WO2007148380A1 - 押込型材料試験機、試験方法、および試験用プログラム製品 - Google Patents

押込型材料試験機、試験方法、および試験用プログラム製品 Download PDF

Info

Publication number
WO2007148380A1
WO2007148380A1 PCT/JP2006/312294 JP2006312294W WO2007148380A1 WO 2007148380 A1 WO2007148380 A1 WO 2007148380A1 JP 2006312294 W JP2006312294 W JP 2006312294W WO 2007148380 A1 WO2007148380 A1 WO 2007148380A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
indenter
filter
displacement detection
displacement
Prior art date
Application number
PCT/JP2006/312294
Other languages
English (en)
French (fr)
Inventor
Yasunori Konaka
Toyokazu Maeda
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to US12/305,280 priority Critical patent/US8156794B2/en
Priority to JP2008522196A priority patent/JP4793445B2/ja
Priority to DE112006003935T priority patent/DE112006003935B4/de
Priority to PCT/JP2006/312294 priority patent/WO2007148380A1/ja
Publication of WO2007148380A1 publication Critical patent/WO2007148380A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/021Treatment of the signal; Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the present invention relates to an indentation-type material testing machine, a testing method, and a test program product that evaluate a material by pressing an indenter or the like against a sample with a minute load.
  • Patent Document 1 discloses a micro hardness meter that presses an indenter against a sample and detects the displacement of the indenter with respect to the pressing load to measure the hardness of the sample.
  • the pressure load on the sample of the indenter is very small, and the hardness tester itself may vibrate due to ambient noise and vibration, which may adversely affect the measurement results.
  • Patent Document 2 discloses a testing machine that removes noise in a detection signal by inserting a preselected filter in a detection output extraction circuit for a test force or elongation acting on a test piece. ing. In this tester, noise is removed from the detection output by using the filter characteristics selected in advance.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-85019
  • Patent Document 2 JP 2005-331256 A
  • An indentation type material testing machine includes an indenter that is pushed into a sample, a load device that applies a load to the sample via the indenter, a displacement sensor that measures the displacement of the indenter, and an unloaded state. Displacement sensor force Based on the obtained displacement detection signal, a calculation device for calculating a filter characteristic for removing a disturbance component in the displacement detection signal, and a filter characteristic calculated by the calculation device A storage device that stores the filter; and a filter device that filters the displacement detection signal with the filter characteristics stored in the storage device.
  • An indentation type material testing machine includes an indenter that is pushed into a sample, a load device that applies a load to the sample via the indenter, a displacement sensor that measures displacement of the indenter, and a load state Displacement sensor force based on the obtained displacement detection signal, a calculation device for calculating a filter characteristic for removing a disturbance component in the displacement detection signal, a storage device for storing the filter characteristic calculated by the calculation device, and a storage device And a filter device for filtering the displacement detection signal with the filter characteristics stored in.
  • This indentation type material testing machine calculation device can also calculate the filter characteristics based on the displacement detection signal sampled at the beginning of indenter indentation.
  • the filter device can perform filter processing in real time after the filter characteristics are calculated.
  • the indenter indentation depth test force curve is calculated from the displacement sensor detection signal filtered by the filter device and the indenter pressing force by the load device.
  • An arithmetic device for calculating the hardness can be further provided.
  • the test method according to the present invention is such that the indenter is pressed against the sample, the displacement of the indenter is detected, the test force acting on the sample is detected by the indenter, and FFT analysis is performed on the detected displacement detection signal of the indenter, etc.
  • To detect the noise frequency band calculate the filter characteristics based on the detected frequency band, filter the displacement detection signal based on the calculated filter characteristics, and calculate the displacement detection signal and test force after filtering. Based on the above, the physical properties of the sample are evaluated.
  • the displacement detection signal used to detect the frequency band of noise can be a signal sampled in an unloaded state when the indenter contacts the sample.
  • This test method is also used to detect noise frequency bands.
  • the displacement detection signal used is a signal sampled in a load state where the indenter is pressing the sample.
  • the test program product includes a process for pressing the indenter against the sample, a process for detecting the displacement of the indenter, a process for detecting the test force acting on the sample by the indenter, and the displacement of the detected indenter.
  • a process for detecting a noise frequency band for the detection signal, a process for calculating a filter characteristic based on the detected frequency band, a process for filtering the displacement detection signal based on the calculated filter characteristic, and a post-filter process A computer executes processing for evaluating the physical properties of the sample based on the displacement detection signal and the test force.
  • a material testing machine includes a measuring device that measures the frequency characteristics of disturbance noise superimposed on a detection signal, an arithmetic device that analyzes the frequency characteristics and determines a filter constant, and filters the detection signal.
  • a filter device that performs a filter process defined by a constant and an evaluation device that evaluates a material using a detection signal that has been filtered by the filter device are provided.
  • FIG. 1 is a diagram schematically showing the configuration of an indentation type material testing machine according to the present invention.
  • Controller 21 CPU
  • FIG. 1 shows an embodiment in which the indentation type material testing machine according to the present invention is applied to a micro hardness tester.
  • the microhardness meter of this embodiment has a function for measuring the frequency characteristics of disturbance at the installation location, a function for determining the filter constant by analyzing the frequency characteristics of disturbance noise, and a filter constant for the displacement detection output. It has a function to suppress the influence of disturbance by applying the specified filtering process.
  • the microhardness meter includes a frame 1, a sample stage 2 provided on the frame 1 so as to be movable up and down, and a stage 3 installed on the sample stage 2 and movable in XY directions orthogonal to each other.
  • the sample TP held on the stage 3 is pressed by the indenter 4.
  • the frame 1 includes a load device 5 that applies a test force to the sample TP via the indenter 4 and a displacement sensor 6 that measures the displacement of the indenter 4.
  • the frame 1 is provided with a plurality of objective lenses 7 attached to a revolver, and the observation light incident on the objective lens 7 is observed at the eyepiece 10 by the imaging optical system 8 and the eyepiece optical system 9.
  • An imaging device (not shown) is provided in the eyepiece 10, and an observation image from the imaging device is input to the control device 20 via the AZD transformation 11.
  • the displacement sensor 6 is composed of, for example, a differential transformer type displacement detector.
