WO2007123045A1 - 電力変換器及びその制御方法並びに空気調和機 - Google Patents

電力変換器及びその制御方法並びに空気調和機 Download PDF

Info

Publication number
WO2007123045A1
WO2007123045A1 PCT/JP2007/058085 JP2007058085W WO2007123045A1 WO 2007123045 A1 WO2007123045 A1 WO 2007123045A1 JP 2007058085 W JP2007058085 W JP 2007058085W WO 2007123045 A1 WO2007123045 A1 WO 2007123045A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power supply
command value
idc
current
Prior art date
Application number
PCT/JP2007/058085
Other languages
English (en)
French (fr)
Inventor
Hitoshi Haga
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07741521.4A priority Critical patent/EP2009774B1/en
Priority to AU2007242096A priority patent/AU2007242096B2/en
Priority to US12/226,434 priority patent/US8269370B2/en
Priority to CN2007800054550A priority patent/CN101385224B/zh
Publication of WO2007123045A1 publication Critical patent/WO2007123045A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Definitions

  • the present invention relates to a power converter and a control method thereof, and more particularly to a power converter of a type commonly called capacitorless and a control method thereof.
  • An air conditioner includes a motor for a refrigerant compressor and power conversion for supplying desired power to the motor.
  • a converter, an inverter, and a smoothing capacitor between them are used to convert power supplied from an AC power source.
  • a rear tuttle will be provided to improve the input power factor.
  • the rear tuttle capacity is about 2mH and the capacitor capacity is about 2000 ⁇ F.
  • Non-Patent Document 3 discloses a technique that omits the rear tuttle.
  • Non-Patent Document 1 Myint Ko Tun, 1 other, “New Type Sinusoidal Input UPS Controlled by DC Chopper Type Active Filter”, Annual Conference of Industrial Applications Division, IEEJ, Vol. III, IEEJ, 2002 August, p. 1301-1306
  • Non-Patent Document 2 Hiroshi Ito, 1 outside, “Capacitorless PWM Inverter”, Proc. Of the National Conference of Industrial Application Division, 1988, The Institute of Electrical Engineers of Japan, August 1988, p. 445-4 50
  • Non-Patent Document 3 Hitoshi Haga and 1 other, “Improvement of input current waveform of inverter for driving IPM motor without single phase electric field capacitor”, Proceedings of Annual Conference of Industrial Applications Division, 2002 I, 2002 8 Month, p. 415-418
  • the high-frequency interference can be suppressed by controlling the switching operation of the inverter.
  • it is necessary to increase the switching frequency of the inverter, for example, about ten times the resonance frequency. This is less desirable because it increases the switching loss in the inverter.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to suppress high-frequency interference to an AC power supply.
  • an input current (iul, ivl, iwl; ic) from an AC power source (1) is rectified, and a first power source line (21) and a second power source are rectified.
  • the switching power supply circuit (61; 62; 62) that operates to supply the second load (Cdc + Load; C2 + Load; 7) with the high-frequency component force of the first current with respect to the fundamental frequency of the input current. 6).
  • a second mode of power conversion according to the present invention is power conversion according to the first mode, wherein the switching power supply circuit (61; 62) is connected to the second power supply circuit from the switching power supply circuit.
  • the switching power supply circuit 61; 62
  • the switching power supply circuit 61; 62
  • the switching power supply circuit 62
  • the switching power supply circuit 61; 62
  • the switching power supply circuit 62
  • the second power supply circuit from the switching power supply circuit.
  • a third mode of power conversion according to the present invention is power conversion applied to the first mode, wherein the second load is a motor (7), and the switching power supply circuit (6 ) Is the deviation ( ⁇ ) of the rotational speed ( ⁇ ) of the motor with respect to its command value ( ⁇ *) and the first current ( — Switches (S31 to S36) that perform the switching operation according to the command value (iq *) obtained based on iL).
  • a fourth mode of power conversion according to the present invention is power conversion according to the first mode, wherein the switching power supply circuit (61; 62; 6) iL) and the second current (idc; idc; iq) flowing through the second load (Cdc + Load; C2 + Load; 7)! / the command value (v *; v *; vq *), the switches (SI, S2; SI, S2; S31 to S36) that perform the switching operation are provided.
  • an input current (iul, ivl, iwl; ic) from the AC power source (1) is rectified to rectify the first power source line (21) and the second power source (21).
  • a rectifier circuit (2) for outputting a DC voltage to the power line (22) and applying the DC voltage to the first load (4 + 5); the first power line and the second power line; Connected between the capacitor (Cd), the rear external loop (Ld) that forms a series resonant circuit with the capacitor, and connected between the first power line and the second power line, and applied to the rear tuttle.
  • Switching operation is performed with a duty based on the first voltage (vL) generated, and the second load is determined from the high-frequency component of the first current (one iL) flowing in the first power supply line with respect to the fundamental frequency of the input current.
  • a sixth aspect of the power variation that works for the present invention is a power variation that works for the fifth embodiment, and the switching power supply circuit (61; 62) is separated from the switching power supply circuit.
  • the switching power supply circuit 61; 62
  • the switching power supply circuit is separated from the switching power supply circuit.
  • ⁇ vO deviation of the output voltage (vO) applied to the second load (Cdc + Load; C2 + Load) with respect to its command value (vO *) and the first voltage (vL)
  • a switch (SI, S2) that performs the switching operation according to the obtained command value (idc *; idc *) is provided.
  • a seventh aspect of the power variation that works for the present invention is a power variation that works for the fifth embodiment, wherein the second load is a motor (7), and the switching power supply
  • the circuit (6) has a command value (iq *) determined based on a deviation ( ⁇ ) of the rotational speed ( ⁇ ) of the motor from the command value ( ⁇ *) and the first voltage (vL). ) To perform the switching operation (S31 to S36).
  • An eighth aspect of power conversion according to the present invention is power conversion according to the fifth aspect, in which the switching power supply circuit (61; 62; 6) has the first voltage (vL ) And the second negative Based on the second current (idc; idc; iq) flowing in the load (Cdc + Load; C2 + Load; 7)! /, And according to the command value (v *; v *; vq *)
  • a switch SI, S2; S1, S2; S31 to S36 for performing a switching operation is provided.
  • a ninth aspect of the power converter according to the present invention is the power converter according to any one of the second, third, sixth and seventh aspects, wherein the switch (SI, S2; S1, S2; S31 to S36) are the command value (idc *; idc *; iq *) and the second current (idc *) that flows to the second load (Cdc + Load; C2 + Load; 7).
  • the switching operation is performed according to the command value (V *; V *; vq *) obtained based on idc; iq).
  • a tenth aspect of power conversion according to the present invention is the power converter according to any one of the second to fourth and sixth to ninth aspects, wherein the first load ( 4 + 5) has a main load (5) and an inverter (4) that inputs the voltage across the capacitor (vdc) and outputs an alternating current (iu2, iv2, iw2) to the main load, The duty is determined by comparing the command value (idc; iq; V *; Vq *) with the carrier of the inverter (4).
  • An eleventh aspect of power conversion according to the present invention is a power converter that works in any one of the first to ninth aspects, wherein the first load (4 + 5) is: A main load (5) and an inverter (4) for inputting the voltage across the capacitor (vdc) and outputting an alternating current (iu2, iv2, iw2) to the main load.
  • the first load (4 + 5) is: A main load (5) and an inverter (4) for inputting the voltage across the capacitor (vdc) and outputting an alternating current (iu2, iv2, iw2) to the main load.
  • a first aspect of the air conditioner according to the present invention includes a power conversion applied to the eleventh aspect, a motor for a refrigerant compressor constituting the main load (5), and the second load. (Cdc + Load; C2 + Load; 7) and an air cooling fan, and air conditioning is performed by removing the latent heat of the refrigerant compressed by the refrigerant compressor by the fan.
  • the first aspect of the method for controlling the power variation that is useful for the present invention is that the input current (iul, ivl, iwl) of the AC power source (1) is rectified to rectify the first power line and the second power source. A DC voltage is output between the power line and the DC voltage is applied to the first load (4 + 5). Between the rectifier circuit (2) and the first power line and the second power line.
  • This is a method for controlling a power converter including a capacitor (Cd) to be connected and a switching power supply circuit (61; 62; 6) connected between the first power supply line and the second power supply line.
  • the switching power supply circuit to perform a switching operation with a duty based on a first current (one iL) flowing through the first power supply line, and Power is supplied to the second load (Cdc + Load; C2 + Load; 7) from a high frequency component with respect to the fundamental frequency of the input current.
  • a second aspect of the method for controlling power conversion according to the present invention is a method for controlling an electric power converter according to the first aspect, in which the switching power supply circuit (61; 62) 2 Based on the deviation ( ⁇ ⁇ ) of the output voltage ( ⁇ ) applied to the load (Cdc + Load; C2 + Load) from the command value ( ⁇ *) and the first current (-iL).
  • the switching power supply circuit is caused to perform the switching operation in accordance with the command value (idc *; id c *) determined in this way.
  • a third aspect of the power conversion control method according to the present invention is a power converter control method according to the first aspect, wherein the second load is a motor (7).
  • the command value (iq *) obtained based on the deviation ( ⁇ ) of the rotational speed ( ⁇ ) of the motor with respect to the command value ( ⁇ *) and the first current ( ⁇ iL)
  • the switching power supply circuit (6) performs the switching operation.
  • a fourth aspect of the power conversion control method according to the present invention is a power converter control method according to the first aspect, wherein the first current (one iL) and the first Based on the command value (v *; v *; vq *) obtained based on the second current (idc; idc; iq) flowing through the two loads (Cdc + Load; C2 + Load; 7)
  • the switching power supply circuit (61; 62; 6) is caused to perform the switching operation.
  • a fifth aspect of the power variation control method that is useful in the present invention is that the AC power source (1) power input current (iul, ivl, iwl) is rectified to rectify the first power source line and the second power source line. A DC voltage is output between the power line and the DC voltage is applied to the first load (4 + 5). Between the rectifier circuit (2) and the first power line and the second power line.
  • power input current iul, ivl, iwl
  • a capacitor (Cd) to be connected, a rear outer loop (Ld) that forms a series resonance circuit together with the capacitor, and a switching power supply circuit (61; 62) connected between the first power supply line and the second power supply line 6) is a method for controlling a power change comprising: causing the switching power supply circuit to perform a switching operation at a duty based on a first voltage (vL) applied to the rear tuttle, and causing the first power supply line to From the high-frequency component of the flowing first current (one iL) to the fundamental frequency of the input current, the second load (Cdc + Load; C2 + Load; 7) Provides a force.
  • a sixth aspect of the method for controlling power conversion according to the present invention is the same as that of the fifth aspect.
  • a method of controlling a force transducer which is applied from the switching power supply circuit (61; 62) to the second load ((1 + 1 + 1 ⁇ 0 &(1; 2 + 1 ⁇ 0 & (1))
  • the command value (idc *; idc *) obtained based on the deviation ( ⁇ ) of the output voltage ( ⁇ ) from the command value ( ⁇ *) and the first voltage (vL)
  • the power supply circuit performs the switching operation.
  • a seventh aspect of the power conversion control method according to the present invention is a power converter control method according to the fifth aspect, wherein the second load is a motor (7).
  • the switching speed according to the command value (iq *) obtained based on the deviation ( ⁇ ) of the rotational speed ( ⁇ ) of the motor from the command value ( ⁇ *) and the first voltage (vL).
  • the power circuit (6) is caused to perform the switching operation.
  • An eighth aspect of the power conversion control method according to the present invention is a power converter control method according to the fifth aspect, in which the first voltage (vL) and the second voltage are controlled. Based on the command value (v *; v *; vq *) obtained based on the second current (idc; idc; iq) flowing in the load (Cdc + Load; C2 + Load; 7)!
  • the switching power supply circuit (61; 62; 6) performs the switching operation.
  • the ninth mode of the power variation control method that is useful for the present invention is the second, third, sixth and seventh! ,
  • a control method of power variation ⁇ that works in one mode, wherein the command value (idc *; idc *; iq *) and the second load (Cdc + Load; C2 + Load; 7)
  • the switching power supply circuit (61; 62; 6) performs the switching operation according to a command value (v *; v *; vq *) determined based on the second current (idc; id c; iq) flowing through
  • a tenth aspect of the power conversion control method according to the present invention is a power converter control method according to any one of the second to fourth and sixth to ninth aspects.
  • the first load (4 + 5) receives the main load (5) and the voltage across the capacitor (vdc) and outputs an alternating current (iu2, iv2, iw2) to the main load ( 4), and the duty is determined by comparing the command value (idc; iq; v *; vq *) with the carrier of the inverter (4).
  • the second load consumes the high-frequency component included in the first current with respect to the fundamental frequency of the input current, so the high-frequency component of the input current to the rectifier circuit is suppressed and the high-frequency interference to the AC power supply is suppressed. To do.
  • the motor can be stably rotated.
  • the power consumption of the second load can be accurately controlled.
  • a tenth aspect of power conversion or a first method of controlling power conversion according to the present invention is a tenth aspect of power conversion or a first method of controlling power conversion according to the present invention.
  • the switching of the switching power supply circuit can be synchronized with the switching of the inverter.
  • the switching loss in the inverter is small.
  • the air cooling fan has lower power consumption and accuracy of rotation control than the refrigerant compressor motor. It is suitable for the control using the power converter which is effective in the aspect.
  • FIG. 1 is a diagram conceptually showing power conversion described in the first embodiment.
  • FIG. 2 is a diagram conceptually showing power conversion described in the first embodiment.
  • FIG. 3 is a diagram conceptually showing a control apparatus 10 for a power converter.
  • FIG. 4 is a graph showing an input current iul when the control described in the first embodiment is executed.
  • FIG. 5 is a graph showing a voltage vdc when the control described in the first embodiment is executed. 6] A graph showing the input current iul before executing the control described in the first embodiment.
  • FIG. 7 is a graph showing a voltage vdc before executing the control described in the first embodiment.
  • FIG. 9 is a diagram conceptually showing a power converter described in the second embodiment.
  • FIG. 10 is a diagram conceptually showing the power conversion control device 20.
  • FIG. 11 is a graph showing the input current iul when the control described in the second embodiment is executed.
  • FIG. 15 is a diagram conceptually showing power conversion described in the third embodiment.
  • FIG. 16 is a graph showing the input current ic when the control described in the third embodiment is executed.
  • ⁇ 20 This is a graph showing the input current ic when harmonic suppression is executed by inverter 4.
  • FIG. 21 is a graph showing the voltage vdc when harmonic suppression is performed in inverter 4.
  • the power converter includes a first power line 21, a second power line 22, a rectifier circuit 2, a capacitor Cd, a rear tuttle Ld, an inverter 4, and a switching power circuit 61 (or a switching power circuit 62).
  • FIGS. 1 and 2 show an AC power supply 1 that supplies power for the power conversion and a motor 5 that is supplied with an output from an inverter 4.
  • FIG. 1 the capacitor Cdc to which the output of the switching power supply circuit 61 is supplied and the drive unit Load are shown, and in FIG. 2, the capacitor C2 to which the output of the switching power supply circuit 62 is supplied and the drive unit Load are shown.
  • Capacitors Cdc and C2 smooth the outputs of the switching power supply circuits 61 and 62 and supply them to the drive unit Load.
  • a three-phase AC power source is employed as the AC power source 1.
  • the motor 5 is composed of a main load, a load composed of the motor 5 and the inverter 4 is a first load (denoted as “4 + 5” in the text), a capacitor Cdc, and a drive unit Load.
  • Load (Fig. 1) is the second load (denoted in the text as "Cdc + Load"), and the load consisting of capacitor C2 and drive section load (Fig. 2) is the second load (denoted as "C2 + And “Load”).
  • the rectifier circuit 2 is a bridge diode in the present embodiment, and rectifies the input currents iul, ivl, iwl from the AC power source 1 and between the first power source line 21 and the second power source line 22. Outputs DC voltage.
  • the capacitor Cd is connected between the first power supply line 21 and the second power supply line 22.
  • the rear tuttle Ld is provided on the first power supply line 21 between the rectifier circuit 2 and the capacitor Cd. Capacitor Cd and rear tuttle Ld form a DC resonant circuit.
  • Inverter 4 is a three-phase inverter in the present embodiment, and receives voltage vdc across capacitor Cd and outputs alternating currents iu2, iv2, and iw2 to motor 5.
  • the motor 5 is driven by the output of the inverter 4 being supplied.
  • Each of switching power supply circuits 61 and 62 is connected between first power supply line 21 and second power supply line 22.
  • the force connected to both ends of the capacitor Cd for example, may be connected to both ends of a series resonant circuit composed of the capacitor Cd and the rear tuttle Ld.
  • a step-down diode is used for the switching power supply circuit 61.
  • This step-down pressure switch has a switch SI, S2, a coin: Ldc and output terminals 611, 612.
  • the switches SI and S 2 are connected in series between the first power supply line 21 and the second power supply line 22.
  • Output terminals 611 and 612 are connected to both ends of switch S2, respectively.
  • the coil Ldc is connected in series with the switch S2 between the output terminals 611 and 612.
  • a second load Cdc + Load is connected between the output terminals 611 and 612.
  • a flyback converter is employed for the switching power supply circuit 62.
  • the flyback converter 62 has switches SI and S2, a transformer T, and output terminals 621 and 622.
  • the primary coil L1 of the transformer T is connected between the first power supply line 21 and the second power supply 22, and the secondary coil L2 is connected between the output terminals 621 and 622.
  • the switch S1 is connected in series with the coil L1 between the first power supply line 21 and the second power supply line 22.
  • the switch S2 is connected in series with the coil L2 between the output terminals 621 and 622.
  • a second load C2 + Load is connected between the output terminals 621 and 622.
  • an IGBT module composed of an IGBT (Insulated Gate Bipolar Transistor) and a diode is employed for the switches SI and S2.
  • FIG. 3 conceptually shows the control device 10 that controls the power converter shown in FIG.
  • the control device 10 includes subtractors 101 and 105, a command value correction unit 103, control units 102, 104, and 106, a triangular wave carrier generation unit 107, a comparison unit 108, and a NOT circuit 109.
  • the subtractor 101 obtains a deviation ⁇ of the output voltage ⁇ applied from the switching power supply circuit 61 to the second load Cdc + Load with respect to the command value ⁇ *.
  • the control unit 102 generates the command value idc * of the current idc flowing through the coil Ldc by executing PI control based on the deviation ⁇ . According to the powerful control, the voltage ⁇ can be brought close to the command value ⁇ *, so that the output voltage can be stably applied to the second load Cdc + Load. [0055]
  • the command value correction unit 103 corrects the command value idc * in which the switching power supply circuit 61 consumes the high frequency component of the current iL flowing through the first power supply line 21 with respect to the fundamental frequency of the input currents iul, ivl, iwl. To do.
  • command value correction unit 103 corrects command value idc * based on voltage vL applied to rear tuttle Ld. Specifically, the control unit 104 multiplies the voltage vL by the gain K1 to obtain the correction value A ide *, and the command value correction unit 103 subtracts the correction value A ide * from the command value idc *, and the result Is output as a new command value idc *.
  • the voltage vL is based on the potential on the rectifier circuit 2 side of the rear tuttle Ld.
  • phase of the correction command value ⁇ idc * may be shifted in accordance with the phase delay of the voltage vL in accordance with the phase delay.
  • the phase of Aide * may be delayed by 90 ° from the phase of voltage vL. This is because the phase of the current iL is delayed by 90 ° with respect to the phase of the voltage vL in the rear tuttle Ld.
  • the subtractor 105 obtains a deviation ⁇ idc between the corrected command value idc * and the current idc.
  • the control unit 106 generates a command value V * of the voltage V applied to both ends of the switch S2 by executing PI control based on the deviation Aide. According to the powerful control, the current idc can be brought close to the command value i dc *, so that the power consumption of the second load Cdc + Load can be accurately controlled.
  • the triangular wave carrier generation unit 107 generates a triangular wave carrier tuned to the inverter 4.
  • the comparison unit 108 compares the command value V * and the triangular wave carrier, and generates a switching command rl for the switch S1.
  • the switch S1 is controlled to be either on or off by the switching command rl. Since the switch S2 is controlled in a complementary manner to the switch S1, the command r2 for the switch S2 can be obtained by inputting the command rl to the NOT circuit 109.
  • the command values rl and r2 can be obtained by the control device 10, high-speed microcomputer processing is not necessary for controlling the switching power supply circuit 61.
  • the switching frequency of the inverter such as flyback converter or step-down chopper is higher than the switching frequency of inverter 4 (6kHz). Ching frequency (50-100kHz) can be increased.
  • the second load Cdc + Load can consume high-frequency components included in the current (one iL) with respect to the fundamental frequencies of the input currents 1, ivl and iwl. it can. Therefore, the high frequency components of the input currents iul, ivl, iwl to the rectifier circuit 2 can be suppressed, and the high frequency disturbance to the AC power source 1 can be suppressed.
  • FIG. 4 is a graph showing the change over time of the input current iul when the control that is relevant to the present embodiment is executed.
  • FIG. 5 is a graph showing the time change of the voltage vdc across the capacitor Cd when the control related to the present embodiment is executed.
  • the waveforms of the input current iul and the voltage vdc before executing the control according to the present embodiment are shown in FIGS. 6 and 7, respectively. Due to the series resonance between the rear tuttle Ld and the capacitor Cd, this waveform contains many high-frequency components.
  • the graphs in Figs. 4 to 7 show the command value ⁇ * [20V, Ma-ku Oad [This resistance, the power consumption of the second load Cdc +! Load [20W, 1.5 kW for the power consumption of the motor 5] It is a result obtained when adopting.
  • the switching power supply circuit 61 Since the high-frequency component of the power is smaller than the DC power supplied to the first load 4 + 5, the power consumption of the second load Cdc + Load that consumes this is the first load 4 + 5 It can be smaller than the power consumption. In view of this, it can be seen that high-frequency interference can be suppressed even when the power consumption of the switching power supply circuit 61 is small. Therefore, the current flowing through the switches SI and S2 of the switching power supply circuit 61 can be made smaller than the current flowing through the switching element of the inverter 4. That is, as compared with the switching in which the harmonics are controlled by the control in the inverter 4, the suppression force in the control in the switching power supply circuit 61 can be reduced. This makes it possible to use switches with small current capacity for switches SI and S2. Therefore, the switching power supply circuit 61 can be downsized.
  • the control device 10 can also be applied to the control of power conversion shown in FIG. However, instead of the current idc and its command value idc *, the current il flowing through the coil L1 and its command value il * are adopted.
  • the command value V * is the command value of the voltage across the coil L2.
  • the subtractor 105 and the control unit 106 may not be provided in the control device 10. In FIG. 8, a powerful mode is shown as the control device 11.
  • the control device 11 includes a subtractor 111, control units 112 and 114, a correction command value 113, a triangular wave carrier generation unit 115, a comparison unit 116, and a NOT circuit 117.
  • the subtractor 111 calculates the deviation ⁇ in the same manner as the subtractor 101 shown in FIG.
  • the control unit 112 generates the command value ⁇ * by executing the ⁇ control based on the deviation ⁇ .
  • the command correction unit 113 corrects the command value v * that the switching power supply circuit 61 should consume the high frequency component of the current iL flowing through the first power supply line 21 with respect to the fundamental frequency of the input currents iul, ivl, iwl. .
  • the control unit 114 multiplies the voltage vL by the gain K2 to obtain a correction value ⁇ , and the command value correction unit 113 subtracts the correction value ⁇ from the command value V * and obtains the result as a new command value. Output as V *.
  • phase of the correction command value ⁇ V * may be shifted in accordance with the phase delay of the voltage vL in accordance with the phase delay!
  • Triangular wave carrier generation unit 115 generates a triangular wave carrier tuned to inverter 4.
  • the comparison unit 116 compares the corrected command value V * with the triangular wave carrier, and generates a command value rl.
  • the command value r2 is obtained by the NOT circuit 117 in a complementary manner to the command value rl.
  • the high-frequency component with respect to the fundamental frequency of the input current 1, ivl, iwl included in the current (one iL) is also expressed by the second load Cdc + Load, C2 + Load by the powerful control device 11 and its control. Can be consumed. Therefore, the high frequency components of the input currents iul, ivl, iwl to the rectifier circuit 2 can be suppressed, and the high frequency interference to the AC power source 1 can be suppressed.
  • the voltage ⁇ in the present embodiment can be employed as a power supply voltage for electrical components used in a motor drive system for an air conditioner, a power supply voltage for controlling an inverter, or the like.
  • FIG. 9 conceptually shows the power converter according to the present embodiment.
  • the first power supply line 21, the second power supply line 22, the rectifier circuit 2, the capacitor Cd, the rear tuttle Ld, and the inverter 4 are configured in the same manner as the power converter of the first embodiment.
  • a switching power supply circuit 6 is connected between the first power supply line 21 and the second power supply line 22.
  • FIG. 9 shows an AC power supply 1 and a motor 5 as in FIGS. 1 and 2, and further shows a motor 7 to which the output of the switching power supply circuit 6 is supplied.
  • the motor 7 can be grasped as the second load with respect to the load composed of the inverter 4 and the motor 5 that is grasped as the first load 4 + 5.
  • the switching power supply circuit 6 is a three-phase inverter and includes switches S31 to S36.
  • IGBT modules are employed for the switches S31 to S36.
  • the three-phase inverter is controlled by microcomputer processing.
  • FIG. 10 conceptually shows a control device 20 that controls the power converter shown in FIG.
  • the control device 20 includes subtracters 201, 205, 207, a command value correction unit 203, control units 202, 204,
  • the subtractor 201 obtains a deviation ⁇ of the rotational speed ⁇ of the motor 7 with respect to the command value ⁇ *.
  • the control unit 202 generates a command value iq * for the q-axis current iq flowing through the motor by executing PI control based on the deviation ⁇ . According to the powerful control, the rotational speed ⁇ can be brought close to the command value ⁇ *, so that the motor 7 can be rotated stably.
  • the command value correction unit 203 corrects the command value iq * so that the switching power supply circuit 6 consumes high-frequency components with respect to the fundamental frequencies of the input currents iul, ivl, and iwl.
  • command value correction unit 203 corrects command value iq * based on voltage vL applied to rear tuttle Ld. Specifically, the control unit 204 multiplies the voltage vL by the gain K to obtain the correction value A iq *, and the command value correction unit 203 subtracts the correction value A iq * from the command value iq *. Is output as a new command value iq *.
  • the correction command value ⁇ iq * is adjusted according to the phase delay in the control unit 202 and the control unit 206 in which PI control is executed.
  • the phase may be shifted from the phase of voltage vL. Further, even when there is no phase delay in the control units 202 and 206, the phase of the correction command value A iq * may be delayed by 90 ° from the phase of the voltage vL.
  • the subtracter 205 obtains a deviation ⁇ iq between the corrected command value iq * and the q-axis current iq.
  • the control unit 206 generates a command value vq * of the q-axis voltage vq applied to the motor 7 by executing PI control based on the deviation A iq. With powerful control, the q-axis current iq can be brought close to the command value iq *.
  • the subtractor 207 obtains a deviation ⁇ id of the d-axis current id flowing through the motor 7 with respect to the command value id *.
  • the control unit 208 generates a command value vd * of the d-axis voltage vd applied to the motor 7 by executing PI control based on the deviation A id.
  • the d-axis current id can be brought close to the command value id *.
  • the power consumption of the motor 7 can be accurately controlled.
  • the conversion unit 209 converts the coordinates from the dq axis coordinate system to the three-phase coordinate system. Therefore, the command values vq * and vd * input to the conversion unit 209 are converted into the command values vu *, w * and vw * of the three-phase voltages vu, w and vw and output from the conversion unit 209.
  • the triangular wave carrier generation unit 210 generates a triangular wave carrier tuned to the inverter 4.
  • the PWM control unit 211 generates commands r31 to r36 for each of the switches S31 to S36, based on the command values vu *, w *, vw * and the triangular wave carrier.
  • the switch S31 and switch S34, the switch S32 and switch S35, and the switch S33 and switch S36 are complementarily controlled.
  • the motor 7 can consume high-frequency components with respect to the fundamental frequency of the input currents 1, ivl, and iwl included in the current (one iL). Therefore, high frequency components of the input currents iul, ivl, iwl to the rectifier circuit 2 can be suppressed, and high frequency interference to the AC power source 1 can be suppressed.
  • FIG. 11 is a graph showing the time change of the input current iul when the control according to the present embodiment is executed.
  • FIG. 12 is a graph showing the time change of the voltage vdc across the capacitor Cd when the control related to the present embodiment is executed.
  • the waveforms of the input current iul and the voltage vdc before executing the control according to the present embodiment are shown in FIGS. 13 and 14, respectively. . Due to the series resonance between the rear tuttle Ld and the capacitor Cd, this waveform contains many high-frequency components.
  • the graphs in Figs. 11 to 14 show the results obtained when the power consumption of motor 5 is 1.5 kW, the command value of motor 7 is ⁇ * ⁇ 500 rpm, and the output power of motor 7 is 20 W. .
  • the input current iul (and therefore the input currents ivl and iwl) are included in the voltage vdc by executing a powerful control. It can be seen that the high-frequency component that had been suppressed is suppressed.
  • the power consumption of the motor 7 is set to 20 W and that the power consumption of the motor 5 is about 1.5 kW
  • the power consumption of the switching power supply circuit 6 is small. It can also be seen that high-frequency interference can be suppressed. Therefore, switching loss in the switching power supply circuit 6 can be reduced. As a result, switches having a small current capacity can be employed for the switches S31 to S36. As a result, the switching power supply circuit 6 can be downsized.
  • the switching frequency of the inverter employed in the switching power supply circuit 6 is generally the same as the switching frequency (6 kHz) of the inverter 4. However, if the above control is performed by the switching power supply circuit 6, the switches S31 to S36 are switched at a switching frequency of about 50 kHz. Therefore, from the viewpoint of microcomputer processing, control by power conversion explained in the first embodiment is desirable. [0102] Third embodiment.
  • FIG. 15 shows a case where a single-phase AC power source is adopted as the AC power source 1 in the power converter shown in FIG.
  • the rectifier circuit 2 rectifies the input current ic from the AC power supply 1 and outputs a DC voltage between the first power supply line 21 and the second power supply line 22.
  • the rest of the configuration is the same as the power conversion shown in Fig. 1.
  • FIG. 16 is a graph showing a change over time of the input current ic when the control that is relevant to the present embodiment is executed.
  • FIG. 17 is a graph showing the time change of the voltage vdc when the control related to the present embodiment is executed.
  • waveforms of the input current ic and the voltage vdc before executing the control according to the present embodiment are shown in FIGS. Due to the series resonance between the rear tuttle Ld and the capacitor Cd, this waveform contains many high-frequency components.
  • FIG. 16 and FIG. 20 and a comparison between FIG. 17 and FIG. 21 show that the inverter 4 can also reduce the high frequency to the same extent as the control that is effective in this embodiment. However, since the switching frequency in the inverter 4 is increased, the switching loss is increased. 20 and 21 show the results obtained when the inverter is controlled at the switching frequency of 50 kHz to the switching frequency of the inverter 4.
  • the correction values Aide * and Aiq * input to the command value correction units 103 and 203 are based on the current (one iL) flowing through the first power supply line. May be calculated. [0110] This is because the switching power supply circuit 61, 62, 6 performs a switching operation with a duty based on the current (iL) flowing through the first power supply line 21, and the input current i ul of the current (one iL) , ivl, iwl, ic can be grasped as supplying power to the second loads Cdc + Load, C2 + Load, 7 from the high frequency components with respect to the fundamental frequency.
  • the present invention can be applied to the control of power fluctuation without the rear tuttle Ld, and the same effects as those of the first to third embodiments can be obtained.
  • the present invention can be applied to the control of power fluctuation without the rear tuttle Ld, and the same effects as those of the first to third embodiments can be obtained.
  • the present invention can be applied to the control of power fluctuation without the rear tuttle Ld, and the same effects as those of the first to third embodiments can be obtained.
  • harmonics are generated due to the series resonance between the impedance z generated between the AC power supply 1 and the rectifier circuit 2 and the capacitor Cd.
  • the subtracters 101, 111, 201 and the control units 102, 112, and 202 may be omitted. That is, the command values v * and vq * are obtained based on the voltage vL or current (-iL) and the currents idc and iq, and the switching power supply circuits 61, 62, and 6 are determined according to the command values v * and vq *. The switching operation may be controlled.
  • any of the voltage variations described above can be mounted, for example, in an air conditioner.
  • the air conditioner is provided with a motor for the refrigerant compressor and an air cooling fan, and the motor for the refrigerant pressure compressor has the output power of the inverter 4 and the switching power circuit 61, 62, Six outputs are each supplied.
  • Air conditioning is performed by removing the latent heat of the refrigerant compressed by the refrigerant compressor with a fan.
  • the air-cooling fan is smaller in both power consumption and rotation control accuracy than the refrigerant compressor motor. Therefore, control using a voltage converter is suitable for the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 本発明は、交流電源への高周波障害を抑制する電力変換器である。制御装置(10)は、減算器(101,105)、指令値補正部(103)及び制御部(102)を備える。減算器(101)は、スイッチング電源回路(61)から第2負荷(Cdc+Load)に印加される出力電圧(v0)の、その指令値(v0*)に対する偏差(Δv0)を求める。制御部(102)は、偏差(Δv0)に基づいてPI制御を実行することで、コイル(Ldc)に流れる電流(idc)の指令値(idc*)を生成する。指令値補正部(103)は、第1電源線(21)に流れる電流(iL)の、入力電流(iu1,iv1,iw1)の基本周波数に対する高周波成分をスイッチング電源回路(61)で消費すべく、指令値(idc*)を補正する。減算器(105)は、補正後の指令値(idc*)と、電流(idc)との偏差(Δidc)を求める。偏差(Δidc)に基づいてスイッチへの指令(r1,r2)を生成する。

Description

明 細 書
電力変換器及びその制御方法並びに空気調和機
技術分野
[0001] 本発明は電力変換器及びその制御方法に関し、特にコンデンサレスと通称される 方式の電力変換器及びその制御方法に関する。
背景技術
[0002] 空気調和機は、冷媒圧縮機用のモータと、当該モータに所望の電力を供給する電 力変翻とを備える。一般の電力変翻は、コンバータ、インバータ及びこれらの間 に平滑コンデンサを有し、交流電源から供給される電力を変換する。また、入力力率 の改善のためリアタトルが設けられる。例えば、リアタトル容量は約 2mH、コンデンサ 容量は約 2000 μ Fである。
[0003] しかし、これらのリアタトル及びコンデンサは、電力変 ^^を構成する部品の中でも 大型で重い。そして、発熱による損失増加の原因にもなつている。
[0004] そこで、コンデンサ容量を小さくすることで、コンデンサを小型化する技術が提案さ れている。この技術は「コンデンサレス」と通称される。
[0005] なお、本発明に関連する技術を以下に示す。特に、非特許文献 3ではリアタトルを も省略した技術を開示する。
[0006] 非特許文献 1 :Myint Ko Tun、外 1名、「New Type Sinusoidal Input UPS Controlled b y DC Chopper Type Active Filter] ,平成 14年電気学会産業応用部門大会講演論 文集 III、電気学会、平成 14年 8月、 p. 1301 - 1306
非特許文献 2 :伊藤洋ー、外 1名、「コンデンサレス PWMインバータ」、昭和 63年電 気学会産業応用部門全国大会講演論文集、電気学会、昭和 63年 8月、 p. 445-4 50
非特許文献 3 :芳賀仁、外 1名、「単相電界コンデンサレス IPMモータ駆動用インバー タの入力電流波形改善法」、平成 14年電気学会産業応用部門大会講演論文集 I、 平成 14年 8月、 p. 415-418
発明の開示 発明が解決しょうとする課題
[0007] しかし、リアタトル容量及びコンデンサ容量を小さくすると、リアタトルと平滑コンデン サとで決まる共振周波数が高くなるため、電源電流波形に多くの高周波成分が含ま れ、交流電源への高周波障害を招く。これは例え «JIS規格 (JIS61000— 3— 2)の 観点からは好ましくない。
[0008] 例えば、インバータのスイッチング動作を制御することで、当該高周波障害を抑制 できる。し力しその場合、インバータのスイッチング周波数を高める必要、例えば当該 共振周波数の十倍程度にも高める必要がある。これは当該インバータでのスィッチン グ損失が大きくなるのであまり望ましくない。
[0009] 本発明は、上述した事情に鑑みてなされたものであり、交流電源への高周波障害 を抑制することが目的とされる。
課題を解決するための手段
[0010] この発明に力かる電力変換器の第 1の態様は、交流電源(1)からの入力電流 (iul , ivl, iwl ;ic)を整流して第 1電源線(21)と第 2電源線(22)との間に直流電圧を出 力して、第 1負荷 (4 + 5)に前記直流電圧を印加する整流回路(2)と、前記第 1電源 線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、前記第 1電源線及び前 記第 2電源線の間に接続され、前記第 1電源線に流れる第 1電流(一 iL)に基づいた デューティでスイッチング動作を行って、前記第 1電流の、前記入力電流の基本周波 数に対する高周波成分力も第 2負荷 (Cdc + Load;C2 + Load; 7)に電力を供給す るスイッチング電源回路(61; 62; 6)とを備える。
[0011] この発明にかかる電力変翻の第 2の態様は、第 1の態様に力かる電力変翻で あって、前記スイッチング電源回路(61 ; 62)は、前記スイッチング電源回路から前記 第 2負荷 (Cdc + Load; C2 + Load)に印加される出力電圧 (vO)の、その指令値 (vO *)に対する偏差( Δ vO)と、前記第 1電流(一 iL)とに基づいて求められた指令値 (idc* ; idc*)に従って前記スイッチング動作を行うスィッチ(SI, S2)を有する。
[0012] この発明にかかる電力変翻の第 3の態様は、第 1の態様に力かる電力変翻で あって、前記第 2負荷はモータ(7)であって、前記スイッチング電源回路(6)は、前記 モータの回転速度( ω )の、その指令値( ω *)に対する偏差( Δ ω )と、前記第 1電流( — iL)とに基づいて求められた指令値 (iq*)に従って前記スイッチング動作を行うスィ ツチ(S31〜S36)を有する。
[0013] この発明にかかる電力変翻の第 4の態様は、第 1の態様に力かる電力変翻で あって、前記スイッチング電源回路(61 ; 62 ; 6)は、前記第 1電流(一 iL)と、前記第 2 負荷 (Cdc + Load;C2 + Load; 7)に流れる第 2電流 (idc ;idc ;iq)とに基づ!/ヽて求 められた指令値 (v*;v*;vq*)に従って前記スイッチング動作を行うスィッチ(SI, S2 ; SI, S2 ; S31〜S36)を備える。
[0014] この発明に力かる電力変換器の第 5の態様は、交流電源(1)からの入力電流 (iul , ivl, iwl ;ic)を整流して第 1電源線(21)と第 2電源線(22)との間に直流電圧を出 力して、第 1負荷 (4 + 5)に前記直流電圧を印加する整流回路(2)と、前記第 1電源 線及び前記第 2電源線の間に接続されるコンデンサ(Cd)と、前記コンデンサと共に 直列共振回路を構成するリア外ル (Ld)と、前記第 1電源線及び前記第 2電源線の 間に接続され、前記リアタトルに印加される第 1電圧 (vL)に基づいたデューティでス イッチング動作を行って、前記第 1電源線に流れる第 1電流(一 iL)の、前記入力電 流の基本周波数に対する高周波成分から第 2負荷 (Cdc + Load; C2 + Load; 7)に 電力を供給するスイッチング電源回路(61; 62; 6)とを備える。
[0015] この発明に力かる電力変^^の第 6の態様は、第 5の態様に力かる電力変^^で あって、前記スイッチング電源回路(61 ; 62)は、前記スイッチング電源回路から前記 第 2負荷 (Cdc + Load; C2 + Load)に印加される出力電圧 (vO)の、その指令値 (vO *)に対する偏差( Δ vO)と、前記第 1電圧 (vL)とに基づいて求められた指令値 (idc*; idc*)に従って前記スイッチング動作を行うスィッチ(SI, S2)を有する。
[0016] この発明に力かる電力変^^の第 7の態様は、第 5の態様に力かる電力変^^で あって、前記第 2負荷はモータ(7)であって、前記スイッチング電源回路(6)は、前記 モータの回転速度( ω )の、その指令値( ω *)に対する偏差( Δ ω )と、前記第 1電圧 ( vL)とに基づいて求められた指令値 (iq*)に従って前記スイッチング動作を行うスイツ チ(S31〜S36)を有する。
[0017] この発明にかかる電力変翻の第 8の態様は、第 5の態様に力かる電力変翻で あって、前記スイッチング電源回路(61 ; 62 ; 6)は、前記第 1電圧 (vL)と、前記第 2負 荷 (Cdc + Load ; C2 + Load; 7)に流れる第 2電流 (idc ;idc ;iq)とに基づ!/、て求めら れた指令値 (v* ;v*;vq*)に従って前記スイッチング動作を行うスィッチ(SI, S2 ; S1, S2 ; S31〜S36)を備える。
[0018] この発明に力かる電力変換器の第 9の態様は、第 2、第 3、第 6及び第 7の 、ずれか 一つの態様にかかる電力変換器であって、前記スィッチ(SI, S2 ; S1, S2 ; S31〜S 36)は、前記指令値(idc* ;idc* ;iq*)と、前記第 2負荷(Cdc +Load; C2+Load; 7) に流れる第 2電流 (idc; idc; iq)とに基づ 、て求められた指令値 (V*; V*; vq*)に従って 前記スイッチング動作を行う。
[0019] この発明にかかる電力変翻の第 10の態様は、第 2乃至第 4、第 6乃至第 9のいず れか一つの態様にかかる電力変換器であって、前記第 1負荷 (4 + 5)は、主負荷 (5) と、前記コンデンサの両端電圧 (vdc)を入力し、交流電流(iu2, iv2, iw2)を前記主 負荷に出力するインバータ (4)とを有し、前記指令値 (idc ;iq ;V*;Vq*)と前記インバ ータ (4)のキャリアとの比較によって前記デューティが決定される。
[0020] この発明にかかる電力変翻の第 11の態様は、第 1乃至第 9のいずれか一つの態 様に力かる電力変換器であって、前記第 1負荷 (4 + 5)は、主負荷 (5)と、前記コン デンサの両端電圧 (vdc)を入力し、交流電流 (iu2, iv2, iw2)を前記主負荷に出力 するインバータ (4)とで構成される。
[0021] この発明にかかる空気調和機の第 1の態様は、第 11の態様に力かる電力変翻と 、前記主負荷 (5)を構成する冷媒圧縮機用のモータと、前記第 2負荷 (Cdc + Load; C2 + Load; 7)を構成する空冷用のファンとを備え、前記冷媒圧縮機によって圧縮さ れた冷媒の潜熱を前記ファンによって除去することによって空気調和を行う。
[0022] この発明に力かる電力変^^の制御方法の第 1の態様は、交流電源(1)力 の入 力電流 (iul, ivl, iwl)を整流して第 1電源線と第 2電源線との間に直流電圧を出力 して、第 1負荷 (4 + 5)に前記直流電圧を印加する、整流回路(2)と、前記第 1電源 線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、前記第 1電源線及び前 記第 2電源線の間に接続されるスイッチング電源回路(61 ; 62 ; 6)とを備える電力変 換器を制御する方法であって、前記第 1電源線に流れる第 1電流(一 iL)に基づいた デューティで前記スイッチング電源回路にスイッチング動作をさせ、前記第 1電流の、 前記入力電流の基本周波数に対する高周波成分から第 2負荷 (Cdc + Load; C2 + Load ; 7)に電力を供給する。
[0023] この発明にかかる電力変翻の制御方法の第 2の態様は、第 1の態様に力かる電 力変換器の制御方法であって、前記スイッチング電源回路 (61; 62)から前記第 2負 荷(Cdc + Load ; C2 + Load)に印加される出力電圧 (νθ)の、その指令値 (νθ*)に 対する偏差(Δ νΟ)と、前記第 1電流(-iL)とに基づいて求められた指令値 (idc*;id c*)に従って、前記スイッチング電源回路に前記スイッチング動作をさせる。
[0024] この発明にかかる電力変翻の制御方法の第 3の態様は、第 1の態様に力かる電 力変換器の制御方法であって、前記第 2負荷はモータ(7)であって、前記モータの 回転速度( ω )の、その指令値( ω *)に対する偏差( Δ ω )と、前記第 1電流( -iL)と に基づいて求められた指令値 (iq*)に従って、前記スイッチング電源回路(6)に前記 スイッチング動作をさせる。
[0025] この発明にかかる電力変翻の制御方法の第 4の態様は、第 1の態様に力かる電 力変換器の制御方法であって、前記第 1電流(一 iL)と、前記第 2負荷 (Cdc+Load ; C2 + Load; 7)に流れる第 2電流(idc; idc; iq)とに基づ!/、て求められた指令値 (v*; v*;vq*)に従って、前記スイッチング電源回路(61 ; 62 ; 6)に前記スイッチング動作を させる。
[0026] この発明に力かる電力変^^の制御方法の第 5の態様は、交流電源(1)力 の入 力電流 (iul, ivl, iwl)を整流して第 1電源線と第 2電源線との間に直流電圧を出力 して、第 1負荷 (4 + 5)に前記直流電圧を印加する、整流回路(2)と、前記第 1電源 線及び前記第 2電源線の間に接続されるコンデンサ(Cd)と、前記コンデンサと共に 直列共振回路を構成するリア外ル (Ld)と、前記第 1電源線及び前記第 2電源線の 間に接続されるスイッチング電源回路(61 ; 62 ; 6)とを備える電力変 を制御する 方法であって、前記リアタトルに印加される第 1電圧 (vL)に基づいたデューティで前 記スイッチング電源回路にスイッチング動作をさせ、前記第 1電源線に流れる第 1電 流(一 iL)の、前記入力電流の基本周波数に対する高周波成分から第 2負荷 (Cdc +Load; C2+Load ; 7)に電力を供給する。
[0027] この発明にかかる電力変翻の制御方法の第 6の態様は、第 5の態様に力かる電 力変換器の制御方法であって、前記スイッチング電源回路 (61; 62)から前記第 2負 荷(じ(1じ+1^0&(1 ;じ2+1^0&(1)に印加される出力電圧 (νθ)の、その指令値 (νθ*)に 対する偏差( Δ νθ)と、前記第 1電圧 (vL)とに基づいて求められた指令値 (idc* ;idc* )に従って、前記スイッチング電源回路に前記スイッチング動作をさせる。
[0028] この発明にかかる電力変翻の制御方法の第 7の態様は、第 5の態様に力かる電 力変換器の制御方法であって、前記第 2負荷はモータ(7)であって、前記モータの 回転速度(ω )の、その指令値(ω *)に対する偏差(Δ ω )と、前記第 1電圧 (vL)とに 基づいて求められた指令値 (iq*)に従って、前記スイッチング電源回路(6)に前記ス イッチング動作をさせる。
[0029] この発明にかかる電力変翻の制御方法の第 8の態様は、第 5の態様に力かる電 力変換器の制御方法であって、前記第 1電圧 (vL)と、前記第 2負荷 (Cdc + Load ; C2 + Load; 7)に流れる第 2電流(idc; idc; iq)とに基づ!/、て求められた指令値 (v*; v * ;vq*)に従って、前記スイッチング電源回路(61 ; 62 ; 6)に前記スイッチング動作をさ せる。
[0030] この発明に力かる電力変^^の制御方法の第 9の態様は、第 2、第 3、第 6及び第 7 の!、ずれか一つの態様に力かる電力変^^の制御方法であって、前記指令値 (idc* ; idc*; iq*)と、前記第 2負荷(Cdc + Load; C2 + Load; 7)に流れる第 2電流(idc; id c ;iq)とに基づいて求められた指令値 (v* ;v*;vq*)に従って、前記スイッチング電源 回路(61 ; 62 ; 6)に前記スイッチング動作をさせる。
[0031] この発明にかかる電力変翻の制御方法の第 10の態様は、第 2乃至第 4、第 6乃 至第 9のいずれか一つの態様に力かる電力変換器の制御方法であって、前記第 1負 荷 (4 + 5)は、主負荷(5)と、前記コンデンサの両端電圧 (vdc)を入力し、交流電流( iu2, iv2, iw2)を前記主負荷に出力するインバータ (4)とを有し、前記指令値 (idc ;i q ;v* ;vq*)と前記インバータ (4)のキャリアとの比較によって前記デューティを決定す る。
発明の効果
[0032] この発明にかかる電力変翻の第 1、第 4、第 5及び第 8のいずれか一つの態様、も しくは電力変換器の制御方法の第 1、第 4、第 5及び第 8のいずれか一つの態様によ れば、第 1電流に含まれる、入力電流の基本周波数に対する高周波成分を、第 2負 荷が消費するので、整流回路への入力電流の高周波成分を抑制し、交流電源への 高周波障害を抑制する。
[0033] この発明に力かる電力変換器の第 2または第 6の態様、もしくは電力変換器の制御 方法の第 2または第 6の態様によれば、第 2負荷に対して、安定して出力電圧を印加 することができる。
[0034] この発明に力かる電力変換器の第 3または第 7の態様、もしくは電力変換器の制御 方法の第 3または第 7の態様によれば、モータを安定して回転させることができる。
[0035] この発明に力かる電力変換器の第 9の態様、もしくは電力変換器の制御方法の第 9 の態様によれば、第 2負荷の消費電力を精度良く制御できる。
[0036] この発明にかかる電力変翻の第 10の態様もしくは電力変翻の制御方法の第 1
0の態様によれば、スイッチング電源回路のスイッチングを、インバータのスイッチング に同調させることができる。
[0037] この発明に力かる電力変^^の第 11の態様によれば、インバータでのスイッチング 損失が小さい。
[0038] この発明にかかる空気調和機の第 1の態様によれば、空冷用のファンは冷媒圧縮 機用のモータと比較して、消費電力及び回転制御の精度のいずれも小さいので、第 11の態様に力かる電力変換器を用いた制御に好適である。
[0039] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。
図面の簡単な説明
[0040] [図 1]第 1の実施の形態で説明される、電力変翻を概念的に示す図である。
[図 2]第 1の実施の形態で説明される、電力変翻を概念的に示す図である。
[図 3]電力変換器の制御装置 10を概念的に示す図である。
[図 4]第 1の実施の形態で説明される制御を実行した場合の入力電流 iulをグラフで 示す図である。
[図 5]第 1の実施の形態で説明される制御を実行した場合の電圧 vdcをグラフで示す 図である。 圆 6]第 1の実施の形態で説明される制御を実行する前の入力電流 iulをグラフで示 す図である。
圆 7]第 1の実施の形態で説明される制御を実行する前の電圧 vdcをグラフで示す図 である。
圆 8]電力変換器の制御装置 11を概念的に示す図である。
圆 9]第 2の実施の形態で説明される、電力変換器を概念的に示す図である。
圆 10]電力変翻の制御装置 20を概念的に示す図である。
圆 11]第 2の実施の形態で説明される制御を実行した場合の入力電流 iulをグラフで 示す図である。
圆 12]第 2の実施の形態で説明される制御を実行した場合の電圧 vdcをグラフで示 す図である。
圆 13]第 2の実施の形態で説明される制御を実行する前の入力電流 iulをグラフで 示す図である。
圆 14]第 2の実施の形態で説明される制御を実行する前の電圧 vdcをグラフで示す 図である。
圆 15]第 3の実施の形態で説明される、電力変翻を概念的に示す図である。 圆 16]第 3の実施の形態で説明される制御を実行した場合の入力電流 icをグラフで 示す図である。
圆 17]第 3の実施の形態で説明される制御を実行した場合の電圧 vdcをグラフで示 す図である。
圆 18]第 3の実施の形態で説明される制御を実行する前の入力電流 icをグラフで示 す図である。
圆 19]第 3の実施の形態で説明される制御を実行する前の電圧 vdcをグラフで示す 図である。
圆 20]インバータ 4で高調波抑制を実行した場合の入力電流 icをグラフで示す図で ある。
[図 21]インバータ 4で高調波抑制を実行した場合の電圧 vdcをグラフで示す図である 発明を実施するための最良の形態
[0041] 第 1の実施の形態.
<電力変換器の構成 >
図 1及び図 2は、本実施の形態に力かる電力変換器を概念的に示す。当該電力変 換器は、第 1電源線 21、第 2電源線 22、整流回路 2、コンデンサ Cd、リアタトル Ld、ィ ンバータ 4及びスイッチング電源回路 61 (あるいはスイッチング電源回路 62)を備える
[0042] 図 1及び図 2では、当該電力変翻に電力を供給する交流電源 1、インバータ 4か らの出力が供給されるモータ 5が示されている。また、図 1では、スイッチング電源回 路 61の出力が供給されるコンデンサ Cdc及び駆動部 Loadが、図 2では、スィッチン グ電源回路 62の出力が供給されるコンデンサ C2及び駆動部 Loadが、それぞれ示 されている。コンデンサ Cdc, C2は、スイッチング電源回路 61, 62の出力を平滑化し て駆動部 Loadに供給する。また、本実施の形態では、交流電源 1として 3相交流電 源が採用されている。
[0043] なお、モータ 5は主負荷、モータ 5とインバータ 4とで構成される負荷を第 1負荷 (文 中では符号「4 + 5」と記載)、コンデンサ Cdcと駆動部 Loadとで構成される負荷(図 1 )を第 2負荷 (文中では符号「Cdc + Load」と記載)、コンデンサ C2と駆動部 Loadと で構成される負荷(図 2)を第 2負荷 (文中では符号「C2 + Load」と記載)と、それぞ れ把握することができる。
[0044] 整流回路 2は、本実施の形態ではブリッジダイオードであって、交流電源 1からの入 力電流 iul, ivl, iwlを整流して第 1電源線 21及び第 2電源線 22の間に直流電圧 を出力する。
[0045] コンデンサ Cdは、第 1電源線 21と第 2電源線 22との間に接続される。リアタトル Ld は、整流回路 2とコンデンサ Cdとの間で第 1電源線 21に設けられる。コンデンサ Cdと リアタトル Ldとは、直流共振回路を構成する。
[0046] インバータ 4は、本実施の形態では 3相インバータであって、コンデンサ Cdの両端 電圧 vdcを入力し、交流電流 iu2, iv2, iw2をモータ 5に出力する。モータ 5は、イン バータ 4の出力が供給されることで駆動する。 [0047] スイッチング電源回路 61, 62の各々は、第 1電源線 21と第 2電源線 22との間に接 続される。図 1及び図 2ではコンデンサ Cdの両端に接続されている力 例えばコンデ ンサ Cdとリアタトル Ldとで構成される直列共振回路の両端に接続されても良い。
[0048] 図 1では、スイッチング電源回路 61に降圧チヨツバが採用されている。当該降圧チヨ ッノ ίま、スィッチ SI, S2、コィノレ: Ldc及び出力端 611, 612を有する。スィッチ SI, S 2は、第 1電源線 21と第 2電源線 22との間で直列に接続される。出力端 611, 612は スィッチ S2の両端にそれぞれ接続される。コイル Ldcは、出力端 611, 612の間でス イッチ S 2と直列に接続される。出力端 611, 612の間には第 2負荷 Cdc+ Loadが接 続される。
[0049] 図 2では、スイッチング電源回路 62にフライバックコンバータが採用されている。当 該フライバックコンバータ 62は、スィッチ SI, S2、トランス T及び出力端 621, 622を 有する。トランス Tの 1次側のコイル L1は、第 1電源線 21と第 2電源 22との間に接続 され、 2次側のコイル L2は出力端 621, 622の間に接続される。スィッチ S1は、第 1 電源線 21と第 2電源線 22との間で、コイル L1と直列に接続される。スィッチ S2は、 出力端 621, 622の間でコイル L2と直列に接続される。出力端 621, 622の間には、 第 2負荷 C2+Loadが接続される。
[0050] なお、本実施の形態ではスィッチ SI, S2に、 IGBT (Insulated Gate Bipolar Transis tor)とダイオードとで構成される IGBTモジュールが採用されて 、る。
[0051] <電力変換器の制御 1 >
図 3は、図 1で示される電力変換器を制御する制御装置 10を概念的に示す。
[0052] 制御装置 10は、減算器 101, 105、指令値補正部 103、制御部 102, 104, 106、 三角波キャリア発生部 107、比較部 108及び NOT回路 109を備える。
[0053] 減算器 101は、スイッチング電源回路 61から第 2負荷 Cdc+Loadに印加される出 力電圧 νθの、その指令値 νθ*に対する偏差 Δ νθを求める。
[0054] 制御部 102は、偏差 ΔνΟに基づいて PI制御を実行することで、コイル Ldcに流れる 電流 idcの指令値 idc*を生成する。力かる制御によれば、電圧 νθを指令値 νθ*に近づ けることができるので、第 2負荷 Cdc + Loadに対して、安定して出力電圧を印加する ことができる。 [0055] 指令値補正部 103は、第 1電源線 21に流れる電流 iLの、入力電流 iul, ivl, iwl の基本周波数に対する高周波成分をスイッチング電源回路 61で消費すベぐ指令 値 idc*を補正する。
[0056] 本実施の形態では指令値補正部 103は、リアタトル Ldに印加される電圧 vLに基づ いて指令値 idc*を補正している。具体的には、制御部 104が電圧 vLにゲイン K1を乗 算して補正値 A ide*を求め、指令値補正部 103は、指令値 idc*から補正値 A ide*を 減算し、その結果を新たな指令値 idc*として出力する。なお、本実施の形態では、電 圧 vLは、リアタトル Ldの整流回路 2側の電位を基準としたものが採用されている。
[0057] ところで、制御部 102及び後述する制御部 106では PI制御が実行されるため、制 御部 102, 106では出力の位相が入力の位相に対して遅れる。よって、位相の遅れ に即して、補正指令値 Δ idc*の位相を電圧 vLの位相力 ずらせても良 、。
[0058] また、制御部 102, 106にお 、て位相の遅れがな 、場合であっても、補正指令値
A ide*の位相を電圧 vLの位相から 90° だけ遅らせても良い。なぜなら、リアタトル Ld にお 、て電流 iLの位相は電圧 vLの位相に対して 90° だけ遅れて!/、る力 である。
[0059] 減算器 105は、補正後の指令値 idc*と、電流 idcとの偏差 Δ idcを求める。
[0060] 制御部 106は、偏差 A ideに基づいて PI制御を実行することで、スィッチ S2の両端 に印加される電圧 Vの指令値 V*を生成する。力かる制御によれば、電流 idcを指令値 i dc*に近づけることができるので、第 2負荷 Cdc + Loadの消費電力を精度良く制御す ることがでさる。
[0061] 三角波キャリア生成部 107は、インバータ 4に同調した三角波キャリアを生成する。
[0062] 比較部 108は、指令値 V*と、三角波キャリアとを比較して、スィッチ S1に対するスィ ツチング指令 rlを生成する。スイッチング指令 rlによって、スィッチ S1は、オン及び オフのいずれか一方に制御される。スィッチ S2は、スィッチ S1とは相補的に制御され るので、スィッチ S2に対する指令 r2は、指令 rlを NOT回路 109に入力することで、 その出力として得られる。
[0063] 制御装置 10によって指令値 rl, r2を得ることができるので、スイッチング電源回路 6 1の制御に高速のマイコン処理は不要である。一般に、インバータ 4のスイッチング周 波数(6kHz)よりも、フライバックコンバータや降圧チヨッパなどのコンバータのスイツ チング周波数(50〜100kHz)を大きくすることができる。
[0064] なお、上述した内容は、リアタトル Ldに印加される電圧 vLに基づいたデューティで 、スイッチング電源 61のスイッチング動作を行うことで、第 1電源線 21に流れる電流( —iL)の、入力電流 iul, ivl, iwlの基本周波数に対する高周波成分力 第 2負荷 C dc + Loadに電力を供給する、と把握することができる。
[0065] 上述した制御装置 10及びその制御によれば、電流(一 iL)に含まれる、入力電流 1, ivl , iwlの基本周波数に対する高周波成分を、第 2負荷 Cdc + Loadで消費する ことができる。よって、整流回路 2への入力電流 iul, ivl, iwlの高周波成分を抑制し 、交流電源 1への高周波障害を抑制することができる。
[0066] 図 4は、本実施の形態に力かる制御を実行した場合の入力電流 iulの時間変化を グラフで示す。図 5は、本実施の形態にカゝかる制御を実行した場合のコンデンサ Cd の両端の電圧 vdcの時間変化をグラフで示す。なお、図 4, 5との比較のために、本 実施の形態に力かる制御を実行する前の、入力電流 iul及び電圧 vdcの波形がそれ ぞれ、図 6, 7に示されている。リアタトル Ldとコンデンサ Cdとの直列共振に起因して 、この波形には多くの高周波成分が含まれている。なお、図 4〜7のグラフは、指令値 νθ*【こ 20V、馬区動咅 oad【こ抵抗、第 2負荷 Cdc+!Loadの消費電力【こ 20W、モータ 5での消費電力に 1. 5kWを採用した場合に得られた結果である。
[0067] 図 4と図 6との比較、図 5と図 7との比較によれば、力かる制御を実行することで入力 電流 iul (よって入力電流 ivl, iwlも)及び電圧 vdcに含まれていた高周波成分が抑 制されていることが半 IJる。
[0068] し力も、電力の高周波成分は、第 1負荷 4 + 5に供給される直流電力よりも小さいの で、これを消費する第 2負荷 Cdc + Loadの消費電力は第 1負荷 4 + 5での消費電力 よりも小さくて済む。このことに鑑みれば、スイッチング電源回路 61の消費電力が小さ くても、高周波障害が抑制できることが判る。よって、インバータ 4のスイッチング素子 に流れる電流よりもスイッチング電源回路 61のスィッチ SI, S2に流れる電流を小さく できる。つまり、インバータ 4における制御で高調波を制御するスイッチングと比較し て、スイッチング電源回路 61における制御での抑制の方力 スイッチング損失を小さ くできる。これにより、スィッチ SI, S2に電流容量の小さいものを採用することができ、 以つてスイッチング電源回路 61の小型化が可能となる。
[0069] 図 2で示される電力変翻の制御についても、制御装置 10が適用できる。ただし、 電流 idc及びその指令値 idc*に代えて、コイル L1に流れる電流 il及びその指令値 il* が採用される。また、指令値 V*には、コイル L2の両端の電圧の指令値が採用される。
[0070] <電力変換器の制御 2 >
第 2負荷 Cdc + Load, C2 + Loadの消費電力の制御にあまり高い精度が必要とさ れない場合には、制御装置 10において、減算器 105及び制御部 106はなくても良 い。図 8では、力かる態様が制御装置 11として示されている。
[0071] 制御装置 11は、減算器 111、制御部 112, 114、補正指令値 113、三角波キャリア 発生部 115、比較部 116及び NOT回路 117を備える。
[0072] 減算器 111は、図 3で示される減算器 101と同様に、偏差 ΔνΟを求める。
[0073] 制御部 112は、偏差 ΔνΟに基づいて ΡΙ制御を実行することで、指令値 ν*を生成す る。
[0074] 指令補正部 113は、第 1電源線 21に流れる電流 iLの、入力電流 iul, ivl, iwlの 基本周波数に対する高周波成分をスイッチング電源回路 61で消費すベぐ指令値 v *を補正する。具体的には、制御部 114が電圧 vLにゲイン K2を乗算して補正値 Δν を求め、指令値補正部 113は、指令値 V*から補正値 Δνを減算し、その結果を新た な指令値 V*として出力する。
[0075] 制御部 112で位相の遅れが生じる場合には、当該位相の遅れに即して補正指令 値 Δ V*の位相を電圧 vLの位相力 ずらせても良!、。
[0076] 三角波キャリア発生部 115は、インバータ 4に同調した三角波キャリアを生成する。
[0077] 比較部 116は、補正後の指令値 V*と、三角波キャリアとを比較して、指令値 rlを生 成する。なお、指令値 r2は、 NOT回路 117によって指令値 rlとは相補的に求められ る。
[0078] 力かる制御装置 11及びその制御によっても、電流(一 iL)に含まれる、入力電流 1, ivl, iwlの基本周波数に対する高周波成分を、第 2負荷 Cdc + Load, C2 + Lo adで消費することができる。よって、整流回路 2への入力電流 iul, ivl, iwlの高周 波成分を抑制し、交流電源 1への高周波障害を抑制することができる。 [0079] 本実施の形態における電圧 νθは、空気調和機用のモータの駆動システムに用いら れる電装品の電源電圧や、インバータの制御用の電源電圧などに採用することがで きる。
[0080] 第 2の実施の形態.
<電力変換器の構成 >
図 9は、本実施の形態にカゝかる電力変換器を概念的に示す。当該電力変換器では 、第 1電源線 21、第 2電源線 22、整流回路 2、コンデンサ Cd、リアタトル Ld及びイン バータ 4が第 1の実施の形態の電力変^^と同様に構成され、更にスイッチング電源 回路 6が第 1電源線 21と第 2電源線 22の間に接続されている。図 9では、図 1や図 2 と同様に交流電源 1及びモータ 5が示されており、更にはスイッチング電源回路 6の 出力が供給されるモータ 7も示されている。なお、モータ 7は、第 1負荷 4 + 5と把握さ れるインバータ 4とモータ 5とで構成される負荷に対して、第 2負荷と把握することがで きる。
[0081] スイッチング電源回路 6は 3相インバータであって、スィッチ S31〜S36を有する。
本実施の形態では、スィッチ S31〜S36に IGBTモジュールが採用されている。一般 に、 3相インバータはマイコン処理によって制御される。
[0082] <電力変換器の制御 >
図 10は、図 9で示される電力変換器を制御する制御装置 20を概念的に示す。
[0083] 制御装置 20は、減算器 201, 205, 207、指令値補正部 203、制御部 202, 204,
206, 208、変換部 209、三角キャリア発生部 210及び PWM (Pulse Width Modulati on)制御部 211を備える。
[0084] 減算器 201は、モータ 7の回転速度 ωの、その指令値 ω*に対する偏差 Δ ωを求め る。
[0085] 制御部 202は、偏差 Δ ωに基づいて PI制御を実行することで、モータに流れる q軸 電流 iqの指令値 iq*を生成する。力かる制御によれば、回転速度 ωを指令値 ω *に近 づけることができるので、モータ 7を安定して回転させることができる。
[0086] 指令値補正部 203は、入力電流 iul, ivl, iwlの基本周波数に対する高周波成分 をスイッチング電源回路 6で消費すべく、指令値 iq*を補正する。 [0087] 本実施の形態では、指令値補正部 203は、リアタトル Ldに印加される電圧 vLに基 づいて指令値 iq*を補正している。具体的には、制御部 204が電圧 vLにゲイン Kを乗 算して補正値 A iq*を求め、指令値補正部 203は、指令値 iq*から補正値 A iq*を減算 し、その結果を新たな指令値 iq*として出力する。
[0088] ところで、第 1の実施の形態で説明したのと同様に、 PI制御が実行される制御部 20 2及び制御部 206での位相の遅れに即して、補正指令値 Δ iq*の位相を電圧 vLの位 相からずらせても良い。また、制御部 202, 206において位相の遅れがない場合であ つても、補正指令値 A iq*の位相を電圧 vLの位相から 90° だけ遅らせても良い。
[0089] 減算器 205は、補正後の指令値 iq*と、 q軸電流 iqとの偏差 Δ iqを求める。
[0090] 制御部 206は、偏差 A iqに基づいて PI制御を実行することで、モータ 7に印加され る q軸電圧 vqの指令値 vq*を生成する。力かる制御によれば、 q軸電流 iqを指令値 iq* に近づけることができる。
[0091] 減算器 207は、モータ 7に流れる d軸電流 idの、その指令値 id*に対する偏差 Δ idを 求める。
[0092] 制御部 208は、偏差 A idに基づいて PI制御を実行することで、モータ 7に印加され る d軸電圧 vdの指令値 vd*を生成する。力かる制御によれば、 d軸電流 idを指令値 id* に近づけることができる。上述したとおり電流 iqも、その指令値 iq*に近づくので、モー タ 7の消費電力を精度良く制御することができる。
[0093] 変換部 209は、 d— q軸座標系から 3相座標系へと座標を変換する。よって、変換部 209に入力された指令値 vq*, vd*は、 3相電圧 vu, w, vwの指令値 vu*, w*, vw*に 変換されて変換部 209から出力される。
[0094] 三角波キャリア生成部 210は、インバータ 4に同調した三角波キャリアを生成する。
[0095] PWM制御部 211は、指令値 vu*, w*, vw*と、三角波キャリアとに基づいて、スイツ チ S31〜S36のそれぞれに対する指令 r31〜r36を生成する。なお、スィッチ S31と スィッチ S34、スィッチ S32とスィッチ S35、スィッチ S33とスィッチ S36は、それぞれ 相補的に制御される。
[0096] なお、上述した内容は、リアタトル Ldに印加される電圧 vLに基づいたデューティで 、スイッチング電源 6のスイッチング動作を行うことで、第 1電源線 21に流れる電流(一 iL)の、入力電流 iul, ivl, iwlの基本周波数に対する高周波成分力もモータ 7に電 力を供給する、と把握することができる。
[0097] 上述した制御装置 20及びその制御によれば、電流(一 iL)に含まれる、入力電流 1, ivl, iwlの基本周波数に対する高周波成分を、モータ 7で消費することができる 。よって、整流回路 2への入力電流 iul, ivl, iwlの高周波成分を抑制し、交流電源 1への高周波障害を抑制することができる。
[0098] 図 11は、本実施の形態に力かる制御を実行した場合の入力電流 iulの時間変化を グラフで示す。図 12は、本実施の形態にカゝかる制御を実行した場合のコンデンサ Cd の両端の電圧 vdcの時間変化をグラフで示す。なお、図 11, 12との比較のために、 本実施の形態に力かる制御を実行する前の、入力電流 iul及び電圧 vdcの波形がそ れぞれ、図 13, 14に示されている。リアタトル Ldとコンデンサ Cdとの直列共振に起因 して、この波形には多くの高周波成分が含まれている。なお、図 11〜14のグラフは、 モータ 5での消費電力に 1. 5kW、モータ 7の指令値 ω*〖こ 500rpm、モータ 7の出力 電力に 20Wを採用した場合に得られた結果である。
[0099] 図 11と図 13との比較、図 12と図 14との比較によれば、力かる制御を実行すること で入力電流 iul (よって入力電流 ivl, iwlも)及び電圧 vdcに含まれていた高周波成 分が抑制されて ヽることが判る。
[0100] し力も、モータ 7の消費電力を 20Wに設定したこと、更にはモータ 5での消費電力 が 1. 5kW程度であることに鑑みれば、スイッチング電源回路 6での消費電力が小さ くても、高周波障害を抑制できることが判る。よって、スイッチング電源回路 6でのスィ ツチング損失の低減が可能となる。これにより、スィッチ S31〜S36に電流容量の小 さいものを採用することができる。延いては、スイッチング電源回路 6の小型化が可能 となる。
[0101] スイッチング電源回路 6に採用されるインバータのスイッチング周波数は一般に、ィ ンバータ 4のスイッチング周波数(6kHz)と同程度である。しかし、スイッチング電源 回路 6で上記制御を行えば、 50kHz程度のスイッチング周波数でスィッチ S31〜S3 6がスイッチングされる。よって、マイコン処理の観点からは、第 1の実施の形態で説 明した電力変翻での制御が望まし 、。 [0102] 第 3の実施の形態.
図 15は、図 1で示される電力変換器において、交流電源 1に単相交流電源を採用 した場合が示されている。この場合、整流回路 2は、交流電源 1から入力電流 icを整 流して第 1電源線 21及び第 2電源線 22の間に直流電圧を出力する。他の構成につ いては、図 1で示される電力変翻と同様である。
[0103] 力かる電力変 についても、第 1の実施の形態で説明したのと同様の制御を実 行することで、同様の効果を得ることができる。
[0104] 図 16は、本実施の形態に力かる制御を実行した場合の入力電流 icの時間変化を グラフで示す。図 17は、本実施の形態にカゝかる制御を実行した場合の電圧 vdcの時 間変化をグラフで示す。なお、図 16, 17との比較のために、本実施に形態にかかる 制御を実行する前の入力電流 ic及び電圧 vdcの波形がそれぞれ、図 18, 19に示さ れている。リアタトル Ldとコンデンサ Cdとの直列共振に起因して、この波形には多く の高周波成分が含まれて 、る。
[0105] 図 16と図 18との比較、図 17と図 19との比較によれば、力かる制御を実行すること で入力電流 ic及び電圧 vdcに含まれて 、た高周波成分が抑制されて ヽることが判る
[0106] また、本実施の形態に力かる制御を実行せずに、インバータ 4で高周波を低減した 場合の入力電流 ic及び電圧 vdcの波形がそれぞれ、図 20, 21に示されている。
[0107] 図 16と図 20との比較、図 17と図 21との比較によれば、インバータ 4によっても本実 施の形態に力かる制御と同程度に高周波を低減できることが判る。しかし、インバー タ 4でのスイッチング周波数が高くなるためスイッチング損失が増大する。なお、図 20 , 21には、インバータ 4のスイッチング周波数に 50kHzのスイッチング周波数でイン バータを制御した場合に得られる結果が示されている。
[0108] 図 2及び図 9で示される電力変換器において、交流電源 1に単相交流電源を採用 した場合にっ ヽても同様である。
[0109] 第 1乃至第 3の実施の形態のいずれにおいても、指令値補正部 103, 203に入力 する補正値 A ide*, A iq*を第 1電源線に流れる電流(一 iL)に基づいて算出しても良 い。 [0110] かかる内容は、スイッチング電源回路 61, 62, 6が、第 1電源線 21に流れる電流( iL)に基づいたデューティでスイッチング動作を行って、電流(一 iL)の、入力電流 i ul, ivl, iwl, icの基本周波数に対する高周波成分から第 2負荷 Cdc+Load, C2 + Load, 7に電力を供給する、と把握することができる。
[0111] この制御によれば、リアタトル Ldのない電力変^^の制御にも適用することができ、 第 1乃至第 3の実施の形態と同様の効果が得られる。つまり、リアタトル Ldがない場合 にも、交流電源 1と整流回路 2との間で生じるインピーダンス zと、コンデンサ Cdとの直 列共振により高調波が発生するという問題があり、この場合にも上記制御を行うことで 、高調波を抑制することができる。
[0112] また、上述したいずれの実施の形態においても、電圧 νθまたは回転速度 ωについ て高い制御性が必要でない場合には、制御装置 10, 11, 20においてそれぞれ、減 算器 101, 111, 201及び制御部 102, 112, 202はなくても良い。つまり、電圧 vLま たは電流(― iL)と、電流 idc, iqとに基づいて指令値 v*, vq*を求め、指令値 v*, vq*に 従ってスイッチング電源回路 61, 62, 6のスイッチング動作を制御しても良い。
[0113] 上述した電圧変 はいずれも、例えば空気調和機に搭載することができる。当該 空気調和機には、冷媒圧縮機用のモータ及び空冷用のファンが設けられ、冷媒圧圧 縮機用のモータにはインバータ 4の出力力 空冷用のファンにはスイッチング電源回 路 61 , 62, 6の出力が、それぞれ供給される。そして、冷媒圧縮機によって圧縮され た冷媒の潜熱をファンによって除去することで、空気調和が行われる。
[0114] 空冷用のファンは冷媒圧縮機用のモータと比較して、消費電力及び回転制御の精 度のいずれも小さい。よって、電圧変換器を用いた制御は上記空気調和機に好適で ある。
[0115] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。

Claims

請求の範囲
[1] 交流電源(1)からの入力電流 (iul, ivl, iwl ;ic)を整流して第 1電源線(21)と第 2電源線(22)との間に直流電圧を出力して、第 1負荷 (4 + 5)に前記直流電圧を印 加する整流回路(2)と、
前記第 1電源線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、 前記第 1電源線及び前記第 2電源線の間に接続され、前記第 1電源線に流れる第 1電流(一 iL)に基づいたデューティでスイッチング動作を行って、前記第 1電流の、 前記入力電流の基本周波数に対する高周波成分から第 2負荷 (Cdc + Load; C2 + Load; 7)に電力を供給するスイッチング電源回路(61; 62; 6)と
を備える、電力変換器。
[2] 前記スイッチング電源回路(61 ; 62)は、
前記スイッチング電源回路から前記第 2負荷 (Cdc + Load; C2 + Load)に印加さ れる出力電圧 (νθ)の、その指令値 (νθ*)に対する偏差(Δ νΟ)と、前記第 1電流(― i L)とに基づいて求められた指令値 (idc*;idc*)に従って前記スイッチング動作を行う スィッチ(S I, S2)
を有する、請求項 1記載の電力変換器。
[3] 前記第 2負荷はモータ(7)であって、
前記スイッチング電源回路 (6)は、
前記モータの回転速度(ω )の、その指令値(ω *)に対する偏差(Δ ω )と、前記第 1 電流(一 iL)とに基づいて求められた指令値 (iq*)に従って前記スイッチング動作を行 うスィッチ(S31〜S36)
を有する、請求項 1記載の電力変換器。
[4] 前記スイッチング電源回路(61 ; 62 ; 6)は、
前記第 1電流(一 iL)と、前記第 2負荷 (Cdc + Load; C2 + Load; 7)に流れる第 2 電流 (idc ;idc ;iq)とに基づいて求められた指令値 (v* ;v* ;vq*)に従って前記スィッチ ング動作を行うスィッチ(S I, S2 ; S 1, S2 ; S31〜S36)
を備える、請求項 1記載の電力変換器。
[5] 交流電源(1)からの入力電流 (iul, ivl, iwl ;ic)を整流して第 1電源線(21)と第 2電源線(22)との間に直流電圧を出力して、第 1負荷 (4 + 5)に前記直流電圧を印 加する整流回路(2)と、
前記第 1電源線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、 前記コンデンサと共に直列共振回路を構成するリアタトル (Ld)と、
前記第 1電源線及び前記第 2電源線の間に接続され、前記リアタトルに印加される 第 1電圧 (vL)に基づいたデューティでスイッチング動作を行って、前記第 1電源線に 流れる第 1電流(一 iL)の、前記入力電流の基本周波数に対する高周波成分から第 2負荷(Cdc + Load; C2 + Load; 7)に電力を供給するスイッチング電源回路(61; 6 2 ; 6)と
を備える、電力変換器。
[6] 前記スイッチング電源回路(61; 62)は、
前記スイッチング電源回路から前記第 2負荷 (Cdc + Load; C2 + Load)に印加さ れる出力電圧 (νθ)の、その指令値 (νθ*)に対する偏差(ΔνΟ)と、前記第 1電圧 (vL )とに基づいて求められた指令値 (idc*;idc*)に従って前記スイッチング動作を行うス イッチ(SI, S2)
を有する、請求項 5記載の電力変換器。
[7] 前記第 2負荷はモータ(7)であって、
前記スイッチング電源回路 (6)は、
前記モータの回転速度(ω )の、その指令値(ω *)に対する偏差(Δ ω )と、前記第 1 電圧 (vL)とに基づ 、て求められた指令値 (iq*)に従って前記スイッチング動作を行う スィッチ(S31〜S36)
を有する、請求項 5記載の電力変換器。
[8] 前記スイッチング電源回路(61 ; 62 ; 6)は、
前記第 1電圧 (vL)と、前記第 2負荷 (Cdc + Load;C2 + Load; 7)に流れる第 2電 流 (idc ;idc ;iq)とに基づいて求められた指令値 (v*;v*;vq*)に従って前記スィッチン グ動作を行うスィッチ(SI, S2 ; S1, S2 ; S31〜S36)
を備える、請求項 5記載の電力変換器。
[9] 前記スィッチ(SI, S2 ; S1, S2 ; S31〜S36)は、前記指令値 (idc*;idc*;iq*)と、前 記第 2負荷 (Cdc + Load; C2 + Load; 7)【こ流れる第 2電流 (idc; idc; iq)と【こ基づ!/ヽ て求められた指令値 (v* ;v*;vq*)に従って前記スイッチング動作を行う、請求項 2、請 求項 3、請求項 6及び請求項 7の 、ずれか一つに記載の電力変換器。
[10] 前記第 1負荷 (4 + 5)は、主負荷 (5)と、前記コンデンサの両端電圧 (vdc)を入力し
、交流電流 (iu2, iv2, iw2)を前記主負荷に出力するインバータ (4)とを有し、 前記指令値(1 ; ;^*)と前記インバータ (4)のキャリアとの比較によって前記 デューティが決定される、請求項 2乃至請求項 4、請求項 6乃至請求項 8のいずれか 一つに記載の電力変換器。
[11] 前記第 1負荷 (4 + 5)は、主負荷 (5)と、前記コンデンサの両端電圧 (vdc)を入力し
、交流電流 (iu2, iv2, iw2)を前記主負荷に出力するインバータ (4)とで構成される
、請求項 1乃至請求項 8のいずれか一つに記載の電力変換器。
[12] 請求項 11に記載の電力変^^と、
前記主負荷 (5)を構成する冷媒圧縮機用のモータと、
前記第 2負荷 (Cdc + Load; C2 + Load; 7)を構成する空冷用のファンと を備え、前記冷媒圧縮機によって圧縮された冷媒の潜熱を前記ファンによって除去 することによって空気調和を行う、空気調和機。
[13] 交流電源(1)からの入力電流 (iul, ivl, iwl)を整流して第 1電源線と第 2電源線 との間に直流電圧を出力して、第 1負荷 (4 + 5)に前記直流電圧を印加する、整流回 路 (2)と、
前記第 1電源線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、 前記第 1電源線及び前記第 2電源線の間に接続されるスイッチング電源回路 (61 ; 62 ; 6)と
を備える電力変換器を制御する方法であって、
前記第 1電源線に流れる第 1電流(一 iL)に基づいたデューティで前記スイッチング 電源回路にスイッチング動作をさせ、前記第 1電流の、前記入力電流の基本周波数 に対する高周波成分力も第 2負荷 (Cdc + Load; C2 + Load; 7)に電力を供給する、 電力変換器の制御方法。
[14] 前記スイッチング電源回路(61; 62)から前記第 2負荷(Cdc + Load; C2 + Load) に印加される出力電圧 (vO)の、その指令値 (νθ*)に対する偏差(Δ νΟ)と、前記第 1 電流(一 iL)とに基づいて求められた指令値 (idc* ;idc*)に従って、前記スイッチング 電源回路に前記スイッチング動作をさせる、請求項 13記載の電力変換器の制御方 法。
[15] 前記第 2負荷はモータ(7)であって、
前記モータの回転速度(ω )の、その指令値(ω *)に対する偏差(Δ ω )と、前記第 1 電流(一 iL)とに基づいて求められた指令値 (iq*)に従って、前記スイッチング電源回 路 (6)に前記スイッチング動作をさせる、請求項 13記載の電力変換器の制御方法。
[16] 前記第 1電流(一 iL)と、前記第 2負荷 (Cdc +Load ; C2+Load ; 7)に流れる第 2 電流 (idc ;idc ;iq)とに基づいて求められた指令値 (v* ;v* ;vq*)に従って、前記スイツ チング電源回路(61 ; 62 ; 6)に前記スイッチング動作をさせる、請求項 13記載の電 力変換器の制御方法。
[17] 交流電源(1)からの入力電流 (iul, ivl, iwl)を整流して第 1電源線と第 2電源線 との間に直流電圧を出力して、第 1負荷 (4 + 5)に前記直流電圧を印加する、整流回 路 (2)と、
前記第 1電源線及び前記第 2電源線の間に接続されるコンデンサ (Cd)と、 前記コンデンサと共に直列共振回路を構成するリアタトル (Ld)と、
前記第 1電源線及び前記第 2電源線の間に接続されるスイッチング電源回路 (61 ; 62 ; 6)と
を備える電力変換器を制御する方法であって、
前記リアタトルに印加される第 1電圧 (vL)に基づ 、たデューティで前記スイッチング 電源回路にスイッチング動作をさせ、前記第 1電源線に流れる第 1電流(一 iL)の、前 記入力電流の基本周波数に対する高周波成分から第 2負荷 (Cdc + Load; C2 + Lo ad ; 7)に電力を供給する、電力変換器の制御方法。
[18] 前記スイッチング電源回路(61; 62)から前記第 2負荷(Cdc + Load; C2 + Load) に印加される出力電圧 (νθ)の、その指令値 (νθ*)に対する偏差(Δ νΟ)と、前記第 1 電圧 (vL)とに基づいて求められた指令値 (idc*;idc*)に従って、前記スイッチング電 源回路に前記スイッチング動作をさせる、請求項 17記載の電力変換器の制御方法。
[19] 前記第 2負荷はモータ(7)であって、
前記モータの回転速度(ω)の、その指令値(ω*)に対する偏差(Δ ω)と、前記第 1 電圧 (vL)とに基づ 、て求められた指令値 (iq*)に従って、前記スイッチング電源回路 (6)に前記スイッチング動作をさせる、請求項 17記載の電力変換器の制御方法。
[20] 前記第 1電圧 (vL)と、前記第 2負荷 (Cdc + Load;C2 + Load;7)に流れる第 2電 流 (idc;idc;iq)とに基づいて求められた指令値 (v*;v*;vq*)に従って、前記スィッチ ング電源回路(61 ;62 ;6)に前記スイッチング動作をさせる、請求項 17記載の電力 変換器の制御方法。
[21] 前記指令値 (idc*;idc*;iq*)と、前記第 2負荷(Cdc+Load;C2+Load;7)に流れ る第 2電流 (idc;idc;iq)とに基づいて求められた指令値 (v*;v*;vq*)に従って、前記 スイッチング電源回路(61 ;62 ;6)に前記スイッチング動作をさせる、請求項 14、請 求項 15、請求項 18及び請求項 19のいずれか一つに記載の電力変換器の制御方 法。
[22] 前記第 1負荷 (4 + 5)は、主負荷 (5)と、前記コンデンサの両端電圧 (vdc)を入力し 、交流電流 (iu2, iv2, iw2)を前記主負荷に出力するインバータ (4)とを有し、 前記指令値(1 ; ;^*)と前記インバータ (4)のキャリアとの比較によって前記 デューティを決定する、請求項 14乃至請求項 16、請求項 18乃至請求項 20のいず れか一つに記載の電力変換器の制御方法。
PCT/JP2007/058085 2006-04-19 2007-04-12 電力変換器及びその制御方法並びに空気調和機 WO2007123045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07741521.4A EP2009774B1 (en) 2006-04-19 2007-04-12 Power converter, its control method, and air conditioner
AU2007242096A AU2007242096B2 (en) 2006-04-19 2007-04-12 Power converter, its control method, and air conditioner
US12/226,434 US8269370B2 (en) 2006-04-19 2007-04-12 Power converter and its control method and air conditioner
CN2007800054550A CN101385224B (zh) 2006-04-19 2007-04-12 功率变流器及其控制方法、和空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-115814 2006-04-19
JP2006115814A JP4079178B2 (ja) 2006-04-19 2006-04-19 電力変換器及びその制御方法並びに空気調和機

Publications (1)

Publication Number Publication Date
WO2007123045A1 true WO2007123045A1 (ja) 2007-11-01

Family

ID=38624949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058085 WO2007123045A1 (ja) 2006-04-19 2007-04-12 電力変換器及びその制御方法並びに空気調和機

Country Status (6)

Country Link
US (1) US8269370B2 (ja)
EP (1) EP2009774B1 (ja)
JP (1) JP4079178B2 (ja)
CN (1) CN101385224B (ja)
AU (1) AU2007242096B2 (ja)
WO (1) WO2007123045A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072142A (ja) * 2009-09-28 2011-04-07 Daikin Industries Ltd 電力変換装置
CN102315782B (zh) * 2010-07-08 2013-10-16 晶宏半导体股份有限公司 无需电解电容的电源转换器及其电源转换方法
JP5212491B2 (ja) * 2011-01-18 2013-06-19 ダイキン工業株式会社 電力変換装置
EP2851631B1 (en) * 2012-04-16 2020-03-11 Mitsubishi Electric Corporation Heat pump device, air conditioner, and cooling machine
JP5585643B2 (ja) * 2012-12-14 2014-09-10 ダイキン工業株式会社 アクティブフィルタ制御装置
US20140268948A1 (en) * 2013-03-15 2014-09-18 Hamilton Sundstrand Corporation Electromagnetic interference (emi) reduction in interleaved power converter
US9270168B2 (en) 2013-03-15 2016-02-23 Hamilton Sundstrand Corporation Electromagnetic interference (EMI) reduction in multi-level power converter
JP5742980B1 (ja) * 2014-02-19 2015-07-01 ダイキン工業株式会社 電力変換装置の制御方法
JP5920520B1 (ja) * 2014-12-17 2016-05-18 ダイキン工業株式会社 充放電回路、充放電回路の制御方法、充放電回路の制御装置、及び直接形電力変換器
US9973129B2 (en) 2015-06-12 2018-05-15 Trane International Inc. HVAC components having a variable speed drive with optimized power factor correction
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10320322B2 (en) 2016-04-15 2019-06-11 Emerson Climate Technologies, Inc. Switch actuation measurement circuit for voltage converter
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
CN107546890B (zh) 2016-06-28 2021-07-16 特灵国际有限公司 谐波分流的电机、方法、ac电机系统及可变速驱动系统
JP6826923B2 (ja) * 2017-03-22 2021-02-10 株式会社神戸製鋼所 圧縮機システム
US10826357B2 (en) 2017-06-28 2020-11-03 Trane International Inc. Harmonic shunting electric motor with faceted shaft for improved torque transmission
JP6638746B2 (ja) * 2018-01-31 2020-01-29 ダイキン工業株式会社 インバータの制御方法、交流負荷駆動システム、冷凍回路
JP6729650B2 (ja) * 2018-09-14 2020-07-22 ダイキン工業株式会社 インバータの制御方法、交流負荷への電力供給システム、冷凍回路
CN109812932B (zh) * 2019-01-23 2020-11-13 奥克斯空调股份有限公司 一种变频空调功率模块温升控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080150A (ja) * 1996-08-30 1998-03-24 Railway Technical Res Inst 共振電流抑制装置
JPH1198850A (ja) * 1997-09-16 1999-04-09 Mitsubishi Electric Corp 空気調和機のインバータ装置
JPH11187671A (ja) * 1997-12-24 1999-07-09 Toshiba Corp インバータ装置および冷凍サイクル装置
JP2003061382A (ja) * 2001-08-09 2003-02-28 Isao Takahashi インバータの制御方法及びインバータの制御回路
WO2003032478A1 (fr) * 2001-09-25 2003-04-17 Daikin Industries, Ltd. Detecteur de courant de phase
JP2006081261A (ja) * 2004-09-08 2006-03-23 Daikin Ind Ltd 多相電流供給回路及び駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480298A (en) * 1983-01-25 1984-10-30 Westinghouse Electric Corp. Multiple output DC-to-DC voltage converter apparatus
JP2812824B2 (ja) * 1990-11-14 1998-10-22 三菱電機株式会社 直流−直流変換器
US5341278A (en) * 1992-08-20 1994-08-23 Brooks Steven W Switching pulsed resonant DC-DC converter power amplifier
FR2717014B1 (fr) * 1994-03-01 1996-04-26 Telemecanique Système de commande d'un onduleur a MLI.
US20010052704A1 (en) * 1999-05-22 2001-12-20 Capstone Turbine Corporation Turbogenerator power control system
JP3616005B2 (ja) * 2000-12-20 2005-02-02 本田技研工業株式会社 ハイブリッド車両の冷却装置
US6813168B2 (en) * 2002-11-18 2004-11-02 Power Integrations, Inc. Method and apparatus for providing input EMI filtering in power supplies
US20070091647A1 (en) * 2004-11-12 2007-04-26 Hiroshi Takemura Switching power supply unit
US7541687B2 (en) * 2006-03-10 2009-06-02 Deere & Company Method and system for managing an electrical output of a turbogenerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1080150A (ja) * 1996-08-30 1998-03-24 Railway Technical Res Inst 共振電流抑制装置
JPH1198850A (ja) * 1997-09-16 1999-04-09 Mitsubishi Electric Corp 空気調和機のインバータ装置
JPH11187671A (ja) * 1997-12-24 1999-07-09 Toshiba Corp インバータ装置および冷凍サイクル装置
JP2003061382A (ja) * 2001-08-09 2003-02-28 Isao Takahashi インバータの制御方法及びインバータの制御回路
WO2003032478A1 (fr) * 2001-09-25 2003-04-17 Daikin Industries, Ltd. Detecteur de courant de phase
JP2006081261A (ja) * 2004-09-08 2006-03-23 Daikin Ind Ltd 多相電流供給回路及び駆動装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HITOSHI HAGA: "Method of Improving Input Current Waveform of Single-Phase Field Capacitor-less IPM Motor Driving Inverter", THE TRANSACTIONS I OF HEISEI, vol. 14, 2002, pages 415 - 418
MYINT KO TUN: "New Type Sinusoidal Input UPS Controlled by DC Chopper Type Active Filter", TRANSACTIONS III OF HEISEI, vol. 14, 2002, pages 1301 - 1306
YOICHI ITO: "Capacitor-less PWM Inverter", THE TRANSACTIONS OF SHOWA 63 (1988) IEEJ INDUSTRY APPLICATIONS SOCIETY NATIONAL CONFERENCE, vol. 63, August 1988 (1988-08-01), pages 445 - 450

Also Published As

Publication number Publication date
CN101385224B (zh) 2011-06-29
AU2007242096A1 (en) 2007-11-01
JP4079178B2 (ja) 2008-04-23
AU2007242096B2 (en) 2010-09-16
CN101385224A (zh) 2009-03-11
US20090102285A1 (en) 2009-04-23
EP2009774A1 (en) 2008-12-31
EP2009774A4 (en) 2017-04-26
EP2009774B1 (en) 2019-06-19
US8269370B2 (en) 2012-09-18
JP2007288971A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2007123045A1 (ja) 電力変換器及びその制御方法並びに空気調和機
AU2012208179B2 (en) Power conversion apparatus
Inazuma et al. High-power-factor single-phase diode rectifier driven by repetitively controlled IPM motor
US9257931B2 (en) Power conversion apparatus
EP1808953B1 (en) Polyphase current supplying circuit and driver apparatus
EP3522355B1 (en) Control device for direct power converter
WO2013046728A1 (ja) 電力変換装置
US20130181654A1 (en) Motor drive system employing an active rectifier
EP3754832B1 (en) Power conversion apparatus
US20170279398A1 (en) Electric power conversion device
CN107710588B (zh) 转换设备以及对其进行控制的方法
JP2012044830A (ja) 電力変換装置
Hinkkanen et al. Control of induction motor drives equipped with small DC-link capacitance
JP4439846B2 (ja) 多相電流供給回路
JP2006006046A (ja) コンバータ制御方法及びコンバータ制御装置並びに空調機及びその制御方法及び制御装置
JP2019057979A (ja) モータ制御装置及び空調機
JP2002369530A (ja) ダイオード整流回路
JP6775441B2 (ja) 電源装置
JP2002315355A (ja) 電力変換装置
WO2020084970A1 (ja) モータ制御装置及び空調機
JPH07308069A (ja) 昇圧形3相全波整流装置及びその制御方法
CN117642975A (zh) 基于多模控制的串联谐振dc-dc功率转换器
JP2019193411A (ja) 3相力率改善回路、制御方法及び制御回路
JP2020068648A (ja) モータ制御装置及び空調機
JP2012151963A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780005455.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007741521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007242096

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007242096

Country of ref document: AU

Date of ref document: 20070412

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12226434

Country of ref document: US