WO2007119333A1 - 電動パワーステアリング制御装置 - Google Patents

電動パワーステアリング制御装置 Download PDF

Info

Publication number
WO2007119333A1
WO2007119333A1 PCT/JP2007/054840 JP2007054840W WO2007119333A1 WO 2007119333 A1 WO2007119333 A1 WO 2007119333A1 JP 2007054840 W JP2007054840 W JP 2007054840W WO 2007119333 A1 WO2007119333 A1 WO 2007119333A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
current
motor
phase
rotational speed
Prior art date
Application number
PCT/JP2007/054840
Other languages
English (en)
French (fr)
Inventor
Masahiko Kurishige
Takayuki Kifuku
Seiji Sakanishi
Masaharu Tanaka
Seiji Sawada
Akinobu Sugiyama
Hanako Hamada
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to EP07738312.3A priority Critical patent/EP2006188B1/en
Priority to US12/160,438 priority patent/US7983815B2/en
Priority to CN2007800072385A priority patent/CN101395056B/zh
Priority to JP2008510762A priority patent/JP4767315B2/ja
Publication of WO2007119333A1 publication Critical patent/WO2007119333A1/ja
Priority to US12/962,191 priority patent/US8019507B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations

Definitions

  • the present invention relates to a control device for an electric power steering of an automobile.
  • an assist torque that is substantially proportional to the steering torque is determined, and the steering torque of the vehicle driver is reduced by increasing a torque proportional gain that is a proportional relationship. At this time, if the torque proportional gain is too large, the control system will oscillate and handle vibration will occur, which may limit the degree of reduction in steering torque.
  • an algorithm that suppresses oscillation by introducing a phase compensator to improve the phase characteristics of the control system has been invented to prevent handle vibration (see Reference Document 1, for example).
  • Patent Document 1 Japanese Patent Laid-Open No. 8-91236 (page 4, FIG. 1)
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-168600 (Page 10, Figure 12)
  • phase compensation When phase compensation is performed by an analog circuit, a steering torque signal that has not been subjected to phase compensation is required for calculation by the observer.
  • the number of AZD conversion circuits required increases because it is necessary to perform phase compensation and to convert both of the steering torque signals into the microcomputer after AZD conversion.
  • phase compensator in addition to the phase compensator, a control algorithm for suppressing oscillation by estimating and feeding back the vibration frequency component of the motor rotation speed from the steering torque signal and the current signal for driving the motor by the observer.
  • the phase compensator is configured with an analog circuit, and there is a problem that the cost increases when configured with software.
  • the present invention has been made to solve the above-described problems, and does not increase the number of AZD conversion circuits, and thus achieves excellent vibration suppression performance without incurring an increase in cost.
  • a device is provided.
  • An electric power steering apparatus includes a torque detection unit that detects a steering torque by a driver, an analog phase compensator that performs phase compensation on an output of the torque detection unit by an analog circuit, and the analog A torque signal change to be output to the microcomputer by AZD conversion of the output of the phase compensator, a torque controller for calculating an auxiliary torque current for assisting the steering torque using the output of the torque signal change, and the steering torque A motor for generating torque for assisting the motor, current detection means for detecting a current value supplied to the motor, rotation speed estimation means for estimating the rotation speed of the motor, and a motor estimated by the rotation speed estimation means.
  • a damping controller that calculates a damping current to be added to the auxiliary torque current using an estimated value of the rotation speed of the motor.
  • the speed estimation means calculates an estimated value of the rotational speed of the motor using the output of the torque antiphase compensator for adjusting the phase and gain of the output of the torque signal change and the output of the current detection means. It is equipped with a rotating speed observer.
  • the phase compensator for the steering torque is configured with an analog circuit, and By configuring an anti-phase compensator on the software of the icon and canceling the gain and phase changes by the phase compensator of the analog circuit at the oscillation frequency, the phase compensation necessary for the operation in the observer is performed.
  • the steering torque signal equivalent to the steering torque signal from the steering torque signal with phase compensation, it is not necessary to convert the steering torque signal without phase compensation into AZD and import it into the microcomputer.
  • the number of circuits is reduced, and excellent vibration suppression performance can be realized without increasing costs.
  • FIG. 1 is a block diagram showing a configuration of a controller according to a first embodiment.
  • FIG. 2 is a Bode diagram showing frequency characteristics of the antiphase compensator of the controller according to the first embodiment.
  • FIG. 3 is a flowchart showing processing in the microcomputer of the controller according to the first embodiment.
