WO2007119559A1 - 移動先予測装置および移動先予測方法 - Google Patents

移動先予測装置および移動先予測方法 Download PDF

Info

Publication number
WO2007119559A1
WO2007119559A1 PCT/JP2007/056627 JP2007056627W WO2007119559A1 WO 2007119559 A1 WO2007119559 A1 WO 2007119559A1 JP 2007056627 W JP2007056627 W JP 2007056627W WO 2007119559 A1 WO2007119559 A1 WO 2007119559A1
Authority
WO
WIPO (PCT)
Prior art keywords
destination
candidate
circuitousness
route
current
Prior art date
Application number
PCT/JP2007/056627
Other languages
English (en)
French (fr)
Inventor
Takashi Tajima
Jun Ozawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2007544680A priority Critical patent/JP4088336B2/ja
Priority to US12/159,693 priority patent/US7630828B2/en
Publication of WO2007119559A1 publication Critical patent/WO2007119559A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3617Destination input or retrieval using user history, behaviour, conditions or preferences, e.g. predicted or inferred from previous use or current movement
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096877Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement
    • G08G1/096888Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement where input information is obtained using learning systems, e.g. history databases

Definitions

  • the present invention relates to a movement destination prediction apparatus that predicts a movement destination of a moving object, and more particularly to a technique for predicting a movement destination without depending on the presence or absence of a movement destination history.
  • Patent Document 2 predicts a moving destination using the moving direction and the degree of coincidence of the direction to the predicted destination at the starting position.
  • Patent Document 1 JP-A-7-83678
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-266562
  • Patent Document 2 there is a method of predicting the destination of movement based on the degree of coincidence force between the moving direction of the moving body and the starting direction force.
  • the moving body Even if the destination is in the north direction, if there is a river in the north, the moving body must head east or west to pass the bridge.
  • the moving body cannot move in the direction where the destination exists due to the structure of the road, so there is a problem that the use of the moving direction alone is not sufficient for predicting the destination.
  • a destination prediction apparatus is a destination prediction apparatus that predicts a destination, and includes a plurality of points on a map and paths between the plurality of positions.
  • Map information storage means for storing map information including at least, starting position acquisition means for acquiring the starting position of the moving object, current position acquiring means for acquiring the current position of the moving object, and the acquired current position Based on a destination candidate position acquisition unit that acquires from the map information storage unit the positions of a plurality of destination candidates that can be a destination of the moving object, and a position of the destination candidate from the departure position including the current position.
  • the destination prediction apparatus of the present invention predicts a destination by using the circuitousness. By using the circuitousness, it is possible to predict the destination of a moving object even when there is no destination history.
  • FIG. 1 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an example of a destination candidate acquired by a destination candidate position acquisition unit.
  • FIGS. 3 (a) and 3 (b) are diagrams showing examples of road information stored in a map information storage unit.
  • FIG. 4 is a diagram showing an example of a current position and a destination candidate position.
  • FIG. 5 is a diagram showing an example in which a route cost calculation unit calculates a route cost for a destination candidate A store.
  • FIG. 6 is a diagram showing an example in which the route cost calculation unit calculates route costs for destination candidates B and C.
  • FIG. 7 is a diagram illustrating an example in which the circuitousness calculation unit calculates the circuitousness.
  • FIG. 8 is a diagram showing an example of a current position and a destination candidate position.
  • FIG. 9 is a diagram illustrating an example in which the circuitousness calculation unit calculates the circuitousness.
  • FIG. 10 is a diagram showing an example of providing information related to the destination predicted by the information providing unit.
  • FIG. 11 is a flowchart showing an example of the operation of the movement destination prediction apparatus in the first embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a range in which there is a destination candidate as a destination for which the circuitous force is also calculated.
  • FIG. 13 is a block diagram showing a configuration of a movement destination prediction apparatus in Modification 1 of Embodiment 1 of the present invention.
  • Figs. 14 (a) and 14 (b) are diagrams showing examples of road information stored in the map information storage unit.
  • FIG. 15 is a diagram showing an example of a current position, a destination prediction candidate position, and an event occurrence position.
  • FIG. 16 is a diagram illustrating an example in which the circuitousness calculation unit calculates the circuitousness.
  • FIG. 17 is a diagram illustrating an example in which a distance threshold calculation unit calculates a distance threshold.
  • FIG. 18 is a diagram showing an example in which the distance restriction calculating unit removes the predicted movement destination by the distance and the distance threshold.
  • Figure 19 shows the prediction based on the position of the predicted destination and the range surrounded by the wide road. It is a figure which shows the example which removes a movement destination.
  • FIG. 20 is a flowchart showing an example of the operation of the movement destination prediction apparatus in the first modification of the first embodiment of the present invention.
  • FIG. 21 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 2 of the present invention.
  • FIGS. 22 (a) and 22 (b) are diagrams showing examples of destination candidates acquired by the traffic volume detection position acquisition unit.
  • FIG. 23 is a diagram showing an example of a current position and a traffic volume detection position.
  • FIG. 24 is a diagram showing an example in which the route cost calculation unit calculates the route cost for the destination candidate ID “002”.
  • FIG. 25 is a diagram showing an example in which the route cost calculation unit calculates the route cost for the destination candidate ID “002”.
  • FIG. 26 is a diagram illustrating an example of the circuitousness calculated by the circuitousness calculating unit.
  • FIG. 27 is a diagram illustrating an example in which a movement destination prediction unit predicts a movement destination.
  • FIG. 28 is a diagram illustrating an example in which the circuitousness calculation unit calculates the circuitousness.
  • FIG. 29 is a diagram showing an example in which information related to the destination predicted by the information providing unit is provided.
  • FIG. 30 is a flowchart showing an example of operation of the movement destination prediction apparatus in the second embodiment of the present invention.
  • FIG. 31 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 3 of the present invention.
  • FIG. 32 is a diagram showing an example of destinations stored by the destination storage unit.
  • FIG. 33 is a flowchart showing an example of operation of the movement destination prediction apparatus in the third embodiment of the present invention.
  • FIG. 34 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 4 of the present invention.
  • FIG. 35 is a diagram showing an example of a set destination and a circuitousness.
  • FIG. 36 is a diagram illustrating an example in which the circuitousness calculation unit calculates circuitousness.
  • FIG. 37 is a diagram showing an example of a current position and a destination candidate position.
  • FIG. 38 is a diagram illustrating an example in which information related to the waypoint predicted by the information providing unit is provided.
  • FIG. 39 is a flowchart showing an example of operation of the movement destination prediction apparatus in the fourth embodiment of the present invention.
  • FIG. 40 is a block diagram showing a configuration of the movement destination prediction apparatus in Modification 2 of Embodiment 4 of the present invention.
  • FIG. 41 is a diagram showing an example of destinations accumulated by the destination accumulation unit.
  • FIG. 42 is a diagram showing examples of waypoint candidates.
  • FIG. 43 is a flowchart showing an example of operation of the movement destination prediction apparatus in Modification 2 of Embodiment 4 of the present invention.
  • FIG. 44 is a block diagram showing a configuration of a movement destination prediction apparatus in Modification 5 of Embodiment 4 of the present invention.
  • FIG. 45 is a diagram illustrating an example in which the traffic jam avoidance determination unit determines whether or not there is traffic jam.
  • FIG. 46 is a flowchart showing an example of operation of the movement destination prediction apparatus in the second modification of the fourth embodiment of the present invention.
  • FIG. 47 is a block diagram showing a configuration of a movement destination prediction apparatus in Embodiment 5 of the present invention.
  • FIG. 48 is a diagram illustrating an example in which the circuitousness calculation unit calculates the circuitousness.
  • FIG. 49 is a diagram showing an example in which the information providing unit provides information related to the set destination.
  • FIG. 50 is a diagram showing an example of canceling the destination setting.
  • FIG. 51 is a flowchart showing an example of operation of the movement destination prediction apparatus in the fifth embodiment of the present invention.
  • FIG. 52 is a diagram showing an example of a circuitousness rank.
  • FIG. 53 is a block diagram showing a configuration of the movement destination prediction apparatus in Modification 3 of Embodiment 5 of the present invention.
  • FIG. 54 is a block diagram showing a configuration of a destination setting method acquisition unit.
  • FIG. 55 is a diagram showing an example in which a map character string acquisition unit acquires a map character string. ⁇ 1—
  • Figure 56 shows an example of landmark information stored in the map information storage unit.
  • FIG. 57 is a flowchart showing an example of operation of the movement destination prediction apparatus in the third modification of the fifth embodiment of the present invention.
  • Figure 1 shows the configuration of the destination prediction device of this embodiment. 1 includes a current position acquisition unit 101, a departure position acquisition unit 102, a movement destination candidate position acquisition unit 103, a map information storage unit 104, a route cost calculation unit 105, a circuitousness calculation unit 106, and a movement destination. A prediction unit 107 and an information providing unit 108 are provided.
  • the destination prediction apparatus is “a destination prediction apparatus that predicts a destination, and includes a map that includes at least the positions of a plurality of points on the map and paths between the plurality of positions. Based on the acquired current position, the map information storage means for accumulating information, the departure position acquisition means for acquiring the starting position of the moving object, the current position acquisition means for acquiring the current position of the moving object, A destination candidate position acquisition unit that acquires the positions of a plurality of destination candidates that can be destinations of the destination from the map information storage unit, and a route from the start position including the current position to the position of the destination candidate.
  • the circuitousness calculating means for calculating the circuitousness that is the amount of deviation from the route of the minimum route cost from the starting position to the position of the destination candidate, and calculated among the destination candidates
  • Minimum circuitousness Destination prediction apparatus comprising destination prediction means for predicting a destination candidate to be a destination
  • the map information storage unit 104 is a “map information storage unit”, the departure position acquisition unit 102 is a “departure position acquisition unit”, and the current position acquisition unit 101 is a “current position acquisition unit”.
  • the position acquisition unit 103 corresponds to “movement destination candidate position acquisition unit”, the circuitousness calculation unit 106 corresponds to “circuitousness calculation unit”, and the movement destination prediction unit 107 corresponds to “movement destination prediction unit”.
  • the movement destination prediction apparatus is configured to identify a path between the current position and the position of the movement destination candidate using the map information, and is a path cost for the identified path.
  • the route cost for the identified route is determined by using the map information to identify the route between the departure position and the current location using the current candidate route cost calculation means for calculating the route cost between locations. Expressing and expressing the path cost between the current position of departure and the path cost calculation means between the current position and the map information, the path between the departure position and the position of the destination candidate is identified, the identified A route cost calculation means for calculating a route cost between departure candidate positions, which is a route cost for a route, and the destination candidate position acquisition means is within a predetermined range from the current position of the mobile object.
  • the position of a certain destination candidate is acquired, and the path cost calculation means between the current candidate positions, the path cost calculation means between the current departure positions, and the path cost calculation means between the departure candidate positions are each the path cost between the current candidate positions.
  • the path cost between the starting current position and the path cost between the starting candidate positions are calculated using any one of the distance of the path from the starting point force to the end point and the time required to move from the starting point to the end point, and the circuitousness
  • the calculating means calculates the circuitousness by subtracting the route cost between departure candidate positions from the sum of the route cost between current candidate positions and the route cost between departure current positions.
  • the route cost calculation unit 105 includes “current candidate position route cost calculation means”, “departure current position route cost calculation means”
  • the destination candidate position acquisition unit 103 corresponds to the “destination candidate position acquisition unit”
  • the circuitousness calculation unit 106 corresponds to the “circuitousness calculation unit”. Equivalent to.
  • Current position acquisition unit 101 is used for GPS antenna or IC tag, base station communication, image recognition, etc.
  • the current location of the moving object is detected. For example, east longitude "134. 5. 59. 9", north latitude "34. 5. 15
  • the departure position acquisition unit 102 acquires a departure position at which the moving body starts moving. For example, the position closest to the current time among the positions where the moving body has not moved for a certain time or longer is set as the departure position. For location information, information on the longitude and latitude of the departure location is detected, as in east longitude “134. 5. 59.9” and north latitude “34. 5. 15. 6”. The departure location may still be a building or landmark such as a store where the mobile was last inside. Also, if the moving body is a car, it should be the last position where the engine was hung. The position where the number of passengers was last changed is also good!
  • the movement destination candidate position acquisition unit 103 acquires the position of the movement destination candidate of the moving body as shown in FIG. For example, landmarks stored in the map information storage unit 104 whose current position force of the moving body is also within a predetermined range are set as moving destination candidates. Specifically, the distance between the landmark accumulated in the map information accumulation unit 104 and the current location is calculated, and only landmarks whose distance is less than a predetermined value, for example, 10 km or less, are extracted. In the case of Figure 2, destination candidates “A store” (4.8 km), “B store” (3 Okm), and “C store” (5.3 km) that are less than 10 km from the current location are extracted.
  • the map information storage unit 104 stores road information such as a position and a link distance. For example, as shown in FIG. 3, node positions, connection nodes, and link distances connecting nodes are accumulated.
  • the node ID “001” in Figure 3 has a node position of longitude “134. 3. 0.9.”, A latitude of “34. 6. 3. 6”, and node IDs “002” “003” “004” Connect with “005”!
  • the link ID “00 1” is a link connecting the start node ID “001” and the end node ID “002”, and indicates that the link distance is “lk m”.
  • the locations of landmarks such as shops and sights are accumulated.
  • the route cost calculation unit 105 calculates a route cost using road information such as node position, connection node, and link distance accumulated in the map information accumulation unit 104.
  • the minimum route cost between the current position acquired by the current position acquisition unit 101 and the departure position acquired by the departure position acquisition unit 102, the current position acquired by the current position acquisition unit 101 and the destination candidate position acquisition unit 103 Calculate the minimum route cost between the acquired destination candidate position and the minimum route cost between the departure position acquired by the departure position acquisition unit 102 and the destination candidate position acquired by the destination candidate position acquisition unit 103.
  • the route cost refers to the degree of burden of the user who works hard when moving along a certain route.
  • the route cost is the time required for moving, the moving distance, the psychological load, etc., and the distance of the route between the positions such as the starting position, the current position, and the destination candidate position, when traveling along the route
  • the required time, road type, road regulation information, number of right and left turns, etc. are calculated.
  • the total road distance that passes when moving between positions is taken as the road cost.
  • the minimum route cost used when calculating the circuitousness is the one with the lowest route cost among a plurality of routes considered when moving between positions. For example, as shown in Fig. 4, when the current position, departure position, destination candidate position, and map information have been acquired, the route cost between the current position and departure position is "lkm", as shown in Fig. 5.
  • the route cost between the previous departure position and the candidate position is “6 km”, and the route cost between the current position and the candidate position is “5 km”.
  • the route cost between the departure position and the candidate position is “4 km”
  • the route cost between the current position and the candidate position is “3 km”
  • the destination candidate “C” The route cost between the departure position and the candidate location for the “store” is “4 km”
  • the route cost between the current location and the candidate location is “8 km” because it passes the route indicated by the broken line.
  • the circuitousness calculation unit 106 calculates the circuitousness from the route cost calculated by the route cost calculation unit 105.
  • the circuitousness is the amount of deviation from the path of the minimum path cost to the position of the starting position force destination candidate, including the current position, to the starting position force destination position. In the form, it is the difference between the cost of the moving route when it reaches the destination through the route that the mobile object is currently passing, and the minimum route cost from the starting position to the destination.
  • the value obtained by subtracting the route cost between departure candidate positions from the sum of the route cost between current departure positions and the route cost between current candidate positions is the circuitousness. For example, when route costs are calculated as shown in Figs. 4, 5, and 6, as shown in Fig.
  • the circuitousness for the destination candidate ⁇ Store A '' is the current route cost between the starting positions ⁇ lkm '' and the current The difference between the route cost between candidate locations “5km”, “6km”, and the route cost between departure candidate locations “6km” is “Okm”.
  • the circuitousness for the destination candidate “B store” is “Okm” (lkm + 3km ⁇ 4km)
  • the circuitousness for the destination candidate “C store” is “5 km” (lkm + 8km ⁇ 4km).
  • the movement destination prediction unit 107 uses the circuitousness calculated by the circuitousness calculation unit 106 to move the moving object. Predict. Moving objects tend to move so as to reduce the route cost that is required for movement when aiming at the destination. Therefore, the circuitousness that is the cost difference with respect to the minimum cost is also reduced. Therefore, the movement destination with the smallest circuitousness is set as the movement destination. For example, in Fig. 4, “Store A” (circumference Okm) or “B store” (circumference Okm) with the lowest circuitousness is the destination. Further, assume that the moving body further moves and becomes as shown in FIG. At this time, as shown in Fig.
  • the information providing unit 108 provides information to the user by using the screen or voice of the destination prediction device according to the destination predicted by the destination prediction unit 107. For example, as shown in FIG. 10, when the destination of the moving object is predicted to be “B store”, traffic information and recommended route to “B store” and sale information of “B store” can be provided.
  • the destination can be predicted by using the circuitousness, it is possible to provide a route to the predicted destination, store information on the destination and the route, traffic information, and traffic jam information. It is possible to provide and filter provided information.
  • the departure position acquisition unit 102 acquires the departure position from which the mobile object has started moving (step S801).
  • the current position acquisition unit 101 acquires the current position by using GPS or the like (step S802).
  • the destination candidate position acquisition unit 103 acquires a landmark position whose current position force is also within a predetermined range from the map information storage unit 104 (step S803).
  • the route cost calculation unit 105 uses the road information stored in the map information storage unit 104 to determine the route cost between the current position and the departure position, the route cost between the current position and the destination candidate position, A route cost between the position and the destination candidate position is calculated (step S804).
  • the circuitousness calculation unit 106 calculates the circuitousness from the route cost calculated by the route cost calculation unit 105 (step S805).
  • the movement destination prediction unit 107 predicts the movement destination of the moving object from the circuitousness calculated by the circuitousness calculation unit 106 (step S806).
  • the information providing unit 108 provides information to the user according to the movement destination predicted by the movement destination prediction unit 107 (step S807).
  • the calculation of the circuitousness in the circuitousness calculation unit 106 is performed at a regular timing.
  • a terminal such as a car navigation system
  • multiple programs such as scrolling a map as the vehicle moves, detecting a position using a GPS antenna, and acquiring VICS information are running simultaneously.
  • the timing for calculating the circuitousness may be calculated in advance. For example, as in the present embodiment, when the destinations are two candidates “A store” and “B store”, the route from the current point to each candidate position is stored. Next, the intersection where the route branches is detected in the accumulated routes. When the vehicle passes through these intersections, it can be determined whether the vehicle force S “Store A” or “Store B” is going. Therefore, when passing through these intersections, it becomes possible to calculate the circuitousness described in this embodiment and estimate the destination.
  • the force that narrows down the destination candidates to those with the smallest circuitousness is not necessarily the minimum circuitousness.
  • the circuitousness is less than the predetermined threshold (first threshold). It is good also as narrowing down.
  • the circuitousness is one or less than a preset threshold (first threshold) or Multiple destination candidates may be predicted as the destination. In particular, when a travel destination is predicted to provide road traffic information or commercial information, the user does not necessarily want only one travel destination information. The user may be wondering where to go from among multiple destinations.
  • the threshold value may be a fixed value or a user-settable value.
  • the destination candidates may be selected in order from the smallest circuitousness so that the number of destination candidates becomes a preset number (for example, three).
  • the number of destinations to be predicted may be a fixed value, a value that can be set by the user, or a value that varies automatically depending on the user's situation. ,.
  • the amount of information that the user wants depends on the user's situation. For example, a user can see a lot of information while the vehicle is stopped, but can see only a small amount of information while driving. Providing a lot of information to the user while traveling will hinder driving. Therefore, the number of destinations to be predicted may be varied depending on the user's situation, the destinations may be selected until the predetermined number is reached in ascending order of circuitousness, and information on the selected destinations may be provided. This makes it possible to provide information according to the situation.
  • the destination to be predicted based on the circuitousness may be a temporary destination that is not the final destination.
  • a plurality of destination candidates selected based on the circuitousness are determined as final destinations, and a plurality of destination candidates selected based on the circuitousness are not used as provisional destinations.
  • the final destination may be determined from the temporary destination using another destination prediction method, and information regarding the final destination may be provided.
  • Another destination prediction method is a method of predicting a destination using a past history as in Patent Document 1, for example. For example, from the “A 'store”, “ ⁇ 'store”, “C'store” t, and temporary destinations selected by circuitousness, the temporary destination that the user has visited most times in the past is selected. Determine the final destination.
  • destination candidates that cannot be destinations can be removed from both viewpoints of circuitousness and other movement prediction methods. Therefore, it is possible to provide the user only with information on places where there is a sufficient possibility of being a destination. For this reason, it is possible to prevent a user's operation and other tasks from being obstructed because unnecessary information is given to the user.
  • the circuitousness is determined from the sum of the route cost between the current departure positions and the route cost between the current candidate positions, regardless of the distance to the destination candidate position and the route cost.
  • the value obtained by subtracting the route cost between the grounds was taken as the circuitousness.
  • This calculation method is good for a case where the threshold value of the distance range to the candidate position from the current position when the movement destination candidate position acquisition unit 103 selects the movement destination candidate, such as a user who does not go too far, is small.
  • the destination candidate position acquisition unit 103 such as a user who may go far away, should increase the distance range threshold from the current position to the candidate position when selecting the destination candidate.
  • Predicted candidate positions are calculated with a large circuitousness even if they take a route that is different from the shortest route cost. There is a problem of being predicted as a destination. Therefore, for users who may go far away, the degree of circuitousness may be normalized by the route cost to the starting position and the destination candidate position. In other words, the circuitousness is made inversely proportional to the distance to the candidate position and the route cost, and the circuitousness is made smaller as the distance to the candidate position and the route cost are larger. Specifically, the sum of the path cost between the current candidate positions and the path cost between the current departure positions is proportional to the value obtained by subtracting the path cost between the candidate departure positions and inversely proportional to the path cost between the departure candidate positions.
  • the starting point power is not the route cost to the candidate position, but the distance from the starting point to the candidate position, or the value divided by the required time to the starting point candidate position (a value inversely proportional to these distances or the required time) It may be a degree.
  • the destination is predicted by calculating the circuitousness based on the starting position, the current position, and the destination candidate position.
  • the circuitousness it is possible to limit the range where the destination candidate may be the destination as shown in FIG.
  • the circuitousness with respect to the destination candidate is constant, the range where the destination may exist is the same regardless of the distance to the destination candidate. Therefore, as shown in Fig. 12, when the departure point is north-west, moving south, moving east, and arriving at the current location, if the destination is east from the current location, no matter how far away the destination is Can be a candidate.
  • the range where the destination candidate may be the destination can be further limited by the distance to the destination candidate.
  • the starting position force of the travel route to the current position, wide road !, narrow from the road! The destination may be predicted based on the presence / absence of the event and the location of the event, and the location of the event and the distance to the destination candidate.
  • FIG. 13 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the components shown in the first embodiment, and the description thereof is omitted.
  • each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • This destination prediction apparatus detects "a road width acquisition unit that acquires a road width at the current position of the mobile body, and a position where the road width is smaller than the acquired road width is detected as an event occurrence position.”
  • An event occurrence detection means that is a region surrounded by a road having a road width larger than the event occurrence location and that is not in an area including the event occurrence location, and a destination candidate after the event occurrence location
  • a distance limiting unit that is excluded from candidates, and the destination prediction means predicts a destination from among destination candidates in the area surrounded by a road having a road width larger than the event occurrence position.
  • the event occurrence detection unit 5110 corresponds to “road width acquisition means” and “event occurrence detection means”, and the distance threshold calculation unit 5113 and the distance restriction unit 5114 are referred to as “distance restriction means”. Corresponds to the destination prediction means ".
  • the map information storage unit 5104 stores road information such as position, width, and link distance. For example, as shown in Fig. 14, node positions, connecting nodes, link distances connecting nodes, and road widths of links are accumulated.
  • Node ID “001” in FIG. 14 has a node position of longitude “134.3.0.9”, latitude force S “34. 6.3.6”, and node ID “002” “003” “004” "" 005 "is connected.
  • the link ID “001” is a link connecting the start node ID “001” and the end node ID “002”, the road width is “5 m”, and the link distance is “lkm”.
  • the location of the store, famous place, and! /, And the landmark are stored.
  • the road width storage unit 5109 stores the road width calculated by the event occurrence detection unit.
  • the event occurrence detection unit 5110 acquires the width of the road at the current position acquired by the current position acquisition unit from the map information storage unit 5104, for example, every second.
  • the road width at the current location is less than the predetermined value and the road width stored in the road width storage unit 5109 is greater than or equal to the predetermined value, that is, when the road width is wide and the road has entered the narrow road.
  • the event occurrence and the event occurrence position are detected and stored in the event position storage unit 5111. Then, the latest road width calculated in the event storage unit 5111 is stored.
  • the boundary value of the road width used to determine the occurrence of an intrusion event on a wide, narrow road or narrow road is, for example, 5.5 m, which is the boundary between one and two lanes.
  • the current road width is calculated every second, and when the road width is 5.5 m or more, the road width is less than 5.5 m, the occurrence of the event is detected, and the current position when it occurs is determined.
  • the event position storage unit 5111 stores the presence / absence of an intrusion event and the occurrence position of a wide road from the departure position to the current position, narrow from the road, .
  • the movement destination prediction unit 5107 also predicts the movement destination of the moving object based on the circuitous force calculated by the circuitousness calculation unit 106.
  • Moving objects tend to move so as to reduce the route cost that is required for movement when aiming at the destination. Therefore, the circuitousness, which is the cost difference with respect to the minimum cost, becomes small. Therefore, all destinations whose circuitousness is a predetermined value, for example, less than 1 km, are set as destinations. For example, if there are “A store”, “B store”, and “F store” as destination candidates as shown in FIG. 15, if the circuitousness is detected as shown in FIG. (Detour Okm) or “F store” (circumference Okm) is the destination.
  • the distance calculation unit 5112 determines whether or not the event occurrence is stored in the event position storage unit 5111 from the event occurrence position with respect to one or a plurality of movement destinations predicted by the movement destination prediction unit 5107. Calculate the predicted distance to the destination.
  • the distance threshold calculation unit 5113 sets the distance threshold used when the distance limit unit 5114 removes the destination based on the distance to the predicted destination when the event occurrence is stored in the event position storage unit 5111. calculate. Event location stored in event location storage unit 5111 and map information storage unit 5104 “node position”, “connection node”, “link distance”, “road” The threshold value is calculated using road information such as “road width”. Specifically, the event occurrence position force is calculated in all directions by calculating the shortest distance to the road with a threshold of “5.5 mj or more” for distinguishing roads with a wide “road width” from narrow roads.
  • the threshold value is the value when the distance is the largest in all directions, for example, if the relationship between the event occurrence position and the road is as shown in Fig. 17, the road is “5.5” or higher.
  • the shortest distance to is between “Okm” and “8km”. Therefore, the maximum value “8 km” is set as the threshold value.
