WO2007132007A1 - Mit einem korrosionsschutzüberzug versehenes stahlflachprodukt und verfahren zu seiner herstellung - Google Patents

Mit einem korrosionsschutzüberzug versehenes stahlflachprodukt und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2007132007A1
WO2007132007A1 PCT/EP2007/054711 EP2007054711W WO2007132007A1 WO 2007132007 A1 WO2007132007 A1 WO 2007132007A1 EP 2007054711 W EP2007054711 W EP 2007054711W WO 2007132007 A1 WO2007132007 A1 WO 2007132007A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
steel product
flat steel
thickness
content
Prior art date
Application number
PCT/EP2007/054711
Other languages
English (en)
French (fr)
Inventor
Wilhelm Warnecke
Manfred Meurer
Rudolf Schönenberg
Michael Keller
Alexander Elsner
Original Assignee
Thyssenkrupp Steel Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Ag filed Critical Thyssenkrupp Steel Ag
Priority to US12/300,968 priority Critical patent/US8481172B2/en
Priority to CN2007800176280A priority patent/CN101454473B/zh
Priority to CA2650800A priority patent/CA2650800C/en
Priority to AU2007251550A priority patent/AU2007251550B2/en
Priority to KR1020087027954A priority patent/KR101399085B1/ko
Priority to BRPI0711652-7A priority patent/BRPI0711652B1/pt
Priority to JP2009510444A priority patent/JP5586224B2/ja
Publication of WO2007132007A1 publication Critical patent/WO2007132007A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]

Definitions

  • the invention relates to a flat steel product formed from a steel substrate, such as steel strip or sheet, and a zinc-based corrosion protection coating applied to at least one of the sides of the steel substrate. Moreover, the invention relates to a method with which such flat steel products can be produced.
  • metallic coatings are applied, in particular on steel sheets or strips, which are based on zinc or zinc alloys in the majority of applications.
  • Such zinc or Zinklegleitersuberzuge protect due to their barrier and cathodic protection, the corresponding coated steel sheet in practical use against corrosion.
  • the thickness of the coating required in the prior art for sufficient corrosion resistance poses problems in processing, ie in forming and welding. This applies z. B. when in high-wear highly corrosive flanges to be welded by spot welding. This requirement exists in particular in the field of construction of automobile bodies, in general construction applications or in the construction of housings for building services.
  • EP 1 621 645 A1 Another metal plate provided with a metallic protective coating with improved corrosion resistance is known from EP 1 621 645 A1.
  • the one described there Steel sheet is provided with a protective coating by conventional hot-dip galvanizing, containing (in% by weight) 0.3-2.3% Mg, 0.6-2.3% Al, optionally ⁇ 0.2% other active ingredients and balance Zn and unavoidable impurities. Due to the high Al and Mg content of such a sheet has a particularly good corrosion resistance. Practical experiments have shown, however, that also according to EP 1 621 645 Al procured sheets do not meet the demands made by the processing industry on the weldability of such sheets. It also shows that the sheets in question have a suitability for phosphating insufficient by today's standards.
  • the object of the invention was therefore to provide a flat steel product which has an optimum combination of high corrosion resistance and optimized processability and which is particularly suitable for use as a material for automotive body construction, for general construction or for home appliance construction. Likewise, a method for producing such a flat product should be specified.
  • a flat steel product formed from a steel substrate, such as a steel strip or sheet, and a zinc-based anticorrosive coating applied to (in% by weight) 0, at least on one side of the steel substrate.
  • the above-mentioned object is related to a method for producing a flat steel product which is applied to a steel substrate such as a steel strip or a -Sheet metal, an anticorrosive coating is produced by annealing the steel substrate and starting from the annealing temperature to a strip entry temperature of 400 - is cooled 600 0 C, with which the steel substrate in a (in wt .-%) 0,1 - 0, 4% Al, 0.25-2.5% Mg, up to 0.2%
  • Strip immersion temperature and the bath temperature in the range of -20 ° C to +100 ° C is varied so that on the steel substrate, an anticorrosive coating is formed in (in wt .-%) 0.25 - 2.5% Mg, 0, 2 - 3.0% Al, ⁇ 4.0% Fe and optionally in total up to 0.8% of one or more elements from the group "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co , Cr, Mn, Sn and rare earths, balance zinc and unavoidable impurities contains and that in an intermediate layer, which is between a directly adjacent to the surface of the steel flat product surface layer and one to the steel substrate extending boundary layer and whose thickness is at least 20% of the total thickness of the group "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co , Cr, Mn, Sn and rare earths, balance zinc and unavoidable impurities contains and that in an intermediate layer, which is between a directly adjacent to the surface of the steel flat product surface layer and one to
  • Corrosion layer coating amounts, has an Al content of at most 0.5 wt .-%.
  • the invention is based on the recognition that general properties such. B. adhesion and also weldability of a provided with a corrosion-protective Zn-Mg-Al coating steel sheet or strip decisively depends on the distribution of the aluminum in the coating layer.
  • B. adhesion and also weldability of a provided with a corrosion-protective Zn-Mg-Al coating steel sheet or strip decisively depends on the distribution of the aluminum in the coating layer.
  • Flat steel products also due to the low content of Al on their surface and in the intermediate layer a particularly good suitability for phosphating, so that they can be provided, for example, without special additional measures with an organic paint coating.
  • Elements from the group Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn and rare earths can be present in the coating according to the invention up to a total of their contents of 0.8% by weight , Pb, Bi and Cd can be used to form a larger crystal structure (zinc flower), Ti, B, Si to improve the formability, Cu, Ni, Co, Cr, Mn to influence the boundary layer reactions, Sn influencing the surface oxidation and rare earths, especially lanthanum and cerium, to improve the flow behavior of the melt.
  • the impurities which may be present in a corrosion protection coating according to the invention also include the constituents which, as a consequence of the hot-dip coating, enter the coating from the steel substrate in quantities which do not affect the properties of the coating.
  • the expression of the desired layer structure according to the invention can be directly influenced by a suitable adjustment of the band immersion and / or bath temperature.
  • the process according to the invention it is achieved that high Al and Mg contents accumulate in the boundary layer adjacent to the steel substrate, while in particular low Al contents are present in the intermediate layer.
  • the difference between the temperature of the strip during immersion and the temperature of the melt bath is of particular importance.
  • an advantageous embodiment of the invention provides that the Al content of the intermediate layer is limited to 0.25 wt .-%.
  • the layer structure used by the invention then has a particularly positive effect on the weldability and the phosphatability at the same time still good corrosion protection of the coating, if the thickness of the intermediate layer according to the invention amounts to at least 25% of the total thickness of the anti-corrosion coating.
  • the information on the structure of the corrosion-coating layer and its individual layers contained herein and in the claims relates to a layer profile determined by a GDOS measurement (glow discharge optical emission spectrometry).
  • GDOS measurement low discharge optical emission spectrometry
  • such a GDOS measurement shows that in the surface layer immediately adjacent to the surface of the coating, as a result of oxidation, an increased Al content unavoidably occurs as a result of oxidation.
  • the thickness of this surface layer is very small compared with the total thickness of the coating, the Surface layer slightly breaks when welding a flat steel product according to the invention and affects the welding result only insignificantly.
  • the thickness of the surface layer should be limited to less than 10%, in particular less than 1% of the total thickness of the anti-corrosion coating.
  • the surface layer is in each case not more than 0.2 .mu.m, so that with conventional coating thicknesses of 6 .mu.m and more, the fraction of the surface boundary layer in the total thickness of the coating supports is about 3.5% and far below ,
  • the coating preferably has Fe contents which are more than 0.3% by weight, in particular more than 0.4% by weight or even more than 0.5% by weight.
  • the relatively high Fe contents are present in particular in the region of the boundary layer adjacent to the steel substrate.
  • a flat steel product obtained according to the invention has working properties which are superior to conventional flat steel products even if they have high Mg and Al contents in their protective coating.
  • the Al content of the anti-corrosion coating can be limited to less than 0.6 wt .-%, in particular less than 0.5 wt .-%.
  • the total thickness of the anti-corrosion coating should be at least 2.5 ⁇ m, in particular at least 7 ⁇ m.
  • the coating weight distribution of the anti-corrosion coating of at least 100 g / m 2 proves to be particularly favorable in terms of its protective effect.
  • the weldability is not adversely affected due to the distribution of its Al content prescribed according to the invention.
  • the speed with which the steel substrate passes through the melt bath has only a minor influence on the coating result. Therefore, it can be varied in the range of 50 - 200 m / min, for example, in order to achieve the optimum work result at maximum productivity.
  • the annealing of the steel strip, which precedes the melt bath, should be carried out under a protective gas atmosphere in order to avoid oxidation of the sheet metal surface.
  • the protective gas atmosphere in a conventional manner contain more than 3.5 vol .-% H2 and each as the remainder N2.
  • the annealing temperature can also be in a known manner in the range of 700 - 900 0 C.
  • the melt bath itself preferably contains at best traces of iron, since according to the invention the Fe content of the corrosion-coating layer is to be established by alloying in iron originating from the steel substrate. Accordingly, the Fe content of the melt bath is preferably limited to at most 0.1 wt%, more preferably at most 0.07 wt%.
  • Diag. 1 the pictorial representation of the by a
  • GDOS measurement determined distribution of contents Zn, Mg, Al and Fe across the thickness of a first anticorrosive coating applied to a steel substrate;
  • FIG. 2 shows a pictorial representation of the distribution of the contents of Zn, Mg, Al and Fe determined by a GDOS measurement over the thickness of a second corrosion protection coating applied to a steel substrate.
  • the steel strip After annealing, the steel strip is cooled at a cooling rate of 5 to 30 ° C / s accelerated to a temperature of 470 0 C ⁇ 5 0 C, at which it was held for 30 s. Subsequently, the steel strip was passed at a belt immersion speed of 100 m / min in a melt bath whose bath temperature was 460 0 C ⁇ 5 0 C. Which bath-entering the steel strip was in each 5 0 C above the bath temperature of the melt bath.
  • the particular composition of the melt bath as well as the analyzes of hot dip galvanizing in the melt bath on the top and bottom of the anti-corrosion coating are in Table 1 for twelve coated in the manner described above El - E12 - as far as determined - compiled. It turns out that the coatings formed on the steel substrate each have high levels of Fe. The alloying with Fe which occurs during the production of the coating ensures a particularly high adhesion of the coating to the steel substrate.
  • the Al content is high due to oxidation.
  • the thickness of this surface boundary layer is at most 0.2 microns and is therefore easily broken in the spot or laser welding, without causing a deterioration in the quality of the welding result.
  • the surface boundary layer is followed by the approximately 2.5 ⁇ m thick intermediate layer whose Al content is less than 0.2%.
  • the thickness of the intermediate layer is thus at around 36% of the total overlay thickness of the respective anti-corrosion coating of 7 ⁇ m.
  • the intermediate layer merges into a boundary layer on the steel substrate, in which the contents of Al, Mg and Fe have increased significantly compared to the corresponding contents of the intermediate layer.
  • the operating parameters set in the laboratory tests and an analysis of the correspondingly produced coating layer are summarized in Table 2.
  • the result of the coating was found to be independent of the composition of the steel substrate, in particular with regard to the incorporation of high Fe contents originating from the steel substrate and the formation of the near-surface intermediate layer with Al contents below 0.25% by weight is.
  • the operational tests have fully confirmed the result of the previous laboratory tests.
  • the thickness of the surface boundary layer absorbing the surface oxidation amounts to max. 0.2 microns and is based on the determined in a GDOS measurement layer profile in each case in the range of up to 2.7% of the total overlay thicknesses.
  • the amount of Al enrichment on the immediate surface is at most about 1 wt .-%. This is followed up to a thickness of at least 25% of the total overlay of the coating, the intermediate layer with a low Al content of not more than 0.25 wt .-% of. In the boundary layer, the Al content rises to 4.5% at the boundary to the steel substrate.
  • the Mg enrichment on the immediate surface of the coating is significantly greater than the AI enrichment. Mg contents of up to 20% are achieved here.
  • the Mg content decreases over the intermediate layer and amounts to 0.5 to 2% at a depth of about 25% of the total coating thickness of the coating.
  • the boundary layer finds an increase in the Mg content in the direction of the steel substrate. At the border to the steel substrate, the Mg content is up to 3.5%.