  • FIG. 4 is a Bode diagram showing frequency characteristics of the antiphase compensator of the controller according to the second embodiment.
  • FIG. 5 is a block diagram showing a configuration of a controller according to a third embodiment.
  • FIG. 6 is a Bode diagram showing frequency characteristics of the torque HPF of the controller according to the third embodiment.
  • FIG. 7 is a Bode diagram showing frequency characteristics of the torque phase advance reducer of the controller according to the third embodiment.
  • FIG. 8 is a flowchart showing processing in the microcomputer of the controller according to the third embodiment.
  • FIG. 9 is a Bode diagram showing frequency characteristics obtained by combining the torque HPF of the controller and the torque phase advance reducer according to the third embodiment.
  • FIG. 1 is a block diagram showing the configuration of the controller according to the first embodiment of the present invention, in which the steering torque when the driver steers is detected by the torque sensor 1, and an analog phase configured by an analog circuit is shown.
  • the frequency characteristics of the compensator 2 have been improved so that the phase advances at the oscillation frequency f
  • the torque sensor output with improved frequency characteristics is converted into a digital signal by torque AZD change 3, and is taken into the microcomputer.
  • the current that drives the motor is also detected by the current detector 4, converted into a digital signal by the current AZD change 5, and loaded into the microcomputer.
  • the torque controller 6 calculates the auxiliary torque current using the torque sensor output with improved frequency characteristics.
  • Torque antiphase compensator 7 calculates the reverse characteristics of the analog phase compensator and inputs it to the first rotational speed estimator 18 (the part enclosed by the broken line in the figure).
  • the low-frequency component of the steering torque signal returned to the frequency characteristic equivalent to the steering torque before phase compensation is cut by high-pass filter calculation with the torque HPF8, and the low-frequency component of the current is high with the current HPF9.
  • the motor rotation observer (same as the rotation speed observer; the same shall apply hereinafter) 10 uses the signal that has been cut by the pass filter calculation to estimate the motor rotation speed with the low-frequency component cut.
  • the damping controller 11 uses the estimated motor rotation speed obtained as a result, the damping controller 11 calculates the damping current, and the adder 12 adds the auxiliary torque current and the dubbing current to calculate the target current.
  • It is controlled by the current controller 13 so that the calculated target current and the current detected by the current detector 4 coincide with each other, and output to the drive circuit 14 as a voltage command signal such as a PWM signal to drive the motor 15.
  • assist torque is generated.
  • the motor rotation observer 10 that performs the estimation calculation of the motor rotation speed uses, for example, a one-degree-of-freedom vibration equation modeled on the motor inertia moment as the inertia term and the torque sensor panel constant as the panel term (The same applies below).
  • the rotation speed estimation means includes the first rotation speed estimator as an example.
  • the characteristic ⁇ of the torque anti-phase compensator 7 is set to be opposite to the characteristic ⁇ of the analog phase compensator 2. That is, the characteristic A of the analog phase compensator 2 is f
  • the characteristic B of the torque antiphase compensator 7 becomes f
  • the total characteristic of the analog phase compensator 2 characteristic ⁇ and the torque anti-phase compensator 7 characteristic ⁇ is C.
  • HPF is an abbreviation for high-pass filter
  • current HPF9 is set higher than the maximum frequency that the driver can handle, 5 Hz.
  • step S101 the torque sensor output after analog phase compensation that has been AZD converted by torque AZD change 3 is read and stored in the memory.
  • step S102 the current AZD converter 5 reads the AZD converted current detection value (same as the current detector output; the same applies hereinafter) and stores it in the memory.
  • step S103 the torque controller 6 reads the torque sensor output after analog phase compensation stored in the memory, maps the auxiliary torque current, and stores it in the memory.
  • step S104 the torque antiphase compensator 7 reads the torque sensor output after analog phase compensation stored in the memory, performs antiphase compensation calculation, and stores the torque sensor output after antiphase compensation calculation in the memory.
  • step S105 the torque HPF8 performs a high-nos filter calculation on the torque sensor output after the antiphase compensation calculation stored in the memory, and stores the torque sensor output after the high-pass filter in the memory.
  • step S106 the current HPF9 performs a high-pass filter operation on the current detection value stored in the memory, and stores the current detection value after the high-pass filter in the memory.
  • step S107 the motor rotation observer 10 calculates the torque sensor output after the high-pass filter stored in the memory and the current detection value force motor high-speed calculation after the high-pass filter and stores them in the memory.
  • step S108 the damping controller 11 calculates the damping current by multiplying the motor rotational speed stored in the memory by the gain and stores it in the memory.