  • the distance limit unit 5114 has the distance calculation unit 5112 for the single or multiple destinations predicted by the destination prediction unit 5107 when the event occurrence is stored in the event position storage unit 5111. If the calculated event occurrence position force distance is greater than or equal to the threshold value calculated by the distance threshold value calculation unit 5113, it is removed from the movement destination, and only those less than the threshold value are output to the information providing unit 108 as predicted movement destinations. This is because the road to the destination is limited when movement to a small road occurs. For example, as shown in FIG. 18, the destination predicted by the destination prediction unit 5107 is store A (distance 4 km calculated by the distance calculation unit 5112) and store F (distance 9 km calculated by the distance calculation unit 5112).
  • the event occurrence detection unit 511 0 After acquiring the starting position and the current position as in the first embodiment, the event occurrence detection unit 511 0 detects the road width of the current position (step S5703). If the event occurrence detection unit 5110 determines that an event has occurred based on the road width (step S5704), and the previous road width stored in the road width storage unit 5109 is greater than or equal to the threshold value, and the road width at the current position is less than the threshold value, If (Yes in step S5705), step S5705 [Proceed, if not! / ⁇ , ⁇ (No in step S5705), go to step S5706.
  • the event occurrence detection unit 5110 determines that the event has occurred, and that the event has occurred and the event occurrence position. Stored in the event position storage unit 5111 (step S5705). Then, the process proceeds to step S5706. Thereafter, the road width storage unit 5109 stores the road width at the current position (step S5706). After that, as in Embodiment 1, the movement destination candidate position acquisition unit 103 acquires a landmark position whose current position force is also within a predetermined range from the map information storage unit 104 (step S803).
  • the route cost calculation unit 105 uses the road information accumulated in the map information accumulation unit 104 to determine the route cost between the current position and the departure position, the route cost between the current position and the destination candidate position, and the departure A route cost between the position and the destination candidate position is calculated (step S804).
  • the circuitousness calculation unit 106 calculates the circuitousness from the route cost calculated by the route cost calculation unit 105 (step S805).
  • the movement destination prediction unit 107 predicts the movement destination of the moving object from the circuitousness calculated by the circuitousness calculation unit 106 (step S806).
  • the distance calculation unit 5112 determines whether or not event occurrence is stored in the event position storage unit 5111 (step S5707), and if event occurrence is stored (Yes in step S5707).
  • step S5711 Go to step S5708. If event occurrence is not stored (No in step S5707), the process proceeds to step S5711.
  • the distance calculation unit 5112 calculates the distance to the destination predicted by the destination prediction unit 107 for the event generation position force stored in the event position storage unit 5111 (step S5708).
  • the distance threshold calculation unit 5113 calculates a threshold from the event occurrence position stored in the event position storage unit 5111 and the road information stored in the map information storage unit 5104 (step S5709).
  • the distance limiting unit 5114 removes destinations in which the distance calculated by the distance calculation unit 5112 is greater than or equal to the threshold calculated by the distance threshold calculation unit 5113 from the destinations predicted by the destination prediction unit 107 (step S5710).
  • the information providing unit 108 uses the destination predicted by the destination prediction unit 107 excluding the destination removed by the distance limiting unit 5114. To provide information to the user (step S5711).
  • the predicted movement destination is removed based on the distance from the event detection position.
  • the predicted travel destination is removed, and when there is no road with a road width greater than or equal to the threshold, the prediction is performed.
  • the destination may be the destination. That is, as shown in FIG. 19, if the position of the predicted movement destination is not within the range surrounded by the road having a large road width around the event detection position, the predicted movement destination is removed. As a result, it is possible to more efficiently remove a destination that can travel along a route with a large road width for a long time than when entering a road with a small road width at an event occurrence position.
  • the distance to the destination can be limited when moving to a road with a large road width and a small road power.
  • the event occurrence detection unit 51 10 detects the occurrence of an event only when another vehicle has entered the road with a small road width or a road with a wide road width, or has entered a road with a small road width. .
  • the event occurrence detection unit 5110 detects the occurrence of an event when a road with a large road width also enters a road with a small road width and a traffic jam occurs in the traveling direction of the moving object.
  • the moving destination candidate of the moving object is the landmark accumulated in the map information. Had acquired.
  • the traffic volume detection position of the moving body may be the destination candidate.
  • the traffic detection position is a point where a beacon is installed, for example, near the exit of a major highway intersection or on a highway. Beacons can be infrared communication, quasi-microwave or
  • This traffic volume detection position is a place where mobile objects generally pass and is likely to be a destination. In addition, since moving objects are likely to pass through places with high traffic volumes, predictions can be made more accurately by using detected traffic volumes.
  • FIG. 21 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the components shown in the first embodiment, and the description thereof is omitted.
  • each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the destination prediction apparatus states that "the destination candidate position acquisition means determines the traffic destination where the traffic information provider detects the traffic volume of the moving body as the destination candidate. As a supplement, the location of the destination candidate is obtained, and the destination prediction device further obtains traffic volume for each traveling direction at each point of the traffic volume detection location from the traffic information provider.
  • the current candidate position-to-location route cost calculating means calculates the current candidate position-to-position route cost according to the current traveling direction of the moving body, and The path cost calculation means between the departure candidate positions is calculated for each direction in which the vehicle passes, and the path cost between the departure candidate positions is calculated for each direction in which the mobile body passes through each point of the traffic detection location.
  • the destination prediction means is the circuitous circuit.
  • the acquisition unit 903 corresponds to “destination candidate position acquisition unit” and “traffic volume acquisition unit”
  • the route cost calculation unit 905 includes “current candidate position route cost calculation unit” and “departure candidate position route cost calculation unit”.
  • the movement destination prediction unit 907 corresponds to “movement destination prediction means”.
  • the current position acquisition unit 901 detects the position and orientation of the current location of the moving object by using a GPS antenna or IC tag, base station communication, image recognition, and the like. It detects the longitude and latitude information of the moving object such as east longitude "134. 5. 59.9", north latitude "34.5. 15. 6", direction "295 degrees”. The direction is the true north direction angle, the true north direction is 0 degrees, and the clockwise direction from the true north direction is positive.
  • the departure position acquisition unit 902 acquires the departure position and the direction in which the moving body starts moving. For example, if the moving body is a car, it is the location where the engine was last started. Detect longitude and latitude information of the moving object such as “134. 5. 59.9” east longitude, “34. 5. 15. 6” north latitude, and “295 degrees” orientation.
  • the starting position and orientation may be the location where the mobile unit has been stopped for a predetermined time or more, the location of the mobile unit in a building, such as a store where the mobile unit was last inside, or the direction.
  • the traffic volume detection position accumulating unit 909 accumulates the position where the traffic volume can be detected and the magnitude and direction of the detected traffic volume. For example, in the traffic detection position with ID “001” in Figure 22, the position is “134. 3. 0.9.” And the north latitude is “34. 6. 3. 6”. The direction (direction angle) at the detection position is “ The size to “0 degrees” is “50 cars Z hours”.
  • the latest traffic volume information may be obtained from VICS radio waves and network link power.
  • the traffic volume detection position acquisition unit 903 acquires a position at which a traffic volume that is a candidate for the destination of the moving object can be detected, and the size and direction of the detected traffic volume. As shown in FIG. 7, the traffic volume information of the traffic volume detection position within the predetermined range of the current position force, for example, within 10 km, is acquired from the traffic volume detection position accumulation unit 909.
  • the map information storage unit 904 stores road information such as position and link distance. For example, node positions, connection nodes, and link distances connecting nodes are accumulated.
  • the route cost calculation unit 905 calculates a route cost using road information such as node positions, connection nodes, and link distances accumulated in the map information accumulation unit 904.
  • Current position acquisition unit 901 is the minimum route cost between the current position acquired by the departure position acquisition unit 902 and the departure position acquired by the departure position acquisition unit 902.
  • the current position acquired by the current position acquisition unit 901 and the traffic volume detection position acquisition unit 9 03 are The minimum route cost between the acquired destination candidate position and the starting position acquired by the starting position acquisition unit 902 and the destination candidate position acquired by the traffic detection position acquiring unit 903. Calculate the minimum path cost.
  • the route cost is calculated based on the distance of the route between the departure position, current position, destination candidate position, time required for traveling along the route, road type, road regulation information, number of right and left turns, etc. Calculation is performed in consideration of the direction of each position. Specifically, the route cost is the sum of the road distances that pass when moving between positions and the sum of the number of right and left turns when moving. For example, it is assumed that the route cost increases by 1 km for each right turn and left turn. As shown in Fig. 23, when the current location and orientation, departure location and orientation, destination candidate location and orientation, and map information are acquired, the route cost between the current departure locations is "lkm” as shown in Figs. 24 and 25. (Lkm + right turn left turn 0 times), route cost between departure candidate positions for destination candidate ID "002" is "9km” (6km + right turn 3 times), and current route cost between candidate positions is "8km” (5km + right turn) Turn left 3 times).
  • the destination prediction unit 907 has a circuitousness calculated by the circuitousness calculation unit 106 and the traffic volume detection position acquired by the traffic volume detection position acquired by the traffic volume detection position. Predict the destination. Specifically, a destination candidate having the largest medium traffic volume that has a circuitousness less than or equal to a predetermined value (for example, setting of a detour route allowable distance for traffic jams, in the example, 1 km) is set as the destination. For example, in the case of FIG.
  • a predetermined value for example, setting of a detour route allowable distance for traffic jams, in the example, 1 km
  • the destination candidate whose circuitousness is less than the predetermined value lkm is ID “001” (circumference Okm) ID “002” (circumference Okm), ID “004” ( The circuitousness is Okm) and ID is “005” (circumference Okm).
  • ID “004” with the largest traffic volume (when the traffic volume is 400 Z) is the destination.
  • the circuitousness calculation unit 106 calculates the circuitousness from the route cost calculated by the route cost calculation unit 105 as in the first embodiment.
  • the difference between the route cost between the current departure location and the route cost between the current candidate locations and the difference between the route cost between the departure candidate locations is the circuitousness.
  • the circuitousness for the destination candidate “002” is the sum of “9 km” of the route cost between the current departure locations “lkm” and the route cost between the current candidate locations “8 km”, and the route cost between the departure candidate locations “9 km”.
  • the difference is “0k mj.
  • the information providing unit 908 provides information to the user by the screen or voice of the destination prediction device according to the destination predicted by the destination prediction unit 907. For example, as shown in FIG. Is predicted to pass through the traffic detection position with ID “004” in the direction of “180 degrees”, the route is within the predetermined range until it passes through ID “0 04” in the direction of “180 degrees”. Traffic information and recommended routes can be provided.
  • the information providing unit 908 can provide the user with a degree of traffic jam on a route in which the vehicle is likely to travel in the future by calculating the traffic jam level at each point. It becomes possible. For example, it becomes possible to provide information such as “the traffic jam at the intersection that will be passed is 500 M”. However, if the traffic jam distance is longer than a predetermined value, the user's vehicle may already be in the traffic jam. Therefore, if the user's vehicle is already in a traffic jam, it is calculated from the average running speed of the vehicle, etc., and if it is already in a traffic jam, to provide traffic jam information, It is possible to change the method of expressing traffic jam information.
  • traffic congestion occurs when the average speed is 10 km or less for ordinary roads and when the average speed is 20 km or less for expressways.
  • the user's vehicle is currently congested, it is possible to intuitively understand the degree of traffic jam without knowing the name of the intersection.
  • the departure position acquisition unit 902 acquires the departure position and direction from which the moving body starts moving (step S1501).
  • the current position acquisition unit 901 acquires the current position and orientation using GPS or the like (step S 1502).
  • the traffic volume detection position acquisition unit 903 is a current position force acquired by the current position acquisition unit 901. A position where a traffic volume that is a candidate for a moving destination within a predetermined range can be detected, and the size and direction of the detected traffic volume. Is acquired from the traffic detection position accumulating unit 909 (step S 1503).
  • the route cost calculation unit 905 uses the road information accumulated in the map information accumulation unit 904, the route cost between the current position and the departure position, the route cost between the current position and the destination candidate position, The route cost between the starting position and the destination candidate position is calculated in consideration of each direction (step S1504).
  • the circuitousness calculation unit 106 calculates the circuitousness from the route cost calculated by the route cost calculation unit 905 (step S 1505).
  • the movement destination prediction unit 907 also selects a movement destination candidate of the moving object for the circuitous force calculated by the circuitousness calculation unit 906 (step S1506).
  • the destination prediction unit 907 predicts the destination based on the amount of traffic at the destination candidate position (step S 1507).
  • Information provider 908 is the destination Information is provided to the user according to the destination predicted by the prediction unit 907 (step S1508).
  • the moving destination candidate of the moving body acquires the landmark power accumulated in the map information without using the movement history.
  • the place that has been visited once is often the destination. Therefore, the destination history of the moving body is accumulated, and if the history is sufficiently accumulated, the destination candidate may be acquired from the past destination.
  • FIG. 31 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the components shown in the first embodiment, and the description thereof is omitted.
  • each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the movement destination prediction apparatus is further provided with "a movement history accumulation unit that accumulates a history of positions that the mobile body has performed, and the movement destination candidate position acquisition unit includes: The position stored in the movement history accumulating means is used as the movement destination candidate to obtain the position of the movement destination candidate, and the movement destination prediction means is the position accumulated in the movement history accumulation means.
  • the destination history accumulation unit 1604 is a “movement history accumulation unit” which is characterized in that the destination candidate having the smallest circuitousness is predicted as a destination.
  • the movement destination candidate position acquisition unit 1603 corresponds to “movement destination candidate position acquisition means”
  • the movement destination prediction unit 107 corresponds to “movement destination prediction means”.
  • the destination history accumulating unit 1604 obtains the location of the moving object in the past by using a GPS antenna or IC tag, base station communication, image recognition, etc., and accumulates the history. For example, when the moving body is a car, the destination is a place where the engine is turned off. A place where the stop time is a predetermined value or more may be accumulated as the destination. As the destination history, for example, at least the location information of the destination is accumulated as shown in FIG. In the case of Figure 32, for example, in ID “005”, the destination name “E center” is located at “A store” at east longitude “134. 7. 26.9” and north latitude “34. 4. 49. 2 ”.
  • the destination candidate position acquisition unit 1603 acquires the positions of past target ground force movement destination candidates accumulated in the destination history accumulation unit 1604. For example, a destination accumulated in the destination accumulation unit 1604 within a predetermined range from the current position of the moving object is set as a destination candidate.
  • the destination candidate position acquisition unit 1603 After acquiring the departure position and the current position in the same manner as in the first embodiment, the destination candidate position acquisition unit 1603 accumulates the destination history in which the current position force of the moving body acquired by the current position acquisition unit 101 is also within a predetermined range. The past destination accumulated in section 1604 is acquired as a destination candidate (step S 18 03). The same as in Embodiment 1 below.
  • the position coordinates of the destination candidate are determined from the longitude and latitude of the place where the stop time is longer than the predetermined time.
  • the stop location may be different and the destination candidates may increase. Therefore, the stopping positions within a predetermined range may be the same place, and the center position within the predetermined range may be a candidate for the destination of the representative position! /.
  • the stop location is a candidate for the destination, but a representative intersection that has traveled in the past may also be a candidate for the destination!
  • the number of intersections that have traveled in the past will increase, and the amount of computation will increase to calculate the route cost for each point. Therefore, in a past run, a branching intersection, in other words, an intersection that has traveled in multiple directions is a representative intersection, and may be a destination candidate.
  • the moving destination candidate of the moving object is acquired from the landmark accumulated in the map information.
  • the moving destination candidate of the moving body may be a destination set by the user in advance in the destination prediction apparatus or predicted by the apparatus or the like.
  • the user often sets the destination in advance before moving.
  • the purpose You may set a location, but you may not set a stopover just to stop by.
  • the optimal route to the destination may change due to the presence of transit points.
  • the apparatus determines whether or not the moving body is directly facing the destination set from the circuitousness. In other words, it determines whether there is a transit point that the mobile body is trying to pass through before reaching the destination, and simultaneously predicts the transit point. In this way, it is possible to provide information related to not only the set destination but also the waypoint, such as information about the route that is directed to the current location and the route from the waypoint to the destination. it can.
  • FIG. 34 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the components shown in the first embodiment, and the description thereof is omitted.
  • each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the destination prediction apparatus of the present embodiment states that "the destination prediction apparatus further includes destination acquisition means for acquiring a destination of a moving object from a user, and a circuitousness with respect to the destination is second. And a transit point determination unit that determines that there is a transit point that the moving body is about to pass before reaching the destination when the destination is greater than or equal to the threshold, and the destination candidate position acquisition unit includes the transit point When it is determined that the ground exists, the position of the movement destination candidate that is within a predetermined range from the current position of the moving body and can be the transit point is acquired, and the movement destination prediction means includes the movement destination candidates.
  • the destination acquisition unit 1909 acquires a destination position preset in the apparatus by the user or the like. For example, the destination location, east longitude “134. 7. 26.9” and north latitude “34.4. 49.2” are obtained. The destination position predicted or set by the device or another destination prediction device may be acquired.
  • the route cost calculation unit 1905 calculates the route cost using road information such as the node position, connection node, and link distance accumulated in the map information accumulation unit.
  • Current position acquisition unit 1 Route cost between the current position acquired by 01 and the start position acquired by the start position acquisition unit 102, between the current position acquired by the current position acquisition unit 101 and the destination acquired by the destination acquisition unit 1909 Route cost, route cost between the departure position acquired by the departure position acquisition unit 102 and the destination acquired by the destination acquisition unit 1909, current position acquired by the current position acquisition unit 101 and destination candidate position acquisition unit 103 Is calculated, and the route cost between the departure position acquired by the departure position acquisition unit 102 and the movement destination candidate position acquired by the movement destination candidate position acquisition unit 103 is calculated.
  • the circuitousness calculation unit 1906 calculates the circuitousness from the route cost calculated by the route cost calculation unit 1905.
  • the circuitousness is calculated for each destination and destination candidate.
  • the circuitousness is the difference between the cost of the route that the mobile unit currently travels to the cost of the route with the lowest cost from the starting position to the destination or destination candidate.
  • the route cost obtained by subtracting the route cost between the departure and destination from the sum of the route cost between the current departure location and the route cost between the current destination is the circuitousness with respect to the destination.
  • the route cost for the destination candidate is the route cost obtained by subtracting the route cost between departure candidate locations from the sum of the route cost between the current departure locations and the route cost between the current candidate locations.
  • the waypoint determination unit 1907 also determines the presence or absence of a route point of the moving object based on the circuitous force calculated by the circuitousness calculation unit 1906. In other words, it is determined whether the destination that is next to the mobile object is a set destination or a different waypoint from the set destination. Moving objects tend to move so as to reduce the route cost that is required for movement when aiming at the destination. Therefore, the circuitousness that is the cost difference with respect to the minimum cost is also reduced. Therefore, when aiming directly at the destination, the circuitousness is low. Conversely, when the circuitousness is high, it does not aim directly at the destination but aims at another waypoint.
  • the waypoint determination unit determines that a waypoint exists when the circuitousness with respect to the destination is greater than a predetermined value (second threshold).
  • the predetermined value is specifically a range that is preset in the device and allows the user to increase the travel distance of the detour route relative to the shortest route when searching for a detour route when there is traffic jam. Is an allowable detour distance. This is because when the circuitousness becomes large, there is a possibility that a detour is taken to avoid traffic jams rather than aiming at the waypoint.
  • the circuitousness is higher than the preset allowable detour distance If there is no possibility of passing through the detour route, it can be determined that the route is different from the destination.
  • the circuitousness with respect to the set destination “Store B” is 9 km as shown in FIG. If the detour boundary value (second threshold) used for waypoint determination, ie, the allowable detour distance is 3 km, for example, it is determined that there is a waypoint because the circuitousness is greater than 9 km and 3 km.
  • second threshold used for waypoint determination
  • the waypoint prediction unit 1910 when the waypoint determination unit 1907 determines that there is a waypoint, is the destination candidate obtained by the destination candidate position acquisition unit 103, calculated by the circuitousness calculation unit 1906.
  • the location of the waypoint is also predicted using the circuitousness with respect to.
  • the destination candidates acquired by the destination candidate acquisition unit are “Store A” and “Store C” in FIG. Assume that it is “D store” and the circuitousness is “Okm”, “9 km”, and “4 km” as shown in FIG. At this time, it is predicted that “Store A” having the lowest circuitousness among the destination candidates will be a transit point.
  • the information providing unit 1908 provides information to the user by using the screen or voice of the destination prediction device according to the destination acquired by the destination acquisition unit 1909 and the waypoint predicted by the waypoint prediction unit. For example, as shown in Fig. 38, when it is predicted that the destination of the moving body is “Store B” and the waypoint is “Store A”, the route to “Store B” via “Store A” Traffic information, recommended routes, and sales information for “Store A” can be provided. Conversely, when it is determined that there is no waypoint, it provides traffic information on the route to the destination and information on the destination.
  • the destination acquisition unit 902 acquires the position with the destination set in the apparatus (step S2303).
  • the route cost calculation unit 1905 uses the road information accumulated in the map information accumulation unit 104 to calculate the route cost between the current position and the departure position, the route cost between the current position and the destination, the departure position and The route cost to the destination is calculated (step S2304).
  • the circuitousness calculation unit 1906 calculates the circuitousness with respect to the destination from the route cost calculated by the route cost calculation unit 1905 (step S2305).
  • the waypoint determination unit 1907 determines whether or not the detour force for the destination is also a force that has a waypoint (Step S2306). It is determined whether there is a transit point (step S2307). If it is determined that a transit point exists (Yes in step S2307), the process proceeds to step S803. If it is determined that there is no waypoint (No in step S2307), proceed to step S2310. When it is determined that there is a waypoint, the movement destination candidate position acquisition unit 103 acquires a landmark position within a predetermined range from the current position from the map information storage unit 104 (step S803).
  • the route cost calculation unit 1905 uses the road information stored in the map information storage unit 104 to calculate the route cost between the current position and the departure position, the route cost between the current position and the destination candidate position, and the departure position. And the route cost between the destination candidate position and the destination position is calculated (step S804).
  • the circuitousness calculation unit 106 calculates the circuitousness for the movement destination candidate from the route cost calculated by the route cost calculation unit 1905 (step S805).
  • the waypoint predicting unit 1910 also predicts the waypoint by using the circuitous force for the destination candidate calculated by the circuitousness calculating unit 1906 (step S2308).
  • the information providing unit 1908 provides information to the user according to the destination acquired by the destination acquisition unit 1909 and the waypoint predicted by the waypoint prediction unit 1910 (step S2309). When it is determined that there is no waypoint, the information providing unit 1908 provides information to the user according to the destination acquired by the destination acquiring unit 1909 (step S2310).
  • the waypoint is predicted based on the circuitousness of the moving object with respect to the movement destination candidate.
  • destination information set in advance may be used when predicting the waypoint.
  • the route cost to the destination when the current geopower is via the transit point is used. Normally, users tend to use a place that does not go too far even if they go through a route. For example, even if you want to go to the bookstore when your destination is at home, if there are multiple bookstores, there is a tendency to select the bookstore that has the shortest distance to the home via the bookstore. For these reasons, the route cost to the destination via the current geological route is used.
  • the destination prediction apparatus states that "the destination prediction means further uses the destination from the current location via the destination candidate among the destination candidates having the smallest circuitousness.
  • the destination prediction device corresponds to a “destination prediction device characterized by predicting a destination candidate having the smallest route cost to the route point”.
  • the unit 1907 corresponds to “movement destination prediction means”.
  • the waypoint prediction unit 1907 selects a destination candidate with the lowest route cost to the destination when passing through the destination candidate from among the destination candidates whose circuitousness is a predetermined value or less. Predict it as a stopover.
  • the waypoint is predicted based on the circuitousness with respect to the moving destination candidate of the moving body.
  • the destination information and destination history that are set in advance when predicting the waypoint are used, and the place where it is easy to stop before heading to the set destination is determined as the waypoint. It may be predicted. Specifically, a history of destinations is accumulated, and the destination with the lowest circuitousness is selected from the locations that have become destinations immediately before the set destination. Thereby, the waypoint according to the user can be predicted more.
  • FIG. 40 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the constituent elements shown in the first and second embodiments, and the description thereof is omitted.
  • each component will be described first with reference to the drawings, and the operation of this apparatus will be described later.
  • the destination prediction apparatus is “destination history storage means for further storing the destination history acquired by the destination acquisition means in association with the arrival date and time at the destination.
  • the destination predicting means predicts a destination reached immediately before the currently acquired destination among the destinations accumulated in the destination history accumulating means as the waypoint
  • the destination history storage unit 2404 corresponds to the “destination history storage unit” and the waypoint prediction unit 1910 corresponds to the “destination prediction unit”. To do.
  • the destination history storage unit 2404 stores a history of the position of the mobile object at the destination and the time of arrival at the destination. For example, when the moving body is a car, the destination is a place where the engine is turned off. A place where the stop time is a predetermined value or more may be accumulated as a destination. For example, in the case of Figure 41 in the destination history, the location of the destination name “Company E” in the ID “005” is east longitude “134. 7. 26.9” and north latitude “34. 4. 49. 2”. Yes, the arrival time is “9/21 9: 00”.
  • the destination candidate position acquisition unit 2403 acquires a destination candidate using the destination history acquired by the destination history storage unit 2404 and the destination acquired by the destination acquisition unit 1909.
  • the location that was the destination just before the acquired destination from the history is set as the destination candidate.
  • the acquired destination is “Company E”, east longitude “13 4. 7. 26.9”, and north latitude “34. 4. 49. 2”.
  • the destination “Company E” is 10 “005” (arrival date 9 21 9: 00), “0 09” (arrival date 9Z22 8:55) Accumulated in the When looking at the accumulated destinations in order of arrival date and time as shown in Fig.
  • the destination accumulated just before the destination “Company E” is “D Restaurant” with ID “004” (arrival date 9Z21 8: 40), 10 “008” “0 store” (arrival date 9 22 8:40).
  • D restaurant and “G store” are destination candidates, that is, candidates for waypoints.
  • the circuitousness threshold used by the waypoint determination unit 1907 to determine the presence of a waypoint is constant.
  • the threshold value used for determining the presence or absence of a waypoint may be increased.
  • the circuitousness threshold used by the waypoint determination unit 1907 to determine the presence of a waypoint is constant. However, as the distance from the departure location increases, the mobile is more likely to stop at the stopover for a break. For this reason, when the distance from the starting position to the current position is greater than or equal to a predetermined value, the threshold value used when determining the presence or absence of a transit point may be reduced.
  • the presence of a waypoint is determined based on the circuitousness.
  • the circuitousness may increase because the minimum cost path force to the destination is lost to avoid the traffic congestion.
  • the route cost increases because the time is more powerful than the original route, the circuitousness becomes increasingly larger. Therefore, the minimum cost route from the departure point to the destination set by the user and the junction point of the movement route predicted when the current moving body is directed to the destination without passing through the route are predicted.
