WO2007138935A1 - 電源装置およびその制御方法 - Google Patents

電源装置およびその制御方法 Download PDF

Info

Publication number
WO2007138935A1
WO2007138935A1 PCT/JP2007/060458 JP2007060458W WO2007138935A1 WO 2007138935 A1 WO2007138935 A1 WO 2007138935A1 JP 2007060458 W JP2007060458 W JP 2007060458W WO 2007138935 A1 WO2007138935 A1 WO 2007138935A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
zero current
stagnation state
state
Prior art date
Application number
PCT/JP2007/060458
Other languages
English (en)
French (fr)
Inventor
Masaki Okamura
Kiyotaka Matsubara
Shungo Tamura
Hiroki Ohtani
Hideo Nakai
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2007800196087A priority Critical patent/CN101454964B/zh
Priority to US12/227,638 priority patent/US8169199B2/en
Priority to AU2007268800A priority patent/AU2007268800C1/en
Priority to EP07743892.7A priority patent/EP2023471A4/en
Publication of WO2007138935A1 publication Critical patent/WO2007138935A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device and a control method thereof, and more particularly, to a power supply device that exchanges electric power with an electric device and a control method thereof.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-51895
  • One of the objects of the power supply apparatus and the control method thereof according to the present invention is to prevent the output voltage from unexpectedly becoming higher than the voltage command.
  • the power supply device and the control method thereof according to the present invention are intended to suppress damage to a smoothing electronic device such as a smoothing capacitor.
  • a smoothing electronic device such as a smoothing capacitor.
  • an object of the power supply apparatus and the control method thereof according to the present invention is to suppress an excessive output of an electric device that exchanges power with the power supply apparatus.
  • the power supply apparatus and the control method thereof according to the present invention employ the following means in order to achieve at least a part of the above-described object.
  • a power supply apparatus is a power supply apparatus that exchanges electric power with an electric device, and includes a DC power supply, and a first switching element connected in series with the electric device as viewed from the DC power supply module.
  • a second switching element connected in series to the first switching element and connected in parallel to the electrical device as viewed from the DC power source, and the first switching element and the second switching element.
  • a rear tuttle connected to the intermediate point and the output terminal of the DC power supply is provided, and the voltage of the DC power supply is boosted and supplied to the electrical equipment by adjusting the ON time of both switching elements at a predetermined cycle.
  • a possible boost converter a voltage smoothing means for smoothing a voltage applied to the electrical equipment connected in parallel to the electrical equipment as seen from the boost converter, and a flow to the rear tuttle.
  • a zero-current stagnation state detecting means for detecting a periodic zero-current stagnation state in which a zero-current stagnation state in which the current stagnation current is stagnant at a value of 0 is generated in the predetermined period, and a voltage acting on the electric device
  • the gist of the present invention is to provide a control means for controlling the boost converter based on a voltage command which is a target value and a periodic zero current stagnation state detected by the zero current stagnation state detection means.
  • a zero current stagnation state in which the reactor current, which is the current flowing in the rear tutor of the boost converter, stagnate at a value of 0 occurs in a predetermined cycle of turning on and off the switching element.
  • the voltage booster is controlled based on the voltage command, which is the target value of the voltage acting on the electrical equipment, and the detected periodic zero current stagnation state.
  • the electrical device may be any device as long as it can exchange power with the power supply device.
  • the voltage smoothing means can use, for example, a smoothing capacitor.
  • the zero current stagnation state detection means is a power supply voltage detection means for detecting a power supply voltage that is a voltage of the direct current power supply and a voltage between terminals of the second switching element.
  • Second switch voltage detecting means for detecting a certain second switch voltage, and when the difference between the detected power supply voltage and the detected second switch voltage is equal to or lower than a predetermined voltage, the zero current stagnation is detected. It may be a means for detecting the periodic zero current stagnation state as a state.
  • the zero current stagnation state detecting means includes a smoothing terminal voltage detecting means for detecting a smoothing terminal voltage which is a voltage between terminals of the voltage smoothing means and a second terminal which is a voltage between terminals of the second switching element.
  • Second switch voltage detecting means for detecting a switch voltage, and a difference between the detected smoothing terminal voltage and the detected second switch voltage in the predetermined period becomes equal to or greater than the first predetermined voltage.
  • it may be a means for detecting the periodic zero current stagnation state when the detected second switch voltage is equal to or higher than a second predetermined voltage as the zero current stagnation state.
  • the zero current stagnation state detection means has a reactor current detection means for detecting the rear tuttle current, and the zero current stagnation state is defined as the zero current stagnation state when the detected rear tutor current becomes a value 0 in the predetermined period. It may be a means for detecting the periodic zero current stagnation state. In these cases, the zero current stagnation state detecting means may be means for detecting the periodic zero current stagnation state when the zero current stagnation state occurs a plurality of times. In this way, it is possible to more reliably detect a periodic neck current stagnation state and to suppress erroneous detection.
  • the control unit controls the boost converter based on the voltage command when the zero current stagnation state detection unit does not detect a periodic zero current stagnation state.
  • the step-up converter may be a means for controlling the boost converter based on a corrected voltage command that is corrected to lower the voltage command. it can. In this way, it is possible to prevent the boost side output voltage from becoming higher than the voltage command when a periodic zero current stagnation state is detected.
  • the control means is means for determining the direction of polarity change of the reactor current and controlling the boost converter based on the determined direction of polarity change. It can also be. Further, in this case, the control means may be means for determining a direction of polarity change based on an operating state of the first switching element and the second switching element, and further, the control means Is a state in which the zero current is stagnated during a dead time in which both the first switching element and the second switching element are turned off immediately after the first switching element is changed from an on state to an off state.
  • the zero current stagnation state detecting means detects a periodic zero current stagnation state, it is determined that the polarity of the rear tutor current has changed from a current that discharges the DC power source to a current that is charged.
  • the zero current stagnation state occurs during the dead time immediately after the second switching element is changed to the on state force off state.
  • the rear tutor current may be a means for determining that the polarity has changed to a current force for charging the DC power source. it can.
  • the control means controls the boost converter based on the corrected voltage command when it is determined that the polarity of the rear tuttle current has changed to a current force that discharges the DC power supply, and the rear tuttle current.
  • the boost converter is controlled based on the voltage command even though the periodic zero current stagnation state is detected. It can also be a means. In this way, it is possible to suppress the output power on the boosting side from being excessively reduced when the polarity of the rear tuttle current changes to the current that discharges the DC power source.
  • the control means is configured so that both the first switching element and the second switching element immediately after changing the first switching element to the on state force off state are in the off state.
  • the zero current stagnation state detection means detects the periodic zero current stagnation state. Based on the voltage command after correction, control the boost converter in the specified zero current stagnation state. If not, the step-up converter can be controlled based on the voltage command. In this way, it is possible to suppress the output voltage on the boosting side from becoming higher than the voltage command in the specific zero current stagnation state.
  • a method for controlling a power supply device of the present invention includes:
  • a DC power supply a first switching element connected in series with an electric device that exchanges electric power as viewed from the DC power supply, and the DC power supply power connected in series to the first switching element
  • a second switching element connected in parallel with the electrical device, and a rear tuttle connected between an intermediate point of the first switching element and the second switching element and an output terminal of the DC power source.
  • a boost converter capable of boosting the voltage of the DC power supply by adjusting the on-time of both switching elements at a predetermined period and supplying the boosted voltage to the electrical device; and a parallel connection to the electrical device as viewed from the boost converter.
  • a voltage smoothing means for smoothing a voltage acting on the electrical device comprising: (a) a reactor that is a current flowing through the rear tuttle.
  • the boost converter is controlled based on a voltage command that is a target value of a voltage acting on the electrical equipment, and when it is determined that the current is in a periodic zero current stagnation state, the voltage command is lowered.
  • the gist is to control the boost converter based on the above.
  • the zero current stagnation state in which the rear tuttle current that is the current flowing in the rear tuttle of the boost converter stagnate at a value of 0 occurs in a predetermined cycle of turning on and off the switching element. It is determined whether or not it is in a current stagnation state, and when it is determined that it is not in a periodic zero current stagnation state, the boost converter is controlled based on a voltage command that is a target value of a voltage applied to an electric device that exchanges power. However, when it is determined that the current is in the stagnation state of the periodic outlet current, the boost converter is controlled based on the corrected voltage command that is corrected to lower the voltage command.
  • the electrical device may be any device as long as it can exchange power with the power supply device.
  • the voltage smoothing means may be a smoothing capacitor, for example.
  • the step (b) includes the first switching element and the second switching element immediately after changing the first switching element to an on-state force-off state.
  • the boosting is performed based on the corrected voltage command.
  • the converter is controlled, and it is determined that the periodic zero current stagnation state is caused by the occurrence of the zero current stagnation state during the dead time immediately after the second switching element is changed to the on state force off state.
  • the step-up converter may be a step of controlling the boost converter based on the voltage command in spite of the periodic zero current stagnation state.
  • the output power on the boost side is reduced when the second switching element is in the periodical zero current stagnation state due to the occurrence of the current stagnation state during the dead time immediately after changing the on-state force to the off-state. It can suppress that it falls excessively.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a power supply device 20 as one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a voltage command adjustment routine executed by the electronic control unit 50.
  • FIG. 3 is a flowchart showing an example of a periodic zero current stagnation flag setting process executed by the electronic control unit 50.
  • FIG. 4 Ideal and schematic rear tuttle current when the value of the discharge from the battery 22 is positive and the rear tutor current IL flowing through the coil 32 becomes a negative value across the positive value 0. It is explanatory drawing which shows the time change of IL.
  • FIG. 5 An explanatory diagram exemplifying how the upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo change in state 1 when the rear tutor current IL does not take a negative value during pulsation. is there.
  • FIG. 6 An explanatory diagram exemplifying how the upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo change in state 2 where the rear tuttle current IL is slightly negative during pulsation. It is.
  • FIG. 7 An explanatory diagram exemplifying changes in the upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo in a state 3 in which the rear tutor current IL becomes a negative value further during pulsation. is there.
  • FIG. 8 Changes in upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo in state 4 where the rear turtle current IL has the same positive and negative pulsation values. It is explanatory drawing shown.
  • FIG. 9 An explanatory diagram exemplifying how the upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo change when the positive value of the rear tutor current IL decreases during pulsation 5. is there.
  • FIG. 10 is an explanatory diagram illustrating the change in the upper arm, lower arm, dead time, rear tuttle current IL, and lower arm voltage Vo in a state 6 in which the rear tuttle current IL is slightly positive during pulsation.
  • FIG. 11 Explanatory diagram exemplifying how the upper arm, lower arm, dead time, rear tutor current IL, and lower arm voltage Vo change in state 7 when the rear tuttle current IL does not take a positive value during pulsation It is.
  • FIG. 12 is a flowchart illustrating a periodic zero current stagnation flag setting process according to a modification.
  • FIG. 13 is a configuration diagram showing an outline of a configuration of a power supply device 20B according to a modification.
  • FIG. 14 is a flowchart showing an example of a periodic zero current stagnation flag setting process in the power supply device 20B according to a modified example.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a power supply device 20 as an embodiment of the present invention.
  • the power supply device 20 of the embodiment is connected to two motors MG1 and MG2 as electric devices via inverters 11 and 12, and includes a battery 22 as a DC power source and a battery 22
  • the boost converter 30 that boosts the voltage of the motor and supplies it to the two motors MG1 and MG2 and the voltage of the motor MG1 and MG2 and reduces the voltage supplied to the battery 22 and the boost side of the boost comparator 30 (
  • a smoothing capacitor 42 that is arranged on the two motors MG1 and MG2 side and smoothes the voltage on the boost side, and an electronic control unit 50 that controls the entire apparatus.
