囲で膜厚が0から50nmに変化するようにした(傾斜面21の形成)。Pt成膜後、大気中で900℃、1時間のプレアニール処理を行った。
Ba、Sr及びTiそれぞれのオクチル酸塩を金属酸化物の前駆体として含有する前駆体溶液(組成:BaO0.7SrO0.3TiO3)を、上記の分離層20の上にスピンコート(3000rpm、20sec)により塗布した。
塗布後、大気中、ホットプレート上で150℃で10分間加熱することにより塗膜を乾燥して、前駆体層を形成させた。
次いで、大気中、ホットプレート上で、前駆体層を400℃で10分間加熱した(仮焼成)。同様の塗布、乾燥及び仮焼成を、前駆体層が所定の厚さとなるまで繰返した。
仮焼成後、大気中(酸素濃度18%)、赤外線高速加熱炉内で850℃で30分間加熱して(本焼成して)、誘電体層30を形成させた。得られた誘電体層30の膜厚は光学式膜厚計にて測定したところ、330nmであることを確認した。
次に、誘電体層30の上にスパッタにて2μmのCu層を形成後、このスパッタCu層を陰極として硫酸銅浴を用いた電気めっき法により、16μmの銅金属箔を形成した(金属箔40の形成)。
次に、マスキングテープを用い、金属箔40の外周部3mmのみを過硫酸アンモニウム溶液によりエッチング除去したところ、熱酸化膜層付きシリコン基板10から、Pt分離層20/誘電体層30/Cu金属箔40の積層体からなる一体化構造体(以下、単に、「Pt/BST/Cu金属箔」と称す)が外力を加えることなく自然に分離された。
分離後には「Pt/BST/Cu金属箔」だけでハンドリング可能であった。Cu金属箔が支持体としての十分な機能を果たしていた。
次に、この「Pt/BST/Cu金属箔」のPt側にPtを陰極として硫酸銅浴を用い電気めっき法により、17μmの銅電極層を形成した(電極層50の形成)。この際、初期5分間の電流密度は0.2A/dm2とし、その後、2A/dm2まで上昇させた。
次に、フィルムレジストを両面に貼り付け、両面それぞれのパターンをメタルマスクを通じて、それぞれパターン露光し、現像後に過硫酸アンモニウム溶液を用いて不要な銅(Cu金属箔40、Cu電極層50の部分的不要箇所)を溶解除去した。
これにより両側の電極が銅で構成された、ペロブスカイト型セラミックスであるBSTを誘電体層とする、全厚約35μmの薄膜キャパシタを作製した。
この薄膜キャパシタの全厚はプリント基板用銅箔の標準厚さとほぼ同一であり、通常の配線用銅箔の替わりにこの薄膜キャパシタを用いることでICパッケージ基板内にデカップリングキャパシタとして埋め込むことが可能であった。このデカップリングキャパシタ内蔵のICパッケージにおいては高周波デカップリング機能が従来のチップコンデンサ外付け型パッケージに比べ大幅に向上した。
また、銅エッチングによる誘電体層へのダメージも無く、歩留りは99%以上であった。
製造に要するコストは、Ptスパッタ(分離層20)、誘電体層30の成膜、銅スパッタ(金属箔40の一部)、銅めっき(金属箔40の一部、電極層50)、およびパターニングに要する費用のみであり、安価であった。
なお、素子の単位面積当たりの容量は、4μF/cm2であり、1GHzにおけるインピーダンスも、Z=0.1Ωと、基板埋め込み用キャパシタとして、十分な特性を示した。
なお、Ptスパッタ(分離層20)時に、シリコン基板10の全面に50nmの均一膜を形成した場合には、金属箔40の銅めっきの途中で基板10の外周部から分離してしまうことがあり、そのため歩留りがやや低下することがあった。上述の実験例のごとくメタルマスクでパターニングして分離層20の外周端に傾斜面21を形成した場合には、分離工程時まで分離は発生しなかった。
〔比較例1〕
実施例1と同様の方法で形成した誘電体層30の上にスパッタ法にて2μmのCu層を形成した状態では、基板から「Pt/BST/Cu」構造は分離できなかった。
〔比較例2〕
比較例1の誘電体層30の上にスパッタ法にて形成した2μmのCu層を陰極として電気めっき法により、さらに3μmの銅層を形成した状態(5μmの銅電極)では、基板から一部の「Pt/BST/Cu」構造を分離することは出来たが、大部分の「Pt/BST/Cu」構造は基板上に残ってしまった。また分離できた「Pt/BST/Cu」構造も単独でハンドリングすることは出来ず、電極層を形成することは出来なかった。
以上の実験結果より、本発明の効果は明らかである
本発明のキャパシタの製造方法は、電子機器の実装の分野に広く利用できる。
図1は、本発明のキャパシタの製造方法の要部工程を経時的に示した概念断面図である。
符号の説明
10…基板
20…分離層
30…誘電体層
40…金属箔
50…電極層