Abstract

Die vorliegende Erfindung betrifft ein Stahlflachprodukt und ein Verfahren zu dessen Herstellung, das aus einem Stahlsubstrat, wie einem Stahlband oder -blech, und einem mindestens auf eine Seite des Stahlsubstrat aufgetragenen zinkbasierten Korrosionsschutzüberzug gebildet ist, der in (in Gew.-%) Mg: 0,25 - 2,5 %, Al: 0,2 - 3,0 %, Fe = 4,0 %, sowie wahlweise in Summe bis zu 0,8 % an einem oder mehreren Elementen aus der Gruppe "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden", Rest Zink und unvermeidbare Verunreinigungen enthält, wobei der Korrosionsschutzüberzug in einer Zwischenschicht, die sich zwischen einer unmittelbar an die Oberfläche des Stahlflachprodukts angrenzenden Oberflächenschicht und einer an das Stahlsubstrat angrenzenden Grenzschicht erstreckt und deren Dicke mindestens 20 % der Gesamtdicke des Korrosionsschichtüberzugs beträgt, einen Al-Gehalt von höchstens 0,5 Gew.-% aufweist. Das erfindungsgemäße Stahlflachprodukt besitzt eine optimale Kombination von hoher Korrosionsbeständigkeit und optimierter Schweißbarkeit und eignet sich insbesondere für die Verwendung als Werkstoff für den Automobilkarosseriebau, für allgemeine Bauzwecke oder für den Hausgerätebau.