  • the power of increasing the circuitousness to avoid traffic congestion, and the circuitousness being high due to the waypoint It is possible to determine whether it is hot.
  • FIG. 44 is a configuration diagram of the movement destination prediction apparatus in the present embodiment. Constituent elements shown in the fourth embodiment are given the same reference numerals, and description thereof is omitted. Hereinafter, first, each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the destination prediction apparatus indicates that "a branch point calculating unit that further calculates a position of a branch point between the departure position and the destination and a branch point between the departure position and the current position". And a junction point predicting means for predicting a junction point of a route connecting the departure position and the destination, a route connecting the current position and the destination location, and a route periphery connecting the departure position and the destination Traffic congestion information acquisition means for acquiring the traffic congestion information of the vehicle, and congestion avoidance for determining whether or not there is a traffic jam between the branch point position and the junction position in the route connecting the departure position and the destination Determination means, and the destination prediction means determines that the waypoint is determined when it is determined that the circuitousness with respect to the destination is equal to or greater than the second threshold and the congestion avoidance determination means force congestion does not exist.
  • the branch point calculation unit 5812 corresponds to the “branch point calculation unit”
  • the junction point prediction unit 5811 corresponds to the “junction point prediction unit”
  • the traffic jam information acquisition unit 5813 serves as the “traffic jam information acquisition unit”.
  • the traffic jam avoidance determination unit 5814 corresponds to “traffic jam avoidance judgment means”
  • the waypoint prediction unit 1910 corresponds to “movement destination prediction means”.
  • the route cost calculation unit 5805 is stored in the map information storage unit as in the fourth embodiment.
  • Route cost is calculated using road information such as node position, connection node, and link distance.
  • Route cost of the travel route between the current position acquired by the current position acquisition unit 101 and the departure position acquired by the departure position acquisition unit 102, the current position acquired by the current position acquisition unit 101 and the destination acquisition unit 1909 The route cost between the destination and the route cost of the travel route between the departure position acquired by the departure position acquisition unit 102 and the destination acquired by the destination acquisition unit 1909 are calculated.
  • information of the route itself having the calculated route cost is also output.
  • information on the route of the moving object from the starting position to the current position, the path having the minimum path cost from the starting position to the target position, and the path having the minimum path cost from the current position to the target position is output.
  • the route cost between the current position acquired by the current position acquisition unit 101 and the destination candidate position acquired by the destination candidate position acquisition unit 103, acquired by the departure position acquisition unit 102 The route cost between the departure position and the destination candidate position acquired by the destination candidate position acquisition unit 103 is calculated.
  • the junction prediction unit 5811 calculates the position of the junction between the minimum path from the start position to the target position calculated by the path cost calculation unit 5805 and the path from the current position to the target position. Specifically, the position of the intersection near the current position among the intersections between the path between the departure destination positions and the path between the current destination positions is set as the position of the merge point. If there is no intersection, no confluence is calculated.
  • the branch point calculation unit 5812 calculates the position of the branch point of the route from the starting position calculated by the route cost calculation unit 5805 to the target position and the starting position force as well as the current position. Specifically, among the intersections of the route between the departure destination position and the route between the current departure position, the position of the intersection close to the current position is set as the branch point position. If there is no intersection, no branch point is calculated.
  • the traffic information acquisition unit 5813 acquires traffic information by acquiring VICS information from FM radio waves and beacons. Specifically, the start point and end point of the traffic jam and the direction of the traffic jam are obtained.
  • the traffic congestion avoidance determination unit 5814 determines that the waypoint determination unit determines that there is a stopover point, and when the junction point prediction unit 5811 calculates the junction point and the branch point calculation unit 5812 calculates the branch point, Congestion information acquisition unit Uses the congestion information acquired by 5813 to determine the presence of congestion between the junction and junction on the route between departure destinations calculated by route cost calculation unit 5805. If you make a detour to avoid traffic jams, Revise the judgment. Specifically, the route between the junction point and the junction point in the route between the departure destinations calculated by the route cost calculation unit 5805 was calculated, and there was traffic jam in the direction toward the junction point and junction point in the route.
  • the waypoint judgment is revised. For example, in the case of FIG. 45, it is assumed that the circuitousness is high because the circuit is making a detour with respect to the destination, and the waypoint determination unit 1907 predicts the presence of the waypoint. However, since there is a traffic jam in the direction of the direction of force at the junction between the junction point and the junction point on the route between the departure destinations, it is determined that the vehicle has made a detour in order to avoid the traffic jam. If it does not exist, the waypoint determination is revised.
  • the route cost calculation unit 5805 uses the road information accumulated in the map information accumulation unit 104 to determine the distance between the current position and the departure position.
  • the travel route and route cost, the travel route and route cost between the current position and the destination, and the travel route and route cost between the departure position and the destination are calculated (step S6004).
  • the circuitousness calculation unit 1906 calculates the circuitousness with respect to the destination from the route cost calculated by the route cost calculation unit 5805 (step S2305).
  • the waypoint determination unit 1907 determines whether or not there is a waypoint for the circuitous force with respect to the destination (step S2306). A determination is made as to whether there is a transit point (step S6007). If it is determined that a transit point exists (Yes in step S6007), the process proceeds to step S6008. If it is determined that there is no waypoint (No in step S6007), proceed to step S2310.
  • the branch point calculation unit 5812 calculates the position of the branch point using the route between the departure destination positions calculated by the route cost calculation unit 5805 and the route force between the current departure positions (step S6008).
  • the meeting point prediction unit 5811 also predicts the position of the meeting point based on the path between the departure destination positions calculated by the path cost calculation unit 5805 and the path force between the current target positions (step S6009).
  • the traffic jam information acquisition unit 58 13 also acquires traffic jam information such as VICS (step S6010).
  • the traffic jam avoidance determination unit 5814 is the traffic jam information between the branch point calculated by the branch point calculation unit 5 812 and the junction point predicted by the junction point prediction unit among the routes between the departure destination positions calculated by the route cost calculation unit 5805.
  • a traffic jam acquired by the acquisition unit 5813
  • it is determined whether there is a waypoint step by step. S6011).
  • the process proceeds to step S2310. If it is determined that there is no traffic jam (No in step S6011), the process proceeds to step S803.
  • the movement destination candidate position acquisition unit 103 acquires a landmark position whose current position force is within a predetermined range from the map information storage unit 104 (step S803).
  • the route cost calculation unit 5805 uses the road information stored in the map information storage unit 104, the route cost between the current position and the departure position, the route cost between the current position and the destination candidate position, and the departure The route cost between the position and the destination candidate position is calculated (step S804).
  • the circuitousness calculation unit 106 calculates the circuitousness for the destination candidate from the route cost calculated by the route cost calculation unit 1905 (step S805).
  • the waypoint predicting unit 1 910 also predicts the waypoint by using the circuitous force for the destination candidate calculated by the circuitousness calculating unit 1906 (step S2308).
  • the information providing unit 1908 provides information to the user according to the destination acquired by the destination acquisition unit 1909 and the waypoint predicted by the waypoint prediction unit 1910 (step S2309). When it is determined that there is no waypoint or there is a traffic jam, the information providing unit 1908 provides information to the user according to the destination acquired by the destination acquiring unit 1909 (step S2310).
  • the presence of a transit point is predicted on the assumption that the destination set in the apparatus is not wrong.
  • the set destination may be wrong.
  • the set destination may be wrong due to an operation mistake or the like.
  • the user's idea may change while moving, and the destination may be different from the destination that was initially set. Therefore, it detects the destination setting error and informs the user that it is a setting error, or automatically cancels the destination setting, and provides the recommended route display and guidance information calculated from the set destination. It may be filtered. In this way, it is possible to prevent information that is disturbing to the user from being provided many times, such as telling the device to make U-turns many times due to incorrect destination guidance.
  • FIG. 47 is a configuration diagram of the movement destination prediction apparatus in the present embodiment. Constituent elements shown in Embodiments 1, 2, and 4 are given the same reference numerals, and descriptions thereof are omitted. First of all, Each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the route cost calculation unit 2805 calculates the route cost using road information stored in the map information storage unit 904, such as the position of the node, the connected node, and the link distance. Route cost between the current position acquired by the current position acquisition unit 101 and the departure position acquired by the departure position acquisition unit 102, the current position acquired by the current position acquisition unit 101 and the destination acquired by the destination acquisition unit 1909 And the route cost between the departure position acquired by the departure position acquisition unit 102 and the destination acquired by the destination acquisition unit 1909 are calculated.
  • the destination prediction apparatus is further provided with "information providing means for providing at least information about a destination and a route to the destination, wherein the information providing means includes the destination erroneous setting detection.
  • the destination prediction apparatus is characterized in that the information about the destination is simplified and provided as the circuitousness with respect to the destination increases.
  • the information providing unit 2808 corresponds to “information providing means”.
  • the circuitousness calculation unit 2806 calculates the circuitousness with respect to the destination from the route cost calculated by the route cost calculation unit 1905.
  • the circuitousness is the difference between the cost of the route that the mobile unit currently travels to the cost of the route with the lowest cost from the starting position to the destination. Specifically, the sum of the route cost between the current departure location and the route cost between the current destination location and the difference in the route cost between the departure location are the circuitousness with respect to the destination.
  • the destination error setting detection unit 2807 determines the correctness of the destination in which the circuitous force calculated by the circuitousness calculation unit 2806 is also set. Moving objects tend to move so as to reduce the route cost that is required to move when aiming at the destination. Therefore, the circuitousness that is the cost difference with respect to the minimum cost is also reduced. Therefore, the circuitousness to the destination should be low. Conversely, when the circuitousness is high, there is a high possibility that a place other than the set destination is the destination. Specifically, when the circuitousness with respect to the destination is greater than a predetermined value (third threshold), it is determined that the destination is incorrect.
  • a predetermined value third threshold
  • the circuitousness with respect to the destination “Store B” is 9 km as shown in FIG. 35
  • the boundary value (third threshold) for determining the circuitousness is the allowable detour distance of the traffic jam set in the device, for example, 3 km, the circuitousness is larger than 9 km and 3 km, so the destination is determined to be incorrect. Determine.
  • the information providing unit 2808 provides information to the user through the screen and voice of the destination prediction device according to the destination and the post-destination setting detection unit obtained by the destination obtaining unit 1909. Specifically, while the destination is determined to be correct, information about the destination, such as a recommended route, is presented, but when the destination is determined to be incorrect, the destination set on the device is canceled. And do not present information about the destination.
  • the recommended route is guided while the destination is determined to be correct. However, if it is determined that the destination is incorrect, the destination setting is canceled as shown in FIG. 50, and the recommended route is not guided.
  • the destination error setting detection unit 2807 determines the correctness of the destination set based on the circuitousness with respect to the destination (step S3106). If it is determined that the destination is incorrect (Yes in step S3107), the information providing unit 2808 cancels the set destination and filters the provided information regarding the destination. When it is determined that the destination is correct (No in step S3107), the information providing unit 2808 provides information regarding the destination to the user (step S3109).
  • the circuitousness When the circuitousness is high, there is a possibility that there is a new waypoint as a result of a destination setting error as in the fourth embodiment. Therefore, by setting two thresholds for circuitousness, it is detected whether the next destination is a set destination, whether the next destination is a transit point, and whether the destination is set incorrectly. May be. Specifically, it is used to determine the threshold used to determine the presence of a transit point for the circuitousness, the allowable traffic congestion distance, and the wrong destination setting. The user sets the threshold and the allowable route distance in advance.
  • the allowable route distance is the maximum value allowed by the user of the route distance that increases when the route moves at the shortest distance to the destination.
  • the allowable via distance is larger than the allowable traffic jam distance.
  • the permissible distance for traffic jam is 3km and the permissible distance for transit is 6km.
  • the circuitousness with respect to the set destination is 3 km or less, it is determined that the destination setting is not erroneous and there is no transit point, and information on the set destination is provided.
  • the circuitousness with respect to the set destination is greater than 3km and less than 6km, it is determined that the destination setting is not incorrect, and there is a transit point, the transit point is predicted, and the destination point is passed through the transit point. Providing information on the path. If the circuitousness with respect to the set destination is 6km or more, it is determined that the destination setting is incorrect, the destination set on the device is canceled, and information on the destination is not provided.
  • the processing when it is detected that the set destination is incorrect is constant regardless of the circuitousness.
  • processing may be changed according to the degree of circuitousness.
  • the degree of filtering information about the destination is changed according to the degree of circuitousness.
  • the smaller the circuitousness to the set destination the larger the amount of information provided by the set destination and the route to the set destination.
  • the greater the circuitousness the smaller the amount of information provided to the set destination, that is, the information is filtered.
  • the circuitousness with respect to the set destination is small, the set destination is likely to be correct. Therefore, since the information for the set destination is useful, the amount of information may be large.
  • the filtering method of the provided information for the set destination according to the circuitousness ranks the circuitousness of the information provision type provided, and the information providing unit 28 08 Do this by providing the type of information corresponding to the derived rank.
  • the rank of the circuitousness is as shown in FIG.
  • the rank “1” indicates that the provided information is “recommended route display, route voice guidance, route road traffic information, road traffic information around the destination, destination information”, and the circuitousness is less than 2 km. Represents.
  • Road traffic information includes traffic jam information and construction information.
  • Destination information includes information about the destination itself, for example, menu information, opening time, and vacant seat information when the destination is a restaurant.
  • the information provider 2808 has a circuitousness rank of 3 corresponding to the circuitousness of 5 km. Therefore, the road traffic information for the route to the destination, the road traffic information around the destination, Provide location information to users.
  • the destination setting is canceled or the provided information is filtered when the set destination is incorrect.
  • the target location may be predicted.
  • the destination is predicted using the destination history and the circuitousness. As a result, it is possible to provide information regarding the correct destination without requiring the user to reset the destination from scratch.
  • the destination setting error is detected using the circuitousness. Furthermore, the destination may be corrected based on the method in which the user sets the destination.
  • the destination In general, in car navigation, when setting a destination, there are cases where the destination is set by the name of a landmark, or where a destination on the map is input.
  • the destination When setting a destination by the name of a landmark, the destination is set by searching for a landmark or by calling up information on registration points already set by the user and selecting the name. In this case, there is a high possibility that a setting error due to the same name will occur. For example, “Moriguchi Station” may be set as a destination and “Moriguchi Station” may be set as another location in an attempt to set the destination as a destination.
  • FIG. 53 is a configuration diagram of the movement destination prediction apparatus in the present embodiment.
  • the same reference numerals are given to the components shown in the fifth embodiment, and the description thereof is omitted.
  • each component will be described with reference to the drawings, and the operation of this apparatus will be described later.
  • the movement destination prediction apparatus reads "Furthermore, obtain the destination of the moving object from the user. And a destination error setting detection means for determining that the acquired destination is an error when the circuitousness with respect to the destination is a third threshold value or more, When it is determined that the acquired destination is an error, the destination candidate position acquisition means determines a similar position that is within a predetermined range of the current position force of the moving object and is easily mistaken for the destination. The destination of the destination is acquired as a destination, and the destination prediction means predicts the destination candidate having the minimum circuitousness as the correct destination among the destination candidates. Destination acquisition unit 1909 corresponds to “Destination acquisition unit”, destination error setting detection unit 2807 corresponds to “Destination error setting detection unit”, and similar The position calculation unit 6112 displays “destination candidate position acquisition means”
  • the destination prediction unit 6113 corresponds to “destination prediction means”.
  • the map information storage unit 6104 stores road information such as position and link distance. For example,
  • Node ID “001” in Figure 3 has a node position of longitude “134. 3. 0.9” and a latitude of “34.6
  • 01] is a link connecting the start node ID “001” and the end node ID “002”, and the link distance is “1 km”.
  • landmark names such as place names, shops, sights, and stations, and landmark information such as name names, phone numbers, map codes, and locations are stored.
  • the “name”, “name reading”, “phone number”, “map code”, and “position” of the landmark are called landmark categories.
  • the route cost calculation unit 6105 calculates the route cost using road information such as the position of the node, the connected node, and the link distance accumulated in the map information accumulation unit 6104.
  • Route cost between the current position acquired by the current position acquisition unit 101 and the departure position acquired by the departure position acquisition unit 102, the current position acquired by the current position acquisition unit 101 and the destination acquired by the destination acquisition unit 1909 The cost of the route between the starting position acquired by the starting position acquisition unit 102 and the destination cost acquired by the destination acquiring unit 1909, the current position acquired by the current position acquiring unit 101 and the similar position
  • the route cost between the similar position acquired by the unit 6112 and the route cost between the departure position acquired by the departure position acquisition unit 102 and the similar position acquired by the similar position calculation unit 6112 are calculated.
  • the circuitousness calculating unit 6106 calculates the circuitousness from the route cost calculated by the route cost calculating unit 6105.
  • the circuitousness is calculated for each similar position acquired by the destination and similar position calculation unit 6112.
  • the circuitousness is the difference between the cost of the route that the current mobile unit passes through to the cost of the route with the lowest cost from the starting position to the destination or destination candidate.
  • the difference between the route cost between the current departure location and the current route cost between the destinations and the route cost between the departure destinations is the circuitousness with respect to the destination.
  • the difference between the route cost between the current departure locations and the route cost between the current similar locations and the difference between the route costs between the departure similar locations is the circuitousness with respect to the similar location.
  • the destination setting method acquisition unit 6110 displays the destination setting method type, medium, and the destination that is actually input and displayed when the user sets the destination in the destination prediction device such as a car navigation system. Get string related to.
  • the type of destination setting method is stored in a memory (not shown) of a destination prediction device such as a car navigation system when the user sets the destination.
  • a destination prediction device such as a car navigation system
  • several types of destination setting methods are presented on a menu screen of a destination prediction device such as a car navigation system. For example, destination setting by voice input, destination setting by input from a touch panel displaying a map, destination setting by inputting a name of a land mark as a character string, and the like.
  • the user selects a desired setting method from the presented setting methods, and sets the destination using the selected setting method.
  • the destination prediction apparatus such as the car navigation stores the selected destination setting method in the memory.
  • Figure 54 shows the internal structure of the destination setting method acquisition unit.
  • the movement destination prediction apparatus of the present embodiment states that "the map information storage means is landmark information in which the point is represented by at least one of a landmark name, a landmark position, a telephone number, and a map code. And the destination prediction apparatus further acquires a destination setting method for acquiring a type of landmark information representing the destination acquired by the destination acquisition means and a character string related to the destination. And a search expression generation means for generating a search expression for searching for the similar position, comprising the landmark information type and the character string, according to the destination landmark information type and the character string. And a similar position calculation means for searching for the similar position from the landmark information according to the search formula, wherein the destination prediction means is the circuitous of the similar positions.
  • the map information storage unit 6104 corresponds to the “map information storage unit”, and the setting type acquisition unit. 6114, input medium acquisition unit 6115 and character string acquisition unit 6116 correspond to “destination setting method acquisition means”, search expression generation unit 6111 corresponds to “search expression generation means”, and similar position calculation unit 6112 corresponds to “similarity” Corresponding to “position calculating means”, the destination predicting unit 6113 corresponds to “destination predicting means”.
  • the setting type acquisition unit 6114 acquires the type of the destination setting method. For the type of destination setting method, select the name of the “Mororo Station” landmark displayed on the screen, or “Name input” to enter directly with the remote control, etc. Enter numbers such as phone numbers. There are “phone number input”, “map code input”, “latitude / longitude input”, “map screen input” that displays the map screen and directly specifies the location of the destination. For example, when the user sets a destination by pronouncing “Moriguchi Chisheki” to the microphone, the type of setting method “name input” is acquired. In addition, when the user sets the destination by directly entering the telephone number “0600000000”, the type “telephone number input” is acquired. For example, when the destination location is set directly on the map screen, the type “map screen input” is acquired.
  • the input medium acquisition unit 6115 detects whether or not the force is input by voice when setting the destination.
  • input media There are two types of input media: “selective input”, in which the user selects characters and positions by using the remote control touch panel, and “voice input”, in which the user speaks with the help of a microphone. For example, when the user sets a destination by selecting “Mororo Station” from the list of destinations displayed on the screen, a medium “selection input” is acquired. In addition, when the user sets a destination by pronouncing “Moriguchi Chisheki” with the power to the microphone, a medium “voice input” is acquired.
  • the “selective input” t is acquired. For example, when the destination location is set directly on the map screen, a medium called “selection input” is acquired.
  • the character string acquisition unit 6116 acquires a character string related to the set destination.
  • the character string acquisition unit 6116 reads the character string when the destination is set in “Voice input”.
  • Character string acquisition unit 6117, map character string acquisition unit 6119 that obtains a character string when a destination is set with ⁇ Map screen input '', and character string acquisition when a destination is set by other methods There is a notation character string acquisition unit 6118 for performing.
  • the reading character string acquisition unit 6117 acquires words input by voice as reading character strings. For example, if the user sets a destination by pronouncing “Moriguchi Chiseki” in response to a microphone, a character string “Moriguchi Sheki” is acquired.
  • the notation string acquisition unit 6118 is the medium force S “selection input” acquired by the input medium setting unit 6115, and the setting type acquired by the setting type acquisition unit 6114 is a type other than “map screen input”. If it is, the screen display character string selected and input by the user is acquired. For example, if the user sets the destination by selecting the column displayed as “Moruro Station” from the list of destinations displayed on the screen, the character string “Moriguchi Station” is get. In addition, when the user sets the destination by directly entering “0600000000” and the phone number, the character string “0600000000” displayed on the screen when it is entered is acquired.
  • the map character string acquisition unit 6119 displays the map on the map screen of the destination prediction device when the destination is set. Get all the displayed character strings of the displayed landmark names. For example, as shown in Fig. 55, when the location of the destination is set directly on the map screen displaying the names of “Moriguchi Pass” and “Seven Eleven Moriguchi”, the landmark name is displayed. ”And“ Sehun Eleven Moriguchi ”.
  • the search formula creation unit 6111 detects the similar position of the set destination from the type of destination setting method acquired by the destination setting method acquisition unit 6110, the medium, and the character string related to the destination.
  • the search formula for searching is calculated.
  • the search formula consists of landmark information categories such as landmark name, name reading, phone number, map code, and location, and a search string.
  • the search for the “Name (Name)” category of the landmark will be “* Riguchisheki”, “Mo * Guchisheki”, “Mori * chisheki”, “Morigu * Sheki”, “Moriguchi * ye”.
  • the search expression is “Ki” “Moriguchi * ki” “Moriguchichi *”.
  • a wild card (* ) To generate a search expression.
  • the search category is “telephone number” for “phone number input”, “map code” for “map code input”, and “latitude” “longitude” for “latitude / longitude input”. For example, if “0669081121” was entered in the phone number entry, “* 66908”
  • the similar position calculation unit 6112 calculates a similar position similar to the set destination from the landmark information stored in the map information storage unit 6104 using the search formula calculated by the search formula generation unit 6111. Specifically, the positions of all landmarks searched by the calculated search formula are set as similar positions. For example, if the search category is “name” as the search expression and the search character string is “* Kuchi Station”, “Mori * ⁇ Station”, “Moriguchi * Station”, or “Mororo *”, the map information storage section The “name” of landmarks stored in is searched using the calculated search character string. For example, in the case of FIG. 56, “Moriguchi” is not the only destination that has been set, “Moriguchi Station”. “Station” is searched, and “134. 5. 59.9” and “34. 6. 4. 6” are calculated as similar positions.
  • the destination prediction unit 6113 is obtained by the similar position acquisition unit 6112 calculated by the circuitousness calculation unit 6106 when the destination error setting detection unit 2807 detects that the destination setting is incorrect. Predict the correct destination location using the circuitousness for similar locations. Specifically, among the calculated similar positions, the similar position with the lowest circuitousness is predicted as the destination.
  • the information providing unit 6108 provides information to the user according to the destination acquired by the destination acquiring unit 1909.
  • the information is provided to the user according to the destination predicted by the destination prediction unit 6113. Traffic information on the destination and the route to the destination and information on the recommended route are provided to the user through the screen and voice of the destination prediction device.
  • the destination setting method acquisition unit 6110 acquires a destination setting method and a character string related to the destination (step S6307).
  • the destination acquisition unit 1909 acquires the position with the destination set in the device (step S 2303).
  • the route cost calculation unit 6105 uses the road information accumulated in the map information accumulation unit 104 to calculate the route cost between the current position and the departure position, the route cost between the current position and the destination, the departure position and the like.
  • the route cost to the destination is calculated (step S2304).
  • the circuitousness calculation unit 6106 calculates the circuitousness with respect to the destination from the route cost calculated by the route cost calculation unit 6105 (step S2305).
  • the destination error setting detection unit 2807 determines the correctness of the destination set based on the circuitousness with respect to the destination (step S3106). If it is determined that the destination is incorrect (Yes in step S6308), the process proceeds to step S6309. If it is determined that the destination is not wrong (No in step S6308), the process proceeds to step S6314.
  • the search expression generation unit 6111 generates a search expression from the destination setting method acquired by the destination setting method acquisition unit 61 10 and a character string related to the destination (step S6309).
  • the similar position calculation unit 6112 applies the search formula calculated by the search formula generation unit 6111 and the landmark information power stored in the map information storage unit 6104 to the set destination.
  • the position of the similar landmark is calculated (step S6310).
  • the route cost calculation unit 6105 uses the road information stored in the map information storage unit 104 to calculate the route cost between the current position and the departure position, the route cost between the current position and the similar position, and the similarity to the departure position.
  • the route cost to the location is calculated (step S6311).
  • the circuitousness calculation unit 6106 calculates the circuitousness with respect to the similar position from the route cost calculated by the route cost calculation unit 6105 (step S6312).
  • the destination predicting unit 6113 predicts the similar position as the destination from the circuitousness with respect to the similar position (step S6313).
  • the information providing unit 6108 provides information to the user according to the set destination when the set destination is correct, or according to the predicted destination when the set destination is incorrect.
  • the destination prediction apparatus can provide information on the destination of the moving body and the abnormal behavior of the moving body based on the circuitousness, for example, a car navigation device, a mobile phone, a GPS It is useful in devices that acquire information on the location of mobile objects such as attached security devices and provide information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Description