  • the battery 22 is configured as a chargeable / dischargeable secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • Boost converter 30 includes two gate-type switching elements (for example, MOSFET) Trl, Tr2 arranged in series so as to be parallel to smoothing capacitor 42 on the positive and negative buses of inverters 11 and 12, Two diodes Dl, D2 mounted to hold a voltage in parallel with the switching elements Trl, Tr2, a coil 32 mounted between the two switching elements Trl, Tr2 and the positive side of the battery 22,
  • the switching element Trl may be referred to as “upper arm”
  • the switching element Tr2 may be referred to as “lower arm”.
  • the electronic control unit 50 is configured as a microprocessor centered on the CPU 52. In addition to the CPU 52, a ROM 54 that stores a processing program, a RAM 56 that temporarily stores data, an input / output port (not shown), and And a communication port.
  • the electronic control unit 50 has a battery voltage Vb from the voltage sensor 24 attached between the output terminals of the battery 22 and a lower voltage Vo, from the voltage sensor 34 attached between the terminals of the switching element Tr2.
  • the capacitor voltage Vh from the voltage sensor 44 attached between the terminals of the smoothing capacitor 42 is input via the input port.
  • the electronic control unit 50 and others output switching signals to the switching elements Trl and Tr2 of the boost capacitor 30 from the output port.
  • the electronic control unit 50 not only functions as a control unit for the power supply device 20, but also functions as a drive control unit for the two motors MG1 and MG2. Therefore, in the electronic control unit 50, the rotational position of the rotor from the rotational position sensors 13 and 14 attached to the motors MG1 and MG2 and the motor MG1 and MG2 from the current sensor (not shown) attached to the inverters 11 and 12 are connected. The applied phase current is input via the input port, and the electronic control unit 50 switches to the inverters 11 and 12. A pinching signal is output via the output port.
  • the two motors MG1, MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and include inverters 11, 12 and boost converter 30. And exchanges power with the battery 22 via
  • the operation of the power supply unit 20 basically operates the boost converter 30 so that the capacitor voltage Vh becomes the voltage command Vh * in order to smoothly exchange power between the battery 22 and the two motors MG1, MG2. This is done by switching control of the switching elements Trl, Tr2.
  • the voltage command Vh * is corrected by executing the voltage command adjustment routine illustrated in FIG. 2 with respect to the voltage command Vh *. That is, in the voltage command adjustment routine, the voltage command Vh * set by the voltage command setting routine (not shown) and the periodic zero current stagnation flag FO based on the driving state of the two motors MG1 and MG2 and the torque command are used.
  • step S100 check the periodic zero current stagnation flag FO (step S1 10), and when the periodic zero current stagnation flag FO is 0, the voltage command Vh * is terminated without modification, and the periodic zero current
  • the stagnation flag FO is 1
  • the value obtained by subtracting the predetermined voltage ⁇ V from the set voltage command Vh * is corrected as the corrected voltage command Vh * (step S120), and the process ends.
  • the periodic zero-current stagnation flag FO is the current that flows through the coil 32 during the dead time when both the switching elements Trl and Tr2 are turned off immediately after the switching element Trl (upper arm) is turned off.
  • the periodic zero current stagnation flag FO is set by the periodic zero current stagnation flag setting process illustrated in FIG.
  • the CPU 52 of the electronic control unit 50 first inputs the battery voltage Vb from the voltage sensor 24 and the lower arm voltage Vo from the voltage sensor 34 ( In step S200), the value of the periodic zero current stagnation flag F0 is examined (step S210).
  • the threshold value Vref is set to a value that is small enough to allow a detection error caused by the sensor.
  • Step S230 if it is determined that the battery voltage Vb and the lower arm voltage Vo coincide with each other, the coincidence of the battery voltage Vb and the lower arm voltage Vo occurs in the dead time when the upper arm is turned on / off.
  • Step S230 if the coincidence between the battery voltage Vb and the lower arm voltage Vo does not occur in the dead time when the upper arm is turned off, the periodic zero current stagnation flag F0 is set to a value of 1. This process ends without setting. If the match between the battery voltage Vb and the lower arm voltage Vo occurs in the dead time when the upper arm is turned on, the counter C is incremented by 1 (step S240), and the value of the counter C is compared with the threshold Cref. (Step 250).
  • the threshold value Cref is used to make sure that the battery voltage Vb and the lower arm voltage Vo coincide with each other and that this occurs in the dead time when the upper arm is turned off. This is the threshold used, and the values 2, 3, 4 etc. can be used.
  • the periodic zero current stagnation flag F0 is set to 1 (step S260), the process is terminated, and when counter C is less than the threshold value Cref, the periodic zero current stagnation flag F0 is set. This process ends without setting the value 0. The reason why it can be determined whether or not the battery voltage Vb and the lower arm voltage Vo coincide with each other over a plurality of times to determine whether or not the battery is in a periodic zero current stagnation state will be described later.
  • step S210 When it is determined in step S210 that the value 1 is set in the periodic zero current stagnation flag F0, it is determined whether the value 1 is set in the periodic zero current stagnation flag F0 and the force has elapsed for a predetermined time. (Step S270) When the predetermined time has elapsed, the counter C is reset to the value 0 (Step S280), and the periodic zero current stagnation flag F0 is set to the value 0 (Step S290), and the process is terminated. .
  • FIG. 4 shows an ideal and schematic view when the rear tuttle current IL flowing through the coil 32 becomes a negative value across the positive value force value 0 when the discharge from the notch 22 is positive. It is explanatory drawing which shows the time change of the rear reactor current IL. The pulsation of the rear tutor current IL in the figure is This depends on the switching period (carrier frequency) of the switching elements Trl and Tr2.
  • the lower arm voltage Vo has a capacitor voltage Vh and a value 0 according to the switching of the upper arm (switching element Tr 1) and the lower arm (switching element Tr 2). repeat.
  • the rear tuttle current IL is a dead time when the upper arm (switching element Tr 1) is turned off, and should be a negative value. Since the switching elements Trl and Tr2 are both off, a negative current cannot flow and a stagnation at a value of 0 (zero current stagnation state) occurs. This zero current stagnation condition occurs periodically at the carrier frequency. In the zero current stagnation state, the lower arm voltage Vo is equal to the battery voltage Vb because the reactor current IL is zero. This is why the periodic zero current stagnation state can be determined by matching the battery voltage Vb and the lower arm voltage Vo multiple times in the periodic mouth current stagnation flag setting process of Fig. 3. by.
  • the lower arm voltage Vo will be zero when the rear tutor current IL becomes negative.There is a dead time, so it becomes the battery voltage Vb in the zero current stagnation state.
  • the voltage will exceed the voltage command Vh *.
  • the voltage command Vh * is set in order to prevent the smoothing capacitor 42 from being damaged due to excessive voltage and to prevent the output torque from the motors MG1 and MG2 from becoming unexpectedly large.
  • the voltage is corrected downward by ⁇ .
  • the predetermined voltage ⁇ can be determined by experiments or the like according to the carrier frequency, battery voltage Vb, voltage command Vh *, and the like.
  • the rear tuttle current IL is the upper arm (switching element Tr The dead time when 1) is turned off, which should normally be a positive value, but the switching elements Trl and Tr2 are both off, so a positive current cannot flow.
  • a stagnation phenomenon with a value of 0 zero current stagnation state
  • the lower arm voltage Vo is equal to the battery voltage Vb when the original value is 0 because the rear tuttle current IL is 0, and the smoothing capacitor 42 side receives the voltage command Vh *. The voltage will exceed.
  • the voltage command Vh * is corrected downward by the predetermined voltage ⁇ , such an excessive voltage on the smoothing capacitor 42 side can be suppressed.
  • the counter C is reset to the value 0 when the periodic zero current stagnation flag F0 is set to the value 1 and the force for a predetermined time has elapsed.
  • the predetermined time at this time may be set as a time required to pass through the state 2 and the state 3. Note that when the periodic zero current stagnation flag F0 is set to the value 1 and the force has also passed for a predetermined time, the counter C is reset to the value 0 when the state 3 is passed instead of resetting the counter C to the value 0. It is good also as what to do.
  • the dead time when the lower arm (switching element Tr2) is turned off from the on state should be a positive value, but the switching elements Trl, Tr2 Since both are turned off, a positive current cannot flow and a stagnation with a value of 0 (zero current stagnation) occurs.
  • the lower arm voltage Vo is equal to the battery voltage Vb when the capacitor voltage Vh is originally reached because the rear tuttle current IL is 0, and the smoothing capacitor 42 side has the voltage command Vh * The voltage will be lower than.
  • the smoothing capacitor 42 is not damaged, and therefore the upward correction of the voltage command Vh * is not performed.
  • the lower arm voltage Vo repeats the capacitor voltage Vh and the value 0 according to the switching of the upper arm (switching element T rl) and the lower arm (switching element Tr2). .
  • the number of times that the battery voltage Vb and the lower arm voltage Vo coincide with the state 2 indicates that the counter C has the threshold value Cref.
  • set value 1 to periodic zero current stagnation flag F0 reach state 2 and set value 1 to periodic zero current stagnation flag F0 to pass force state 2 and state 3
  • the periodic zero current stagnation flag F0 is reset to the value 0 when the preset time has elapsed.
  • the voltage command adjustment routine illustrated in Fig. 2 when the periodic zero current stagnation flag F0 is 1, the voltage command adjustment routine is used to suppress damage due to excessive voltage of the smoothing capacitor 42 and excessive output of the motors MG1 and MG2.
  • Vh * is corrected downward by a predetermined voltage ⁇ V.
  • the voltage on the smoothing capacitor 42 side unexpectedly becomes a voltage in the period of periodic zero current stagnation It is possible to suppress the voltage from becoming higher than the command Vh *, and it is possible to suppress the smoothing capacitor 42 from being damaged by an excessive voltage or from outputting an excessive torque from the motors MG1 and MG2. Moreover, since the periodic zero current stagnation state is determined only by the zero current stagnation state at the dead time immediately after the switching element Trl (upper arm) is turned off, the voltage command Vh * is only required. Can be revised downward.
  • the periodic zero current stagnation state is determined when it is determined that the battery voltage Vb and the lower arm voltage Vo are matched over a plurality of times. Therefore, the periodic zero current stagnation state may be determined when it is determined that the capacitor voltage Vh and the lower arm voltage Vo do not coincide with each other and the lower arm voltage Vo is not 0. In this case, the periodic zero current stagnation flag setting process of FIG. 12 may be executed instead of the periodic zero current stagnation flag setting process of FIG.
  • the capacitor voltage Vh and the lower arm voltage Vo do not match by determining whether or not the absolute value of the difference between the capacitor voltage Vh and the lower arm voltage Vo is greater than the positive threshold Vrefl! ⁇ (Step S222), it can be determined that the lower arm voltage Vo is not 0 by determining whether the lower arm voltage Vo is larger than the positive threshold value Vref 2 (Step S224).
  • the periodic zero current stagnation state is determined when it is determined that the battery voltage Vb and the lower arm voltage Vo match each other a plurality of times. Therefore, the periodic zero current stagnation state may be determined when it is determined that the current flowing through the coil 32 (rear tutor current) becomes zero.
  • the current sensor 26 is attached in series to the coil 32 and the sensor value is input to an input port (not shown) of the electronic control unit 50.
  • the periodic zero current stagnation flag setting process illustrated in FIG. 14 may be executed.
  • the rear tutor current IL from the current sensor 26 is input (step S200B), and the difference between the battery voltage Vb and the lower arm voltage Vo is calculated. Instead of comparing with the threshold value Vref, it is determined whether or not the rear tutor current IL is 0 (step S220B). This is because the zero current stagnation state is a state where the rear tuttle current IL stagnates with a value of 0, and can be determined directly using the rear tuttle current IL.
  • the periodic zero current stagnation state is determined only by the zero current stagnation state at the dead time immediately after the switching element Trl (upper arm) is turned off from on, and the voltage command is issued. Force that causes Vh * to be corrected downward Immediately after switching element Tr2 (lower arm) is turned on only when the switching element Trl (upper arm) is turned on only at the dead time immediately after turning off The voltage command Vh * may be corrected downward by determining the periodic zero current stagnation state based on the zero current stagnation state at the dead time of the current time.
  • the voltage command Vh * is unnecessarily corrected in the periodic zero current stagnation state in the zero current stagnation state at the dead time immediately after the switching element Tr2 (lower arm) is turned off.
  • the output torque of motors MG1 and MG2 is slightly reduced, but this is not a big problem because the degree is low and this phenomenon is short.
  • the periodic zero current stagnation state is determined only by the zero current stagnation state at the dead time immediately after the switching element Trl (upper arm) is turned off from on, and the voltage command is issued. Force that Vh * is to be corrected downward Switching element Tr2 (lower arm) is turned on. Periodic zero current stagnation state is judged based on the zero current stagnation state at the dead time immediately after turning off, and voltage command Vh * is It may be corrected upward. This suppresses a slight decrease in the output torque of the motors MG1 and MG2 in the periodic zero current stagnation state due to the zero current stagnation state at the dead time immediately after the switching element Tr2 (lower arm) is turned off. be able to.
  • the connection destination is not limited to motors and generators, but any device that consumes power or any device that generates or regenerates power can be used.
  • the zero current stagnation state at the dead time immediately after the switching element Trl (upper arm) is turned off by software is determined and the periodic zero current stagnation state is determined.
  • the voltage command Vh * was revised downward, but the dead time immediately after the switching element Trl (upper arm) was turned off by hardware It is also possible to determine the zero current stagnation state at the same time and determine the periodic zero current stagnation state to correct the voltage command Vh * downward! /.
  • the present invention can be used in the power supply device manufacturing industry and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

