JP4107113B2 - Dc−dcコンバータ - Google Patents
Dc−dcコンバータ Download PDFInfo
- Publication number
- JP4107113B2 JP4107113B2 JP2003068086A JP2003068086A JP4107113B2 JP 4107113 B2 JP4107113 B2 JP 4107113B2 JP 2003068086 A JP2003068086 A JP 2003068086A JP 2003068086 A JP2003068086 A JP 2003068086A JP 4107113 B2 JP4107113 B2 JP 4107113B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- chopper circuit
- zero
- circuit
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Description
【発明の属する技術分野】
本発明は、昇圧チョッパ回路及び降圧チョッパ回路を備えた昇降圧型のDC−DCコンバータに関する。
【0002】
【発明が解決しようとする課題】
例えば、電気自動車やハイブリッド自動車などにおいては、走行用モータを駆動するためのインバータ回路の前段にDC−DCコンバータを設け、このコンバータによりバッテリ電圧を昇圧してインバータ回路に供給するという制御が行われている。また、走行用モータが回生状態となったときには、その回生電力を上記DC−DCコンバータにより降圧してバッテリの充電に供することも行われている。従来では、このような昇降圧型のDC−DCコンバータとして、PWM制御方式のものを用いることが一般的になっている。
【0003】
図4には、このような昇降圧型DC−DCコンバータの基本回路構成例が示されている。この図4において、低圧側回路1(例えばバッテリ)からの出力を昇圧して高圧側回路2(例えばモータ駆動用のインバータ回路)に与えるときにスイッチングされる昇圧用のパワーMOSFET3、及び高圧側回路2からの出力(回生電力)を低圧側回路に与えるときにスイッチングされる降圧用のパワーMOSFET4は、ハーフブリッジ回路を構成するように直列接続されている。また、各MOSFET3及び4には、それらと並列にフリーホイールダイオード5及び6がそれぞれ接続される。
【0004】
低圧側回路1とMOSFET3及び4の共通接続点との間にはエネルギ蓄積及び放出用のリアクトル7が接続される。高圧側回路2とグランド端子との間には、MOSFET3のスイッチング時の昇圧出力を平滑するためのコンデンサ8が接続され、低圧側回路1とグランド端子との間には、MOSFET4のスイッチング時の降圧出力を平滑するためのコンデンサ9が接続される。
【0005】
PWMコントロール回路10は、昇圧動作を行う場合に、外部から与えられる出力指示信号及び出力電圧(コンデンサ8の端子間電圧)に基づいてMOSFET3をスイッチングするためのPWM信号を生成する。また、PWMコントロール回路10は、降圧動作を行う場合に、予め設定された充電電圧指令信号及び出力電圧(コンデンサ9の端子間電圧)に基づいてMOSFET4をスイッチングするためのPWM信号を生成する構成となっている。
【0006】
このような回路構成によって、MOSFET3、フリーホイールダイオード6、リアクトル7、コンデンサ8より成る昇圧チョッパ回路、並びにMOSFET4、フリーホイールダイオード5、リアクトル7、コンデンサ9より成る降圧チョッパ回路を備えたPWM制御方式の昇降圧型DC−DCコンバータが構成されるものである。
【0007】
上記従来構成のDC‐DCコンバータでは、PWM信号を生成するために出力電圧をフィードバックすることが不可欠であるが、周期が固定された状態のPWM信号によって出力を幅広く制御しなければならないため、フィードバックゲインが高くなるという事情がある。従って、安定した出力を得るためには、PWM信号のパルス幅を微妙に調整するための複雑な制御が必要になり、その制御が非常に難しくなるという問題点があり、このような制御を可能にするためには、高精度で応答性に優れた制御を行う複雑な構成の回路が必要となってコストの高騰を招くという問題点が出てくる。
【0008】
また、現状の制御では、その応答性が悪いため、非効率的な制御を余儀なくされるという問題点もあった。具体的には、例えば、昇圧動作時には、降圧チョッパ回路を構成するMOSFET4を駆動する必要性はないが、このような昇圧動作状態から降圧動作状態への急な変更に対処するためには、現状の制御方式では十分な応答性を期待できないので、本来的には駆動する必要がないMOSFET4を駆動しておくという非効率な制御が行われている。
【0009】