明 細 書
移動先予測装置および移動先予測方法
技術分野
[0001] 本発明は、移動体の移動先を予測する移動先予測装置、特に移動先の履歴の有 無に依存しないで移動先を予測する技術に関するものである。
背景技術
[0002] 現在、カーナビゲーシヨン装置や携帯電話などのモパイル端末などにぉ 、て、ユー ザの状況に応じて提供する情報を変更することや、情報の提供するタイミングを変更 することが行われてきている。例えば、大量に存在するお店の情報の中から移動体 の現在位置の近くにあるお店の情報だけをフィルタリングして提供すると!/、うことが行 われてきている。また、目的地や経由地、通過地といった移動体の移動先情報も情 報提供に影響する重要な情報である。例えば、予めユーザに入力された目的地によ り、目的地までの経路や目的地近くの駐車場情報などの目的地に関連する情報を提 供することや、目的地までの経路上にあるお店の情報や渋滞情報を移動体に提供 するということがなされている。しかし、移動先をユーザが入力することはユーザへの 負担が大きい。また、ユーザの入力が間違っている場合もある。よって、装置が移動 先を予測する手法が従来よりなされている。一般的には特許文献 1のように実際に移 動体が移動した履歴を用いて移動先予測を行う。
[0003] 移動体の移動中に、出発地力 現在までの移動の方向から移動先を予測する手法 もある。特許文献 2は、移動方向と、出発位置における予測目的地への方向の一致 度も用いて移動先を予測する。
特許文献 1 :特開平 7— 83678号公報
特許文献 2:特開 2000— 266562号公報
発明の開示
発明が解決しょうとする課題
[0004] 移動体の移動先予測による情報提供について、特許文献 1のような履歴を用いた 移動先予測技術では、履歴を十分収集するまでは予測できな 、と 、う欠点があった 。また初めて行く移動先は予測できない。よって履歴以外の情報力 移動先を予測 する必要がある。
[0005] そこで、特許文献 2のように、移動体の移動方向と、出発地力 現在までの移動方 向の一致度力も移動先を予測する手法がある。しかし、目的地が北方向にあつたとし ても、北に川が存在していたとすると、移動体は橋を通るために東や西に向かわなけ ればならない。このように道路の構造により、目的地の存在する方向へ移動体が進め ない場合も多々あるため、移動方向を用いるだけでは移動先の予測には不十分であ るという問題があった。
[0006] 本発明では、移動先の履歴が存在しな力つたとしても、出発地力も現在までの移動 情報を用いることで移動先を予測することを目的とする。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明の移動先予測装置は、移動先を予測する移 動先予測装置であって、地図上の複数の地点の位置と前記複数の位置間の経路と を少なくとも含む地図情報を蓄積した地図情報蓄積手段と、移動体の出発位置を取 得する出発位置取得手段と、移動体の現在位置を取得する現在位置取得手段と、 取得された前記現在位置に基づいて、移動体の移動先となりうる複数の移動先候補 の位置を前記地図情報蓄積手段から取得する移動先候補位置取得手段と、前記現 在位置を含む前記出発位置から前記移動先候補の位置までの経路にっ 、ての、前 記出発位置から前記移動先候補の位置までの最小経路コストの経路からのずれ量 である遠回り度を算出する遠回り度算出手段と、前記移動先候補のうちで算出され た前記遠回り度が最小となる移動先候補を、移動先と予測する移動先予測手段とを 備えることを特徴とする。
発明の効果
[0008] 本発明の移動先予測装置は、遠回り度を用いることで移動先を予測する。遠回り度 を用いることで、移動先の履歴が存在しないときでも、移動体の移動先を予測するこ とがでさる。
図面の簡単な説明
[0009] [図 1]図 1は、本発明の実施の形態 1における移動先予測装置の構成を示すブロック 図である。
[図 2]図 2は、移動先候補位置取得部が取得する移動先候補の例を示す図である。
[図 3]図 3 (a)、(b)は、地図情報蓄積部に蓄積された道路情報の例を示す図である。
[図 4]図 4は、現在位置と移動先候補位置の例を示す図である。
[図 5]図 5は、経路コスト算出部が移動先候補 A店についての経路コストを算出する 例を示す図である。
[図 6]図 6は、経路コスト算出部が移動先候補 B、 C店についての経路コストを算出す る例を示す図である。
圆 7]図 7は、遠回り度算出部が遠回り度を算出する例を示す図である。
[図 8]図 8は、現在位置と移動先候補位置の例を示す図である。
圆 9]図 9は、遠回り度算出部が遠回り度を算出する例を示す図である。
圆 10]図 10は、情報提供部が予測した移動先に関連する情報を提供する例を示す 図である。
[図 11]図 11は、本発明の実施の形態 1における移動先予測装置の動作の例を示す フローチャートである。
圆 12]図 12は、遠回り度力も算出した目的地となる移動先候補が存在する範囲の例 を示す図である。
[図 13]図 13は、本発明の実施の形態 1の変形例 1における移動先予測装置の構成 を示すブロック図である。
圆 14]図 14 (a)、 (b)は、地図情報蓄積部に蓄積された道路情報の例を示す図であ る。
[図 15]図 15は、現在位置、移動先予測候補位置、イベント発生位置の例を示す図で ある。
圆 16]図 16は、遠回り度算出部が遠回り度を算出する例を示す図である。
[図 17]図 17は、距離閾値算出部が距離閾値を算出する例を示す図である。
[図 18]図 18は、距離制限算出部が距離と距離閾値により予測移動先を除去する例 を示す図である。
[図 19]図 19は、予測移動先の位置と道路幅の大きい道路に囲まれた範囲により予測 移動先を除去する例を示す図である。
[図 20]図 20は、本発明の実施の形態 1の変形例 1における移動先予測装置の動作 の例を示すフローチャートである。
[図 21]図 21は、本発明の実施の形態 2における移動先予測装置の構成を示すプロ ック図である。
圆 22]図 22 (a)、(b)は、交通量検出位置取得部が取得する移動先候補の例を示す 図である。
[図 23]図 23は、現在位置と交通量検出位置の例を示す図である。
[図 24]図 24は、経路コスト算出部が移動先候補 ID「002」についての経路コストを算 出する例を示す図である。
[図 25]図 25は、経路コスト算出部が移動先候補 ID「002」についての経路コストを算 出する例を示す図である。
圆 26]図 26は、遠回り度算出部が算出した遠回り度の例を示す図である。
[図 27]図 27は、移動先予測部が移動先を予測する例を示す図である。
圆 28]図 28は、遠回り度算出部が遠回り度を算出する例を示す図である。
圆 29]図 29は、情報提供部が予測した移動先に関連する情報を提供する例を示す 図である。
[図 30]図 30は、本発明の実施の形態 2における移動先予測装置の動作の例を示す フローチャートである。
[図 31]図 31は、本発明の実施の形態 3における移動先予測装置の構成を示すプロ ック図である。
圆 32]図 32は、目的地蓄積部が蓄積する目的地の例を示す図である。
[図 33]図 33は、本発明の実施の形態 3における移動先予測装置の動作の例を示す フローチャートである。
[図 34]図 34は、本発明の実施の形態 4における移動先予測装置の構成を示すプロ ック図である。
[図 35]図 35は、設定された目的地と遠回り度の例を示す図である。
圆 36]図 36は、遠回り度算出部が遠回り度を算出する例を示す図である。 [図 37]図 37は、現在位置と移動先候補位置の例を示す図である。
圆 38]図 38は、情報提供部が予測した経由地に関連する情報を提供する例を示す 図である。
[図 39]図 39は、本発明の実施の形態 4における移動先予測装置の動作の例を示す フローチャートである。
[図 40]図 40は、本発明の実施の形態 4の変形例 2における移動先予測装置の構成 を示すブロック図である。
[図 41]図 41は、目的地蓄積部が蓄積する目的地の例を示す図である。
[図 42]図 42は、経由地候補の例を示す図である。
[図 43]図 43は、本発明の実施の形態 4の変形例 2における移動先予測装置の動作 の例を示すフローチャートである。
[図 44]図 44は、本発明の実施の形態 4の変形例 5における移動先予測装置の構成 を示すブロック図である。
[図 45]図 45は、渋滞回避判定部が、渋滞の有無を判定する例を示す図である。
[図 46]図 46は、本発明の実施の形態 4の変形例 2における移動先予測装置の動作 の例を示すフローチャートである。
[図 47]図 47は、本発明の実施の形態 5における移動先予測装置の構成を示すプロ ック図である。
圆 48]図 48は、遠回り度算出部が遠回り度を算出する例を示す図である。
[図 49]図 49は、情報提供部が設定された目的地に関連する情報を提供する例を示 す図である。
[図 50]図 50は、目的地設定を解除する例を示す図である。
[図 51]図 51は、本発明の実施の形態 5における移動先予測装置の動作の例を示す フローチャートである。
[図 52]図 52は、遠回り度ランクの例を示す図である。
[図 53]図 53は、本発明の実施の形態 5の変形例 3における移動先予測装置の構成 を示すブロック図である。
[図 54]図 54は、目的地設定法取得部の構成を示すブロック図である。 [図 55]図 55は、地図文字列取得部が地図文字列を取得する例を示す図である。 圆1—
〇 56]図 56は、地図情報蓄積部に蓄積されたランドマーク情報の例を示す図である 1—
[図 57]図 57は、本発明の実施の形態 5の変形例 3における移動先予測装置の動作 の例を示すフローチャートである。
符号の説明
現在位置取得部
102 出発位置取得部
103 移動先候補位置取得部
104 地図情報蓄積部
105 経路コスト算出部
106 遠回り度算出部
107 移動先予測部
108 情報提供部
901 現在位置取得部
902 出発位置取得部
903 交通量検出位置取得部
904 地図情報蓄積部
905 経路コスト算出部
907 移動先予測部
908 情報提供部
1603 移動先候補位置取得部
1604 目的地履歴蓄積部
1905 経路コスト算出部
1906 遠回り度算出部
1907 経由地予測部
1908 情報提供部
1909 目的地取得部 2403 移動先候補位置取得部
2404 目的地履歴蓄積部
2805 経路コスト算出部
2806 遠回り度算出部
2807 目的地誤設定検知部
2808 情報提供部
3302 出発位置取得部
3307 情報提供規則蓄積部
3308 情報提供部
3309 目的地取得部
3310 目的地登録部
3701 現在位置取得部
3702 出発位置取得部
3704 地図情報蓄積部
3705 経路コスト算出部
3706 遠回り度算出部
3710 待ち時間算出部
5104 地図情報蓄積部
5107 移動先予測部
5109 道路幅記憶部
5110 イベント発生検出部
5111 イベント位置記憶部
5112 距離算出部
5113 距離閾値算出部
5114 距離制限部
5805 経路コスト算出部
5811 合流点予測部
5812 分岐点算出部 5813 渋滞情報取得部
5814 渋滞回避判定部
6104 地図情報蓄積部
6105 経路コスト算出部
6106 遠回り度算出部
6108 情報提供部
6110 目的地設定法取得部
6111 検索式生成部
6112 類似位置算出部
6113 目的地予測部
6410 到着判定部
6411 遠回り度蓄積部
6412 閾値算出部
発明を実施するための最良の形態
[0011] (実施の形態 1)
図 1に本実施の形態の移動先予測装置の構成を示す。図 1の移動先予測装置は、 現在位置取得部 101、出発位置取得部 102、移動先候補位置取得部 103、地図情 報蓄積部 104、経路コスト算出部 105、遠回り度算出部 106、移動先予測部 107、情 報提供部 108を備えている。
[0012] 本実施の形態 1の移動先予測装置は、「移動先を予測する移動先予測装置であつ て、地図上の複数の地点の位置と前記複数の位置間の経路とを少なくとも含む地図 情報を蓄積した地図情報蓄積手段と、移動体の出発位置を取得する出発位置取得 手段と、移動体の現在位置を取得する現在位置取得手段と、取得された前記現在 位置に基づいて、移動体の移動先となりうる複数の移動先候補の位置を前記地図情 報蓄積手段から取得する移動先候補位置取得手段と、前記現在位置を含む前記出 発位置から前記移動先候補の位置までの経路につ!、ての、前記出発位置から前記 移動先候補の位置までの最小経路コストの経路からのずれ量である遠回り度を算出 する遠回り度算出手段と、前記移動先候補のうちで算出された前記遠回り度が最小 となる移動先候補を、移動先と予測する移動先予測手段とを備える移動先予測装置
」に相当し、地図情報蓄積部 104は「地図情報蓄積手段」に、出発位置取得部 102 は「出発位置取得手段」に、現在位置取得部 101は「現在位置取得手段」に、移動 先候補位置取得部 103は「移動先候補位置取得手段」に、遠回り度算出部 106は「 遠回り度算出手段」に、移動先予測部 107は「移動先予測手段」に対応する。
[0013] また、移動先予測装置は、「前記地図情報を用いて、前記現在位置と前記移動先 候補の位置との間の経路を特定し、特定された前記経路に対する経路コストである 現在候補位置間経路コストを算出する現在候補位置間経路コスト算出手段と、前記 地図情報を用いて、前記出発位置と前記現在位置との間の経路を特定し、特定され た前記経路に対する経路コストである出発現在位置間経路コストを算出する出発現 在位置間経路コスト算出手段と、前記地図情報を用いて、前記出発位置と前記移動 先候補の位置との間の経路を特定し、特定された前記経路に対する経路コストであ る出発候補位置間経路コストを算出する出発候補位置間経路コスト算出手段とを備 え、前記移動先候補位置取得手段は、移動体の現在位置から所定の範囲内にある 移動先候補の位置を取得し、前記現在候補位置間経路コスト算出手段、前記出発 現在位置間経路コスト算出手段および前記出発候補位置間経路コスト算出手段は、 それぞれ、前記現在候補位置間経路コスト、前記出発現在位置間経路コストおよび 前記出発候補位置間経路コストを、始点力 終点までの経路の距離および始点から 終点までの移動に要する時間のいずれ力 1つを用いて計算し、前記遠回り度算出手 段は、前記現在候補位置間経路コストと、前記出発現在位置間経路コストとの和から 、前記出発候補位置間経路コストを減算することによって前記遠回り度を算出するこ とを特徴とする移動先予測装置」に相当し、経路コスト算出部 105は「現在候補位置 間経路コスト算出手段」、「出発現在位置間経路コスト算出手段」および「出発候補位 置間経路コスト算出手段」に相当し、移動先候補位置取得部 103は「移動先候補位 置取得手段」に相当し、遠回り度算出部 106は「遠回り度算出手段」に相当する。
[0014] 以下、まず各構成要素について図を用いて説明し、後に本装置の動作について説 明する。
[0015] 現在位置取得部 101は、 GPSアンテナまたは ICタグ、基地局通信、画像認識等に より、移動体の現在地を検知する。例えば、東経「134. 5. 59. 9」、北緯「34. 5. 15
. 6」のように移動体の経度、緯度の情報を検知する。
[0016] 出発位置取得部 102は、移動体が移動を開始した出発位置を取得する。例えば、 移動体が一定時間以上移動を行わな力つた位置のうち最も現在時刻に近いものを 出発位置とする。位置情報は、東経「134. 5. 59. 9」、北緯「34. 5. 15. 6」のように 出発位置の経度、緯度の情報を検知する。出発位置はなお、移動体が最後に内部 にいた店などの建物、ランドマークでもよい。また、移動体が車の場合、最後にェンジ ンを掛けた位置としてもょ ヽ。乗車人数が最後に変更された位置でも良!ヽ。
[0017] 移動先候補位置取得部 103は、図 2のような移動体の移動先の候補の位置を取得 する。例えば、移動体の現在位置力も所定の範囲内にある地図情報蓄積部 104に 蓄積されたランドマークを移動先の候補とする。具体的には、地図情報蓄積部 104 に蓄積されたランドマークと現在地との距離を計算し、距離が所定の値以下、例えば 10km以下であるランドマークのみを抽出する。図 2の場合、現在地からの距離が 10 km以下である移動先候補「A店」(4. 8km)、「B店」(3. Okm)、「C店」(5. 3km)が 抽出される。
[0018] 地図情報蓄積部 104は、位置やリンク距離といった道路情報を蓄積する。例えば、 図 3のように、ノードの位置、接続ノード、ノード間を結ぶリンク距離が蓄積されている 。図 3のノード ID「001」はノード位置が経度「134. 3. 0. 9」であり、緯度が「34. 6. 3. 6」であり、ノード ID「002」「003」「004」「005」と接続して!/ヽる。また、リンク ID「00 1]は始点ノード ID「001」と終点ノード ID「002」を結ぶリンクであり、リンク距離は「lk m」であることを示す。また店、名所といったランドマークの位置が蓄積されている。
[0019] 経路コスト算出部 105は、地図情報蓄積部 104に蓄積された、ノードの位置、接続 ノード、リンク距離といった道路情報を用いて、経路コストを算出する。現在位置取得 部 101が取得した現在位置と出発位置取得部 102が取得した出発位置との間の最 小の経路コスト、現在位置取得部 101が取得した現在位置と移動先候補位置取得 部 103が取得した移動先候補位置との間の最小の経路コスト、出発位置取得部 102 が取得した出発位置と移動先候補位置取得部 103が取得した移動先候補位置との 間の最小の経路コストを算出する。 [0020] 経路コストとは、ある経路を通って移動した場合に、その移動に力かる利用者の負 担の度合いを言う。具体的には、経路コストは、移動のための所要時間、移動距離、 心理的負荷などであり、出発位置、現在位置、移動先候補位置といった位置間の経 路の距離、経路を走行する場合の所要時間、道路種別、道路規制情報、右折、左折 回数など力 算出する。例えば、位置間を移動するときに通る道路距離の総和を経 路コストとする。遠回り度を計算する際に用いる最小の経路コストとは、位置間を移動 するときに考えられる複数の経路のうち、経路コストが最小のものである。例えば、図 4のように、現在位置、出発位置、移動先候補位置、地図情報が取得されていたとき 、図 5のように現在位置と出発位置との間の経路コストは「lkm」、移動先候補「A店」 につ 、ての出発位置との候補位置との間の経路コストは「6km」、現在位置と候補位 置との間の経路コストは「5km」になり、図 6のように、移動先候補「B店」についての 出発位置と候補位置との間の経路コストは「4km」、現在位置と候補位置との間の経 路コストは「3km」、移動先候補「C店」についての出発位置と候補位置との間の経路 コストは「4km」、現在位置と候補位置との間の経路コストは細カゝ ヽ破線で示した経路 を通るので「8km」となる。
[0021] 遠回り度算出部 106は、経路コスト算出部 105で算出された経路コストから遠回り 度を算出する。遠回り度は、現在位置を含む出発位置力 移動先候補の位置までの 経路につ 、ての、出発位置力 移動先候補の位置までの最小経路コストの経路から のずれ量であり、本実施の形態では、現在、移動体が通っている経路を通ってその まま移動先まで到着したときの移動経路のコストと、出発位置から移動先までの最小 経路コストの差である。具体的には、現在出発位置間経路コストと現在候補位置間経 路コストとの和から、出発候補位置間経路コストを減算して得られる値が遠回り度とな る。例えば、図 4、 5、 6のように経路コストが算出されていたとき、図 7のように、移動先 候補「A店」についての遠回り度は、現在出発位置間経路コスト「lkm」と現在候補位 置間経路コスト「5km」の和「6km」と、出発候補位置間経路コスト「6km」の差「Okm」 となる。同様に移動先候補「B店」についての遠回り度は「Okm」(lkm+ 3km— 4km )、移動先候補「C店」についての遠回り度は「5km」(lkm+8km— 4km)となる。
[0022] 移動先予測部 107は遠回り度算出部 106が算出した遠回り度から移動体の移動先 を予測する。移動体は移動先を目指す場合に移動に力かる経路コストが小さくなるよ うに移動する傾向がある。よって、最小コストに対するコスト差である遠回り度も小さく なる。そのため遠回り度が最も小さい移動先を移動先とする。例えば図 4の場合、遠 回り度が最も低い「A店」(遠回り度 Okm)もしくは「B店」(遠回り度 Okm)が移動先で ある。また、さらに移動体が移動し、図 8のようになったとする。このとき、図 9のように「 A店」に対する遠回り度は、「12km」(2km+ 16km— 6km)、「B店」に対する遠回り 度は、「Okm」(2km+ 2km— 4km)、「C店」に対する遠回り度は、「5km」(2km+ 7 km -4km)となる。最も遠回り度が小さい移動先は「B店」(遠回り度 Okm)であり、一 つに絞られる。このように移動距離が増すと予測がより正確になる。
[0023] 情報提供部 108は移動先予測部 107が予測した移動先に従って、移動先予測装 置の画面や音声によって、ユーザに情報を提供する。例えば図 10のように、移動体 の移動先が「B店」と予測した場合、「B店」までの経路の交通情報や推奨経路、「B店 」のセール情報を提供することが出来る。
[0024] このように、遠回り度を用いることで、移動先を予測できるため、予測した移動先へ の経路を提供することや、移動先やその経路上の店舗情報、交通情報、渋滞情報を 提供することや提供情報のフィルタリングを行うことが出来る。
[0025] 以下、本実施の形態 1のフローチャートを、図 11を用いて説明する。
[0026] まず、出発位置取得部 102が、移動体が移動を開始した出発位置を取得する (ス テツプ S801)。現在位置取得部 101は、 GPS等により、現在位置を取得する (ステツ プ S802)。移動先候補位置取得部 103は、現在位置力も所定の範囲内にあるランド マーク位置を地図情報蓄積部 104から取得する (ステップ S803)。経路コスト算出部 105は、地図情報蓄積部 104に蓄積された道路情報を用いて、現在位置と出発位 置との間の経路コスト、現在位置と移動先候補位置との間の経路コスト、出発位置と 移動先候補位置との間の経路コストを算出する (ステップ S804)。遠回り度算出部 10 6は、経路コスト算出部 105で算出された経路コストから遠回り度を算出する (ステツ プ S805)。移動先予測部 107は遠回り度算出部 106が算出した遠回り度から移動 体の移動先を予測する (ステップ S806)。情報提供部 108は移動先予測部 107が予 測した移動先に従って、ユーザに情報を提供する (ステップ S807)。 [0027] なお、本実施の形態において、遠回り度算出部 106における遠回り度の算出は、 定期的なタイミングで行うものとして説明した。一方、カーナビ等の端末においては、 車両の移動に伴う地図のスクロールや、 GPSアンテナによる位置の検出、さらには、 VICS情報の取得等、複数のプログラムが同時に動作している。そのため、遠回り度 を常に算出することが計算量の上で困難な場合もある。そこで、あらかじめ、遠回り度 を算出するタイミングを算出しておいてもよい。例えば、本実施の形態のように、移動 先が「A店」「B店」という 2つの候補の場合には、現在地点から、各候補位置への経 路コストを求めた経路を蓄積する。次に、蓄積している複数の経路において、経路が 分岐する交差点を検出する。これらの交差点を通過したときに、車両力 S「A店」と「B店 」のどちらに向かおうとしているかを判断することができる。そこで、これらの交差点を 通過したときに、本実施の形態において述べた遠回り度を算出し、目的地の推定を 行うことが可能になる。
[0028] なお、上記実施の形態では、移動先候補を遠回り度が最も小さいものに絞り込んだ 力 必ずしも遠回り度が最小になる必要はなぐ遠回り度が所定の閾値 (第 1の閾値) 以下になるように絞り込むとしても良い。つまり、遠回り度が最小となる移動先候補に カロえて、あるいは、遠回り度が最小となる移動先候補に代えて、遠回り度が予め設定 された閾値 (第 1の閾値)以下となる 1つ又は複数の移動先候補を移動先として予測 してもよい。特に、道路交通情報や商用情報の提供のために、移動先を予測する場 合、ユーザは必ずしも一つの移動先の情報だけを欲しがっているとは限らない。ユー ザは複数の移動先の中からどちらに行くかを迷っている可能性がある。このようなとき 、より移動先となる可能性の高い遠回り度が所定の閾値以下になる複数の移動先候 補について情報を提供すると、その情報を元にユーザがどちらの移動先に行けばよ いかを判断することができる。このとき、閾値は、固定値であってもよいし、ユーザ設 定可能な値であってもよ 、。
[0029] また、移動先候補が予め設定した個数 (例えば、 3個)になるように、遠回り度が小さ いものから順に選択しても良い。このとき、予測する移動先の個数は、固定値であつ てもよいし、ユーザ設定可能な値であってもよいし、ユーザの状況に依存して自動的 に変動する値であってもよ 、。特に道路交通情報の情報をユーザに提供する場合、 ユーザの状況によってユーザが欲する情報の量は異なる。例えば、ユーザが停車中 であれば多くの情報を見ることができるが、走行中は少ない情報しか見ることができ ない。走行中に多くの情報をユーザに提供すると運転の妨げになってしまう。そこで、 ユーザの状況により、予測する移動先の個数を変動させ、遠回り度の低い順に所定 の個数になるまで移動先を選択し、選択した移動先の情報を提供してもよい。これに より状況に応じた情報提供が可能になる。
[0030] なお、遠回り度により予測する移動先は、最終的な移動先ではなぐ仮の移動先で あってもよい。つまり、遠回り度により選択した複数の移動先候補を最終的な移動先 と決定し、それらすベての情報を提供するのではなぐ遠回り度により選択した複数 の移動先候補を仮の移動先とし、その仮移動先の中から別の移動先予測手法により 、最終的な移動先を決定し、最終的な移動先に関する情報を提供してもよい。別の 移動先予測手法とは、例えば特許文献 1のように、過去の履歴を用いて移動先を予 測する手法である。例えば、遠回り度によって選択された「A '店」、「Β'店」、「C '店」 t 、う仮移動先の中から、ユーザが過去に訪問した回数の最も多 、仮移動先を最終 的な移動先として決定する。これにより、遠回り度、別の移動予測手法、両方の観点 から、移動先となりえない移動先候補を除去できる。従って、移動先となる可能性が 十分にある場所の情報だけをユーザに提供することができる。このため、必要のない 情報をユーザに与えたために、ユーザの運転などのタスクを妨げてしまうことを防ぐこ とがでさる。