  • step S109 the adder 12 adds the auxiliary torque current and the damping current to obtain the target current.
  • step S110 the current controller 13 performs a current control calculation from the target current and the current detection value, and outputs it to the drive circuit 14 as a voltage command signal such as a PWM signal.
  • the above steps S101 to S110 are executed for each control sampling.
  • the analog phase compensated torque sensor signal necessary for the calculation of the auxiliary torque current in the torque controller 6 and the phase compensation necessary for the calculation in the motor rotation observer 10 are performed. As a result, it is possible to obtain an excellent vibration suppression performance without increasing the cost.
  • the current signal input to the current HPF 9 is detected by the current detector 4, and the current adder 12 using the current detection value converted into a digital signal by the current AZD variable 5 is used. You can use the calculated target current!
  • the characteristic D of the torque antiphase compensator 7 is approximate to that of the analog phase compensator 2. Specifically, from the characteristic A force of analog phase compensator 2 f
  • analog phase compensator 2 is set so that f f is set to include the frequency at which handle vibration occurs.
  • the total characteristic of the characteristic A of the analog phase compensator 2 and the characteristic D of the torque anti-phase compensator 7 is the same as E, and the phase is Since the deviation is reduced, a motor rotation speed signal can be obtained with higher accuracy than when the torque antiphase compensator 7 is not used, and as a result, the steering wheel vibration reduction effect similar to that of the first embodiment can be realized.
  • FIG. 5 is a block diagram showing the configuration of the controller of the third embodiment of the present invention.
  • the second rotational speed estimator 19 uses a torque phase after the torque HPF8.
  • the lead reducer 16 is arranged after the current HPF9 and the current phase lead reducer 17 is arranged.
  • the characteristic F of the torque HPF8 cuts the low frequency component of the steering torque signal as shown in Fig. 6, but may advance the phase at the steering vibration frequency. Therefore, as shown in the characteristic G of the torque phase advance reducer 16 in Fig. 7 after the torque HPF8, the ratio of the handle vibration frequency f to the cutoff frequency f of the torque HPF8 and the torque
  • the phase advance reducer 16 has the same cutoff frequency ratio.
  • a torque phase advance reducer 16 having a low-pass filter characteristic is provided.
  • a current phase advance reducer 17 having the same frequency characteristic as that of the torque phase advance reducer 16 is disposed after the current HPF9.
  • the rotational speed estimation means includes the second rotational speed estimator as an example.
  • step S301 the torque sensor output after analog phase compensation that has been AZD converted by torque AZD change 3 is read and stored in memory.
  • step S302 the current detection value converted by AZD is read in current AZD change 5, and stored in the memory.
  • step S303 the torque controller 6 reads the torque sensor output after analog phase compensation stored in the memory, maps the auxiliary torque current, and stores it in the memory.
  • step S304 torque antiphase compensator 7 reads the torque sensor output after analog phase compensation stored in the memory, performs antiphase compensation calculation, and stores the torque sensor output after antiphase compensation calculation in memory. .
  • step S305 the torque HPF8 is stored in the memory and the high-pass filter operation is performed on the torque sensor output after the reverse phase compensation calculation, and the torque sensor output after the high-pass filter is stored in the memory.
  • step S306 the current HPF9 performs a high-pass filter operation on the current detection value stored in the memory, and stores the current detection value after the high-pass filter in the memory.
  • step S307 torque phase advance reducer 16 The low-pass filter operation is performed on the torque sensor output after the high-pass filter stored in the memory, and the torque sensor output after the low-pass filter is stored in the memory.
  • step S308 the current phase advance reducer 17 performs a low-pass filter operation on the current detection value after the high-pass filter stored in the memory, and stores the current detection value after the low-pass filter in the memory.
  • step S309 the motor rotation observer 10 calculates the motor rotation speed from the torque sensor output after the low-pass filter stored in the memory and the detected current value after the low-pass filter, and stores it in the memory.
  • step S310 the damping controller 11 multiplies the motor rotational speed stored in the memory by the gain, calculates the damping current, and stores it in the memory.
  • step S311 the adder 12 adds the auxiliary torque current and the damping current to obtain a target current.
  • step S312 the current controller 13 performs target control and current detection value force current control calculation, and outputs the result to the drive circuit 14 as a voltage command signal such as a PWM signal.