  • the analog output of the displacement sensor 6 is input to the AZD conversion from the amplifier 12, converted into a digital signal, and input to the control device 20.
  • the load device 5 is composed of, for example, an electronic balance type variable load device.
  • This load device 5 has an electromagnetic coil 51 to which the current adjusted by the load current supply device 14 is supplied, and the indenter 4 is pressed against the sample TP by the electromagnetic force of the electromagnetic coil 51.
  • the pressing load is controlled by the supply current from the load current supply device 14.
  • the control device 20 monitors the load current command value to the electromagnetic coil 51 and detects the pressing load by the indenter 4.
  • the control device 20 includes a CPU 21, ROM 22, RAM 23, I / 024, touch panel monitor 25, recorder 26, etc., and the CPU 21 executes various processes described later by a test program stored in the ROM 22.
  • the touch panel monitor 25 displays a test condition setting screen, a test data display screen, a test result display screen, and the like.
  • the touch panel monitor 25 also displays various button switches to be described later.
  • Recorder 26 is connected to IZ024 and measurement data is recorded.
  • the CPU 21 determines the indentation depth detected by the displacement sensor 6 and the pressure on the sample TP by the indenter 4.
  • the load (test force) is detected in association, and the hardness of the sample TP is obtained from the test car indentation depth curve.
  • This process is a normal measurement process.
  • the CPU 21 also executes a process for determining a filter constant. That is, the frequency characteristic due to the disturbance is analyzed based on the output signal of the displacement sensor 6, and the filter constant is calculated based on the analysis result. This process is called a filter constant calculation process. Then, the CPU 21 performs a filtering process defined by a filter constant on the displacement detection output from the displacement sensor 6 to remove a vibration component due to a disturbance.
  • the filter constant is a parameter that determines the filter characteristics of the digital filter.
  • the microhardness meter uses a filter characteristic pre-measurement method that calculates a filter constant using a displacement detection signal in an unloaded state prior to a test, and a displacement detection signal in a load state after the start of the test.
  • the hardness measurement test can be performed with any of the post-measurement methods for filter characteristics to calculate the filter constant.
  • the filter constant is calculated by measuring the frequency component of noise superimposed on the displacement detection signal measured in the no-load state prior to the test, and the displacement detection signal is filtered. Data is sampled while applying to remove noise. All data is sampled until the indenter 4 is pushed down to the specified indentation depth or until the indentation force reaches the specified value. Note that after sampling all of the displacement detection signals, the filter processing may be performed using a filter constant calculated in advance.
  • a displacement detection signal is sampled while pushing an indenter into a sample, and a filter constant is calculated by analyzing a noise frequency superimposed on the displacement detection signal.
  • the sampled displacement detection signal is subjected to filter processing defined by the filter constant to remove noise.
  • the filter characteristic pre-measurement method and the filter characteristic post-measurement method are selected.
  • the filter characteristic pre-measurement method button 25a and the filter characteristic post-measurement method button 25b are provided as the mode selection buttons shown in FIG.
  • a filter constant calculation button 25c for determining the filter constant and a test start button 25d for sampling the hardness measurement data are also displayed.
  • Figure 2 In the example, the filter characteristic pre-measurement method button 25a and the filter constant calculation button 25c are operated.
  • Procedure 1 Control the load current supply device 14 to hold the indenter 4 at a predetermined position in the air.
  • Step 2 Displacement detection signal of displacement sensor 6 is sampled for a predetermined time and stored in RAM23.
  • Step 3 Read sampled displacement detection signal sequence from RAM23 and perform FFT analysis
  • Step 4 Based on FFT analysis results, detect noise frequency characteristics and calculate filter constants to remove noise .
  • This filter constant represents, for example, the pass frequency of the low-pass filter and the threshold value of the band-pass filter.
  • Step 5 Store the filter constant in RAM23.
  • the hardness of the sample TP is measured by the following procedures 11 to 15 using the determined filter constant.
  • Step 11 Read the filter constant stored in RAM23 by operating test start button 25d.
  • Step 12 Create an indentation by pressing the indenter 4 against the sample TP at a predetermined displacement speed.
  • the displacement detection signal push-in depth
  • the load current command value test force
  • the read filter constant is applied to the displacement detection signal, and digital filtering is performed to remove noise.
  • a test car indentation depth curve is created based on the displacement detection signal train and the load current command value after filtering.
  • Step 13 Evaluate the hardness of the sample TP based on the test force-indentation depth curve. Next, a test procedure that employs the filter characteristic post-measurement method will be described.
  • Step 21 Filter characteristic post-measurement method button 25b selects filter characteristic post-measurement method, and when test start button 25d is operated, indenter 4 is pressed against sample TP at a predetermined displacement speed to create an indentation. At this time, the displacement detection signal of the displacement sensor 6 is sampled, and the current command value indicating the test force is sampled at the same timing. The displacement detection signal (push-in depth) and the current command value (test force) are stored in the RAM 23 in association with each other.
  • Step 22 When the specified indentation depth is detected or the specified indentation force is detected, the indenter 4 is finished being pushed in.
  • Step 23 Read the displacement detection signal sequence of the displacement sensor 6 from the RAM 23, perform FFT analysis, detect the noise frequency band, and determine the filter constant.
  • Step 24 The determined filter constant is stored in the RAM 23 of the control device 20.
  • Step 25 Read the displacement detection signal and filter constant of displacement sensor 6 from RAM23, apply the digital filtering process to the displacement detection signal sequence with the read filter constant, and obtain the displacement detection signal from which the influence of disturbance has been removed. Store in RAM23.
  • Step 26 Read out the displacement detection signal from which the disturbance has been removed and the test force corresponding to the displacement detection signal, and create a test car indentation depth curve.
  • Step 27 Evaluate the hardness of the sample TP based on the test force-indentation depth curve.
  • FIGS. 3 to 6 are flowcharts of a program for executing the above processes by the CPU 21.
  • step S10 when the filter characteristic pre-measurement method button 25a is selected in step V, the filter characteristic pre-measurement method is selected.
  • the process proceeds to the filter characteristic post measurement method processing in step S30.
  • FIG. 4 is a flowchart of the filter characteristic prior measurement method process.
  • the filter constant calculation button 25c is turned on in step S21, the process proceeds to step S22, and the load current supply device 14 is controlled to hold the indenter 4 at a predetermined position in the air.