しかも、制御動作に対する応答性が悪いため、出力電圧の変動を生じやすいという事情があり、これをカバーするために例えばコンデンサ8、9を大容量化するなどの対策が必要になるものであり、これが装置を小型化する上での障害になるという問題点もあった。
【0010】
本発明は上記のような問題点を解決するためになされたものであり、その目的は、簡単な回路構成にて安定した出力制御が可能になるなどの効果を奏するDC−DCコンバータを提供することにある。
【0011】
【課題を解決するための手段】
請求項1記載の手段によれば、ゼロクロス検出手段は、昇圧チョッパ回路及び降圧チョッパ回路の各動作時においてリアクトルの両端電圧が零になるタイミング毎にゼロクロス信号を発生する。また、動作制御手段は、昇圧チョッパ回路のための出力指示信号による出力指令値に比例したパルス幅の第1の駆動パルスを発生し、その駆動パルスを前記ゼロクロス信号が出力される毎に昇圧チョッパ回路内の昇圧用スイッチング素子に与えてこれをオンさせる動作、並びに降圧チョッパ回路のための出力指示信号による出力指令値に比例したパルス幅の第2の駆動パルスを発生し、その駆動パルスを前記ゼロクロス信号が出力される毎に降圧チョッパ回路内の降圧用スイッチング素子に与えてこれをオンさせる動作を行う。
【0012】
この場合、出力の大きさと、昇圧用及び降圧用スイッチング素子をオンするための各駆動パルスのパルス幅との関係が単純な比例関係となり、しかも当該駆動パルスの決定時に出力情報のフィードバックが基本的に不要になる。このため、出力制御時においては、単純な演算で駆動パルスを決定できるようになり、以て制御精度及び応答性の向上を容易に実現できる。このような出力制御に必要となるゼロクロス検出手段は、リアクトルに流れる電流が止まった瞬間を検出するだけで良いものであって電流値を測定する必要がないため、簡単な回路構成で済む。また、動作制御手段も、単純な比例演算を行うだけで良いから簡単な回路構成で済むものであり、従って、全体の回路構成を簡単化できてコストの低減を実現できるようになる。
【0013】
請求項2記載の手段によれば、複数組の昇圧チョッパ回路及び各降圧チョッパ回路をそれぞれ並列接続した形態で多相化されるから、出力電流のリップル低減を実現できる。この場合、一相分の駆動パルスに基づいて他相のための駆動パルスを容易に生成できると共に、それらの駆動パルスに基づいた開ループ制御を行うだけで済むから、回路構成の複雑化を招くことがなくなる。
【0014】
【発明の実施の形態】
以下、本発明を車載用DC−DCコンバータに適用した一実施例について図1ないし図3を参照しながら説明する。
図1には、昇降圧型DC−DCコンバータの基本回路構成例が示されている。この図1において、昇圧チョッパ回路11及び降圧チョッパ回路12は、エネルギ蓄積及び放出用のリアクトル13を共用した形態となっている。具体的には、昇圧チョッパ回路11は、リアクトル13の他に、パワーMOSFET14(昇圧用スイッチング素子に相当)、ダイオード15(第1のフリーホイールダイオードに相当)、平滑用コンデンサ16を備えた構成とされ、降圧チョッパ回路12は、リアクトル13の他に、パワーMOSFET17(降圧用スイッチング素子に相当)、ダイオード18(第2のフリーホイールダイオードに相当)、平滑用コンデンサ19を備えた構成とされている。
【0015】
この場合、MOSFET14及び17は、負荷である高圧側回路20(例えば車両走行用モータを駆動するためのインバータ回路)の入力端子とグランド端子とに間に、MOSFET14が下アームとなるハーフブリッジ回路を構成するように直列接続されており、各MOSFET14及び17には、それらと並列にダイオード18及び15がそれぞれ接続される。また、リアクトル13は、直流電源である低圧側回路21(例えば車載バッテリ)の出力端子とMOSFET14及び17の共通接続点との間に接続される。さらに、平滑用コンデンサ16は、高圧側回路20の出力端子とグランド端子との間に接続され、平滑用コンデンサ19は、低圧側回路21の出力端子とグランド端子との間に接続される。
【0016】
ゼロクロス検出部22(ゼロクロス検出手段に相当)は、MOSFET14及び17の共通接続点の電圧を測定するように設けられており、昇圧チョッパ回路11及び降圧チョッパ回路12の各動作時においてリアクトル13の両端電圧が零になるタイミング毎にゼロクロス信号を発生してパルス幅演算部23(動作制御手段に相当)に与える構成となっている。
【0017】
パルス幅演算部23は、低圧側回路21の出力を昇圧する際には、昇圧チョッパ回路11で必要な出力を、外部からの出力指令信号による出力指令値などに基づいて算出すると共に、その算出結果に応じたパルス幅の第1の駆動パルスをタイマ回路などの利用により発生し、その駆動パルスを前記ゼロクロス検出部22からゼロクロス信号が出力される毎にMOSFET14に与えてこれをオンさせる動作を行う。この場合、パルス幅演算部23は、上記第1の駆動パルスのパルス幅を出力指令値に比例した大きさに設定する構成となっており、また、出力の過不足に対処するために必要に応じて当該第1の駆動パルスのパルス幅を補正する構成となっている。