[0031] また、上記実施の形態では、移動先候補位置までの距離や経路コストによらず、遠 回り度は、現在出発位置間経路コストと現在候補位置間経路コストとの和から出発候 補地間の経路コストを減算した値を遠回り度としていた。この算出方法は、あまり遠く に出かけないユーザなど、移動先候補位置取得部 103が、移動先候補を選択する 際の現在位置カゝら候補位置への距離範囲の閾値が小さい場合については良いが、 特に遠くに出かけることもあるユーザなど、移動先候補位置取得部 103が、移動先候 補を選択する際の現在位置から候補位置への距離範囲の閾値を大きくしなければ ならない場合、遠くの予測候補位置は、最短の経路コストとは異なる道を少し通った だけでも、遠回り度が大きく算出されてしまうため、近くの予測候補位置ば力りが移動 先として予測されてしまうという問題がある。そこで遠くに出かけることもあるユーザに 対しては、出発位置力 移動先候補位置までの経路コストにより、遠回り度を正規ィ匕 してもよい。つまり、遠回り度を候補位置までの距離や経路コストに反比例させ、候補 位置までの距離や経路コストが大きいほど遠回り度を小さくする。具体的には現在候 補位置間経路コストと出発現在位置間経路コストとの和力も出発候補位置間経路コ ストを減算した値に比例し、かつ、出発候補位置間経路コストに反比例する値を、遠 回り度として算出してもよい。これにより、遠くに出かけることもあるユーザに対しても、 遠くの移動先が予測可能となる。なお、出発地力も候補位置までの経路コストではな ぐ出発地から候補位置までの距離、もしくは出発地力 候補位置までの所要時間で 割った値 (これらの距離又は所要時間に反比例する値)を遠回り度としてもよい。
(実施の形態 1の変形例 1)
なお、本実施の形態 1では、出発位置と現在位置と移動先候補位置カゝら遠回り度 を算出することで目的地の予測を行っていた。遠回り度を用いることで、図 12のよう に移動先候補が目的地となる可能性のある範囲を限定することができる。しかし、移 動先候補に対する遠回り度が一定であれば、移動先候補までの距離に関わらず、同 等に目的地の存在する可能性のある範囲となる。よって、図 12のように出発地が北 西であり、南に移動し、東に移動して現在地に着いたとき、現在地から東の移動先候 補ならば、どこまで距離が離れても目的地候補となりうる。しかし、出発地から現在地 までの移動経路を用いることで、移動先候補が目的地となる可能性のある範囲を、移 動先候補への距離により、さらに限定することができる。一般的に移動体が車の場合 、国道などの道路幅の広い道をできるだけ通ろうとする傾向がある。狭い道を通るとき は、目的地までに移動するために広い道がないため、狭い道を通らざるを得ない状 況にあることが多い。よって一般的に、車は出発後まず幅の広い道に出ることを優先 し、その後広い道を走行した後、目的地が幅の狭い道に面しているならば、目的地 直前になって幅の狭い道に入り、目的地に到着する傾向がある。よって道路幅が広 い道力 狭い道に移動したときには、目的地直前であることが推定でき、目的地まで の距離により目的地の存在する範囲を限定することができる。このことから、出発位置 力 現在位置までの移動経路から、道幅の広!、道から狭!、道に移動するイベントの 有無とイベントの発生位置を検知し、イベントの発生位置力 移動先候補への距離 により、目的地を予測しても良い。これにより、遠回り度と同様に過去の移動履歴を使 わなくても、出発位置力 現在位置までの移動経路力 移動先となる範囲をさらに限 定することができる。例えば、車が幅の広い道力 狭い道に移動したときに、目的地 の存在する範囲を遠回り度とイベント発生位置力 の距離力 限定し、移動体の目的 地となる駐車場の候補を提示することができる。
[0033] 以下、本実施の形態の手法について説明する。
[0034] 図 13は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0035] この移動先予測装置は、「前記移動体の現在位置における道路幅を取得する道路 幅取得手段と、取得された前記道路幅よりも、道路幅が減少した位置をイベント発生 位置として検出するイベント発生検出手段と、前記イベント発生位置よりも道路幅が 大きい道路で囲まれた領域であり、かつ、前記イベント発生位置を含む領域にない 移動先候補を、前記イベント発生位置以後の移動先候補から除外する距離制限手 段とを備え、前記移動先予測手段は、前記イベント発生位置よりも道路幅が大きい道 路で囲まれた前記領域内にある移動先候補のうちから移動先を予測する」に相当し 、イベント発生検出部 5110は「道路幅取得手段」と「イベント発生検出手段」とに相当 し、距離閾値算出部 5113と距離制限部 5114とが「距離制限手段」と「移動先予測 手段」とに相当する。
[0036] 地図情報蓄積部 5104は、位置や幅、リンク距離といった道路情報を蓄積する。例 えば、図 14のように、ノードの位置、接続ノード、ノード間を結ぶリンクの距離、リンク の道路幅が蓄積されている。図 14のノード ID「001」はノード位置が経度「134. 3. 0 . 9」であり、緯度力 S「34. 6. 3. 6」であり、ノード ID「002」「003」「004」「005」と接続 している。また、リンク ID「001]は始点ノード ID「001」と終点ノード ID「002」を結ぶリ ンクであり、道路幅は「5m」であり、リンク距離は「lkm」であることを示す。また店、名 所と!/、つたランドマークの位置が蓄積されて 、る。
[0037] 道路幅記憶部 5109は、イベント発生検出部が算出した道路幅を記憶する。 [0038] イベント発生検出部 5110は、例えば一秒ごとに現在位置取得部が取得した現在 位置における道路の幅を地図情報蓄積部 5104から取得する。現在地における道路 幅が所定の値未満であり、道路幅記憶部 5109に記憶された道路幅が所定の値以 上であるときに、つまり道幅の広い道力 道幅の狭い道に侵入したときに、イベントの 発生とイベントの発生位置を検出し、イベント位置記憶部 5111に記憶する。そしてィ ベント記憶部 5111に算出した最新の道路幅を記憶する。広 、道から狭 、道への侵 入イベントの発生判定にもちいる道路幅の境界値は、例えば 1車線と 2車線の境界で ある 5. 5mとする。つまり、一秒ごとに現在の道路幅を算出し、 5. 5m以上の道路幅 力 5. 5m未満の道路幅になったときに、イベントの発生を検出し、発生したときの現 在位置をイベント位置記憶部 5111に記憶する。例えば、図 15のように、現在位置の 道路幅が 12mから 5mになったときに、イベントの発生を検出する。
[0039] イベント位置記憶部 5111は、イベント発生検出部 5110の結果から、出発位置から 現在位置までにおける道路幅の広 、道から狭 、道への侵入イベントの発生の有無と 発生位置を記憶する。
[0040] 移動先予測部 5107は遠回り度算出部 106が算出した遠回り度力も移動体の移動 先を予測する。移動体は移動先を目指す場合に移動に力かる経路コストが小さくなる ように移動する傾向がある。よって、最小コストに対するコスト差である遠回り度も小さ くなる。そのため遠回り度が所定の値、例えば lkmより小さい移動先全てを移動先と する。例えば図 15のように移動先候補として「A店」「B店」「F店」が存在するとき、図 16のように遠回り度が検出されたとすると、遠回り度が lkmより小さい「A店」(遠回り 度 Okm)もしくは「F店」(遠回り度 Okm)が移動先である。
[0041] 距離算出部 5112は、イベント位置記憶部 5111にイベント発生が記憶されていると きに、移動先予測部 5107が予測した単一または複数の移動先に対して、イベント発 生位置から予測した移動先までの距離を算出する。
[0042] 距離閾値算出部 5113は、イベント位置記憶部 5111にイベント発生が記憶されて いるときに、距離制限部 5114が予測移動先までの距離により、移動先を除去する際 の距離の閾値を算出する。イベント位置記憶部 5111に記憶されたイベント発生位置 と地図情報蓄積部 5104に蓄積された「ノード位置」「接続ノード」「リンク距離」、「道 路幅」といった道路情報を用いて、閾値を算出する。具体的には、イベント発生位置 力も全方向について、「道路幅」が広い道と狭い道とを区別するための閾値「5. 5mj 以上である道路までの最短距離を算出し、算出された最短距離の全方向中、最も距 離が大きくなつたときの値を閾値とする。例えば、イベント発生位置と道路の関係が図 17のようになつていた場合、「5. 5」以上である道路への最短距離は、「Okm」以上「 8km」までの間となる。よって最大値である「8km」を閾値とする。
[0043] 移動先までの距離力 ベント発生位置力も道幅の大き 、道路への距離の最大値以 上である場合、移動先にはイベント発生位置で狭い道に侵入しなくても、より移動先 に近い位置まで、右折、左折回数を増加させずに、道幅の大きい道路を通る経路が 存在する。このため、イベント発生位置で狭い道に侵入することは不自然である。し かし、移動先までの距離が、イベント発生位置力 道幅の大きい道路への距離の最 大値より小さい場合、イベント発生位置で狭い道に侵入しなければ、移動先までの移 動距離や右折、左折回数が大きくなる可能性がある。このため、移動先に向力う際に イベント発生位置で狭 、道に侵入することは自然である。よってイベント発生位置か ら道幅の大き 、道路への距離の最大値を閾値とする。
[0044] 距離制限部 5114は、イベント位置記憶部 5111にイベント発生が記憶されていると きに、移動先予測部 5107が予測した単一または複数の移動先に対して、距離算出 部 5112が算出したイベント発生位置力もの距離が、距離閾値算出部 5113が算出し た閾値以上であるものを移動先から除去し、閾値未満であるもののみを予測移動先 として情報提供部 108に出力する。これは道幅の大きい道力 小さい道への移動が 起こったときには目的地までの距離が制限されるためである。例えば、図 18のように 、移動先予測部 5107が予測した移動先が A店 (距離算出部 5112が算出した距離 4 km)、「F店」(距離算出部 5112が算出した距離 9km)であり、距離閾値算出部 511 3が算出した閾値が 8kmであったとき、「F店」は距離が 8km以上であるため移動先 力 除去し、距離が 8km未満である「A店」を移動先として出力する。
[0045] 以下、本実施の形態 1の変形例 1のフローチャートを、図 20を用いて説明する。前 記実施の形態 1で示した構成要素には同様の符号を付与し、説明を省略する。
[0046] 実施の形態 1と同様に出発位置と現在位置を取得した後、イベント発生検出部 511 0は、現在位置の道路幅を検出する (ステップ S5703)。イベント発生検出部 5110が 道路幅によりイベント発生を判定し (ステップ S5704)、道路幅記憶部 5109に記憶さ れた以前の道路幅が閾値以上であり、現在位置の道路幅が閾値未満であるならば( ステップ S5705の Yes)、ステップ S5705【こ進み、そうでな!/ヽなら ί (ステップ S5705 の No)、ステップ S5706に進む。以前の道路幅が閾値以上であり、現在位置の道路 幅が閾値未満であるならば、イベント発生検出部 5110は、イベント発生を有とし、ィ ベント発生が有であることとイベントの発生位置をイベント位置記憶部 5111に記憶す る(ステップ S5705)。そしてステップ S5706に進む。その後、道路幅記憶部 5109は 現在位置の道路幅を記憶する (ステップ S5706)。その後、実施の形態 1と同様に、 移動先候補位置取得部 103は、現在位置力も所定の範囲内にあるランドマーク位置 を地図情報蓄積部 104から取得する (ステップ S803)。経路コスト算出部 105は、地 図情報蓄積部 104に蓄積された道路情報を用いて、現在位置と出発位置との間の 経路コスト、現在位置と移動先候補位置との間の経路コスト、出発位置と移動先候補 位置との間の経路コストを算出する (ステップ S804)。遠回り度算出部 106は、経路 コスト算出部 105で算出された経路コストから遠回り度を算出する (ステップ S805)。 移動先予測部 107は遠回り度算出部 106が算出した遠回り度から移動体の移動先 を予測する (ステップ S806)。距離算出部 5112は、イベント位置記憶部 5111にィべ ント発生が有であることが記憶されているかどうかを判定し (ステップ S5707)、ィベン ト発生有が記憶されていれば (ステップ S5707の Yes)、ステップ S5708に進む。ィ ベント発生有が記憶されていなければ (ステップ S5707の No)、ステップ S5711に進 む。イベント発生有が記憶されていたとき、距離算出部 5112は、イベント位置記憶部 5111が記憶したイベント発生位置力も移動先予測部 107が予測した移動先までの 距離を算出する (ステップ S5708)。距離閾値算出部 5113は、イベント位置記憶部 5 111が記憶したイベント発生位置と地図情報蓄積部 5104に蓄積された道路情報か ら、閾値を算出する (ステップ S5709)。距離制限部 5114は移動先予測部 107が予 測した移動先の中から、距離算出部 5112が算出した距離が、距離閾値算出部 511 3が算出した閾値以上である移動先を除去する (ステップ S5710)。情報提供部 108 は、距離制限部 5114が除去した移動先を除く移動先予測部 107が予測した移動先 に従って、ユーザに情報を提供する (ステップ S5711)。
[0047] なお、本実施の形態において、イベント検出位置からの距離により予測移動先を除 去した。しかし、イベント検出位置と予測移動先の間に閾値以上の道路幅をもつ道路 が存在するときに、その予測移動先を除去し、閾値以上の道路幅を持つ道路が存在 しないときに、その予測移動先を移動先としてもよい。つまり、図 19のように予測移動 先の位置が、イベント検出位置の周囲にある道路幅の大きい道路に囲まれた範囲内 になければ、その予測移動先を除去する。これにより、イベント発生位置で道路幅の 小さい道に入るより、道路幅の大きい経路を長く通ることのできる移動先をより効率よ く除去できる。
[0048] なお、本実施の形態において、道路幅が大きい道力 小さい道に移動したときに、 目的地までの距離は制限できると説明した。しかし、渋滞を避け、抜け道を通るため に、故意に道路幅の小さい道を通るときがある。これを避けるために、道路幅が大き い道から小さい道に曲がったときに、他の車の移動履歴を用いて、他の車が曲がらな い交差点で、移動体が曲がっていたときのみ目的地までの距離を制限しても良い。 道路幅の小さ ヽ道が渋滞を避ける抜け道の場合は、他の車もその抜け道を移動する 可能性が高 、。よって他の車が道路幅の大き 、道力 あまり侵入してこな 、道路幅 の小さい道に、道路幅の大きい道から侵入してきたときにのみイベント発生検出部 51 10はイベントの発生を検出する。
[0049] なお、道路幅が大きい道力 小さい道に移動したときに、目的地までの距離は制限 できると説明した。しかし、渋滞を避け、抜け道を通るために、故意に道路幅の小さい 道を通るときがある。これを避けるために、 VICS (Vehicle Information and Co mmunication System)などの渋滞情報を取得し、道路幅が大きい道から小さい 道に曲がったときに、移動体の現在の進行方向に渋滞がな力つたときのみ目的地ま での距離を制限しても良い。イベント発生検出部 5110は道路幅の大きい道力も道路 幅の小さい道に侵入し、移動体の進行方向に渋滞がな力つたときにイベントの発生 を検出する。
[0050] (実施の形態 2)
実施の形態 1では、移動体の移動先候補は地図情報に蓄積されたランドマークか ら取得していた。しかし、移動体の交通量検出位置を移動先候補としてもよい。交通 量検出位置とは、例えば、主要幹線道路の交差点の出口付近や高速道路上などで ビーコンが設置されている地点を言う。ビーコンは、赤外線通信、準マイクロ波または
FM多重放送などにより車載側の VICSユニットと通信を行 、、直下を通行する車の 交通量やその進行方向や車線などを検知するとともに、車載側の VICSユニットに渋 滞、事故、規制、工事および目的地までの所要時間などの交通情報を提供する装置 である。この交通量検出位置は移動体が一般的によく通る場所であり、移動先となる 可能性が高い。また、移動体は交通量が大きい場所を通る可能性が高いため、検出 した交通量を用いることで予測をより正確に行うことができる。
[0051] 以下、本実施の形態の手法について説明する。
[0052] 図 21は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0053] 本実施の形態の移動先予測装置は、「前記移動先候補位置取得手段は、交通情 報提供者が移動体の交通量を検出する地点である交通量検出地を前記移動先候 補として、前記移動先候補の位置を取得し、前記移動先予測装置は、さらに、前記 交通情報提供者から、前記交通量検出地の各地点における進行方向ごとの交通量 を取得する交通量取得手段を備え、前記現在候補位置間経路コスト算出手段は、前 記現在候補位置間経路コストを、現在の移動体の進行方向に応じて、前記交通量検 出地の各地点を当該移動体が通過する方向ごとに算出し、前記出発候補位置間経 路コスト算出手段は、前記出発候補位置間経路コストを、前記交通量検出地の各地 点を当該移動体が通過する方向ごとに算出し、前記移動先予測手段は、前記遠回り 度が前記最小となり、かつ、その中でも取得された交通量がより大きい前記交通量検 出地を移動先と予測することを特徴とする移動先予測装置」に相当し、これにおいて 、交通量検出位置取得部 903が「移動先候補位置取得手段」および「交通量取得手 段」に相当し、経路コスト算出部 905が「現在候補位置間経路コスト算出手段」および 「出発候補位置間経路コスト算出手段」に相当し、移動先予測部 907が「移動先予測 手段」に相当する。 [0054] 現在位置取得部 901は、 GPSアンテナまたは ICタグ、基地局通信、画像認識等に より、移動体の現在地の位置と向きを検知する。東経「134. 5. 59. 9」、北緯「34. 5 . 15. 6」、向き「295度」のように移動体の経度、緯度の情報を検知する。向きは真北 方向角であり、真北の方向を 0度とし、真北の方向から右回りを正としている。
[0055] 出発位置取得部 902は、移動体が移動を開始した出発位置と向きを取得する。例 えば、移動体が車の場合、最後にエンジンを掛けた箇所である。東経「134. 5. 59. 9」、北緯「34. 5. 15. 6」、向き「295度」のように移動体の経度、緯度の情報を検知 する。なお、出発位置、向きは移動体が最後に、所定の時間以上停止していた場所 、移動体が最後に内部にいた店などの建物、ランドマークにおける移動体の位置や 向きでもよい。
[0056] 交通量検出位置蓄積部 909は、交通量を検出できる位置及び検出した交通量の 大きさと向きを蓄積する。例えば図 22の ID「001」の交通量検出位置の場合、位置 は「134. 3. 0. 9」、北緯「34. 6. 3. 6」であり、検出位置における向き(方向角)「0 度」への大きさが「50台 Z時間」である。
[0057] なお、交通量検出位置の交通量情報は、 VICS電波やネットワーク回線力 最新の 交通量情報を入手してもよ ヽ。
[0058] 交通量検出位置取得部 903は、移動体の移動先の候補となる交通量を検出できる 位置及び検出した交通量の大きさと向きを取得する。図 7のように現在位置力も所定 の範囲、例えば 10km以内にある交通量検出位置の交通量情報を交通量検出位置 蓄積部 909から取得する。
[0059] 地図情報蓄積部 904は、位置やリンク距離といった道路情報を蓄積する。例えば、 ノードの位置、接続ノード、ノード間を結ぶリンク距離が蓄積されている。
[0060] 経路コスト算出部 905は、地図情報蓄積部 904に蓄積された、ノードの位置、接続 ノード、リンク距離といった道路情報を用いて、経路コストを算出する。現在位置取得 部 901が取得した現在位置と出発位置取得部 902が取得した出発位置との間の最 小経路コスト、現在位置取得部 901が取得した現在位置と交通量検出位置取得部 9 03が取得した移動先候補位置との間の最小経路コスト、出発位置取得部 902が取 得した出発位置と交通量検出位置取得部 903が取得した移動先候補位置との間の 最小経路コストを算出する。
[0061] 経路コストは、出発位置、現在位置、移動先候補位置といった位置間の経路の距 離、経路を走行する場合の所要時間、道路種別、道路規制情報、右折、左折回数な どから、それぞれの位置の向きを考慮して算出する。具体的には、位置間を移動す るときに通る道路距離の総和と移動するときの右折、左折回数の和を経路コストとす る。例えば、右折、左折回数 1回ごとに経路コストが lkm増えるとする。図 23のように 、現在位置と向き、出発位置と向き、移動先候補位置と向き、地図情報が取得されて いたとき、図 24、図 25のように現在出発位置間経路コストは「lkm」(lkm+右折左 折 0回)、移動先候補 ID「002」についての出発候補位置間経路コストは「9km」(6k m+右折左折 3回)、現在候補位置間経路コストは「8km」(5km+右折左折 3回)と なる。
[0062] 移動先予測部 907は遠回り度算出部 106が算出した遠回り度と交通量検出位置 取得部が取得した交通量検出位置の所定の交通量の向きにおける交通量の大きさ 力 移動体の移動先を予測する。具体的には、遠回り度が所定の値 (例えば渋滞の 迂回経路許容距離の設定、例の場合 lkm)以下になる移動先候補の中力 交通量 が最も大きい移動先候補を移動先とする。例えば図 26の場合、遠回り度が所定の値 lkm以下である移動先候補は図 27のように ID「001」(遠回り度 Okm) ID「002」(遠 回り度 Okm)、 ID「004」(遠回り度 Okm)、 ID「005」(遠回り度 Okm)である。このうち 交通量の大きさが最も大きい ID「004」(交通量 400台 Z時)が移動先となる。
[0063] 遠回り度算出部 106は、実施の形態 1と同様に経路コスト算出部 105で算出された 経路コストから遠回り度を算出する。現在出発位置間経路コストと現在候補位置間経 路コストの和と、出発候補位置間経路コストの差が遠回り度となる。例えば、図 23のよ うに移動先候補が存在したとき、図 28のように遠回り度が計算される。例えば、移動 先候補「002」についての遠回り度は、現在出発位置間経路コスト「lkm」と現在候補 位置間経路コスト「8km」の和「9km」と、出発候補位置間経路コスト「9km」の差「0k mjとなる。
[0064] 情報提供部 908は移動先予測部 907が予測した移動先に従って、移動先予測装 置の画面や音声によって、ユーザに情報を提供する。例えば図 29のように、移動体 が ID「004」の交通量検出位置を「 180度」の向きに通過すると予測した場合、 ID「0 04」を「180度」の向きで通過するまで、及びその前方所定の範囲内の経路の交通 情報や推奨経路を提供することが出来る。
[0065] 情報提供部 908においては、各地点における交通量力も渋滞度合いを算出するこ とで、将来、車両が走行する可能性が高い経路における渋滞度合いを、事前にユー ザに提供することが可能になる。例えば、「これから通過する交差点での渋滞が 500 Mです」というような情報を提供することが可能になる。しかしながら、渋滞距離が所 定の値より長い場合には、ユーザの車両がすでに渋滞の中にある場合がある。そこ で、ユーザの車両がすでに渋滞の中にある力否かを、車両の平均走行速度等から算 出し、すでに渋滞の中にあるときには、渋滞情報を提供する場合に、「これから 1KM は渋滞中です」等、渋滞情報の表現方法を変更してもよい。具体的には、一般道路 の場合平均速度が 10km以下のときに、高速道路の場合は平均速度が 20km以下 のときに渋滞とする。これにより、ユーザの車両が現在渋滞中の場合には、交差点の 名称等を知らなくても、渋滞の度合いを直感的に把握することが可能になる。
[0066] 以下、本実施の形態 2のフローチャートを、図 30を用いて説明する。
[0067] まず、出発位置取得部 902が、移動体が移動を開始した出発位置と向きを取得す る (ステップ S1501)。現在位置取得部 901は、 GPS等により、現在位置と向きを取 得する (ステップ S 1502)。交通量検出位置取得部 903は、現在位置取得部 901が 取得した現在位置力 所定の範囲内にある移動体の移動先の候補である交通量を 検出できる位置及び検出した交通量の大きさと向きを交通量検出位置蓄積部 909か ら取得する (ステップ S 1503)。経路コスト算出部 905は、地図情報蓄積部 904に蓄 積された道路情報を用いて、現在位置と出発位置との間の経路コスト、現在位置と移 動先候補位置との間の経路コスト、出発位置と移動先候補位置との間の経路コストを それぞれの向きも考慮して算出する (ステップ S1504)。遠回り度算出部 106は、経 路コスト算出部 905で算出された経路コストから遠回り度を算出する (ステップ S 1505 )。移動先予測部 907は遠回り度算出部 906が算出した遠回り度力も移動体の移動 先候補を選択する (ステップ S1506)。移動先予測部 907は移動先候補位置の交通 量の大きさにより、移動先を予測する (ステップ S 1507)。情報提供部 908は移動先 予測部 907が予測した移動先に従って、ユーザに情報を提供する (ステップ S1508)
[0068] (実施の形態 3)
なお、本実施の形態 1では、移動履歴を用いずに移動体の移動先候補は地図情 報に蓄積されたランドマーク力 取得していた。しかし、移動履歴が充分蓄積された 後に限っては、一度行ったことがある場所が目的地となることが多い。よって、移動体 の目的地の履歴を蓄積し、履歴が充分蓄積されているならば、過去の目的地から移 動先候補を取得してもよい。
[0069] 以下本実施の形態の手法にっ 、て説明する。
[0070] 図 31は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0071] 本実施の形態の移動先予測装置は、「さらに、前記移動体が行ったことがある位置 の履歴を蓄積する移動履歴蓄積手段を備え、前記移動先候補位置取得手段は、前 記移動履歴蓄積手段で蓄積されて!、る前記位置を前記移動先候補として、前記移 動先候補の位置を取得し、前記移動先予測手段は、前記移動履歴蓄積手段で蓄積 されている前記位置のうち前記遠回り度が前記最小となる移動先候補を、移動先と 予測することを特徴とする移動先予測装置」に相当し、これにおいて、目的地履歴蓄 積部 1604は「移動履歴蓄積手段」に相当し、移動先候補位置取得部 1603は「移動 先候補位置取得手段」に相当し、移動先予測部 107は「移動先予測手段」に相当す る。
[0072] 目的地履歴蓄積部 1604は、 GPSアンテナまたは ICタグ、基地局通信、画像認識 等により、移動体の過去に目的地となった位置を取得し、履歴を蓄積する。目的地と は例えば移動体が車の場合、エンジンを切った場所である。なお、停止時間が所定 の値以上の場所を目的地として蓄積してもよい。目的地履歴は例えば図 32のように 少なくとも目的地の位置情報を蓄積する。図 32の場合、例えば ID「005」において、 目的地の名前「Eセンター」の位置は、「 A店」の位置は東経「134. 7. 26. 9」、北緯 「34. 4. 49. 2」である。 [0073] 移動先候補位置取得部 1603は、目的地履歴蓄積部 1604に蓄積された過去の目 的地力 移動先の候補の位置を取得する。例えば、移動体の現在位置から所定の 範囲内にある目的地蓄積部 1604に蓄積された目的地を移動先の候補とする。