スイッチング素子Tr1(上アーム)をオンからオフした直後にスイッチング素子Tr1,Tr2を共にオフとするデッドタイム中にコイル32に流れる電流(リアクトル電流)が値0で停滞する現象がスイッチング素子Tr1,Tr2のスイッチング周期で生じたときに周期的ゼロ電流停滞状態に至ったと判定して平滑コンデンサ42側の電圧指令を所定電圧だけ下方修正する。これにより、周期的ゼロ電流停滞状態のときに予期せずに平滑コンデンサ42側の電圧が電圧指令より高くなるのを抑制することができ、平滑コンデンサ42が過剰電圧によって破損したりモータMG1,MG2から過剰なトルクが出力されるのを抑制することができる。

Description

明 細 書
電源装置およびその制御方法
技術分野
[0001] 本発明は、電源装置およびその制御方法に関し、詳しくは、電気機器と電力のやり とりを行なう電源装置およびその制御方法に関する。
背景技術
[0002] 従来、この種の電源装置としては、二つのトランジスタとリアタトルからなるコンパ一 タにより直流電源からの電力を昇圧して電気機器に供給する際に、電気機器に供給 する電圧指令が直流電源の電圧に近いときには、コンバータの二つのトランジスタの うちの上アームのオンデューティーを 1. 0にするものが提案されている(例えば、特許 文献 1参照)。この装置では、電気機器に供給する電圧指令が直流電源の電圧に近 いときに上アームのオンデューティーを 1. 0とすることにより、二つのトランジスタが同 時にオンとなることを防止するためのデッドタイムを確保する必要力 上アームのオン デューティーを確保することができないことにより生じる出力電圧の振動を抑制してい る。
特許文献 1:特開 2005— 51895号公報
発明の開示
[0003] 上述の電源装置のように直流電源の電圧をコンバータにより昇圧して電気機器など に供給する装置では、直流電源からの電流の向きが変化するときに、僅かな時間で はあるが、昇圧側の出力電圧が電圧指令に比して高くなつたり低くなつたりする場合 力 S生じる。出力電圧が電圧指令より低くなる場合には、若干の電気機器の出力不足 を生じる程度なので問題は少ないが、出力電圧が電圧指令より高くなる場合には、昇 圧側の平滑コンデンサを破損させる恐れが生じると共に電気機器の出力過多を招い てしまう。
[0004] 本発明の電源装置およびその制御方法は、出力電圧が予期せずに電圧指令より 高くなるのを抑制することを目的の一つとする。また、本発明の電源装置およびその 制御方法は、平滑コンデンサなどの平滑用電子機器の破損を抑制することを目的の 一つとする。さらに、本発明の電源装置およびその制御方法は、電源装置と電力の やりとりを行なう電気機器の出力過多を抑制することを目的の一つとする。
[0005] 本発明の電源装置およびその制御方法は、上述の目的の少なくとも一部を達成す るために以下の手段を採った。
[0006] 本発明の電源装置は、電気機器と電力のやりとりを行なう電源装置であって、直流 電源と、前記直流電源カゝらみて前記電気機器と直列接続された第 1のスイッチング素 子と、前記第 1のスイッチング素子に直列に接続されると共に前記直流電源からみて 前記電気機器と並列接続された第 2のスイッチング素子と、前記第 1のスイッチング素 子と前記第 2のスイッチング素子との中間点と前記直流電源の出力端子との接続さ れたリアタトルとを有し、所定の周期で両スイッチング素子のオン時間を調整すること により前記直流電源の電圧を昇圧して前記電気機器に供給可能な昇圧コンバータと 、前記昇圧コンバータカゝらみて前記電気機器に並列接続されて前記電気機器に作 用する電圧を平滑する電圧平滑手段と、前記リアタトルに流れる電流であるリアタトル 電流が値 0で停滞するゼロ電流停滞状態が前記所定の周期で生じる周期的ゼロ電 流停滞状態を検出するゼロ電流停滞状態検出手段と、前記電気機器に作用する電 圧の目標値である電圧指令と前記ゼロ電流停滞状態検出手段により検出される周期 的ゼロ電流停滞状態とに基づいて前記昇圧コンバータを制御する制御手段と、を備 えることを要旨とする。
[0007] この本発明の電源装置では、昇圧コンバータのリアタトルに流れる電流であるリアク トル電流が値 0で停滞するゼロ電流停滞状態がスイッチング素子をオンオフする所定 の周期で生じる周期的ゼロ電流停滞状態を検出し、電気機器に作用する電圧の目 標値である電圧指令と検出した周期的ゼロ電流停滞状態とに基づいて昇圧コンパ一 タを制御する。これにより、周期的ゼロ電流停滞状態に対処することができ、周期的 ゼロ電流停滞状態により昇圧側の出力電圧が電圧指令より高くなるのを抑制すること ができる。この結果、出力電圧が電圧指令より高くなることによって生じ得る電圧平滑 手段の破損を抑制することができると共に電気機器の出力過多を抑制することができ る。ここで、電気機器は、電源装置と電力のやりとりが可能であれば如何なる機器で あってもよい。また、電圧平滑手段は、例えば平滑コンデンサなどを用いることができ る。
[0008] こうした本発明の電源装置において、前記ゼロ電流停滞状態検出手段は、前記直 流電源の電圧である電源電圧を検出する電源電圧検出手段と前記第 2のスィッチン グ素子の端子間電圧である第 2スィッチ電圧を検出する第 2スィッチ電圧検出手段と を有し、前記検出された電源電圧と前記検出された第 2スィッチ電圧との差が所定電 圧以下となるときを前記ゼロ電流停滞状態として前記周期的ゼロ電流停滞状態を検 出する手段であるものとすることもできる。また、前記ゼロ電流停滞状態検出手段は、 前記電圧平滑手段の端子間電圧である平滑端子間電圧を検出する平滑端子間電 圧検出手段と前記第 2のスイッチング素子の端子間電圧である第 2スィッチ電圧を検 出する第 2スィッチ電圧検出手段とを有し、前記所定の周期で前記検出された平滑 端子間電圧と前記検出された第 2スィッチ電圧との差が第 1の所定電圧以上となり且 つ前記検出された第 2スィッチ電圧が第 2の所定電圧以上となるときを前記ゼロ電流 停滞状態として前記周期的ゼロ電流停滞状態を検出する手段であるものとすることも できる。さらに、前記ゼロ電流停滞状態検出手段は、前記リアタトル電流を検出するリ ァクトル電流検出手段を有し、前記所定の周期で前記検出されたリアタトル電流が値 0となるときを前記ゼロ電流停滞状態として前記周期的ゼロ電流停滞状態を検出する 手段であるものとすることもできる。これらの場合、前記ゼロ電流停滞状態検出手段 は、前記ゼロ電流停滞状態が複数回に亘つて生じたときに前記周期的ゼロ電流停滞 状態を検出する手段であるものとすることもできる。こうすれば、より確実に周期的ゼ 口電流停滞状態を検出することができ、誤検出を抑制することができる。
[0009] また、本発明の電源装置において、前記制御手段は、前記ゼロ電流停滞状態検出 手段により周期的ゼロ電流停滞状態が検出されていないときには前記電圧指令に基 づいて前記昇圧コンバータを制御し、前記ゼロ電流停滞状態検出手段により周期的 ゼロ電流停滞状態が検出されたときには前記電圧指令を低くする補正をした補正後 電圧指令に基づいて前記昇圧コンバータを制御する手段であるものとすることもでき る。こうすれば、周期的ゼロ電流停滞状態が検出されたときに昇圧側の出力電圧が 電圧指令より高くなるのを抑制することができる。
[0010] この周期的ゼロ電流停滞状態が検出されたときには補正後電圧指令に基づいて昇 圧コンバータを制御する態様の本発明の電源装置において、前記制御手段は、前 記リアクトル電流の極性変化の方向を判定すると共に該判定した極性変化の方向に 基づいて前記昇圧コンバータを制御する手段であるものとすることもできる。更にこの 場合、前記制御手段は、前記第 1のスイッチング素子と前記第 2のスイッチング素子 の作動状態に基づいて極性変化の方向を判定する手段であるものとすることもでき、 更に、前記制御手段は、前記第 1のスイッチング素子をオン状態からオフ状態に変化 させた直後の該第 1のスイッチング素子と前記第 2のスイッチング素子とが共にオフ状 態となるデッドタイム中に前記ゼロ電流停滞状態が生じたことにより前記ゼロ電流停 滞状態検出手段により周期的ゼロ電流停滞状態が検出されたときには前記リアタトル 電流が前記直流電源を放電する電流から充電する電流に極性変化したと判定し、前 記第 2のスイッチング素子をオン状態力 オフ状態に変化させた直後のデッドタイム 中に前記ゼロ電流停滞状態が生じたことにより前記ゼロ電流停滞状態検出手段によ り周期的ゼロ電流停滞状態が検出されたときには前記リアタトル電流が前記直流電 源を充電する電流力 放電する電流に極性変化したと判定する手段であるものとす ることもできる。これらの場合、前記制御手段は、前記リアタトル電流が前記直流電源 を放電する電流力 充電する電流に極性変化したと判定したときには前記補正後電 圧指令に基づいて前記昇圧コンバータを制御し、前記リアタトル電流が前記直流電 源を充電する電流力 放電する電流に極性変化したと判定したときには前記周期的 ゼロ電流停滞状態が検出されているにも拘わらず前記電圧指令に基づいて前記昇 圧コンバータを制御する手段であるものとすることもできる。こうすれば、リアタトル電 流が前記直流電源を充電する電流力 放電する電流に極性変化したときに昇圧側 の出力電力が過剰に低下するのを抑制することができる。