【0018】
これにより、MOSFET14は、リアクトル13に流れる電流が止まる毎に第1の駆動パルスのパルス幅に応じた時間だけオンされることになる。そして、このようなオン期間には、低圧側回路21からリアクトル13に電流が供給され、その後におけるMOSFET14のオフ期間においてリアクトル13に蓄積されたエネルギに応じた電流がダイオード15を通じて平滑用コンデンサ16に流れ込むようになり、上記のようなMOSFET14のオンオフが繰り返されるに応じて周知の昇圧チョッパ機能が働くものである。
【0019】
図2(a)には、昇圧動作時において出力指令値が例えば3段階に切換えられた各状態時にリアクトル13に流れる電流の波形が模式的に示されている。この図2(a)から理解できるように、リアクトル電流は三角波状を呈するものであり、そのリアクトル電流の増減周期、つまりMOSFET14の駆動周波数は、出力の増大に比例して低下することになる。因みに、図2(b)には、図4に示した従来のPWM制御方式のDC−DCコンバータにおいて、出力が3段階に切換えられた各状態時にリアクトル7に流れる電流の波形が模式的に示されている。この図2(b)から理解できるように、PWM制御方式のDC−DCコンバータでは、リアクトル電流の増減周期(つまり、PWM信号の周期)が一定値に固定された状態となるように制御されるものである。
【0020】
尚、パルス幅演算部23は、高圧側回路20からの回生出力を降圧する際には、降圧チョッパ回路12で必要な出力電圧を、外部からの出力指令信号による出力指令値などに基づいて算出すると共に、その算出結果に応じたパルス幅の第2の駆動パルスをタイマ回路などの利用により発生し、その駆動パルスを前記ゼロクロス検出部22からゼロクロス信号が出力される毎にMOSFET17に与えてこれをオンさせる動作を行うものであり、これに伴いMOSFET17のオンオフが繰り返されるに応じて周知の降圧チョッパ機能が働くものである。
【0021】
上記した本実施例によれば、以下に述べるような作用・効果を奏することができる。尚、図3には、本実施例のような制御(これをゼロクロス制御と呼ぶ)が行われたときの出力の大きさとパルス幅演算部23から出力される駆動パルスのパルス幅及び駆動周波数との関係が実線で示されており、また、従来のPWM制御が行われたときの出力の大きさとPWM信号のパルス幅及び駆動周波数との関係が点線で示されている。
【0022】
即ち、本実施例の構成によれば、出力がある程度立ち上がった状態では、出力の大きさと、MOSFET14及び17をスイッチングするための各駆動パルスのパルス幅との関係が、図3に示すように単純な比例関係となり、しかも当該駆動パルスの決定時に出力情報のフィードバックが基本的に不要になるという特徴がある。このため、出力制御時においては、単純な演算で駆動パルスを決定できるため、制御精度及び応答性の向上を容易に実現できる。
【0023】
このような出力制御に必要となるゼロクロス検出部22は、リアクトル13に流れる電流が止まった瞬間を検出するだけで良いものであって電流値を測定する必要がないため、簡単な回路構成で済む。また、パルス幅演算部23も、単純な比例演算を行うだけで良いから簡単な回路構成で済むものであり、従って、全体の回路構成を簡単化できてコストの低減を実現できるようになる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、図3に破線で示すように、パルス幅(周期)が固定された状態のPWM信号によって出力を幅広く制御する関係上、微妙なフィードバックが要求されるものであり、安定した出力を得るためには、PWM信号のパルス幅を微妙に調整するという複雑な制御が必要になり、これに対処するためには、高精度で応答性に優れた制御を行う複雑な構成の回路が必要となってコストが高騰することになる。
【0024】
本実施例によれば、上述のように制御動作時の応答性が良好であるから、例えば、昇圧動作状態から降圧動作状態への急な変更に対処するために、降圧動作用のMOSFET17を予め駆動しておくという従来構成のような非効率な制御を行う必要がなくなる。
【0025】