  • step S23 the displacement detection signal of the displacement sensor 6 is sampled and stored in the RAM 23 for a predetermined time.
  • the sampled displacement detection signal train is also read out from the RAM23 and subjected to FFT analysis.
  • the filter constant is calculated by detecting the frequency band of the noise included in the displacement detection signal sequence based on the FFT analysis result, and the filter constant is stored in the RAM 23 in step S26. In this way, after obtaining the filter constant in advance, the test process is executed in step S27.
  • FIG. 5 is a flowchart of the test process.
  • the filter constant stored in the RAM 23 is read in step S272.
  • the indenter 4 is pressed against the sample TP at a predetermined displacement speed to create an indentation. While the indenter 4 is moving, step S273 to step S277 are repeated. That is, the displacement detection signal is read in step S274, the current command value is read in step S275, and the displacement detection signal and the current command value are stored in the RAM 23 in association with each other in step S276.
  • step S277 when the indentation depth of the indenter 4 reaches a predetermined value or the indentation force reaches a predetermined value, the indenter 4 is stopped in step S278 and the process proceeds to step S279.
  • step S279 digital filter processing is performed on the displacement detection signal sequence using the filter constant read in step S272. Thereby, the noise superimposed on the displacement detection signal is removed.
  • step S280 a test car indentation depth curve is created based on the displacement detection signal after filtering and the current command value. The test force can be detected by the current command value to the load current supply device 14 as described above.
  • step S281 the hardness of the sample TP is evaluated based on the test car indentation depth curve.
  • step S41 When the test start button 25d is operated in step S41, the indenter 4 is pressed against the sample TP at a predetermined displacement speed in step S42 to create an indentation.
  • the displacement detection signal from the displacement sensor 6 is sampled in step S43, and the load current command value representing the test force is sampled in step S44.
  • step S45 the displacement detection signal is associated with the load current command value. And store it in RAM23.
  • step S46 the predetermined indentation depth by the indenter 4 has reached the predetermined value, or the indentation force has not reached the predetermined value. If it is determined that it has been pushed, the pushing of the indenter 4 is terminated in step S47.
  • step S48 the displacement detection signal string is read from the RAM 23 and subjected to FFT analysis.
  • step S49 based on the FFT analysis result, a frequency band of noise included in the displacement detection signal sequence is detected to calculate a filter constant, and the filter constant is stored in the RAM 23.
  • step S50 the displacement detection signal and filter constant of the displacement sensor 6 are read from the RAM 23, and digital filtering processing is performed on the displacement detection signal with the filter constant.
  • step S51 a test car indentation depth curve is created based on the displacement detection signal after filtering and the current command value. The test force can be detected by the current command value to the load current supply device 14 as described above.
  • step S52 the hardness of the sample TP is evaluated based on the test force-indentation depth curve.
  • the filter constant that appropriately removes disturbance due to vibration at the installation location. It is preferable to calculate the filter constant each time using the post-measurement method for filter characteristics in environments where the installation location changes frequently and in environments where disturbances change from moment to moment. In an environment where the installation location is not changed frequently and the disturbance does not fluctuate, the filter constant pre-measurement method is selected and the filter constant is calculated prior to the test in order to shorten the test time. preferable.
  • the present invention has an indentation-type material that has a small test force as a result of a physical property evaluation test of a thin film, and as a result, it is possible to evaluate a material under a test condition with an indentation depth force of ⁇ ⁇ m or less. Suitable for testing machines.
  • the filter constant is determined by the displacement detection signal sequence sampled while pushing the indenter to a predetermined pushing depth. That is, after all the test data was sampled, FFT analysis was performed on the displacement detection signal train.
  • the filter constant may be calculated by performing FFT analysis on the displacement detection signal sequence sampled at a predetermined time at the beginning of the pushing operation, and the subsequent sample data may be filtered in real time. It is also possible to detect the frequency component of noise by a method other than FFT analysis.
  • the filter characteristic pre-measurement method and the filter characteristic post-measurement method One of the formulas was selected. However, it can also be used as an indentation type material testing machine equipped with only one of the methods!
  • the filter processing for the displacement detection signal is digital processing in the CPU.
  • an analog low-pass filter or a band-pass filter that removes noise components may be used.
  • the filter characteristics must be variable according to commands from the CPU.
  • the microhardness meter has been described above. However, the present invention is not limited to a test in which an indenter is pushed into a sample and the physical performance of the material is evaluated using at least a displacement detection signal. It is not limited to the microhardness meter described above. For example, the present invention can be applied to a testing machine that measures unloading curve force elastic modulus and the like.
  • the present invention can add the above-described filter constant calculation function and programmable filter processing function to an existing material testing machine by rewriting a test program mounted on the existing material testing machine. That is, the test program product according to the present invention includes a process for pressing an indenter against a sample, a process for detecting displacement of the indenter, a process for detecting a test force acting on the sample by the indenter, and a displacement of the detected indenter.
  • Processing that performs FFT analysis on the detection signal to detect the frequency band of noise, processing that calculates the filter characteristics based on the detected frequency band, and processing that filters the displacement detection signal based on the calculated filter characteristics And a process for evaluating the physical properties of the sample based on the displacement detection signal after the filter processing and the test force.
  • the present invention further includes a measurement device that measures the frequency characteristics of disturbance noise superimposed on the detection signal, an arithmetic device that analyzes the frequency characteristics to determine a filter constant, and a filter constant for the detection signal. It can also be realized as a material testing machine that includes a filter device that performs the filtering process and an evaluation device that evaluates the material using the detection signal filtered by the filter device. Furthermore, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 圧子を試料に押圧し、圧子の変位を検出し、圧子による試料に働く試験力を検出する。無負荷状態で検出された圧子の変位検出信号に対してFFT解析を行ってノイズの周波数帯域を検出する。検出した周波数帯域に基づいてフィルタ特性を算出し、そのフィルタ特性により変位検出信号をフィルタ処理する。フィルタ処理後の変位検出信号と試験力とに基づいて試料の物性を評価する。