本発明の電源装置において、前記制御手段は、前記第 1のスイッチング素子をォ ン状態力 オフ状態に変化させた直後の該第 1のスイッチング素子と前記第 2のスィ ツチング素子とが共にオフ状態となるデッドタイム中に前記ゼロ電流停滞状態が生じ たことにより前記ゼロ電流停滞状態検出手段により周期的ゼロ電流停滞状態が検出 された特定ゼロ電流停滞状態のときには前記電圧指令を低くする補正をした補正後 電圧指令に基づ!/ヽて前記昇圧コンバータを制御し、前記特定ゼロ電流停滞状態で はないときには前記電圧指令に基づいて前記昇圧コンバータを制御する手段である ものとすることもできる。こうすれば、特定ゼロ電流停滞状態のときに昇圧側の出力電 圧が電圧指令より高くなるのを抑制することができる。
[0012] 本発明の電源装置の制御方法は、
直流電源と、前記直流電源カゝらみて電力のやりとりを行なう電気機器と直列接続さ れた第 1のスイッチング素子と、前記第 1のスイッチング素子に直列に接続されると共 に前記直流電源力 みて前記電気機器と並列接続された第 2のスイッチング素子と、 前記第 1のスイッチング素子と前記第 2のスイッチング素子との中間点と前記直流電 源の出力端子との接続されたリアタトルとを有し、所定の周期で両スイッチング素子の オン時間を調整することにより前記直流電源の電圧を昇圧して前記電気機器に供給 可能な昇圧コンバータと、前記昇圧コンバータからみて前記電気機器に並列接続さ れて前記電気機器に作用する電圧を平滑する電圧平滑手段と、を備える電源装置 の制御方法であって、(a)前記リアタトルに流れる電流であるリアタトル電流が値 0で 停滞するゼロ電流停滞状態が前記所定の周期で生じる周期的ゼロ電流停滞状態に ある力否かを判定し、(b)周期的ゼロ電流停滞状態にないと判定したときには前記電 気機器に作用する電圧の目標値である電圧指令に基づいて前記昇圧コンバータを 制御し、周期的ゼロ電流停滞状態にあると判定したときには前記電圧指令を低くする 補正をした補正後電圧指令に基づいて前記昇圧コンバータを制御する、ことを要旨 とする。
[0013] この本発明の電源装置の制御方法では、昇圧コンバータのリアタトルに流れる電流 であるリアタトル電流が値 0で停滞するゼロ電流停滞状態がスイッチング素子をオン オフする所定の周期で生じる周期的ゼロ電流停滞状態にあるか否かを判定し、周期 的ゼロ電流停滞状態にないと判定したときには電力のやりとりを行なう電気機器に作 用する電圧の目標値である電圧指令に基づいて昇圧コンバータを制御し、周期的ゼ 口電流停滞状態にあると判定したときには電圧指令を低くする補正をした補正後電 圧指令に基づいて昇圧コンバータを制御する。これにより、周期的ゼロ電流停滞状 態に対処することができ、周期的ゼロ電流停滞状態により昇圧側の出力電圧が電圧 指令より高くなるのを抑制することができる。この結果、出力電圧が電圧指令より高く なることによって生じ得る電圧平滑手段の破損を抑制することができると共に電気機 器の出力過多を抑制することができる。ここで、電気機器は、電源装置と電力のやりと りが可能であれば如何なる機器であってもよい。また、電圧平滑手段は、例えば平滑 コンデンサなどを用いることができる。
[0014] こうした本発明の電源装置の制御方法において、前記ステップ (b)は、前記第 1の スイッチング素子をオン状態力 オフ状態に変化させた直後の該第 1のスイッチング 素子と前記第 2のスイッチング素子とが共にオフ状態となるデッドタイム中に前記ゼロ 電流停滞状態が生じたことにより前記周期的ゼロ電流停滞状態にあると判定したとき には前記補正後電圧指令に基づ 、て前記昇圧コンバータを制御し、前記第 2のスィ ツチング素子をオン状態力 オフ状態に変化させた直後のデッドタイム中に前記ゼロ 電流停滞状態が生じたことにより前記周期的ゼロ電流停滞状態にあると判定したとき には前記周期的ゼロ電流停滞状態にあるにも拘わらず前記電圧指令に基づいて前 記昇圧コンバータを制御するステップであるものとすることもできる。こうすれば、第 2 のスイッチング素子をオン状態力 オフ状態に変化させた直後のデッドタイム中にゼ 口電流停滞状態が生じたことによる周期的ゼロ電流停滞状態のときに昇圧側の出力 電力が過剰に低下するのを抑制することができる。
図面の簡単な説明
[0015] [図 1]本発明の一実施例としての電源装置 20の構成の概略を示す構成図である。
[図 2]電子制御ユニット 50により実行される電圧指令調整ルーチンの一例を示すフロ 一チャートである。
[図 3]電子制御ユニット 50により実行される周期的ゼロ電流停滞フラグ設定処理の一 例を示すフローチャートである。
[図 4]ノ ッテリ 22から放電されるときを正としたときにコイル 32を流れるリアタトル電流 I Lが正の値力 値 0を跨いで負の値になるときの理想的かつ模式的なリアタトル電流 I Lの時間変化を示す説明図である。
[図 5]リアタトル電流 ILが脈動中に負の値をとらな 、状態 1における上アーム,下ァー ム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例示する説明 図である。 [図 6]リアタトル電流 ILが脈動中に僅かに負の値となる状態 2における上アーム,下ァ ーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例示する説 明図である。
[図 7]リアタトル電流 ILが脈動中にデッドタイムで更に負の値となる状態 3における上 アーム,下アーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を 例示する説明図である。
[図 8]リアタトル電流 ILが脈動が正の値と負の値とが同程度となる状態 4における上ァ ーム,下アーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例 示する説明図である。
[図 9]リアタトル電流 ILが脈動中の正の値が少なくなる状態 5における上アーム,下ァ ーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例示する説 明図である。
[図 10]リアタトル電流 ILが脈動中に僅かに正の値となる状態 6における上アーム,下 アーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例示する 説明図である。
[図 11]リアタトル電流 ILが脈動中に正の値をとらな 、状態 7における上アーム,下ァ ーム、デッドタイム、リアタトル電流 IL,下アーム電圧 Voの変化の様子を例示する説 明図である。
[図 12]変形例の周期的ゼロ電流停滞フラグ設定処理を例示するフローチャートであ る。
[図 13]変形例のの電源装置 20Bの構成の概略を示す構成図である。
[図 14]変形例の電源装置 20Bにおける周期的ゼロ電流停滞フラグ設定処理の一例 を示すフローチャートである。 発明を実施するための最良の形態
次に、本発明を実施するための最良の形態を実施例を用いて説明する。図 1は、本 発明の一実施例としての電源装置 20の構成の概略を示す構成図である。実施例の 電源装置 20は、図示するように、インバータ 11, 12を介して電気機器としての二つ のモータ MG1, MG2に接続されており、直流電源としてのバッテリ 22と、ノ ッテリ 22 の電圧を昇圧して二つのモータ MG1, MG2側に供給したりモータ MG1, MG2側 の電圧を降圧してバッテリ 22側に供給したりする昇圧コンバータ 30と、昇圧コンパ一 タ 30の昇圧側(二つのモータ MG1, MG2側)に配置されて昇圧側の電圧を平滑す る平滑コンデンサ 42と、装置全体をコントロールする電子制御ユニット 50と、を備える
[0017] バッテリ 22は、例えば、リチウムイオン電池やニッケル水素電池などの充放電可能 な二次電池として構成されて 、る。
[0018] 昇圧コンバータ 30は、インバータ 11, 12の正極母線と負極母線に平滑コンデンサ 42と並列するよう直列に配置された二つのゲート式のスイッチング素子(例えば、 M OSFET)Trl, Tr2と、各スイッチング素子 Trl, Tr2に対して並列に電圧を保持す るよう取り付けられた二つのダイオード Dl, D2と、二つのスイッチング素子 Trl, Tr2 の中間とバッテリ 22の正極側に取り付けられたコイル 32と、により構成された周知の 昇圧コンバータである。以下の説明では、スイッチング素子 Trlのことを「上アーム」、 スイッチング素子 Tr2のことを「下アーム」と称することがある。
[0019] 電子制御ユニット 50は、 CPU52を中心とするマイクロプロセッサとして構成されて おり、 CPU52の他に処理プログラムを記憶する ROM54と、データを一時的に記憶 する RAM56と、図示しない入出力ポートおよび通信ポートとを備える。電子制御ュ ニット 50には、ノ ッテリ 22の出力端子間に取り付けられた電圧センサ 24からの電池 電圧 Vbやスイッチング素子 Tr2の端子間に取り付けられた電圧センサ 34からの下ァ ーム電圧 Vo,平滑コンデンサ 42の端子間に取り付けられた電圧センサ 44からのコ ンデンサ電圧 Vhなどが入力ポートを介して入力されている。また、電子制御ユニット 50力らは、昇圧コンデンサ 30のスイッチング素子 Trl, Tr2へのスイッチング信号が 出力ポートから出力されている。電子制御ユニット 50は、電源装置 20の制御ユニット として機能するだけでなぐ二つのモータ MG1, MG2の駆動制御ユニットとしても機 能する。このため、電子制御ユニット 50にはモータ MG1, MG2に取り付けられた回 転位置センサ 13, 14からのロータの回転位置やインバータ 11, 12に取り付けられた 図示しない電流センサからのモータ MG1, MG2に印加される相電流などが入力ポ ートを介して入力されており、電子制御ユニット 50からはインバータ 11, 12へのスィ ツチング信号などが出力ポートを介して出力されている。