また、本実施例によれば、MOSFET14及び17のオンタイミングが、リアクトル電流が零になったタイミングとなるように制御される構成となっているから、MOSFET14及び17がターンオンする際にリカバリロスが発生することがなくなり、それらMOSFET14及び17として定格の小さなものを使用すれば済むようになる。しかも、このようにリカバリロスが発生しないので、MOSFET14及び17のスイッチング動作に伴う電磁波ノイズの発生も抑制できるようになる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、MOSFET3及び4のスイッチング動作をリアクトル電流が流れている状態で行っているので、それらMOSFET3及び4のターンオン時には、ダイオード5或いは6を通じて数十〜数百ナノ秒オーダーのリカバリ電流が過渡的に流れる。このため、MOSFET3及び4として、不要なリカバリ損失による耐量を確保するために定格に余裕がある大型のものを使用する必要が出てくると共に、リカバリ電流が流れるのに伴い電磁波ノイズが発生するという問題点があった。
【0026】
本実施例によれば、出力の設定を、電流を計測せずに駆動パルスのパルス幅で設定するという開ループ制御可能であるから、ステップ応答出力制御、定電力量制御などを容易に行うことができる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、基本的に各相の電流を計測することが不可欠であって閉ループでの微妙な制御が必要になるため、ステップ応答出力制御、定電力量制御などを行う際には良好な過渡応答特性が要求されるなど、その実現に大きな困難を伴うことになる。
【0027】
本実施例によれば、図3に示すように、出力がある程度立ち上がった状態では、出力の増大に比例してMOSFET14及び17の駆動周波数が低下するという動作特性があるため、出力増大に伴い負荷電流が増大するのに連れてMOSFET14及び17のスイッチング回数が減少することになる。つまり、出力の増大によりMOSFET14及び17の1回のスイッチング当たりの損失が増えるのに応じて、そのスイッチング回数が減少することになるから、MOSFET14及び17で発生するスイッチングロスは、軽負荷時から最大出力時までの全域にわたってほぼ一定になる。このため、MOSFET14及び17を効率的に利用できるようになり、これらに必要な素子仕様を引き下げた無駄のない設計が可能になる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、図3に示すように、出力の大小と関係なく駆動周波数がほぼ一定であるため、出力の増大に連れてMOSFET3及び4でのスイッチングロスが増えるという事情がある。このため、最大出力時に合わせた素子仕様とする必要があり、定格時や軽負荷時にはオーバースペックとなるという無駄が出てくる。
【0028】
本実施例によれば、定格時や軽負荷時においてMOSFET14及び17の駆動周波数が相対的に高くなるため、最も使用頻度が高い範囲において可聴音を抑制した構成を容易に実現できる。この場合、出力が増大するのに連れて駆動周波数が低くなるため、これがユーザに聞こえることになるが、本実施例のDC−DCコンバータように車両走行用のモータを駆動するために用いられる場合には、その出力増大に応じて音が大きくなる状態が、ごく自然な状態であると広く認知されているから、ユーザに違和感を与える恐れがなくなる。これに対して、図4に示した従来のPWM制御方式のDC−DCコンバータでは、常に一定周波数の駆動音が発生することになるため、ユーザに違和感を与える恐れがあり、また、これに対処するために駆動周波数が可聴帯域に入らない構成とする場合には、駆動周波数の増大に伴うスイッチングロスの増加といった種々の障害を乗り越えなければならない。
【0029】
本実施例においては、出力指示信号による出力指令値を電力値とする構成を容易に実現できる。即ち、本実施例によれば、駆動パルスの幅を入力電圧に基づいて調整することにより出力電力値をとに基づいてきわめて容易に設定できるから、出力電流値を測定する必要がなくなるなど、回路構成が複雑化する恐れがなくなる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、出力電圧値の制御を行う場合には、出力電流及び電圧を測定値に基いた計算結果によるフィードバック制御による出力補正動作が必要となり、その実現が非常に困難になる。
【0030】
(他の実施の形態)
その他、本発明は上記した実施例に限定されるものではなく、以下に述べるような変形或いは拡張が可能である。
複数組の昇圧チョッパ回路及び各降圧チョッパ回路をそれぞれ並列接続した状態で設けることにより多相化することにより、出力電流のリップル低減を図っても良い。この場合には、パルス幅演算部23は、低圧側回路21の出力を昇圧する際には、第1の駆動パルスに基づいてそれぞれ位相が異なる複数の第1の多重動作用駆動パルスを生成し、各多重動作用駆動パルスにより複数の昇圧チョッパ回路内の昇圧用スイッチング素子(MOSFET14)を個別にオンさせ、また、高圧側回路20の出力を降圧する際には、第2の駆動パルスに基づいてそれぞれ位相が異なる複数の第2の多重動作用駆動パルスを生成し、各多重動作用駆動パルスにより複数の降圧チョッパ回路内の降圧用スイッチング素子(MOSFET17)を個別にオンさせる動作を行えば良い。