  • the above processes from step S301 to S312 are executed for each control sampling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

操舵トルク信号とモータを駆動する電流信号からオブザーバによりモータ回転速度の振動周波数成分を推定しフィードバックすることにより発振を抑制する電動パワーステアリング制御装置において、位相補償器をアナログ回路で構成した場合、ソフトウエアで構成した場合ともコストアップとなる課題があった。操舵トルクの位相補償器をアナログ回路で構成するとともに、マイコンのソフトウエア上に逆位相補償器を構成し、発振周波数付近でアナログ回路の位相補償器によるゲインと位相の変化を打ち消すことにより、オブザーバでの演算に必要な位相補償が行われていない操舵トルク信号と等価な操舵トルク信号を、位相補償を行った操舵トルク信号から演算する。

Description

明 細 書
電動パワーステアリング制御装置
技術分野
[0001] この発明は、自動車の電動パワーステアリングの制御装置に関するものである。
背景技術
[0002] 電動パワーステアリング装置では、操舵トルクに略比例するアシストトルクを定め、こ の比例関係であるトルク比例ゲインを大きく取ることにより自動車の運転者の操舵トル クを低減する。このとき、トルク比例ゲインを大きくとりすぎると制御系が発振してしま い、ハンドル振動が生じてしまうので、操舵トルクの低減度合いが限られる場合があつ た。この課題を解決するため、位相補償器を導入して制御系の位相特性を改善させ て発振を抑制するアルゴリズムが発明され、ハンドル振動を防止してきた (例えば参 考文献 1参照)。
[0003] また、さらに振動抑制性能を向上させる目的で、上記位相補償器に加え、操舵トルク 信号とモータを駆動する電流信号からオブザーバによりモータ回転速度の振動周波 数成分を推定しフィードバックすることにより発振を抑制する制御アルゴリズムが発明 されて、ハンドル振動を防止してきた (例えば参考文献 2参照)。
[0004] 特許文献 1 :特開平 8— 91236号公報 (第 4頁、第 1図)
特許文献 2:特開 2000— 168600号公報 (第 10頁、第 12図)
発明の開示
発明が解決しょうとする課題
[0005] このような電動パワーステアリング装置においては、制御アルゴリズムの大部分はソ フトウェアで構成され、操舵トルク信号をトルク信号変^^、すなわち、 AZD変換回 路を通じてマイコンに取り込み演算処理される。これは、電動パワーステアリングの発 振周波数が 30Hzから 100Hzと比較的低いことによる。ただし、制御アルゴリズム中の 位相補償器のみは、ソフトウェアで構成してマイコンで演算される場合と、直接アナ口 グ回路で位相補償を行う場合とがある。マイコンで演算する場合は、制御系の発振周 波数が高い場合には、高速な演算処理が必要となるので高価なマイコンが必要とな る。
[0006] また、アナログ回路で位相補償を行う場合には、前記オブザーバでの演算には位相 補償が行われていない操舵トルク信号が必要なため、アナログ回路で位相補償を行 つた操舵トルク信号と、位相補償を行って 、な 、操舵トルク信号の両方を AZD変換 してマイコンに取り込む必要があるので必要な AZD変換回路数が増える。
[0007] このように、上記位相補償器に加え、操舵トルク信号とモータを駆動する電流信号か らオブザーバによりモータ回転速度の振動周波数成分を推定しフィードバックするこ とにより発振を抑制する制御アルゴリズムを使った場合には、位相補償器をアナログ 回路で構成した場合、ソフトウェアで構成した場合ともにコストアップとなる課題があ つた o
[0008] この発明は、上述のような課題を解決するためになされたもので、 AZD変換回路数 を増やさず、従って、コストアップを招くことなく優れた振動抑制性能を実現する電動 パワーステアリング制御装置を提供するものである。
課題を解決するための手段