Claims (8)

  1. 基板の片面に分離層を形成する分離層形成工程と、
    前記分離層上に誘電体層を形成する誘電体層形成工程と、
    前記誘電体層上に10μm以上の厚さの金属箔を形成する金属箔形成工程と、
    前記基板と前記分離層の界面で分離する分離工程と、
    前記分離工程によって分離された前記誘電体層の前記金属箔が形成された第一の面とは反対側の第二の面に、前記分離層を介して電極層を形成する電極層形成工程と、
    を含み、
    前記分離工程は、金属箔形成工程により形成された金属箔の外周部を除去して行なわれることを特徴とするキャパシタの製造方法。
  2. 前記分離工程においては、前記金属箔と前記誘電体層と前記分離層との一体化物が、前記分離層と基板との界面で基板から分離される請求項1に記載のキャパシタの製造方法。
  3. 前記基板が熱酸化膜層付きシリコンウエハであり、前記分離層がPtであり、
    前記分離工程における分離界面が、シリコンウエハ上の熱酸化膜層と、Ptからなる分離層との界面である請求項1または請求項2に記載のキャパシタの製造方法。
  4. 製造対象となるキャパシタが、前記電極層、前記分離層、前記誘電体層、前記金属箔の積層体構造を有する請求項1ないし請求項3のいずれかに記載のキャパシタの製造方法。
  5. 前記誘電体層がペロブスカイト型セラミックスである請求項1ないし請求項4のいずれかに記載のキャパシタの製造方法。
  6. 前記電極層および前記金属箔が、Cuである請求項1ないし請求項5のいずれかに記載のキャパシタの製造方法。
  7. 前記誘電体層形成工程において、誘電体層の焼成が行なわれ、しかる後、前記金属箔形成工程、前記分離工程、前記電極層形成工程が順次行なわれる請求項1ないし請求項6のいずれかに記載のキャパシタの製造方法。
  8. 前記分離層形成工程における分離層の形成の際に、分離層の端部において、最外部にいくにつれて膜厚が徐々に薄くなる傾斜面が設けられる請求項1ないし請求項7のいずれかに記載のキャパシタの製造方法。
JP2006202859A 2006-07-26 2006-07-26 キャパシタの製造方法 Active JP4770627B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006202859A JP4770627B2 (ja) 2006-07-26 2006-07-26 キャパシタの製造方法
US11/779,597 US7773364B2 (en) 2006-07-26 2007-07-18 Method of manufacturing capacitor
US12/635,838 US8085523B2 (en) 2006-07-26 2009-12-11 Method of manufacturing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202859A JP4770627B2 (ja) 2006-07-26 2006-07-26 キャパシタの製造方法

Publications (2)

Publication Number Publication Date
JP2008034417A JP2008034417A (ja) 2008-02-14
JP4770627B2 true JP4770627B2 (ja) 2011-09-14

Family

ID=39123563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202859A Active JP4770627B2 (ja) 2006-07-26 2006-07-26 キャパシタの製造方法

Country Status (1)