Description

明 細 書
押込型材料試験機、試験方法、および試験用プログラム製品
技術分野
[0001] 本発明は、圧子などを試料に微小荷重で押圧して材料を評価する押込型材料試 験機、試験方法、および試験用プログラム製品に関する。
背景技術
[0002] 特許文献 1には、圧子を試料に押圧し、その押圧荷重に対する圧子の変位量を検 出して試料の硬さを測定する微小硬度計が開示されて!、る。この種の微小硬度計で は、圧子の試料への押圧荷重が非常に微小なため、周囲の騒音や振動により硬度 計そのものが振動して、測定結果に悪影響を与えることがある。
[0003] 一方、特許文献 2には、試験片に作用する試験力や伸びの検出出力取り出し回路 中に予め選択したフィルタを介装し、検出信号中のノイズを除去する試験機が開示さ れている。この試験機では、予め設定した複数のフィルタ特性の中力 選択したフィ ルタ特性を使用して検出出力のノイズ除去が行われる。
[0004] 特許文献 1 :特開平 5— 85019号公報
特許文献 2:特開 2005— 331256号公報
発明の開示
発明が解決しょうとする課題
[0005] 微小硬度計のように持ち運び自在の試験機では、その設置場所ごとに外乱が異な る。したがって、特許文献 2に記載されている複数のフィルタ特性の中に、その設置 場所の外乱に適したフィルタ特性が存在しなければ、適切に外乱が除去できな 、場 合がある。
課題を解決するための手段
[0006] (1)本発明による押込型材料試験機は、試料に押し込まれる圧子と、圧子を介して 試料に負荷を与える負荷装置と、圧子の変位を測定する変位センサと、無負荷状態 で変位センサ力 得られた変位検出信号に基づいて、変位検出信号中の外乱成分 を除去するフィルタ特性を算出する算出装置と、算出装置で算出したフィルタ特性を 記憶する記憶装置と、記憶装置に記憶されたフィルタ特性で変位検出信号をフィル タ処理するフィルタ装置とを備える。
(2)この押込型材料試験機において、フィルタ特性を算出するために変位検出信号 をサンプリングする準備モードと、材料評価データを算出するために変位検出信号を サンプリングする試験モードの 、ずれかを選択する選択部材を含むようにしても良!ヽ 。この場合、準備モードが選択されると、圧子を無負荷状態の位置に保持したまま変 位検出信号をサンプリングする。
(3)また本発明の他の態様の押込み型材料試験機は、試料に押し込まれる圧子と、 圧子を介して試料に負荷を与える負荷装置と、圧子の変位を測定する変位センサと 、負荷状態で変位センサ力 得られた変位検出信号に基づいて、変位検出信号中 の外乱成分を除去するフィルタ特性を算出する算出装置と、算出装置で算出したフ ィルタ特性を記憶する記憶装置と、記憶装置に記憶されたフィルタ特性で変位検出 信号をフィルタ処理するフィルタ装置とを備える。
(4)この押込型材料試験機の算出装置は、圧子の押し込み開始初期にサンプリング された変位検出信号に基づいてフィルタ特性を算出することもできる。この場合、フィ ルタ装置は、フィルタ特性が算出された後はリアルタイムでフィルタ処理を行うことが できる。
(5)上記押込型材料試験機において、フィルタ装置でフィルタ処理された変位セン サの検出信号と、負荷装置による圧子の押圧力とにより、圧子押込深さ 試験力曲 線を算出して試料の硬さを演算する演算装置をさらに備えることができる。
(6)本発明による試験方法は、圧子を試料に押圧し、圧子の変位を検出し、圧子に より試料に働く試験力を検出し、検出された圧子の変位検出信号に対して FFT解析 などを行ってノイズの周波数帯域を検出し、検出した周波数帯域に基づいてフィルタ 特性を算出し、算出されたフィルタ特性により変位検出信号をフィルタ処理し、フィル タ処理後の変位検出信号と試験力とに基づいて試料の物性を評価する。
(7)この試験方法において、ノイズの周波数帯域を検出するために使用する変位検 出信号は圧子が試料に接触して 、な 、無負荷状態でサンプリングした信号とするこ とができる。また、この試験方法において、ノイズの周波数帯域を検出するために使 用する変位検出信号は圧子が試料を押圧している負荷状態でサンプリングした信号 とすることちでさる。
(8)本発明による試験プログラム製品は、圧子を試料に押圧する処理と、圧子の変位 を検出する処理と、圧子により試料に働く試験力を検出する処理と、記検出された圧 子の変位検出信号に対してノイズの周波数帯域を検出する処理と、検出した周波数 帯域に基づいてフィルタ特性を算出する処理と、算出されたフィルタ特性により変位 検出信号をフィルタ処理する処理と、フィルタ処理後の変位検出信号と試験力とに基 づいて試料の物性を評価する処理とをコンピュータで実行させる。
(9)本発明による材料試験機は、検出信号に重畳される外乱ノイズの周波数特性を 測定する測定装置と、周波数特性を解析してフィルタ定数を決定する演算装置と、 検出信号に対してフィルタ定数で規定されるフィルタ処理を施すフィルタ装置と、フィ ルタ装置でフィルタ処理された検出信号を用いて材料を評価する評価装置とを備え る。
発明の効果
[0007] 本発明によれば、試験機設置場所の振動などによる外乱を適切に除去するフィル タ特性を算出して検出信号を取得することができる。
図面の簡単な説明
[0008] [図 1]本発明による押込型材料試験機の構成を模式的に示す図
[図 2]モニタに表示される各種ボタンを説明する図
[図 3]電源オンでスタートするプログラムを説明するフローチャート
[図 4]フィルタ特性事前測定方式のフィルタ定数算出処理を説明するフローチャート [図 5]フィルタ特性事前測定方式の試験処理を説明する図 4に続くフローチャート [図 6]フィルタ特性事後測定方式の試験処理を説明するフローチャート
符号の説明
[0009] 4 :圧子 5 :負荷装置
20 :制御装置 21 : CPU
発明を実施するための最良の形態 [0010] 図 1は本発明による押込型材料試験機を微小硬度計に適用した場合の一実施の 形態である。この実施の形態の微小硬度計は、設置場所での外乱の周波数特性を 測定する機能と、外乱ノイズの周波数特性を解析してフィルタ定数を決定する機能と 、変位検出出力に対してフィルタ定数で規定されるフィルタ処理を施して外乱の影響 を抑制する機能とを備える。
[0011] 微小硬度計は、フレーム 1と、フレーム 1に昇降可能に設けられる試料台 2と、試料 台 2上に設置されて互いに直交する XY方向に移動可能なステージ 3とを備える。ス テージ 3上に保持される試料 TPは圧子 4で押圧される。フレーム 1内には、圧子 4を 介して試料 TPに試験力を与える負荷装置 5と、圧子 4の変位を測定する変位センサ 6とを備えている。またフレーム 1には、レボルバに装着された複数の対物レンズ 7が 設けられ、対物レンズ 7に入射した観察光は結像光学系 8および接眼光学系 9により 接眼部 10で観察される。この接眼部 10に図示しない撮像装置が設けられ、撮像装 置からの観察画像は AZD変 11を介して制御装置 20に入力される。
[0012] 変位センサ 6は、例えば、差動トランス式変位検出器で構成される。変位センサ 6の アナログ出力は、アンプ 12から AZD変 に入力され、デジタル信号に変換さ れて制御装置 20に入力される。上記負荷装置 5は、例えば、電子天秤タイプの可変 式負荷装置で構成される。この負荷装置 5は、負荷電流供給装置 14で調整された電 流が供給される電磁コイル 51を有し、電磁コイル 51の電磁力により圧子 4が試料 TP に押圧される。押圧荷重は負荷電流供給装置 14からの供給電流で制御される。制 御装置 20により電磁コイル 51への負荷電流指令値を監視し、圧子 4による押圧荷重 を検出する。