[0009] この発明に係る電動パワーステアリング装置は、運転者による操舵トルクを検出するト ルク検出手段と、該トルク検出手段の出力をアナログ回路により位相補償を行うアナ ログ位相補償器と、該アナログ位相補償器の出力を AZD変換してマイコンに取り込 むトルク信号変 と、該トルク信号変 の出力を用いて前記操舵トルクを補助す る補助トルク電流を演算するトルク制御器と、前記操舵トルクを補助するトルクを発生 するモータと、該モータに通電される電流値を検出する電流検出手段と、前記モータ の回転速度を推定する回転速度推定手段と、該回転速度推定手段で推定されたモ ータの回転速度の推定値を用いて、前記補助トルク電流に加算されるダンピング電 流を演算するダンピング制御器と、を備えるものにおいて、前記回転速度推定手段 は、前記トルク信号変^^の出力の位相とゲインを調整するトルク逆位相補償器の 出力と前記電流検出手段の出力とを用いて、前記モータの回転速度の推定値を演 算する回転速度オブザーバを備えたものである。
発明の効果
[0010] この発明によれば、操舵トルクの位相補償器をアナログ回路で構成するとともに、マ イコンのソフトウェア上に逆位相補償器を構成し、発振周波数でアナログ回路の位相 補償器によるゲインと位相の変化を打ち消すことにより、前記オブザーバでの演算に 必要な位相補償が行われて 、な 、操舵トルク信号と等価な操舵トルク信号を、位相 補償を行った操舵トルク信号から演算することにより、位相補償を行っていない操舵ト ルク信号を AZD変換してマイコンに取り込む必要がなくなるので、 AZD変換回路 数が減り、コストアップなくして優れた振動抑制性能を実現可能となる。
図面の簡単な説明
[0011] [図 1]実施の形態 1による制御器の構成を示すブロック図である。
[図 2]実施の形態 1による制御器の逆位相補償器の周波数特性を示すボード線図で ある。
[図 3]実施の形態 1による制御器のマイコン内での処理を示すフローチャートである。
[図 4]実施の形態 2による制御器の逆位相補償器の周波数特性を示すボード線図で ある。
[図 5]実施の形態 3による制御器の構成を示すブロック図である。
[図 6]実施の形態 3による制御器のトルク HPFの周波数特性を示すボード線図である
[図 7]実施の形態 3による制御器のトルク位相進み低減器の周波数特性を示すボード 線図である。
[図 8]実施の形態 3による制御器のマイコン内での処理を示すフローチャートである。
[図 9]実施の形態 3による制御器のトルク HPFとトルク位相進み低減器を合成させた 周波数特性を示すボード線図である。
符号の説明
[0012] 1 トルクセンサ、 2 アナログ位相補償器、 3 トルク AZD変 、4 電流検出器 、 5 電流 AZD変 、6 トルク制御器、 7 トルク逆位相補償器、 8 トルク HPF、9 電流 HPF、 10 モータ回転オブザーバ、 11 ダンピング制御器、 12 加算器、 13 電流制御器、 14 駆動回路、 15 モータ、 16 トルク位相進み低減器、 17 電流 位相進み低減器、 18 第一の回転速度推定器、 19 第二の回転速度推定器。 発明を実施するための最良の形態 [0013] 実施の形態 1.
図 1は、この発明の実施の形態 1の制御器の構成を示すブロック図であり、運転者 が操舵した場合の操舵トルクをトルクセンサ 1にて検出し、アナログ回路にて構成され たアナログ位相補償器 2にて発振周波数 f で最も位相が進むように周波数特性を改
vib
善する。周波数特性を改善されたトルクセンサ出力はトルク AZD変 3にてディジ タル信号に変換されてマイコンに取り込まれる。またモータを駆動する電流も電流検 出器 4にて検出され、電流 AZD変 5にてディジタル信号に変換されてマイコン に取り込まれる。マイコン内では、周波数特性を改善されたトルクセンサ出力を用い てトルク制御器 6にて補助トルク電流を演算する。トルク逆位相補償器 7にてアナログ 位相補償器の逆特性を演算するとともに第一の回転速度推定器 18 (図中破線で囲 まれた部分)に入力し、第一の回転速度推定器 18では、位相補償前の操舵トルクと 等価な周波数特性に戻された操舵トルク信号の低周波成分をトルク HPF8にてハイ パスフィルタ演算を行いカットした信号と、電流の低周波成分を電流 HPF9にてハイ パスフィルタ演算を行いカットした信号とを用いて、モータ回転オブザーバ(回転速度 オブザーバに同じ。以下同様) 10にて低周波成分がカットされたモータ回転速度の 推定演算を行う。