[0020] なお、二つのモータ MG1, MG2は、いずれも発電機として駆動することができると 共に電動機として駆動できる周知の同期発電電動機として構成されており、インバー タ 11, 12および昇圧コンバータ 30を介してバッテリ 22と電力のやりとりを行なう。
[0021] 次に、こうして構成された電源装置 20の動作について説明する。電源装置 20の動 作は、基本的には、バッテリ 22と二つのモータ MG1, MG2との間で電力のやりとりを 円滑に行なうためにコンデンサ電圧 Vhが電圧指令 Vh *となるよう昇圧コンバータ 30 のスイッチング素子 Trl, Tr2をスイッチング制御することにより行なわれる。実施例の 電源装置 20では、電圧指令 Vh*に対して図 2に例示する電圧指令調整ルーチンを 実行することにより、電圧指令 Vh *を修正している。即ち、電圧指令調整ルーチンで は、二つのモータ MG1, MG2の駆動状態やトルク指令などに基づいて図示しない 電圧指令設定ルーチンにより設定された電圧指令 Vh *と周期的ゼロ電流停滞フラ グ FOとを入力し (ステップ S100)、周期的ゼロ電流停滞フラグ FOを調べ (ステップ S1 10)、周期的ゼロ電流停滞フラグ FOが値 0のときには電圧指令 Vh*を修正すること なく終了し、周期的ゼロ電流停滞フラグ FOが値 1のときには設定された電圧指令 Vh *から所定電圧 Δ Vを減じた値を修正後の電圧指令 Vh *として修正して (ステップ S 120)、終了する。ここで、周期的ゼロ電流停滞フラグ FOは、スイッチング素子 Trl ( 上アーム)をオン力もオフした直後にスイッチング素子 Trl, Tr2を共にオフとするデ ッドタイム中にコイル 32に流れる電流(リアタトル電流) ILが値 0で停滞する現象 (ゼロ 電流停滞状態)がスイッチング素子 Trl, Tr2のスイッチング周期で生じたときに周期 的ゼロ電流停滞状態にあるとして値 1がセットされ、値 1がセットされて力 所定時間 経過したときに値 0がセットされる。この周期的ゼロ電流停滞フラグ FOのセットは、図 3 に例示する周期的ゼロ電流停滞フラグ設定処理により実行される。
[0022] 周期的ゼロ電流停滞フラグ設定処理が実行されると、電子制御ユニット 50の CPU 52は、まず、電圧センサ 24からの電池電圧 Vbや電圧センサ 34からの下アーム電圧 Voを入力し (ステップ S 200)、周期的ゼロ電流停滞フラグ F0の値を調べる (ステップ S210)。周期的ゼロ電流停滞フラグ FOが値 0のときには、電池電圧 Vbと下アーム電 圧 Voとが一致するか否かを電池電圧 Vbと下アーム電圧 Voとの差の絶対値が閾値 Vref未満であるか否かにより判定する(ステップ S220)。ここで、閾値 Vrefは、セン サによる検出誤差などを許容できる程度の小さな値として設定されている。電池電圧 Vbと下アーム電圧 Voとが一致しないと判定されたときには周期的ゼロ電流停滞フラ グ F0に値 1をセットすることなぐこの処理を終了する。
[0023] 一方、電池電圧 Vbと下アーム電圧 Voとが一致すると判定されると、この電池電圧 Vbと下アーム電圧 Voとの一致が上アームをオン力 オフしたときのデッドタイムに生 じているか否かを判定し (ステップ S230)、電池電圧 Vbと下アーム電圧 Voとの一致 が上アームをオン力 オフしたときのデッドタイムに生じていないときには周期的ゼロ 電流停滞フラグ F0に値 1をセットすることなぐこの処理を終了する。電池電圧 Vbと 下アーム電圧 Voとの一致が上アームをオン力 オフしたときのデッドタイムに生じて いるときにはカウンタ Cを値 1だけインクリメントし (ステップ S240)、カウンタ Cの値を 閾値 Crefと比較する(ステップ 250)。ここで、閾値 Crefは、電池電圧 Vbと下アーム 電圧 Voとの一致が確実に生じていることやこれが上アームをオン力 オフしたときの デッドタイムに生じていることをより確からしくするために用いられる閾値であり、値 2, 3, 4などを用いることができる。カウンタ Cが閾値 Cref以上のときには周期的ゼロ電 流停滞フラグ F0に値 1をセットして (ステップ S260)、処理を終了し、カウンタ Cが閾 値 Cref未満のときには周期的ゼロ電流停滞フラグ F0に値 0をセットすることなぐこの 処理を終了する。電池電圧 Vbと下アーム電圧 Voとが複数回に亘つて一致すること により、周期的ゼロ電流停滞状態にあるか否かを判定することができる理由について は後述する。
[0024] ステップ S210で周期的ゼロ電流停滞フラグ F0に値 1がセットされていると判定した ときには、周期的ゼロ電流停滞フラグ F0に値 1がセットされて力 所定時間経過した か否かを判定し (ステップ S270)、所定時間経過したときにカウンタ Cを値 0にリセット すると共に (ステップ S280)、周期的ゼロ電流停滞フラグ F0に値 0をセットして (ステツ プ S290)、処理を終了する。
[0025] 図 4は、ノ ッテリ 22から放電されるときを正としたときにコイル 32を流れるリアタトル 電流 ILが正の値力 値 0を跨いで負の値になるときの理想的かつ模式的なリアタトル 電流 ILの時間変化を示す説明図である。図中のリアタトル電流 ILの脈動は、スィッチ ング素子 Trl, Tr2のスイッチング周期(キャリア周波数)〖こよるものである。リアタトル 電流 ILが正の値力 負の値に変化するときには、リアタトル電流 ILは、図示するよう に、脈動中に負の値をとらない状態 1、脈動中に僅かに負の値となる状態 2、脈動中 にデッドタイムで更に負の値となる状態 3、脈動が正の値と負の値とが同程度となる状 態 4、脈動中の正の値が少なくなる状態 5、脈動中に僅かに正の値となる状態 6、脈 動中に正の値をとらない状態 7の順に変化する。状態 1〜7の各状態における実際の 上アーム(スイッチング素子 Trl) ,下アーム(スイッチング素子 Tr2)、デッドタイム、リ ァクトル電流 IL,下アーム電圧 Voの変化の様子を図 5〜 11に例示する。
[0026] 状態 1では、図 5に示すように、下アーム電圧 Voは、上アーム (スイッチング素子 Tr 1)と下アーム (スイッチング素子 Tr 2)のスイッチングに応じてコンデンサ電圧 Vhと値 0とを繰り返す。
[0027] 状態 2では、図 6に示すように、リアタトル電流 ILは、上アーム (スイッチング素子 Tr 1)をオン力もオフしたときのデッドタイムで、本来なら負の値となるべきであるのにスィ ツチング素子 Trl, Tr2が共にオフとなっていることから、負の電流を流すことができ ず、値 0で停滞する現象 (ゼロ電流停滞状態)が生じる。このゼロ電流停滞状態は、キ ャリア周波数で周期的に生じる。ゼロ電流停滞状態では、下アーム電圧 Voは、リアク トル電流 ILが値 0であること力も電池電圧 Vbに一致することになる。図 3の周期的ゼ 口電流停滞フラグ設定処理で電池電圧 Vbと下アーム電圧 Voとが複数回に亘つて一 致することにより周期的ゼロ電流停滞状態を判定することができるのは、こうした理由 による。下アーム電圧 Voは、デッドタイムがなければリアタトル電流 ILが負の値になる ときに値 0となる力 デッドタイムがあるためにゼロ電流停滞状態では電池電圧 Vbと なるため、平滑コンデンサ 42側は電圧指令 Vh *を超える電圧となってしまう。実施 例では、平滑コンデンサ 42の過剰電圧となって破損するのを抑制したり、モータ MG 1, MG2からの出力トルクが予期しない大きなものになるのを抑制するために電圧指 令 Vh *を所定電圧 Δνだけ下方修正するのである。ここで、所定電圧 Δνは、キヤリ ァ周波数や電池電圧 Vb,電圧指令 Vh *などによって実験などを用いて定めること ができる。
[0028] 状態 3では、図 7に示すように、リアタトル電流 ILは、上アーム (スイッチング素子 Tr 1)をオン力 オフしたときのデッドタイムで、本来なら正の値となるべきであるのにスィ ツチング素子 Trl, Tr2が共にオフとなっていることから、正の電流を流すことができ ず、値 0で停滞する現象 (ゼロ電流停滞状態)が生じる。ゼロ電流停滞状態では、下 アーム電圧 Voは、リアタトル電流 ILが値 0であることから、本来値 0となるところ電池電 圧 Vbに一致することになり、平滑コンデンサ 42側は電圧指令 Vh *を超える電圧とな つてしまう。なお、実施例では、電圧指令 Vh *が所定電圧 Δνだけ下方修正される から、こうした平滑コンデンサ 42側の過剰電圧を抑制することができる。実施例では、 周期的ゼロ電流停滞フラグ F0が値 1にセットされて力 所定時間経過したときにカウ ンタ Cが値 0にリセットされる。このときの所定時間は、状態 2や状態 3を通過するのに 必要な時間として設定すればよい。なお、周期的ゼロ電流停滞フラグ F0が値 1にセッ トされて力も所定時間経過したときにカウンタ Cが値 0にリセットするのに代えて状態 3 を通過したときにカウンタ Cを値 0にリセットするものとしてもよい。
[0029] 状態 4では、図 8に示すように、リアタトル電流 ILは、デッドタイム中に極性変化しな い。このため、状態 2や状態 3で説明したような平滑コンデンサ 42側の過電圧は生じ ない。