[0013] 制御装置 20は、 CPU21、 ROM22、 RAM23、 I/024,タツチパネルモニタ 25, レコーダ 26などを有し、 CPU21は、 ROM22に記憶された試験プログラムにより後 述する各種処理を実行する。タツチパネルモニタ 25には、試験条件設定画面、試験 データ表示画面、試験結果表示画面などが表示される。また、タツチパネルモニタ 2 5には、後述する各種ボタンスィッチも表示される。 IZ024にはレコーダ 26が接続さ れ、計測データが記録される。
[0014] CPU21は、変位センサ 6で検出される押込深さと、圧子 4による試料 TPへの押圧 荷重 (試験力)を対応付けて検出し、試験カー押込深さ曲線から試料 TPの硬さを求 める。この処理は通常の計測処理である。また、 CPU21は計測処理に加えてフィル タ定数を決定する処理も実行する。すなわち、変位センサ 6の出力信号に基づいて 外乱による周波数特性を解析し、その解析結果に基づ ヽてフィルタ定数を演算する 。この処理をフィルタ定数演算処理と呼ぶ。そして、 CPU21は、変位センサ 6からの 変位検出出力に対してフィルタ定数で規定されるフィルタ処理を行い、外乱による振 動成分を除去する。フィルタ定数は、デジタルフィルタのフィルタ特性を定めるパラメ ータである。
[0015] 本実施の形態の微小硬度計では、試験に先立って無負荷状態での変位検出信号 によりフィルタ定数を算出するフィルタ特性事前測定方式と、試験開始後の負荷状態 での変位検出信号によりフィルタ定数を算出するフィルタ特性事後測定方式のいず れかで硬さ測定試験を行うことができる。
[0016] フィルタ特性事前測定方式では、試験に先立って無負荷状態で測定した変位検出 信号に重畳されたノイズの周波数成分を測定してフィルタ定数を算出し、変位検出 信号に対してフィルタ処理を施しながらデータをサンプリングしてノイズを除去する。 圧子 4が所定押込深さまで押し込まれるまで、または押込力が所定値になるまで全デ ータをサンプリングする。なお、変位検出信号の全てをサンプリングした後に、事前に 算出したフィルタ定数によりフィルタ処理を行っても良い。
[0017] フィルタ特性事後測定方式では、圧子を試料に押し込みながら変位検出信号をサ ンプリングし、その変位検出信号に重畳されたノイズ周波数を分析してフィルタ定数 を算出する。そして、サンプリングした変位検出信号に対して、フィルタ定数で規定さ れるフィルタ処理を施してノイズを除去する。
[0018] 以上のように、この実施の形態の微小硬度計では、フィルタ特性事前測定方式とフ ィルタ特性事後測定方式を選択するため、タツチパネルモニタ 25の試験条件設定画 面には、図 2に示すモード選択ボタンとしてフィルタ特性事前測定方式ボタン 25aとフ ィルタ特性事後測定方式ボタン 25bとが設けられる。また、フィルタ特性事前測定方 式を選択した場合は、フィルタ定数を決定するためのフィルタ定数算出ボタン 25cと、 硬さ計測データをサンプリングするための試験開始ボタン 25dも表示される。図 2の 例では、フィルタ特性事前測定方式ボタン 25aとフィルタ定数算出ボタン 25cとが操 作された場合を示す。
[0019] フィルタ特性事前測定方式
まず、フィルタ特性事前測定方式を採用した試験手順を説明する。試験に先立つ て、以下の手順 1〜手順 5により、微小硬度計を設置した場所に適したフィルタ定数 を決定する。
[0020] フィルタ特性事前測定方式ボタン 25aによりフィルタ特性事前測定方式が選択され 、フィルタ定数算出ボタン 25cがオン操作されると次の処理が開始される。
手順 1 :負荷電流供給装置 14を制御して圧子 4を空中の所定位置に保持する。 手順 2:変位センサ 6の変位検出信号を所定時間サンプリングして RAM23に記憶 する。
手順 3:サンプリングした変位検出信号列を RAM23から読み出し、 FFT解析を行う 手順 4: FFT解析結果に基づ ヽてノイズの周波数特性を検出して、ノイズを除去す るためのフィルタ定数を算出する。このフィルタ定数は、例えば、ローパスフィルタの 通過周波数やバンドパスフィルタのスレッシュホールド値を表す。
手順 5:フィルタ定数を RAM23に記憶する。
[0021] 次に、決定されたフィルタ定数を用い、以下の手順 11〜15により試料 TPの硬さを 計測する。
手順 11:試験開始ボタン 25dの操作により、 RAM23に記憶したフィルタ定数を読 み込む。
手順 12 :予め定めた変位速度で圧子 4を試料 TPに押圧して圧痕を作成する。この とき、変位検出信号 (押し込み深さ)と負荷電流指令値 (試験力)をサンプリングし、互 いに対応付けして RAM23に記憶する。 RAM23に変位検出信号を記憶する際、読 み込まれたフィルタ定数を変位検出信号に適用してデジタルフィルタ処理を施してノ ィズが除去される。また、フィルタ処理後の変位検出信号列と負荷電流指令値とに基 づいて、試験カー押込深さ曲線を作成する。
手順 13:試験力―押込深さ曲線に基づ 、て試料 TPの硬さを評価する。 [0022] 次に、フィルタ特性事後測定方式を採用した試験手順を説明する。
手順 21 :フィルタ特性事後測定方式ボタン 25bによりフィルタ特性事後測定方式が 選択され、試験開始ボタン 25dが操作されると、予め定めた変位速度で圧子 4を試料 TPに押圧して圧痕を作成する。このとき、変位センサ 6の変位検出信号をサンプリン グするとともに、同じタイミングで試験力を示す電流指令値をサンプリングする。変位 検出信号 (押し込み深さ)と電流指令値 (試験力)は、互いに対応付けられて RAM2 3に記憶される。
手順 22 :所定押込深さが検出されると、または所定押込力が検出されると圧子 4の 押込を終了する。
[0023] 手順 23 :RAM23から変位センサ 6の変位検出信号列を読み出し、 FFT解析を行 い、ノイズの周波数帯域を検出してフィルタ定数を決定する。
手順 24:決定されたフィルタ定数を制御装置 20の RAM23に記憶する。 手順 25:変位センサ 6の変位検出信号とフィルタ定数を RAM23から読み取り、変 位検出信号列に対して、読み込まれたフィルタ定数でデジタルフィルタリング処理を 施し、外乱の影響が除去された変位検出信号を RAM23に記憶する。
[0024] 手順 26:外乱が除去された変位検出信号と、その変位検出信号に対応する試験 力を読み出し、試験カー押込深さ曲線を作成する。
手順 27:試験力―押込深さ曲線に基づ 、て試料 TPの硬さを評価する。
[0025] 図 3〜図 6は上記各処理を CPU21で実行するプログラムのフローチャートである。
微小硬度計の電源が投入されると、図 3のプログラムが起動する。ステップ S 10にお V、て、フィルタ特性事前測定方式ボタン 25aによりフィルタ特性事前測定方式が選択 されると、ステップ S20のフィルタ特性事前測定方式処理に進み、フィルタ特性事後 測定方式ボタン 25bによりフィルタ特性事後測定方式が選択されると、ステップ S30 のフィルタ特性事後測定方式処理に進む。