この結果得た推定されたモータ回転速度を用いてダンピング制御 器 11にてダンピング電流を演算するとともに、加算器 12にて補助トルク電流と当該ダ ンビング電流とを加算することにより目標電流演算を行う。演算された目標電流と電 流検出器 4にて検出された電流が一致するように電流制御器 13で制御され、例えば PWM信号などの電圧指令信号として駆動回路 14に出力され、モータ 15を駆動する ことによりアシストトルクを発生させる。上記において、モータ回転速度の推定演算を 行うモータ回転オブザーバ 10は、例えば、モータの慣性モーメントを慣性項、トルク センサのパネ定数をパネ項とする 1自由度振動方程式をモデルとするものを用いる( 以下同様)。また、本発明では、回転速度推定手段には、上記第一の回転速度推定 器がその一例として含まれるものである。
[0014] このとき図 2に示すように、トルク逆位相補償器 7の特性 Βは、アナログ位相補償器 2 の特性 Αと逆になるように設定される。すなわち、アナログ位相補償器 2の特性 Aが f
al から f までの周波数範囲でゲインが高くなれば、トルク逆位相補償器 7の特性 Bが f から f までのゲインが低下する周波数範囲は、同一となるよう、 f =f 、 f =f と設定さ i2 al il a2 i2 れる。アナログ位相補償器 2の特性 Αとトルク逆位相補償器 7の特性 Βを合わせたトー タル特性は Cとなる。
また、トルク HPF (HPFはハイパスフィルタの略。以下同様) 8及び電流 HPF9にてハ ィパスフィルタがカットする最大周波数は、ドライバが可能な最大周波数である 5Hzよ りも高く設定される。
次に、実施の形態 1のマイコン内での処理アルゴリズムを図 3のフローチャートに基づ いて説明を行う。
まずステップ S101では、トルク AZD変 3で AZD変換されたアナログ位相補償 後のトルクセンサ出力を読み込み、メモリに記憶する。ステップ S102では電流 AZD 変換器 5にて、 AZD変換された電流検出値 (電流検出器出力に同じ。以下同様)を 読み込み、メモリに記憶する。ステップ S 103ではトルク制御器 6にて、メモリに記憶さ れて 、るアナログ位相補償後のトルクセンサ出力を読み込み、補助トルク電流をマツ プ演算しメモリに記憶する。ステップ S 104ではトルク逆位相補償器 7にて、メモリに記 憶されているアナログ位相補償後のトルクセンサ出力を読み込み、逆位相補償演算 を行 、逆位相補償演算後のトルクセンサ出力をメモリに記憶する。ステップ S105で はトルク HPF8にて、メモリに記憶されている逆位相補償演算後のトルクセンサ出力 にハイノスフィルタ演算を行いハイパスフィルタ後のトルクセンサ出力をメモリに記憶 する。ステップ S106では電流 HPF9にて、メモリに記憶されている電流検出値にハイ パスフィルタ演算を行 、ハイパスフィルタ後の電流検出値をメモリに記憶する。ステツ プ S107ではモータ回転オブザーバ 10にて、メモリに記憶されているハイパスフィル タ後のトルクセンサ出力とハイパスフィルタ後の電流検出値力 モータ回転速度演算 を行いメモリに記憶する。ステップ S 108ではダンピング制御器 11にて、メモリに記憶 されているモータ回転速度にゲインを乗じダンピング電流の演算を行いメモリに記憶 する。ステップ S 109では加算器 12にて、補助トルク電流とダンピング電流を加算し 目標電流を得る。ステップ S110では電流制御器 13にて、 目標電流と電流検出値か ら電流制御演算を行い PWM信号などの電圧指令信号として駆動回路 14に出力す る。以上のステップ S101から S110までの処理は、各制御サンプリング毎に実行され る。
[0016] このような構成によれば、トルク制御器 6での補助トルク電流の演算に必要なアナログ 位相補償されたトルクセンサ信号と、モータ回転オブザーバ 10での演算に必要な位 相補償されていないトルクセンサ信号を一つのトルク AZD変 3にて得ることが可 能になるのでコストアップなくして優れた振動抑制性能を実現可能となる。
[0017] 本実施の形態では、電流 HPF9へ入力する電流信号を電流検出器 4にて検出され、 電流 AZD変 5にてディジタル信号に変換された電流検出値を用いた力 加算 器 12にて演算された目標電流を用 、ても良!、。
[0018] 実施の形態 2.
実施の形態 2は、トルク逆位相補償器 7のソフトウェア構成のみ実施の形態 1と異なる ので、図 4を用いて該当部分のみ説明を行う。
実施の形態 2にお 、ては、トルク逆位相補償器 7の特性 Dをアナログ位相補償器 2と 近似の特性とするものである。具体的にはアナログ位相補償器 2の特性 A力 から f
al a2 までの周波数範囲でゲインが例えば 20dBZdecの比率で高くなる特性であれば、 f
il 力 ゲインが 20dBZdecの比率で低下開始するローパスフィルタとし、 f =f と設定
al il したものである。ダンピング制御器 11にてダンピング電流を演算する際、高精度なモ ータ回転速度信号が必要となるのはハンドル振動が発生する周波数である。従って
、モータ回転オブザーバ 10がアナログ位相補償器 2による位相ずれのな ヽトルクセ ンサ出力を必要とするのもハンドル振動が発生する周波数である。一方アナログ位相 補償器 2はハンドル振動が発生する周波数を含むように f f が設定されるので、 fか
al、 a2 ii らゲインが低下開始するローパスフィルタとしても、アナログ位相補償器 2の特性 Aとト ルク逆位相補償器 7の特性 Dを合わせたトータル特性は Eのようにゲインは同一で、 位相ずれも小さくなるので、トルク逆位相補償器 7がな ヽ場合より高精度なモータ回 転速度信号が得られ、結果として実施の形態 1と同様のハンドル振動低減効果を実 現できる。
[0019] このような構成によれば、単純なローパスフィルタで構成されるので、高速な演算処 理が必要な高周波領域でアナログ位相補償器 2の特性と逆の特性を演算する必要 がなくなるので、安価なマイコンで上述の効果を実現することが可能となる。 [0020] 実施の形態 3.
図 5は、この発明の実施の形態 3の制御器の構成を示すブロック図であり、実施の 形態 1の構成に加え、第二の回転速度推定器 19において、トルク HPF8の後段にト ルク位相進み低減器 16を、電流 HPF9の後段に電流位相進み低減器 17を配置し たものである。
[0021] トルク HPF8の特性 Fは、振動発生周波数において図 6の通り、操舵トルク信号の低 周波成分をカットする反面、ハンドル振動周波数において、位相を進めてしまう場合 がある。そこで、トルク HPF8の後段に図 7のトルク位相進み低減器 16の特性 Gに示 すように、ハンドル振動周波数 f とトルク HPF8のカットオフ周波数 f の比と、トルク
vib PF
位相進み低減器 16のカットオフ周波 の比とが同一と
Figure imgf000009_0001
なるローパスフィルタ特性を有するトルク位相進み低減器 16を配置する。また、トルク 位相進み低減器 16と同一の周波数特性を有する電流位相進み低減器 17を、電流 HPF9の後段に配置する。なお、本発明では、回転速度推定手段には、上記第二の 回転速度推定器がその一例として含まれるものである。
[0022] 次に、実施の形態 3のマイコン内での処理アルゴリズムを図 8のフローチャートに基づ いて説明を行う。
まずステップ S301では、トルク AZD変 3で AZD変換されたアナログ位相補償 後のトルクセンサ出力を読み込み、メモリに記憶する。ステップ S302では電流 AZD 変 5にて、 AZD変換された電流検出値を読み込み、メモリに記憶する。ステップ S303ではトルク制御器 6にて、メモリに記憶されているアナログ位相補償後のトルク センサ出力を読み込み、補助トルク電流をマップ演算しメモリに記憶する。ステップ S 304ではトルク逆位相補償器 7にて、メモリに記憶されているアナログ位相補償後のト ルクセンサ出力を読み込み、逆位相補償演算を行い逆位相補償演算後のトルクセン サ出力をメモリに記憶する。ステップ S305ではトルク HPF8にて、メモリに記憶されて V、る逆位相補償演算後のトルクセンサ出力にハイパスフィルタ演算を行 、ハイパスフ ィルタ後のトルクセンサ出力をメモリに記憶する。ステップ S306では電流 HPF9にて 、メモリに記憶されている電流検出値にハイパスフィルタ演算を行いハイパスフィルタ 後の電流検出値をメモリに記憶する。ステップ S307ではトルク位相進み低減器 16に てメモリに記憶されているハイパスフィルタ後のトルクセンサ出力をにローパスフィルタ 演算を行いローパスフィルタ後のトルクセンサ出力をメモリに記憶する。ステップ S30 8では電流位相進み低減器 17にて、メモリに記憶されているハイパスフィルタ後の電 流検出値にローパスフィルタ演算を行 、ローパスフィルタ後の電流検出値をメモリに 記憶する。ステップ S309ではモータ回転オブザーバ 10にて、メモリに記憶されてい るローパスフィルタ後のトルクセンサ出力とローパスフィルタ後の電流検出値からモー タ回転速度演算を行 、メモリに記憶する。ステップ S310ではダンピング制御器 11に て、メモリに記憶されているモータ回転速度にゲインを乗じダンピング電流演算を行 いメモリに記憶する。ステップ S311では加算器 12にて、補助トルク電流とダンピング 電流を加算し目標電流を得る。ステップ S312では電流制御器 13にて、 目標電流と 電流検出値力 電流制御演算を行い PWM信号などの電圧指令信号として駆動回 路 14に出力する。以上のステップ S301から S312までの処理は、各制御サンプリン グ毎に実行される。