[0074] 以下、本実施の形態 3のフローチャートを、図 33を用いて説明する。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。実施の形態 1と 同様に出発位置と現在位置を取得した後、移動先候補位置取得部 1603は、現在 位置取得部 101が取得した移動体の現在位置力も所定の範囲内にある目的地履歴 蓄積部 1604に蓄積された過去の目的地を移動先候補として取得する (ステップ S 18 03)。以下実施の形態 1と同様である。
[0075] 本実施の形態においては、図 32に示したように、過去の走行履歴において、停車 時間が所定の時間より長い場所の経度、緯度から移動先の候補の位置座標を決定 した。し力しながら、位置座標とすると広い駐車場のある場所に停車した場合には、 停車場所が異なる位置となり、移動先の候補が増カロしてしまう可能性がある。そこで、 所定の範囲内の停車位置は、同一の場所として、所定の範囲内の中心位置を代表 の位置の移動先の候補としてもよ!/、。
[0076] また、本実施の形態にお!ヽては、停車場所を移動先の候補としたが、過去の走行 した代表的な交差点を移動先の候補としてもよ!、。過去の走行したことがある交差点 の数は、多くなり、各地点に対して経路コストを算出するには、計算量が増大してしま う。そこで、過去の走行において、分岐した交差点、言い換えると、複数の方向へ進 行したことがある交差点を代表的な交差点として、移動先の候補としてもょ 、。
[0077] (実施の形態 4)
なお、本実施の形態 1では、移動体の移動先候補は地図情報に蓄積されたランド マークから取得していた。しかし、移動体の移動先候補は移動先予測装置に予めュ 一ザにより設定、もしくは装置等により予測された移動体の目的地であってもよい。力 一ナビゲーシヨンシステムなどの移動体への移動先予測装置の場合、ユーザは移動 の前に予め目的地を自ら設定することが多い。しかし、例えば自宅を目的地として設 定した場合、ユーザは指定した目的地である自宅には直接向かわず、別のルートの 本屋やガソリンスタンドを経由して目的地である自宅に向カゝうという場合がある。目的 地は設定するが、ちょっと立ち寄るだけの経由地は設定しないことがある。しかし経由 地の存在のため、目的地に向力う最適なルートは変化することがある。
[0078] 本実施の形態 4において、装置は移動体が遠回り度から設定された目的地に直接 向力つているかどうかを判断する。つまり目的地に向力 前に移動体が経由しようとし ている経由地が存在するかを判断し、同時に経由地の予測を行う。これにより、現在 位置力 経由地に向力うルートの情報や、経由地から目的地に向力うルートの情報 など、設定された目的地だけでなく経由地に関連する情報を提供することができる。
[0079] 以下本実施の形態の手法にっ 、て説明する。
[0080] 図 34は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0081] 本実施の形態の移動先予測装置は「前記移動先予測装置は、さらに、利用者から 移動体の目的地を取得する目的地取得手段と、前記目的地に対する遠回り度が第 2 の閾値以上であった場合に、前記目的地に向力う前に移動体が経由しょうとしている 経由地が存在すると判定する経由地判定手段とを備え、前記移動先候補位置取得 手段は、前記経由地が存在すると判定された場合、移動体の現在位置から所定の 範囲内にあり、前記経由地となりうる移動先候補の位置を取得し、前記移動先予測 手段は、前記移動先候補のうちで前記遠回り度が前記最小となる移動先候補を、前 記経由地と予測する」に相当し、これにおいて、目的地取得部 1909が「目的地取得 手段」に相当し、経由地判定部 1907が「経由地判定手段」に相当し、移動先候補位 置取得部 103が「移動先候補位置取得手段」に相当し、経由地予測部 1910が「移 動先予測手段」に相当する。
[0082] 目的地取得部 1909は、ユーザ等により装置に予め設定された目的地の位置を取 得する。例えば、目的地の位置、東経「134. 7. 26. 9」、北緯「34. 4. 49. 2」を取 得する。なお、装置もしくは他の移動先予測装置が予測、あるいは設定した目的地 位置を取得してもよい。
[0083] 経路コスト算出部 1905は、地図情報蓄積部に蓄積された、ノードの位置、接続ノー ド、リンク距離といった道路情報を用いて、経路コストを算出する。現在位置取得部 1 01が取得した現在位置と出発位置取得部 102が取得した出発位置との間の経路コ スト、現在位置取得部 101が取得した現在位置と目的地取得部 1909が取得した目 的地との間の経路コスト、出発位置取得部 102が取得した出発位置と目的地取得部 1909が取得した目的地との間の経路コスト、現在位置取得部 101が取得した現在 位置と移動先候補位置取得部 103が取得した移動先候補位置との間の経路コスト、 出発位置取得部 102が取得した出発位置と移動先候補位置取得部 103が取得した 移動先候補位置との間の経路コストを算出する。
[0084] 遠回り度算出部 1906は、経路コスト算出部 1905で算出された経路コストから遠回 り度を算出する。目的地と移動先候補についてそれぞれ遠回り度を算出する。遠回り 度は出発位置から目的地あるいは移動先候補までのコストが最小である経路のコスト に対する、現在移動体が通っている経路のコストの差である。具体的には、現在出発 位置間経路コストと現在目的地間経路コストの和から、出発目的地間経路コストを減 算した経路コストが目的地に対する遠回り度となる。現在出発位置間経路コストと現 在候補位置間経路コストの和から、出発候補位置間経路コストを減算した経路コスト が移動先候補に対する遠回り度となる。
[0085] 経由地判定部 1907は遠回り度算出部 1906が算出した遠回り度力も移動体の経 由地の存在の有無を判定する。つまり、移動体の次に向力う目的地が設定された目 的地であるのか、それとも設定された目的地とは別の経由地であるのかを判定する。 移動体は移動先を目指す場合に移動に力かる経路コストが小さくなるように移動する 傾向がある。よって、最小コストに対するコスト差である遠回り度も小さくなる。そのた め目的地を直接目指して 、る場合は、遠回り度は低 、。逆に遠回り度が高 、ときは、 目的地を直接は目指しておらず、別の経由地を目指している。このことから、経由地 判定部は、目的地に対する遠回り度が所定の値 (第 2の閾値)より大きいときに、経由 地は存在すると判定する。所定の値は、具体的には機器に予め設定された、渋滞が 存在したときに迂回経路を探索する際に、迂回経路が最短経路に対して移動距離が 長くなるのをユーザが許容する範囲を示す許容迂回距離とする。これは、遠回り度が 大きくなるときは、経由地を目指しているのではなぐ渋滞を避けるために迂回経路を 通っている可能性があるからである。予め設定された許容迂回距離より遠回り度が高 いときは、迂回経路を通っている可能性がなくなるため、目的地とは別の経由地を目 指していると判定できる。
[0086] 例えば図 35の場合、設定された目的地「B店」に対する遠回り度は図 36のように 9k mである。経由地判定に用いる遠回り度の境界値 (第 2の閾値)、すなわち、許容迂 回距離を、例えば 3kmとすると、遠回り度は 9kmと 3kmより大きいため経由地が存在 すると判定する。
[0087] 経由地予測部 1910は、経由地判定部 1907が経由地は存在すると判定したときに 、遠回り度算出部 1906によって算出された、移動先候補位置取得部 103が取得し た移動先候補に対する遠回り度を用いて経由地の位置も予測する。
[0088] 例えば図 35の場合、経由地判定部 1907により経由地が存在すると判定されたとき 、移動先候補取得部が取得した移動先候補が図 37の「A店」と「C店」、「D店」であり 、遠回り度が図 36のようにそれぞれ「Okm」「9km」「4km」であったとする。このとき遠 回り度が移動先候補の中で最も低い「A店」を経由地と予測する。
[0089] 情報提供部 1908は、目的地取得部 1909が取得した目的地及び経由地予測部が 予測した経由地に従って、移動先予測装置の画面や音声によって、ユーザに情報を 提供する。例えば図 38のように、移動体の目的地が「B店」であり、経由地が「A店」 であると予測したとき、「A店」を経由して「B店」へ向かう経路の交通情報や推奨経路 、「A店」のセール情報を提供することが出来る。逆に経由地が存在しないと判定した ときは、目的地までの経路の交通情報や、目的地の情報を提供する。
[0090] 以下、本実施の形態 4のフローチャートを、図 39を用いて説明する。前記実施の形 態 1で示した構成要素には同様の符号を付与し、説明を省略する。実施の形態 1と 同様に出発位置と現在位置を取得した後、目的地取得部 902が、装置に設定された 目的地との位置を取得する (ステップ S2303)。経路コスト算出部 1905は、地図情報 蓄積部 104に蓄積された道路情報を用いて、現在位置と出発位置との間の経路コス ト、現在位置と目的地との間の経路コスト、出発位置と目的地との間の経路コストを算 出する (ステップ S2304)。遠回り度算出部 1906は、経路コスト算出部 1905で算出 された経路コストから目的地に対する遠回り度を算出する (ステップ S2305)。経由地 判定部 1907が、目的地に対する遠回り度力も経由地が存在する力否かを判定する (ステップ S2306)。経由地が存在する否か判定を行い (ステップ S2307)、経由地が 存在すると判定したときは(ステップ S2307の Yes)ステップ S803に進む。経由地が 存在しないと判定したときは(ステップ S2307の No)ステップ S2310〖こ進む。経由地 が存在すると判定したとき、移動先候補位置取得部 103は、現在位置から所定の範 囲内にあるランドマーク位置を地図情報蓄積部 104から取得する (ステップ S803)。 経路コスト算出部 1905は、地図情報蓄積部 104に蓄積された道路情報を用いて、 現在位置と出発位置との間の経路コスト、現在位置と移動先候補位置との間の経路 コスト、出発位置と移動先候補位置との間の経路コストを算出する (ステップ S804)。 遠回り度算出部 106は、経路コスト算出部 1905で算出された経路コストから移動先 候補に対する遠回り度を算出する (ステップ S805)。経由地予測部 1910は遠回り度 算出部 1906が算出した移動先候補に対する遠回り度力も経由地を予測する (ステツ プ S2308)。情報提供部 1908は目的地取得部 1909が取得した目的地と経由地予 測部 1910が予測した経由地に従って、ユーザに情報を提供する (ステップ S2309) 。経由地が存在しないと判定したとき、情報提供部 1908は目的地取得部 1909が取 得した目的地に従って、ユーザに情報を提供する (ステップ S2310)。
[0091] (実施の形態 4の変形例 1)
なお、本実施の形態 4では、移動体の移動先候補に対する遠回り度によって経由 地を予測していた。しかし、経由地を予測する際に予め設定した目的地の情報を用 いてもよい。具体的には現在地力も経由地を経由したときの目的地までの経路コスト を用いる。通常、ユーザは経由地を経由したとしてもそれほど遠回りにならない場所 を経由地とする傾向がある。例えば目的地が自宅であるときに本屋に寄りたい場合で も、本屋が複数ある場合、本屋を経由したときの自宅への距離が最も低い本屋を選 ぶ傾向がある。これらのことより、現在地力 経由地を経由した目的地までの経路コス トを用いる。
[0092] 本実施の形態の移動先予測装置は「前記移動先予測手段は、さらに、前記遠回り 度が前記最小である移動先候補のうち、現在地から移動先候補を経由したときの目 的地までの経路コストが、最も小さくなる移動先候補を前記経由地と予測することを 特徴とする移動先予測装置」に相当し、この移動先予測装置において、経由地予測 部 1907が「移動先予測手段」に相当する。
[0093] 具体的には経由地予測部 1907が、遠回り度が所定の値以下である移動先候補の うち、移動先候補を経由したときの目的地までの経路コストが最も小さい移動先候補 を経由地と予測する。
[0094] (実施の形態 4の変形例 2)
なお、実施の形態 4では、移動体の移動先候補に対する遠回り度によって経由地 を予測していた。しかし、移動履歴が充分に収集されているときは経由地を予測する 際に予め設定した目的地の情報と目的地履歴を用いて、設定した目的地に向かう前 に立ち寄りやすい場所を経由地と予測してもよい。具体的には目的地の履歴を蓄積 し、設定した目的地の直前に目的地となった場所の中から遠回り度の最も低いものを 目的地とする。これにより、よりユーザに応じた経由地を予測することができる。
[0095] 以下本実施の形態の手法にっ 、て説明する。
[0096] 図 40は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1、 2で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各 構成要素について図を用いて説明し、後に本装置の動作について説明する。
[0097] 本実施の形態の移動先予測装置は「さらに、前記目的地取得手段によって取得さ れた目的地の履歴を前記目的地への到着日時と対応付けて蓄積する目的地履歴蓄 積手段を備え、前記移動先予測手段は、前記目的地履歴蓄積手段に蓄積されてい る目的地のうちで、現在取得されている目的地の直前に到達された目的地を、前記 経由地と予測することを特徴とする移動先予測装置」に相当し、これにおいて、目的 地履歴蓄積部 2404が「目的地履歴蓄積手段」に相当し、経由地予測部 1910が「移 動先予測手段」に相当する。
[0098] 目的地履歴蓄積部 2404は、移動体の過去に目的地となった位置と目的地に到着 した時刻の履歴を蓄積する。目的地とは例えば移動体が車の場合、エンジンを切つ た場所である。なお、停止時間が所定の値以上の場所を目的地として蓄積してもよ い。目的地履歴は例えば図 41の場合、 ID「005」において、目的地の名前「E社」の 位置は、東経「134. 7. 26. 9」、北緯「34. 4. 49. 2」であり、到着時刻は「9/21 9 : 00」である。 [0099] 移動先候補位置取得部 2403は目的地履歴蓄積部 2404が蓄積した目的地履歴 力 目的地取得部 1909が取得した目的地を用いて移動先候補を取得する。具体的 には、取得した取得目的地が蓄積されているとき、履歴から取得目的地の直前に目 的地となった場所を移動先候補とする。例えば、取得した目的地が「E社」、東経「13 4. 7. 26. 9」、北緯「34. 4. 49. 2」であったとする。このとき、図 41のように目的地 が蓄積されていたとすると、目的地「E社」は 10「005」(到着日時9 21 9 : 00)、「0 09」(到着日時 9Z22 8: 55)に蓄積されて 、る。図 42のように蓄積された目的地を 到着日時順に見たとき、目的地「E社」の直前に蓄積されている目的地は、 ID「004」 の「Dレストラン」(到着日時 9Z21 8 :40)、10「008」の「0店」(到着日時9 22 8 :40)である。この「Dレストラン」と「G店」が移動先候補、つまり経由地の候補となる。
[0100] 以下、本実施の形態 4変形例 2のフローチャートを、図 43を用いて説明する。前記 実施の形態 1、 4で示した構成要素には同様の符号を付与し、説明を省略する。実施 の形態 4と同様に経由地存在を判定した後、経由地が存在する場合、目的地履歴蓄 積部 2403が蓄積した目的地履歴の中から目的地取得部 1909が取得した目的地に より移動先候補を取得する (ステップ S2703)。以下実施の形態 4と同様である。
[0101] (実施の形態 4の変形例 3)
なお、実施の形態 4では経由地判定部 1907が経由地存在の判定に用いる遠回り 度の閾値は一定であった。しかし、目的地近くでは、移動体が道に迷うことや、道路 幅などにより遠回りをせざるを得ない状況となる可能性が高い。このため、目的地から 現在位置への距離が所定の値以下であるときは、経由地存在の有無を判定するとき に用いる閾値を大きくしても良 、。
[0102] (実施の形態 4の変形例 4)
なお、実施の形態 4では経由地判定部 1907が経由地存在の判定に用いる遠回り 度の閾値は一定であった。しかし、出発位置からの距離が増加するに従い、移動体 は休憩のために経由地に立ち寄る可能性が高くなる。このため、出発位置から現在 位置までの距離が所定の値以上であるときは、経由地存在の有無を判定するときに 用いる閾値を小さくしても良 、。
[0103] (実施の形態 4の変形例 5) なお、実施の形態 4では、遠回り度によって経由地の存在を判定していた。しかし、 移動体が車の場合、経由地が存在しなくても、移動体が渋滞を避けるために目的地 までの最小コスト経路力も外れることにより、遠回り度が大きくなる可能性がある。特に 、渋滞を避けようとして抜け道に入ったが、元の道より時間が力かってしまい、経路コ ストが大きくなるときに、ますます遠回り度が大きくなつてしまう。そこで、ユーザによつ て設定された目的地までの出発地からの最小コストの経路と現在移動体が経由地を 通らずに目的地に向力 ときに予測される移動経路の合流点を予測し、最小コスト経 路からの分岐点と予測合流点の間に渋滞の有無を判定することで、渋滞を避けるた めに遠回り度が高くなつたの力、経由地によるために遠回り度が高くなつたのかを判 定することができる。
[0104] 以下本実施の形態の手法にっ 、て説明する。
[0105] 図 44は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 4で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0106] 本実施の形態の移動先予測装置は、「さらに、前記出発位置と前記目的地を結ぶ 経路と前記出発位置と前記現在位置を結ぶ経路の分岐点の位置を算出する分岐点 算出手段と、前記出発位置と前記目的地を結ぶ経路と前記現在位置と前記目的位 置を結ぶ経路の合流点の位置を予測する合流点予測手段と、前記出発位置と前記 目的地とを結ぶ経路周辺の渋滞情報を取得する渋滞情報取得手段と、前記出発位 置と前記目的地とを結ぶ経路のうち分岐点位置と合流点位置の間に、渋滞が存在す るか否かを判定する渋滞回避判定手段とを備え、前記移動先予測手段は、前記目 的地に対する遠回り度が前記第 2の閾値以上であり、かつ、前記渋滞回避判定手段 力 渋滞は存在しないと判定したときに経由地が存在することを予測することを特徴と する移動先予測装置」に相当する。これにおいて、分岐点算出部 5812が「分岐点算 出手段」に相当し、合流点予測部 5811が「合流点予測手段」に相当し、渋滞情報取 得部 5813が「渋滞情報取得手段」に相当し、渋滞回避判定部 5814が「渋滞回避判 定手段」に相当し、経由地予測部 1910が「移動先予測手段」に相当する。
[0107] 経路コスト算出部 5805は、実施の形態 4と同様に地図情報蓄積部に蓄積された、 ノードの位置、接続ノード、リンク距離といった道路情報を用いて、経路コストを算出 する。現在位置取得部 101が取得した現在位置と出発位置取得部 102が取得した 出発位置との間の移動経路の経路コスト、現在位置取得部 101が取得した現在位置 と目的地取得部 1909が取得した目的地との間の経路コスト、出発位置取得部 102 が取得した出発位置と目的地取得部 1909が取得した目的地との間の移動経路の 経路コストを算出する。また、算出した経路コストを持つ経路自身の情報も出力する。 つまり出発位置力 現在位置までの移動体の移動経路、出発位置から目的位置ま での経路コストが最小である経路、現在位置から目的位置までの経路コストが最小で ある経路の情報を出力する。また、実施の形態 4と同様に現在位置取得部 101が取 得した現在位置と移動先候補位置取得部 103が取得した移動先候補位置との間の 経路コスト、出発位置取得部 102が取得した出発位置と移動先候補位置取得部 103 が取得した移動先候補位置との間の経路コストを算出する。
[0108] 合流点予測部 5811は、経路コスト算出部 5805が算出した出発位置から目的位置 までの最小経路と現在位置から目的位置までの経路の合流点の位置を算出する。 具体的には出発目的位置間経路と現在目的位置間経路の交点のうち、現在位置に 近い交点の位置を合流点の位置とする。交点がない場合は、合流点を算出しない。
[0109] 分岐点算出部 5812は、経路コスト算出部 5805が算出した出発位置から目的位置 までの最小経路と出発位置力も現在位置までの経路の分岐点の位置を算出する。 具体的には出発目的位置間経路と現在出発位置間経路の交点のうち、現在位置に 近い交点の位置を分岐点の位置とする。交点がない場合は、分岐点を算出しない。
[0110] 渋滞情報取得部 5813は、 FM電波やビーコンから VICS情報などを取得すること により、渋滞情報を取得する。具体的は渋滞の始点と終点の位置と渋滞の方向を取 得する。
[0111] 渋滞回避判定部 5814は、経由地判定部が経由地は存在すると判定し、合流点予 測部 5811が合流点を算出し、分岐点算出部 5812が分岐点を算出したときに、渋滞 情報取得部 5813が取得した渋滞情報を用いて、経路コスト算出部 5805が算出した 出発目的地間経路における分岐点と合流点の間の渋滞の存在を判定し、渋滞が存 在するときは、渋滞回避のために遠回りをしたとして、経由地は存在しないと経由地 判定を改める。具体的には、経路コスト算出部 5805が算出した出発目的地間経路 における分岐点と合流点の間の経路を算出し、経路中に分岐点力 合流点に向力う 方向の渋滞が存在したときに、経由地は存在しないと経由地判定を改める。例えば、 図 45の場合、目的地に対して遠回りをしているため、遠回り度が高くなり、経由地判 定部 1907が経由地の存在を予測したとする。しかし、出発目的地間経路の分岐点 位置と合流点位置の間に、分岐点力も合流点に向力 方向の渋滞が存在するため、 渋滞回避のために遠回りをしたと判断し、経由地は存在しないと経由地判定を改め る。
[0112] 以下、本実施の形態 4変形例 5のフローチャートを、図 46を用いて説明する。前記 実施の形態 4で示した構成要素には同様の符号を付与し、説明を省略する。実施の 形態 4と同様に出発位置、現在位置、目的地を取得した後、経路コスト算出部 5805 は、地図情報蓄積部 104に蓄積された道路情報を用いて、現在位置と出発位置との 間の移動経路と経路コスト、現在位置と目的地との間の移動経路と経路コスト、出発 位置と目的地との間の移動経路と経路コストを算出する (ステップ S6004)。
[0113] 遠回り度算出部 1906は、経路コスト算出部 5805で算出された経路コストから目的 地に対する遠回り度を算出する (ステップ S2305)。経由地判定部 1907が、目的地 に対する遠回り度力も経由地が存在するか否かを判定する (ステップ S2306)。経由 地が存在する否力判定を行い (ステップ S6007)、経由地が存在すると判定したとき は(ステップ S6007の Yes)ステップ S6008〖こ進む。経由地が存在しないと判定した ときは(ステップ S6007の No)ステップ S2310〖こ進む。経由地が存在すると判定した とき、分岐点算出部 5812は、経路コスト算出部 5805が算出した出発目的位置間経 路と現在出発位置間経路力も分岐点の位置を算出する (ステップ S6008)。合流点 予測部 5811は、経路コスト算出部 5805が算出した出発目的位置間経路と現在目 的位置間経路力も合流点の位置を予測する (ステップ S6009)。渋滞情報取得部 58 13は VICSなど力も渋滞情報を取得する (ステップ S6010)。渋滞回避判定部 5814 は、経路コスト算出部 5805が算出した出発目的位置間経路のうち、分岐点算出部 5 812が算出した分岐点と合流点予測部が予測した合流点の間に、渋滞情報取得部 5813が取得した渋滞が存在するときに、経由地は存在するか否かを判定する (ステ ップ S6011)。渋滞が存在すると判定したとき (ステップ S6011の Yes)、ステップ S23 10に進む。渋滞が存在しないと判定したときは(ステップ S6011の No)ステップ S80 3に進む。渋滞が存在しないと判定したとき、移動先候補位置取得部 103は、現在位 置力も所定の範囲内にあるランドマーク位置を地図情報蓄積部 104から取得する (ス テツプ S803)。経路コスト算出部 5805は、地図情報蓄積部 104に蓄積された道路 情報を用いて、現在位置と出発位置との間の経路コスト、現在位置と移動先候補位 置との間の経路コスト、出発位置と移動先候補位置との間の経路コストを算出する (ス テツプ S804)。遠回り度算出部 106は、経路コスト算出部 1905で算出された経路コ ストから移動先候補に対する遠回り度を算出する (ステップ S805)。経由地予測部 1 910は遠回り度算出部 1906が算出した移動先候補に対する遠回り度力も経由地を 予測する (ステップ S2308)。情報提供部 1908は目的地取得部 1909が取得した目 的地と経由地予測部 1910が予測した経由地に従って、ユーザに情報を提供する( ステップ S2309)。経由地が存在しない、もしくは渋滞が存在すると判定したとき、情 報提供部 1908は目的地取得部 1909が取得した目的地に従って、ユーザに情報を 提供する (ステップ S2310)。
[0114] (実施の形態 5)
なお、本実施の形態 4では、装置に設定された目的地は間違っていないという前提 の下、経由地の存在を予測していた。しかし設定された目的地が間違っている可能 性がある。例えば、カーナビゲーシヨンシステムの場合、カーナビゲーシヨンシステム に不慣れなユーザが目的地を設定したとき、操作ミスなどにより、設定した目的地自 身が間違っている可能性がある。また、ユーザの考えが移動中に変わり、初めに設定 した目的地とは別の場所が目的地となることもある。よって、目的地の設定ミスを検出 し、設定ミスであることをユーザに伝える、もしくは目的地設定を自動的に解除し、設 定された目的地より計算された推奨ルート表示や案内情報提供をフィルタリングして もよい。これにより、間違った目的地案内により、装置が何度も Uターンするように言う など、ユーザにとって邪魔な情報が何度も提供されるのを防ぐことができる。
[0115] 図 47は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 1、 2、 4で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず 各構成要素について図を用いて説明し、後に本装置の動作について説明する。
[0116] 経路コスト算出部 2805は、地図情報蓄積部 904に蓄積された、ノードの位置、接 続ノード、リンク距離といった道路情報を用いて、経路コストを算出する。現在位置取 得部 101が取得した現在位置と出発位置取得部 102が取得した出発位置との間の 経路コスト、現在位置取得部 101が取得した現在位置と目的地取得部 1909が取得 した目的地との間の経路コスト、出発位置取得部 102が取得した出発位置と目的地 取得部 1909が取得した目的地との間の経路コストを算出する。