[0026] 図 4はフィルタ特性事前測定方式処理のフローチャートである。ステップ S21でフィ ルタ定数算出ボタン 25cがオン操作されるとステップ S22に進み、負荷電流供給装 置 14を制御して圧子 4を空中の所定位置に保持する。次にステップ S 23において、 所定時間、変位センサ 6の変位検出信号をサンプリングして RAM23に記憶する。所 定時間経過後、ステップ S24において、サンプリングした変位検出信号列を RAM23 力も読み出し、 FFT解析を行う。ステップ S25では、 FFT解析結果に基づいて、変位 検出信号列に含まれるノイズの周波数帯域を検出してフィルタ定数を算出し、ステツ プ S26において、フィルタ定数を RAM23に記憶する。このようにしてフィルタ定数を 事前に取得した後、ステップ S 27において、試験処理を実行する。
[0027] 図 5はその試験処理のフローチャートである。ステップ S271において、試験開始ボ タン 25dが操作されると、ステップ S 272において、 RAM23に記憶したフィルタ定数 を読み込む。ステップ S273に進むと、予め定めた変位速度で圧子 4を試料 TPに押 圧して圧痕を作成する。圧子 4が移動中に、ステップ S273〜ステップ S277を繰り返 し実行する。すなわち、ステップ S 274において変位検出信号を、ステップ S 275にお V、て電流指令値をそれぞれ読み込み、ステップ S276にお 、て変位検出信号と電流 指令値を対応付けて RAM23に記憶する。
[0028] ステップ S277において、圧子 4の押込深さが所定値に達すると、または押込力が 所定値に達すると、ステップ S278で圧子 4を停止してステップ S279に進む。ステツ プ S279では、ステップ S272で読み込んだフィルタ定数を用いて変位検出信号列に 対してデジタルフィルタ処理を施す。これにより、変位検出信号に重畳されているノィ ズが除去される。そして、ステップ S280において、フィルタ処理後の変位検出信号と 電流指令値とに基づいて、試験カー押込深さ曲線を作成する。試験力は、上述した ように負荷電流供給装置 14への電流指令値により検出できる。ステップ S281におい て、試験カー押込深さ曲線に基づいて試料 TPの硬さを評価する。
[0029] 次に、フィルタ特性事後測定方式を採用した試験処理を図 6のフローチャートにより 説明する。
ステップ S41において、試験開始ボタン 25dが操作されると、ステップ S42において 、予め定めた変位速度で圧子 4を試料 TPに押圧して圧痕を作成する。このとき、変 位センサ 6からの変位検出信号をステップ S43において、試験力を表す負荷電流指 令値をステップ S44においてそれぞれサンプリングし、ステップ S45において、変位 検出信号と負荷電流指令値とを対応付けて RAM23に記憶する。ステップ S46にお いて、圧子 4による所定押込深さが所定値になったこと、または押込力が所定値にな つたことを判定すると、ステップ S47において圧子 4の押込を終了する。
[0030] ステップ S48において、 RAM23から変位検出信号列を読み出し、 FFT解析を行う 。ステップ S49では、 FFT解析結果に基づいて、変位検出信号列に含まれるノイズ の周波数帯域を検出してフィルタ定数を算出し、フィルタ定数を RAM23に記憶する 。ステップ S50において、変位センサ 6の変位検出信号およびフィルタ定数を RAM2 3から読み出し、変位検出信号に対してフィルタ定数でデジタルフィルタリング処理を 施す。そして、ステップ S51において、フィルタ処理後の変位検出信号と電流指令値 とに基づいて、試験カー押込深さ曲線を作成する。試験力は、上述したように負荷電 流供給装置 14への電流指令値により検出できる。ステップ S52において、試験力— 押込深さ曲線に基づ 、て試料 TPの硬さを評価する。
[0031] 以上説明した微小硬度計によれば、微小硬度計を種々の場所に設置しても、その 設置場所の振動による外乱を適切に除去するフィルタ定数を使用してノイズを除去 できる。設置場所がたびたび変更するような使用環境や、外乱が時々刻々変化する ような環境下では、フィルタ特性事後測定方式でその都度フィルタ定数を算出するの が好ましい。設置場所を頻繁に変更せず、その外乱が変動しないような使用環境下 では、フィルタ特性事前測定方式を選択して試験に先立ってフィルタ定数を算出す るのが、試験時間を短縮する上で好ましい。
[0032] とくに、本発明は、薄膜の物性評価試験のように、試験力が微小であり、その結果、 押し込み深さ力^ μ m以下の試験条件での材料評価を可能とする押し込み型材料試 験機に好適である。
[0033] 以上説明したフィルタ特性事後測定方式では、予め定めた押し込み深さまで圧子 を押込みつつサンプリングした変位検出信号列によりフィルタ定数を決定するように した。すなわち、試験データをすベてサンプリングした後に変位検出信号列に対して FFT解析を行った。しかし、押し込み開始初期の所定時間にサンプリングした変位 検出信号列に対して FFT解析を行ってフィルタ定数を算出し、その後のサンプルデ ータに対しては、リアルタイムでフィルタリング処理を行ってもよい。ノイズの周波数成 分を FFT解析以外の手法で検出してもよ 、。
[0034] 以上では、試験に際だって、フィルタ特性事前測定方式とフィルタ特性事後測定方 式のいずれか一方の方式を選択するものとした。し力し、いずれか一方の方式のみ を搭載した押込型材料試験機としても良!ヽ。
[0035] また以上では、変位検出信号に対するフィルタ処理を CPU内でのデジタル処理と したが、ノイズ成分を除去するアナログのローパスフィルタやバンドパスフィルタなどを 使用しても良い。この場合のフィルタ特性は、 CPUからの指令により可変とする必要 がある。
[0036] 以上では、微小硬度計につ!、て説明したが、試料に圧子を押し込み、少なくとも変 位検出信号を用いて材料の物理的な性能を評価する試験であれば、本発明は、上 述した微小硬度計に限らない。例えば、除荷曲線力 弾性率等を測定する試験機に も本発明を適用できる。
[0037] 本発明は、既存の材料試験機に実装されている試験プログラムを書き換えることに より、既存の材料試験機に上述したフィルタ定数算出機能、プログラマブルフィルタ 処理機能を付与することができる。すなわち、本発明による試験用プログラム製品は 、圧子を試料に押圧する処理と、圧子の変位を検出する処理と、圧子により試料に働 く試験力を検出する処理と、記検出された圧子の変位検出信号に対して FFT解析を 行ってノイズの周波数帯域を検出する処理と、検出した周波数帯域に基づいてフィ ルタ特性を算出する処理と、算出されたフィルタ特性により変位検出信号をフィルタ 処理する処理と、フィルタ処理後の変位検出信号と試験力とに基づ!、て試料の物性 を評価する処理とをコンピュータで実行させるものである。
[0038] 本発明はさらに、検出信号に重畳される外乱ノイズの周波数特性を測定する測定 装置と、周波数特性を解析してフィルタ定数を決定する演算装置と、検出信号に対し てフィルタ定数で規定されるフィルタ処理を施すフィルタ装置と、フィルタ装置でフィ ルタ処理された検出信号を用いて材料を評価する評価装置とを備える材料試験機と して実現することもできる。さらにまた、本発明の特徴を損なわない限り、本発明は上 記実施の形態に何ら限定されるものではな 、。

Claims

請求の範囲
[1] 試料に押し込まれる圧子と、
圧子を介して試料に負荷を与える負荷装置と、
圧子の変位を測定する変位センサと、
無負荷状態で前記変位センサから得られた変位検出信号に基づ 、て、変位検出 信号中の外乱成分を除去するフィルタ特性を算出する算出装置と、
前記算出装置で算出した前記フィルタ特性を記憶する記憶装置と、
前記記憶装置に記憶された前記フィルタ特性で前記変位検出信号をフィルタ処理 するフィルタ装置とを備える押込型材料試験機。
[2] 請求項 1の押込型材料試験機において、
前記フィルタ特性を算出するために変位検出信号をサンプリングする準備モードと 、材料評価データを算出するために変位検出信号をサンプリングする試験モードの Vヽずれかを選択する選択部材を含み、
前記準備モードが選択されると、前記圧子を無負荷状態の位置に保持したまま前 記変位検出信号をサンプリングする。
[3] 試料に押し込まれる圧子と、
圧子を介して試料に負荷を与える負荷装置と、
圧子の変位を測定する変位センサと、
負荷状態で前記変位センサ力 得られた変位検出信号に基づ 、て、変位検出信 号中の外乱成分を除去するフィルタ特性を算出する算出装置と、
前記算出装置で算出した前記フィルタ特性を記憶する記憶装置と、
前記記憶装置に記憶された前記フィルタ特性で前記変位検出信号をフィルタ処理 するフィルタ装置とを備える押込型材料試験機。
[4] 請求項 3の押込型材料試験機にぉ 、て、
前記算出装置は、前記圧子の押し込み開始初期にサンプリングされた変位検出信 号に基づいて前記フィルタ特性を算出し、
前記フィルタ装置は、その後に出力される前記変位検出信号に対して前記フィルタ 特性でフィルタ処理を行う。
[5] 請求項 1乃至 4のいずれか 1項の押込型材料試験機において、
前記フィルタ装置でフィルタ処理された変位センサの検出信号と、前記負荷装置に よる前記圧子の押圧力とにより、圧子押込深さ 試験力曲線を算出して前記試料の 硬さを演算する演算装置をさらに備える。
[6] 圧子を試料に押圧し、
前記圧子の変位を検出し、
前記圧子により試料に働く試験力を検出し、
前記検出された前記圧子の変位検出信号に対してノイズの周波数帯域を検出し、 前記検出した周波数帯域に基づいてフィルタ特性を算出し、
前記算出されたフィルタ特性により前記変位検出信号をフィルタ処理し、 フィルタ処理後の変位検出信号と前記試験力とに基づいて前記試料の物性を評価 する試験方法。
[7] 請求項 6の試験方法において、
前記ノイズの周波数帯域を検出する際の変位検出信号は圧子が試料に接触して
V、な 、無負荷状態でサンプリングした信号である。
[8] 請求項 6の試験方法において、
前記ノイズの周波数帯域を検出する際の変位検出信号は圧子が試料を押圧して
V、る負荷状態でサンプリングした信号である。
[9] 圧子を試料に押圧する処理と、
前記圧子の変位を検出する処理と、
前記圧子により試料に働く試験力を検出する処理と、
前記検出された前記圧子の変位検出信号に対してノイズの周波数帯域を検出する 処理と、
前記検出した周波数帯域に基づいてフィルタ特性を算出する処理と、
前記算出されたフィルタ特性により前記変位検出信号をフィルタ処理する処理と、 フィルタ処理後の変位検出信号と前記試験力とに基づいて前記試料の物性を評価 する処理とをコンピュータで実行させる試験用プログラム製品。
[10] 検出信号に重畳される外乱ノイズの周波数特性を測定する測定装置と、 前記周波数特性を解析してフィルタ定数を決定する演算装置と、
前記検出信号に対してフィルタ定数で規定されるフィルタ処理を施すフィルタ装置 と、
前記フィルタ装置でフィルタ処理された検出信号を用いて材料を評価する評価装 置とを備える材料試験機。
PCT/JP2006/312294 2006-06-20 2006-06-20 押込型材料試験機、試験方法、および試験用プログラム製品 WO2007148380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/305,280 US8156794B2 (en) 2006-06-20 2006-06-20 Indenting type material testing machine, testing method, and testing program product
JP2008522196A JP4793445B2 (ja) 2006-06-20 2006-06-20 押込型材料試験機、試験方法、および試験用プログラム製品
DE112006003935T DE112006003935B4 (de) 2006-06-20 2006-06-20 Materialprüfmaschine vom Eindringtyp, Prüfverfahren und Prüfprogrammprodukt
PCT/JP2006/312294 WO2007148380A1 (ja) 2006-06-20 2006-06-20 押込型材料試験機、試験方法、および試験用プログラム製品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312294 WO2007148380A1 (ja) 2006-06-20 2006-06-20 押込型材料試験機、試験方法、および試験用プログラム製品

Publications (1)

Publication Number Publication Date
WO2007148380A1 true WO2007148380A1 (ja) 2007-12-27

Family

ID=38833133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312294 WO2007148380A1 (ja) 2006-06-20 2006-06-20 押込型材料試験機、試験方法、および試験用プログラム製品

Country Status (4)

Country Link
US (1) US8156794B2 (ja)
JP (1) JP4793445B2 (ja)
DE (1) DE112006003935B4 (ja)
WO (1) WO2007148380A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093121A (ja) * 2010-10-25 2012-05-17 Mitsutoyo Corp 硬さ試験方法及びプログラム
CN103674744A (zh) * 2013-12-16 2014-03-26 苏州美山子制衣有限公司 内衣棉杯手感测试仪
KR20200038883A (ko) * 2017-08-10 2020-04-14 스미토모덴키고교가부시키가이샤 다결정 다이아몬드로 이루어진 압자, 그것을 이용한 균열 발생 하중의 평가 방법 및 그 평가 장치
JP2020169838A (ja) * 2019-04-01 2020-10-15 株式会社島津製作所 材料試験機、及び材料試験機の制御方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132447B2 (en) * 2009-12-09 2012-03-13 Shaoming Wu Universal testing machine
CN102213661B (zh) * 2010-04-09 2016-05-25 吴绍明 通用测量仪
US9689825B1 (en) 2013-09-09 2017-06-27 Apple Inc. Testing a layer positioned over a capacitive sensing device
US9903781B2 (en) 2014-03-28 2018-02-27 United Technologies Corporation Material testing apparatus and method
US9622357B2 (en) 2014-05-06 2017-04-11 Apple Inc. Method for orienting discrete parts
US9739696B2 (en) * 2015-08-31 2017-08-22 Apple Inc. Flexural testing apparatus for materials and method of testing materials
JP6854183B2 (ja) * 2017-04-28 2021-04-07 株式会社ミツトヨ 硬さ試験機及びプログラム
DE102017124051A1 (de) * 2017-10-16 2019-04-18 Imprintec GmbH Vorrichtung und Verfahren zur automatischen Werkstückprüfung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296225A (ja) * 2000-04-13 2001-10-26 Shimadzu Corp 材料試験機
JP2003337094A (ja) * 2002-05-17 2003-11-28 National Institute Of Advanced Industrial & Technology 微小硬さ試験機
JP2004537051A (ja) * 2001-07-23 2004-12-09 イル リー、ヒョン 物性値評価のための有限要素解を使用する球形圧入試験機
JP2005331256A (ja) * 2004-05-18 2005-12-02 Shimadzu Corp 材料試験機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755482Y2 (ja) 1986-06-16 1995-12-20 日産自動車株式会社 内燃機関のノッキング検出装置
JPH0585019A (ja) 1991-09-26 1993-04-06 Ricoh Co Ltd サーマルヘツド冷却装置
JP3409377B2 (ja) 1993-08-09 2003-05-26 松下電器産業株式会社 ナビゲーション装置
JP3440653B2 (ja) * 1995-09-14 2003-08-25 株式会社島津製作所 微小硬度計
US6594613B1 (en) 1998-12-10 2003-07-15 Rosemount Inc. Adjustable bandwidth filter for process variable transmitter
JP2003279458A (ja) * 2002-03-22 2003-10-02 Japan Atom Energy Res Inst 微小硬度測定法による材料定数評価装置
JP3771195B2 (ja) * 2002-05-17 2006-04-26 株式会社イシダ 重量測定用ノイズ除去装置および重量測定用ノイズ除去方法
US7093492B2 (en) * 2004-03-19 2006-08-22 Mechworks Systems Inc. Configurable vibration sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296225A (ja) * 2000-04-13 2001-10-26 Shimadzu Corp 材料試験機
JP2004537051A (ja) * 2001-07-23 2004-12-09 イル リー、ヒョン 物性値評価のための有限要素解を使用する球形圧入試験機
JP2003337094A (ja) * 2002-05-17 2003-11-28 National Institute Of Advanced Industrial & Technology 微小硬さ試験機
JP2005331256A (ja) * 2004-05-18 2005-12-02 Shimadzu Corp 材料試験機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093121A (ja) * 2010-10-25 2012-05-17 Mitsutoyo Corp 硬さ試験方法及びプログラム
CN103674744A (zh) * 2013-12-16 2014-03-26 苏州美山子制衣有限公司 内衣棉杯手感测试仪
CN103674744B (zh) * 2013-12-16 2016-03-30 苏州美山子制衣有限公司 内衣棉杯手感测试仪
KR20200038883A (ko) * 2017-08-10 2020-04-14 스미토모덴키고교가부시키가이샤 다결정 다이아몬드로 이루어진 압자, 그것을 이용한 균열 발생 하중의 평가 방법 및 그 평가 장치
KR102478351B1 (ko) * 2017-08-10 2022-12-16 스미토모덴키고교가부시키가이샤 다결정 다이아몬드로 이루어진 압자, 그것을 이용한 균열 발생 하중의 평가 방법 및 그 평가 장치
JP2020169838A (ja) * 2019-04-01 2020-10-15 株式会社島津製作所 材料試験機、及び材料試験機の制御方法
JP7180507B2 (ja) 2019-04-01 2022-11-30 株式会社島津製作所 材料試験機、及び材料試験機の制御方法

Also Published As

Publication number Publication date
US8156794B2 (en) 2012-04-17
JPWO2007148380A1 (ja) 2009-11-12
DE112006003935B4 (de) 2012-12-20
DE112006003935T5 (de) 2009-07-09
JP4793445B2 (ja) 2011-10-12
US20100229637A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4793445B2 (ja) 押込型材料試験機、試験方法、および試験用プログラム製品
EP3392727A1 (en) Control device, monitoring system, control program, and recording medium
US9366609B2 (en) Hardness tester and method for hardness test
JP5501192B2 (ja) 硬さ試験方法及びプログラム
US11320354B2 (en) Material tester and natural vibration determination-noise elimination thereof
JP2010048680A (ja) 振動試験方法および装置
US20190234793A1 (en) Test result evaluating method and material tester
JP2014157038A (ja) 被測定物の疲労き裂の自動計測装置およびプログラム
US10495557B2 (en) Hardness tester and hardness testing method
JP2019132767A (ja) 材料試験機
JP2006078410A (ja) 計量器
JP2023024553A (ja) 検査装置及び検査プログラム
WO2021020128A1 (ja) Tmt検査結果表示のためのシステム、コンピュータプログラムおよび方法
KR20030020535A (ko) 유공압 솔레노이드밸브 성능진단 장치 및 그 방법
JP4033118B2 (ja) ばね性ある供試体の試験方法
JP2022068766A (ja) 診断装置及び診断方法、並びにフィールド機器
JPH09236530A (ja) 超微小硬度測定装置
JP2004340657A (ja) 圧痕形成機構及び硬さ試験機
JP2021025808A (ja) 検査装置の評価システムおよび検査装置の評価方法
JP2011185625A (ja) 検査装置
JP2019211407A (ja) 移動装置、基板検査装置および制御方法
JP2007327828A (ja) 計測装置、材料試験機
CN115077888B (zh) 支柱结构性能自动化测试方法及系统
CN104634375B (zh) 岩土工程仪器力学性能全自动检测方法
Beyeler et al. Wafer-level inspection system for the automated testing of comb drive based MEMS sensors and actuators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06766955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008522196

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12305280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060039350

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006003935

Country of ref document: DE

Date of ref document: 20090709

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06766955

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607