[0030] 状態 5では、図 9に示すように、下アーム (スイッチング素子 Tr2)をオンからオフした ときのデッドタイムで、本来なら負の値となるべきであるのにスイッチング素子 Trl, Tr 2が共にオフとなっていることから、負の電流を流すことができず、値 0で停滞する現 象 (ゼロ電流停滞状態)が生じる。このゼロ電流停滞状態では、下アーム電圧 Voは、 リアタトル電流 ILが値 0であること力 電池電圧 Vbに一致することになり、平滑コンデ ンサ 42側は電圧指令 Vh *を下回る電圧となる。実施例では、平滑コンデンサ 42の 電圧が電圧指令 Vh *より下回っても、その程度は小さいから、電圧指令 Vh *を修 正することなく用いるものとした。状態 2では平滑コンデンサ 42の電圧が電圧指令 Vh *を超えるのを抑制するために電圧指令 Vh*を下方修正する力 状態 5では平滑コ ンデンサ 42の電圧が電圧指令 Vh *を下回っても電圧指令 Vh *を上方修正しな ヽ 。これは、平滑コンデンサ 42の電圧が電圧指令 Vh *を下回っても平滑コンデンサ 4 2の破損は生じないため、電圧指令 Vh*を上方修正する必要がないからである。ま た、電圧指令 Vh *を上方修正しないとモータ MG1, MG2の出力トルクは若干の低 下を生じる力 その程度が低いことと、こうした現象が短い時間であることから、電圧 指令 Vh *を上方修正しなくても大きな問題は生じな 、からである。
[0031] 状態 6では、図 10に示すように、下アーム (スイッチング素子 Tr2)をオンからオフし たときのデッドタイムで、本来なら正の値となるべきであるのにスイッチング素子 Trl, Tr2が共にオフとなっていることから、正の電流を流すことができず、値 0で停滞する 現象 (ゼロ電流停滞状態)が生じる。このゼロ電流停滞状態では、下アーム電圧 Vo は、リアタトル電流 ILが値 0であることから、本来コンデンサ電圧 Vhになるところ電池 電圧 Vbに一致することになり、平滑コンデンサ 42側は電圧指令 Vh *を下回る電圧 となってしまう。この場合でも、実施例では、状態 5と同様に、平滑コンデンサ 42の破 損は生じな 、から電圧指令 Vh *の上方修正は行なわれな 、。
[0032] 状態 7では、図 11に示すように、下アーム電圧 Voは、上アーム (スイッチング素子 T rl)と下アーム (スイッチング素子 Tr2)のスイッチングに応じてコンデンサ電圧 Vhと値 0とを繰り返す。
[0033] 以上の説明から、図 3に例示する周期的ゼロ電流停滞フラグ設定処理では、状態 2 に至っているのを電池電圧 Vbと下アーム電圧 Voとが一致した回数がカウンタ Cが閾 値 Cref以上となることにより判定して周期的ゼロ電流停滞フラグ F0に値 1を設定し、 状態 2に至って周期的ゼロ電流停滞フラグ F0に値 1を設定して力 状態 2と状態 3と を通過するのに要する時間として予め設定した時間を経過したときに周期的ゼロ電 流停滞フラグ F0を値 0にリセットする。そして、図 2に例示する電圧指令調整ルーチ ンでは、周期的ゼロ電流停滞フラグ F0が値 1のときには平滑コンデンサ 42の過剰電 圧による破損やモータ MG1, MG2の出力過多を抑制するために電圧指令 Vh *を 所定電圧 Δ Vだけ下方修正するのである。
[0034] 以上説明した実施例の電源装置 20によれば、スイッチング素子 Trl (上アーム)を オン力もオフした直後にスイッチング素子 Trl, Tr2を共にオフとするデッドタイム中 にコイル 32に流れる電流(リアタトル電流) ILが値 0で停滞する現象 (ゼロ電流停滞状 態)がスイッチング素子 Trl, Tr2のスイッチング周期で生じたときに周期的ゼロ電流 停滞状態に至ったと判定して電圧指令 Vh*を所定電圧 Δνだけ下方修正するから 、周期的ゼロ電流停滞状態のときに予期せずに平滑コンデンサ 42側の電圧が電圧 指令 Vh *より高くなるのを抑制することができ、平滑コンデンサ 42が過剰電圧によつ て破損したりモータ MG1, MG2から過剰なトルクが出力されるのを抑制することがで きる。しかも、スイッチング素子 Trl (上アーム)をオンカゝらオフした直後のデッドタイム のときのゼロ電流停滞状態だけにより周期的ゼロ電流停滞状態を判定するから、電 圧指令 Vh *を必要なときにだけ下方修正することができる。
[0035] 実施例の電源装置 20では、複数回に亘つて電池電圧 Vbと下アーム電圧 Voとが一 致するのを判定したときに周期的ゼロ電流停滞状態を判定したが、複数回に亘つて コンデンサ電圧 Vhと下アーム電圧 Voとが一致せずに下アーム電圧 Voが値 0でない と判定したときに周期的ゼロ電流停滞状態を判定するものとしてもよい。この場合、図 3の周期的ゼロ電流停滞フラグ設定処理に代えて図 12の周期的ゼロ電流停滞フラグ 設定処理を実行すればよい。即ち、コンデンサ電圧 Vhと下アーム電圧 Voとの差の 絶対値が正の値の閾値 Vreflより大きいか否かの判定によりコンデンサ電圧 Vhと下 アーム電圧 Voとが一致しな!、判定を行な ヽ(ステップ S222)、下アーム電圧 Voが正 の値の閾値 Vref 2より大きいか否かの判定により(ステップ S224)下アーム電圧 Vo が値 0でないと判定を行なうものとすることができる。
[0036] 実施例の電源装置 20では、複数回に亘つて電池電圧 Vbと下アーム電圧 Voとが一 致するのを判定したときに周期的ゼロ電流停滞状態を判定したが、複数回に亘つて コイル 32に流れる電流(リアタトル電流)が値 0となるのを判定したときに周期的ゼロ 電流停滞状態を判定するものとしてもよい。この場合、図 13の変形例の電源装置 20 Bに例示するように、コイル 32に対して直列に電流センサ 26を取り付けてセンサ値を 電子制御ユニット 50の図示しない入力ポートに入力するよう構成し、図 3の周期的ゼ 口電流停滞フラグ設定処理に代えて図 14に例示する周期的ゼロ電流停滞フラグ設 定処理を実行すればよい。周期的ゼロ電流停滞フラグ設定処理では、電池電圧 Vb や下アーム電圧 Voの入力に代えて電流センサ 26からのリアタトル電流 ILを入力し( ステップ S200B)、電池電圧 Vbと下アーム電圧 Voの差と閾値 Vrefとの比較に代え てリアタトル電流 ILが値 0であるか否かの判定を行なう(ステップ S220B)。ゼロ電流 停滞状態は、リアタトル電流 ILが値 0で停滞する状態であるから、直接リアタトル電流 I Lを用いて判定することもできるからである。 [0037] 実施例の電源装置 20では、スイッチング素子 Trl (上アーム)をオンからオフした直 後のデッドタイムのときのゼロ電流停滞状態だけにより周期的ゼロ電流停滞状態を判 定して電圧指令 Vh *を下方修正するものとした力 スイッチング素子 Trl (上アーム) をオン力 オフした直後のデッドタイムのときのゼロ電流停滞状態だけでなぐスイツ チング素子 Tr2 (下アーム)をオン力 オフした直後のデッドタイムのときのゼロ電流 停滞状態により周期的ゼロ電流停滞状態を判定して電圧指令 Vh *を下方修正する ものとしてもよい。この場合、スイッチング素子 Tr2 (下アーム)をオン力もオフした直 後のデッドタイムのときのゼロ電流停滞状態のときの周期的ゼロ電流停滞状態では、 不必要に電圧指令 Vh *が下方修正され、モータ MG1, MG2の出力トルクが若干 低下するが、その程度が低いことと、こうした現象が短い時間であることから、大きな 問題とはならない。
[0038] 実施例の電源装置 20では、スイッチング素子 Trl (上アーム)をオンからオフした直 後のデッドタイムのときのゼロ電流停滞状態だけにより周期的ゼロ電流停滞状態を判 定して電圧指令 Vh *を下方修正するものとした力 スイッチング素子 Tr2 (下アーム) をオン力 オフした直後のデッドタイムのときのゼロ電流停滞状態により周期的ゼロ電 流停滞状態を判定して電圧指令 Vh*を上方修正するものとしてもよい。こうすれば、 スイッチング素子 Tr2 (下アーム)をオン力 オフした直後のデッドタイムのときのゼロ 電流停滞状態による周期的ゼロ電流停滞状態におけるモータ MG1, MG2の出力ト ルクの若干の低下を抑制することができる。
[0039] 実施例の電源装置 20では、インバータ 11, 12を介して二つのモータ MG1, MG2 に接続されるものとして説明した力 一つのモータに接続されるものとしてもよぐ三つ 以上のモータに接続されるものとしても力まわない。また、接続先としては、モータや 発電機に限定されるものではなぐ電力消費する如何なる機器や電力を発電または 回生する如何なる機器としても力まわな 、。
[0040] 実施例の電源装置 20では、ソフトウェアによりスイッチング素子 Trl (上アーム)をォ ン力 オフした直後のデッドタイムのときのゼロ電流停滞状態を判定すると共に周期 的ゼロ電流停滞状態を判定して電圧指令 Vh *を下方修正するものとしたが、ハード ウェアによりスイッチング素子 Trl (上アーム)をオン力 オフした直後のデッドタイム のときのゼロ電流停滞状態を判定すると共に周期的ゼロ電流停滞状態を判定して電 圧指令 Vh *を下方修正するものとしてもよ!/、。
[0041] 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、 本発明はこうした実施例に何等限定されるものではなぐ本発明の要旨を逸脱しない 範囲内において、種々なる形態で実施し得ることは勿論である。
産業上の利用可能性
[0042] 本発明は、電源装置の製造産業などに利用可能である。