【0031】
この構成によれば、一相分の第1及び第2の駆動パルスに基づいて他相のための駆動パルスを容易に生成できると共に、それらの駆動パルスに基づいた開ループ制御を行うだけで済むから、回路構成の複雑化を招くことがなくなる。因みに、図4に示した従来のPWM制御方式のDC−DCコンバータでは、その多相化が極めて困難であるため、リップル電流の低減のために多相化を図ることは一般的ではない。
【0032】
昇圧チョッパ回路11及び降圧チョッパ回路12でリアクトル13を共用する形態としたが、各チョッパ回路11及び12に専用のリアクトルを設けても良い。昇圧用及び降圧用のスイッチング素子の例としてパワーMOSFETを挙げたが、IGBTなどの他の半導体スイッチング素子であっても良い。
【図面の簡単な説明】
【図1】 本発明の一実施例を示す電気的構成図
【図2】 リアクトル電流波形の一例を示す図
【図3】 出力の大きさと駆動パルスのパルス幅及び駆動周波数との関係を示す特性図
【図4】 従来構成を示す図1相当図
【符号の説明】
11は昇圧チョッパ回路、12は降圧チョッパ回路、13はリアクトル、14はパワーMOSFET(昇圧用スイッチング素子)、15はダイオード(第1のフリーホイールダイオード)、16は平滑用コンデンサ、17はパワーMOSFET(降圧用スイッチング素子)、18はダイオード(第2のフリーホイールダイオード)、19は平滑用コンデンサ、20は高圧側回路(負荷)、21は低圧側回路(直流電源)、22はゼロクロス検出部(ゼロクロス検出手段)、23はパルス幅演算部(動作制御手段)を示す。
Claims (2)
- 直流電源出力をリアクトル、第1のフリーホイールダイオード及び昇圧用スイッチング素子を利用して昇圧して負荷に与える昇圧チョッパ回路と、前記負荷側からの回生出力をリアクトル、第2のフリーホイールダイオード及び降圧用スイッチング素子を利用して降圧して前記直流電源に与える降圧チョッパ回路とを組み合わせて構成されたDC−DCコンバータにおいて、
前記昇圧チョッパ回路及び降圧チョッパ回路の各動作時において前記リアクトルの両端電圧が零になるタイミング毎にゼロクロス信号を発生するゼロクロス検出手段と、
前記昇圧チョッパ回路のための出力指示信号による出力指令値に比例したパルス幅の第1の駆動パルスを発生すると共に、その駆動パルスを前記ゼロクロス信号が出力される毎に前記昇圧用スイッチング素子に与えてこれをオンさせる動作、並びに前記降圧チョッパ回路のための出力指示信号による出力指令値に比例したパルス幅の第2の駆動パルスを発生すると共に、その駆動パルスを前記ゼロクロス信号が出力される毎に前記降圧用スイッチング素子に与えてこれをオンさせる動作を行う動作制御手段とを備えたことを特徴とするDC−DCコンバータ。 - 前記昇圧チョッパ回路及び降圧チョッパ回路を少なくとも一組追加すると共に、各昇圧チョッパ回路及び各降圧チョッパ回路をそれぞれ並列接続することにより多相化され、
前記動作制御手段は、前記第1の駆動パルスに基づいてそれぞれ位相が異なる複数の第1の多重動作用駆動パルスを生成し、各多重動作用駆動パルスにより前記複数の昇圧チョッパ回路内の昇圧用スイッチング素子を個別にオンさせると共に、前記第2の駆動パルスに基づいてそれぞれ位相が異なる複数の第2の多重動作用駆動パルスを生成し、各多重動作用駆動パルスにより前記複数の降圧チョッパ回路内の降圧用スイッチング素子を個別にオンさせる動作を行うことを特徴とする請求項1記載のDC−DCコンバータ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068086A JP4107113B2 (ja) | 2003-03-13 | 2003-03-13 | Dc−dcコンバータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003068086A JP4107113B2 (ja) | 2003-03-13 | 2003-03-13 | Dc−dcコンバータ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004282835A JP2004282835A (ja) | 2004-10-07 |
JP4107113B2 true JP4107113B2 (ja) | 2008-06-25 |
Family
