WO2007128268A2 - Verfahren zur herstellung cellulosischer mehrkomponentenfasern - Google Patents

Verfahren zur herstellung cellulosischer mehrkomponentenfasern Download PDF

Info

Publication number
WO2007128268A2
WO2007128268A2 PCT/DE2007/000751 DE2007000751W WO2007128268A2 WO 2007128268 A2 WO2007128268 A2 WO 2007128268A2 DE 2007000751 W DE2007000751 W DE 2007000751W WO 2007128268 A2 WO2007128268 A2 WO 2007128268A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cellulose
multicomponent fibers
cellulosic
water
Prior art date
Application number
PCT/DE2007/000751
Other languages
English (en)
French (fr)
Other versions
WO2007128268A3 (de
Inventor
Birgit Kosan
Christoph Michels
Frank Meister
Ralf-Uwe Bauer
Original Assignee
Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. filed Critical Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
Priority to ATA9202/2007A priority Critical patent/AT510254B1/de
Priority to GB0821012A priority patent/GB2451046B/en
Priority to DE112007001615T priority patent/DE112007001615A5/de
Publication of WO2007128268A2 publication Critical patent/WO2007128268A2/de
Publication of WO2007128268A3 publication Critical patent/WO2007128268A3/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent

Definitions

  • the invention relates to a method for producing cellulosic multicomponent fibers with reduced swelling capacity and increased wet abrasion resistance.
  • Viscose fibers can undergo a considerable increase in the swelling capacity, expressed by the water retention capacity (WRV), by incorporation of secondary components (M. Einmann et al., Lenzinger Berichte 84 (2005) 42-49). Examples of a decrease in WRV are unknown.
  • WRV water retention capacity
  • N-methylmorpholine N-oxide monohydrate makes it possible to produce lyocell fibers with discrete incorporation of the second component in the pore system, which have an increased swelling capacity, irrespective of whether the secondary component has hydrophilic or hydrophobic properties
  • WO 98/09009 claims the addition of linear synthetic polymers, for example, low density polyethylene, to cellulose NMMO solutions. Also in this case, although the added polymers are hydrophobic and liquid when dispersed (working temperatures above the melting temperature of the additional polymers), the formation of a matrix / island structure with a constant or increased swelling capacity takes place. Investigations on Lyocell fibers or modified Lyocell fibers have shown that there is a double logarithmic relationship between their WRV and wet scrub resistance (NSB). (Ch Michels, Final Report on the BMWA Project "Model Studies on the Lyocell Process", Reg. No. 1077/03 (2005) 21). Only by subsequent derivatization of a cellulose fiber with hydrophobic substituents can be achieved a reduction in swelling capacity and an increase in NSB.
  • NBS wet scrub resistance
  • a process for producing lyocell fibers from ionic liquids is claimed in DE 10 2004 031 025 B3, wherein these cellulose fibers have a comparable swelling capacity as Lyocell fibers produced by the NMMO process.
  • WO 2005/098546 A2 describes the preparation of mixtures of at least two different polymers or copolymers in at least one ionic liquid. The polymers are individually dissolved directly in the nearly anhydrous ionic liquids, the polymer solutions mixed and cast films obtained from the polymer blend by precipitation with aqueous media and characterized. A production of fibers is not described, and there are no statements on the swelling capacity of the resulting polymer blends.
  • the object of the present invention is to provide a simple process for producing cellulosic multicomponent fibers with reduced swelling capacity and increased wet scrub resistance.
  • this object is achieved by dispersing 75-25% by volume of cellulose and 25-75% by volume of at least one further fiber-forming polymer component in a water-containing ionic liquid with the addition of stabilizers, removing the water as far as possible under shear, heat and vacuum.
  • the resulting microscopically homogeneous solution is deformed by at least one spinneret to the fiber / fiber bundle, passing through an air-conditioned gap, the solution solution jets by treatment with a tempered solution which is miscible with the ionic liquid, for the cellulose and the other fiber-forming polymer component but represents a precipitant precipitates under spinodal segregation, separates from the precipitation bath and then post-treated.
  • pulps of wood, cotton and other annual plants prepared by the sulfite, sulfate or prehydrolysulfate method have been found to be suitable.
  • the bleaching process of the pulps is of secondary importance.
  • secondary polymers polyacrylonitrile (PAN) and polyacrylonitrile copolymers, for example with 6% by weight of methyl acrylate, have proven to be optimal.
  • the second component powder or fiber form Dolanit ®, ® Dolan, Dralon ®, Orion ®, Wolpryla- fiber, etc.
  • imidazolium derivatives such as 1-butyl-3-methylimidazolium chloride (BMIMCl), 1-ethyl-3-methylimidazolium chloride (EMIMCl), 1-butyl-3-methylimidazolium acetate (BMIMAc) and 1-ethyl-3-methylimidazolium acetate ( BMIMAc).
  • the stabilization of the polymer solutions was carried out by adjusting their hydrogen ion concentration (pH) with a nonvolatile base, for example sodium hydroxide or polyethyleneimine and, if appropriate, adding propylgal latent or similar stabilizers, such as tannins, p-phenylenediamine, quinone.
  • a nonvolatile base for example sodium hydroxide or polyethyleneimine
  • propylgal latent or similar stabilizers such as tannins, p-phenylenediamine, quinone.
  • Suitable precipitation media are water and / or water-miscible alcohols, which may contain up to 50% of the ionic liquids used as solvents.
  • the preparation of cellulose secondary polymer solutions in ionic liquids and their characterization and spinning into fibers was carried out according to the following general procedure:
  • the required amount of pulp and secondary polymer fiber were mixed according to the specified mixing ratio, in a liquor ratio of 1:20 by means of Ültra Turrax in water pitched and by pressing to about 35% by mass dehydrated.
  • the amount of the press-moist polymer mixture necessary in accordance with the desired solids content of the polymer solution was introduced and dispersed in ionic liquid which contained 20% by mass of water and stabilizers, and the aqueous suspension was added by adding a 0.1 molar aqueous NaOH solution adjusted to a pH> 8.
  • the secondary polymer When the secondary polymer was in powder form, the cellulose alone was beaten in water and squeezed. The pulverulent secondary polymer was dispersed directly in the ionic liquid containing 30% by mass of water and stabilizers, then the cellulose which had been pressed moist was introduced and dispersed, and the aqueous suspension was admixed by adding a 0.1 molar aqueous NaOH solution pH adjusted to> 8.
  • BMIMCl 1-butyl-3-methylimidazolium chloride
  • EMIMCl 1-ethyl-3-methylimidazolium chloride
  • BMIMAc 1-butyl-3-methylimidazolium acetate
  • EMIMAc 1-ethyl-3-methylimidazolium acetate
  • PAN homopolymer Dolanit 10
  • PAN copolymer co-polymer with 6% methyl acrylate
  • PLA polylactide
  • PMMA polymethylmethacrylate
  • the spinning of the polymer solutions was carried out according to the procedure described below.
  • the required Spinnates- amount (mass flow) was fed to the spin pack at 85 ° C melt temperature via a piston spinning apparatus, filtered, heated in a heat exchanger to spinning temperature ⁇ Sp , relaxed in a Anströmhunt and through nozzles with 30 spinning capillaries with an L / D A ratio of 1 and an exit diameter D A of 90 microns pressed.
  • the solution jets pass through the air-conditioned air gap of length a and are additionally blown with air at a temperature of 25 ° C. and moisture and air quantity according to Table 2.
  • the spinning conditions for some polymer blends described in Table 1 are listed in Table 2 under the same number.
  • a eucalyptus pulp (Cuoxam-DP: 556) and a polyacrylonitrile homopolymer fiber (DOLANIT 10) were mixed in various mixing ratios, in a liquor ratio of 1:20 by means of Ultra-Turrax in water and precipitated by pressing to 35% by mass. dewatered.
  • the amount of the press-moist polymer mixture necessary in accordance with the desired solids content of the polymer solution was introduced and dispersed in BMIMCl, which contained 20% by mass of water and 0.03% by mass of gallic acid propyl ester, and a homogeneous polymer solution, corresponding to that in Example 2 described Benen representation produced.
  • the results are shown in Table 3.
  • the micrographs examined after solution preparation showed homogeneous solutions containing no fiber fragments of cellulose or PAN residues. However, as the PAN content increased, the microimages showed a Tyndall effect.
  • the solutions were rheologically characterized before spinning.
  • the determination of the fiber DP was carried out analogously to the determination of pure cellulose fibers taking into account the weight of cellulose according to the mixing ratio used.
  • the cellulose is selectively dissolved out of the fiber by Cuoxam while Polyacrylonitrile (PAN) is insoluble in Cuoxam. After the selective dissolution process in Cuoxam, the fiber structure of the remaining PAN is retained (see Figure D •
  • Cellulosic multicomponent fibers were spun from the polymer solutions using a piston spinning apparatus according to a dry-wet spinning process in accordance with the procedure described in Example 1.
  • the spinning conditions and Fiber values of the fibers obtained are shown below and in Table 4.
  • the dye absorption was determined on 6% solutions of the dye Direct Red 81 (reaction conditions: 3 hours at 80 ° C., 14.2 g / l sodium sulfate).
  • the cellulose PAN fibers exhibited a slightly increased dye uptake compared to the pure cellulose fiber, whereas the Dolanit 10 PAN fiber used had no dye uptake for this dye (dye uptake: 0 mg / g).
  • Example 3 Mass ratio of cellulose / PAN (60:40) A cotton linters pulp (Cuoxam-DP: 454) was beaten with PAN fibers (Dolanit 10) in the liquor ratio 1:20 by means of Ultra-Turrax in water to a single fiber and to a solids content from 35% pressed. 174 g of the wet fiber mixture were placed in 341.6 g of 1-ethyl-3-methylimidazolium chloride (EMIMCl) containing 30% by mass of water and 0.2 g of propyl gallate dispersed to obtain a homogeneous suspension, which was adjusted by means of 0.1 molar aqueous sodium hydroxide solution to a pH> 8.
  • EMIMCl 1-ethyl-3-methylimidazolium chloride
  • a homogeneous polymer solution was prepared under high shear, slowly rising temperature from 90 to 125 ° C and decreasing pressure of 850 to 5 mbar while distilling off the water. The loose time was 90 min.
  • the polymer solution was spun into fibers by dry-wet spinning.
  • the spinning conditions and fiber values are given in Table 5 below.
  • Example 4 Mass ratio Cellulose / PAN (30:70) 12.0 g of eucalyptus pulp (dry content: 95%, Cuoxam DP: 892) and 26.8 g PAN fibers (Dolanit 10, dry content 99.25%) together in the liquor ratio 1:20 by means of Ultra-Turrax in water to the single fiber pitched and pressed to a solids content of 25%.
  • the press-wet fiber mixture was placed in 265 g of 1-butyl-3-methylimidazolium chloride (BMIMCl) containing 20% by mass of water and 0.1 g of propyl gallate and dispersed to obtain a homogeneous suspension which was condensed with a nonvolatile base pH value> 8 was set.
  • BMIMCl 1-butyl-3-methylimidazolium chloride
  • the polymer solution was spun into fibers by dry-wet spinning.
  • the spinning conditions and fiber values are given in Table 6 below.
  • the measurement is stopped after 10000 tours, so that larger values can not be determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern mit vermindertem Quellvermögen und erhöhter Nassscheuerbeständigkeit. Diese Aufgabe wird dadurch gelöst, indem man 75 bis 25 Volumen % Cellulose mit 25 bis 75 Volumen % mindestens einer weiteren faserbildenden Polymerkomponente in einer wasserhaltigen ionischen Flüssigkeit unter Zusatz von Stabilisatoren dispergiert, unter Scherung, Temperatur und Vakuum das Wasser weitestgehend entfernt, die entstehende mikroskopisch homogene Lösung durch mindestens eine Spinndüse zur Faser/Faserschar verformt, unter Verzug durch einen klimatisierten Spalt führt, die orientierten Lösungsstrahlen durch Behandeln mit einer temperierten Lösung, die mit der ionischen Flüssigkeit mischbar für die Cellulose und die weitere faserbildende Polymerkomponente aber ein Fällungsmittel darstellt, unter spinodaler Entmischung ausfällt, vom Fällbad trennt und anschließend nachbehandelt.

Description

Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern [Beschreibung]
Die Erfindung betrifft ein Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern mit vermindertem Quellvermögen und erhöhter Nassscheuerbeständigkeit.
[Stand der Technik]
Viskosefasern können durch Einlagerung von Zweitkomponenten eine beträchtliche Erhöhung des Quellvermögens, ausgedrückt durch das Wasserrückhaltevermögen (WRV) , erfahren (M. Einz- mann et al.; Lenzinger Berichte 84 (2005) 42-49). Beispiele für eine Abnahme des WRV sind nicht bekannt.
Der Zusatz von Zweitpolymeren zu Celluloselösungen in N- Methylmorpholin-N-oxid-Monohydrat (NMMO) ermöglicht die Herstellung von Lyocellfasern mit diskreter Einlagerung der Zweitkomponente im Porensystem, die ein erhöhtes Quellvermö- gen haben, unabhängig davon, ob die Zweitkomponente hydrophile oder hydrophobe Eigenschaften besitzt (M. Einzmann et al . ; Lenzinger Berichte 84 (2005) 42-49; F. Meister et al . ; Lenzinger Berichte 78 (1998) 59-64; Ch. Michels; Abschlussbericht zum BMWA-Projekt „Modelluntersuchungen zum Lyocell- Prozess", Reg. Nr. 1077/03 (2005) 13-19) .
In WO 98/09009 wird der Zusatz linearer synthetischer Polymere, beispielsweise LD-Polyethylen, zu Cellulose-NMMO-Lösungen beansprucht. Auch in diesem Fall erfolgt, obwohl die zugesetzten Polymere hydrophob sind und beim Dispergieren flüssig vorliegen (Arbeitstemperaturen oberhalb der Schmelztemperatur der Zusatzpolymere) , die Ausbildung einer Matrix/Insel- Struktur mit gleichbleibendem bzw. erhöhtem Quellvermögen. Untersuchungen an Lyocellfasern bzw. modifizierten Lyocellfa- sern haben ergeben, dass zwischen ihrem WRV und der Nass- scheuerbeständigkeit (NSB) ein doppeltlogarithmischer Zusammenhang besteht. (Ch. Michels; Abschlussbericht zum BMWA- Projekt „Modelluntersuchungen zum Lyocell-Prozess", Reg. Nr. 1077/03 (2005) 21) . Nur durch nachträgliches Derivatisieren einer Cellulosefaser mit hydrophoben Substituenten erreicht man eine Verminderung des Quellvermögens und eine Zunahme der NSB.
Ein Verfahren zur Herstellung von Lyocellfasern aus ionischen Flüssigkeiten wird in DE 10 2004 031 025 B3 beansprucht, wobei diese Cellulosefasern ein vergleichbares Quellvermögen wie nach dem NMMO-Prozess hergestellte Lyocellfasern aufweisen . In der WO 2005/098546 A2 wird die Herstellung von Mischungen aus mindestens zwei verschiedenen Polymeren bzw. Copolymeren in mindestens einer ionischen Flüssigkeit beschrieben. Dabei werden die Polymere einzeln direkt in den nahezu wasserfreien ionischen Flüssigkeiten gelöst, die Polymerlösungen gemischt und Gießfolien aus dem Polymerblend durch Ausfällen mit wässrigen Medien erhalten und charakterisiert. Eine Herstellung von Fasern wird nicht beschrieben, auch gibt es keine Aussagen zum Quellvermögen der erhaltenen Polymerblends .
[Aufgabe der Erfindung]
Aufgabe der vorliegenden Erfindung ist die Schaffung eines einfachen Verfahrens zur Herstellung cellulosischer Mehrkomponentenfasern mit vermindertem Quellvermögen und erhöhter Nassscheuerbeständigkeit .
Diese Aufgabe wird beim erfindungsgemäßen Verfahren dadurch gelöst, dass man 75 - 25 Volumen % Cellulose und 25 - 75 Volumen % mindestens einer weiteren faserbildenden Polymerkomponente in einer wasserhaltigen ionischen Flüssigkeit unter Zusatz von Stabilisatoren dispergiert, unter Scherung, Wärmezufuhr und Vakuum das Wasser weitestgehend entfernt, die entstehende mikroskopisch homogene Lösung durch mindestens eine Spinndüse zur Faser/Faserschar verformt, unter Verzug durch einen klimatisierten Spalt führt, die orientierten Lösungsstrahlen durch Behandeln mit einer temperierten Lösung, die mit der ionischen Flüssigkeit mischbar, für die Cellulose und die weitere faserbildende Polymerkomponente aber ein Fällungsmittel darstellt, unter spinodaler Entmischung ausfällt, vom Fällbad trennt und anschließend nachbehandelt .
Überraschenderweise wurde gefunden, dass ionische Flüssigkei- ten, die Cellulose und bestimmte faserbildende Polymere, wie z.B. Polyacrylnitril (PAN) bzw. Polyacrylnitrilcopolymere, in gewissen Konzentrationsbereichen enthalten, in der Lage sind, nicht eine Matrix/Insel-Struktur, sondern eine Matrix/Matrix- Struktur, d.h. zwei separate durchgehende Phasen zu bilden, die unter spinodaler Entmischung beim Fällen erhalten bleiben. Nach Herauslösen der Cellulose durch Cuoxam bleibt eine Faserstruktur aus PAN bestehen (Vergleiche Abbildungl). Das hat offensichtlich zur Folge, dass das Quellvermögen deutlich zurückgeht, die NSB aber zunimmt. Wie aus Beispiel 2 (Abbil- düng 2) ersichtlich, besteht auch hier ein doppeltlogarithmi- scher Zusammenhang, der im Bereich 0 - 75 VoI % PAN der Gleichung
In NSB = 39,772 - 8,686 (In WRV) mit R = 0,998 folgt. Aus der Darstellung der Reißfestigkeit trocken und nass über der Zusammensetzung in VoI % (Abbildung 3), kann man ableiten, dass beim Zumischen von 50 VoI % PAN die Phasenumkehr stattfindet. Bei Anteilen > 50 VoI % Cellulose ist das Verhältnis
Figure imgf000004_0001
um bei Anteilen > 50 VoI % PAN
Figure imgf000004_0002
zu werden. Weiterhin hat sich als günstig erwiesen, wenn das Zweitpolymere allein mit der ionischen Flüssigkeit eine niedrigviskose Lösung bildet und demzufolge leichter dispergierbar ist. Das Verhältnis der Nullscherviskositäten Cellulose/Zweitpolymer sollte deutlich über 1, vorzugsweise über 10 liegen. Als cellulosische Komponente haben sich Zellstoffe aus Holz, Baumwolle und anderen Einjahrespflanzen, hergestellt nach dem Sulfit-, Sulfat- oder Vorhydrolysesulfatverfahren, als geeignet erwiesen. Das Bleichverfahren der Zellstoffe ist dabei von untergeordneter Bedeutung. Als Zweitpolymere haben sich Polyacrylnitril (PAN) und PoIy- acrylnitrilcopolymere z.B. mit 6 Masse % Acrylsäuremethyles- ter als optimal erwiesen. Die Zweitkomponente kann Pulveroder Faserform (Dolanit®, Dolan®, Dralon®, Orion®, Wolpryla- faser usw.) und sollte vorzugsweise hydrophobe Eigenschaften besitzen .
Als ionische Flüssigkeiten wurden Imidazoliumabkömmlinge, wie l-Butyl-3-Methylimidazoliumchlorid (BMIMCl), l-Ethyl-3- Methylimidazoliumchlorid (EMIMCl), l-Butyl-3-Methylimida- zoliumacetat (BMIMAc) und l-Ethyl-3-Methylimidazoliumacetat (BMIMAc) erprobt.
Die Stabilisierung der Polymerlösungen erfolgte durch Einstellung ihrer Wasserstoffionenkonzentration (pH-Wert) mit einer nichtflüchtigen Base, beispielsweise Natriumhydroxid oder Polyethylenimin und gegebenenfalls Zusatz von Propylgal- lat bzw. ähnlicher Stabilisatoren wie Tannine, p- Phenylendiamin, Chinon.
Als Fällmedium eignen sich Wasser und/oder mit Wasser mischbare Alkohole, die bis zu 50% der als Lösungsmittel verwende- ten ionischen Flüssigkeiten enthalten können.
Die Erfindung soll an Hand folgender Beispiele erläutert werden .
[Beispiele] Beispiel 1
Die Herstellung von Cellulose-Zweitpolymerlösungen in ionischen Flüssigkeiten und deren Charakterisierung und Verspinnung zu Fasern erfolgte nach folgender allgemeiner Vorgehensweise : Die erforderliche Menge Zellstoff und Zweitpolymerfaser wurden entsprechend dem angegebenen Mischungsverhältnis gemischt, im Flottenverhältnis 1:20 mittels Ültra-Turrax in Wasser aufgeschlagen und durch Abpressen auf ca. 35 Masse-% entwassert. Die entsprechend dem angestrebten Feststoffgehalt der Polymerlosung notwendige Menge des pressfeuchten Polymer- gemischs wurde in ionischer Flüssigkeit, welche 20 Masse-% Wasser und Stabilisatoren enthielt, eingebracht und disper- giert, und die wassrige Suspension durch Zugabe einer 0,1 molaren wassrigen NaOH-Losung auf einen pH-Wert >8 eingestellt.
Lag das Zweitpolymer in Pulverform vor, wurde die Cellulose allein in Wasser aufgeschlagen und abgepresst. Das pulverfor- mige Zweitpolymer wurde direkt in der ionischen Flüssigkeit, die 30 Masse-% Wasser und Stabilisatoren enthielt, disper- giert, anschließend die pressfeuchte Cellulose eingebracht und dispergiert und die wassrige Suspension durch Zugabe einer 0,1 molaren wassrigen NaOH-Losung auf einen pH-Wert von >8 eingestellt.
Nach Überführung der Suspension in einen Vertikalkneter wurde unter starker Scherung, langsam steigender Temperatur von 90 auf 1300C und abnehmendem Druck von 850 bis 5 mbar unter vollständiger Wasserentfernung eine homogene Polymerlosung hergestellt. Die Losezeiten betrugen einheitlich 90 min. Die Losungen wurden bezuglich ihres Mikrobildes im polarisierten Licht beurteilt und rheologisch charakterisiert. Die Ergebnisse enthalt Tabelle 1.
Tabelle 1
Nr. Zweitpolymer - Polymerverhalt- LosungsFeststoffms Cellulose / Zweitpolymer mittel gehalt [% ] [Pas] [Masse-%]
1.1 PAN-Homopolymer - 80/20 BMIMCl 13,9 41760
1.2 PAN-Copolymer - 80/20 BMIMCl 14,1 39800
1.3 PAN-Homopolymer - 80/20 BMIMAc PAN lost sich nicht
1.4 PAN-Homopolymer - 60/40 EMIMCl 20,3 28167
1.5 Cellulose-2,5-acetat - 80/20 BMIMCl 13,1 33460
1.6 Chitin - 80/20 BMIMCl Chitin lost sich nicht
1.7 Chitin - 80/20 BMIMAc Chitin lost sich nicht
Figure imgf000007_0001
Nullscherviskosität bei 1100C
BMIMCl: l-Butyl-3-Methylimidazoliumchlorid EMIMCl: l-Ethyl-3-Methylimidazoliumchlorid BMIMAc: l-Butyl-3-Methylimidazoliumacetat EMIMAc: l-Ethyl-3-Methylimidazoliumacetat
PAN-Homopolymer : Dolanit 10, Polyacrylnitrilfaser PAN-Copolymer : Co-Polymer mit 6% Acrylsäuremethylester PLA: Polylactid PMMA: Polymethylmethacrylat
Das Verspinnen der Polymerlösungen erfolgte gemäß nachfolgend beschriebener Vorgehensweise. Die erforderliche Spinnlösungs- menge (Massestrom) wurde mit 85°C Massetemperatur über eine Kolbenspinnapparatur dem Spinnpaket zugeführt, filtriert, in einem Wärmetauscher auf Spinntemperatur θSp erwärmt, in einer Anströmkammer relaxiert und durch Düsen mit 30 Spinnkapillaren mit einem L/DA-Verhältnis von 1 und einem Austrittsdurchmesser DA von 90 μm gepresst. Die Lösungsstrahlen passieren den klimatisierten Luftspalt der Länge a und werden zusätzlich mit Luft einer Temperatur von 25°C und Feuchte und Luftmenge laut Tabelle 2 angeblasen. Die orientierte Fadenschar passiert unter gleichzeitigem Fällen des Polymernetzwerkes das Spinnbad mit einer Temperatur von 200C, wird unter Abzugsgeschwindigkeit von va = 30 m/min unter einem Winkel von ß « 40 vom Fällbad getrennt, über Galetten abgezogen und einer diskontinuierlichen, spannungsfreien Nachbehandlung durch Waschen und Trocknen unterzogen. Die Spinnbedingungen für einige in Tabelle 1 beschriebene Polymermischungen sind in Tabelle 2 unter gleicher Nummer aufgeführt.
Tabelle 2 Spinnbedingungen
Figure imgf000008_0001
Beispiel 2
Ein Eukalyptuszellstoff (Cuoxam-DP: 556) und eine Polyacryl- nitril-Homopolymer-Faser (DOLANIT 10) wurden in verschiedenen Mischungsverhältnissen gemischt, im Flottenverhältnis 1:20 mittels Ultra-Turrax in Wasser aufgeschlagen und durch Ab- pressen auf 35 Masse-% entwässert. Die entsprechend dem angestrebten Feststoffgehalt der Polymerlösung notwendige Menge des pressfeuchten Polymergemischs wurde in BMIMCl, welches 20 Masse-% Wasser und 0,03 Masse-% Gallussäurepropy- lester enthielt, eingebracht und dispergiert, und eine homo- gene Polymerlösung, entsprechend der in Beispiel 2 beschrie- benen Darstellungsweise hergestellt. Die Ergebnisse enthält Tabelle 3.
Die nach der Lösungsherstellung untersuchten Mikrobilder zeigten homogene Lösungen, die keinerlei Faserbruchstücke von Cellulose- oder PAN-Resten enthielten. Mit zunehmendem PAN- Gehalt zeigten die Mikrobilder jedoch einen auftretenden Tyndall-Effekt . Die Lösungen wurden vor dem Spinnen rheolo- gisch charakterisiert.
Die Bestimmung des Faser-DP erfolgte analog der Bestimmung an reinen Cellulosefasern unter Berücksichtigung der Cellulose- einwaage gemäß dem verwendeten Mischungsverhältnis. Die Cellulose wird durch Cuoxam selektiv aus der Faser herausgelöst, während Polyacrylnitril (PAN) in Cuoxam unlöslich ist. Dabei bleibt nach dem selektiven Löseprozess in Cuoxam die Faserstruktur des verbliebenen PAN erhalten (siehe Abbildung D •
Tabelle 3 Cellulose-PAN-Lösungen unterschiedlicher Mischungs- Verhältnisse
Figure imgf000009_0001
Aus den Polymerlösungen wurden mit Hilfe einer Kolbenspinnapparatur nach einem Trocken-Nass-Spinnprozess entsprechend der unter Beispiel 1 beschriebenen Arbeitsweise cellulosische Mehrkomponentenfasern ersponnen. Die Spinnbedingungen und Faserwerte der erhaltenen Fasern sind im folgenden und in Tabelle 4 aufgeführt.
Allgemeine Spinnbedingungen: Dusenaustπttsdurchmesser : 90 μm Kapillaranzahl der Düse: 30 Abzugsgeschwindigkeit: 30 m/mm Spinnbadtemperatur: 200C
Tabelle 4: Spinnbedingungen und Faserwerte
Figure imgf000010_0001
Farbstoffaufnähme [mg/g] 50 54 54 54 52
1 Die Methode zur Bestimmung der Nassscheuerbeständigkeit ist von K. -P. Mieck, H. Langner; A. Nechwatal; Lenzinger Berichte 74 (1994) 61-68 beschrieben.
2 Die Farbstoffaufnähme wurde an 6%igen Lösungen des Farbstoffes Direct Red 81 (Reaktionsbedingungen: 3 Stunden bei 800C, 14,2 g/l Natriumsulfat) bestimmt. Die Cellulose-PAN- Fasern zeigten gegenüber der reinen Cellulosefaser eine geringfügig erhöhte Farbstoffaufnähme, während die eingesetz- te PAN-Faser Dolanit 10 keine Farbstoffaufnähme für diesen Farbstoff besaß (Farbstoffaufnähme : 0 mg/g).
Der für Lyocellfasern aus Lösungen von Cellulo- se/Zweitkomponente in NMMO gefundene doppeltlogarithmische Zusammenhang zwischen NSB und WRV wird durch dieses Beispiel für Lyocellfasern aus Cellulose/PAN in ionischen Flüssigkeiten in hervorragender Weise bestätigt (vergleiche Abbildung 2) . Die Darstellung der Abhängigkeit der Reißfestigkeit trocken und nass über der Zusammensetzung in Volumen % unter Einbeziehung der Faserwerte für die Mischung 24,7 VoI % Cellulose / 75,5 VoI % PAN (Beispiel 4, in Tabelle 4 nicht enthalten) in Abbildung 3 zeigt sehr deutlich die Phasenumkehr bei einem Volumenverhältnis von 50 zu 50.
Beispiel 3 Masseverhältnis Cellulose / PAN (60:40) Ein Baumwolllinters-Zellstoff (Cuoxam-DP: 454) wurde mit PAN- Fasern (Dolanit 10) im Flottenverhältnis 1:20 mittels Ultra- Turrax in Wasser bis zur Einzelfaser aufgeschlagen und auf einen Feststoffanteil von 35% abgepresst. 174 g der pressfeuchten Fasermischung wurden in 341,6 g l-Ethyl-3- Methylimidazoliumchlorid (EMIMCl) , welches 30 Masse-% Wasser und 0,2 g Gallussäurepropylester enthielt, eingebracht und dispergiert, um eine homogene Suspension zu erhalten, die mittels 0,1 molarer wassriger Natriumhydroxid-Losung auf einen pH-Wert >8 eingestellt wurde. Nach Überführung der Suspension in einen Vertikalkneter wurde unter starker Scherung, langsam steigender Temperatur von 90 auf 125°C und abnehmendem Druck von 850 bis 5 mbar unter Abdestillieren des Wassers eine homogene Polymerlosung hergestellt. Die Losezeit betrug 90 min.
Die analytische Charakterisierung der Polymerlosung ergab die folgenden Daten: Feststoffgehalt: 20,3% Nullscherviskositat : (85°C): 28167 Pas
Die Polymerlosung wurde mittels Trocken-Nass-Spinnprozess zu Fasern versponnen. Die Spinnbedingungen und Faserwerte enthalt die nachfolgende Tabelle 5.
Tabelle 5 Spinnbedingungen und Faserwerte
Figure imgf000012_0001
Beispiel 4 Masseverhältnis Cellulose / PAN (30:70) 12,0 g eines Eukalyptus-Zellstoffes (Trockengehalt: 95%, Cuoxam-DP: 892) und 26,8 g PAN-Fasern (Dolanit 10, Trockengehalt 99,25%) wurden gemeinsam im Flottenverhältnis 1:20 mittels Ultra-Turrax in Wasser bis zur Einzelfaser aufgeschlagen und auf einen Feststoffanteil von 25% abgepresst. Die pressfeuchte Fasermischung wurde in 265 g l-Butyl-3- Methylimidazoliumchlorid (BMIMCl), welches 20 Masse-% Wasser und 0,1 g Gallussäurepropylester enthielt, eingebracht und dispergiert, um eine homogene Suspension zu erhalten, die mittels einer nichtflüchtigen Base auf einen pH-Wert >8 eingestellt wurde. Nach Überführung der Suspension in einen Vertikalkneter wurde unter starker Scherung, langsam steigender Temperatur von 90 auf 135°C und abnehmendem Druck von 850 bis 3 mbar unter Abdestillieren des Wassers eine homogene Polymerlösung hergestellt. Die Lösezeit betrug 90 min. Die analytische Charakterisierung der Polymerlösung ergab die folgenden Daten: Feststoffgehalt: 15,2% Nullscherviskosität: (95°C) : 927 Pas
Die Polymerlösung wurde mittels Trocken-Nass-Spinnprozess zu Fasern versponnen. Die Spinnbedingungen und Faserwerte enthält die nachfolgende Tabelle 6.
Tabelle 6 Spinnbedingungen und Faserwerte
Figure imgf000014_0001
Bei der Methode zur Bestimmung der Nassscheuerzahl wird die Messung nach 10000 Touren abgebrochen, sodass größere Werte nicht bestimmt werden können.

Claims

[Patentansprüche]
1. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern mit vermindertem Quellvermögen aus ionischen Flüssigkeiten dadurch gekennzeichnet, dass man 75 - 25 VoIu- men % Cellulose und 25 - 75 Volumen % mindestens einer weiteren faserbildenden Polymerkomponente in einer wasserhaltigen ionischen Flüssigkeit unter Zusatz von Stabilisatoren dispergiert, unter Scherung, Wärmezufuhr und Vakuum das Wasser weitestgehend entfernt, die entstehende mikroskopisch homogene Lösung durch mindestens eine
Spinndüse zur Faser/Faserschar verformt, unter Verzug durch einen klimatisierten Spalt führt, die orientierten Lösungsstrahlen durch Behandeln mit einer temperierten Lösung, die mit der ionischen Flüssigkeit mischbar, für die Cellulose und die weitere faserbildende Polymerkomponente aber ein Fällungsmittel darstellt, unter spinodaler Entmischung ausfällt, vom Fällbad trennt und anschließend nachbehandelt .
2. Verfahren zur Herstellung cellulosischer Mehrkomponenten- fasern nach Anspruch 1 dadurch gekennzeichnet, dass man als cellulosische Komponente Zellstoffe mit einem Cuoxam- DP im Bereich 300 - 2000, hergestellt aus Holz, Baumwoll- Linters oder anderen Einjahrespflanzen nach dem Sulfitoder Sulfat-/ Vorhydrolyse Sulfatverfahren verwendet.
3. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass man als weitere faserbildende Komponente Polyacrylnitril verwendet .
4. Verfahren zur Herstellung cellulosischer Mehrkomponenten- fasern nach Anspruch 1 dadurch gekennzeichnet, dass man als weitere faserbildende Komponente Copolymere des PoIy- acrylnitrils verwendet.
5. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass das Verhältnis der Nullscherviskositäten der Lösungen von Cellulose und Zweitpolymer in der ionischen Flüssigkeit allein über 1 liegt.
6. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass man als ionische Flüssigkeiten l-Butyl-3-Methylimidazolium- chlorid (BMIMCl) und/oder l-Ethyl-3-Methylimidazolium- chlorid (EMIMCl) und/oder l-Butyl-3-Methylimidazolium- acetat (BMIMAc) und/oder l-Ethyl-3-Methylimidazolium- acetat (EMIMAc) verwendet.
7. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass man als Stabilisatoren nichtflüchtige Basen allein oder in
Kombination mit Propylgallat , Tanninen, p-Phenylendiamin oder Chinon verwendet.
8. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass man als nichtflüchtige Basen Alkalihydroxide oder Polyethy- lenimin einsetzt.
9. Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern nach Anspruch 1 dadurch gekennzeichnet, dass man als Fällmedium Wasser und/oder mit Wasser mischbare Alko- hole, die bis zu 50% der als Lösungsmittel verwendeten ionischen Flüssigkeiten enthalten können, einsetzt.
10. Cellulosische Mehrkomponentenfasern mit vermindertem Quellvermögen, hergestellt nach einem Verfahren der Ansprüche 1 bis 9.
PCT/DE2007/000751 2006-05-10 2007-04-26 Verfahren zur herstellung cellulosischer mehrkomponentenfasern WO2007128268A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ATA9202/2007A AT510254B1 (de) 2006-05-10 2007-04-26 Verfahren zur herstellung cellulosischer mehrkomponentenfasern
GB0821012A GB2451046B (en) 2006-05-10 2007-04-26 Method for the production of multicomponent cellulose fibers
DE112007001615T DE112007001615A5 (de) 2006-05-10 2007-04-26 Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006022009A DE102006022009B3 (de) 2006-05-10 2006-05-10 Verfahren zur Herstellung cellulosischer Mehrkomponentenfasern
DE102006022009.9 2006-05-10

Publications (2)

Publication Number Publication Date
WO2007128268A2 true WO2007128268A2 (de) 2007-11-15
WO2007128268A3 WO2007128268A3 (de) 2008-01-03

Family

ID=38577277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000751 WO2007128268A2 (de) 2006-05-10 2007-04-26 Verfahren zur herstellung cellulosischer mehrkomponentenfasern

Country Status (5)

Country Link
AT (1) AT510254B1 (de)
DE (2) DE102006022009B3 (de)
GB (1) GB2451046B (de)
RU (1) RU2431004C2 (de)
WO (1) WO2007128268A2 (de)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098037A2 (en) * 2007-02-06 2008-08-14 North Carolina State University Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids
WO2008119770A1 (de) * 2007-03-30 2008-10-09 Basf Se Verfahren zur modifizierung der struktur eines cellulosematerials durch behandeln mit einer ionischen flüssigkeit
WO2009089556A1 (en) * 2008-01-16 2009-07-23 Lenzing Ag Fibre blends, yarns and fabrics made thereof
WO2009101111A1 (de) * 2008-02-11 2009-08-20 Basf Se Verfahren zur herstellung poröser strukturen aus synthetischen polymeren
WO2009118262A1 (de) 2008-03-27 2009-10-01 Cordenka Gmbh Cellulosische formkörper
DE102009019120A1 (de) 2009-04-29 2010-11-04 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Formkörper aus Polyacrylnitril und Verfahren zu deren Herstellung
WO2010041270A3 (en) * 2008-09-12 2011-03-31 Aditya Birla Science & Technology Co. Ltd A process for charging a polymeric product with attribute imparting agent(s)
WO2011045231A1 (de) 2009-10-16 2011-04-21 Basf Se Verfahren zur entfernung von kationen aus celluloseformkörpern
WO2011048420A1 (en) 2009-10-23 2011-04-28 Innovia Films Limited Biodegradable fibre and its process of manufacture
WO2011048608A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low-fibrillating cellulosic fibers
WO2011048609A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low fibrillating cellulose fibers
WO2011067316A1 (de) 2009-12-04 2011-06-09 Basf Se Verfahren zur herstellung einer polymerisatdispersion
US7959765B2 (en) 2007-02-06 2011-06-14 North Carolina State Universtiy Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids
WO2011069960A1 (en) 2009-12-10 2011-06-16 Basf Se Antistatic thermoplastic compositions
WO2011086082A1 (en) 2010-01-15 2011-07-21 Basf Se Method of chlorinating polysaccharides or oligosaccharides
DE102011005441A1 (de) 2010-03-15 2011-09-15 Basf Se Korrosionsinhibitoren für ionische Flüssigkeiten
CN102199803A (zh) * 2011-03-22 2011-09-28 武汉纺织大学 一种高弹性免烫纤维素纤维及其制备方法
DE102011007559A1 (de) 2010-04-19 2011-10-20 Basf Se Verfahren zur Herstellung von Elektrolyten für die Aluminiumabscheidung
DE102011007639A1 (de) 2010-04-23 2011-10-27 Basf Se Verfahren zur mechanischen Bearbeitung von Werkstücken mit einem Hochdruckstrahl
WO2011154370A1 (en) 2010-06-10 2011-12-15 Basf Se Process for determining the purity of and reusing ionic liquids
DE102011007566A1 (de) 2010-04-19 2012-01-19 Basf Se Verfahren zur Herstellung von Zusammensetzungen, welche Aluminiumtrihalogenide enthalten
US8182557B2 (en) 2007-02-06 2012-05-22 North Carolina State University Use of lignocellulosics solvated in ionic liquids for production of biofuels
CN102619143A (zh) * 2012-04-13 2012-08-01 东华大学 一种絮纤薄膜毡及其制备方法
CN102660889A (zh) * 2012-04-13 2012-09-12 东华大学 一种絮纤悬浮液及其制备方法
WO2013053630A1 (en) 2011-10-14 2013-04-18 Basf Se Preparation of oligosaccharides containing amine groups
WO2013060792A1 (de) 2011-10-26 2013-05-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Carbonfasern, carbonfaser-precursoren sowie deren herstellung
US8563787B2 (en) 2010-10-05 2013-10-22 Basf Se Preparation of homoallyl alcohols in the presence of noncovalently supported ionic liquid phase catalysts under gas-phase reaction conditions
WO2013186094A2 (en) 2012-06-15 2013-12-19 Basf Se Anodic oxidation of organic substrates in the presence of nucleophiles
WO2014162062A1 (en) 2013-04-04 2014-10-09 Aalto University Foundation Process for the production of shaped cellulose articles
US8884003B2 (en) 2010-01-15 2014-11-11 Basf Se Method of chlorinating polysaccharides or oligosaccharides
CN105200558A (zh) * 2015-10-20 2015-12-30 江苏科技大学 一种蚕桑纤维材料的制备方法
EP2853624A4 (de) * 2012-05-21 2016-05-11 Bridgestone Corp Verfahren zur herstellung gereinigter polysaccharidfasern, gereinigte polysaccharidfasern, faser-kautschuk-komplex und reifen
US9702062B2 (en) 2013-05-21 2017-07-11 Bridgestone Corporation Process for producing purified polysaccharide fibers, purified polysaccharide fibers and tires
WO2017137284A1 (de) * 2016-02-11 2017-08-17 Basf Se Verfahren zur herstellung von polymerfasern aus in ionischen flüssigkeiten gelösten polymeren durch einen luftspaltspinnprozess
WO2018138416A1 (en) 2017-01-30 2018-08-02 Aalto University Foundation Sr A process for making a cellulose fibre or film
CN111101225A (zh) * 2020-01-03 2020-05-05 镇江市高等专科学校 一种聚丙烯腈纳米纤维的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027223A1 (en) * 2009-09-01 2011-03-10 Paul O'connor Pretreatment of solid biomass material comprising cellulose with ionic liquid medium
US8652261B2 (en) 2009-09-01 2014-02-18 Kior, Inc. Process for dissolving cellulose-containing biomass material in an ionic liquid medium
JP5948147B2 (ja) * 2012-05-21 2016-07-06 株式会社ブリヂストン 精製多糖類繊維の製造方法、精製多糖類繊維、繊維−ゴム複合体、及びタイヤ
JP5993614B2 (ja) * 2012-05-21 2016-09-14 株式会社ブリヂストン 精製多糖類繊維、繊維−ゴム複合体及びタイヤの製造方法
JP5948146B2 (ja) * 2012-05-21 2016-07-06 株式会社ブリヂストン 精製多糖類繊維の製造方法、精製多糖類繊維、繊維−ゴム複合体、及びタイヤ
RU2695665C1 (ru) * 2018-11-09 2019-07-25 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения целлюлозного загустителя для пластичной смазки
RU2707600C1 (ru) * 2019-03-27 2019-11-28 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения прядильных смесевых растворов целлюлозы и сополимера пан в n-метилморфолин-n-оксиде (варианты)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098546A2 (en) * 2004-03-26 2005-10-20 The University Of Alabama Polymer dissolution and blend formation in ionic liquids
DE102004031025B3 (de) * 2004-06-26 2005-12-29 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Formkörpern aus Cellulose

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT401063B (de) * 1994-09-05 1996-06-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von cellulosischen formkörpern
SE509894C2 (sv) * 1996-08-27 1999-03-15 Akzo Nobel Surface Chem Användning av en linjär syntetisk polymer för att förbättra egenskaperna hos en formkropp av cellulosa framställd genom en tertiär aminoxidprocess
JP3728862B2 (ja) * 1997-03-27 2005-12-21 日本エクスラン工業株式会社 吸水性アクリル繊維

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098546A2 (en) * 2004-03-26 2005-10-20 The University Of Alabama Polymer dissolution and blend formation in ionic liquids
DE102004031025B3 (de) * 2004-06-26 2005-12-29 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Formkörpern aus Cellulose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE COMPENDEX [Online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; NISHIO YOSHIYUKI ET AL: "BLENDS OF CELLULOSE WITH POLYACRYLONITRILE PREPARED FROM N,N-DIMETHYLACETAMIDE-LITHIUM CHLORIDE SOLUTIONS" XP002455432 Database accession no. EIX87100152265 & POLYMER JUL 1987, Bd. 28, Nr. 8, Juli 1987 (1987-07), Seiten 1385-1390, *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959765B2 (en) 2007-02-06 2011-06-14 North Carolina State Universtiy Product preparation and recovery from thermolysis of lignocellulosics in ionic liquids
WO2008098037A3 (en) * 2007-02-06 2008-12-11 Univ North Carolina State Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids
US8182557B2 (en) 2007-02-06 2012-05-22 North Carolina State University Use of lignocellulosics solvated in ionic liquids for production of biofuels
WO2008098037A2 (en) * 2007-02-06 2008-08-14 North Carolina State University Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids
WO2008119770A1 (de) * 2007-03-30 2008-10-09 Basf Se Verfahren zur modifizierung der struktur eines cellulosematerials durch behandeln mit einer ionischen flüssigkeit
WO2009089556A1 (en) * 2008-01-16 2009-07-23 Lenzing Ag Fibre blends, yarns and fabrics made thereof
TWI461579B (zh) * 2008-01-16 2014-11-21 Chemiefaser Lenzing Ag 纖維摻合物,及由彼製成之紗及織物,以及該纖維摻合物及紗之用途
KR101601993B1 (ko) 2008-02-11 2016-03-17 바스프 에스이 합성 중합체로부터 다공성 구조의 제조 방법
US8999211B2 (en) 2008-02-11 2015-04-07 Basf Se Method for producing porous structures from synthetic polymers
CN101970555B (zh) * 2008-02-11 2014-05-28 巴斯夫欧洲公司 由合成聚合物制备多孔结构的方法
WO2009101111A1 (de) * 2008-02-11 2009-08-20 Basf Se Verfahren zur herstellung poröser strukturen aus synthetischen polymeren
KR20100129293A (ko) * 2008-03-27 2010-12-08 코르덴카 게엠베하 셀룰로오스 성형체
WO2009118262A1 (de) 2008-03-27 2009-10-01 Cordenka Gmbh Cellulosische formkörper
WO2010041270A3 (en) * 2008-09-12 2011-03-31 Aditya Birla Science & Technology Co. Ltd A process for charging a polymeric product with attribute imparting agent(s)
DE102009019120A1 (de) 2009-04-29 2010-11-04 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Formkörper aus Polyacrylnitril und Verfahren zu deren Herstellung
US8952146B2 (en) 2009-10-07 2015-02-10 Grasim Industries Limited Process for manufacturing low-fibrillating cellulosic fiber
WO2011048609A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low fibrillating cellulose fibers
WO2011048608A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low-fibrillating cellulosic fibers
WO2011045231A1 (de) 2009-10-16 2011-04-21 Basf Se Verfahren zur entfernung von kationen aus celluloseformkörpern
WO2011048397A1 (en) * 2009-10-23 2011-04-28 Innovia Films Limited Biodegradable cigarette filter tow and its process of manufacture
WO2011048420A1 (en) 2009-10-23 2011-04-28 Innovia Films Limited Biodegradable fibre and its process of manufacture
US8833376B2 (en) 2009-10-23 2014-09-16 Innovia Films Limited Biodegradable composites
WO2011067316A1 (de) 2009-12-04 2011-06-09 Basf Se Verfahren zur herstellung einer polymerisatdispersion
WO2011069960A1 (en) 2009-12-10 2011-06-16 Basf Se Antistatic thermoplastic compositions
WO2011086082A1 (en) 2010-01-15 2011-07-21 Basf Se Method of chlorinating polysaccharides or oligosaccharides
US8884003B2 (en) 2010-01-15 2014-11-11 Basf Se Method of chlorinating polysaccharides or oligosaccharides
DE102011005441A1 (de) 2010-03-15 2011-09-15 Basf Se Korrosionsinhibitoren für ionische Flüssigkeiten
DE102011007566A1 (de) 2010-04-19 2012-01-19 Basf Se Verfahren zur Herstellung von Zusammensetzungen, welche Aluminiumtrihalogenide enthalten
DE102011007559A1 (de) 2010-04-19 2011-10-20 Basf Se Verfahren zur Herstellung von Elektrolyten für die Aluminiumabscheidung
DE102011007639A1 (de) 2010-04-23 2011-10-27 Basf Se Verfahren zur mechanischen Bearbeitung von Werkstücken mit einem Hochdruckstrahl
WO2011154370A1 (en) 2010-06-10 2011-12-15 Basf Se Process for determining the purity of and reusing ionic liquids
US8563787B2 (en) 2010-10-05 2013-10-22 Basf Se Preparation of homoallyl alcohols in the presence of noncovalently supported ionic liquid phase catalysts under gas-phase reaction conditions
CN102199803A (zh) * 2011-03-22 2011-09-28 武汉纺织大学 一种高弹性免烫纤维素纤维及其制备方法
WO2013053630A1 (en) 2011-10-14 2013-04-18 Basf Se Preparation of oligosaccharides containing amine groups
WO2013060792A1 (de) 2011-10-26 2013-05-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Carbonfasern, carbonfaser-precursoren sowie deren herstellung
DE102012004118A1 (de) 2011-10-26 2013-05-02 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Carbonfasern, Carbonfasern-Precusoren sowie deren Herstellung
DE202012013359U1 (de) 2011-10-26 2016-07-15 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Carbonfasern und Carbonfaser-Precursoren
CN102619143A (zh) * 2012-04-13 2012-08-01 东华大学 一种絮纤薄膜毡及其制备方法
CN102660889A (zh) * 2012-04-13 2012-09-12 东华大学 一种絮纤悬浮液及其制备方法
US9670596B2 (en) 2012-05-21 2017-06-06 Bridgestone Corporation Production method for purified polysaccharide fibers, purified polysaccharide fibers, fiber-rubber complex, and tire
EP2853624A4 (de) * 2012-05-21 2016-05-11 Bridgestone Corp Verfahren zur herstellung gereinigter polysaccharidfasern, gereinigte polysaccharidfasern, faser-kautschuk-komplex und reifen
WO2013186094A2 (en) 2012-06-15 2013-12-19 Basf Se Anodic oxidation of organic substrates in the presence of nucleophiles
WO2014162062A1 (en) 2013-04-04 2014-10-09 Aalto University Foundation Process for the production of shaped cellulose articles
US9702062B2 (en) 2013-05-21 2017-07-11 Bridgestone Corporation Process for producing purified polysaccharide fibers, purified polysaccharide fibers and tires
CN105200558A (zh) * 2015-10-20 2015-12-30 江苏科技大学 一种蚕桑纤维材料的制备方法
CN105200558B (zh) * 2015-10-20 2017-09-15 江苏科技大学 一种蚕桑纤维材料的制备方法
WO2017137284A1 (de) * 2016-02-11 2017-08-17 Basf Se Verfahren zur herstellung von polymerfasern aus in ionischen flüssigkeiten gelösten polymeren durch einen luftspaltspinnprozess
US11585015B2 (en) 2016-02-11 2023-02-21 Deutsche Institute Fur Textil-Und Faserforschung Denkendorf Process for the preparation of polymer fibers from polymers dissolved in ionic liquids by means of an air gap spinning process
WO2018138416A1 (en) 2017-01-30 2018-08-02 Aalto University Foundation Sr A process for making a cellulose fibre or film
US11549200B2 (en) 2017-01-30 2023-01-10 Aalto University Foundation Sr Process for making cellulose fibre or film
CN111101225A (zh) * 2020-01-03 2020-05-05 镇江市高等专科学校 一种聚丙烯腈纳米纤维的制备方法

Also Published As

Publication number Publication date
GB0821012D0 (en) 2008-12-24
AT510254B1 (de) 2012-04-15
GB2451046A (en) 2009-01-14
DE112007001615A5 (de) 2009-04-09
RU2431004C2 (ru) 2011-10-10
DE102006022009B3 (de) 2007-12-06
RU2008148573A (ru) 2010-06-20
WO2007128268A3 (de) 2008-01-03
GB2451046B (en) 2011-06-29

Similar Documents

Publication Publication Date Title
AT510254B1 (de) Verfahren zur herstellung cellulosischer mehrkomponentenfasern
EP1763596B1 (de) Verfahren zur herstellung von formkörpern aus cellulose
EP2981639B1 (de) Polysaccharidfaser mit erhöhtem fibrillationsvermögen und verfahren zu ihrer herstellung
DE3027033C2 (de)
EP2268857B1 (de) Cellulosische formkörper
DD142898A5 (de) Geformter zelluloseartikel,hergestellt aus einer zellulosehaltigen loesung
AT505904A4 (de) Cellulosesuspension und verfahren zu deren herstellung
AT518061B1 (de) Modifizierte Viskosefaser
DE10304655B4 (de) Verfahren zur Herstellung einer hochgradig homogenen Cellulose-Lösung
DE60311324T2 (de) Herstellungsverfahren für modifizierte zellulosefasern
DE2646332C3 (de)
DE69700778T2 (de) Verfahren zur herstellung von cellulosefasern und filamenten
WO2014128128A1 (de) Celluloseregeneratfasern, deren herstellung und verwendung
AT405531B (de) Verfahren zur herstellung cellulosischer fasern
AT515174A1 (de) Cellulosesuspension, Verfahren zu ihrer Herstellung und Verwendung
EP0051189B1 (de) Verfahren zur Herstellung von trockengesponnenen Polyacrylnitril-Profilfasern und -fäden
EP3762537A1 (de) Zellstoff und lyocellformkörper mit reduziertem cellulosegehalt
DE2732152A1 (de) Neues verfahren zur formgebung von celluloseloesungen auf physikalischem wege und die so erhaltenen erzeugnisse
DE2609829C2 (de) Verfahren zur Herstellung von hydrophilen Fasern und Fäden aus synthetischen Polymeren
DE2657144A1 (de) Verfahren zur herstellung hydrophiler fasern
DE10009471B4 (de) Verfahren zur Herstellung einer Lösung erhöhter thermischer Stabilität von Cellulose in wässrigem Aminoxid
DE2607659C2 (de) Hydrophile Fasern und Fäden aus synthetischen Polymeren
WO2017137284A1 (de) Verfahren zur herstellung von polymerfasern aus in ionischen flüssigkeiten gelösten polymeren durch einen luftspaltspinnprozess
DE2706032C2 (de) Verfahren zur Herstellung hydrophiler Acrylfasern
AT408355B (de) Verfahren zur herstellung cellulosischer fasern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07722308

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 92022007

Country of ref document: AT

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 0821012

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070426

WWE Wipo information: entry into national phase

Ref document number: 0821012.2

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2008148573

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 1120070016159

Country of ref document: DE

REF Corresponds to

Ref document number: 112007001615

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07722308

Country of ref document: EP

Kind code of ref document: A2