Description

MIT EINEM KORROSIONSSCHUTZUBERZUG VERSEHENES STAHLFLACHPRODUKT UND VERFAHREN ZU SEINER HERSTELLUNG
Die Erfindung betrifft ein Stahlflachprodukt, das aus einem Stahlsubstrat, wie Stahlband oder -blech, und einem auf mindestens einer der Seiten des Stahlsubstrats aufgebrachten, auf Zink basierenden Korrosionsschutzuberzug gebildet ist. Darüber hinaus betrifft die Erfindung ein Verfahren, mit dem sich derartige Stahlflachprodukte herstellen lassen.
Zur Verbesserung ihrer Beständigkeit gegen Korrosion werden insbesondere auf Stahlblechen oder -bandern metallische Überzüge aufgebracht, die in der überwiegenden Zahl der Anwendungsfalle auf Zink oder Zinklegierungen basieren. Solche Zink- bzw. Zinklegierungsuberzuge schützen aufgrund ihrer Barriere- und kathodischen Schutzwirkung das entsprechend beschichtete Stahlblech im praktischen Einsatz gut gegen Korrosion.
Die beim Stand der Technik für eine ausreichende Korrosionsbeständigkeit erforderliche Dicke des Überzugs bringt jedoch Probleme bei der Verarbeitung, d. h. beim Umformen und Verschweißen mit sich. Dies gilt z. B. dann, wenn im praktischen Einsatz hoch korrosionsbelastete Flansche mittels Punktschweißen verschweißt werden sollen. Diese Anforderung besteht insbesondere im Bereich des Baus von Automobilkarosserien, bei allgemeinen Bauanwendungen oder beim Bau von Gehäusen für die Haustechnik. Die bei einer solchen Schweißung erzeugte Verbindung soll bei ausreichendem Schweißstrom einen Mindestpunktdurchmesser von 4 x -Jt (t = Einzelblechdicke) aufweisen und spritzerfrei schweißbar sein.
Vor dem Hintergrund der Probleme bei der Verarbeitung von konventionell mit einer Zn-Schicht großer Dicke beschichteten Blechen sind hochkorrosionsbeständige Zn-Mg- bzw. Zn-Mg-Al-Schichtsysteme entwickelt worden, die bei deutlich verminderter Schichtdicke einen mit einer konventionellen, 7,5 μm dicken Zinkbeschichtung vergleichbaren Korrosionsschutz bieten, jedoch eine signifikant bessere Verarbeitbarkeit aufweisen.
Eine Möglichkeit, solcherart feuerverzinkte Stahlbleche mit erhöhter Korrosionsbeständigkeit bei gleichzeitig vermindertem Auflagengewicht herzustellen, ist in der EP 0 038 904 Bl beschrieben. Gemäß diesem Stand der Technik wird durch Schmelztauchbeschichten auf ein Stahlsubstrat eine 0,2 Gew.-% Al und 0,5 Gew.-% Mg enthaltende Zinkbeschichtung aufgebracht. Auch wenn das derart beschichtete Blech eine verbesserte Beständigkeit gegen Rostbildung aufweisen soll, erfüllt es in der Praxis die heute an die Korrosionsbeständigkeit solcher Bleche insbesondere im Bereich der Anschlussflansche einer Automobilkarosserie gestellten Anforderungen jedoch nicht.
Ein weiteres mit einem metallischen Schutzüberzug versehenes Blech mit verbesserter Korrosionsbeständigkeit ist aus der EP 1 621 645 Al bekannt. Das dort beschriebene Stahlblech ist durch konventionelles Feuerverzinken mit einem Schutzüberzug versehen, der (in Gew.-%) 0,3 - 2,3 % Mg, 0,6 - 2,3 % Al, optional < 0,2 % sonstige wirksame Bestandteile und als Rest Zn sowie unvermeidbare Verunreinigungen enthält. Durch den hohen Al- und Mg-Anteil weist ein solches Blech eine besonders gute Korrosionsbeständigkeit auf. Praktische Versuche haben jedoch ergeben, dass auch gemäß der EP 1 621 645 Al beschaffene Bleche die von der verarbeitenden Industrie an die Verschweißbarkeit solcher Bleche gestellten Anforderungen nicht erfüllen. Auch zeigt sich, dass die betreffenden Bleche eine nach heutigen Maßstäben nur unzureichende Eignung zum Phosphatieren besitzen.
Die Aufgabe der Erfindung bestand daher darin, ein Stahlflachprodukt zu schaffen, das eine optimale Kombination von hoher Korrosionsbeständigkeit und optimierter Verarbeitbarkeit besitzt und welches sich insbesondere für die Verwendung als Werkstoff für den Automobilkarosseriebau, für allgemeine Bauzwecke oder für den Hausgerätebau eignet. Ebenso sollte ein Verfahren zur Herstellung eines solchen Flachprodukts angegeben werden.
Diese Aufgabe ist erfindungsgemäß in Bezug auf das Produkt durch ein Stahlflachprodukt, das aus einem Stahlsubstrat, wie einem Stahlband oder -blech, und einem mindestens auf eine Seite des Stahlsubstrats aufgetragenen zinkbasierten Korrosionsschutzüberzug gebildet ist, der in (in Gew.-%) 0,25 - 2,5 % Mg, 0,2 - 3,0 % Al, < 4,0 % Fe, sowie wahlweise in Summe bis zu 0,8 % an einem oder mehreren Elementen aus der Gruppe "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden", Rest Zink und unvermeidbare Verunreinigungen enthält, wobei der Korrosionsschutzüberzug in einer Zwischenschicht, die sich zwischen einer unmittelbar an die Oberfläche des Stahlflachprodukts angrenzenden Oberflächenschicht und einer an das Stahlsubstrat angrenzenden Grenzschicht erstreckt und deren Dicke mindestens 20 % der Gesamtdicke des Korrosionsschichtüberzugs beträgt, einen Al-Gehalt von höchstens 0,5 Gew.-% aufweist. In entsprechender Weise ist die oben angegebene Aufgabe in Bezug auf ein Verfahren zur Herstellung eines Stahlflachprodukts, bei dem auf ein Stahlsubstrat, wie einem Stahlband oder einem -blech, ein Korrosionsschutzüberzug erzeugt wird, indem das Stahlsubstrat geglüht und ausgehend von der Glühtemperatur auf eine Bandeintrittstemperatur von 400 - 600 0C gekühlt wird, mit der das Stahlsubstrat in ein (in Gew.-%) 0,1 - 0,4 % Al, 0,25 - 2,5 % Mg, bis zu 0,2 % Fe, Rest Zink sowie unvermeidbare Verunreinigungen enthaltendes und auf eine Badtemperatur von 420 - 500 0C erwärmtes Schmelzbad eintritt, wobei die Differenz zwischen der
Bandeintauchtemperatur und der Badtemperatur im Bereich von -20 °C bis +100 °C so variiert wird, dass auf dem Stahlsubstrat ein Korrosionsschutzüberzug gebildet wird, der in (in Gew.-%) 0,25 - 2,5 % Mg, 0,2 - 3,0 % Al, < 4,0 % Fe sowie wahlweise in Summe bis zu 0,8 % an einem oder mehreren Elementen aus der Gruppe "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden", Rest Zink und unvermeidbare Verunreinigungen enthält und der in einer Zwischenschicht, die sich zwischen einer unmittelbar an die Oberfläche des Stahlflachprodukts angrenzenden Oberflächenschicht und einer an das Stahlsubstrat angrenzenden Grenzschicht erstreckt und deren Dicke mindestens 20 % der Gesamtdicke des
Korrosionsschichtuberzugs betragt, einen Al-Gehalt von höchstens 0,5 Gew.-% aufweist.
Der Erfindung liegt die Erkenntnis zu Grunde, dass allgemeine Eigenschaften wie z. B. Haftung und auch Schweißeignung eines mit einem vor Korrosion schutzenden Zn-Mg-Al-Uberzug versehenen Stahlblechs oder -bands entscheidend von der Verteilung des Aluminiums in der Uberzugsschicht abhangt. So hat sich überraschend herausgestellt, dass dann, wenn, wie von der Erfindung vorgegeben, in einer oberflachennahen Zwischenschicht ausreichender Dicke erfindungsgemaß geringe Al-Gehalte vorhanden sind, eine gegenüber konventionell ausgebildeten Blechen verbesserte Schweißeignung gegeben ist, obwohl der Al-Gehalt des Überzugs insgesamt auf einem Niveau liegt, durch das ein hoher Korrosionsschutz gewahrleistet ist. Die dementsprechend bei erfindungsgemaß ausgebildeten Blechen im Bereich der Grenzschicht am Übergang zum Stahlsubstrat hohe AI-Konzentration bewirkt dabei, dass die positive Wirkung des Aluminiums auf den Korrosionsschutz trotz des geringen Anteils an Al in der Zwischenschicht erhalten bleibt.