Claims

請求の範囲
[1] 電気機器と電力のやりとりを行なう電源装置であって、
直流電源と、
前記直流電源カゝらみて前記電気機器と直列接続された第 1のスイッチング素子と、 前記第 1のスイッチング素子に直列に接続されると共に前記直流電源からみて前記 電気機器と並列接続された第 2のスイッチング素子と、前記第 1のスイッチング素子と 前記第 2のスイッチング素子との中間点と前記直流電源の出力端子との接続されたリ ァクトルとを有し、所定の周期で両スイッチング素子のオン時間を調整することにより 前記直流電源の電圧を昇圧して前記電気機器に供給可能な昇圧コンバータと、 前記昇圧コンバータカゝらみて前記電気機器に並列接続されて前記電気機器に作 用する電圧を平滑する電圧平滑手段と、
前記リアタトルに流れる電流であるリアタトル電流が値 0で停滞するゼロ電流停滞状 態が前記所定の周期で生じる周期的ゼロ電流停滞状態を検出するゼロ電流停滞状 態検出手段と、
前記電気機器に作用する電圧の目標値である電圧指令と前記ゼロ電流停滞状態 検出手段により検出される周期的ゼロ電流停滞状態とに基づいて前記昇圧コンパ一 タを制御する制御手段と、
を備える電源装置。
[2] 請求項 1記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記直流電源の電圧である電源電圧を検出 する電源電圧検出手段と前記第 2のスイッチング素子の端子間電圧である第 2スイツ チ電圧を検出する第 2スィッチ電圧検出手段とを有し、前記検出された電源電圧と前 記検出された第 2スィッチ電圧との差が所定電圧以下となるときを前記ゼロ電流停滞 状態として前記周期的ゼロ電流停滞状態を検出する手段である、
電源装置。
[3] 請求項 2記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記ゼロ電流停滞状態が複数回に亘つて生 じたときに前記周期的ゼロ電流停滞状態を検出する手段である、 電源装置。
[4] 請求項 1記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記電圧平滑手段の端子間電圧である平滑 端子間電圧を検出する平滑端子間電圧検出手段と前記第 2のスイッチング素子の端 子間電圧である第 2スィッチ電圧を検出する第 2スィッチ電圧検出手段とを有し、前 記所定の周期で前記検出された平滑端子間電圧と前記検出された第 2スィッチ電圧 との差が第 1の所定電圧以上となり且つ前記検出された第 2スィッチ電圧が第 2の所 定電圧以上となるときを前記ゼロ電流停滞状態として前記周期的ゼロ電流停滞状態 を検出する手段である、
電源装置。
[5] 請求項 4記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記ゼロ電流停滞状態が複数回に亘つて生 じたときに前記周期的ゼロ電流停滞状態を検出する手段である、
電源装置。
[6] 請求項 1記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記リアタトル電流を検出するリアタトル電流 検出手段を有し、前記所定の周期で前記検出されたリアタトル電流が値 0となるときを 前記ゼロ電流停滞状態として前記周期的ゼロ電流停滞状態を検出する手段である、 電源装置。
[7] 請求項 6記載の電源装置であって、
前記ゼロ電流停滞状態検出手段は、前記ゼロ電流停滞状態が複数回に亘つて生 じたときに前記周期的ゼロ電流停滞状態を検出する手段である、
電源装置。
[8] 請求項 1記載の電源装置であって、
前記制御手段は、前記ゼロ電流停滞状態検出手段により周期的ゼロ電流停滞状 態が検出されていないときには前記電圧指令に基づいて前記昇圧コンバータを制御 し、前記ゼロ電流停滞状態検出手段により周期的ゼロ電流停滞状態が検出されたと きには前記電圧指令を低くする補正をした補正後電圧指令に基づいて前記昇圧コ ンバータを制御する手段である、
電源装置。
[9] 請求項 8記載の電源装置であって、
前記制御手段は、前記リアタトル電流の極性変化の方向を判定すると共に該判定 した極性変化の方向に基づ!/、て前記昇圧コンバータを制御する手段である、 電源装置。
[10] 請求項 9記載の電源装置であって、
前記制御手段は、前記第 1のスイッチング素子と前記第 2のスイッチング素子の作 動状態に基づいて極性変化の方向を判定する手段である、
電源装置。
[11] 請求項 10記載の電源装置であって、
前記制御手段は、前記第 1のスイッチング素子をオン状態からオフ状態に変化させ た直後の該第 1のスイッチング素子と前記第 2のスイッチング素子とが共にオフ状態と なるデッドタイム中に前記ゼロ電流停滞状態が生じたことにより前記ゼロ電流停滞状 態検出手段により周期的ゼロ電流停滞状態が検出されたときには前記リアタトル電流 が前記直流電源を放電する電流から充電する電流に極性変化したと判定し、前記第 2のスイッチング素子をオン状態力 オフ状態に変化させた直後のデッドタイム中に 前記ゼロ電流停滞状態が生じたことにより前記ゼロ電流停滞状態検出手段により周 期的ゼロ電流停滞状態が検出されたときには前記リアタトル電流が前記直流電源を 充電する電流力 放電する電流に極性変化したと判定する手段である、
電源装置。
[12] 請求項 9記載の電源装置であって、
前記制御手段は、前記リアタトル電流が前記直流電源を放電する電流から充電す る電流に極性変化したと判定したときには前記補正後電圧指令に基づいて前記昇 圧コンバータを制御し、前記リアタトル電流が前記直流電源を充電する電流力 放電 する電流に極性変化したと判定したときには前記周期的ゼロ電流停滞状態が検出さ れているにも拘わらず前記電圧指令に基づいて前記昇圧コンバータを制御する手段 である、 電源装置。
[13] 請求項 1記載の電源装置であって、
前記制御手段は、前記第 1のスイッチング素子をオン状態からオフ状態に変化させ た直後の該第 1のスイッチング素子と前記第 2のスイッチング素子とが共にオフ状態と なるデッドタイム中に前記ゼロ電流停滞状態が生じたことにより前記ゼロ電流停滞状 態検出手段により周期的ゼロ電流停滞状態が検出された特定ゼロ電流停滞状態の ときには前記電圧指令を低くする補正をした補正後電圧指令に基づいて前記昇圧コ ンバータを制御し、前記特定ゼロ電流停滞状態ではないときには前記電圧指令に基 づいて前記昇圧コンバータを制御する手段である、
電源装置。
[14] 直流電源と、前記直流電源カゝらみて電力のやりとりを行なう電気機器と直列接続さ れた第 1のスイッチング素子と、前記第 1のスイッチング素子に直列に接続されると共 に前記直流電源力 みて前記電気機器と並列接続された第 2のスイッチング素子と、 前記第 1のスイッチング素子と前記第 2のスイッチング素子との中間点と前記直流電 源の出力端子との接続されたリアタトルとを有し、所定の周期で両スイッチング素子の オン時間を調整することにより前記直流電源の電圧を昇圧して前記電気機器に供給 可能な昇圧コンバータと、前記昇圧コンバータからみて前記電気機器に並列接続さ れて前記電気機器に作用する電圧を平滑する電圧平滑手段と、を備える電源装置 の制御方法であって、
(a)前記リアタトルに流れる電流であるリアタトル電流が値 0で停滞するゼロ電流停滞 状態が前記所定の周期で生じる周期的ゼロ電流停滞状態にあるか否かを判定し、
(b)周期的ゼロ電流停滞状態にないと判定したときには前記電気機器に作用する電 圧の目標値である電圧指令に基づいて前記昇圧コンバータを制御し、周期的ゼロ電 流停滞状態にあると判定したときには前記電圧指令を低くする補正をした補正後電 圧指令に基づいて前記昇圧コンバータを制御する、
電源装置の制御方法。
[15] 請求項 14記載の電源装置の制御方法であって、
前記ステップ (b)は、前記第 1のスイッチング素子をオン状態からオフ状態に変化さ せた直後の該第 1のスイッチング素子と前記第 2のスイッチング素子とが共にオフ状 態となるデッドタイム中に前記ゼロ電流停滞状態が生じたことにより前記周期的ゼロ 電流停滞状態にあると判定したときには前記補正後電圧指令に基づいて前記昇圧 コンバータを制御し、前記第 2のスイッチング素子をオン状態からオフ状態に変化さ せた直後のデッドタイム中に前記ゼロ電流停滞状態が生じたことにより前記周期的ゼ 口電流停滞状態にあると判定したときには前記周期的ゼロ電流停滞状態にあるにも 拘わらず前記電圧指令に基づいて前記昇圧コンバータを制御するステップである、 電源装置の制御方法。
PCT/JP2007/060458 2006-06-01 2007-05-22 電源装置およびその制御方法 WO2007138935A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800196087A CN101454964B (zh) 2006-06-01 2007-05-22 电源装置及其控制方法
US12/227,638 US8169199B2 (en) 2006-06-01 2007-05-22 Power supply with overvoltage protection by zero current stagnation detection
AU2007268800A AU2007268800C1 (en) 2006-06-01 2007-05-22 Power supply device and its control method
EP07743892.7A EP2023471A4 (en) 2006-06-01 2007-05-22 Power supply device and its control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-153874 2006-06-01
JP2006153874A JP4861750B2 (ja) 2006-06-01 2006-06-01 電源装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO2007138935A1 true WO2007138935A1 (ja) 2007-12-06

Family

ID=38778454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060458 WO2007138935A1 (ja) 2006-06-01 2007-05-22 電源装置およびその制御方法

Country Status (7)

Country Link
US (1) US8169199B2 (ja)
EP (1) EP2023471A4 (ja)
JP (1) JP4861750B2 (ja)
KR (1) KR101031068B1 (ja)
CN (1) CN101454964B (ja)
AU (1) AU2007268800C1 (ja)
WO (1) WO2007138935A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861750B2 (ja) * 2006-06-01 2012-01-25 トヨタ自動車株式会社 電源装置およびその制御方法
EP2437384B1 (en) * 2009-05-27 2022-11-09 Denso Corporation Converter control device and electric vehicle using the same
WO2010137127A1 (ja) 2009-05-27 2010-12-02 トヨタ自動車株式会社 電圧変換装置の制御装置およびそれを搭載した車両、電圧変換装置の制御方法
CN102545317B (zh) * 2010-12-20 2015-08-05 株式会社电装 用于引起电池温度上升的系统
US9374022B2 (en) 2011-10-07 2016-06-21 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for voltage conversion apparatus
JP5947738B2 (ja) * 2013-03-28 2016-07-06 トヨタ自動車株式会社 昇降圧コンバータの制御システム
JP5987777B2 (ja) * 2013-04-25 2016-09-07 トヨタ自動車株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528559A (ja) * 2000-03-22 2003-09-24 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 無発振器型dc−dc電力コンバータ
JP2005051895A (ja) 2003-07-31 2005-02-24 Toyota Motor Corp 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005151606A (ja) * 2003-11-11 2005-06-09 Denso Corp Dc−dcコンバータ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353558B2 (ja) 1995-08-02 2002-12-03 アイシン・エィ・ダブリュ株式会社 デッドタイム補償装置、デッドタイム補償方法、モータ駆動装置及びモータ駆動方法
JP2004112904A (ja) * 2002-09-18 2004-04-08 Toyota Motor Corp 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004120844A (ja) 2002-09-25 2004-04-15 Fuji Electric Systems Co Ltd 昇圧コンバータ制御装置
DE10255357B4 (de) * 2002-11-27 2009-12-10 Texas Instruments Deutschland Gmbh Gleichspanungswandlerschaltung und Verfahren zur Gleichspannungswandlung
JP4107113B2 (ja) 2003-03-13 2008-06-25 株式会社デンソー Dc−dcコンバータ
EP1598930B1 (en) * 2003-06-05 2019-09-18 Toyota Jidosha Kabushiki Kaisha Motor drive device, vehicle using the same, and computer-readable recording medium containing a program for controlling a voltage converter
JP4052195B2 (ja) * 2003-07-31 2008-02-27 トヨタ自動車株式会社 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4545508B2 (ja) * 2004-07-28 2010-09-15 株式会社豊田中央研究所 Dc/dcコンバータの制御システム
JP4665569B2 (ja) * 2004-11-30 2011-04-06 トヨタ自動車株式会社 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
US7180274B2 (en) * 2004-12-10 2007-02-20 Aimtron Technology Corp. Switching voltage regulator operating without a discontinuous mode
JP2007166874A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP4768498B2 (ja) * 2006-04-14 2011-09-07 日立コンピュータ機器株式会社 双方向dc−dcコンバータおよびそれを用いた電源装置
JP4861750B2 (ja) * 2006-06-01 2012-01-25 トヨタ自動車株式会社 電源装置およびその制御方法
JP4798561B2 (ja) * 2006-06-05 2011-10-19 トレックス・セミコンダクター株式会社 スイッチング電源回路
JP4762824B2 (ja) * 2006-08-10 2011-08-31 株式会社豊田中央研究所 電力変換回路
JP2008092635A (ja) * 2006-09-29 2008-04-17 Ricoh Co Ltd 同期整流型スイッチングレギュレータ、同期整流型スイッチングレギュレータの制御回路及び同期整流型スイッチングレギュレータの動作制御方法
US7598715B1 (en) * 2007-04-04 2009-10-06 National Semiconductor Corporation Apparatus and method for reverse current correction for a switching regulator
JP4488067B2 (ja) * 2007-12-06 2010-06-23 トヨタ自動車株式会社 車両用昇圧コンバータ回路
EP2104213B1 (fr) * 2008-03-19 2012-05-30 The Swatch Group Research and Development Ltd. Procédé d'asservissement d'un convertisseur DC-DC en mode discontinu

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528559A (ja) * 2000-03-22 2003-09-24 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 無発振器型dc−dc電力コンバータ
JP2005051895A (ja) 2003-07-31 2005-02-24 Toyota Motor Corp 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005151606A (ja) * 2003-11-11 2005-06-09 Denso Corp Dc−dcコンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2023471A4 *

Also Published As

Publication number Publication date
AU2007268800C1 (en) 2011-10-20
JP2007325435A (ja) 2007-12-13
EP2023471A4 (en) 2017-08-02
EP2023471A1 (en) 2009-02-11
AU2007268800B2 (en) 2011-03-24
US20090302818A1 (en) 2009-12-10
US8169199B2 (en) 2012-05-01
KR20090007617A (ko) 2009-01-19
AU2007268800A1 (en) 2007-12-06
JP4861750B2 (ja) 2012-01-25
CN101454964B (zh) 2012-05-23
CN101454964A (zh) 2009-06-10
KR101031068B1 (ko) 2011-04-25

Similar Documents

Publication Publication Date Title
WO2007138935A1 (ja) 電源装置およびその制御方法
US9444285B2 (en) Charge controller for vehicle
US6297617B1 (en) Battery charger and charge control circuit
US9616753B2 (en) Electric power conversion control device for vehicle, control method, and vehicle equipped therewith
WO2011004250A2 (en) Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
JP4391513B2 (ja) 車両用交流発電機の制御装置
JP2008141806A (ja) 太陽電池による蓄電池充電回路
JP2010124589A (ja) Dc/dcコンバータ装置及び該装置の電流センサの故障検知方法
JP2008289258A (ja) 電源装置およびその制御方法並びに車両
US20190181758A1 (en) Control system of boost converter and control method thereof
CN115836460A (zh) 电池测试装置及电池充电测试方法
CN111149275B (zh) 蓄电装置
EP4290627A2 (en) Power supply control apparatus for fuel cell and electric discharge method
JP2005061849A (ja) 電流センサーの特性補正装置
JP4314560B2 (ja) 蓄電池の内部インピーダンス測定装置
EP3651309B1 (en) Power supply for vehicle and control method of power supply
JP2010004700A (ja) 電源装置
JP6858834B1 (ja) 電力変換装置の制御装置
JP5306834B2 (ja) Dc/dcコンバータシステム及び該システムにおける異常検知時制御方法
JP5712773B2 (ja) 電動機駆動装置
JP2009201201A (ja) 電源装置およびその制御方法
JP2019187137A (ja) 電源システム
JP2002255462A (ja) 交流エレベータの電源装置
JP2007174779A (ja) 充放電回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019608.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007743892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007268800

Country of ref document: AU

Ref document number: 1020087029225

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007268800

Country of ref document: AU

Date of ref document: 20070522

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12227638

Country of ref document: US