Country Link
JP (1) JP4770627B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869882A (zh) * 2016-04-08 2016-08-17 郑州航空工业管理学院 一种电磁炉用金属化聚丙烯膜电容器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844578B2 (ja) * 2008-03-11 2011-12-28 Tdk株式会社 電子部品の製造方法
JP2014179357A (ja) * 2011-07-01 2014-09-25 Sanyo Electric Co Ltd 積層構造体及びその製造方法
JP6756134B2 (ja) 2016-03-30 2020-09-16 Tdk株式会社 薄膜部品シート、電子部品内蔵基板、及び薄膜部品シートの製造方法
US10211157B2 (en) 2016-06-27 2019-02-19 Tdk Corporation Electronic component
US10278290B2 (en) 2016-07-19 2019-04-30 Tdk Corporation Electronic component embedded substrate
JP7035722B2 (ja) * 2018-03-30 2022-03-15 Tdk株式会社 キャパシタ及びキャパシタの製造方法
KR20210130040A (ko) 2020-04-21 2021-10-29 삼성전자주식회사 고주파 동작 환경에서 사용될 수 있는 반도체 장치의 커패시터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085812A (ja) * 2003-09-04 2005-03-31 Murata Mfg Co Ltd 誘電体薄膜キャパシタ
US7056800B2 (en) * 2003-12-15 2006-06-06 Motorola, Inc. Printed circuit embedded capacitors
JP2005203680A (ja) * 2004-01-19 2005-07-28 Murata Mfg Co Ltd インターポーザキャパシタの製造方法
JP2005252130A (ja) * 2004-03-08 2005-09-15 Matsushita Electric Ind Co Ltd 機能性薄膜の製造方法およびそれを用いた機能素子
JP4649198B2 (ja) * 2004-12-20 2011-03-09 新光電気工業株式会社 配線基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869882A (zh) * 2016-04-08 2016-08-17 郑州航空工业管理学院 一种电磁炉用金属化聚丙烯膜电容器

Also Published As

Publication number Publication date
JP2008034417A (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4770627B2 (ja) キャパシタの製造方法
JP4770628B2 (ja) キャパシタの製造方法
JP5455352B2 (ja) 薄膜mimキャパシタ及びその製造方法
JP5267268B2 (ja) 薄膜コンデンサ及びその製造方法
KR20000048333A (ko) 가요성 박막 콘덴서 및 그 제조방법
US8085523B2 (en) Method of manufacturing capacitor
JP2007208263A (ja) 薄膜キャパシタ内蔵型印刷回路基板の製造方法
JP4375395B2 (ja) 薄膜複合材料およびその製造方法、ならびに当該薄膜複合材料を用いた多層配線板および電子部品
JP2003158002A (ja) チップ型電子部品とその製造方法
JP2011129665A (ja) 積層配線基板の製造方法
JP2019102733A (ja) 配線基板、半導体装置、及び配線基板の製造方法
TW200527456A (en) Thin film capacitors on ceramic
US20050074627A1 (en) Ceramic substrate for thin film electronic component, production method for the same and thin film electronic component using the same
JP2000323845A (ja) 電子回路実装用基板の製造方法
JP2007110127A (ja) 薄膜キャパシタの製造方法、それにより製造される薄膜キャパシタおよびこれを有する薄膜キャパシタ内蔵型印刷回路基板
JP2005203680A (ja) インターポーザキャパシタの製造方法
JP2989975B2 (ja) 窒化アルミニウム質基板の製造方法
JP4708905B2 (ja) 薄膜エンベディッドキャパシタンス、その製造方法、及びプリント配線板
JP3310636B2 (ja) 金属膜転写用部材、その製造方法および積層セラミック電子部品の製造方法
JP2021132122A (ja) 薄膜キャパシタ及びこれを内蔵する回路基板、並びに、薄膜キャパシタの製造方法
JP2001250885A (ja) キャパシタ内蔵回路基板及びそれを用いた半導体装置
JP3355312B2 (ja) 積層セラミック電子部品の製造方法、それに用いる金属膜転写用部材、およびその製造方法
JPH11195552A (ja) 薄型コンデンサとその製造方法
JP2002075772A (ja) 金属膜形成用部材、金属膜形成用部材の製造方法、金属膜の転写方法および積層セラミック電子部品の製造方法
JP2007242838A (ja) コンデンサの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4770627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150