Dabei zeigen erfindungsgemaß ausgebildete
Stahlflachprodukte ebenfalls in Folge der geringen Gehalte an Al auf ihrer Oberflache und in der Zwischenschicht eine besonders gute Eignung zur Phosphatierung, so dass sie beispielsweise ohne besondere zusatzliche Maßnahmen mit einer organischen Lackbeschichtung versehen werden können. Elemente aus der Gruppe Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden können bis zu einer Summe ihrer Gehalte von 0,8 Gew.-% im erfindungsgemaßen Überzug vorhanden sein. Pb, Bi und Cd können dabei zur Ausbildung einer größeren Kristallstruktur (Zinkblume) , Ti, B, Si zur Verbesserung der Umformbarkeit, Cu, Ni, Co, Cr, Mn zur Beeinflussung der Grenzschichtreaktionen, Sn Beeinflussung der Oberflachenoxidation und seltene Erden, insbesondere Lanthan und Cer, zur Verbesserung des Fließverhaltens der Schmelze zugegeben werden. Zu den Verunreinigungen, die in einem erfindungsgemaßen Korrosionsschutzuberzug enthalten sein können, zahlen auch die Bestandteile, die in Folge des Schmelztauchbeschichtens aus dem Stahlsubstrat in Mengen in den Überzug gelangen, durch die die Eigenschaften des Überzugs nicht beeinflusst werden.
Es hat sich gezeigt, dass bei den relativ niedrigen AI- Gehalten eines zur Durchfuhrung des erfindungsgemaßen Verfahrens verwendeten Schmelzenbades durch eine geeignete Einstellung der Bandeintauch- und / oder der Badtemperatur selbst die Ausprägung des erfindungsgemaß angestrebten Schichtaufbaus direkt beeinflusst werden kann. Durch die erfindungsgemaße Verfahrensfuhrung wird dabei erreicht, dass sich in der zum Stahlsubstrat angrenzenden Grenzschicht hohe Al- und Mg-Gehalte anreichern, wahrend in der Zwischenschicht insbesondere niedrige Al-Gehalte vorhanden sind. Dabei kommt der Differenz zwischen der Temperatur des Bandes beim Eintauchen und der Temperatur des Schmelzenbades eine besondere Bedeutung zu. Indem diese Differenz im Bereich von -20 0C bis 100 0C, bevorzugt -10 0C - 70 0C, variiert wird, lasst sich die erfindungsgemaß minimierte Anwesenheit von Al in der Zwischenschicht sicher und gezielt einstellen.
Besonders gunstige Schweißeigenschaften stellen sich dann ein, wenn der Aluminiumgehalt der Zwischenschicht so weit wie möglich reduziert ist. Daher sieht eine vorteilhafte Ausgestaltung der Erfindung vor, dass der Al-Gehalt der Zwischenschicht auf 0,25 Gew.-% beschrankt ist.
Darüber hinaus wirkt sich der durch die Erfindung genutzte Schichtaufbau dann besonders positiv auf die Schweißeignung und die Phosphatierbarkeit bei gleichzeitig nach wie vor guter Korrosionsschutzwirkung des Überzuges aus, wenn die Dicke der Zwischenschicht erfindungsgemaß mindestens 25 % der Gesamtdicke des Korrosionsschutzuberzugs betragt. Die hier und in den Ansprüchen enthaltenen Angaben zum Aufbau der Korrosionsuberzugsschicht und ihrer einzelnen Schichten beziehen sich auf ein mit einer GDOS-Messung (glow discharge optical emission spectrometry) ermitteltes Schichtprofil. Bei dem beispielsweise im VDI-Lexikon Werkstofftechnik, hrsg. von Hubert Grafen, VDI-Verlag GmbH, Dusseldorf 1993 beschriebenen GDOS-Messverfahren handelt es sich um ein Standardverfahren zum schnellen Erfassen eines Konzentrationsprofils von Beschichtungen .
Bei erfindungsgemaß beschaffenen Stahlflachprofilen zeigt eine solche GDOS-Messung, dass sich in der unmittelbar an die Oberflache des Überzugs angrenzenden Oberflachenschicht in Folge von Oxidation herstellungsbedingt unvermeidbar ein erhöhter Al-Gehalt einstellt. Da die Dicke dieser Oberflachenschicht verglichen mit der Gesamtdicke des Überzuges jedoch sehr gering ist, wird die Oberflachenschicht beim Verschweißen eines erfindungsgemaßen Stahlflachprodukts leicht durchbrochen und beeinflusst das Schweißergebnis nur unwesentlich. Um einen möglicherweise negativen Einfluss der höhere AI- Gehalte aufweisenden Oberflachenschicht auszuschließen, sollte die Dicke der Oberflachenschicht auf weniger als 10 %, insbesondere weniger als 1 % der Gesamtdicke des Korrosionsschutzuberzugs beschrankt werden. Praktische Untersuchungen haben bestätigt, dass bei erfindungsgemaß beschaffenen Stahlflachprodukten die Oberflachenschicht jeweils maximal 0,2 μm stark ist, so dass bei üblichen Uberzugsdicken von 6 μm und mehr der Anteil der Oberflachengrenzschicht an der Gesamtdicke der Uberzugsaufläge bei etwa 3,5 % und weit darunter liegt.
Bei erfindungsgemaßen Stahlflachprodukten weist der Überzug bevorzugt Gehalte an Fe auf, die mehr als 0,3 Gew.-%, insbesondere mehr als 0,4 Gew.-% oder sogar mehr als 0,5 Gew.-% betragen. Die relativ hohen Fe-Gehalte sind dabei insbesondere im Bereich der an das Stahlsubstrat angrenzenden Grenzschicht vorhanden. In dieser kommt es bevorzugt zu einer Legierungsbildung, durch die eine optimierte Haftung des Überzugs auf dem Stahlsubstrat gewahrleistet ist. Auf diese Weise weist ein erfindungsgemaß beschaffenes Stahlflachprodukt Gebrauchseigenschaften auf, die den konventionellen Stahlflachprodukten auch dann überlegen sind, wenn sie hohe Mg- und Al-Gehalte in ihrem Schutzuberzug aufweisen.
Um zusatzlich zum erfindungsgemaßen Schichtaufbau des Korrosionsschutzuberzugs die Verschweißbarkeit und Phosphatierbarkeit eines erfindungsgemaßen Stahlflachprodukts weiter zu optimieren, kann der Al-Gehalt des Korrosionsschutzuberzugs auf weniger als 0,6 Gew.-%, insbesondere weniger als 0,5 Gew.-% beschrankt werden.
Um seine Wirkung zu sichern, sollte die Gesamtdicke des Korrosionsschutzuberzugs mindestens 2,5 μm, insbesondere mindestens 7 μm betragen. Dabei erweisen sich Auflagengewichtsverteilung des Korrosionsschutzuberzugs von mindestens 100 g/m2 als hinsichtlich seiner Schutzwirkung besonders gunstig. Trotz höherer Auflagenstarke und Dicke des Korrosionsschutzuberzugs wird auf Grund der erfindungsgemaß vorgeschriebenen Verteilung seines AI- Gehalts die Schweißbarkeit nicht negativ beeinträchtigt.
Besonders gute Produktergebnisse stellen sich ein, wenn die Badtemperatur des Schmelzenbades 440 - 480 0C betragt.
Überraschend hat sich herausgestellt, dass die Geschwindigkeit, mit der das Stahlsubstrat das Schmelzenbad durchlauft, nur einen untergeordneten Einfluss auf das Beschichtungsergebnis hat. Daher kann sie beispielsweise im Bereich von 50 - 200 m/min variiert werden, um das jeweils optimale Arbeitsergebnis bei maximaler Produktivität zu erzielen .
Die dem Schmelzenbad vorausgehende Gluhung des Stahlbands sollte unter einer Schutzgasatmosphare durchgeführt werden, um eine Oxidation der Blechoberflache zu vermeiden. Dazu kann die Schutzgasatmosphare in an sich bekannter Weise mehr als 3,5 Vol.-% H2 und jeweils als Rest N2 enthalten. Die Gluhtemperatur kann dabei in ebenfalls an sich bekannter Weise im Bereich von 700 - 900 0C liegen. Indem die Badeintrittstemperatur des Stahlsubstrats im Bereich von -20 0C bis +100 0C von der Temperatur des Schmelzenbades abweicht, wird auch erreicht, dass das Schmelzenbad seine optimale Temperatur trotz des Eintritts des Stahlsubstrats gleichmäßig beibehält.
Das Schmelzenbad selbst enthält bevorzugt allenfalls Spuren von Eisen, da sich erfindungsgemäß der Fe-Gehalt der Korrosionsüberzugsschicht durch Einlegierung von Eisen einstellen soll, der aus dem Stahlsubstrat stammt. Dementsprechend ist der Fe-Gehalt des Schmelzenbades bevorzugt auf höchstens 0,1 Gew.-%, insbesondere höchstens 0,07 Gew.-% beschränkt.
Die gute Verarbeitbarkeit, der gleichzeitig gute Korrosionsschutz und die gute Phosphatierbarkeit sind unabhängig von der Art und Beschaffenheit des Stahlsubstrats gegeben. So haben praktische Versuche ergeben, dass keine wesentlichen Unterschiede in den Eigenschaften von erfindungsgemäß beschaffenen Stahlflachprodukten eintreten, wenn es sich bei dem Stahlsubstrat um einen IF-Stahl, beispielsweise einen konventionellen mikro-legierten Stahl, oder einen normal legierten Stahl, wie einem konventionellen Qualitätsstahl, handelt .
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigen:
Diag. 1 die bildliche Darstellung der durch eine
GDOS-Messung ermittelten Verteilung der Gehalte an Zn, Mg, Al und Fe über die Dicke eines auf einem Stahlsubstrat aufgebrachten ersten Korrosionsschutzüberzugs;
Diag. 2 die bildliche Darstellung der Verteilung der durch eine GDOS-Messung ermittelten Gehalte an Zn, Mg, Al und Fe über die Dicke eines auf einem Stahlsubstrat aufgebrachten zweiten Korrosionsschutzüberzugs .
Zur Herstellung von erfindungsgemäß ausgebildeten, gut punktschweißbaren und phosphatierbaren Proben von Stahlflachprodukten mit hoher Korrosionsbeständigkeit ist auf ein als Stahlsubstrat dienendes Stahlband unter einer 5 % H2 enthaltenden Stickstoffatmosphäre, deren Taupunkt bei -30 0C ± 2 0C lag, für eine Haltezeit von jeweils 60 s geglüht worden. Die Glühtemperatur betrug 800 0C bei einer Aufheizrate von 10 °C/s.
Nach dem Glühen ist das Stahlband mit einer Abkühlrate von 5 bis 30 °C/s beschleunigt auf eine Temperatur von 470 0C ± 5 0C abgekühlt worden, auf der es für 30 s gehalten worden ist. Anschließend ist das Stahlband mit einer Bandeintauchgeschwindigkeit von 100 m/min in ein Schmelzenbad geleitet worden, dessen Badtemperatur 460 0C ± 5 0C betrug. Die Badeintrittstemperatur des Stahlbands lag jeweils 5 0C oberhalb der Badtemperatur des Schmelzenbades .
Die jeweilige Zusammensetzung des Schmelzenbades sowie die Analysen des sich durch die Feuerverzinkung im Schmelzenbad auf der Ober- und Unterseite des Korrosionsschutzuberzuges sind in Tabelle 1 für zwölf in der voranstehend beschriebenen Weise beschichtete Proben El - E12 - soweit ermittelt - zusammengestellt. Es zeigt sich, dass die auf dem Stahlsubstrat jeweils gebildeten Überzüge hohe Anteile an Fe aufweisen. Die im Zuge der Erzeugung des Überzugs eingetretene Auflegierung mit Fe stellt ein besonders hohes Haftungsvermogen des Überzugs auf dem Stahlsubstrat sicher.
Darüber hinaus ergaben Analysen der Verteilung der Gehalte an Zn, Al, Mg und Fe über die Dicke des jeweils auf dem Stahlsubstrat gebildeten Korrosionsschutzuberzugs, dass der Al-Gehalt des Überzugs in einer oberflachennahen Zwischenschicht, deren Dicke jeweils mehr als 25 % der Auflagendicke (Gesamtdicke) des Überzugs betragt, jeweils unter 0,2 % liegt. Die entsprechende Verteilung über die Dicke D (Oberflache D = O μm) ist für die Proben El und E2 in den Diagrammen 1 und 2 bildlich dargestellt.
In den Diagrammen ist zu erkennen, dass sich an der Oberflache des jeweiligen Überzugs eine
Oberflachengrenzschicht gebildet hat, deren Al-Gehalt in Folge von Oxidation hoch ist. Die Dicke dieser Oberflachengrenzschicht liegt jedoch bei maximal 0,2 μm und wird daher beim Punkt- oder Laserschweißen leicht durchbrochen, ohne dass es zu einer Beeinträchtigung der Qualität des Schweißergebnisses kommt.
An die Oberflachengrenzschicht schließt sich die etwa 2,5 μm dicke Zwischenschicht an, deren Al-Gehalt jeweils unter 0,2 % liegt. Die Dicke der Zwischenschicht liegt somit bei rund 36 % der Gesamtauflagendicke des jeweiligen Korrosionsschutzuberzugs von 7 μm.
Die Zwischenschicht geht über in eine am Stahlsubstrat anliegende Grenzschicht, in der die Gehalte an Al, Mg und Fe gegenüber den korrespondierenden Gehalten der Zwischenschicht deutlich angestiegen sind.
Um die Abhängigkeit des Schichtaufbaus und der Zusammensetzung eines erfindungsgemaß erzeugten Korrosionsuberzugs vom jeweils verarbeiteten Stahlsubstrat und von der Badeintritts- bzw. Badtemperatur zu überprüfen, sind basierend auf einem konventionellen mikro-legierten Stahl IF und einem ebenso konventionellen Qualitatsstahl QS weitere Proben E13 - E22 im Laborversuch mit einem Korrosionsschutzuberzug erzeugt worden. Die Zusammensetzung der Stahle IF und QS sind in Tabelle 3 angegeben.
Die bei den Laborversuchen eingestellten Betriebsparameter sowie eine Analyse der entsprechend erzeugten Uberzugsschicht sind in Tabelle 2 zusammengefasst . Es zeigte sich, dass das Ergebnis der Beschichtung insbesondere im Hinblick auf die Einbindung von hohen aus dem Stahlsubstrat stammenden Fe-Gehalten und die Ausbildung der oberflachennahen Zwischenschicht mit unterhalb von 0,25 Gew.-% liegenden AI-Gehalten unabhängig von der Zusammensetzung des Stahlsubstrats ist.
Insgesamt haben an den Proben El - E22 vorgenommene Untersuchungen bestätigt, dass bei einem erfindungsgemaß erzeugten Korrosionsschutzuberzug in der unmittelbar an die Oberflache des Überzugs angrenzenden Oberflachengrenzschicht die Elemente Mg und Al als Oxid angereichert vorhanden sind. Daneben liegt Zn-Oxid an der Oberflache vor.
Zusatzlich sind Betriebsversuche Bl - B19 durchgeführt worden, bei denen als Stahlsubstrat aus dem Qualitatsstahl QS bestehende Stahlbander verwendet worden sind. Die dabei eingestellten Betriebsparameter, die jeweilige Schmelzenbadzusammensetzung sowie eine Analyse des jeweils auf dem Stahlsubstrat erhaltenen Korrosionsschutzschicht sind in Tabelle 4 angegeben.
Die Betriebsversuche haben das Ergebnis der vorangegangenen Laborversuche im vollen Umfang bestätigt. Die Dicke der die oberflachige Oxidation aufnehmenden Oberflachengrenzschicht betragt bei den untersuchten Proben max . 0,2 μm und liegt bezogen auf das bei einer GDOS-Messung ermittelte Schichtprofil jeweils im Bereich von bis zu 2,7 % der Gesamtauflagendicken. Der Betrag der AI-Anreicherung an der unmittelbaren Oberflache liegt maximal bei etwa 1 Gew.-%. Daran schließt sich bis zu einer Dicke von mindestens 25 % der Gesamtauflage des Überzuges die Zwischenschicht mit niedrigem Al-Gehalt von maximal 0,25 Gew.-% an. In der Grenzschicht steigt danach der Al-Gehalt bis 4,5 % an der Grenze zum Stahlsubstrat an. Die Mg-Anreicherung an der unmittelbaren Oberflache des Überzugs ist deutlich großer als die AI-Anreicherung. Es werden hier Mg-Anteile von bis zu 20 % erreicht. Danach nimmt der Mg-Anteil über die Zwischenschicht ab und betragt in einer Tiefe von etwa 25 % der Gesamtauflagendicke des Überzuges 0,5 bis 2 %. Über die Grenzschicht findet dann ein Anstieg auch des Mg-Gehaltes in Richtung des Stahlsubstrats ab. An der Grenze zum Stahlsubstrat beträgt der Mg-Gehalt bis zu 3,5 %.
Figure imgf000017_0001
*)Rest Zn und unvermeidbare Verunreinigungen; n.e. = nicht ermittelt Tabelle 1
Figure imgf000018_0001
Tabelle 2
Stahl Si Mn S Ti Al
[Gew O • O ]
IF 0, 003 0 ,02 0 ,13 0,0 10 0, 0 12 0 ,07 0 ,03
QS 0 ,07 0 ,04 0 ,40 0, 0 12 0, 0 05 0, 005 0 ,04
Rest Eisen und unvermeidbare Verunreinigungen Tabelle 3
Figure imgf000019_0001
Rest Zn und unvermeidbare Verunreinigungen;
Tabelle 4

Claims

P A T E N T A N S P R Ü C H E
1. Stahlflachprodukt, das aus einem Stahlsubstrat, wie einem Stahlband oder -blech, und einem mindestens auf eine Seite des Stahlsubstrat aufgetragenen zinkbasierten Korrosionsschutzüberzug gebildet ist, der in (in Gew. -%)
Mg: 0,25 - 2,5 % , Al: 0,2 - 3,0 %,
Fe: < 4,0 %, sowie wahlweise in Summe bis zu 0,8 % an einem oder mehreren Elementen aus der Gruppe "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden",
Rest Zink und unvermeidbare Verunreinigungen enthält, wobei der Korrosionsschutzüberzug in einer Zwischenschicht, die sich zwischen einer unmittelbar an die Oberfläche des Stahlflachprodukts angrenzenden Oberflächenschicht und einer an das Stahlsubstrat angrenzenden Grenzschicht erstreckt und deren Dicke mindestens 20 % der Gesamtdicke des
Korrosionsschichtüberzugs beträgt, einen Al-Gehalt von höchstens 0,5 Gew.-% aufweist.
2. Stahlflachprodukt nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a s s der Al-Gehalt der Zwischenschicht auf 0,25 Gew.-% beschränkt ist.
3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Dicke der Zwischenschicht mindestens 25 % der Gesamtdicke des Korrosionsschutzüberzugs beträgt.
4. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Dicke der Oberflächenschicht weniger als 10 % der Gesamtdicke des Korrosionsschutzüberzugs beträgt .
5. Stahlflachprodukt nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, d a s s die Dicke der Oberflächenschicht weniger als 1 % der Gesamtdicke des Korrosionsschutzüberzugs beträgt .
6. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s der Fe-Gehalt des Korrosionsschutzüberzugs mehr als 0,3 Gew.-% beträgt.
7. Stahlflachprodukt nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a s s der Fe-Gehalt des Korrosionsschutzüberzugs mehr als 0,5 Gew.-% beträgt .
8. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s der Al-Gehalt des Korrosionsschutzüberzugs weniger als 0,6 Gew.-% beträgt.
9. Stahlflachprodukt nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, d a s s der Al-Gehalt des Korrosionsschutzüberzugs weniger als 0,5 Gew.-% beträgt .
10. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Gesamtdicke des Korrosionsschutzüberzugs mindestens 2,5 μm beträgt.
11. Stahlflachprodukt nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, d a s s die Gesamtdicke des Korrosionsschutzüberzugs mindestens 5 μm beträgt.
12. Stahlflachprodukt nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Auflagengewichtsverteilung des Korrosionsschutzüberzugs mindestens 17,5 g/m2 beträgt.
13. Verfahren zur Herstellung eines Stahlflachprodukts, bei dem auf ein Stahlsubstrat, wie einem Stahlband oder einem -blech, ein Korrosionsschutzüberzug erzeugt wird, indem das Stahlsubstrat geglüht wird und ausgehend von der Glühtemperatur auf eine Bandeintrittstemperatur von 400 - 600 0C gekühlt wird, mit der das Stahlsubstrat in ein (in Gew.-%) 0,1 - 0,4 % Al, 0,25 - 2,5 % Mg, bis zu 0,2 % Fe, Rest Zink sowie unvermeidbare Verunreinigungen enthaltendes und auf eine Badtemperatur von 420 - 500 0C erwärmtes Schmelzbad eintritt, wobei die Differenz zwischen der Bandeintauchtemperatur und der Badtemperatur im Bereich von -20 0C bis +100 0C so variiert wird, dass auf dem Stahlsubstrat ein Korrosionsschutzüberzug gebildet wird, der in (in Gew.-%)
Mg: 0,25 - 2,5 % , Al: 0,2 - 3,0 %,
Fe: < 4,0 %, sowie wahlweise in Summe bis zu 0,8 % an einem oder mehreren Elementen aus der Gruppe "Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn sowie Seltene Erden",
Rest Zink und unvermeidbare Verunreinigungen enthält und der in einer Zwischenschicht, die sich zwischen einer unmittelbar an die Oberfläche des Stahlflachprodukts angrenzenden Oberflächenschicht und einer an das Stahlsubstrat angrenzenden Grenzschicht erstreckt und deren Dicke mindestens 20 % der Gesamtdicke des Korrosionsschichtüberzugs beträgt, einen Al-Gehalt von höchstens 0,5 Gew.-% aufweist.
14. Verfahren nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, d a s s die Badtemperatur 440 - 480 0C beträgt.
15. Verfahren nach einem der Ansprüche 13 oder 14, d a d u r c h g e k e n n z e i c h n e t, d a s s die Differenz zwischen der Bandeintauchtemperatur und der Badtemperatur im Bereich von -10 0C bis +70 0C variiert wird.
16. Verfahren nach einem der Ansprüche 13 bis 15, d a d u r c h g e k e n n z e i c h n e t, d a s s die Bandeintrittstemperatur 410 - 510 0C beträgt.
17. Verfahren nach einem der Ansprüche 13 - 16, d a d u r c h g e k e n n z e i c h n e t, d a s s der Fe-Gehalt des Schmelzenbades < 0,1 Gew.-% beträgt.
PCT/EP2007/054711 2006-05-15 2007-05-15 Mit einem korrosionsschutzüberzug versehenes stahlflachprodukt und verfahren zu seiner herstellung WO2007132007A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/300,968 US8481172B2 (en) 2006-05-15 2007-05-15 Steel sheet product provided with an anticorrosion coating and process for producing it
CN2007800176280A CN101454473B (zh) 2006-05-15 2007-05-15 具有防腐蚀覆层的扁钢产品及其制备方法
CA2650800A CA2650800C (en) 2006-05-15 2007-05-15 Flat steel product with a corrosion protection coating and method for its production
AU2007251550A AU2007251550B2 (en) 2006-05-15 2007-05-15 Sheet steel product provided with an anticorrosion coating and process for producing it
KR1020087027954A KR101399085B1 (ko) 2006-05-15 2007-05-15 부식 방지 코팅층을 구비한 평판형 강재 제품 및 그 제조 방법
BRPI0711652-7A BRPI0711652B1 (pt) 2006-05-15 2007-05-15 Produto de aço plano com um revestimento de proteção contra corrosão e método para sua produção
JP2009510444A JP5586224B2 (ja) 2006-05-15 2007-05-15 防食コーティングを有するフラット鋼生成物並びに防食コーティングを有するフラット鋼生成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06113962.2A EP1857566B1 (de) 2006-05-15 2006-05-15 Mit einem Korrosionsschutzüberzug versehenes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP06113962.2 2006-05-15

Publications (1)

Publication Number Publication Date
WO2007132007A1 true WO2007132007A1 (de) 2007-11-22

Family

ID=37075625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/054711 WO2007132007A1 (de) 2006-05-15 2007-05-15 Mit einem korrosionsschutzüberzug versehenes stahlflachprodukt und verfahren zu seiner herstellung

Country Status (11)

Country Link
US (1) US8481172B2 (de)
EP (1) EP1857566B1 (de)
JP (1) JP5586224B2 (de)
KR (1) KR101399085B1 (de)
CN (1) CN101454473B (de)
AU (1) AU2007251550B2 (de)
BR (1) BRPI0711652B1 (de)
CA (1) CA2650800C (de)
ES (1) ES2636442T3 (de)
PL (1) PL1857566T3 (de)
WO (1) WO2007132007A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132952A (ja) * 2007-11-29 2009-06-18 Jfe Steel Corp 表面処理溶融Zn−Al系合金めっき鋼板
DE102013101134B3 (de) * 2013-02-05 2014-05-08 Thyssenkrupp Steel Europe Ag Metallisches, durch Schmelztauchbeschichten oberflächenveredeltes Flacherzeugnis, vorzugsweise aus Stahl
CN108914032A (zh) * 2018-07-31 2018-11-30 江苏大力神科技股份有限公司 一种钢带镀铝镁锌的连续生产方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE554190T1 (de) * 2009-08-25 2012-05-15 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil
CN101818316B (zh) * 2010-05-11 2011-12-07 昆明理工大学 一种热浸镀用锌基多元合金及制备方法
DE102010037254B4 (de) 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
CN101935815A (zh) * 2010-09-01 2011-01-05 中国电力科学研究院 一种输电线路紧固件合金镀层及其制备工艺
KR20120041544A (ko) * 2010-10-21 2012-05-02 주식회사 포스코 도금성, 도금밀착성 및 스폿용접성이 우수한 용융아연도금강판 및 그 제조방법
WO2012141659A1 (en) * 2011-04-13 2012-10-18 U.S. STEEL KOŠICE, s.r.o. Method of production of hot dip galvanized flat steel products with improved corrosion resistance
DE102011051731B4 (de) 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
DE102012101018B3 (de) 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2703515A1 (de) 2012-09-03 2014-03-05 voestalpine Stahl GmbH Verfahren zum Aufbringen eines Schutzüberzugs auf ein Stahlflachprodukt und Stahlflachprodukt mit einem entsprechenden Schutzüberzug
ES2851199T3 (es) 2013-07-03 2021-09-03 Outokumpu Nirosta Gmbh Procedimiento para recubrir productos planos de acero con una capa protectora metálica
GB2521363A (en) * 2013-12-17 2015-06-24 Eaton Ind Netherlands Bv Method for producing a housing for medium voltage switchgear and such a housing
WO2016030010A1 (en) * 2014-08-25 2016-03-03 Tata Steel Ijmuiden B.V. Cold rolled high strength low alloy steel
DE102015101312A1 (de) * 2015-01-29 2016-08-04 Thyssenkrupp Steel Europe Ag Verfahren zum Aufbringen eines metallischen Schutzüberzugs auf eine Oberfläche eines Stahlprodukts
WO2016156896A1 (en) * 2015-03-31 2016-10-06 Arcelormittal Panel for vehicle comprising a coated steel sheet locally reinforced
CN105502060A (zh) * 2015-12-22 2016-04-20 常熟市复林造纸机械有限公司 一种卷纸机用耐腐蚀导纸辊
KR101767788B1 (ko) 2015-12-24 2017-08-14 주식회사 포스코 내마찰성 및 내백청성이 우수한 도금 강재 및 그 제조방법
JP6848261B2 (ja) * 2016-08-19 2021-03-24 コニカミノルタ株式会社 放射線画像処理装置及びプログラム
CN108018513A (zh) * 2016-10-28 2018-05-11 宝山钢铁股份有限公司 一种热浸镀锌铝镁镀层钢板及其制造方法
CN108913949A (zh) * 2018-07-11 2018-11-30 江苏麟龙新材料股份有限公司 一种用于预镀合金钢板的无硅多元合金镀覆材料及其制造方法
DE102018132171A1 (de) * 2018-12-13 2020-06-18 Thyssenkrupp Steel Europe Ag Batteriegehäuse und Verwendung
KR20220016491A (ko) * 2019-06-03 2022-02-09 티센크루프 스틸 유럽 악티엔게젤샤프트 부식방지 코팅이 구비된 강판 제품으로부터 판금 부품을 제조하는 방법
WO2020259842A1 (de) * 2019-06-27 2020-12-30 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines beschichteten stahlflachprodukts, verfahren zur herstellung eines stahlbauteils und beschichtetes stahlflachprodukt
CN112941417A (zh) * 2021-03-03 2021-06-11 靖江新舟合金材料有限公司 一种合金镀层钢板及其生产方法
CN113430477A (zh) * 2021-05-27 2021-09-24 中电建武汉铁塔有限公司 一种批量热浸镀锌工件用锌液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
US4812371A (en) * 1986-11-17 1989-03-14 Nippon Steel Corporation Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating
WO1989009844A1 (en) * 1988-04-12 1989-10-19 Taiyo Steel Co., Ltd. Hot-dip zinc-aluminum alloy coated steel sheet for prepainted steel sheet, process for producing the same and prepainted steel sheet
JPH02285057A (ja) * 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd 溶融亜鉛めっき用鋼板の連続焼鈍方法
EP1439240A1 (de) * 2001-10-23 2004-07-21 Sumitomo Metal Industries, Ltd. Verfahren zur pressbearbeitung, plattiertes stahlprodukt zur verwendung bei diesem verfahren und verfahren zur herstellung des stahlprodukts
EP1693477A1 (de) * 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Beschichtetes Stahlblech oder -band

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1036986B (it) 1975-06-13 1979-10-30 Centro Speriment Metallurg Lega di acciaio e prodotti contale lega rivestiti
AU525668B2 (en) 1980-04-25 1982-11-18 Nippon Steel Corporation Hot dip galvanizing steel strip with zinc based alloys
JPS5891162A (ja) 1981-11-18 1983-05-31 Nisshin Steel Co Ltd 溶融亜鉛めつき鋼板の製造方法
DE19650157A1 (de) 1996-12-04 1998-06-10 Basf Coatings Ag Verfahren zur Beschichtung von Substraten, vorzugsweise aus Metall
US6177140B1 (en) 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
JP2000160315A (ja) 1998-11-27 2000-06-13 Nippon Steel Corp 溶融亜鉛合金めっき鋼材
JP2000336467A (ja) * 1999-03-24 2000-12-05 Kawasaki Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
US6465114B1 (en) 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP2002180225A (ja) * 2000-12-13 2002-06-26 Nippon Steel Corp 耐食性、加工性に優れためっき鋼板
US6902829B2 (en) 2001-11-15 2005-06-07 Isg Technologies Inc. Coated steel alloy product
DE10300751A1 (de) 2003-01-11 2004-07-22 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen, Beschichtungszusammensetzung und derart hergestellte Überzüge
JP4377743B2 (ja) * 2004-05-06 2009-12-02 新日本製鐵株式会社 高耐食性合金化溶融亜鉛めっき鋼板
EP1621645A1 (de) * 2004-07-28 2006-02-01 Corus Staal BV Legiertes heissgetauchtes galvanisiertes Stahlband
ES2629109T3 (es) * 2006-05-15 2017-08-07 Thyssenkrupp Steel Europe Ag Procedimiento para la fabricación de un producto plano de acero revestido con un sistema de protección frente a la corrosión

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
US4812371A (en) * 1986-11-17 1989-03-14 Nippon Steel Corporation Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating
WO1989009844A1 (en) * 1988-04-12 1989-10-19 Taiyo Steel Co., Ltd. Hot-dip zinc-aluminum alloy coated steel sheet for prepainted steel sheet, process for producing the same and prepainted steel sheet
JPH02285057A (ja) * 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd 溶融亜鉛めっき用鋼板の連続焼鈍方法
EP1439240A1 (de) * 2001-10-23 2004-07-21 Sumitomo Metal Industries, Ltd. Verfahren zur pressbearbeitung, plattiertes stahlprodukt zur verwendung bei diesem verfahren und verfahren zur herstellung des stahlprodukts
EP1693477A1 (de) * 2005-02-22 2006-08-23 ThyssenKrupp Steel AG Beschichtetes Stahlblech oder -band

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132952A (ja) * 2007-11-29 2009-06-18 Jfe Steel Corp 表面処理溶融Zn−Al系合金めっき鋼板
DE102013101134B3 (de) * 2013-02-05 2014-05-08 Thyssenkrupp Steel Europe Ag Metallisches, durch Schmelztauchbeschichten oberflächenveredeltes Flacherzeugnis, vorzugsweise aus Stahl
US10081857B2 (en) 2013-02-05 2018-09-25 Thyssenkrupp Steel Europe Ag Metallic flat product which is subjected to surface finishing by hot-dip coating and which is preferably composed of steel
CN108914032A (zh) * 2018-07-31 2018-11-30 江苏大力神科技股份有限公司 一种钢带镀铝镁锌的连续生产方法

Also Published As

Publication number Publication date
EP1857566B1 (de) 2017-05-03
CN101454473A (zh) 2009-06-10
CN101454473B (zh) 2013-09-18
ES2636442T3 (es) 2017-10-05
AU2007251550A1 (en) 2007-11-22
JP2009537697A (ja) 2009-10-29
BRPI0711652A2 (pt) 2011-11-29
CA2650800C (en) 2013-12-03
KR101399085B1 (ko) 2014-05-27
BRPI0711652B1 (pt) 2018-03-06
EP1857566A1 (de) 2007-11-21
US8481172B2 (en) 2013-07-09
CA2650800A1 (en) 2007-11-22
PL1857566T3 (pl) 2017-10-31
AU2007251550B2 (en) 2012-05-03
KR20090007597A (ko) 2009-01-19
US20100024925A1 (en) 2010-02-04
JP5586224B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
EP1857566B1 (de) Mit einem Korrosionsschutzüberzug versehenes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2054536B1 (de) Verfahren zum beschichten eines 6 - 30 gew.-% mn enthaltenden warm- oder kaltgewalzten stahlbands mit einer metallischen schutzschicht
EP2848709B1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
DE69637118T2 (de) Korrosionsbeständiges stahlblech für treibstofftank und verfahren zur herstellung des bleches
EP2402472B2 (de) Höherfester, kaltumformbarer Stahl und aus einem solchen Stahl bestehendes Stahlflachprodukt
EP1658390B1 (de) Verfahren zum herstellen eines gehärteten stahlbauteils
EP1857567B1 (de) Verfahren zum Herstellen eines mit einem Korrosionsschutzsystem überzogenen Stahlflachprodukts
EP2432910B2 (de) Verfahren zum schmelztauchbeschichten eines 2-35 gew.-% mn enthaltenden stahlflachprodukts und stahlflachprodukt
EP1851352B1 (de) Beschichtetes stahlblech oder -band
EP2055799A1 (de) Stahlflachprodukt mit einem vor Korrosion schützenden metallischen Überzug und Verfahren zum Erzeugen eines vor Korrosion schützenden metallischen Zn-Mg Überzugs auf einem Stahlflachprodukt
DE202005022081U1 (de) Stahlblech mit durch Feuerverzinkung aufgebrachter Zinklegierungsbeschichtung
EP2010690A1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
WO2006089832A1 (de) Verfahren zum beschichten von stahlbändern und beschichtetes stahlband
DE102008005605A1 (de) Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
EP2812458A1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachprodukts
EP2976442B1 (de) Verfahren zur verbesserung der schweissbarkeit von hochmanganhaltigen stahlbändern
DE202004021264U1 (de) Korrosionsschicht und gehärtetes Stahlbauteil
EP3583238A1 (de) Verfahren zum herstellen von stahlblechen, stahlblech und dessen verwendung
EP2208803A1 (de) Höherfester, kaltumformbarer Stahl, Stahlflachprodukt, Verfahren zur Herstellung eines Stahlflachprodukts sowie Verwendung eines Stahlflachproduktes
EP2195471A1 (de) Korrosionsschutzbeschichtung mit verbesserter haftung
DE102013101134B3 (de) Metallisches, durch Schmelztauchbeschichten oberflächenveredeltes Flacherzeugnis, vorzugsweise aus Stahl
EP3877555B1 (de) Verfahren zum herstellen eines blechbauteils aus einem mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukt
DE102009007100A1 (de) Stahlflachprodukt mit einem metallischen Überzug und Verfahren zu seiner Herstellung
EP3356572B1 (de) Verfahren zur herstellung eines stahlflachprodukts mit einer zn-galvannealing-schutzbeschichtung
EP1252354B1 (de) Verfahren zum herstellen eines mit einer zinkbeschichtung versehenen stahlbandes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780017628.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2650800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009510444

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4611/KOLNP/2008

Country of ref document: IN

Ref document number: 1020087027954

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007251550

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007251550

Country of ref document: AU

Date of ref document: 20070515

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07729160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12300968

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0711652

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081114