[0117] 本実施の形態の移動先予測装置は、「さらに、少なくとも目的地および前記目的地 までの経路に関する情報を提供する情報提供手段を備え、前記情報提供手段は、 前記目的地誤設定検出手段が、取得された前記目的地が誤りであると判定したとき に、前記目的地に対する遠回り度が大きいほど、前記目的地に関する情報を簡略化 して提供することを特徴とする移動先予測装置」に相当し、これにおいて、情報提供 部 2808が「情報提供手段」に相当する。
[0118] 遠回り度算出部 2806は、経路コスト算出部 1905で算出された経路コストから目的 地に対する遠回り度を算出する。遠回り度は出発位置から目的地までのコストが最小 である経路のコストに対する、現在移動体が通っている経路のコストの差である。具 体的には、現在出発位置間経路コストと現在目的位置間経路コストの和と、出発目 的位置間経路コストの差が目的地に対する遠回り度となる。
[0119] 目的地誤設定検知部 2807は遠回り度算出部 2806が算出した遠回り度力も設定 された目的地の正誤を判定する。移動体は移動先を目指す場合に移動に力かる経 路コストが小さくなるように移動する傾向がある。よって、最小コストに対するコスト差 である遠回り度も小さくなる。そのため目的地に対する遠回り度は低いはずである。 逆に、遠回り度が高いときは、設定された目的地以外の場所が目的地である可能性 が高い。具体的には、目的地に対する遠回り度が所定の値 (第 3の閾値)より大きいと きに、目的地は誤っていると判定する。
[0120] 例えば図 35の場合、目的地「B店」に対する遠回り度は図 48のように 9kmである。
遠回り度を判別する境界値 (第 3の閾値)を機器に設定された渋滞の許容迂回距離、 例えば 3kmとすると、遠回り度は 9kmと 3kmより大きいため目的地は誤っていると判 定する。
[0121] 情報提供部 2808は、目的地取得部 1909が取得した目的地及び目的地後設定検 知部の判定結果に従って、移動先予測装置の画面や音声によって、ユーザに情報 を提供する。具体的には、目的地が正しいと判定されている間は推奨経路など目的 地に関する情報を提示するが、目的地が誤っていると判定されたときは、機器に設定 された目的地を解除し、目的地に関する情報を提示しない。
[0122] なお、目的地が正しいと判定されているときは、目的地に関する経路の交通情報な どを音声と画面表示によって情報を行うが、目的地が誤っていると判定されたときは、 目的地に対する音声案内は行わず、画面表示のみ行うといったフィルタリングを行つ てもよい。
[0123] なお、目的地が誤っていると判定されたときは、目的地が誤っているという情報をュ 一ザに提供してもよい。
[0124] 例えば図 49のように、移動体の目的地が「B店」であったとき、目的地が正しいと判 定されている間は、推奨経路の案内を行う。しかし目的地が誤っていると判定される と、図 50のように目的地設定をキャンセルし、推奨経路の案内を行わない。
[0125] 以下、本実施の形態 5のフローチャートを、図 51を用いて説明する。前記実施の形 態 1、 4で示した構成要素には同様の符号を付与し、説明を省略する。実施の形態 4 と同様に目的地に対する遠回り度を算出した後、目的地誤設定検知部 2807が目的 地に対する遠回り度により設定された目的地の正誤を判定する (ステップ S3106)。 目的地が誤っていると判定したときは (ステップ S3107の Yes)、情報提供部 2808は 設定された目的地を解除し、目的地に関する提供情報をフィルタリングする。目的地 が正しいと判定したときは (ステップ S3107の No)、情報提供部 2808は目的地に関 する情報をユーザに提供する (ステップ S3109)。
[0126] なお、遠回り度が高いときには、実施の形態 4のように目的地の設定ミスではなぐ 経由地が新たに存在する可能性がある。よって遠回り度に対する閾値を二つ設定す ることによって、次目的地が設定された目的地であるのか、次目的地が経由地である の力、目的地の設定が間違っているのかを検知しても良い。具体的には、遠回り度に 対して経由地存在の判定に用いる閾値、渋滞許容距離と目的地誤設定の判定に用 いる閾値、経由許容距離を予めユーザが設定しておく。経由許容距離とは、目的地 に対して最短距離で移動する経路に対して、経由地に寄ることによって増加する経 路距離のユーザが許容する最大値である。経由許容距離は渋滞許容距離に対して 大きくなる。例えば、渋滞許容距離が 3km、経由許容距離が 6kmだったとする。この とき、設定された目的地に対する遠回り度が 3km以下のときは、目的地設定は誤つ ておらず、経由地も存在しないと判定し、設定された目的地に対する情報を提供する 。設定された目的地に対する遠回り度が 3kmより大きく 6km以下のときは、目的地設 定は誤っておらず、経由地が存在すると判定し、経由地を予測し、経由地を通って目 的地に向力 経路の情報を提供する。設定された目的地に対する遠回り度が 6km以 上のときは、目的地設定が誤っていると判定し、機器に設定された目的地を解除し、 目的地に関する情報を提供しない。
[0127] なお、実施の形態 4の変形例 5と同様に、出発位置目的位置間の経路中の分岐点 と合流点の間に渋滞があるときに、渋滞回避のために遠回り度が増加したとして、目 的地設定は誤って 、な 、としてもよ 、。
[0128] (実施の形態 5変形例 1)
なお、本実施の形態 5では、設定目的地が誤っていることを検知したときの処理が 遠回り度の大きさに関わらず一定であった。しかし遠回り度の大きさに応じて処理を 変更してもよい。具体的には遠回り度の大きさに応じて目的地に関する情報をフィル タリングする度合いを変更する。具体的には、設定目的地に対する遠回り度が小さい ほど、設定目的地や設定目的地に対する経路の提供する情報の量を大きくする。遠 回り度が大きいほど、設定目的地に対する提供情報の量を小さくする、つまり情報を フィルタリングする。設定された目的地に対する遠回り度が小さいときは、設定された 目的地は誤っていない可能性が高い。よって、設定された目的地に対する情報は有 用であるために、情報量が大きくても構わない。しかし、設定された目的地に対する 遠回り度が大きくなるに従い、設定された目的地が誤っている可能性が高くなる。もし くは、誤っていな力つたとしても設定された目的地の前にたち寄るべき新たな経由地 などが存在し、目的地に対する情報は求められてはいない可能性が高くなる。求めら れては!ヽな 、情報を提供することはユーザにとって好ましくな 、。移動体が車である と特にユーザの運転の妨げになる。よって、遠回り度の大きさ、つまり設定された目的 地が誤っている可能性に応じて設定された目的地に対する提供情報の情報量を制 限することは有用である。特に、現在地から目的地までの推奨経路の案内情報を提 供する際に、設定された目的地が誤っているときには、推奨経路から外れることが多 いため、推奨経路の再計算が頻繁に行われ、提供情報の情報量が非常に大きくなる 。しかし、設定された目的地が誤っているときには、ユーザは設定された目的地まで の情報を必要としていないために、ユーザの運転などの妨げとなる。遠回り度によつ て情報を段階的にフィルタリングすることで、推奨経路の案内情報は遠回り度が目的 地が誤っていると確信できるほど大きくない状態でもフィルタリングすることができる。
[0129] また、このように段階的に情報をフィルタリングすることで、ユーザが知りた力つた目 的地への経路情報が突然消えることを防ぐなど、目的地正誤判断ミスによるユーザ への悪影響を防ぐことが出来る。
[0130] 遠回り度に応じた、設定目的地に対する提供情報のフィルタリングの手法は、具体 的には、提供される情報提供の種類に遠回り度のランク付けを行い、情報提供部 28 08は、遠回り度力 導かれたランクに対応する種類の情報を提供することにより行う。
[0131] 例えば、遠回り度のランクは図 52のようになっている。図 52の場合ランク「1」は提供 情報が「推奨経路表示、経路音声案内、経路の道路交通情報、目的地周辺の道路 交通情報、目的地情報」であり、遠回り度は 2km未満であることを表している。このよ うに遠回り度が大きくなるほど提供される情報の量が制限されるように遠回り度ランク と、提供される情報の種類を決定する。道路交通情報は渋滞情報、工事情報などで あり、目的地情報は目的地自身の情報、例えば目的地がレストランの場合メニュー情 報や開店時間、空席の情報である。
[0132] 具体例を示す。遠回り度が 5kmであった場合、情報提供部 2808は遠回り度 5km に対応する遠回り度ランクが 3であることから、目的地までの経路の道路交通情報及 び目的地周辺の道路交通情報、目的地情報をユーザに提供する。
[0133] (実施の形態 5の変形例 2)
なお、本実施の形態 5では、設定目的地が誤っていたときに、目的地設定をキャン セルするもしくは、提供情報のフィルタリングを行っていた。しかし、新たに正しい目 的地を予測してもよい。例えば、実施の形態 3のように目的地履歴と遠回り度を用い て目的地を予測する。これにより、ユーザが目的地を一から設定しなおすことなぐ正 しい目的地に関する情報を提供できる。
[0134] (実施の形態 5の変形例 3)
なお、本実施の形態においては、遠回り度を用いて目的地設定の誤りの検出を行 つた。さらに、ユーザが目的地設定を行った方式に基づき、目的地の修正を行っても よい。一般にカーナビにおいては、目的地を設定する際に、ランドマークの名称で設 定する場合と、地図上の地点を入力し、目的地を設定する場合がある。ランドマーク の名称で目的地を設定する場合には、ランドマークの検索や、ユーザが既に設定し た登録ポイントの情報を呼び出し、その名称を選択することによって、目的地を設定 する。この場合、同一名称による設定のミス等が起きる可能性が高い。例えば、「守口 巿駅」と 、う場所を目的地として設定しょうとして「守口駅」と 、う別の場所を設定する こともある。また、「セフンィレフン 守口店」を設定しょうとして、「セフンィレフン 門真 店」を設定してしまうこともある。さらに大阪の「日本橋」を設定しょうとして、東京の「日 本橋」を設定してしまうこともあるだろう。そこで、遠回り度を算出し、ユーザの目的地 の設定が誤っていると判定した場合には、同一名称、または類似名称で他の地点情 報を検索し、その地点に対して遠回り度を算出することで、正しい目的地を検出する ことが可能になる場合がある。また、地図上で地点を入力することで目的地を設定し た場合には、目的地が設定される地図において、類似した名称の地名が存在する場 所を検索することで、正しい目的地を検出することが可能になることもある。さらに、電 話番号やマップコードで目的地が設定された場合には類似した電話番号で検索す ることで正しい目的地を検出することが可能になる場合もある。このように、目的地設 定を行った方式に基づき、正しい目的地を検索することで、自動的に目的地の修正 を行うことが可能になる。
[0135] 図 53は、本実施の形態における移動先予測装置の構成図である。前記実施の形 態 5で示した構成要素には同様の符号を付与し、説明を省略する。以下、まず各構 成要素について図を用いて説明し、後に本装置の動作について説明する。
[0136] 本実施の形態の移動先予測装置は、「さらに、利用者から移動体の目的地を取得 する目的地取得手段と、前記目的地に対する遠回り度が第 3の閾値以上であった場 合に、取得された前記目的地が誤りであると判定する目的地誤設定検出手段とを備 え、前記移動先候補位置取得手段は、取得された前記目的地が誤りであると判定さ れた場合、移動体の現在位置力 所定の範囲内にあり、前記目的地と間違えられや すい類似位置を移動先として、移動先候補の位置を取得し、前記移動先予測手段 は、前記移動先候補のうちで前記遠回り度が前記最小となる移動先候補を、正しい 目的地と予測することを特徴とする移動先予測装置」に相当し、これにおいて、目的 地取得部 1909が「目的地取得手段」に相当し、目的地誤設定検知部 2807が「目的 地誤設定検出手段」に相当し、類似位置算出部 6112が「移動先候補位置取得手段
」に相当し、目的地予測部 6113が「移動先予測手段」に相当する。
[0137] 地図情報蓄積部 6104は、位置やリンク距離といった道路情報を蓄積する。例えば
、図 3のように、ノードの位置、接続ノード、ノード間を結ぶリンク距離が蓄積されてい る。図 3のノード ID「001」はノード位置が経度「134. 3. 0. 9」であり、緯度が「34. 6
. 3. 6」であり、ノード ID「002」「003」「004」「005」と接続して!/ヽる。また、リンク ID「0
01]は始点ノード ID「001」と終点ノード ID「002」を結ぶリンクであり、リンク距離は「1 km」であることを示す。また図 56のように地名、店、名所、駅といった目的地となりうる ランドマークの名称と名称のフリガナ、電話番号、マップコード、位置といったランドマ ーク情報が蓄積されている。ランドマークの「名称」と「名称のフリガナ」、「電話番号」 、「マップコード」、「位置」をランドマークのカテゴリと呼ぶ。
[0138] 経路コスト算出部 6105は、地図情報蓄積部 6104に蓄積された、ノードの位置、接 続ノード、リンク距離といった道路情報を用いて、経路コストを算出する。現在位置取 得部 101が取得した現在位置と出発位置取得部 102が取得した出発位置との間の 経路コスト、現在位置取得部 101が取得した現在位置と目的地取得部 1909が取得 した目的地との間の経路コスト、出発位置取得部 102が取得した出発位置と目的地 取得部 1909が取得した目的地との間の経路コスト、現在位置取得部 101が取得し た現在位置と類似位置算出部 6112が取得した類似位置との間の経路コスト、出発 位置取得部 102が取得した出発位置と類似位置算出部 6112が取得した類似位置 との間の経路コストを算出する。 [0139] 遠回り度算出部 6106は、経路コスト算出部 6105で算出された経路コストから遠回 り度を算出する。目的地と類似位置算出部 6112が取得した類似位置についてそれ ぞれ遠回り度を算出する。遠回り度は出発位置から目的地あるいは移動先候補まで のコストが最小である経路のコストに対する、現在移動体が通って 、る経路のコストの 差である。具体的には、現在出発位置間経路コストと現在目的地間経路コストの和と 、出発目的地間経路コストの差が目的地に対する遠回り度となる。現在出発位置間 経路コストと現在類似位置間経路コストの和と、出発類似位置間経路コストの差が類 似位置に対する遠回り度となる。
[0140] 目的地設定法取得部 6110は、ユーザがカーナビ等の移動先予測装置に目的地 を設定したときの目的地の設定手法の種類、媒体と実際に入力、表示選択された目 的地に関連する文字列を取得する。目的地の設定手法の種類は、ユーザが目的地 を設定したときカーナビ等の移動先予測装置の図示しないメモリに記憶される。具体 的には、ユーザが目的地を設定するときには、カーナビ等の移動先予測装置のメ- ユー画面で何種類かの目的地の設定方法が提示される。例えば、音声入力による目 的地の設定、地図を表示したタツチパネルからの入力による目的地の設定、ランドマ ークの名称を文字列で入力することによる目的地の設定などである。ユーザは、提示 された設定方法のうちから所望の設定方法を選択し、選択した設定方法で目的地を 設定する。このとき、カーナビ等の移動先予測装置は、選択された目的地設定方法 をメモリに記憶する。図 54は目的地設定法取得部の内部構造である。
[0141] また、本実施の形態の移動先予測装置は「前記地図情報蓄積手段は、ランドマー ク名称、ランドマーク位置、電話番号およびマップコードの少なくとも一つで前記地点 が表されたランドマーク情報を蓄積し、前記移動先予測装置は、さらに、前記目的地 取得手段で取得された前記目的地を表すランドマーク情報の種類と前記目的地に 関連する文字列とを取得する目的地設定法取得手段と、前記目的地のランドマーク 情報の種類と前記文字列とに従って、前記ランドマーク情報の種類と文字列とからな り、前記類似位置を検索するための検索式を生成する検索式生成手段と、前記検索 式に従って前記ランドマーク情報から前記類似位置を検索する類似位置算出手段と を備え、前記移動先予測手段は、前記類似位置のうちで前記遠回り度が前記最小と なる移動先候補を、正しい目的地と予測することを特徴とする移動先予測装置」に相 当し、これにおいて、地図情報蓄積部 6104が「地図情報蓄積手段」に相当し、設定 種類取得部 6114、入力媒体取得部 6115および文字列取得部 6116が「目的地設 定法取得手段」に相当し、検索式生成部 6111が「検索式生成手段」に相当し、類似 位置算出部 6112が「類似位置算出手段」に相当し、目的地予測部 6113が「移動先 予測手段」に相当する。
[0142] 設定種類取得部 6114は、目的地設定手法の種類を取得する。 目的地設定手法 の種類には、「守ロ巿駅」ランドマークの名称を画面表示された一覧力 選択、また はリモコンなどで直接入力する「名称入力」、電話番号などの数字を入力する「電話 番号入力」「マップコード入力」「緯度経度入力」、地図画面を表示し、目的地の位置 を直接指定する「地図画面入力」などが存在する。例えば、マイクに向力つて「モリグ チシェキ」と発音することでユーザが目的地を設定した場合、「名称入力」という設定 手法の種類を取得する。また「0600000000」と電話番号を直接入力することでユー ザが目的地を設定した場合、「電話番号入力」という種類を取得する。例えば、地図 画面上で、目的地の位置を直接設定した場合、「地図画面入力」という種類を取得す る。
[0143] 入力媒体取得部 6115は、目的地の設定時に、音声で入力された力どうかを検知 する。入力媒体にはユーザがリモコンゃタツチパネルによって文字や位置を選択して 入力する「選択入力」と、マイクに向力つてユーザが音声で発音することで入力する「 音声入力」がある。例えば、画面に表示された目的地の一覧から「守ロ巿駅」を選択 することでユーザが目的地を設定した場合、「選択入力」という媒体を取得する。また 、マイクに向力つて「モリグチシェキ」と発音することでユーザが目的地を設定した場 合、「音声入力」という媒体を取得する。例えば、「0600000000」と電話番号を直接 入力することでユーザが目的地を設定した場合、「選択入力」 t 、う媒体を取得する。 例えば、地図画面上で、目的地の位置を直接設定した場合、「選択入力」という媒体 を取得する。
[0144] 文字列取得部 6116は、設定された目的地に関連する文字列を取得する。文字列 取得部 6116は、「音声入力」で目的地が設定されたときに、文字列取得を行う読み 文字列取得部 6117と、「地図画面入力」で目的地が設定されたときに文字列取得を 行う地図文字列取得部 6119と、それら以外の手法によって目的地が設定されたとき に文字列取得を行う表記文字列取得部 6118がある。
[0145] 読み文字列取得部 6117は、入力媒体取得部 6115が取得した媒体が「音声入力」 であったときに、音声で入力された言葉を読み文字列として取得する。例えば、マイ クに向力つて「モリグチシェキ」と発音することでユーザが目的地を設定した場合、「モ リグチシェキ」と 、う文字列を取得する。
[0146] 表記文字列取得部 6118は、入力媒体設定部 6115が取得した媒体力 S「選択入力」 であり、設定種類取得部 6114が取得した設定種類が「地図画面入力」以外の種類 であった場合、ナビ画面力 ユーザによって選択、入力された画面の表示文字列を 取得する。例えば、例えば、画面に表示された目的地の一覧から「守ロ巿駅」と表示 された欄を選択することでユーザが目的地を設定した場合、「守口巿駅」と 、う文字 列を取得する。また、「0600000000」と電話番号を直接入力することでユーザが目 的地を設定した場合、入力されたときに画面に表示された「0600000000」という文 字列を取得する。
[0147] 地図文字列取得部 6119は、設定種類取得部 6114が取得した設定種類が「地図 画面入力」であったときに、目的地が設定されたときの移動先予測装置の地図画面 上に表示されたランドマーク名称の表記文字列を全て取得する。例えば、図 55のよう に「守口巿駅」と「セフンイレブン守口店」と 、うランドマーク名称が表示された地図画 面上で、目的地の位置を直接設定した場合、「守ロ巿駅」、「セフンイレブン守口店」 という文字列を取得する。
[0148] 検索式作成部 6111は、目的地設定法取得部 6110が取得した目的地の設定手法 の種類、媒体と、目的地に関連する文字列から、設定された目的地の類似位置を検 索する際の検索式を算出する。検索式は、ランドマークの名称と名称のフリガナ、電 話番号、マップコード、位置といったランドマーク情報のカテゴリと検索用文字列から なる。
[0149] 具体的には、「名称入力」かつ「選択入力」でランドマークが設定されていた場合は 、入力された文字列の一部を 0個以上の全ての文字列の代用となるワイルドカード( * )とすることで検索式を生成する。例えば「守ロ巿駅」と入力されていた場合、ランド マークの「名称」カテゴリの検索で「 *口巿駅」「守 *巿駅」「守口 *駅」「守ロ巿 *」を 検索用文字列とする。また、「名称入力」かつ「音声入力」でランドマークが設定され ていた場合、入力された文字列(フリガナ)の一部を 0個以上の全ての文字列の代用 となるワイルドカード(* )とすることで検索用文字列を生成する。例えば「モリグチシ ェキ」と入力されていた場合、ランドマークの「名称 (フリガナ)」カテゴリの検索で「 *リ グチシェキ」「モ *グチシェキ」「モリ *チシェキ」「モリグ *シェキ」「モリグチ *ェキ」「 モリグチシ *キ」「モリグチシェ *」を検索式とする。また、「電話番号入力」、「マップコ ード入力」、「緯度経度入力」で入力されていたときは入力された番号文字列の 0個 以上の全ての文字列の代用となるワイルドカード( * )とすることで検索式を生成する 。検索のカテゴリは「電話番号入力」ならば「電話番号」、「マップコード入力」ならば「 マップコード」、「緯度経度入力」ならば「緯度」「経度」である。例えば、電話番号入力 で「0669081121」と入力されていたとき、「電話番号」カテゴリの検索で、「* 66908
Figure imgf000048_0001
2 *」を検索用文字列とする。また、地図画面入力であったときは、地図文字列取得 部 6119が取得した全ての文字列につ 、て、一部を 0個以上の全ての文字列の代用 となるワイルドカード(* )とすることで検索用文字列を生成する。例えば、取得した地 図文字列が「守口巿駅」と「セフンイレブン守口店」であった場合、それぞれに対し、 その名称の一部を 0個以上の全ての文字列の代用となるワイルドカード(* )とするこ とで検索用文字列を生成する。検索カテゴリはランドマークの「名称」となる。
類似位置算出部 6112は、検索式生成部 6111が算出した検索式を用いて地図情 報蓄積部 6104に蓄積されたランドマーク情報から、設定された目的地に類似する類 似位置を算出する。具体的には、算出された検索式によって検索されたランドマーク 全ての位置を類似位置とする。例えば、検索式として検索カテゴリ「名称」、検索用文 字列は「 *口巿駅」「守 *巿駅」「守口 *駅」「守ロ巿 *」であった場合、地図情報蓄 積部に蓄積されたランドマークの「名称」について、算出された検索用文字列により 検索する。例えば、図 56の場合、設定された目的地である「守口巿駅」以外に「守口 駅」が検索され、類似位置として「134. 5. 59. 9」「34. 6. 4. 6」が算出される。
[0151] 目的地予測部 6113は、目的地誤設定検知部 2807が目的地設定が誤っているこ と検知したときに、遠回り度算出部 6106によって算出された、類似位置取得部 6112 が取得した類似位置に対する遠回り度を用いて正しい目的地の位置を予測する。具 体的には、算出された類似位置のうち、最も遠回り度が低い類似位置を目的地と予 測する。
[0152] 情報提供部 6108は、目的地が誤っていないことが検知された場合には、目的地取 得部 1909が取得した目的地に従って、ユーザに情報を提供する。目的地が誤って いることが検知された場合には目的地予測部 6113が予測した目的地に従って、ュ 一ザに情報を提供する。 目的地や目的地までの経路の交通情報や推奨経路の情報 を移動先予測装置の画面や音声によってユーザに提供する。
[0153] 以下、本実施の形態 5の変形例 3のフローチャートを、図 57を用いて説明する。前 記実施の形態 5で示した構成要素には同様の符号を付与し、説明を省略する。実施 の形態 5と同様に出発位置と現在位置を取得した後、目的地設定法取得部 6110は 、目的地の設定法と、目的地に関連する文字列を取得する (ステップ S6307)。目的 地取得部 1909は、装置に設定された目的地との位置を取得する (ステップ S 2303) 。経路コスト算出部 6105は、地図情報蓄積部 104に蓄積された道路情報を用いて、 現在位置と出発位置との間の経路コスト、現在位置と目的地との間の経路コスト、出 発位置と目的地との間の経路コストを算出する (ステップ S2304)。遠回り度算出部 6 106は、経路コスト算出部 6105で算出された経路コストから目的地に対する遠回り 度を算出する (ステップ S2305)。目的地誤設定検知部 2807が目的地に対する遠 回り度により設定された目的地の正誤を判定する (ステップ S3106)。目的地が誤つ ていると判定したときは (ステップ S6308の Yes)、ステップ S6309に進む。 目的地が 誤っていないと判定したときは(ステップ S6308の No)、ステップ S6314に進む。 目 的地が誤っていると判定したとき、検索式生成部 6111は、目的地設定法取得部 61 10が取得した目的地設定法と目的地に関連する文字列から検索式を生成する (ステ ップ S6309)。類似位置算出部 6112は、検索式生成部 6111が算出した検索式と地 図情報蓄積部 6104に蓄積されたランドマーク情報力も設定された目的地に対する 類似ランドマークの位置を算出する (ステップ S6310)。経路コスト算出部 6105は、 地図情報蓄積部 104に蓄積された道路情報を用いて、現在位置と出発位置との間 の経路コスト、現在位置と類似位置との間の経路コスト、出発位置と類似位置との間 の経路コストを算出する (ステップ S6311)。遠回り度算出部 6106は、経路コスト算 出部 6105で算出された経路コストから類似位置に対する遠回り度を算出する (ステ ップ S6312)。目的地予測部 6113は類似位置に対する遠回り度から目的地となる類 似位置を予測する (ステップ S6313)。情報提供部 6108は、設定目的地が正しい場 合は設定目的地、誤って 、た場合は予測された目的地に従ってユーザに情報を提 供する。
産業上の利用可能性
以上のように、本発明に係わる移動先予測装置は、遠回り度により移動体の移動先 や移動体の異常行動に関する情報を提供することが可能になり、例えば、カーナビ ゲーシヨン装置や携帯電話、 GPS付き防犯装置等の移動体の位置情報を取得し、 情報を提供する装置において有用である。