ID=33285519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003068086A Expired - Lifetime JP4107113B2 (ja) | 2003-03-13 | 2003-03-13 | Dc−dcコンバータ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4107113B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007116846A (ja) * | 2005-10-21 | 2007-05-10 | Fujitsu Ten Ltd | スイッチングレギュレータ |
JP4459918B2 (ja) | 2006-03-16 | 2010-04-28 | 富士通テン株式会社 | スイッチングレギュレータ |
JP4861750B2 (ja) | 2006-06-01 | 2012-01-25 | トヨタ自動車株式会社 | 電源装置およびその制御方法 |
JP4609400B2 (ja) * | 2006-09-06 | 2011-01-12 | トヨタ自動車株式会社 | Dc−dcコンバータおよびその制御方法 |
JP5880479B2 (ja) | 2013-04-02 | 2016-03-09 | 株式会社デンソー | 電源制御装置 |
CN106612072A (zh) * | 2015-10-22 | 2017-05-03 | 中兴通讯股份有限公司 | 基于buck拓扑的开关电源控制电路及太阳能控制器 |
JP7279694B2 (ja) | 2020-08-25 | 2023-05-23 | トヨタ自動車株式会社 | 制御装置 |
-
2003
- 2003-03-13 JP JP2003068086A patent/JP4107113B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004282835A (ja) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4196867B2 (ja) | 双方向昇降圧型チョッパ回路及びそれを用いたインバータ回路並びにdc−dcコンバータ回路 | |
KR101514914B1 (ko) | 전원 시스템 | |
US9071127B2 (en) | Direct current voltage conversion circuit having multiple operational configurations | |
JP4110470B2 (ja) | 多相多重制御方式 | |
JP2000083374A (ja) | スイッチングレギュレ―タ | |
JP6702209B2 (ja) | 電力変換装置 | |
JP6185860B2 (ja) | 双方向コンバータ | |
JP6122701B2 (ja) | 電源装置 | |
US6664774B2 (en) | Offset peak current mode control circuit for multiple-phase power converter | |
US10715042B2 (en) | High gain DC-DC converter for electrified vehicles | |
JP6065753B2 (ja) | Dc/dcコンバータおよびバッテリ充放電装置 | |
JP2007221892A (ja) | 電力変換装置 | |
Ahmed | Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique | |
JP2006081263A (ja) | 双方向dc−dcコンバータ | |
JP4107113B2 (ja) | Dc−dcコンバータ | |
JP2004166370A (ja) | 電圧変換装置 | |
CN106817019A (zh) | 用于控制环保型车辆的低压直流转换器的装置和方法 | |
JP6873357B1 (ja) | 多相コンバータ制御装置 | |
JP2019022274A (ja) | 直流電圧変換回路及びその制御方法 | |
JP3214687B2 (ja) | 降圧形高力率コンバータ | |
JP6242353B2 (ja) | 出力電圧反転型dcdcコンバータ | |
JP2002044937A (ja) | 同期整流回路 | |
CN117674335B (zh) | 供电电路、供电控制方法、存储介质及车辆 | |
JP4299570B2 (ja) | 電源装置、及び電源装置の運転方法 | |
JPS6232707B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080324 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4107113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |