WO2007122888A1 - フィルムおよびフィルムの製造方法、並びにその利用 - Google Patents

フィルムおよびフィルムの製造方法、並びにその利用 Download PDF

Info

Publication number
WO2007122888A1
WO2007122888A1 PCT/JP2007/054659 JP2007054659W WO2007122888A1 WO 2007122888 A1 WO2007122888 A1 WO 2007122888A1 JP 2007054659 W JP2007054659 W JP 2007054659W WO 2007122888 A1 WO2007122888 A1 WO 2007122888A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
group
crystal compound
rod
Prior art date
Application number
PCT/JP2007/054659
Other languages
English (en)
French (fr)
Inventor
Koshiro Ochiai
Motohiro Yamahara
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to CN2007800124695A priority Critical patent/CN101416086B/zh
Priority to KR1020087024127A priority patent/KR101310467B1/ko
Publication of WO2007122888A1 publication Critical patent/WO2007122888A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC

Definitions

  • the present invention relates to a film, a film manufacturing method, and use thereof, and relates to a film and a film manufacturing method in which a refractive index is changed in an oblique direction with respect to a film plane, and use thereof. is there.
  • FPD Flat panel display devices
  • LCD liquid crystal display devices
  • EL organic electroluminescence
  • optical films are used for FPD in order to prevent reflection and widen the viewing angle.
  • the optical film include an antireflection film such as an anti-reflection (hereinafter referred to as “AR”) film that reduces the reflectance of the surface by the optical interference effect by multilayering optical thin film layers having different refractive indexes, A polarizing film that transmits only light in a specific vibration direction and blocks other light, a retardation film that optically compensates for interference colors of LCDs such as STN and TN systems, and a polarizing film and a retardation film Examples include an elliptically polarizing film that has been obscured, and a viewing angle expansion film that expands the viewing angle of the LCD.
  • AR anti-reflection
  • optical film used in the FPD also varies depending on the type of FPD applied.
  • optical compensation can be performed using a stretched film whose refractive index is changed in the plane direction.
  • a stretched film a film that has been conventionally used as a retardation film giving an optical compensation effect can be used.
  • the stretched film can be obtained, for example, by extending a film such as polybulal alcohol or polycarbonate.
  • an optical film whose refractive index is changed in an oblique direction examples include a WV film (trade name, manufactured by Fuji Photo Film Co., Ltd.) and an NH film (trade name, manufactured by Nippon Oil Corporation).
  • These films are optical compensation films that utilize the tilted orientation of liquid crystal molecules rather than stretched films.
  • the liquid crystal molecules tilt-aligned liquid crystal molecules that are horizontally aligned at the alignment film interface and vertically aligned at the air interface are used. Thereby, the obtained film becomes a film in which the refractive index is changed in an oblique direction.
  • examples of the technique relating to the optical film in which the refractive index is changed in the oblique direction include the techniques disclosed in Patent Documents 1 and 2.
  • a liquid crystalline polymer is first uniformly coated on a substrate for alignment, then heat-treated at a polymer liquid crystal temperature for tilt alignment, and then cooled to tilt alignment.
  • a liquid crystal polymer film having a fixed state is disclosed. Further, it is described that a suitable tilt angle of the liquid crystalline polymer film is in the range of 5 ° to 85 °.
  • Patent Document 2 discloses an optical film in which an alignment state formed by a discotic liquid crystalline compound having an oxetanyl group in a liquid crystal state is crosslinked and fixed by light, Z, or heat. And It is described that the orientation of the discotic liquid crystalline compound is preferably a hybrid orientation.
  • Patent Document 1 JP-A-7-20434 (published January 24, 1995)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-109381 (published on April 8, 2004) Disclosure of the Invention
  • a film whose refractive index is changed in an oblique direction represented by a WV film
  • a WV film is inclined with a horizontal alignment at the horizontal alignment film and the alignment film interface and a vertical alignment at the air interface.
  • the refractive index can be changed in an oblique direction
  • the direction in which the refractive index changes most (the inclination angle of the refractive index ellipsoid) cannot be arbitrarily controlled.
  • an optical The degree of compensation is different.
  • the tilt angle of the refractive index ellipsoid cannot be arbitrarily controlled, so that sufficient optical compensation in accordance with the liquid crystal panel cannot be achieved.
  • the orientation of the liquid crystalline molecules is widely controlled.
  • a polymer of a liquid crystalline polymer is used for the production of the liquid crystalline polymer film. Therefore, in the case of the liquid crystal polymer as disclosed herein, in order to make the liquid crystalline polymer into a monodomain tilt alignment, the liquid crystal polymer needs to be in a liquid crystal state, and in the liquid crystal alignment step, a high temperature is required. Heating is required. Therefore, it is necessary to select a substrate that can withstand the heat treatment. That is, the technique of Patent Document 2 has a problem that a substrate having low heat resistance cannot be used. In addition, since the fluidity increases as the temperature rises, there arises a problem that the adhesion to the substrate is lowered, or the optical anisotropy is significantly lowered due to the residual stress.
  • a liquid crystal compound having tilt alignment (hybrid alignment) is used.
  • tilt alignment tilt alignment
  • the liquid crystal compounds that can be synthesized there are also limitations on the liquid crystal compounds that can be synthesized. Therefore, there is a problem that it is extremely difficult to manufacture an optical film having a desired tilt angle.
  • the tilt angle of the liquid crystal compound can be controlled by an additive or the like. In that case, the birefringence of the additive in the optically anisotropic layer must be taken into consideration. Therefore, it is extremely difficult to control the tilt angle even with such a method.
  • the conventional optical compensation film that can be applied to the wide field of view of the TN mode has various problems, and the development of a more suitable optical compensation film is required.
  • the present invention has been made in view of the above problems, and provides a film, a method for producing the film, and its use, which has the highest refractive index in an oblique direction with respect to the plane of the film. .
  • the inventors of the present invention formed a layer of a homogeneously oriented rod-like polymerizable liquid crystal compound on the alignment film for vertical alignment, thereby forming a film plane.
  • the inventors have independently found that a film having the highest refractive index can be obtained in an oblique direction, and have completed the present invention. That is, the present invention includes the following industrially useful inventions.
  • a film having an optically anisotropic layer formed on an alignment film for vertical alignment wherein the optically anisotropic layer comprises a polymer containing a structural unit derived from a rod-like polymerizable liquid crystal compound.
  • the rod-like polymerizable liquid crystal compound has a property of being oriented horizontally on a horizontal alignment film as a monomer and horizontally oriented even at an air interface.
  • a film having an optically anisotropic layer formed on an alignment film for vertical alignment wherein the optically anisotropic layer comprises a layer containing a rod-like polymerizable liquid crystal compound,
  • the polymerizable liquid crystal compound has a property of being aligned horizontally on the horizontal alignment film and horizontally aligned even at the air interface, and the rod-like polymerizable liquid crystal compound is inclined with respect to the alignment film for vertical alignment.
  • the optically anisotropic layer has the following formula (1)
  • Y represents a divalent group
  • s and t each independently represent an integer of 0 or 1
  • G 1 and G2 each independently represent — CR 1 ! ⁇
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, a halogen atom, or a hydrogen atom
  • A1 and A2 each independently represent a divalent cyclic hydrocarbon group or a divalent complex.
  • R and R ′ are each independently Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and XI and X2 each independently represent the following formula (2)
  • A3 represents a divalent cyclic hydrocarbon group or heterocyclic group, B3 has the same meaning as B1 and B2, and n represents an integer of 1 to 4.
  • E1 and E2 each independently represents an alkylene group having 2 to 25 carbon atoms
  • E1 and E2 further represent an alkyl group having 1 to 5 carbon atoms
  • P1 and P2 may be bonded to a halogen atom and each represents a hydrogen atom or a polymerizable group, and at least one of P1 and P2 One is a polymerizable group.
  • a method for producing a film having an optically anisotropic layer formed on an alignment film for vertical alignment comprising (A) a rod-like polymerizable liquid crystal compound on the alignment film for vertical alignment At least a step of applying the composition, and (B) heating the coating film formed in the step (A) at 25 to 120 ° C. for 10 seconds to 60 minutes.
  • a method for producing a film characterized by having a property of being oriented horizontally on a horizontally oriented film as a monomer and horizontally oriented even at an air interface.
  • a flat panel display comprising the film according to any one of (1) to (6) or the polarizing film according to (10).
  • the orientation of a liquid crystal layer after curing is controlled by controlling the orientation of a monomer or oligomer (specifically, a rod-like polymerizable liquid crystal compound) for forming a liquid crystal before curing.
  • a monomer or oligomer specifically, a rod-like polymerizable liquid crystal compound
  • the orientation of the monomer before curing is the same as the orientation of the polymer after curing, that is, the liquid crystal.
  • an optically anisotropic layer is formed on the vertical alignment film.
  • the optically anisotropic layer is a layer containing a rod-like polymerizable liquid crystal compound that is horizontally aligned on the horizontal alignment film and also horizontally aligned at the air interface. Therefore, there is an effect that the tilt angle of the refractive index ellipsoid in the optically anisotropic layer can be arbitrarily controlled.
  • FIG. 1A is a cross-sectional view showing the normal orientation of a film.
  • FIG. 1B is a cross-sectional view showing an example of the orientation of a film that is useful in the present invention.
  • FIG. 1C is a cross-sectional view showing another example of the orientation of the film according to the present invention.
  • FIG. 2 is a diagram showing the birefringence of the film according to the present invention.
  • FIG. 3A is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3B is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3C is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3D is a cross-sectional view showing a use state of the film according to the present invention.
  • FIG. 3E is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3F is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3G is a cross-sectional view showing a use state of the film according to the present invention.
  • FIG. 3H is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 31 is a cross-sectional view showing a usage state of the film according to the invention.
  • FIG. 3J is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 3K is a cross-sectional view showing a usage state of the film according to the present invention.
  • FIG. 4 is a cross-sectional view of a liquid crystal panel.
  • FIG. 5 is a cross-sectional view of an organic EL panel.
  • the film according to the present invention includes an optically anisotropic layer 1 formed on a vertical alignment film 12.
  • the alignment film 12 for vertical alignment is formed on a support substrate. That is, the film according to the present invention is a film in which the alignment film for vertical alignment 12 and the optically anisotropic layer 11 are laminated in this order on a supporting substrate.
  • the surface facing the optically anisotropic layer is an air layer.
  • the optically anisotropic layer 11 is composed of a layer containing a polymer obtained by polymerizing a rod-like polymerizable liquid crystal compound.
  • a rod-like polymerizable liquid crystal compound 14 having the characteristics of being horizontally oriented on the horizontal alignment film and horizontally oriented even at the air interface is used. If such a rod-like polymerizable liquid crystal compound is used, the rod-like polymerizable liquid crystal compound is tilted with respect to the alignment film for vertical alignment. More specifically, by rubbing the alignment film for vertical alignment, the rod-like polymerizable liquid crystal compound is tilted and hybrid-aligned as shown in FIG.
  • the rod-like polymerizable liquid crystal compound may be tilted and tilted as shown in FIG. 1B, or tilted as shown in FIG. 1C.
  • the angle at which it is moved changes. Therefore, in the film according to the present invention, the direction in which the refractive index is highest in the oblique direction with respect to the film plane can be arbitrarily changed. Therefore, the film according to the present invention can be used as an optical film suitable for developing a wide viewing angle in a TN mode liquid crystal panel.
  • the alignment film for vertical alignment is described as “alignment layer”
  • the rod-like polymerizable liquid crystal compound is described as “liquid crystal molecule”
  • the optically anisotropic layer is described as “liquid crystal layer”. ing.
  • the film according to the present invention has optical anisotropy! /.
  • the optical anisotropy include a tilt angle and a phase difference value.
  • the optical anisotropy of the film that is useful in the present invention will be described in more detail with reference to FIG.
  • the refractive index ellipsoid 22 showing the optical characteristics of the film 1
  • three-dimensional main refractive indexes na, nb, and nc are defined.
  • the angle between the Y axis and the main refractive index nb is defined as the tilt angle 23
  • the vertical ellipsoid formed on the film when viewed from the Z direction is defined as the major axis ny and minor axis nx of the vertical ellipse.
  • the difference between ny and nx And the product of film thickness d (ny— nx) 'd is defined as the phase difference value.
  • Examples of the method for measuring the phase difference value include a method such as ellipsometer measurement.
  • the dependency on the incident angle of light is measured, and the calculated value of the change in the phase difference value of the ideal refractive index ellipsoid due to the incident angle is used. And a method of calculating the curve fitting force.
  • the retardation value is about 5 to 700 nm, preferably about 50 to 400 nm.
  • the support substrate is not particularly limited as long as it can form an alignment film for vertical alignment on the support substrate.
  • glass, a plastic sheet, a plastic film, and a translucent film can be mentioned.
  • the translucent film include polyolefin films such as polyethylene, polypropylene, and norbornene polymers, polybutyl alcohol films, polyethylene terephthalate films, polymethacrylate films, polyacrylate films, and cellulose esters. Film, polyethylene naphthalate film, polycarbonate film, polysulfone film, polyethersulfone film, polyetherketone film, polyphenylene sulfide film, polyphenylene oxide film, and the like.
  • an optically anisotropic layer using a polymerizable liquid crystal compound is a thin film, and includes, for example, a film forming process using a film of the present invention, a process of transporting and storing the film, and the like. Even a process that requires high strength can be handled easily without tearing by using a support substrate.
  • the alignment film for vertical alignment must have solvent resistance that does not dissolve when coated with an optically anisotropic layer or the like, and has heat resistance due to solvent removal or liquid crystal alignment heat treatment. Further, it is necessary that the film does not peel off due to friction due to rubbing, etc., and is a polymer or a composition containing a polymer.
  • the polymer is not particularly limited as long as it is formed on the support substrate.
  • polyamides and gelatins having an amide bond in the molecule polyimides having an imide bond in the molecule, and polyamic acid, polyvinyl alcohol, polyacrylamide, polyoxazole, polyethyleneimine, polyacrylic acid, which are hydrolysates thereof.
  • polymers such as polyacrylic acid esters. These polymers may be used alone, or two or more of them may be mixed or copolymerized.
  • polymers can be easily obtained by polycondensation such as dehydration or deamination, chain polymerization such as radical polymerization, cation polymerization, and cation polymerization, coordination polymerization, and ring-opening polymerization.
  • such a polymer can introduce an organic group such as an alicyclic group such as a steroid, a long-chain alkyl group, a fluorinated alkyl group, an aromatic ring structure, and a fluorine-containing aromatic ring structure.
  • an organic group such as an alicyclic group such as a steroid, a long-chain alkyl group, a fluorinated alkyl group, an aromatic ring structure, and a fluorine-containing aromatic ring structure.
  • an organic group such as an alicyclic group such as a steroid, a long-chain alkyl group, a fluorinated alkyl group, an aromatic ring structure, and a fluorine-containing aromatic ring structure.
  • polyimides disclosed in JP-A-2001-305549, WO20 03-042752, JP-A-2005-139228, liquid crystal No. 8-4, page 216, and the like.
  • examples thereof include polyamic acid, and polybutyl alcohol disclosed in JP-A-2005-196015, JP-A-2005-315988, JP-A-2005-196016, and the like.
  • a polyimide alignment film for vertical alignment (trade name SE-5300, manufactured by Nissan Chemical Co., Ltd.) used in Examples described later is also a polyimide alignment film for vertical alignment.
  • the thickness of the alignment film for vertical alignment is usually ⁇ ! ⁇ LOOOOnm, preferably 10nm ⁇ 1000nm. If it is within the above range, the resulting film can be reduced in weight. In addition, the effect of the optical characteristics of the alignment film for vertical alignment on the resulting film can be reduced by / J.
  • the rod-like polymerizable liquid crystal compound can be hybrid-inclined with respect to the film plane, or can be inclined-aligned. Therefore, the obtained film becomes a tilted orientation film.
  • the optically anisotropic layer has optical anisotropy formed on the alignment film for vertical alignment Layer.
  • the optically anisotropic layer is a layer containing a polymer containing a structural unit derived from a rod-like polymerizable liquid crystal compound.
  • the optically anisotropic layer may contain a polymer containing a structural unit derived from a compound other than the rod-like polymerizable liquid crystal compound.
  • a polymer containing a structural unit derived from a specific polymerizable compound may be used as the structural unit derived from a rod-like polymerizable liquid crystal compound. Good.
  • a structural unit derived from a liquid crystal compound different from the rod-like polymerizable liquid crystal compound and the specific polymerizable compound (hereinafter, also referred to as “other liquid crystal compound” for convenience of explanation) is included. May be. Furthermore, a polymerization initiator, a polymerization inhibitor, a photosensitizer, a leveling agent and the like may be contained. Details of the compound constituting the optically anisotropic layer will be described later.
  • the thickness of the optically anisotropic layer may be adjusted as appropriate so that the retardation value (retardation value, Re ( ⁇ )) of the obtained film becomes a desired value.
  • Re ( ⁇ ) is determined by the following equation (a).
  • the film thickness d may be adjusted in order to obtain the desired Re ().
  • Re ( ⁇ ) represents a retardation value at a wavelength of ⁇ nm
  • d represents a film thickness
  • ⁇ ( ⁇ ) represents a refractive index anisotropy at a wavelength of ⁇ .
  • the alignment film for vertical alignment is rubbed, and the refractive index ellipsoid of the rod-like polymerizable liquid crystal compound is a film at the interface of the alignment film for vertical alignment. It is preferable to have an inclination angle of 10 ° to 85 ° with respect to the plane. Thereby, the said film turns into an inclination orientation film.
  • the rod-like polymerizable liquid crystal compound contained in the optically anisotropic layer is a rod-like polymerizable liquid crystal compound that is horizontally oriented as a monomer on the horizontally oriented film and horizontally oriented at the air interface.
  • the above-mentioned “rod-like polymerizable liquid crystal compound aligned horizontally on a horizontal alignment film as a monomer and horizontally aligned at the air interface” means, for example, on a glass substrate whose surface is processed horizontally or on the surface.
  • the orientation obtained when a rod-like polymerizable liquid crystal compound is applied as a monomer on a base material provided with an orientation film for inducing horizontal orientation such as polyvinyl alcohol as a flat orientation film is horizontal on the orientation film and horizontal at the air interface. It is a rod-like polymerizable liquid crystal compound that is aligned.
  • Examples of such rod-like polymerizable liquid crystal compounds that give homogenous orientation include the following formulas (3), (4), (5), (6), and (7). Or the compound represented by Formula (8) is mentioned.
  • Al l A 12 and A14 are each independently a bivalent It represents a cyclic hydrocarbon group, a divalent heterocyclic group, a methylenephenylene group, an oxyphenylene group, or a thiophenylene group.
  • Al l A12 and A14 may be bonded to a C 15 alkyl group, a C 15 alkoxy group, or a halogen atom.
  • Bl l B12 B13 B14 and B15 are each independently CRR C ⁇ C
  • E11 and E12 each independently represents an alkylene group having 225 carbon atoms. More
  • E11 and E12 include an alkyl group having 15 carbon atoms, an alkoxy group having 15 carbon atoms, and Or a halogen atom may be bonded!
  • P 11 in the formulas (4) to (8) represents a polymerizable group.
  • P11 and P12 represent a hydrogen atom or a polymerizable group, and at least one of P11 and P12 is a polymerizable group.
  • Fl 1 represents a hydrogen atom, a halogen atom such as an alkyl group, a nitrile group, a nitro group, a trifluoromethyl group, a fluorine atom or a hydrogen atom.
  • liquid crystal compounds include, among others, the following formulas (3-1) to (3-6), formula (6-1), formula (6-2), formula (8-1), and formula (8-2)
  • liquid crystal compound represented by any one of the above is preferable because it is easily available.
  • rod-like polymerizable liquid crystals contained in RMS-03-001 (trade name, manufactured by Merck & Co., Inc.) and LC 242 (trade name, manufactured by BASF Corporation) used in Examples described later. Compounds can be mentioned.
  • the rod-like polymerizable liquid crystal compound gives the above-mentioned homogenous alignment rather than the rod-like polymerizable liquid crystal compound which gives a tilt or hybrid orientation.
  • the inclination angle of the refractive index ellipsoid in the optically anisotropic layer can be arbitrarily controlled. More specifically, this is done by changing the alignment state of the rod-like polymerizable liquid crystal compound depending on the degree of rubbing treatment applied to the vertical alignment film.
  • the tilt angle of the refractive index ellipsoid in the optically anisotropic layer changes depending on the tilt of the rod-shaped polymerizable liquid crystal compound.
  • the film according to the present invention is obtained by arbitrarily changing the direction in which the refractive index is highest in the oblique direction with respect to the film plane.
  • the rod-like polymerizable liquid crystal compound may be polymerized by any polymerization mode.
  • a thermally polymerizable rod-like polymerizable liquid crystal compound and a photopolymerizable rod-like polymerizable liquid crystal compound can be exemplified.
  • a photopolymerizable rod-like polymerizable liquid crystal compound is particularly preferable. According to this, the rod-like polymerizable liquid crystal compound can be polymerized at a low temperature and fixed. Therefore, the range of selection of the support substrate is widened, and at the same time, it is industrially advantageous.
  • a polymer further containing a structural unit derived from a specific polymerizable liquid crystal compound may be used in order to impart desired wavelength dispersion characteristics of the obtained film.
  • the above-mentioned "specific polymerizable compound” is a compound that can impart desired wavelength dispersion characteristics to the resulting film when used in combination with the rod-shaped polymerizable liquid crystal compound.
  • Such a polymerizable compound has the following formula (1)
  • Y represents a divalent group
  • s and t each independently represents an integer of 0 or 1
  • G 1 and G2 each independently represent —CI ⁇ R 2 —
  • R 1 and R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, a halogen atom, or a hydrogen atom
  • A1 and A2 each independently represent a divalent cyclic hydrocarbon group
  • A3 represents a divalent cyclic hydrocarbon group or a heterocyclic group
  • R and R ′ each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms), a divalent group selected from n, and n represents an integer of 1 to 4).
  • E1 and E2 each independently represents an alkylene group having 2 to 25 carbon atoms, and E1 and E2 each represents an alkyl group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms.
  • P1 and P2 to which a group or a halogen atom may be bonded represent a hydrogen atom or a polymerizable group, and at least one of P1 and P2 is a polymerizable group. ).
  • Y in the above formula (1) represents a divalent group, and this group preferably has a bent structure.
  • the “bending structure” is an angle formed from a linking group that is a bonding group of Y and bonded to a group containing A1, and a linking group that is a bonding group of Y and bonded to a group containing A2. It means a structure with a force of 100 ° to 140 °. The angle is preferably 110 ° to 130 °. Within the above range, the compatibility when the polymerizable compound and the rod-like polymerizable liquid crystal compound are dissolved in an organic solvent is improved. Therefore, the retardation value of the obtained film can be improved.
  • a divalent group represented by the following can be exemplified.
  • the angle formed between the linking group that is bonded to Y and is a group that includes A1 and the bonding group that is bonded to Y and is a group that includes A2 is defined as Al, A2, Cl, Dl, D2, (Gl) s, (G2)
  • t l in the above formula (1)
  • the angle should be represented by the double arrow in the following formula (91) Can do.
  • C1 represents a quaternary carbon atom or a quaternary key atom. Of these, C1 is preferably a quaternary carbon atom because it is easy to produce.
  • D1 and D2 are each a cyclic hydrocarbon group, a heterocyclic group, a linear hydrocarbon group having 1 to 5 carbon atoms, or a component having 1 to 5 carbon atoms. Represents a branched hydrocarbon group.
  • Examples of the cyclic hydrocarbon group used for D1 and D2 include a cycloalkyl group having about 5 to 12 carbon atoms such as a cyclopentyl group and a cyclohexyl group;
  • the heterocyclic group used for D1 and D2 includes the following formulas such as 5-membered ring and 6-membered ring:
  • Examples include groups represented by deviations.
  • D1 and D2 may be linked by a hydrocarbon group having 1 to 5 carbon atoms, an amino group, an ether group, a thioether group, or a single bond.
  • D1 and D2 include a hydroxyl group, an amino group, a thiol group, a cyclic hydrocarbon group, a linear or branched alkyl group having 1 to 5 carbon atoms, and a linear or branched structure having 1 to 5 carbon atoms.
  • An alkoxy group, a trifluoromethyl group, a trifluoromethyloxy group, a nitrile group, a nitro group, or a halogen atom may be bonded.
  • examples of the hydrocarbon group include an alkylene group such as a methylene group, an ethylene group, and a propylene group, and a linking group in which a single bond of an alkylene group is substituted with a double bond or a triple bond. it can.
  • examples of the cyclic hydrocarbon group include the same cyclic hydrocarbon groups as those used for D1 and D2.
  • alkyl group, alkoxy group and halogen atom the alkyl group, alkoxy group and halogen atom exemplified as the group substituted by A1 and A2 can be exemplified.
  • the divalent substituent represented by the formula (here, the quaternary atom C1 is exemplified by a carbon atom because of easy production), C1 is a carbon atom, and D1 and D2 are Substituents, both of which are phenol groups, can be mentioned.
  • some of the hydrogen atoms contained in the exemplified structures include an alkyl group having about 1 to 4 carbon atoms such as a methyl group, an ethyl group, an ipropyl group, and a tbutyl group; a methoxy group, an ethoxy group, and the like.
  • An alkoxy group having about 1 to 4 carbon atoms such as a group; a trifluoromethyl group; a trifluoromethyloxy group; a nitrile group; a nitro group; and a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
  • Y is a substituent in which C1 is a carbon atom, D1 and D2 are both phenyl groups, or any of the above formulas (D-1) to (D-12) It is preferable that it is a substituent represented. In particular, the substituents represented by the above formulas (D-1) to (D-12) are preferable from the viewpoint of remarkably showing reverse wavelength dispersion.
  • (Gl) s and (G2) t in the above formula (1) s and t each independently represents an integer of 0 or 1.
  • G1 and G2 are each independently —CI ⁇ R 2 —.
  • R 1 and R 2 each independently represents an alkyl group having about 1 to 4 carbon atoms such as a methyl group or an ethyl group; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
  • A1 and A2 each independently represent a divalent cyclic hydrocarbon group, a divalent heterocyclic group, a methylene-phenylene group, an oxy-phenylene group, or a thio-phenylene group.
  • the methylene group, the ether group, and the thioether group in the methylenephenylene group, the oxyphenylene group, or the thiophenylene group are bonded to B1 and B2.
  • Examples of the divalent cyclic hydrocarbon group used for A1 and A2 include the following formulas:
  • a part of the hydrogen atoms of the exemplified groups is an alkyl group having about 1 to 4 carbon atoms such as a methyl group, an ethyl group, an i-propyl group, or a t-butyl group;
  • An alkoxy group having about 1 to 4 carbon atoms such as an ethoxy group, a trifluoromethyl group, a trifluoromethyloxy group, a nitrile group, a nitro group, and a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
  • both A1 and A2 are preferably the same group.
  • A1 and A2 are preferably a 1,4-phenylene group, a 1,4-cyclohexylene group, or a divalent group substituted with ⁇ 3 nitrogen atoms of a benzene ring carbon atom.
  • R and R ′ each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms such as a methyl group or an ethyl group, or a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
  • both B1 and B2 are the same type of divalent groups. And are preferred.
  • B1 and B2 are preferably —CRR ′ 1, —O—, 1 S or NR—.
  • A2 and Al-Bl-XI are each linear, it is preferable that they have a tendency to improve the orientation.
  • [0117] represents a divalent group represented by:
  • A3 represents a divalent cyclic hydrocarbon group or a divalent heterocyclic group.
  • the divalent cyclic hydrocarbon group and the divalent heterocyclic group exemplified in A1 and ⁇ 2 can be similarly exemplified. From the viewpoint of ease of production, it may be a 1,4-phenylene group, 1,4-cyclohexylene group, or a divalent group in which 1 to 3 carbon atoms of the benzene ring are substituted with nitrogen atoms. The preferred 1,4-phenolene group is even more preferred.
  • both XI and ⁇ 2 are the same type of divalent group.
  • n represents an integer of 1 to 4.
  • n is preferably 1 or 2 from the viewpoint of easy handling. Furthermore, n is preferably 1 from the viewpoint of ease of production.
  • E1 and E2 each independently represents an alkylene group having 2 to 25 carbon atoms, preferably an alkylene group having 4 to 10 carbon atoms.
  • the hydrogen atom of E1 and E2 is substituted by an alkyl group, an alkoxy group, a trifluoromethyl group, a trifluoromethyloxy group, a nitrile group, a nitro group, or a halogen atom! Okay, but it's preferable to remain a hydrogen atom!
  • E1 and E2 are both the same type of alkylene group, it is preferable that production is easy.
  • P1 and P2 represent a hydrogen atom or a polymerizable group.
  • the “polymerizable group” means a substituent capable of polymerizing the polymerizable compound and the rod-shaped polymerizable liquid crystal compound described above.
  • vinyl group, p-stilbene group, attalyloyl group, methacryloyl group, carboxyl group, methyl carbo yl group, hydroxyl group, amide group, C1-C4 are also alkylamino group, amino group, epoxy group, oxetanyl. Examples include groups, aldehyde groups, isocyanate groups, and thioisocyanate groups.
  • the groups exemplified in B2 may be included.
  • an attalyloyl group is more preferred, and an taliloyl group or a methacryloyl group is more preferred. If these groups are used, the handling during photopolymerization is easy and the production is also easy.
  • P1 and P2 are a polymerizable group. It is further preferable that both P1 and P2 are a polymerizable group. Thereby, the film hardness of the obtained film can be made favorable.
  • Specific examples of the polymerizable compound include the compounds shown in Tables 1 to 4.
  • the optically anisotropic layer may contain only one of! / And the deviation of the polymerizable compound, but may contain a plurality of different polymerizable compounds. .
  • the compounds shown in Tables 1 and 2 are preferably included. If such a compound is used, the film according to the present invention can remarkably exhibit reverse wavelength dispersion. Furthermore, it is more preferable that the compounds shown in Table 1 are included. If such a compound is used, a film that is useful in the present invention can be easily produced.
  • the compounds shown in Table 1 or 2 are preferred, and the compounds shown in Table 1 are more preferred.
  • the following formulas (1 1), (1-2) , (1-3), (1 -4), (1-5), (1 11), (1-45), (1-49), and (1-50) are particularly preferred. .
  • the corresponding carbonyl compound is used as the compound that gives the compound, and the halide of the compound containing Al (A2), Bl (B2), XI (X2), El (E2) and PI (P2) acts on the carbonyl compound. And a method obtained by dehydration condensation.
  • a polymerizable compound in which s and t in the above formula (1) are 1, and G1 and G2 are both methylene chains As a production method, for example, a halogenobenzyl having iodine in a benzene ring as an alkali metal hydroxide is used as a compound that gives structural units of C2 and Al (C3 and A2) to the carbonyl compound.
  • the wavelength dispersion characteristic of the obtained film is determined by the proportion of the structural units derived from the rod-like polymerizable liquid crystal compound and the polymerizable compound.
  • the resulting film is a film exhibiting positive wavelength dispersion.
  • the film according to the present invention preferably contains the polymerizable compound in an amount that provides desired wavelength dispersion characteristics.
  • the content of the polymerizable compound necessary for imparting a desired wavelength dispersion characteristic can be determined as follows.
  • Example For example, the ratio of the structural unit derived from the polymerizable compound contained in the composition containing the rod-like polymerizable liquid crystal compound and the polymerizable compound is adjusted, and the retardation value of the resulting film is obtained. From the result, the content of the structural unit derived from the polymerizable compound can be determined.
  • the optically anisotropic layer may contain a polymerization initiator for polymerizing the rod-like polymerizable liquid crystal compound or the polymerizable compound.
  • the polymerization initiator is not particularly limited as long as it can be used for polymerizing the compound.
  • the rod-like polymerizable liquid crystal compound is preferably photopolymerized. Therefore, the polymerization initiator is preferably a photopolymerization initiator.
  • Examples of the photopolymerization initiator include benzoins, benzophenones, benzyl ketals, ⁇ -hydroxy ketones, ⁇ -amino ketones, odonium salts, sulfo-um salts, and the like.
  • Irgacure 907, Irgacure 184, Irgacure 651, Irgacure 250, and Irgacure 369 (all from Ciba Specialty Chemicals Inc.), Sake All BZ, Sake All Z, Sake All BEE (and all above) ), Kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), KYACURE I UVI—6992 (manufactured by Dow), Adekaoptomer SP—152, Adekaoptomer SP—170 (all asahi Denka) And so on.
  • the rod-like polymerizable liquid crystal compound and the polymerizable compound can be photopolymerized.
  • the content of such a polymerization initiator is 10% by weight or less with respect to the liquid crystal compound-containing composition described later, because the orientation of the rod-like polymerizable liquid crystal compound is not disturbed. Is preferred.
  • the optically anisotropic layer may contain a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and examples thereof include hydroquinones having a substituent such as hydroquinone and alkyl ether, and substituents such as alkyl ether such as butylcatechol. Catechols, pyrogallols, radical scavengers such as 2,2,6,6-tetramethyl-1-piberidi-ruxoxy radical, thiophenols, ⁇ -naphthylamines, and j8-naphthols.
  • the polymerization inhibitor By using the polymerization inhibitor, the polymerization of the rod-like polymerizable liquid crystal compound or the polymerizable compound can be controlled, and the stability of the optically anisotropic layer can be improved.
  • the optically anisotropic layer may contain a photosensitizer.
  • the photosensitizer is not particularly limited, and examples thereof include xanthones such as xanthone and thixanthone, anthracenes having a substituent such as anthracene and alkyl ether, phenothiazine, and rubrene. .
  • the sensitivity of the polymerization of the rod-like polymerizable liquid crystal compound or the polymerizable compound can be increased.
  • the optically anisotropic layer may contain a leveling agent.
  • the above-mentioned leveling agent is not particularly limited, and a conventionally known leveling agent can be added.
  • the leveling agent include additives for radiation-curing coatings (by Big Chemie Japan: ⁇ -352, BYK-353, BYK-361N), coating additives (from Toray Dowco Jung: SH28PA, DC 11 PA). , ST80PA), and paint additives (manufactured by Shin-Etsu Silicone: KP321, ⁇ 323, ⁇ 22-161A, KF6001).
  • the optically anisotropic layer can be smoothed. Furthermore, in the production process of the film, the fluidity of the liquid crystal compound-containing composition described later can be controlled, and the crosslink density of the rod-like polymerizable liquid crystal compound and the polymerizable compound can be adjusted.
  • the method for producing a film according to the present invention can be suitably used for producing the above-described film according to the present invention. Specifically, specifically, (i) a step of applying the above-described composition containing the rod-like polymerizable liquid crystal compound on the vertical alignment film (hereinafter referred to as “liquid crystal compound-containing composition application step”). And (iii) the liquid crystal compound-containing group At least a step of heating the coating film formed in the composition coating step at 25 ° C. to 120 ° C. for 10 seconds to 60 minutes (hereinafter also referred to as “(liquid crystal compound-containing composition heating step)”) Including.
  • the obtained film becomes an unpolymerized film.
  • a rod-like polymerizable liquid crystal compound can be aligned in a noble, inverted or tilted manner with respect to the film plane on the rubbed vertical alignment film. Therefore, according to the above configuration, an unpolymerized film having the highest refractive index in the oblique direction with respect to the film plane can be produced.
  • the method for producing a film that is useful in the present invention includes such a method for producing an unpolymerized film.
  • the alignment film for vertical alignment and the rod-like polymerizable liquid crystal compound those described in ⁇ 1. Film according to the present invention> can be similarly used.
  • the rod-like polymerizable liquid crystal compound is tilted with respect to the vertical alignment film. Therefore, it is possible to produce a film whose refractive index is changed in an oblique direction with respect to the film plane.
  • the inclination angle of the refractive index ellipsoid in the optically anisotropic layer can be arbitrarily controlled by changing the degree of rubbing treatment performed on the alignment film for vertical alignment. . Therefore, films with various inclination angles can be easily manufactured.
  • the film production method includes: (C) a liquid crystal compound-containing composition heating step A step of polymerizing (crosslinking) a polymerized film (hereinafter also referred to as “liquid crystal compound polymerization step”), a step of (D) rubbing an alignment film for vertical alignment (hereinafter also referred to as “rubbing step”), (E ) Alignment film for vertical alignment Step for preparing a composition containing a rod-like polymerizable liquid crystal compound to be applied to the above (hereinafter also referred to as “liquid crystal compound-containing composition preparation step”), (F) Vertical alignment on a supporting substrate A step of forming an alignment film for use (hereinafter also referred to as “alignment film forming process for vertical alignment”) may be included. All of these four steps may be included, or any one or two of them may be included. Of course, don't include them.
  • a vertical alignment film is formed on the support substrate.
  • the support substrate is not particularly limited.
  • Film according to the present invention> can be used.
  • the vertical alignment film is not particularly limited.
  • Film that can be used in the present invention> can be used. If such an alignment film for vertical alignment is used, it is not necessary to control the refractive index by stretching, so that in-plane variation in birefringence is reduced. Therefore, it is possible to provide a large optical film that can cope with an increase in the size of the FPD on the support substrate.
  • the method for forming the alignment film for vertical alignment on the support substrate is not particularly limited, and a conventionally known method can be used.
  • the orientation film for vertical orientation can be formed on the support substrate by applying a material for the orientation film for vertical orientation on the support substrate and then annealing.
  • the thickness of the alignment film for vertical alignment thus obtained is not particularly limited, but is preferably 10 nm to 10000 nm, more preferably 10 nm to 1000 nm. Within the above range, the rod-like polymerizable liquid crystal compound can be aligned at a desired angle on the alignment film for vertical alignment in the optically anisotropic layer forming step described later.
  • the vertical alignment film obtained in the vertical alignment film forming process is rubbed.
  • the rod-like polymerizable liquid crystal compound can be tilted at the interface layer for vertical alignment while maintaining the horizontal alignment at the air layer interface.
  • the vertical alignment film is a vertical alignment film having the same physical properties that is not necessarily obtained in the vertical alignment film forming step, and is prepared separately, for example, Commercial products may be used.
  • the method for rubbing the alignment film for vertical alignment is not particularly limited, and a conventionally known method can be used.
  • a rubbing roll wrapped with a rubbing cloth is brought into contact with an alignment film for vertical alignment placed on a stage and conveyed. Can be used.
  • the rubbing cloth is not particularly limited, and may be any cloth that can be wound around a labinda roll.
  • Examples of the material of the rubbing cloth include various materials such as rayon, cotton, wool and silk. Even with the same material, the rubbing state can be changed depending on the thickness and length of the thread used in the fabric. In order to make the rubbing state uniform, it is preferable that the thickness and length of the thread are uniform.
  • the diameter of the labinda roll is generally lOmn in order to stably control its rotation! It is preferably ⁇ 300mm. Further, by changing the diameter of the rubbing roll, the angle and area of contact with the alignment film can be adjusted.
  • the rotational speed of the labinda roll is preferably 100 to 2000 rpm in order to stably rotate the rubbing roll with the force depending on the diameter of the labinda roll. It is also possible to adjust the rubbing force by changing the number of rotations of the labinda roll.
  • stage speed of the above stage and the transport speed of the alignment film for vertical alignment are generally difficult to transport stably even if the transport speed of the alignment film for vertical alignment is too slow or too fast. Therefore, it is preferable to control to 0.1 lmZ minutes to 10 mZ minutes. Also, the degree of rubbing force can be adjusted by changing the stage speed and the conveying speed of the alignment film for vertical alignment.
  • the pushing amount and the contact length are not particularly limited, and a desired rubbing effect can be obtained according to the yarn length of the rubbing cloth. Should be set.
  • the “push-in amount” is an amount by which the labin roll is pressed against the alignment film for vertical alignment, and is expressed by the length of the hair of the rubbing cloth pressed against the alignment film. In the above-mentioned rubbing method, it is possible to press only the amount of thread that has come out in the direction perpendicular to the rubbing cloth.
  • the “contact length” represents a length in which the labinda roll is in contact with the base material. The above contact length is such that the labinda roll comes into contact with the alignment film for vertical alignment when the labinda roll is completely pressed after the labinda roll comes into contact with the alignment film for vertical alignment! / You can change the length.
  • the vertical alignment alignment is performed by the method exemplified above.
  • the number of rubbing times of the alignment film for vertical alignment in the rubbing step is not particularly limited. That is, in the rubbing step, the alignment film for vertical orientation may be rubbed only once, or may be rubbed multiple times to control the orientation.
  • a composition containing a rod-like polymerizable liquid crystal compound is prepared. Specifically, a solution in which the rod-like polymerizable liquid crystal compound is dissolved in an organic solvent is prepared.
  • the rod-like polymerizable compound the rod-like polymerizable liquid crystal compound described in (I) Film according to the present invention may be used.
  • the organic solvent is not particularly limited as long as it can dissolve the rod-like polymerizable liquid crystal compound.
  • cyclopentanone cyclohexanone, methyl ethyl ketone, toluene, ethyl acetate, methyl cetyl sorb, butyl cetyl sorb, isopropyl alcohol, methyl amyl ketone, xylene, acetonitrile, tetrahydrofuran, gamma-butyrolacton, dimethoxyethane
  • Examples thereof include ethyl acetate, black-form, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether.
  • the concentration of the rod-like polymerizable liquid crystal compound in the composition is not particularly limited. However, if the concentration is too low, the optically anisotropic layer becomes too thin, so that the optical compensation of the liquid crystal panel is performed. There is a tendency that the optical anisotropy necessary for the above cannot be obtained. On the other hand, if the concentration is too high, the viscosity of the solution of the liquid crystal compound-containing composition tends to be too high, and the coating film thickness tends to be uneven. Therefore, the concentration is preferably 5 to 50 wt%. If it is within the above range, the above-described problems will not occur.
  • the composition may further contain a specific polymerizable compound and a plurality of liquid crystal compounds different from Z or the rod-like polymerizable liquid crystal compound.
  • liquid crystal compound other liquid crystal compounds described in ⁇ 1.
  • the content of the liquid crystal compound may be appropriately determined according to the retardation value required for the obtained film. Specifically, the composition is imparted with a desired retardation value. The ratio of structural units derived from the liquid crystal compound contained is adjusted, and the retardation value of the resulting optical film is determined. Based on the result, the content of the structural unit derived from the liquid crystal compound can be determined.
  • the retardation value can be controlled by changing the film thickness. However, it is difficult to control the retardation value when the incident angle is changed, even if the retardation value in the normal direction can be controlled arbitrarily by controlling the film thickness alone. Must be changed.
  • the shape of the refractive index ellipsoid of the optically anisotropic layer can be arbitrarily controlled by adding a structural unit derived from the liquid crystal compound. However, if too much structural unit derived from the liquid crystal compound is added, the vertical alignment of the present invention may not be obtained.
  • the total content of the structural unit derived from the liquid crystal compound and the structural unit derived from the rod-like polymerizable liquid crystal compound is 100 parts by weight, and the content of the structural unit derived from the liquid crystal compound is 5 to 50 parts by weight. It is preferable to do.
  • the shape of the refractive index ellipsoid of the obtained film can be arbitrarily controlled.
  • the polymerizable compound As the polymerizable compound, the polymerizable compound described in ⁇ 1. Film for Use in the Present Invention> may be used. By including such a polymerizable compound in the composition, a film having arbitrary wavelength dispersion characteristics can be produced.
  • the content of the above-mentioned polymerizable compound may be appropriately determined according to the wavelength dispersion characteristic required for the obtained film. Specifically, the ratio of the structural unit derived from the polymerizable compound contained in the composition is adjusted so as to impart desired wavelength dispersion characteristics, and the retardation value of the obtained optical film is obtained. Based on the result, the content of the structural unit derived from the polymerizable compound can be determined.
  • a film which does not contain the polymerizable compound or does not contain a small amount of force exhibits positive wavelength dispersion.
  • the chromatic dispersion characteristic can be arbitrarily adjusted to the normal wavelength dispersion force and the reverse wavelength dispersion.
  • the content of the structural unit derived from the polymerizable compound is 5 to 50 parts by weight with respect to a total of 100 parts by weight of the coming structural unit and the structural unit derived from the rod-like polymerizable liquid crystal compound.
  • the wavelength dispersion characteristics (positive wavelength dispersion to reverse wavelength dispersion) of the obtained film are performed by the composition change of the composition. Therefore, there is an effect that the wavelength dispersion characteristic of the film can be arbitrarily adjusted by a very simple method.
  • the composition may contain a polymerization initiator, a polymerization inhibitor, a photosensitizer, a leveling agent, and the like.
  • the polymerization initiator the polymerization initiators described in (I) Film which is useful in the present invention can be used.
  • the addition amount of the polymerization initiator is an amount suitable for the polymerization reaction of the rod-like polymerizable liquid crystal compound and Z or the polymerizable compound, and disturbs the orientation of the rod-like polymerizable liquid crystal compound. It is enough if it is not. That is, it is preferable to determine appropriately according to the types of the rod-like polymerizable liquid crystal compound, the polymerizable compound, and the polymerization initiator, and the composition of the composition. Thus, the specific value of the addition amount of the polymerization initiator is not particularly limited.
  • the rod-like polymerizable liquid crystal compound can be polymerized without disturbing the orientation of the rod-like polymerizable liquid crystal compound.
  • the polymerization inhibitor As the polymerization inhibitor, the polymerization inhibitors described in ⁇ 1. Films that can be used in the present invention> can be used.
  • the addition amount of the polymerization inhibitor is not particularly limited, and the polymerization reaction of the rod-like polymerizable liquid crystal compound and Z or the polymerizable compound that does not disturb the orientation of the rod-like polymerizable liquid crystal compound is performed. Any amount that can be adjusted and that can improve the stability of the optically anisotropic layer may be used. Specifically, it is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 10 parts by weight, with respect to 100 parts by weight of the rod-like polymerizable liquid crystal compound. Within the above range, the polymerization of the rod-like polymerizable liquid crystal compound without disturbing the orientation of the rod-like polymerizable liquid crystal compound is controlled, and the light The stability of the anisotropic layer can be improved.
  • the photosensitizer As the photosensitizer, the photosensitizer described in ⁇ 1. Film according to the present invention> can be used.
  • the amount of the photosensitizer added is not particularly limited.
  • the rod-like polymerizable liquid crystal compound that does not disturb the orientation of the rod-like polymerizable liquid crystal compound and
  • the leveling agent the leveling agent described in ⁇ I. Film which is useful in the present invention> can be used.
  • the amount of the leveling agent added is not particularly limited, and the optically anisotropic layer that does not disturb the orientation of the rod-like polymerizable liquid crystalline compound is smoothed, or the composition of the liquid crystal compound-containing composition is not limited. Any amount can be used as long as it can control the fluidity during coating or adjust the crosslink density of the rod-like polymerizable liquid crystalline composite. Specifically, 0.1 to 30 parts by weight is preferable with respect to 100 parts by weight of the rod-like polymerizable liquid crystal compound, and 0.5 to 10 parts by weight is more preferable.
  • the optically anisotropic layer that does not disturb the orientation of the rod-like polymerizable liquid crystalline compound is smoothed, or the fluidity at the time of coating the liquid crystal compound-containing composition is controlled.
  • the crosslink density of the rod-like polymerizable liquid crystalline compound can be adjusted.
  • the composition prepared in the liquid crystal compound-containing composition preparation step is applied on the alignment film for vertical alignment.
  • the coating film containing the said composition can be formed on the alignment film for vertical alignment.
  • the composition is a composition having an equivalent composition than that prepared in the liquid crystal compound-containing composition preparation step, and a composition containing a separately prepared rod-like polymerizable liquid crystal compound, for example, a commercially available product. May be used.
  • the method for applying the composition onto the alignment film for vertical alignment is not particularly limited, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • extrusion coating direct Togravure coating method, reverse gravure coating method, CAP coating method, die coating method, dip coating method, bar coating method, and spin coating method can be used.
  • the coating amount of the composition is not particularly limited, and may be applied in an appropriate amount so as to give a film thickness that gives a desired retardation value to the obtained film. As described above, by adjusting the film thickness, the retardation value (retardation value, Re (D)) of the obtained film can be determined.
  • the thickness of the layer formed by applying the composition varies depending on the retardation value of the obtained film.
  • the thickness is preferably 0.1 to 10 m, and more preferably 0.5 to 2 m. If it is in the said range, it can be set as the retardation value of the film which is effective in this invention mentioned above.
  • an optically anisotropic layer (liquid crystal layer) is laminated on the alignment film for vertical alignment laminated on an arbitrary support substrate. Therefore, the production cost can be reduced as compared with a method of manufacturing a liquid crystal cell and injecting a liquid crystal compound into the liquid crystal cell. Furthermore, it is possible to produce a film using a roll film.
  • the coating film formed in the liquid crystal compound-containing composition coating step is heated. Thereby, the solvent contained in the coating film is dried, and an unpolymerized film in which the rod-like polymerizable liquid crystal compound is in an unpolymerized state can be obtained.
  • the unpolymerized film thus obtained is also included in the present invention.
  • the unpolymerized film exhibits a liquid crystal phase such as a nematic phase and has birefringence due to monodomain alignment.
  • the unpolymerized film is usually oriented at a low temperature of about 10 to 120 ° C, preferably 25 to 80 ° C. Therefore, in the present invention, a substrate having low heat resistance can be used as the support substrate described above.
  • the method for heating the composition, the heating conditions, and the like may be any conditions as long as an unpolymerized film having the above physical properties can be obtained.
  • the heating temperature is preferably 10 to 120 ° C, and more preferably 25 to 80 ° C.
  • the heating time is preferably 10 seconds to 60 minutes. More preferably, it is 30 seconds to 30 minutes. If the heating temperature and the heating time are within the above ranges, a supporting substrate that does not necessarily have sufficient heat resistance can be used as the supporting substrate.
  • the unpolymerized film obtained in the liquid crystal compound-containing composition heating step is polymerized and cured.
  • a film in which the orientation of the rod-like polymerizable liquid crystal compound is fixed, that is, a polymerized film is obtained. Therefore, it is possible to produce a polymer film having the highest refractive index in an oblique direction with respect to the plane of the film.
  • the method of polymerizing the unpolymerized film is determined according to the kind of the rod-like polymerizable liquid crystal compound and the polymerizable compound.
  • the unpolymerized film can be polymerized by photopolymerization or thermal polymerization.
  • the method for photopolymerizing an unpolymerized film is not particularly limited, and a conventionally known method can be used.
  • the unpolymerized film can be polymerized by irradiating the unpolymerized film with ultraviolet rays.
  • a liquid crystal polymer is not used as the liquid crystal compound.
  • the rod-like polymerizable liquid crystal compound can be crosslinked by photopolymerization. Therefore, there is an effect that it is not easily affected by the change in birefringence due to heat. Further, it is not necessary to use a surface treatment agent such as a surfactant in the vertical alignment film. That is, the alignment film of the film according to the present invention (vertical alignment film) has good adhesion between the support substrate and the alignment film and between the alignment film and the optically anisotropic layer. Is easy to manufacture. Furthermore, according to the method for producing a film according to the present invention, it is possible to produce an optical compensation film having a desired retardation value as a thin film, as compared with a stretched film that is expected to have the same performance. .
  • the film according to the present invention is widely used with an optical film having excellent wavelength dispersion characteristics.
  • the optical film include an antireflection film such as an anti-reflection (AR) film, a polarizing film, a retardation film, an elliptical polarizing film, a viewing angle widening film, and an optical compensation film for compensating a viewing angle of a transmissive liquid crystal display. I can list them.
  • AR anti-reflection
  • the film according to the present invention is also used for a retardation plate of a reflective liquid crystal display and an organic electoluminescence (EL) display, and a flat panel display device including the retardation plate and the optical film.
  • a flat panel display device including the retardation plate and the optical film.
  • the flat panel display device is not particularly limited, and examples thereof include a liquid crystal display device (LCD) and organic electroluminescence (EL).
  • the film useful for the present invention can be used in a wide range of applications.
  • a polarizing film formed by laminating films that are useful for the present invention, and a flat panel display device provided with a film or polarizing film that is useful for the present invention will be described below.
  • the embodiment of the polarizing film that works on the present invention will be described below based on FIGS. 3A to 3E.
  • the polarizing film of the present invention is not limited to this.
  • the polarizing film useful for the present invention is a film having a polarizing function, that is, obtained by laminating one or both surfaces of the polarizing layer directly or using an adhesive.
  • FIGS. 3A to 3E (1) Embodiment in which film 1 and polarizing layer 2 are directly bonded (FIG. 3A), (2) Film 1 and polarizing layer 2 (Fig. 3B), (3) Directly bonded to film 1 and film 1 ', and further directly bonded to film 1' and polarizing layer 2 Embodiment (Fig. 3C), (4) Embodiment in which film 1 and film 1 'are bonded together through adhesive layer or adhesive layer 3, and polarizing layer 2 is bonded directly on film 1' ( (Fig.
  • the film 1 and the polarizing layer 2 are bonded together via a pair of adhesive layers or adhesive layers 3.
  • the liquid crystal layer 11 is used as the film 1, and the alignment layer 12 may not be included in the film 1.
  • a pair of films 1 are bonded via an adhesive layer or an adhesive layer 3, and a polarizing layer 2 is bonded to the outside via a pair of adhesive layers or an adhesive layer 3.
  • FIG. 3H shows the same structure as FIG. 3F.
  • a film 1A includes a support film 13, an alignment film 12 formed on the surface of the support film 13, and a liquid crystal layer 11 formed on the surface of the alignment film 12.
  • a laminated structure is used.
  • FIG. 31 shows a structure similar to FIG. 3G.
  • the film 1A includes a support film 13, a laminate including an alignment film 12 formed on the surface of the support film 13, and a liquid crystal layer 11 formed on the surface of the alignment film 12.
  • the body (laminated structure) is used.
  • 3J and 3K show the same structure as FIG. 3G.
  • one of the two films uses the liquid crystal layer 11 as the film 1, and the other uses the support film 13, the alignment film 12 formed on the surface of the support film 13, and the surface of the alignment film 12.
  • a laminate including the liquid crystal layer 11 formed on the substrate is used as a film 1A!
  • the polarizing layer 2 is not particularly limited as long as it is a film having a polarizing function.
  • a film obtained by adsorbing iodine or a dichroic dye on a polybulualcohol-based film or a film obtained by stretching a polybulualcohol-based film to adsorb iodine or a dichroic dye is used. be able to.
  • the adhesive used for the adhesive layer 3 and the adhesive layer 3 ' is not particularly limited, but is preferably an adhesive having high transparency and excellent heat resistance.
  • an adhesive for example, an acrylic, epoxy, or urethane adhesive is used.
  • the film according to the present invention may be laminated in one to three layers as necessary.
  • the flat panel display device which is effective in the present invention is provided with a film or polarizing film which is effective in the present invention.
  • a liquid crystal display device including a liquid crystal panel on which a polarizing film that works on the present invention and a liquid crystal panel are bonded together, or an organic electorium luminescence (on which a light emitting layer is bonded on a polarizing film that covers the present invention)
  • An organic EL display device having a panel hereinafter also referred to as “EL”.
  • the liquid crystal display device includes the liquid crystal panel shown in FIG.
  • the liquid crystal panel is obtained by bonding a polarizing film 4 and a liquid crystal panel 6 through an adhesive layer or an adhesive layer 5. According to the above configuration, when a voltage is applied to the liquid crystal panel using an electrode (not shown), the liquid crystal molecules are driven to produce an optical shutter effect.
  • the organic EL display device includes the organic EL panel shown in FIG.
  • the organic EL panel is obtained by bonding the polarizing film 4 and the light emitting layer 7 through the adhesive layer or the adhesive layer 5.
  • the polarizing film 4 functions as a broadband circularly polarizing plate.
  • the light emitting layer 7 is at least one layer having a conductive organic compound power.
  • the incident angle dependence of the retardation value of the produced film was measured using a measuring instrument (KOBRA-WR, manufactured by Oji Scientific Instruments).
  • the front retardation value Ro (nm) of the produced film was measured at a wavelength of 585.6 nm using a measuring instrument (KOBRA-WR, manufactured by Oji Scientific Instruments).
  • a polyimide alignment film for vertical alignment (SE-5300, manufactured by Nissan Chemical Industries, Ltd.) was applied on a glass substrate and then annealed to obtain a film having a thickness of 104 nm. Subsequently, the alignment film was rubbed once with rayon (Yakawa Chemical Industries' YA-20-R), as shown in Table 6, and then a coating solution having the composition shown in Table 5 was applied by a spin coating method to 55 ° C. Dried for 1 minute. The obtained unpolymerized film was confirmed to be monodomain by a polarizing microscope. Subsequently, ultraviolet rays were irradiated to polymerize the polymerizable liquid crystal compound to produce a film having a thickness of 0.9 m. The resulting film can be applied uniformly without repelling, and will not peel off when left indoors for 30 days, has good adhesion, and no changes in optical properties. I helped.
  • Table 6 shows the results of measuring the front retardation value Ro by the above-described method for the obtained film.
  • a polyimide alignment film for vertical alignment (SE-5300, manufactured by Nissan Chemical Industries, Ltd.) was applied on a glass substrate and then annealed to obtain a film having a thickness of 104 nm. Subsequently, the alignment film was rubbed once with rayon (YA-20-R, manufactured by Yoshikawa Chemical Co., Ltd.), and then a coating solution having the composition shown in Table 7 was applied by spin coating, and 55 ° C. Dried for 1 minute. The obtained unpolymerized film was confirmed to be monodomain by a polarizing microscope. Subsequently, ultraviolet rays were irradiated to polymerize the polymerizable liquid crystal compound to produce a film having a thickness of 0.9 m. The resulting film can be applied uniformly without repelling, and will not peel off when left indoors for 30 days, has good adhesion, and no changes in optical properties. I helped.
  • aqueous polyvinyl alcohol solution was applied on a glass substrate and then annealed to obtain a 10 Onm thick film.
  • the alignment layer was rubbed once with rayon (YA-20-R, manufactured by Yoshikawa Chemical Co., Ltd.), and then a coating solution having the composition shown in Table 5 was applied by spin coating, and at 55 ° C for 1 minute. Dried.
  • the obtained unpolymerized film was confirmed to be monodomain by a polarizing microscope.
  • ultraviolet rays were irradiated to polymerize the polymerizable liquid crystal compound to produce a film having a thickness of 0.9 m.
  • the resulting film has no repellency and can be applied evenly, and when left in a room for 30 days, it does not peel off, has good adhesion, and has no change in optical properties. I got it.
  • Table 9 shows the results obtained by measuring the front retardation value Ro of the obtained film by the above method.
  • Table 10 shows the tilt angle of the refractive index ellipsoid of the obtained optically anisotropic layer.
  • Table 10 shows the results obtained by measuring the front retardation value R of the obtained optical film by the above method.
  • the film according to the present invention has the highest refractive index in the oblique direction with respect to the film plane, and the direction can be arbitrarily controlled. Therefore, the present invention is an optical film having excellent wavelength dispersion characteristics such as an antireflection film such as an anti-reflection (AR) film, a polarizing film, a retardation film, an elliptically polarizing film, and a viewing angle widening film. Can be used. Furthermore, the present invention can also be used for retardation plates for reflective liquid crystal displays and organic electroluminescent displays, and flat panel display devices (FPD) equipped with such retardation plates.
  • an antireflection film such as an anti-reflection (AR) film
  • AR anti-reflection
  • polarizing film a polarizing film
  • retardation film an elliptically polarizing film
  • FPD flat panel display devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本発明は、フィルム平面に対して斜め方向に最も屈折率が高く、その方向を任意に変化させることができるフィルムおよびフィルムの製造方法、並びにその利用を提供する。垂直配向膜上にホモジニアス配向性の棒状重合性液晶化合物の層を形成させる。このとき、上記棒状重合性液晶化合物は、垂直配向膜界面において、傾斜配向する。また、このときの傾斜角は、上記垂直配向膜のラビング処理の程度により、容易に調整することができる。つまり、光学異方性層における屈折率楕円体の傾斜角を、任意に制御することができる。したがって、フィルム平面に対して斜め方向に最も屈折率が高く、その方向を任意に変化させることができる。

Description

明 細 書
フィルムおよびフィルムの製造方法、並びにその利用
技術分野
[0001] 本発明は、フィルムおよびフィルムの製造方法、並びにその利用に関するものであ つて、フィルム平面に対して斜め方向に屈折率を変化させたフィルムおよびフィルム の製造方法、並びにその利用に関するものである。
背景技術
[0002] 液晶表示装置(以下、「LCD」とも 、う)や有機エレクト口ルミネッセンス(以下、「EL」 とも 、う)などのフラットパネル表示装置(以下、「FPD」とも 、う)は、 CRTと比較して 省スペースや低消費電力である。そのため、近年、 FPDは、コンピュータ、テレビ、携 帯電話、カーナビゲーシヨンあるいは携帯情報端末の画面として、広く普及している
[0003] FPDには、一般に、反射防止、視野角拡大などのためにさまざまな光学フィルムが 用いられる。上記光学フィルムとしては、例えば、屈折率の異なる光学薄膜層を多層 化して光の干渉効果で表面の反射率を低減させるアンチリフレクション (以下、「AR」 とも 、う)フィルムなどの反射防止フィルム、特定の振動方向の光だけ透過させ他の 光を遮断する偏光フィルム、 STN方式や TN方式などの LCDの干渉色を光学的に 色補償する位相差フィルム、偏光フィルムと位相差フィルムとを一体ィ匕した楕円偏光 フィルム、および LCDの視野角を拡大する視野角拡大フィルムなどが挙げられる。
[0004] また、 FPDに用いられる光学フィルムは、適用する FPDの種類によっても異なる。
例えば、 LCDにおいて広視野角を発現させる光学補償フィルムの場合、 LCDの駆 動方式によって異なる。
[0005] 具体的には、 VAモードの LCDでは、平面方向に屈折率を変化させた延伸フィル ムを用いて光学補償を行うことができる。上記延伸フィルムとしては、従来から光学補 償効果を与える位相差フィルムとして用いられて 、るフィルムを用いることができる。 上記延伸フィルムは、例えば、ポリビュルアルコールやポリカーボネートなどのフィル ムを延 f申することにより得ることができる。 [0006] 一方、 TNモードの LCDにおいて、広視野角を発現させるためには、斜め方向に屈 折率を変化させた光学フィルムを用いることが好まし 、。そのようなフィルムとしては、 例えば、 WVフィルム(商品名、富士写真フィルム株式会社製)や NHフィルム(商品 名、新日本石油株式会社製)等を挙げることができる。これらのフィルムは、延伸フィ ルムではなぐ液晶分子の傾斜配向を利用した光学補償フィルムである。上記液晶 分子としては、配向膜界面では水平配向して、空気界面では垂直配向する傾斜配 向液晶分子が用いられる。これにより、得られるフィルムは、斜め方向に屈折率を変 化させたフィルムとなる。
[0007] その他、斜め方向に屈折率を変化させた光学フィルムに関する技術としては、特許 文献 1および 2に開示されている技術を挙げることができる。具体的には、特許文献 1 には、配向用の基板に、液晶性高分子ポリマーをまず均一に塗布し、次いでポリマ 一の液晶温度において熱処理してチルト配向させた後、冷却してチルト配向状態を 固定ィ匕した液晶性高分子フィルムが開示されている。また、当該液晶性高分子フィル ムの好適なチルト角は 5° から 85° の範囲であると記載されている。
[0008] また、特許文献 2には、ォキセタニル基を有するディスコティック液晶性ィ匕合物が液 晶状態で形成した配向状態を光および Zまたは熱により架橋固定ィヒした光学フィル ムが開示されて 、る。前記ディスコティック液晶性ィ匕合物の配向がハイブリッド配向で あることが好まし 、ことが記載されて 、る。
特許文献 1 :特開平 7— 20434号公報(平成 7 (1995)年 1月 24日公開)
特許文献 2:特開 2004— 109381号公報(平成 16 (2004)年 4月 8日公開) 発明の開示
発明が解決しょうとする課題
[0009] しかしながら、 WVフィルムに代表される斜め方向に屈折率を変化させたフィルムは 、上述したように、水平配向膜と配向膜界面とでは水平配向して、空気界面では垂直 配向する傾斜配向液晶分子を利用して製造される。そのため、斜め方向に屈折率を 変化させることはできるが、その最も屈折率の変化する方向(屈折率楕円体の傾斜角 )を任意にコントロールすることはできない。通常、液晶パネルの視野角を広視野角 化するためには、仮に同じ液晶の駆動方式であったとしても、液晶パネル毎に光学 補償をする程度が異なる。しかし、これらフィルムにおいては、屈折率楕円体の傾斜 角を任意にコントロールできないため、液晶パネルにあわせた十分な光学補償を達 成する事ができない。
[0010] 特許文献 1の液晶性高分子フィルムでは、液晶性分子の配向が幅広くコントロール されている。しかし、上記液晶性高分子フィルムの製造には、液晶性高分子のポリマ 一が用いられている。そのため、ここで開示されている様な液晶ポリマーの場合、当 該液晶性高分子をモノドメインの傾斜配向にするためには、液晶ポリマーを液晶状 態にする必要があり、液晶配向工程において高温での加熱が必要である。したがつ て、その加熱処理に耐久する基板を選定する必要がある。つまり、特許文献 2の技術 では、耐熱性の低い基板を使用することができないという問題がある。また、昇温に 従って流動性が増すため、下地との密着性が低下したり、残留応力によって光学異 方性が著しく低下したりするという問題が生じる。
[0011] 特許文献 2の光学フィルムでは、傾斜配向(ハイブリッド配向)をする液晶化合物が 用いられている。このような傾斜配向をする液晶化合物を用いる場合、傾斜角をコン トロールするには、用いる液晶化合物を変更する必要がある。しかし、一般に、どのよ うな液晶化合物を用いれば、どのような傾斜角になるかといつた傾斜角の予測は難し い。また、合成できる液晶化合物にも制限がある。そのため、所望の傾斜角の光学フ イルムを製造することは極めて困難であるという問題がある。また、液晶化合物の傾斜 角は、添加物などでによってもコントロールすることができる力 その場合に、光学異 方性層における添加物の複屈折率も考慮しなくてはならない。そのため、このような 方法でも、傾斜角をコントロールすることは、極めて困難である。
[0012] このように、従来の TNモードの広視野ィ匕に適応可能な光学補償フィルムは、様々 な問題を抱えており、さらに好適な光学補償フィルムの開発が求められている。
[0013] また、特に、近年、 FPDの大型化が進んでおり、光学フィルムに起因する問題が新 たに発生している。具体的には、 FPDが大型化すると、表示画面全体を広い角度か ら観察したときに、表示画像が着色したり (着色現象とも呼ばれる)、白黒が反転した り(反転現象とも呼ばれる)するという問題が生じる。また、表示画面の上方向である 反視角方向に視角を傾けていくと、コントラストが低下するという問題が生じる。そこで 、このような問題を解決するためにも、光学フィルムに関して、多くの試行錯誤を経る ことがなくとも、任意の方向に光学異方性を与える光学フィルムを提供することが求め られている。
[0014] 本発明は、上記問題点に鑑みなされたものであって、フィルム平面に対して斜め方 向に最も屈折率が高 、フィルムおよびフィルムの製造方法、並びにその利用を提供 することにある。
課題を解決するための手段
[0015] 本発明者らは、上記課題に鑑み、鋭意検討した結果、垂直配向用配向膜上にホモ ジ-ァス配向性の棒状重合性液晶化合物の層を形成させることにより、フィルム平面 に対して斜め方向に最も屈折率が高いフィルムが得られることを独自に見出し、本発 明を完成させるに至った。すなわち、本発明は、産業上有用な以下の発明を包含す る。
[0016] (1)垂直配向用配向膜上に形成された光学異方性層を有するフィルムであって、 上記光学異方性層は、棒状重合性液晶化合物に由来した構造単位を含むポリマー を含有する層からなり、上記棒状重合性液晶化合物は、モノマーとして水平配向膜 上で水平に配向し、空気界面でも水平に配向する特性を有するものであって、上記 棒状重合性液晶化合物は、上記垂直配向用配向膜に対して傾斜配向していること を特徴とするフィルム。
[0017] (2)上記垂直配向用配向膜は、垂直配向膜にラビング処理が施された配向膜であ ることを特徴とする(1)に記載のフィルム。
[0018] (3)上記光学異方性層における屈折率楕円体のフィルム平面に対する傾斜角が 1 0° 〜85° であることを特徴とする(1)または(2)に記載のフィルム。
[0019] (4)垂直配向用配向膜上に形成された光学異方性層を有するフィルムであって、 上記光学異方性層は、棒状重合性液晶化合物を含有する層からなり、上記棒状重 合性液晶化合物は、水平配向膜上で水平に配向し、空気界面でも水平に配向する 特性を有するものであって、上記棒状重合性液晶化合物は、上記垂直配向用配向 膜に対して傾斜配向していることを特徴とするフィルム。
[0020] (5)逆波長分散を示すことを特徴とする(1)〜 (4)の 、ずれかに記載のフィルム。 [0021] (6)上記光学異方性層は、下記式(1)
[0022] [化 1]
P2-E2-X2-B2-A2- (G2) t— Y— (Gl) s— A 1— B 1— X 1— E 1— P 1 (1)
[0023] (式中、 Yは 2価の基を表し、 sおよび tは、それぞれ独立に 0または 1の整数を表し、 G 1および G2は、それぞれ独立に— CR1!^ を表し、 R1および R2は、それぞれ独立に 、炭素数 1〜4のアルキル基、ハロゲン原子、水素原子を表し、 A1および A2は、それ ぞれ独立に、 2価の環状炭化水素基、 2価の複素環基、メチレンフエ二レン基、ォキ シフエ-レン基、チォフエ-レン基を表し、 A1および A2には、炭素数 1〜5のアルキ ル基、炭素数 1〜5のアルコキシ基、ハロゲン原子が結合していてもよぐ B1および B 2は、それぞれ独立に、 CRR C≡C CH = CH CH 2— CH 2 o s c(=o) c(=o)— o o c(=o) o c(= o)— o c(=s) c(=s) o o c(=s) o c(=s) o CH = N N = CH N = N N(→0)=N N = N(→0)— C( = 0)— NR NR— C( = 0) OCH 2 NR CH 2 O
SCH 2 CH 2 S CH = CH— C( = 0)— O O— C( = 0)— CH = CH 単結合力 なる群力 選ばれる 2価の基を表し、 Rおよび R'はそれぞれ独立に、 水素原子または炭素数 1〜4のアルキル基を表し、 XIおよび X2は、それぞれ独立に 、下記式(2)
[0024] [化 2]
Figure imgf000006_0001
[0025] (式中、 A3は 2価の環状炭化水素基、複素環基を表し、 B3は前記 B1および B2と同 じ意味を表し、 nは 1〜4の整数を表す)で表される 2価の基を表し、 E1および E2は、 それぞれ独立に、炭素数 2〜25のアルキレン基を表し、 E1および E2は、さらに炭素 数 1〜5のアルキル基、炭素数 1〜5のアルコキシ基、ハロゲン原子が結合していても よぐ P1および P2は、水素原子または重合性基を表し、 P1および P2の少なくとも一 方は重合性基である。 )で表される重合性ィ匕合物に由来する構造単位をさらに含む ポリマーを含有することを特徴とする(5)に記載のフィルム。
[0026] (7)垂直配向用配向膜上に形成された光学異方性層を有するフィルムの製造方法 であって、(A)垂直配向用配向膜上に、棒状重合性液晶化合物を含有する組成物 を塗布する工程と、(B)上記工程 (A)で形成された塗膜を 25〜120°Cで、 10秒間〜 60分間加熱させる工程とを少なくとも含み、上記棒状重合性液晶化合物が、モノマ 一として水平配向膜上で水平に配向し、空気界面でも水平に配向する特性を有する ものであることを特徴とするフィルムの製造方法。
[0027] (8) (C)上記棒状重合性液晶化合物を光重合により架橋する工程をさらに含むこと を特徴とする(7)に記載のフィルムの製造方法。
[0028] (9)上記 (A)工程の前に、(D)上記垂直配向用配向膜をラビング処理する工程を さらに含むことを特徴とする(7)または(8)に記載のフィルムの製造方法。
(10) (1)〜(6)のいずれかに記載のフィルムを積層してなることを特徴とする偏光 フイノレム。
[0029] (11) (1)〜(6)のいずれかに記載のフィルム、または(10)に記載の偏光フィルムを 備えることを特徴とするフラットパネル表示装置。
(12) 液晶からなる光学異方性層であって、第 1面、及び、第 1面と平行な第 2面と を有する光学異方性層と、光学異方性層の第 1面と接触している配向層と、を備える 光学フィルムであって、光学異方性層の少なくとも一部分では、液晶が厚さ方向に対 して傾斜して配向していて、光学フィルムに垂直な第 1方向の第 1屈折率 (nz)、光学 フィルムの第 1方向と直角な第 2方向の第 2屈折率 (nx)、及び、光学フィルムの第 1 方向及び第 2方向と直角な第 3方向の第 3屈折率 (nx)において、第 1屈折率 (nz)が 、第 2屈折率 (nx)及び第 3屈折率 (nz)より大きい、光学フィルム。
本発明の一側面では、硬化前に、液晶を形成するためのモノマー又はオリゴマー( 具体的には、棒状重合性液晶化合物)の配向性を制御することにより、硬化後の液 晶層の配向性を制御する。硬化前のモノマーの配向性と、硬化後のポリマー、すな わち、液晶の配向性は同一であると考えられる。
発明の効果 [0030] 本発明に力かるフィルムでは、垂直配向膜上に、光学異方性層が形成されている。 上記光学異方性層は、水平配向膜上で水平に配向し、空気界面でも水平に配向す る棒状重合性液晶化合物を含有する層である。それゆえ、光学異方性層における屈 折率楕円体の傾斜角を、任意に制御することができるという効果を奏する。
図面の簡単な説明
[0031] [図 1A]図 1Aは、フィルムの通常の配向を示す断面図である。
[図 1B]図 1Bは、本発明に力かるフィルムの配向の一例を示す断面図である。
[図 1C]図 1Cは、本発明に力かるフィルムの配向の他の一例を示す断面図である。
[図 2]図 2は、本発明にかかるフィルムの複屈折性を示す図である。
[図 3A]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3B]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3C]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3D]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3E]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3F]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3G]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3H]本発明にかかるフィルムの使用状態を示す断面図である。
[図 31]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3J]本発明にかかるフィルムの使用状態を示す断面図である。
[図 3K]本発明にかかるフィルムの使用状態を示す断面図である。
[図 4]液晶パネルの断面図である。
[図 5]有機 ELパネルの断面図である。
発明を実施するための最良の形態
[0032] 本発明の実施形態について説明すると以下の通りである力 本発明はこれに限定 されるものではない。
[0033] <1.本発明にかかるフィルム >
本発明にかかるフィルムは、垂直配向用配向膜 12上に形成された光学異方性層 1
1を有するフィルムである。上記垂直配向用配向膜 12は、支持基材上に形成される。 すなわち、本発明にかかるフィルムは、支持基材上に、上記垂直配向用配向膜 12お よび光学異方性層 11が順に積層されたフィルムである。また、本発明に力かるフィル ムでは、光学異方性層に対向する面は、空気層である。
[0034] 上記光学異方性層 11は、棒状重合性液晶化合物が重合したポリマーを含有する 層からなる。上記棒状重合性液晶化合物としては、図 1 Aに示すように、水平配向膜 上で水平に配向し、空気界面でも水平に配向する特性を有する棒状重合性液晶化 合物 14が用いられる。このような棒状重合性液晶化合物を用いれば、上記棒状重合 性液晶化合物は、上記垂直配向用配向膜に対して傾斜配向する。より具体的には、 垂直配向用配向膜のラビングにより、棒状重合性液晶化合物は、図 1Bに示すように 、傾斜してハイブリッド配向したり、図 1Cに示すように、傾斜配向したりする。また、垂 直配向用配向膜のラビング処理の程度に応じて、棒状重合性液晶化合物の、図 1B に示すように、傾斜してノ、イブリツド配向したり、図 1Cに示すように、傾斜配向したり する角度が変化する。それゆえ、本発明に力かるフィルムでは、フィルム平面に対し て斜め方向に最も屈折率が高ぐその方向を任意に変化させることができる。したが つて、本発明に力かるフィルムは、 TNモード等の液晶パネルにおいて、広い視野角 を発現させるのに好適な光学フィルムとして用いることができる。
[0035] なお、便宜上、図 1A〜図 1Cでは、垂直配向用配向膜を「配向層」、棒状重合性液 晶化合物を「液晶分子」、光学異方性層を「液晶層」と記載している。
[0036] また、本発明に力かるフィルムは、光学異方性を有して!/、る。上記光学異方性とし ては、例えば、チルト角、位相差値などが挙げられる。本発明に力かるフィルムの光 学異方性について、図 2に基づいてより詳細に説明すると、以下の通りである。
[0037] 図 2に示すように、フィルム 1の光学特性を示す屈折率楕円体 22において、 3次元 の主屈折率 na、 nb、 ncが定義される。 Y軸と主屈折率 nbとのなす角をチルト角 23と 定義され、 Z方向から観察したときにフィルム上にできる垂直楕円面 24の長軸 nyと短 軸 nxが定義され nyと nxの差と膜厚 dの積 (ny— nx) ' dを位相差値と定義される。
[0038] 位相差値の測定法としては、例えば、エリプソメータ測定などの方法が挙げられる。
チルト角の測定法としては、例えば、位相差値の測定において、光の入射角依存性 を測定し、理想屈折率楕円体の位相差値の入射角依存による変化の計算値を用い てカーブフィッティング力も算出する方法などが挙げられる。
[0039] 通常、位相差値としては、 5〜700nm程度であり、好ましくは、 50〜400nm程度で ある。
[0040] 以下、上記支持基材、垂直配向膜、および光学異方性層について、より詳細に説 明する。
[0041] (I 1)支持基材
上記支持基材は、当該支持基材上に垂直配向用配向膜を形成できるものであれ ばよぐ特に限定されるものではない。例えば、ガラス、プラスチックシート、プラスチッ クフィルム、および透光性フィルムを挙げることができる。なお、上記透光性フィルムと しては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマーなどのポリオレ フィンフィルム、ポリビュルアルコールフィルム、ポリエチレンテレフタレートフィルム、 ポリメタクリル酸エステルフィルム、ポリアクリル酸エステルフィルム、セルロースエステ ルフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリスルフ オンフィルム、ポリエーテルスルホンフィルム、ポリエーテルケトンフィルム、ポリフエ- レンスルフイドフイルム、ポリフエ-レンォキシドフィルムなどが挙げられる。
[0042] 一般に、重合性液晶化合物を用いた光学異方性層は、薄膜であり、例えば、本発 明のフィルムを用いる貼合工程、フィルムを運搬、保管などを実施する工程など、フィ ルムの強度が必要な工程でも、支持基材を用いることにより、破れなどなく容易に取 り扱うことができる。
[0043] (I 2)垂直配向用配向膜
本発明のフィルムでは、垂直配向用配向膜は、光学異方性層の塗工等により溶解 しな ヽ溶剤耐性を持つこと、溶媒の除去や液晶の配向の加熱処理による耐熱性をも つこと、ラビングによる摩擦などによる剥がれなどが起きないこと等が必要であり、ポリ マー若しくはポリマーを含有する組成物である。
[0044] 上記ポリマーは、上記支持基材上に形成されるものであればよぐ特に限定される ものではない。例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内 にイミド結合を有するポリイミド及びその加水分解物であるポリアミック酸、ポリビニル アルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンィミン、ポリアクリル酸 、ポリアクリル酸エステル類等のポリマーを挙げることができる。これらのポリマーは、 単独で用いても良いし、 2種類以上混ぜたり、共重合体したりしてもよい。これらのポリ マーは、脱水や脱ァミンなどによる重縮合や、ラジカル重合、ァ-オン重合、カチォ ン重合等の連鎖重合、配位重合や開環重合等で容易に得ることができる。
[0045] また、このようなポリマーは、ステロイドのような脂環基、長鎖アルキル基、フッ化アル キル基、芳香環構造およびフッ素含有芳香環構造等の有機基を導入することができ る。上記に示したような構造を導入することにより、棒状重合性液晶化合物は、より垂 直配向しやすくなる。また、ステロイドのような脂環基、長鎖アルキル基、フッ化アルキ ル基、芳香環構造およびフッ素含有芳香環構造等の有機基を有する化合物を混入 したり、ォニゥム塩、セシウムイオン、ルビジウムイオンなどの無機塩や有機酸塩類を 添加した組成物とすることによつても、棒状重合性液晶化合物はより垂直配向しゃす くなる。
[0046] 上記ポリマーの具体例としては、例えば、特開平 2001— 305549号公報、 WO20 03 -042752,特開 2005— 139228号公報、液晶第 8卷第 4号 216頁等に開示さ れるポリイミド及びそのポリアミック酸や、特開平 2005— 196015号公報、特開平 20 05— 315988号公報及び特開平 2005— 196016号公報等に開示されるポリビュル アルコール等を挙げることできる。また、後述の実施例で使用する、垂直配向用ポリ イミド配向膜 (商品名 SE— 5300、日産化学社製)なども垂直配向用のポリイミド配向 膜である。
[0047] 垂直配向用配向膜の厚さは、通常、 ΙΟηπ!〜 lOOOOnmであり、好ましくは 10nm 〜1000nmである。上記範囲内であれば、得られるフィルムを軽量化することができ る。また、垂直配向用配向膜が持っている光学特性が、得られるフィルムに及ぼす影 響を/ J、さくすることができる。
[0048] 上記垂直配向用配向膜を用いることにより、上記棒状重合性液晶化合物をフィル ム平面に対して、傾斜してハイブリッド配向させたり、傾斜配向させたりすることができ る。それゆえ、得られるフィルムは、傾斜配向フィルムとなる。
[0049] (I 3)光学異方性層
上記光学異方性層は、上記垂直配向用配向膜上に形成された光学異方性を有す る層である。上記光学異方性層は、棒状重合性液晶化合物に由来する構造単位を 含むポリマーを含有する層からなる。上記光学異方性層には、棒状重合性液晶化合 物以外の化合物に由来する構造単位が含まれたポリマーを含有して 、てもよ 、。例 えば、本発明にかかるフィルムに所望の波長分散特性を付与するために、棒状重合 性液晶化合物に由来する構造単位に、さらに特定の重合性化合物に由来する構造 単位を含むポリマーを用いてもよい。また、棒状重合性液晶化合物および特定の重 合性ィ匕合物とは異なる液晶化合物(以下、説明の便宜上、「その他の液晶化合物」と 称することもある)に由来する構造単位が含まれていてもよい。さらに、重合開始剤や 、重合禁止剤、光増感剤、レべリング剤等が含まれていてもよい。なお、光学異方性 層を構成する化合物の詳細については後述する。
[0050] 上記光学異方性層の厚さは、得られるフィルムの位相差値 (リタデーシヨン値、 Re ( λ ) )が所望の値となるように、適宜調整すればょ 、。 Re ( λ )は、下記数式 (a)によつ て決定される。つまり、所望の Re ( )を得るためには、膜厚 dを調整すればよい。
[0051] Re ( ) =d X Δ η ( λ ) · · · (&)
(式中、 Re ( λ )は、波長 λ nmにおける位相差値を表し、 dは膜厚を表し、 Δ η ( λ )は 波長 λ ηπιにおける屈折率異方性を表す。 )
また、本発明に力かるフィルムの好ましい一実施形態では、上記垂直配向用配向 膜はラビング処理されており、上記棒状重合性液晶化合物の屈折率楕円体は、垂直 配向用配向膜界面では、フィルム平面に対して 10° 〜85° の傾斜角をもつことが 好ましい。これにより、当該フィルムは、傾斜配向フィルムとなる。
[0052] 以下、上記光学異方性層に含有させることができる棒状重合性液晶化合物、その 他の液晶化合物、重合性化合物、およびその他の構成化合物について詳細に説明 する。
[0053] (1- 3 - 1)棒状重合性液晶化合物
上記光学異方性層に含まれる棒状重合性液晶化合物は、モノマーとして水平配向 膜上で水平に配向し、空気界面で水平に配向する棒状重合性液晶化合物である。 上記「モノマーとして水平配向膜上で水平に配向し、空気界面で水平に配向する棒 状重合性液晶化合物」とは、例えば、表面を水平処理したガラス基板上や表面に水 平配向膜としてポリビニルアルコールなどの水平配向を誘起する配向膜を設けた基 材上に棒状重合性液晶化合物をモノマーとして塗布した時に得られる配向が配向膜 上では水平になり、空気界面では水平に配向する棒状重合性液晶化合物である。
[0054] このようないわゆるホモジ-ァス配向性を与える棒状重合性液晶化合物としては、 例えば、下記式(3)、式 (4)、式(5)、式 (6)、式(7)または式 (8)で表される化合物 が挙げられる。
[0055] Pll- Ell- Bll- All- B12- A12- B14- A14- B15- E12- P12 (3)
PI 1- El 1-Bll-Al 1- B12- A12- B14- A14- B13- Fl 1 (4)
PI 1-Bll-Al 1-B12-A12-B14-A14-B13-F11 (5)
Pll- Ell- Bll- All- B12- A12- Fll (6)
PI 1-Bl 1-Al 1-B12-A12-B13-F11 (7)
PI 1- El 1-Bll-Al 1- B12- A12- B13- Fl 1 (8)
なお、上記式(3)、式(4)、式(5)、式(6)、式(7)および式(8)において、 Al l A 12、および A14は、それぞれ独立に、 2価の環状炭化水素基、 2価の複素環基、メチ レンフエ二レン基、ォキシフエ-レン基、またはチォフエ-レン基を表す。 Al l A12 、および A14には、炭素数 1 5のアルキル基、炭素数 1 5のアルコキシ基、または ハロゲン原子が結合して 、てもよ 、。
[0056] Bl l B12 B13 B14、および B15は、それぞれ独立に、 CRR C≡C
CH = CH CH— CH O S C ( = 0) C ( = 0)— O
2 2
o c(=o) o c(=o)— o c(=s) c(=s) o
O— C ( = S) O— C ( = S)— O CH = N N = CH N = N N (→0) =N N = N (→0) C ( = 0)— NR NR— C ( = 0) OCH NR CH O SCH CH S CH = CH— C (=
2 2 2 2
0)—0— 0— C ( = 0)—CH = CH—、および単結合からなる群(なお、 Rおよび R'はそれぞれ独立に、水素原子または炭素数 1 4のアルキル基を表す)より選ば れる 2価の基を表す。
[0057] E11および E12は、それぞれ独立に、炭素数 2 25のアルキレン基を表す。さらに
E11および E12には、炭素数 1 5のアルキル基、炭素数 1 5のアルコキシ基、ま たはハロゲン原子が結合して 、てもよ!/、。
[0058] 式 (4)〜(8)の P 11は重合性基を表す。式(3)の P11および P12は、水素原子また は重合性基を表し、 P 11および P 12の少なくとも一方は重合性基である。
[0059] Fl 1は、水素原子、アルキル基、二トリル基、ニトロ基、トリフルォロメチル基、フッ素 原子などのハロゲン原子又は水素原子を表す。
[0060] その他の液晶化合物としては、とりわけ、以下の式(3— 1)〜(3— 6)、式 (6— 1)、 式(6— 2)、式(8— 1)、および式(8— 2)
[0061] [化 3-1]
Figure imgf000015_0001
[化 3- 2]
Figure imgf000017_0001
[0062] のいずれかで表される液晶化合物や、下記式(3— 7)〜(3— 12)、(4 1)〜(4 4
)、式(5— 1)、式(5— 2)、式(7— 1)、および式(7— 2)
[0063] [化 4—1]
S〕
« /
( 3 S -
Figure imgf000019_0001
Figure imgf000019_0002
S9 S0/Z.00idf/X3d 81- 請 ΟΛΧ [化 4- 2]
Figure imgf000021_0001
Figure imgf000022_0001
〔ώ 4 [0064] のいずれかで表される液晶化合物が、入手容易であることから好ましい。
[0065] より具体的には、後述の実施例で使用する RMS— 03— 001 (商品名、メルク株式 会社製)、 LC 242 (商品名、 BASF株式会社製)に含有される棒状重合性液晶化 合物を挙げることができる。
[0066] 本発明にかかるフィルムでは、棒状重合性液晶化合物として、従来、用いられてい る傾斜若しくはハイブリッド配向性を与える棒状重合性液晶化合物ではなぐ上述し たようなホモジ-ァス配向性を与える棒状重合性液晶化合物を用いることにより、光 学異方性層における屈折率楕円体の傾斜角を、任意に制御することができる。より詳 しく言えば、垂直配向用配向膜に施すラビング処理の程度などにより上記棒状重合 性液晶化合物の配向状態を変更することによりなされる。上記棒状重合性液晶化合 物を液晶状態で配向させたとき、上記棒状重合性液晶化合物は、その傾きの違いに より、光学異方性層における屈折率楕円体の傾斜角が変わる。
[0067] それゆえ、本発明に力かるフィルムは、フィルム平面に対して斜め方向に最も屈折 率が高ぐその方向を任意に変化させたものとなる。
[0068] また、上記棒状重合性液晶化合物は、どのような重合様式で重合するものであって もよい。例えば、熱重合性の棒状重合性液晶化合物や、光重合性の棒状重合性液 晶化合物を挙げることができる。本発明では、特に光重合性の棒状重合性液晶化合 物であることが好ましい。これによれば、棒状重合性液晶化合物を低温で重合し、固 定ィ匕することができる。それゆえ、上記支持基材の選択の幅が広がると同時に、工業 的にも有利である。
[0069] (I 3— 2)重合性ィ匕合物
上記光学異方性層のポリマーには、得られるフィルムの所望の波長分散特性を付 与するために、特定の重合性液晶化合物に由来する構造単位をさらに含むポリマー を用いてもよい。
[0070] 上記「特定の重合性化合物」とは、上記棒状重合性液晶化合物に併せて用いるこ とにより、得られるフィルムに所望の波長分散特性を付与できるものである。
[0071] このような重合性化合物は、下記式(1)
[0072] [化 5] P -E2-X2-B2-A2- (G2) t— Y— (Gl) s Al— B 1— X 1— E 1— P 1 (1)
[0073] (式中、 Yは 2価の基を表し、 sおよび tは、それぞれ独立に 0または 1の整数を表し、 G 1および G2は、それぞれ独立に— CI^R2— (なお、 R1および R2は、それぞれ独立に 、炭素数 1〜4のアルキル基、ハロゲン原子、または水素原子を表す)を表し、 A1お よび A2は、それぞれ独立に、 2価の環状炭化水素基、 2価の複素環基、メチレンフエ 二レン基、ォキシフエ-レン基、またはチォフエ-レン基を表し、 A1および A2には、 炭素数 1〜5のアルキル基、炭素数 1〜5のアルコキシ基、またはハロゲン原子が結 合していてもよぐ B1および B2は、それぞれ独立に、 -CRR' C≡C C H = CH—、 -CH -CH O S C( = 0) C( = 0)— O
2 2
o c(=o) o c(=o)— o c(=s) c(=s) o o—
C( = S) O— C( = S)— O CH = N N = CH N = N N( →0)=N N = N(→0) C( = 0)— NR NR— C( = 0) OC H 2 NR—、 -CH 2 O—、 -SCH 2 CH 2 S CH = CH— C ( = 0)— O 0— C( = 0)—CH = CH—、および単結合からなる群(なお、 Rおよび R,はそ れぞれ独立に、水素原子または炭素数 1〜4のアルキル基を表す)より選ばれる 2価 の基を表し、 XIおよび X2は、それぞれ独立に、下記式(2)
[0074] [化 6]
Figure imgf000024_0001
(式中、 A3は 2価の環状炭化水素基、または複素環基を表し、 B3は、 -CRR'―、 C≡C CH = CH—、 -CH -CH O S C( = 0) C
2 2
(=o)— o o c(=o) o c(=o)— o c(=s) c(=s) O O— C( = S) O— C( = S)— O CH=N N = CH N = N N(→0)=N N = N(→0) C( = 0)— NR NR— C( =0) -OCH NR -CH O—、 -SCH CH S CH = C
2 2 2 2
H— C( = 0)— O—、— O— C( = 0)— CH = CH—、および単結合からなる群(なお 、 Rおよび R'はそれぞれ独立に、水素原子または炭素数 1〜4のアルキル基を表す) より選ばれる 2価の基を表し、 nは 1〜4の整数を表す)で表される 2価の基を表し、 E1 および E2は、それぞれ独立に、炭素数 2〜25のアルキレン基を表し、さらに、 E1お よび E2には、炭素数 1〜5のアルキル基、炭素数 1〜5のアルコキシ基、またはハロ ゲン原子が結合していてもよぐ P1および P2は、水素原子または重合性基を表し、 P 1および P2の少なくとも一方は重合性基である。 )で表される化合物である。
[0076] 上記式(1)中の Yは、 2価の基を表し、この基は屈曲構造を有していることが好まし い。ここで、「屈曲構造」とは、 Yの結合基であって A1を含む基に結合する結合基と、 Yの結合基であって A2を含む基に結合する結合基とから形成される角度力 100° 〜140° である構造を意味する。また、上記角度は、 110° 〜130° であることが好 ましい。上記範囲であれば、重合性ィ匕合物と棒状重合性液晶化合物とを有機溶媒に 溶解したときの相溶性が向上する。それゆえ、得られるフィルムの位相差値を向上さ せることができる。
[0077] 具体的な Yとしては、下記式(9)
[0078] [化 7]
Dl D2
\ /
, ( 9 )
[0079] で表される 2価の基などを例示することができる。
[0080] Yの結合基であって A1を含む基に結合する結合基と、 Yの結合基であって A2を含 む基に結合する結合基とから形成される角度を、 Al、 A2、 Cl、 Dl、 D2、(Gl) s、 ( G2) tで表すと、上記式(1)において s=t= lである場合、当該角度は、下記式(9 1)の両矢印で表すことができる。同様に、上記式(1)において s=t=0の場合、当該 角度は、下記式(9 2)で表すことができる。
[0081] [化 8]
Figure imgf000026_0001
[0082] 上記式(9)において、 C1は 4級炭素原子または 4級ケィ素原子を表す。そのうち、 製造が容易であることから、 C1は 4級炭素原子であることが好ま 、。
[0083] 上記式(9)にお 、て、 D1および D2は、それぞれ、環状炭化水素基、複素環基、炭 素数 1〜5の直鎖状炭化水素基、または炭素数 1〜5の分枝状炭化水素基を表す。 D1および D2に用いられる環状炭化水素基としては、シクロペンチル基、シクロへキ シル基などの炭素数 5〜 12程度のシクロアルキル基;下記式
[0084] [化 9]
Figure imgf000026_0002
[0085] のいずれかで表される炭素数 6〜18程度の芳香族基などを挙げることができる。
[0086] また、 D1および D2に用いられる複素環基としては、 5員環、 6員環などの下記式 [0087] [化 10]
Figure imgf000026_0003
[0088] の 、ずれかで表される基などを挙げることができる。
[0089] D1と D2とは、炭素数 1〜5の炭化水素基、アミノ基、エーテル基、チォエーテル基 、または単結合で連結されていてもよい。また、 D1および D2には、水酸基、アミノ基 、チオール基、環状炭化水素基、炭素数 1〜5の直鎖状または分枝状アルキル基、 炭素数 1〜5の直鎖状もしくは分枝状アルコキシ基、トリフルォロメチル基、トリフルォ ロメチルォキシ基、二トリル基、ニトロ基、またはハロゲン原子が結合していてもよい。
[0090] ここで、上記炭化水素基としては、メチレン基、エチレン基、プロピレン基などのアル キレン基、アルキレン基の単結合が二重結合や三重結合に置換された連結基などを 挙げることができる。また、上記環状炭化水素基としては、 D1および D2に用いられる のと同様の環状炭化水素基を例示することができる。アルキル基、アルコキシ基、ハ ロゲン原子としては、前記 A1および A2に置換される基として例示されたアルキル基 、アルコキシ基およびハロゲン原子を同様に例示することができる。
[0091] 上記式(9)で表される基の具体例としては、下記式 (D— 1)〜(D— 18)
[0092] [化 11]
Figure imgf000028_0001
(D-6) (D-7) (D-8) (D-9) (D— 10)
Figure imgf000028_0002
(D-l 5) (D-l 6) (D- 17) (D— 18)
[0093] で表される 2価の置換基 (ここでは、 4級原子 C1として、製造が容易なことから炭素原 子が例示されている)や、 C1が炭素原子であり、 D1および D2が共にフエ-ル基であ る置換基などを挙げることができる。
[0094] なお、前記例示された構造に含まれる水素原子の一部は、メチル基、ェチル基、 i プロピル基、 t ブチル基などの炭素数 1〜4程度のアルキル基;メトキシ基、ェトキ シ基などの炭素数 1〜4程度のアルコキシ基;トリフルォロメチル基;トリフルォロメチ ルォキシ基;二トリル基;ニトロ基;フッ素原子、塩素原子、臭素原子などのハロゲン原 子で置換されて 、てもよ 、。
[0095] Yとしては、製造の容易さの観点から、 C1が炭素原子であり、 D1および D2が共に フエニル基である置換基、またはび上記式 (D— 1)〜(D— 12)で表される置換基で あることが好ましい。とりわけ、逆波長分散を顕著に示すという観点から、上記式 (D— 1)〜(D— 12)で表される置換基であることが好ましい。 [0096] 上記式(1)中の(Gl) sおよび(G2) tにおいて、 sおよび tは、それぞれ独立に 0また は 1の整数を表す。
[0097] sおよび tが 1の場合、 G1および G2は、それぞれ独立して、—CI^R2—である。ここ で、 R1および R2は、それぞれ独立に、メチル基、ェチル基などの炭素数 1〜4程度の アルキル基;フッ素原子、塩素原子、臭素原子などのハロゲン原子を表す。
[0098] また、 sおよび tが 0の場合、 Yと A1とは、単結合し、 Yと A2とは、単結合している。
[0099] 上記式(1)において、 A1および A2は、それぞれ独立に、 2価の環状炭化水素基、 2価の複素環基、メチレンフエ-レン基、ォキシフエ-レン基、またはチォフエ-レン 基を表す。ここで、メチレンフエ-レン基、ォキシフエ-レン基、またはチォフエ-レン 基中のメチレン基、エーテル基、チォエーテル基は B1および B2と結合している。
[0100] A1および A2に用いられる 2価の環状炭化水素基としては、例えば、下記式
[0101] [化 12]
Figure imgf000029_0001
[0102] のいずれかで表される炭素数 6〜18程度の芳香族基、下記式
[0103] [化 13]
Figure imgf000029_0002
[0104] で表される 5員環および 6員環などからなる脂環式基、および下記式
[0105] [化 14]
Figure imgf000030_0001
[0106] のいずれかで示される 5員環および 6員環など力 なる複素環基等を挙げることがで きる。
[0107] なお、 A1および A2として、前記例示された基の水素原子の一部が、メチル基、ェ チル基、 i プロピル基、 t ブチル基などの炭素数 1〜4程度のアルキル基;メトキシ 基、エトキシ基などの炭素数 1〜4程度のアルコキシ基;トリフルォロメチル基;トリフル ォロメチルォキシ基;二トリル基;ニトロ基;フッ素原子、塩素原子、臭素原子などのハ ロゲン原子で置換されて 、てもよ 、。
[0108] 製造の容易さの観点から、 A1および A2は、ともに同種類の基であることが好ましい
。特に、 A1および A2は、 1, 4 フエ-レン基、 1, 4 シクロへキシレン基、またはべ ンゼン環の炭素原子力^〜 3個窒素原子で置換された 2価の基であることが好ましぐ
1, 4 フエ-レン基であることがさらに好ましい。
[0109] B1および B2は、それぞれ独立に、 CRR C≡C― CH = CH― C
H CH O S C ( = 0) C ( = 0)— O O— C ( = 0)—
2 2
o c(=o)— o c(=s) c(=s) o o c(=s) o C ( = S)— O CH = N N = CH N = N N (→0) =N N = N (→0) C ( = 0)— NR NR— C ( = 0) OCH 2 NR CH 2 O SCH 2 CH 2 S CH = CH— C ( = 0)— O O— C (=
O)—CH = CH—、単結合からなる群から選ばれる 2価の基を表す。ここで、 Rおよび R'はそれぞれ独立に水素原子またはメチル基、ェチル基などの炭素数 1〜4のアル キル基、または、フッ素原子、塩素原子、臭素原子などのハロゲン原子を表す。
[0110] また、製造の容易さの観点から、 B1および B2は、ともに同種類の 2価の基であるこ とが好ましい。
[0111] 上記式(1)において、 sおよび tが 0である場合、 B1および B2は、 -CRR' 一、—O ―、 一S または NR—であることが好ましい。
[0112] B1および B2が上記結合基であると、 Al (A2)と Bl (B2)との連結部と、 Bl (B2)と XI (X2)との連結部とが屈曲することになり、連結基 Yで生じる角度を変えることがで きるため、混合する棒状重合性液晶化合物等との相溶性が向上する傾向にあること 力 好ましい。
[0113] 上記式(1)において、 sおよび tが 1である場合であって、好ましくは、さらに G1およ び G2がメチレン基である場合、 B1および B2は、単結合、 C≡C一、 -0-C ( = 0 )— O—、 -o-c( = o) 一、または一 O c( = o)—O であることが好ましい。
[0114] B1および B2が上記結合基であると、製造が容易であり、上記式(1)中の X2— B2
A2および Al— Bl—XIがそれぞれ直線状となることから、配向性を向上させる傾 向があること力 好ましい。
[0115] 上記式(1)における XIおよび X2は、下記式(2)
[0116] [化 15]
Figure imgf000031_0001
[0117] で表される 2価の基を表す。
[0118] 上記式 (2)中、 A3は 2価の環状炭化水素基または 2価の複素環基を表す。具体的 には、 A3としては、 A1および Α2で例示された 2価の環状炭化水素基および 2価の 複素環基を同様に例示することができる。製造の容易さの観点から、 1, 4 フエ-レ ン基、 1, 4ーシクロへキシレン基、またはベンゼン環の炭素原子が 1〜3個窒素原子 で置換された 2価の基であることが好ましぐ 1, 4—フエ-レン基であることがさらに好 ましい。
[0119] また、製造の容易さの観点から、 XIおよび Χ2がともに同種類の 2価の基であること が好ましい。
[0120] Β3は、 B1と同様に定義することができる。中でも、製造の容易さの観点から、 Ο c (=o)—、 一 c(=o)— o—、 一o—、または単結合であることが好ましい。
[0121] nは 1〜4の整数を表す。 nが 2以上の場合、後述する表 1中の化合物(1 2)〜(1
—4)のように、 A3および B3からなる構造単位は互いに異なって!/、てもよ!/、。
[0122] 得られる重合性ィ匕合物を含む組成物をキャストする際、取り扱いが容易であるとの 観点から、 nとしては、 1または 2が好ましい。さらに、製造の容易さの観点から、 nは 1 であることが好ましい。
[0123] E1および E2は、それぞれ独立に、炭素数 2〜25のアルキレン基、好ましくは、炭 素数 4〜 10のアルキレン基を表す。
[0124] E1および E2の水素原子は、アルキル基、アルコキシ基、トリフルォロメチル基、トリ フルォロメチルォキシ基、二トリル基、ニトロ基、またはハロゲン原子によって置換され て!、てもよ 、が、水素原子のままであることが好まし!/、。
[0125] E1および E2がともに同種類のアルキレン基であると、製造が容易なこと力 好まし い。
[0126] P1および P2は、水素原子または重合性基を表す。
[0127] 本明細書において、「重合性基」とは、重合性化合物および上述の棒状重合性液 晶化合物を重合させることのできる置換基を意味する。具体的には、ビニル基、 p— スチルベン基、アタリロイル基、メタクリロイル基、カルボキシル基、メチルカルボ-ル 基、水酸基、アミド基、炭素数 1〜4もアルキルアミノ基、アミノ基、エポキシ基、ォキセ タニル基、アルデヒド基、イソシァネート基、およびチォイソシァネート基などを例示す ることがでさる。
[0128] また、重合性基には、上記例示の基と E1または E2とを連結するために、 B1または
B2に例示される基が含まれて 、てもよ 、。
[0129] 中でも、アタリロイル基またはメタクリロイル基が好ましぐアタリロイル基がさらに好ま しい。これらの基を用いれば、光重合させる際の取り扱いが容易な上、製造も容易で ある。
[0130] P1および P2の少なくとも一方は重合性基であることが好ましぐ P1および P2がい ずれも重合性基であることがさらに好ましい。これにより、得られるフィルムの膜硬度を 良好なものとすることができる。 [0131] 上記重合性ィ匕合物の具体的な化合物としては、表 1〜4で表される化合物などが挙 げられる。
[0132] [表 1-1]
重合性化合物例 (その
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000035_0002
Figure imgf000036_0001
S9l7S0/.00Zdf/X3d 重合性化合物例 (その
Figure imgf000037_0001
^U013321I [表 2-2]
Figure imgf000039_0001
[表 2-3]
Figure imgf000041_0001
重合性化合物例 (その
Figure imgf000042_0001
〔〕〔〕013431- [表 3- 2]
Figure imgf000044_0001
[表 3- 3]
Figure imgf000046_0001
[0135] [表 4]
重合性化合物例 (その 4 )
Figure imgf000047_0001
[0136] 上記光学異方性層には、上記重合性化合物の!/、ずれかが単独で含まれて ヽても よいが、異なる複数の重合性ィ匕合物が含まれていてもよい。中でも、表 1および 2に 記載の化合物が含まれていることが好ましい。このような化合物を用いれば、本発明 にかかるフィルムは、逆波長分散を顕著に示すことができる。さらに、表 1に記載の化 合物を含むことがより好ましい。このような化合物を用いれば、本発明に力かるフィル ムを容易に製造することができる。
[0137] ここで、表の表記について、化合物(1— 1)を例にして説明する。「A1 =A2」とは、 A1と A2とが同一のフエ-レン基であることを表す。「B1 = B2の A側」とは、エステル 基のエーテル部が A (フエ-レン基)に結合していることを表す。また、「B1 = B2の X 側」とはエステル基のカルボ-ル部が X(フエ-レンエーテル基)に結合していることを 表す。さらに、側の指定がない場合はいずれの方向に置換してもよいことを表す。
[0138] 重合性ィ匕合物としては、表 1または表 2に記載の化合物が好ましぐ表 1に記載の化 合物がより好ましぐ下記式(1 1)、 (1 - 2) , (1 - 3) , (1 -4) , (1 - 5) , (1 11) 、(1—45)、(1—49)、および(1— 50)で表される化合物が特に好ましい。
[0139] [化 16- 1]
Figure imgf000048_0001
[化 16- 2]
Figure imgf000050_0001
S9tS0/L00ZdT/13d 6P [0140] 上記式(1 1)で表される化合物のように、上記式(1)中の s=t=0である重合性 化合物の製造方法としては、例えば、 Cl、 D1および D2の構造を与える化合物とし て対応するカルボ-ル化合物を用い、該カルボニル化合物に Al (A2)、 Bl (B2)、 XI (X2)、 El (E2)および PI (P2)を含む化合物のハロゲン化物を作用させて脱水 縮合して得る方法などを挙げることができる。 Al (A2)、 Bl (B2)、 XI (X2)、 El (E2 )および PI (P2)を含む化合物は、 Al (=A2)、 B1 ( = B2)、 XI (=X2)、 E1 (=E2 )、 PI ( = P2)の各構造単位を含む化合物を脱水縮合反応、エステルイ匕反応、ゥイリ アムソン反応、ウルマン反応、ベンジル化反応、菌頭反応、鈴木一宮浦反応、根岸 反応、熊田反応、檜山反応、ブッフバルト ハートウイッグ反応、ゥイツティッヒ反応、 フリーデルクラフト反応、ヘック反応、またはアルドール反応などで結合することにより 製造することができる。
[0141] 上記式(1 2)で表される化合物のように、上記式(1)中の sおよび tが 1であって、 G1および G2がともにメチレン鎖である重合性ィ匕合物の製造方法としては、例えば、 前記カルボ二ルイ匕合物に、 C2と Al (C3および A2)との構造単位を与える化合物と してベンゼン環に沃素を有するハロゲンィ匕ベンジルをアルカリ金属水酸ィ匕物とともに 反応させて、 Al (A2)、 Cl、 Gl (G2)、 D1および D2を含む化合物を合成し、別途 合成した Bl (B2)、 XI (X2)、 El (E2)および PI (P2)を含む化合物と反応させる方 法、同様にして得られた Al、 A2、 Cl、 Gl、 G2、 Dlおよび D2を含む化合物から、 B 1 (B2)、 XI (X2)、 El (E2)および PI (P2)の構造を与える化合物を順次、反応させ る方法などを挙げることができる。
[0142] 得られるフィルムの波長分散特性は、上記棒状重合性液晶化合物および重合性化 合物に由来する構造単位の割合によつて、決定されるものである。本発明では、上記 重合性ィ匕合物を含有させない場合、得られるフィルムは、正波長分散を示すフィルム となる。一方、上記重合性ィ匕合物に由来する構造単位の含有量を増加させることに より、正波長分散から逆波長分散へと波長分散特性を任意に調整することができる。 したがって、本発明にかかるフィルムは、上記重合性化合物を、所望の波長分散特 性が得られる量だけ含有して 、ることが好ま 、。所望の波長分散特性を付与するの に必要な上記重合性ィ匕合物の含有量は以下のようにして決定することができる。例 えば、上記棒状重合性液晶化合物と重合性化合物とを含む組成物に含まれる重合 性ィ匕合物に由来する構造単位の割合を調整し、得られるフィルムの位相差値を求め る。その結果から、重合性化合物に由来する構造単位の含有量を決定することがで きる。
[0143] (I 3— 3)その他の構成化合物
〔重合開始剤〕
上記光学異方性層には、上記棒状重合性液晶化合物や重合性化合物を重合させ るための重合開始剤が含有されていてもよい。上記重合開始剤は、上記化合物を重 合させるために用いることができるものであればよぐ特に限定されるものではな 、。 本発明に力かるフィルムの好ま U、一実施形態として、棒状重合性液晶化合物は光 重合していることが好ましい。そのため、上記重合開始剤は、光重合開始剤であるこ とが好ましい。
[0144] 上記光重合開始剤としては、例えば、ベンゾイン類、ベンゾフエノン類、ベンジルケ タール類、 α ヒドロキシケトン類、 α—アミノケトン類、ョードニゥム塩、スルホ -ゥム 塩等が挙げられ、より具体的には、ィルガキュア(Irgacure) 907、ィルガキュア 184、 ィルガキュア 651、ィルガキュア 250、およびィルガキュア 369 (以上、全てチバスべ シャルティケミカルズ社製)、セイクオール BZ、セイクオール Z、セイクオール BEE (以 上、全て精エイ匕学社製)、カャキュア一 (kayacure) BP100 (日本化薬社製)、カャ キュア一 UVI— 6992 (ダウ社製)、アデカオプトマー SP— 152、アデカオプトマー S P— 170 (以上、全て旭電化)などを挙げることができる。
[0145] このような光重合開始剤を用いることにより、上記棒状重合性液晶化合物および重 合性化合物を光重合させることができる。また、このような重合開始剤の含有量は、 棒状重合性液晶性ィ匕合物の配向性が乱さな 、ためにも、後述する液晶化合物含有 組成物に対して 10重量%以下であることが好ましい。
[0146] 〔重合禁止剤〕
上記光学異方性層には、重合禁止剤が含有されていてもよい。上記重合禁止剤は 、特に限定されるものではないが、例えば、ハイドロキノン、アルキルエーテル等の置 換基を有するハイドロキノン類、ブチルカテコール等のアルキルエーテル等の置換基 を有するカテコール類、ピロガロール類、 2, 2, 6, 6—テトラメチルー 1ーピベリジ- ルォキシラジカル等のラジカル補足剤、チォフエノール類、 β—ナフチルァミン類、 および j8—ナフトール類を挙げることができる。
[0147] 上記重合禁止剤を用いることにより、上記棒状重合性液晶化合物や重合性化合物 の重合を制御することができ、光学異方性層の安定性を向上させることができる。
[0148] 〔光増感剤〕
また、上記光学異方性層には、光増感剤が含有されていてもよい。上記光増感剤 は、特に限定されるものではないが、例えば、キサントン、チォキサントン等のキサント ン類、アントラセン、アルキルエーテルなどの置換基を有するアントラセン類、フエノチ ァジン、およびルブレンを挙げることができる。
[0149] 上記光増感剤を用いることにより、上記棒状重合性液晶化合物や重合性化合物の 重合を高感度化することができる。
[0150] 〔レべリング剤〕
さらに、上記光学異方性層には、レべリング剤が含有されていてもよい。上記レペリ ング剤は、特に限定されるものではなぐ従来公知のレべリング剤を添加することがで きる。上記レべリング剤としては、例えば、放射線硬化塗料用添加剤(ビックケミージ ャパン製: ΒΥΚ— 352, BYK- 353, BYK— 361N)、塗料添加剤(東レ'ダウコー ユング社製: SH28PA、 DC 11 PA, ST80PA)、および塗料添加剤(信越シリコーン 社製: KP321、 ΚΡ323、 Χ22— 161A、 KF6001)などを挙げることができる。
[0151] 上記レべリング剤を用いることにより、光学異方性層を平滑ィ匕することができる。さら に、上記フィルムの製造過程で、後述する液晶化合物含有組成物の流動性を制御し たり、上記棒状重合性液晶化合物や重合性化合物の架橋密度を調整したりすること ができる。
[0152] <11.本発明に力かるフィルムの製造方法〉
本発明に力かるフィルムの製造方法は、上述した本発明に力かるフィルムを製造す るのに好適に用いることができるものである。具体的には、具体的には、(Α)垂直配 向用配向膜上に、先述の棒状重合性液晶化合物を含有する組成物を塗布する工程 (以下、「液晶化合物含有組成物塗布工程」ともいう)と、(Β)上記液晶化合物含有組 成物塗布工程で形成される塗膜を、 25°C〜120°Cで、 10秒間〜 60分間、加熱する 工程 (以下、「 (液晶化合物含有組成物加熱工程」とも ヽぅ)とを少なくとも含む。
[0153] 上記構成によれば、棒状重合性液晶化合物は未重合状態であるので、得られるフ イルムは、未重合フィルムとなる。また、ラビング処理された垂直配向膜上に棒状重合 性液晶化合物を、フィルム平面に対してノ、イブリツドもしくは傾斜配向させることがで きる。したがって、上記構成によれば、フィルム平面に対して斜め方向に最も屈折率 が高 、未重合フィルムを製造することができる。本発明に力かるフィルムの製造方法 には、このような未重合フィルムの製造方法も含まれる。
[0154] 上記垂直配向用配向膜および棒状重合性液晶化合物は、 <1.本発明にかかるフ イルム〉で述べたものを同様に用いることができる。上記工程を経て形成される光学 異方性層では、上記棒状重合性液晶化合物は、上記垂直配向用配向膜に対して傾 斜配向している。それゆえ、フィルム平面に対して、斜め方向に屈折率が変化したフ イルムを製造することができる。また、本発明にかかるフィルムの製造方法では、垂直 配向用配向膜に施すラビング処理の程度を変化させることで光学異方性層における 屈折率楕円体の傾斜角を、任意に制御することができる。それゆえ、様々な傾斜角 のフィルムを容易に製造することができる。
[0155] さらに、本発明に力かるフィルムの製造方法は、上記液晶化合物含有組成物塗布 工程および液晶化合物含有組成物加熱工程に加えて、 (C)液晶化合物含有組成物 加熱工程で得られる未重合フィルムを重合 (架橋)する工程 (以下、「液晶化合物重 合工程」ともいう)や、(D)垂直配向用配向膜をラビングする工程 (以下、「ラビングェ 程」とも ヽぅ)、 (E)垂直配向用配向膜上記に塗布する棒状重合性液晶化合物を含 有する組成物を調製する工程 (以下、「液晶化合物含有組成物調製工程」とも ヽぅ)、 (F)支持基材に垂直配向用配向膜を形成させる工程 (以下、「垂直配向用配向膜形 成工程」ともいう)を含んでいてもよい。これら 4つの工程は、全て含んでいてもよいし 、いずれか 1つ、もしくは 2つだけ含んでいてもよい。もちろん、いずれをも含んでいな くてちょい。
[0156] 以下、垂直配向用配向膜形成工程、ラビング工程、液晶化合物含有組成物調製 工程、液晶化合物含有組成物塗布工程、液晶化合物含有組成物加熱工程、および 液晶化合物重合工程について、詳細に説明する。
[0157] (Π— 1)垂直配向用配向膜形成工程
上記垂直配向用配向膜形成工程では、支持基材上に垂直配向用配向膜を形成 する。上記支持基材は、特に限定されるものではない。例えば、 <1.本発明にかかる フィルム〉で例示した支持基材を用いることができる。上記垂直配向用配向膜につ いても、特に限定されるものではなぐ例えば、 <1.本発明に力かるフィルム >で例 示した垂直配向用配向膜を用いることができる。このような垂直配向用配向膜を用い れば、延伸による屈折率制御を行う必要がないため、複屈折の面内ばらつきが小さく なる。それゆえ、支持基材上に FPDの大型化にも対応可能な大きな光学フィルムを 提供できるという効果を奏する。
[0158] 上記支持基材上に垂直配向用配向膜を形成する方法は、特に限定されるもので はなぐ従来公知の方法を用いることができる。例えば、上記支持基材上に、垂直配 向用配向膜の材料を塗布し、その後、ァニールすることにより、上記支持基材上に垂 直配向用配向膜を形成することができる。
[0159] このようにして得られる垂直配向用配向膜の厚さは特に限定されるものではないが 、 10nm〜10000nmであることが好ましぐ 10nm〜1000nmであることがより好まし い。上記範囲とすれば、後述する光学異方性層形成工程において、棒状重合性液 晶化合物を当該垂直配向用配向膜上で所望の角度に配向させることができる。
[0160] (Π— 2)ラビング工程
ラビング工程では、上記垂直配向用配向膜形成工程で得られた垂直配向用配向 膜をラビング処理する。これにより、後述する液晶化合物含有組成物加熱工程にお いて、棒状重合性液晶化合物を、空気層界面では、水平配向のまま、当該垂直配向 用配向膜界面では傾斜配向させることができる。なお、上記垂直配向用配向膜は、 上記垂直配向用配向膜形成工程で得られたものでなくてもよぐ同等の物性をもつ 垂直配向用配向膜であって、別途用意したもの、例えば、市販品であってもよい。
[0161] 上記垂直配向用配向膜をラビングする方法は、特に限定されるものではなぐ従来 公知の方法を用いることができる。例えば、ラビング布が巻きつけられ、回転している ラビンダロールを、ステージに載せられ、搬送されている垂直配向用配向膜に接触さ せる方法を用いることができる。
[0162] 上記ラビング布は、特に限定されるものではなぐラビンダロールに巻きつけることが できる布であればよい。上記ラビング布の材質としては、レーヨン、コットン、ウール、 シルクなど様々な材質を挙げることができる。また、同じ材質でも、布に使用されてい る糸の太さや長さなどで、そのラビング状態を変えることができる。ラビング状態を均 一にするためには、糸の太さや長さが均一であることが好ま 、。
[0163] 上記ラビンダロールの径は、一般的には、その回転を安定的に制御するために、直 径 lOmn!〜 300mmであることが好ましい。また、上記ラビングロールの径を変えるこ とにより、配向膜に接触する角度や面積を調整することができる。
[0164] また、上記ラビンダロールの回転数は、上記ラビンダロールの径にもよる力 安定的 にラビングロールを回転させるために、 100〜2000rpmとすることが好ましい。また、 上記ラビンダロールの回転数を変えることによつても、ラビングの力かり具合を調整す ることがでさる。
[0165] 上記ステージのステージ速度、および垂直配向用配向膜の搬送速度は、一般的に は、垂直配向用配向膜の搬送速度が遅すぎても速すぎても安定的に搬送することが 難しいため、 0. lmZ分〜 10mZ分に制御することが好ましい。また、ステージ速度 並びに垂直配向用配向膜の搬送速度を変えることにより、ラビングの力かり具合を調 整することができる。
[0166] さらに、上記例示したラビング方法にぉ 、て、押し込み量および接触長は、特に限 定されるものではなぐラビング布の糸の長さに応じて、所望のラビング効果が得られ るように設定すればよい。なお、上記「押し込み量」とは、垂直配向用配向膜にラビン ダロールを押し当てる量であり、配向膜に押し当てるラビング布の毛の長さで表され る。上記のラビング方法では、ラビング布の布に対して垂直方向に糸が出ている分だ け押し当てることができる。また、上記「接触長」とは、ラビンダロールと基材の接して いる長さを表す。上記接触長は、ラビンダロールが垂直配向用配向膜に接触してか ら、ラビンダロールを完全に押し当てた時にラビンダロールと垂直配向用配向膜とが 接して!/、る長さまで変えることができる。
[0167] このように、上記ラビング工程では、上記例示したような方法で、上記垂直配向用配 向膜をラビング処理するが、ラビング工程における垂直配向用配向膜のラビング回数 は、特に限定されるものではない。すなわち、上記ラビング工程においては、垂直配 向用配向膜を 1回だけラビング処理してもよいし、配向を制御するために複数回ラビ ング処理してもよい。
[0168] (II 3)液晶化合物含有組成物調製工程
液晶化合物含有組成物調製工程では、棒状重合性液晶化合物を含有する組成物 を調製する。具体的には、上記棒状重合性液晶化合物を有機溶媒に溶解した溶液 を調製する。上記棒状重合性ィ匕合物としては、く I.本発明にかかるフィルム〉で述 ベた棒状重合性液晶化合物を用いればよい。また、上記有機溶媒は、上記棒状重 合性液晶化合物を溶解できるものであればよぐ特に限定されるものではない。例え ば、シクロペンタノン、シクロへキサノン、メチルェチルケトン、トルエン、酢酸ェチル、 メチルセ口ソルブ、ブチルセ口ソルブ、イソプロピルアルコール、メチルアミルケトン、 キシレン、ァセトニトリル、テトラヒドロフラン、ガンマ一ブチロラタトン、ジメトキシェタン 、乳酸ェチル、クロ口ホルム、プロピレングリコールモノメチルエーテルアセテートおよ びプロピレングリコールモノメチルエーテル等を挙げることができる。これら有機溶媒 は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
[0169] また、上記組成物における棒状重合性液晶化合物の濃度は、特に限定されるもの ではないが、あまりに上記濃度が低いと、光学異方性層が薄くなりすぎるため、液晶 パネルの光学補償に必要な光学異方性が得られなくなる傾向がある。逆に、あまりに 上記濃度が高いと、液晶化合物含有組成物の溶液の粘度が高くなりすぎるため、塗 ェ膜厚にムラが生じやすくなる傾向がある。したがって、上記濃度は、 5〜50wt%で あることが好ましい。上記範囲内であれば、上述したような問題が起こることがない。
[0170] 上記組成物には、特定の重合性化合物および Zまたは上記棒状重合性液晶化合 物とは異なる複数の液晶化合物をさらに含有させてもょ 、。
[0171] 上記液晶化合物としては、 <1.本発明に力かるフィルム〉で述べたその他の液晶 化合物を用いればよい。
[0172] 上記液晶化合物の含有量は、得られるフィルムに求められる位相差値に応じて、適 宜決定すればよい。具体的には、所望の位相差値を付与するように、上記組成物に 含まれる液晶化合物に由来する構造単位の割合を調整し、得られる光学フィルムの 位相差値を求める。その結果に基づいて、上記液晶化合物に由来する構造単位の 含有量を決定することができる。
[0173] 通常、位相差値は、膜厚を変えることにより、コントロールすることができる。しかし、 膜厚のコントロールだけでは、法線方向の位相差値を任意に制御できても、入射角 を変えた時の位相差値のコントロールは難しぐ前述の棒状重合性液晶化合物の化 学構造を変えなくてはならない。一方、上記液晶化合物に由来する構造単位を加え ることにより、法線方向の位相差値だけではなぐあらゆる角度での位相差値を任意 に調整することができる。言い換えると、上記液晶化合物に由来する構造単位を加え ることにより、光学異方性層の持つ屈折率楕円体の形状を任意にコントロールするこ とができる。しかし、上記液晶化合物に由来する構造単位を加えすぎた場合、本発 明の垂直配向を得られなくなることもある。その為、例えば、上記液晶化合物に由来 する構造単位と棒状重合性液晶化合物に由来する構造単位との合計 100重量部に 対し、液晶化合物に由来する構造単位の含有量を 5〜50重量部とすることが好まし い。上記含有量とすることにより、得られるフィルムの、屈折率楕円体の形状を任意に コン卜ローノレすることができる。
[0174] 上記重合性化合物としては、 <1.本発明に力かるフィルム〉で述べた重合性ィ匕合 物を用いればよい。このような重合性ィ匕合物を上記組成物に含有させることにより、 任意の波長分散特性を有するフィルムを製造することができる。
[0175] 上記重合性ィヒ合物の含有量は、得られるフィルムに求められる波長分散特性に応 じて、適宜決定すればよい。具体的には、所望の波長分散特性を付与するように、上 記組成物に含まれる重合性化合物に由来する構造単位の割合を調整し、得られる 光学フィルムの位相差値を求める。その結果に基づいて、上記重合性化合物に由来 する構造単位の含有量を決定することができる。
[0176] 一般に、上記重合性化合物を含有しない、もしくは少量し力含有しないフィルムは、 正波長分散を示す。一方、上記重合性化合物に由来する構造単位の含有量を増加 させることにより、正波長分散力 逆波長分散へと波長分散特性を任意に調整するこ とができる。逆波長分散を示すフィルムを得る場合、例えば、上記重合性化合物に由 来する構造単位と棒状重合性液晶化合物に由来する構造単位との合計 100重量部 に対し、重合性化合物に由来する構造単位の含有量を 5〜50重量部とすることが好 ましい。上記含有量とすることにより、得られるフィルムを、逆波長分散を示すと同時 に、大きな位相差値を示すフィルムとすることができる。
[0177] また、本発明に力かるフィルムの製造方法では、得られるフィルムの波長分散特性 ( 正波長分散〜逆波長分散)を、上記組成物の組成変化によって行っている。それゆ え、フィルムの波長分散特性を、非常に簡便な方法で、任意に調整することができる という効果を奏する。
[0178] また、上記組成物には、重合開始剤や、重合禁止剤、光増感剤、レべリング剤等を 含有させてもよい。
[0179] 上記重合開始剤としては、く I.本発明に力かるフィルム〉で述べた重合開始剤を 用いることができる。また、上記重合開始剤の添加量は、棒状重合性液晶化合物お よび Zまたは重合性ィ匕合物の重合反応に適した量であり、棒状重合性液晶性ィ匕合 物の配向性を乱さない程度であればよい。すなわち、棒状重合性液晶化合物、重合 性化合物、および重合開始剤の種類、並びに上記組成物の組成に応じて、適宜決 定することが好ましい。このように、重合開始剤の添加量の具体的な数値は、特に限 定されるものではないが、例えば、棒状重合性液晶化合物 100重量部に対して、 0. 1重量部〜 30重量部であることが好ましぐ 0. 5重量部〜 10重量部であることがさら に好ましい。上記範囲内であれば、棒状重合性液晶性ィ匕合物の配向性を乱すことな ぐ棒状重合性液晶化合物を重合させることができる。
[0180] 上記重合禁止剤としては、 <1.本発明に力かるフィルム〉で述べた重合禁止剤を 用いることができる。また、上記重合禁止剤の添加量は、特に限定されるものではなく 、棒状重合性液晶性化合物の配向性を乱すことなぐ棒状重合性液晶化合物および Zまたは重合性ィ匕合物の重合反応を調節することができ、かつ、光学異方性層の安 定性を向上させることができる量であればよい。具体的には、棒状重合性液晶化合 物 100重量部に対して、 0. 1重量部〜 30重量部であることが好ましぐ 0. 5重量部 〜 10重量部であることがさらに好ましい。上記範囲内であれば、棒状重合性液晶性 化合物の配向性を乱すことなぐ棒状重合性液晶化合物の重合をコントロールし、光 学異方性層の安定性を向上させることができる。
[0181] また、上記光増感剤としては、 <1.本発明にかかるフィルム〉で述べた光増感剤を 用いることができる。また、上記光増感剤の添加量は、特に限定されるものではなぐ 棒状重合性液晶性化合物の配向性を乱すことなぐ棒状重合性液晶化合物および
Zまたは重合性ィ匕合物の重合反応を高感度化できる量であればょ 、。具体的には、 棒状重合性液晶化合物 100重量部に対して、 0. 1重量部〜 30重量部であることが 好ましぐ 0. 5重量部〜 10重量部であることがさらに好ましい。上記範囲内であれば 、棒状重合性液晶性化合物の配向性を乱すことなぐ棒状重合性液晶化合物の重 合を高感度化することができる。
[0182] さらに、上記レべリング剤としては、く I.本発明に力かるフィルム〉で述べたレベリ ング剤を用いることができる。また、上記レべリング剤の添加量は、特に限定されるも のではなぐ棒状重合性液晶性化合物の配向性を乱すことなぐ光学異方性層を平 滑化したり、液晶化合物含有組成物の塗工時の流動性を制御したり、棒状重合性液 晶性ィ匕合物の架橋密度を調整したりできる量であればよい。具体的には、棒状重合 性液晶化合物 100重量部に対して、 0. 1重量部〜 30重量部であることが好ましぐ 0 . 5重量部〜 10重量部であることがさらに好ましい。上記範囲内であれば、棒状重合 性液晶性ィヒ合物の配向性を乱すことなぐ光学異方性層を平滑化したり、液晶化合 物含有組成物の塗工時の流動性を制御したり、棒状重合性液晶性化合物の架橋密 度を調整したりすることができる。
[0183] (II 4)液晶化合物含有組成物塗布工程
液晶化合物含有組成物塗布工程では、上記液晶化合物含有組成物調製工程で 調製した組成物を垂直配向用配向膜上に塗布する。これにより、垂直配向用配向膜 上に、上記組成物を含有する塗膜を形成させることができる。ここで、上記組成物は 、液晶化合物含有組成物調製工程で調製したものではなぐ同等の組成をもつ組成 物であって、別途用意した棒状重合性液晶化合物を含有する組成物、例えば、市販 品を用いてもよい。
[0184] 上記組成物を垂直配向用配向膜上に塗布する方法は、特に限定されるものではな ぐ従来公知の方法を用いることができる。例えば、押し出しコーティング法、ダイレク トグラビアコーティング法、リバースグラビアコーティング法、 CAPコーティング法、ダ イコーティング法、ディップコート法、バーコート法、およびスピンコート法などを用い ることがでさる。
[0185] また、上記組成物の塗布量は、特に限定されるものではなぐ得られるフィルムに所 望の位相差値を与える膜厚となるように、適当量塗布すればよい。上述したように、 膜厚を調整することにより、得られるフィルムの位相差値 (リタデーシヨン値、 Re ( D ) を決定することができる。
[0186] 上記組成物を塗布して形成される層の厚みは、上記のとおり、得られるフィルムの 位相差値によって、異なるものである。本発明では、上記厚みは、 0. 1〜10 mであ ることが好ましぐ 0. 5〜2 mであることがさらに好ましい。上記範囲内であれば、上 述した本発明に力かるフィルムの位相差値とすることができる。
[0187] 上記の通り、液晶化合物含有組成物塗布工程では、任意の支持基材の上に積層 した垂直配向用配向膜上に光学異方性層(液晶層)を積層する。それゆえ、液晶セ ルを作製し、当該液晶セルに液晶化合物を注入する方法に比べて、生産コストを低 減することができる。さらに、ロールフィルムでのフィルムの生産が可能である。
[0188] (II - 5)液晶化合物含有組成物加熱工程
液晶化合物含有組成物加熱工程では、上記液晶化合物含有組成物塗布工程に おいて形成された上記塗膜を加熱する。これにより、上記塗膜に含まれる溶剤が乾 燥され、棒状重合性液晶化合物が未重合状態である未重合フィルムを得ることがで きる。本発明には、こうして得られる未重合フィルムも含まれる。上記未重合フィルム は、ネマチック相などの液晶相を示し、モノドメイン配向による複屈折性を有する。ま た、上記未重合フィルムは、通常、 10〜120°C程度、好ましくは、 25〜80°Cの低温 で配向する。したがって、本発明では、上述した支持基材として、耐熱性が低い基材 を用いることができる。
[0189] 液晶化合物含有組成物加熱工程において、上記組成物を加熱する方法や加熱条 件等としては、上記物性を有する未重合フィルムが得られる条件であればよい。具体 的には、加熱温度としては、 10〜120°Cであることが好ましぐ 25〜80°Cであること 力 Sさらに好ましい。また、加熱時間としては、 10秒間〜 60分間であることが好ましぐ 30秒間〜 30分間であることがより好ましい。加熱温度および加熱時間が、上記範囲 内であれば、上記支持基材として、耐熱性が必ずしも十分ではない支持基材を用い ることがでさる。
[0190] (Π— 6)液晶化合物重合工程
液晶化合物重合工程では、上記液晶化合物含有組成物加熱工程で得られた未重 合フィルムを重合し、硬化させる。これにより、棒状重合性液晶化合物の配向性が固 定化されたフィルム、すなわち重合フィルムとなる。したがって、フィルムの平面に対し て斜め方向に最も屈折率が高い重合フィルムを製造することができる。
[0191] 未重合フィルムを重合させる方法は、棒状重合性液晶化合物および重合性化合物 の種類に応じて、決定されるものである。例えば、光重合や熱重合により、上記未重 合フィルムを重合させることができる。本発明では、特に、光重合により未重合フィル ムを重合させることが好ましい。これによれば、低温で、未重合フィルムを重合させる ことができるので、支持基材の耐熱性の選択幅が広がる。また、工業的にも製造が容 易となる。
[0192] 未重合フィルムを光重合させる方法は、特に限定されなぐ従来公知の方法を用い ることができる。例えば、未重合フィルムに紫外線を照射することにより、未重合フィル ムを重合させることができる。
[0193] このように、本発明に力かるフィルムの製造方法では、液晶化合物として、液晶ポリ マーを用いない。また、棒状重合性液晶化合物を光重合により架橋することができる 。それゆえ、熱による複屈折の変化の影響を受けにくいという効果を奏する。また、垂 直配向用配向膜に、界面活性剤などの表面処理剤を用いなくてよい。つまり、本発 明にかかるフィルムの配向膜 (垂直配向用配向膜)は、支持基材と配向膜との密着性 および配向膜と光学異方性層との密着性が良好であるから、フィルムの製造が容易 である。さらに、本発明に力かるフィルムの製造方法によれば、延伸フィルムで同等 の性能を期待するものに比較して、薄膜で所望の位相差値を持つ光学補償フィルム を製造することが可能である。
[0194] < III.本発明に力かるフィルムの利用 >
本発明にカゝかるフィルムは、優れた波長分散特性を有する光学フィルムと広く用い ることができる。上記光学フィルムとしては、アンチリフレクション (AR)フィルムなどの 反射防止フィルム、偏光フィルム、位相差フィルム、楕円偏光フィルム、視野角拡大フ イルム、および透過型液晶ディスプレイの視野角補償用光学補償フィルムなどを挙げ ることがでさる。
[0195] さらに、本発明に力かるフィルムは、反射型液晶ディスプレイおよび有機エレクト口 ルミネッセンス (EL)ディスプレイの位相差板、並びに、当該位相差板や上記光学フ イルムを備えるフラットパネル表示装置にも利用することができる。上記フラットパネル 表示装置も、特に限定されるものではなぐ例えば、液晶表示装置 (LCD)や有機ェ レクト口ルミネッセンス (EL)を挙げることができる。
[0196] このように、本発明に力かるフィルムは、広範囲な用途が考えられる。例えば、このう ち、本発明に力かるフィルムを積層してなる偏光フィルム、並びに、本発明に力かるフ イルムもしくは偏光フィルムを備えるフラットパネル表示装置について、以下説明する
[0197] (III 1)偏光フィルム
本発明に力かる偏光フィルムの実施形態について、図 3A〜図 3Eに基づいて、説 明すると以下の通りである力 本発明の偏光フィルムはこれに限定されるものではな い。
[0198] 本発明に力かる偏光フィルムは、偏光機能を有するフィルム、すなわち偏光層の片 面もしくは両面に直接もしくは接着剤を用いて張り合わせることにより得られるもので ある。
[0199] 例えば、図 3A〜図 3Eに示すように、(1)フィルム 1と、偏光層 2とが、直接貼り合わ された実施形態 (図 3A)、 (2)フィルム 1と偏光層 2とが、粘着層又は接着層 3を介し て貼り合わされた実施形態(図 3B)、 (3)フィルム 1とフィルム 1 'と直接貼り合せ、さら に、フィルム 1 'と偏光層 2とを直接貼り合わせた実施形態(図 3C)、 (4)フィルム 1とフ イルム 1 'とを粘着層又は接着層 3を介して貼り合わせ、さらに、フィルム 1 '上に偏光 層 2を直接貼り合わせた実施形態(図 3D)、および(5)フィルム 1とフィルム 1 'とを粘 着層又は接着層 3を介して貼り合わせ、さらに、フィルム 1 'と偏光層 2とを接着層 3'を 介して貼り合せた実施形態(図 3E)などが挙げられる。 説明の便宜上、同一の要素 (element)には、同一の引用番号を付する。 図 3Fでは、フィルム 1として、液晶層 11が用いられており、フィルム 1には、配向層 1
2が含まれていない。フィルム 1と偏光層 2とが、一対の接着層又は粘着層 3を介して 貼り合わされている。
図 3Gでは、フィルム 1として、液晶層 11が用いられており、フィルム 1には、配向層 1 2が含まれていなくてもよい。一対のフィルム 1を接着層又は粘着層 3を介して貼り合 せ、さらに、その外側に、一対の接着層又は粘着層 3を介して偏光層 2を貼り合わせ ている。
図 3Hは、図 3Fと同様の構造を示す。ただし、図 3Fとは異なって、フィルム 1Aとし て、支持フィルム 13と、支持フィルム 13の表面上に形成された配向膜 12と、配向膜 1 2の表面上に形成された液晶層 11とを含む積層体 (laminated structure)が用いられ ている。
図 31は、図 3Gと同様の構造を示す。ただし、図 3Gとは異なって、フィルム 1Aとして 、支持フィルム 13と、支持フィルム 13の表面上に形成された配向膜 12と、配向膜 12 の表面上に形成された液晶層 11とを含む積層体 (laminated structure)が用いられて いる。
図 3J及び図 3Kは、図 3Gと同様の構造を示す。ただし、 2枚あるフィルムの一方は、 液晶層 11をフィルム 1として用いており、他方は、支持フィルム 13と、支持フィルム 13 の表面上に形成された配向膜 12と、配向膜 12の表面上に形成された液晶層 11とを 含む積層体をフィルム 1 Aとして用いて!/、る。
[0200] 上記偏光層 2は、偏光機能を有するフィルムであればよぐ特に限定されるものでは ない。例えば、上記偏光層 2として、ポリビュルアルコール系フィルムに沃素や二色 性色素を吸着させて延伸したフィルムやポリビュルアルコール系フィルムを延伸して 沃素や二色性色素を吸着させたフィルムを用いることができる。
[0201] 上記接着層 3および接着層 3'に用いられる接着剤は、特に限定されるものではな いが、透明性が高く耐熱性に優れた接着剤であることが好ましい。そのような接着剤 としては、例えば、アクリル系、エポキシ系あるいはウレタン系接着剤などが用いられ る。 [0202] また、上記偏光フィルムにおいては、図 3C〜図 3Eに示すように、本発明にかかる フィルムは、必要に応じて、 1層〜 3層張り合わせてもよい。
[0203] (III 2)フラットパネル表示装置
本発明に力かるフラットパネル表示装置は、本発明に力かるフィルムまたは偏光フィ ルムを備えるものである。例えば、本発明に力かる偏光フィルムと、液晶パネルとが貼 り合わされた液晶パネルを備える液晶表示装置や、本発明にカゝかる偏光フィルムと、 発光層とが貼り合わされた有機エレクト口ルミネッセンス(以下、「EL」ともいう)パネル を備える有機 EL表示装置を挙げることができる。
[0204] 本発明にかかるフラットパネル表示装置の実施形態として、液晶表示装置と、有機 ELとについて、以下詳細に述べるが、本発明はこれに限定されるものではない。
[0205] 〔実施の形態 1〕
実施の形態 1にかかる液晶表示装置は、図 4に示す液晶パネルを備える。上記液 晶パネルは、偏光フィルム 4と液晶パネル 6とを、粘着層又は接着層 5を介して貼り合 わせてなるものである。上記構成によれば、図示しない電極を用いて、液晶パネルに 電圧を印加することにより、液晶分子が駆動し、光シャッター効果を奏する。
[0206] 〔実施の形態 2〕
実施の形態 2にかかる有機 EL表示装置は、図 5に示す有機 ELパネルを備える。上 記有機 ELパネルは、偏光フィルム 4と、発光層 7とを、粘着層又は接着層 5を介して 貼り合わせてなるものである。
[0207] 上記有機 ELパネルにぉ 、て、偏光フィルム 4は、広帯域円偏光板として機能する。
また、上記発光層 7は、導電性有機化合物力もなる少なくとも 1層の層である。
[0208] なお、本発明は、以上説示した各構成に限定されるものではなぐ特許請求の範囲 に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技 術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に 含まれる。
実施例
[0209] 本発明について、実施例および比較例に基づいてより具体的に説明するが、本発 明はこれに限定されるものではない。当業者は、本発明の範囲を逸脱することなぐ 種々の変更、修正、および改変を行うことができる。なお、以下の実施例および比較 例における波長分散特性は次のようにして行った。
[0210] 〔波長分散特性の測定〕
585. 6nmの波長において、製造したフィルムの位相差値の入射角依存性を測定 機 (KOBRA— WR、王子計測機器社製)を用いて測定した。同時に、 585. 6nmの 波長にお 、て、製造したフィルムの正面位相差値 Ro (nm)を測定機 (KOBRA-W R、王子計測機器社製)を用いて測定した。
[0211] 〔実施例 1 :フィルムの製造〕
ガラス基板上に垂直配向用ポリイミド配向膜 (SE— 5300、 日産化学社製)を塗布し た後、ァニールして、厚さ 104nmの膜を得た。続いて、その配向膜をレーヨン (吉川 化工製 YA— 20— R)で一回、表 6に示したラビング処理した後、表 5の組成の塗布 液をスピンコート法により塗布し、 55°Cで 1分間乾燥した。得られた未重合フィルムは 、偏光顕微鏡によりモノドメインであることが確認された。続いて紫外線を照射して、 重合性液晶化合物を重合させ、膜厚 0. 9 mのフィルムを製造した。得られたフィル ムは、はじきがなぐ均一に塗工することができ、室内で 30日間放置してもはがれな どはみられず、密着性良好であり、光学特性にも変化はみられな力つた。
[0212] 得られたフィルムにつ ヽて、上記の方法で、入射角依存性を測定した。得られた光 学異方性層の屈折率楕円体のチルト角を表 6に示す。
[0213] 得られたフィルムにつ 、て、上記の方法で、正面位相差値 Roも測定した結果を、表 6に示す。
[0214] [表 5] 表 5 塗布液組成
Figure imgf000066_0001
:ィルガキュア 9 0 7 (チバスべシャリティ一ケミカルズ社製)
[0215] [表 6] 表 6 ラビング処理条件、 並びに、 フィルムの R。およびチルト角の測定結果
Figure imgf000067_0001
[0216] 〔実施例 8〜: L 1 :フィルムの製造〕
ガラス基板上に垂直配向用ポリイミド配向膜 (SE— 5300、 日産化学社製)を塗布し た後、ァニールして、厚さ 104nmの膜を得た。続いて、その配向膜をレーヨン (吉川 化工製 YA— 20— R)で一回、表 8に示したラビング処理した後、表 7の組成の塗布 液をスピンコート法により塗布し、 55°Cで 1分間乾燥した。得られた未重合フィルムは 、偏光顕微鏡によりモノドメインであることが確認された。続いて紫外線を照射して、 重合性液晶化合物を重合させ、膜厚 0. 9 mのフィルムを製造した。得られたフィル ムは、はじきがなぐ均一に塗工することができ、室内で 30日間放置してもはがれな どはみられず、密着性良好であり、光学特性にも変化はみられな力つた。
[0217] 得られた光学フィルムにつ 、て、上記の方法で、入射角依存性を測定した。得られ た光学異方性層の屈折率楕円体のチルト角を表 8に示す。得られた光学フィルムに ついて、上記の方法で、正面リタデーシヨン値 R
0も測定した結果を、表 8に示す。
[0218] [表 7] 塗布液組成
Figure imgf000067_0002
* : ィルガキュア 9 0 7 (チバスべシャリティ一ケミカルズ社製) [0219] [表 8] ラビング処理条件、 並びに、 フィルムの R 0およびチルト角の測定結果
Figure imgf000068_0001
[0220] 〔比較例 1〜2:フィルムの製造〕
ガラス基板上にポリビニルアルコール水溶液を塗布した後、ァニールして、厚さ 10 Onmの膜を得た。その配向膜をレーヨン (吉川化工製 YA— 20— R)で一回、表 9に 示したラビング処理した後、表 5の組成の塗布液をスピンコート法により塗布し、 55°C で 1分間乾燥した。得られた未重合フィルムは、偏光顕微鏡によりモノドメインであるこ とが確認された。続いて紫外線を照射して、重合性液晶化合物を重合させ、膜厚 0. 9 mのフィルムを製造した。得られたフィルムは、はじきがなく、均一に塗工すること ができ、室内で 30日間放置してもはがれなどはみられず、密着性良好であり、光学 特性にも変化はみられなカゝつた。
[0221] 得られたフィルムにつ ヽて、上記の方法で、入射角依存性を測定した。得られた光 学異方性層の屈折率楕円体のチルト角を表 9に示す。
[0222] 得られたフィルムについて、上記の方法で、正面位相差値 Ro測定した結果を、表 9 に示す。
[0223] [表 9] ラビング処理条件、 並びに、 フイルムの R 0およびチルト角の測定結果
Figure imgf000068_0002
[0224] 〔比較例 3 :フィルムの製造〕 ガラス基板上にポリビニルアルコール水溶液を塗布した後、ァニールして、厚さ 10 Onmの膜を得た。その配向膜をレーヨン (吉川化工製 YA— 20— R)で一回、表 10に 示したラビング処理した後、表 7の組成の塗布液をスピンコート法により塗布し、 55°C で 1分間乾燥した。得られた未重合フィルムは、偏光顕微鏡によりモノドメインであるこ とが確認された。続いて紫外線を照射して、膜厚 0. 9 μ mの光学フィルムを製造した 。得られたフィルムは、はじきがなぐ均一に塗工することができ、室内で 30日間放置 してもはがれなどはみられず、密着性良好であり、光学特性にも変化はみられなかつ た。
[0225] 得られた光学フィルムにつ ヽて、上記の方法で、入射角依存性を測定した。得られ た光学異方性層の屈折率楕円体のチルト角を表 10に示す。得られた光学フィルム について、上記の方法で、正面リタデーシヨン値 Rも測定した結果を、表 10に示す。
0
[0226] [表 10] ラピング処理条件、 並びに、 フィルムの R 0およびチルト角の測定結果
Figure imgf000069_0001
産業上の利用可能性
[0227] 本発明に力かるフィルムは、フィルム平面に対して斜め方向に最も屈折率が高ぐ その方向を任意に制御できるフィルムである。そのため、本発明は、アンチリフレクシ ヨン (AR)フィルムなどの反射防止フィルム、偏光フィルム、位相差フィルム、楕円偏 光フィルム、視野角拡大フィルムなど、優れた波長分散特性を有する光学フィルムと して用いることができる。さらに、本発明は、反射型液晶ディスプレイおよび有機エレ タトロルミネッセンスディスプレイの位相差板や、そのような位相差板を備えるフラット パネル表示装置 (FPD)にも利用することができる。

Claims

請求の範囲
[1] 垂直配向用配向膜上に形成された光学異方性層を有するフィルムであって、 上記光学異方性層は、棒状重合性液晶化合物に由来した構造単位を含むポリマ 一を含有する層からなり、
上記棒状重合性液晶化合物は、モノマーとして水平配向膜上で水平に配向し、空 気界面でも水平に配向する特性を有するものであって、
上記棒状重合性液晶化合物は、上記垂直配向用配向膜に対して傾斜配向してい ることを特徴とするフィルム。
[2] 上記垂直配向用配向膜は、垂直配向膜にラビング処理が施された配向膜であるこ とを特徴とする請求項 1に記載のフィルム。
[3] 上記光学異方性層における屈折率楕円体のフィルム平面に対する傾斜角が 10°
〜85° であることを特徴とする請求項 1または 2に記載のフィルム。
[4] 垂直配向用配向膜上に形成された光学異方性層を有するフィルムであって、 上記光学異方性層は、棒状重合性液晶化合物を含有する層からなり、 上記棒状重合性液晶化合物は、水平配向膜上で水平に配向し、空気界面でも 水平に配向する特性を有するものであって、
上記棒状重合性液晶化合物は、上記垂直配向用配向膜に対して傾斜配向してい ることを特徴とするフィルム。
[5] 逆波長分散を示すことを特徴とする請求項 1〜4のいずれか 1項に記載のフィルム。
[6] 上記光学異方性層は、下記式(1)
[化 1]
P 2-E 2 -X 2 -B 2 -A2 - (G 2) t—Y— (G l) s— A 1—B 1—X 1— E 1— P 1 (1 )
(式中、 Yは 2価の基を表し、 Sおよび tは、それぞれ独立に 0または 1の整数を表し、 G 1および G2は、それぞれ独立に— CR1!^—を表し、 R1および R2は、それぞれ独立に 、炭素数 1〜4のアルキル基、ハロゲン原子、水素原子を表し、 A1および A2は、それ ぞれ独立に、 2価の環状炭化水素基、 2価の複素環基、メチレンフエ二レン基、ォキ シフエ-レン基、チォフエ-レン基を表し、 A1および A2には、炭素数 1〜5のアルキ ル基、炭素数 1〜5のアルコキシ基、ハロゲン原子が結合していてもよぐ B1および B 2は、それぞれ独立に、 CRR C≡C CH = CH— CH 2— CH 2 o s c(=o) c(=o)— o o— c(=o) o— c(= o)— o c(=s) c(=s)— o o— c(=s) o— c(=s)— o CH = N— N = CH— N = N— N (→0) =N— N = N (→0)— C ( = 0)— NR NR— C ( = 0) -OCH 2 NR CH 2 O
SCH 2 -CH 2 S— CH = CH— C ( = 0)— O— O— C ( = 0)— CH = CH 単結合力 なる群力 選ばれる 2価の基を表し、 Rおよび R'はそれぞれ独立に、 水素原子または炭素数 1〜4のアルキル基を表し、 XIおよび X2は、それぞれ独立に 、下記式(2)
[化 2]
Figure imgf000071_0001
(式中、 A3は 2価の環状炭化水素基、複素環基を表し、 B3は前記 B1および B2と同 じ意味を表し、 nは 1〜4の整数を表す)で表される 2価の基を表し、 E1および E2は、 それぞれ独立に、炭素数 2〜25のアルキレン基を表し、 E1および E2は、さらに炭素 数 1〜5のアルキル基、炭素数 1〜5のアルコキシ基、ハロゲン原子が結合していても よぐ P1および P2は、水素原子または重合性基を表し、 P1および P2の少なくとも一 方は重合性基である。 )で表される重合性ィ匕合物に由来する構造単位をさらに含む ポリマーを含有することを特徴とする請求項 5に記載のフィルム。
[7] 垂直配向用配向膜上に形成された光学異方性層を有するフィルムの製造方法で あって、
(A)垂直配向用配向膜上に、棒状重合性液晶化合物を含有する組成物を塗布す る工程
と、
(B)上記工程 (A)で形成された塗膜を 25〜120°Cで、 10秒間〜 60分間加熱させ る工程とを少なくとも含み、 上記棒状重合性液晶化合物が、モノマーとして水平配向膜上で水平に配向し、空 気界面でも水平に配向する特性を有するものであることを特徴とするフィルムの製造 方法。
[8] (C)上記棒状重合性液晶化合物を光重合により架橋する工程をさらに含むことを 特徴とする請求項 7に記載の製造方法。
[9] 上記 (A)工程の前に、(D)上記垂直配向用配向膜をラビング処理する工程をさら に含むことを特徴とする請求項 7または 8に記載のフィルムの製造方法。
[10] 請求項 1〜6のいずれか 1項に記載のフィルムを積層してなることを特徴とする偏光 フイノレム。
[11] 請求項 1〜6のいずれか 1項に記載のフィルム、または請求項 10に記載の偏光フィ ルムを備えることを特徴とするフラットパネル表示装置。
[12] 液晶からなる光学異方性層であって、第 1面、及び、第 1面と平行な第 2面とを有する 光学異方性層と、
光学異方性層の第 1面と接触している配向層と、
を備えるフィルムであって、
光学異方性層の少なくとも一部分では、液晶が厚さ方向に対して傾斜して配向して いて、
フィルムに垂直な第 1方向の第 1屈折率 (nz)、フィルムの第 1方向と直角な第 2方 向の第 2屈折率 (nx)、及び、フィルムの第 1方向及び第 2方向と直角な第 3方向の第 3屈折率 (nx)において、第 1屈折率 (nz)が、第 2屈折率 (nx)及び第 3屈折率 (nz)よ り大きい、
フイノレム。
PCT/JP2007/054659 2006-04-03 2007-03-09 フィルムおよびフィルムの製造方法、並びにその利用 WO2007122888A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800124695A CN101416086B (zh) 2006-04-03 2007-03-09 膜、膜的制造方法及其用途
KR1020087024127A KR101310467B1 (ko) 2006-04-03 2007-03-09 필름 및 필름의 제조 방법, 그리고 그 이용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-102520 2006-04-03
JP2006102520 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007122888A1 true WO2007122888A1 (ja) 2007-11-01

Family

ID=38624801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054659 WO2007122888A1 (ja) 2006-04-03 2007-03-09 フィルムおよびフィルムの製造方法、並びにその利用

Country Status (5)

Country Link
JP (1) JP2007298967A (ja)
KR (1) KR101310467B1 (ja)
CN (1) CN101416086B (ja)
TW (1) TWI407212B (ja)
WO (1) WO2007122888A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054728B2 (en) 2014-12-01 2018-08-21 Samsung Electronics Co., Ltd. Composition for optical film and films and display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345293B2 (ja) * 2007-03-29 2013-11-20 株式会社Adeka 重合性化合物及び重合性組成物
JP5391682B2 (ja) * 2007-12-28 2014-01-15 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
WO2010122845A1 (ja) * 2009-04-21 2010-10-28 コニカミノルタオプト株式会社 光学補償フィルムの製造方法
WO2011162291A1 (ja) * 2010-06-22 2011-12-29 富士フイルム株式会社 重合性組成物、高分子、及びフィルム
CN102899053B (zh) * 2012-10-13 2014-11-05 江苏和成显示科技股份有限公司 聚合性液晶组合物及其应用
KR101525458B1 (ko) * 2013-01-23 2015-06-03 애경화학 주식회사 열안정성이 우수하고 고복굴절률을 가지는 신규한 반응성 메조겐 화합물 및 그 제조방법
JPWO2015016296A1 (ja) * 2013-08-01 2017-03-02 富士フイルム株式会社 偏光板の製造方法
JPWO2015016297A1 (ja) * 2013-08-01 2017-03-02 富士フイルム株式会社 偏光板の製造方法
CN104339796B (zh) 2013-08-09 2018-03-02 住友化学株式会社 层叠体
TW201520612A (zh) * 2013-11-05 2015-06-01 Fujifilm Corp 偏光板及偏光板之製造方法
JP6756106B2 (ja) * 2016-01-08 2020-09-16 大日本印刷株式会社 光学フィルム及び画像表示装置
JP2017122864A (ja) * 2016-01-08 2017-07-13 大日本印刷株式会社 光学フィルム、画像表示装置、及び光学フィルムの製造方法
JP6756112B2 (ja) * 2016-01-25 2020-09-16 大日本印刷株式会社 光学フィルム及び画像表示装置
JP7329926B2 (ja) * 2018-02-14 2023-08-21 住友化学株式会社 積層体およびその製造方法
WO2024203224A1 (ja) * 2023-03-28 2024-10-03 富士フイルム株式会社 積層体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241610A (ja) * 2001-02-13 2002-08-28 Toyobo Co Ltd ポリアミド樹脂組成物
JP2003265889A (ja) * 2002-03-19 2003-09-24 Sanyo Electric Co Ltd 洗濯乾燥機
JP2004287416A (ja) * 2003-03-06 2004-10-14 Nitto Denko Corp 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP2005274909A (ja) * 2004-03-24 2005-10-06 Nitto Denko Corp 位相差板の製造方法およびそれにより製造される位相差板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373939B2 (ja) * 1993-05-20 2003-02-04 富士写真フイルム株式会社 光学異方素子、およびそれを用いた液晶表示素子
JPH0720434A (ja) * 1993-06-30 1995-01-24 Nippon Oil Co Ltd 液晶性高分子フィルムの製造方法
US5504603A (en) * 1994-04-04 1996-04-02 Rockwell International Corporation Optical compensator for improved gray scale performance in liquid crystal display
JP4260912B2 (ja) * 1997-12-26 2009-04-30 新日本石油株式会社 液晶表示装置
JP3824772B2 (ja) * 1998-03-24 2006-09-20 新日本石油株式会社 液晶表示装置
US5995184A (en) * 1998-09-28 1999-11-30 Rockwell Science Center, Llc Thin film compensators having planar alignment of polymerized liquid crystals at the air interface
JP2000321575A (ja) * 1999-05-06 2000-11-24 Canon Inc 液晶素子及びこれを備えた液晶装置
JP2001154018A (ja) * 1999-11-25 2001-06-08 Konica Corp 光学補償シートおよびそれを用いた液晶表示装置
JP2001249335A (ja) * 2000-03-08 2001-09-14 Canon Inc 液晶素子
JP2002182036A (ja) * 2000-04-06 2002-06-26 Fujitsu Ltd 視角補償フィルム及び液晶表示装置
JP2002020363A (ja) * 2000-07-06 2002-01-23 Fuji Photo Film Co Ltd 疎水性排除体積効果化合物
JP2002107733A (ja) * 2000-09-29 2002-04-10 Sony Corp 液晶表示素子
JP2003021838A (ja) * 2001-07-09 2003-01-24 Casio Comput Co Ltd 液晶表示装置
JP2003279957A (ja) * 2002-03-25 2003-10-02 Seiko Epson Corp 液晶表示装置及びその製造方法、並びに電子機器
JP4253259B2 (ja) * 2003-08-15 2009-04-08 富士フイルム株式会社 液晶表示装置
JP4606195B2 (ja) * 2004-03-08 2011-01-05 富士フイルム株式会社 液晶化合物、液晶組成物、重合体、位相差板、及び楕円偏光板
JP2005292781A (ja) * 2004-03-11 2005-10-20 Fuji Photo Film Co Ltd 光学補償素子、光学補償素子の製造方法、液晶表示装置及び液晶プロジェクタ
JP4328243B2 (ja) * 2004-03-16 2009-09-09 富士フイルム株式会社 液晶表示装置
JP2005275322A (ja) * 2004-03-26 2005-10-06 Dainippon Printing Co Ltd カラーフィルタ基板、液晶ディスプレイ用基材、及び液晶表示装置
JP2005283800A (ja) * 2004-03-29 2005-10-13 Nitto Denko Corp 楕円偏光板、光学フィルムおよび画像表示装置
JP2005321527A (ja) * 2004-05-07 2005-11-17 Fuji Photo Film Co Ltd 液晶表示装置
JP4385997B2 (ja) * 2004-05-31 2009-12-16 Dic株式会社 重合性液晶組成物及び光学異方体
JP2006058542A (ja) * 2004-08-19 2006-03-02 Fuji Photo Film Co Ltd 複屈折性フイルム及び液晶表示装置
JP2006267723A (ja) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 重合性組成物、光学異方性層及びその製造方法、光学補償素子、液晶表示装置及び液晶プロジェクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241610A (ja) * 2001-02-13 2002-08-28 Toyobo Co Ltd ポリアミド樹脂組成物
JP2003265889A (ja) * 2002-03-19 2003-09-24 Sanyo Electric Co Ltd 洗濯乾燥機
JP2004287416A (ja) * 2003-03-06 2004-10-14 Nitto Denko Corp 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP2005274909A (ja) * 2004-03-24 2005-10-06 Nitto Denko Corp 位相差板の製造方法およびそれにより製造される位相差板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054728B2 (en) 2014-12-01 2018-08-21 Samsung Electronics Co., Ltd. Composition for optical film and films and display device

Also Published As

Publication number Publication date
KR20090004903A (ko) 2009-01-12
TW200739214A (en) 2007-10-16
KR101310467B1 (ko) 2013-09-24
CN101416086A (zh) 2009-04-22
JP2007298967A (ja) 2007-11-15
TWI407212B (zh) 2013-09-01
CN101416086B (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2007122888A1 (ja) フィルムおよびフィルムの製造方法、並びにその利用
US12091603B2 (en) Liquid crystal composition, optically anisotropic layer, optical film, polarizing plate, and image display device
JP5531419B2 (ja) 化合物および該化合物を含む光学フィルム
KR20230008679A (ko) 적층체
JP5124027B2 (ja) 光学フィルム、その製造方法、およびこれを含む液晶表示装置
JP5451176B2 (ja) 光学フィルム、偏光板、表示装置及び光学フィルムの製造方法
JP4737629B2 (ja) 楕円偏光板およびそれを用いた画像表示装置
WO2007122889A1 (ja) フィルムおよびフィルムの製造方法、並びにその利用
JP5209223B2 (ja) フィルムおよびフィルムの製造方法、並びにその利用
JP2006163343A (ja) 楕円偏光板およびそれを用いた画像表示装置
JP2006268007A (ja) 楕円偏光板の製造方法および楕円偏光板を用いた画像表示装置
JP5649779B2 (ja) 液晶性組成物及び光学フィルム
US9671539B2 (en) Polarizing plate comprising an optical film including an alignment layer, an anisotropic layer, and an isotropic acrylic polymer layer and method for producing the same
JP7553474B2 (ja) 光吸収異方性層、積層体、光学フィルム、画像表示装置、バックライトモジュール
US20220214484A1 (en) Optically anisotropic layer, optical film, polarizing plate, and image display device
JP2010001284A (ja) 化合物及び光学フィルム
CN114341274B (zh) 组合物、偏振器层、层叠体及图像显示装置
WO2018198425A1 (ja) ホメオトロピック配向液晶フィルムおよびその製造方法
CN113874763A (zh) 图像显示装置的制造方法和偏振片转印用层叠体
WO2022202268A1 (ja) 視角制御システム、画像表示装置、光学異方性層、積層体
JP2020118730A (ja) 配向液晶フィルムおよびその製造方法、ならびに画像表示装置
JP2010138282A (ja) 重合性液晶組成物、位相差フィルム、画像表示装置用基板、及び液晶表示装置
JP6769921B2 (ja) 液晶配向フィルムの製造方法
JP7156294B2 (ja) 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置
JP2007133167A (ja) 光学補償素子及びその製造方法、液晶表示装置及び液晶プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087024127

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780012469.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738144

Country of ref document: EP

Kind code of ref document: A1