Claims

請求の範囲
[1] 移動先を予測する移動先予測装置であって、
地図上の複数の地点の位置と前記複数の位置間の経路とを少なくとも含む地図情 報を蓄積した地図情報蓄積手段と、
移動体の出発位置を取得する出発位置取得手段と、
移動体の現在位置を取得する現在位置取得手段と、
取得された前記現在位置に基づいて、移動体の移動先となりうる複数の移動先候 補の位置を前記地図情報蓄積手段から取得する移動先候補位置取得手段と、 前記現在位置を含む前記出発位置から前記移動先候補の位置までの経路につい ての、前記出発位置から前記移動先候補の位置までの最小経路コストの経路からの ずれ量である遠回り度を算出する遠回り度算出手段と、
前記移動先候補のうちで算出された前記遠回り度が最小となる移動先候補を、移 動先と予測する移動先予測手段と
を備えることを特徴とする移動先予測装置。
[2] 前記移動先予測手段は、前記遠回り度が最小となる移動先候補に加えて、前記移 動先候補のうちで前記遠回り度が第 1の閾値以下となる移動先候補も、前記移動先 と予測する
ことを特徴とする請求項 1記載の移動先予測装置。
[3] 前記移動先予測装置は、さらに、
前記地図情報を用いて、前記現在位置と前記移動先候補の位置との間の経路を 特定し、特定された前記経路に対する経路コストである現在候補位置間経路コストを 算出する現在候補位置間経路コスト算出手段と、
前記地図情報を用いて、前記出発位置と前記現在位置との間の経路を特定し、特 定された前記経路に対する経路コストである出発現在位置間経路コストを算出する 出発現在位置間経路コスト算出手段と、
前記地図情報を用いて、前記出発位置と前記移動先候補の位置との間の経路を 特定し、特定された前記経路に対する経路コストである出発候補位置間経路コストを 算出する出発候補位置間経路コスト算出手段とを備え、 前記移動先候補位置取得手段は、移動体の現在位置から所定の範囲内にある移 動先候補の位置を取得し、
前記現在候補位置間経路コスト算出手段、前記出発現在位置間経路コスト算出手 段および前記出発候補位置間経路コスト算出手段は、それぞれ、前記現在候補位 置間経路コスト、前記出発現在位置間経路コストおよび前記出発候補位置間経路コ ストを、始点力 終点までの経路の距離および始点力 終点までの移動に要する時 間のいずれか 1つを用いて計算し、
前記遠回り度算出手段は、前記現在候補位置間経路コストと、前記出発現在位置 間経路コストとの和から、前記出発候補位置間経路コストを減算することによって前 記遠回り度を算出する
ことを特徴とする請求項 1記載の移動先予測装置。
[4] 前記遠回り度算出手段は、前記現在候補位置間経路コストと前記出発現在位置間 経路コストとの和力 前記出発候補位置間経路コストを減算した値に比例し、かつ、 前記出発候補位置間経路コストに反比例する値を、前記遠回り度として算出する ことを特徴とする請求項 3記載の移動先予測装置。
[5] 前記移動先予測装置は、さらに、
前記移動体の現在位置における道路幅を取得する道路幅取得手段と、 取得された前記道路幅よりも、道路幅が減少した位置をイベント発生位置として検 出するイベント発生検出手段と、
前記イベント発生位置よりも道路幅が大きい道路で囲まれた領域であり、かつ、前 記イベント発生位置を含む領域にな!ヽ移動先候補を、前記イベント発生位置以後の 移動先候補力も除外する距離制限手段とを備え、
前記移動先予測手段は、前記イベント発生位置よりも道路幅が大き!、道路で囲ま れた前記領域内にある移動先候補のうちから移動先を予測する
ことを特徴とする請求項 3記載の移動先予測装置。
[6] 前記移動先候補位置取得手段は、交通情報提供者が移動体の交通量を検出する 地点である交通量検出地を前記移動先候補として、前記移動先候補の位置を取得 し、 前記移動先予測装置は、さらに、
前記交通情報提供者から、前記交通量検出地の各地点における進行方向ごとの 交通量を取得する交通量取得手段を備え、
前記現在候補位置間経路コスト算出手段は、前記現在候補位置間経路コストを、 現在の移動体の進行方向に応じて、前記交通量検出地の各地点を当該移動体が通 過する方向ごとに算出し、
前記出発候補位置間経路コスト算出手段は、前記出発候補位置間経路コストを、 前記交通量検出地の各地点を当該移動体が通過する方向ごとに算出し、
前記移動先予測手段は、前記遠回り度が前記最小となり、かつ、その中でも取得さ れた交通量がより大きい前記交通量検出地を移動先と予測する
ことを特徴とする請求項 5記載の移動先予測装置。
[7] 前記移動先予測装置は、さらに、
前記移動体が行ったことがある位置の履歴を蓄積する移動履歴蓄積手段を備え、 前記移動先候補位置取得手段は、前記移動履歴蓄積手段で蓄積されて!、る前記 位置を前記移動先候補として、前記移動先候補の位置を取得し、
前記移動先予測手段は、前記移動履歴蓄積手段で蓄積されて!、る前記位置のう ち前記遠回り度が前記最小となる移動先候補を、移動先と予測する
ことを特徴とする請求項 5記載の移動先予測装置。
[8] 前記移動先予測装置は、さらに、
利用者から移動体の目的地を取得する目的地取得手段と、
前記目的地に対する遠回り度が第 2の閾値以上であった場合に、前記目的地に向 力う前に移動体が経由しょうとしている経由地が存在すると判定する経由地判定手 段とを備え、
前記移動先候補位置取得手段は、前記経由地が存在すると判定された場合、移 動体の現在位置から所定の範囲内にあり、前記経由地となりうる移動先候補の位置 を取得し、
前記移動先予測手段は、前記移動先候補のうちで前記遠回り度が前記最小となる 移動先候補を、前記経由地と予測する ことを特徴とする請求項 1記載の移動先予測装置。
[9] 前記移動先予測手段は、さらに、前記遠回り度が前記最小である移動先候補のう ち、現在地力 移動先候補を経由したときの目的地までの経路コストが、最も小さくな る移動先候補を前記経由地と予測する
ことを特徴とする請求項 8記載の移動先予測装置。
[10] 前記移動先予測装置は、さらに、
前記出発位置と前記目的地を結ぶ経路と前記出発位置と前記現在位置を結ぶ経 路の分岐点の位置を算出する分岐点算出手段と、
前記出発位置と前記目的地を結ぶ経路と前記現在位置と前記目的位置を結ぶ経 路の合流点の位置を予測する合流点予測手段と、
前記出発位置と前記目的地とを結ぶ経路周辺の渋滞情報を取得する渋滞情報取 得手段と、
前記出発位置と前記目的地とを結ぶ経路のうち分岐点位置と合流点位置の間に、 渋滞が存在するか否かを判定する渋滞回避判定手段とを備え、
前記移動先予測手段は、前記目的地に対する遠回り度が前記第 2の閾値以上で あり、かつ、前記渋滞回避判定手段が、渋滞は存在しないと判定したときに経由地が 存在することを予測する
ことを特徴とする請求項 9記載の移動先予測装置。
[11] 前記移動先予測装置は、さらに、
前記目的地取得手段によって取得された目的地の履歴を前記目的地への到着日 時と対応付けて蓄積する目的地履歴蓄積手段を備え、
前記移動先予測手段は、前記目的地履歴蓄積手段に蓄積されている目的地のう ちで、現在取得されている目的地の直前に到達された目的地を、前記経由地と予測 する
ことを特徴とする請求項 8記載の移動先予測装置。
[12] 前記移動先予測装置は、さらに、
利用者から移動体の目的地を取得する目的地取得手段と、
前記目的地に対する遠回り度が第 3の閾値以上であった場合に、取得された前記 目的地が誤りであると判定する目的地誤設定検出手段とを備え、
前記移動先候補位置取得手段は、取得された前記目的地が誤りであると判定され た場合、移動体の現在位置から所定の範囲内にあり、前記目的地と間違えられやす い類似位置を移動先として、移動先候補の位置を取得し、
前記移動先予測手段は、前記移動先候補のうちで前記遠回り度が前記最小となる 移動先候補を、正しい目的地と予測する
ことを特徴とする請求項 1記載の移動先予測装置。
[13] 前記移動先予測装置は、さらに、
少なくとも目的地および前記目的地までの経路に関する情報を提供する情報提供 手段を備え、
前記情報提供手段は、前記目的地誤設定検出手段が、取得された前記目的地が 誤りであると判定したときに、前記目的地に対する遠回り度が大きいほど、前記目的 地に関する情報を簡略化して提供する
ことを特徴とする請求項 12記載の移動先予測装置。
[14] 前記地図情報蓄積手段は、ランドマーク名称、ランドマーク位置、電話番号および マップコードの少なくとも一つで前記地点が表されたランドマーク情報を蓄積し、 前記移動先予測装置は、さらに、
前記目的地取得手段で取得された前記目的地を表すランドマーク情報の種類と前 記目的地に関連する文字列とを取得する目的地設定法取得手段と、
前記目的地のランドマーク情報の種類と前記文字列とに従って、前記ランドマーク 情報の種類と文字列とからなり、前記類似位置を検索するための検索式を生成する 検索式生成手段と、
前記検索式に従って前記ランドマーク情報から前記類似位置を検索する類似位置 算出手段とを備え、
前記移動先予測手段は、前記類似位置のうちで前記遠回り度が前記最小となる移 動先候補を、正しい目的地と予測する
ことを特徴とする請求項 12記載の移動先予測装置。
[15] 地図上の複数の地点の位置と前記複数の位置間の経路とを少なくとも含む地図情 報を蓄積しておき、移動先を予測する移動先予測方法であって、
移動体の出発位置を取得する出発位置取得ステップと、
移動体の現在位置を取得する現在位置取得ステップと、
取得された前記現在位置に基づいて、移動体の移動先となりうる複数の移動先候 補の位置を前記地図情報蓄積ステップ力 取得する移動先候補位置取得ステップと 前記現在位置を含む前記出発位置から前記移動先候補の位置までの経路につい ての、前記出発位置から前記移動先候補の位置までの最小経路コストの経路からの ずれ量である遠回り度を算出する遠回り度算出ステップと、
前記移動先候補のうちで算出された前記遠回り度が最小となる移動先候補を、移 動先と予測する移動先予測ステップと
を含むことを特徴とする移動先予測方法。
地図上の複数の地点の位置と前記複数の位置間の経路とを少なくとも含む地図情 報を蓄積する地図情報蓄積手段を備え、移動先を予測する移動先予測装置のため のプログラムであって、コンピュータに 移動体の出発位置を取得する出発位置取得 ステップと、移動体の現在位置を取得する現在位置取得ステップと、取得された前記 現在位置に基づいて、移動体の移動先となりうる複数の移動先候補の位置を前記地 図情報蓄積ステップ力 取得する移動先候補位置取得ステップと、前記現在位置を 含む前記出発位置から前記移動先候補の位置までの経路にっ 、ての、前記出発位 置から前記移動先候補の位置までの最小経路コストの経路からのずれ量である遠回 り度を算出する遠回り度算出ステップと、前記移動先候補のうちで算出された前記遠 回り度が最小となる移動先候補を、移動先と予測する移動先予測ステップとを実行さ ·¾:るプログラム。
PCT/JP2007/056627 2006-04-14 2007-03-28 移動先予測装置および移動先予測方法 WO2007119559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007544680A JP4088336B2 (ja) 2006-04-14 2007-03-28 移動先予測装置および移動先予測方法
US12/159,693 US7630828B2 (en) 2006-04-14 2007-03-28 Destination prediction device and destination prediction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-112721 2006-04-14
JP2006112721 2006-04-14

Publications (1)

Publication Number Publication Date
WO2007119559A1 true WO2007119559A1 (ja) 2007-10-25

Family

ID=38609335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056627 WO2007119559A1 (ja) 2006-04-14 2007-03-28 移動先予測装置および移動先予測方法

Country Status (3)

Country Link
US (1) US7630828B2 (ja)
JP (1) JP4088336B2 (ja)
WO (1) WO2007119559A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048146A1 (en) * 2008-10-20 2010-04-29 Carnegie Mellon University System, method and device for predicting navigational decision-making behavior
WO2010066718A1 (en) * 2008-12-11 2010-06-17 Tomtom International B.V. Navigation device & method
JP2016130678A (ja) * 2015-01-14 2016-07-21 日本電信電話株式会社 小型移動・運搬装置用の誘導制御システムおよび方法
JPWO2016207975A1 (ja) * 2015-06-23 2018-04-12 日産自動車株式会社 候補経路提供システム、車載装置及び候補経路提供方法
JP2020118507A (ja) * 2019-01-22 2020-08-06 本田技研工業株式会社 案内装置、案内方法、およびプログラム
US11421995B2 (en) * 2016-11-29 2022-08-23 Mitsubishi Heavy Industries Machinery Systems, Ltd. Map matching device, map matching system, map matching method and program

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655963A (zh) * 2003-09-05 2010-02-24 松下电器产业株式会社 访问场所确定装置及访问场所确定方法
KR20070091471A (ko) * 2006-03-06 2007-09-11 주식회사 현대오토넷 네비게이션 시스템의 교차점 인식방법
US20090259397A1 (en) * 2008-04-10 2009-10-15 Richard Stanton Navigation system with touchpad remote
USRE47012E1 (en) * 2008-06-09 2018-08-28 JVC Kenwood Corporation Guide display device and guide display method, and display device and method for switching display contents
DE102008034201A1 (de) * 2008-07-21 2010-01-28 Astrium Gmbh Verfahren zum automatischen Ermitteln einer Umleitungsroute
US8457888B2 (en) * 2009-03-08 2013-06-04 Mitac International Corp. Method for reminding users about future appointments while taking into account traveling time to the appointment location
JP2011034294A (ja) * 2009-07-31 2011-02-17 Sony Corp 情報処理装置、操作端末、情報処理システムおよび情報処理システムによる情報処理方法
US8271497B2 (en) * 2009-12-03 2012-09-18 Sony Computer Entertainment Inc. Information processing apparatus and information processing method outputting information on movement of person
DE102009060365A1 (de) 2009-12-24 2012-03-01 Volkswagen Ag Navigationssystem, insbesondere für ein Kraftfahrzeug
US8700327B2 (en) 2010-04-27 2014-04-15 Honda Motor Co., Ltd. Method of determining routes for use in navigation
US8754777B1 (en) 2010-08-13 2014-06-17 Google Inc. System and method for predicting user route and destination
US9134137B2 (en) 2010-12-17 2015-09-15 Microsoft Technology Licensing, Llc Mobile search based on predicted location
JP5930597B2 (ja) * 2011-03-29 2016-06-08 株式会社ゼンリン 案内情報提供システム
US9163952B2 (en) * 2011-04-15 2015-10-20 Microsoft Technology Licensing, Llc Suggestive mapping
US9267806B2 (en) * 2011-08-29 2016-02-23 Bayerische Motoren Werke Aktiengesellschaft System and method for automatically receiving geo-relevant information in a vehicle
US8706413B2 (en) * 2011-10-17 2014-04-22 Qualcomm Incorporated Determining a likelihood of a directional transition at a junction in an encoded routability graph description
US9468007B2 (en) * 2011-12-05 2016-10-11 Lg Electronics Inc. Method and device for transmitting and receiving available channel information based on directivity in wireless communication system
JP5896715B2 (ja) * 2011-12-14 2016-03-30 三菱重工業株式会社 交通流シミュレータ及び移動経路計算方法ならびにそのプログラム
US8892350B2 (en) 2011-12-16 2014-11-18 Toyoda Jidosha Kabushiki Kaisha Journey learning system
CN102568195A (zh) * 2011-12-29 2012-07-11 上海顶竹通讯技术有限公司 预判车辆行驶轨迹的方法及系统
US8768616B2 (en) * 2012-01-09 2014-07-01 Ford Global Technologies, Llc Adaptive method for trip prediction
EP2626846B1 (de) * 2012-02-08 2014-05-14 Skobbler GmbH System und Verfahren zum Warnen eines Fahrzeugführers vor verkehrstechnischen Besonderheiten
EP3196817B1 (en) 2012-06-22 2020-02-19 Google LLC Presenting information for a current location or time
EP2864939A4 (en) 2012-06-22 2016-12-07 Google Inc CLASSIFICATION CLOSELY OBJECTIVES BASED ON LIKELY VISIBILITIES AND PREDICTED FUTURE VISITS OF PLACES OF A LOCAL STORY
CN105683716B (zh) 2012-06-22 2018-07-17 谷歌有限责任公司 场境交通或通行警示
US8855901B2 (en) * 2012-06-25 2014-10-07 Google Inc. Providing route recommendations
US9396654B2 (en) 2012-07-17 2016-07-19 Mitsubishi Electric Corporation In-vehicle traffic information notification device
JP5944770B2 (ja) * 2012-07-17 2016-07-05 株式会社デンソーアイティーラボラトリ 行先提案システム、行先提案方法、およびプログラム
GB201215385D0 (en) 2012-08-29 2012-10-10 Tom Tom Int Bv Method and apparatus for predicting destinations
DE102012221305A1 (de) * 2012-11-22 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Navigationssystem und Navigationsverfahren
US20140172292A1 (en) 2012-12-14 2014-06-19 Ford Global Technologies, Llc Methods and Apparatus for Context Based Trip Planning
US20140180576A1 (en) * 2012-12-24 2014-06-26 Anthony G. LaMarca Estimation of time of arrival based upon ambient identifiable wireless signal sources encountered along a route
US9964412B2 (en) 2013-04-17 2018-05-08 Tomtom Navigation B.V. Methods and apparatus for providing travel information
DE102015203446B4 (de) * 2014-03-03 2017-07-06 Apple Inc. Kartenanwendung mit verbesserten Navigationswerkzeugen
US10113879B2 (en) 2014-03-03 2018-10-30 Apple Inc. Hierarchy of tools for navigation
US9503516B2 (en) 2014-08-06 2016-11-22 Google Technology Holdings LLC Context-based contact notification
US10540611B2 (en) 2015-05-05 2020-01-21 Retailmenot, Inc. Scalable complex event processing with probabilistic machine learning models to predict subsequent geolocations
RU2672796C1 (ru) * 2015-07-27 2018-11-19 Ниссан Мотор Ко., Лтд. Устройство поиска маршрута и способ поиска маршрута
US10650317B2 (en) * 2015-09-21 2020-05-12 Google Llc Detecting and correcting potential errors in user behavior
EP3214406A1 (en) * 2016-03-04 2017-09-06 Volvo Car Corporation Method and system for utilizing a trip history
CN109661359B (zh) * 2016-09-05 2021-05-07 株式会社理光 移动路径确定方法和计算机可读存储介质
CN108062865B (zh) 2016-11-08 2022-09-16 北京嘀嘀无限科技发展有限公司 停车方向提示方法及装置
US10650071B2 (en) 2016-11-28 2020-05-12 Google Llc Search and retrieval of keyed data maintained using a keyed database
JP2019028745A (ja) * 2017-07-31 2019-02-21 富士ゼロックス株式会社 情報提示装置、情報提示システム、及び情報提示プログラム
JP2020112917A (ja) * 2019-01-09 2020-07-27 日本電信電話株式会社 目的地予測装置、方法、及びプログラム
JP7393156B2 (ja) * 2019-08-29 2023-12-06 株式会社Subaru 情報処理装置、情報処理方法、音声出力システム、プログラム
CN114169589A (zh) * 2021-11-22 2022-03-11 北京中交兴路信息科技有限公司 一种预测车辆目的地的方法、装置、存储介质及终端
WO2024144826A1 (en) * 2022-12-29 2024-07-04 Motional Ad Llc Vehicle travel path determination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328035A (ja) * 2001-04-27 2002-11-15 Pioneer Electronic Corp ナビゲーション装置、ナビゲーションシステム用のサーバ装置、目的地推定処理プログラムおよび目的地推定処理プログラムを記録した記録媒体
WO2004034725A1 (ja) * 2002-10-10 2004-04-22 Matsushita Electric Industrial Co., Ltd. 情報取得方法、情報提供方法、および情報取得装置
JP2004333136A (ja) * 2003-04-30 2004-11-25 Sony Corp ナビゲーション装置
JP2006053132A (ja) * 2004-07-13 2006-02-23 Matsushita Electric Ind Co Ltd 移動先表示装置および移動先表示方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783678A (ja) 1993-09-13 1995-03-28 Mazda Motor Corp 自動車の経路誘導装置
JP2000266562A (ja) 1999-03-19 2000-09-29 Toyota Central Res & Dev Lab Inc 車載の経路探索装置
JP4155374B2 (ja) 1999-09-03 2008-09-24 セコム株式会社 移動者安全確認装置
CN1330937C (zh) * 2001-08-06 2007-08-08 松下电器产业株式会社 信息提供方法
JP2004271231A (ja) 2003-03-05 2004-09-30 Denso Corp ナビゲーション装置、プログラム
JP4121876B2 (ja) 2003-03-17 2008-07-23 三洋電機株式会社 ナビゲーション装置
JP2005031068A (ja) * 2003-06-20 2005-02-03 Matsushita Electric Ind Co Ltd 場所案内装置
US7233861B2 (en) * 2003-12-08 2007-06-19 General Motors Corporation Prediction of vehicle operator destinations
JP2005326364A (ja) 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd ナビゲーション装置、ナビゲーション方法および経路案内プログラムを記録した記録媒体
JP4470589B2 (ja) * 2004-05-31 2010-06-02 日産自動車株式会社 ナビゲーション装置と行程ステージに対応した情報の提示方法
GB0420097D0 (en) * 2004-09-10 2004-10-13 Cotares Ltd Apparatus for and method of providing data to an external application
JP4034812B2 (ja) * 2004-10-14 2008-01-16 松下電器産業株式会社 移動先予測装置および移動先予測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328035A (ja) * 2001-04-27 2002-11-15 Pioneer Electronic Corp ナビゲーション装置、ナビゲーションシステム用のサーバ装置、目的地推定処理プログラムおよび目的地推定処理プログラムを記録した記録媒体
WO2004034725A1 (ja) * 2002-10-10 2004-04-22 Matsushita Electric Industrial Co., Ltd. 情報取得方法、情報提供方法、および情報取得装置
JP2004333136A (ja) * 2003-04-30 2004-11-25 Sony Corp ナビゲーション装置
JP2006053132A (ja) * 2004-07-13 2006-02-23 Matsushita Electric Ind Co Ltd 移動先表示装置および移動先表示方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048146A1 (en) * 2008-10-20 2010-04-29 Carnegie Mellon University System, method and device for predicting navigational decision-making behavior
US8478642B2 (en) 2008-10-20 2013-07-02 Carnegie Mellon University System, method and device for predicting navigational decision-making behavior
WO2010066718A1 (en) * 2008-12-11 2010-06-17 Tomtom International B.V. Navigation device & method
JP2016130678A (ja) * 2015-01-14 2016-07-21 日本電信電話株式会社 小型移動・運搬装置用の誘導制御システムおよび方法
JPWO2016207975A1 (ja) * 2015-06-23 2018-04-12 日産自動車株式会社 候補経路提供システム、車載装置及び候補経路提供方法
US11268819B2 (en) 2015-06-23 2022-03-08 Nissan Motor Co., Ltd. Candidate route providing system, in-vehicle apparatus, and candidate route providing method
US11421995B2 (en) * 2016-11-29 2022-08-23 Mitsubishi Heavy Industries Machinery Systems, Ltd. Map matching device, map matching system, map matching method and program
JP2020118507A (ja) * 2019-01-22 2020-08-06 本田技研工業株式会社 案内装置、案内方法、およびプログラム
JP7241550B2 (ja) 2019-01-22 2023-03-17 本田技研工業株式会社 案内装置、案内方法、およびプログラム

Also Published As

Publication number Publication date
JP4088336B2 (ja) 2008-05-21
US7630828B2 (en) 2009-12-08
US20090105934A1 (en) 2009-04-23
JPWO2007119559A1 (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4088336B2 (ja) 移動先予測装置および移動先予測方法
CN102037324B (zh) 用于提供到兴趣点的路线的方法及系统
JP5396164B2 (ja) 経路探索装置、および、経路探索方法
EP2414778B1 (en) Point of interest search along a route with return
JP4878160B2 (ja) 交通情報表示方法及びナビゲーションシステム
US8065072B2 (en) Transit information provision device, method and program
JP4917289B2 (ja) ナビゲーション装置
US8965683B2 (en) Vehicle navigation system
US7477990B2 (en) Navigation apparatus
JP4461041B2 (ja) 案内経路生成装置、車両ナビゲーションシステムおよび案内経路生成方法
JP4468964B2 (ja) 地点名称生成装置および地点名称生成方法
KR20070012272A (ko) 네비게이션 시스템
WO2018151005A1 (ja) 走行支援装置及びコンピュータプログラム
JP4760792B2 (ja) 車両用ナビゲーション装置
JP2008281523A (ja) ナビゲーションシステム、経路探索サーバおよび端末装置ならびに経路探索方法
US7797101B2 (en) Road map display system for vehicle
JP3340857B2 (ja) 車載用ナビゲーション装置
JP5191475B2 (ja) 地点名称生成装置および地点名称生成方法
JP4833125B2 (ja) ナビゲーション装置
JP5830075B2 (ja) 経路探索装置、および、経路探索方法
JP4621976B2 (ja) 車両用ナビゲーション装置
JP2010266388A (ja) 車載用ナビゲーション装置及び経路探索方法
JP4890651B2 (ja) ナビゲーション装置
JP2011053106A (ja) ナビゲーション装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007544680

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12159693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740065

Country of ref document: EP

Kind code of ref document: A1