上記のような構成によれば、トルク HPF8の後段にトルク位相進み低減器 16を配置 することにより、トルク HPF8の特性 Fとトルク位相進み低減器 16の特性 Gを合わせた 特性(図 9のトータル特性 H)が得られるため、図 9のトータル特性 Hに示すように、ハ ンドル振動周波数 f においてはゲイン、位相とも 0となり、ずれをなくすことができ、さ
vib
らにモータ回転速度信号の精度が向上する。この結果、さらに優れたハンドル振動 低減効果を実現できる。

Claims

請求の範囲
[1] 運転者による操舵トルクを検出するトルク検出手段と、
該トルク検出手段の出力をアナログ回路により位相補償を行うアナログ位相補償器と 該アナログ位相補償器の出力を AZD変換してマイコンに取り込むトルク信号変換器 と、
該トルク信号変^^の出力を用いて前記操舵トルクを補助する補助トルク電流を演 算するトルク制御器と、
前記操舵トルクを補助するトルクを発生するモータと、
該モータに通電される電流値を検出する電流検出手段と、
前記モータの回転速度を推定する回転速度推定手段と、
該回転速度推定手段で推定されたモータの回転速度の推定値を用いて、前記補助 トルク電流に加算されるダンピング電流を演算するダンピング制御器と、
を備える電動式パワーステアリング制御装置において、
前記回転速度推定手段は、前記トルク信号変換器の出力の位相とゲインを調整する トルク逆位相補償器の出力と前記電流検出手段の出力とを用いて、前記モータの回 転速度の推定値を演算する回転速度オブザーバを備えたことを特徴とする電動式パ ワーステアリング制御装置。
[2] トルク逆位相補償器は、前記トルク信号変^^の出力をマイコン内で前記アナログ位 相補償器の逆特性演算を行い前記トルク検出手段の出力と同じ周波数特性に変換 して調整するものであることを特徴とする請求項 1に記載の電動式パワーステアリング 制御装置。
[3] トルク逆位相補償器は、前記アナログ位相補償器の逆特性に対し、前記アナログ位 相補償器の高周波側の折点周波数以上の周波数範囲ではゲインが小さくなるように 設定することを特徴とする請求項 2に記載の電動式パワーステアリング制御装置。
[4] トルク逆位相補償器は、ローパスフィルタで構成されることを特徴とする請求項 3に記 載の電動式パワーステアリング制御装置。
[5] 運転者による操舵トルクを検出するトルク検出手段と、 該トルク検出手段の出力を用 ヽて前記操舵トルクを補助する補助トルク電流を演算 するトルク制御器と、
前記操舵トルクを補助するトルクを発生するモータと、
該モータに通電される電流値を検出する電流検出手段と、
前記モータの回転速度を推定する回転速度推定手段と、
該回転速度推定手段で推定されたモータの回転速度の推定値を用いて、前記補助 トルク電流に加算されるダンピング電流を演算するダンピング制御器と、
を備える電動式パワーステアリング制御装置において、
前記回転速度推定手段は、前記電流検出手段の出力から操舵による成分を除去す るモータ電流用操舵成分除去手段と、
前記トルク検出手段の出力から操舵による成分を除去するトルク用操舵成分除去手 段と、
前記モータ電流用操舵成分除去手段により当該操舵成分が除去される電流と前記ト ルク用操舵成分除去手段から出力される操舵トルクとを用いてモータの回転速度の 推定値を演算する回転速度オブザーバと、
を備えるとともに、
前記モータ電流用操舵成分除去手段による位相の進みを小さくするモータの電流位 相進み低減器、または、前記トルク用操舵成分除去手段による位相の進みを小さく するトルク位相進み低減器のうち、少なくとも一方を備えたことを特徴とする電動式パ ワーステアリング制御装置。
[6] アナログ位相補償器と、前記トルク信号変 と、前記トルク逆位相補償器を備える ことを特徴とする請求項 5に記載の電動式パワーステアリング制御装置。
[7] 電流位相進み低減器と、前記トルク位相進み低減器はローパスフィルタで構成され ることを特徴とする請求項 5に記載の電動式パワーステアリング制御装置。
PCT/JP2007/054840 2006-04-13 2007-03-12 電動パワーステアリング制御装置 WO2007119333A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07738312.3A EP2006188B1 (en) 2006-04-13 2007-03-12 Electric power steering control system
US12/160,438 US7983815B2 (en) 2006-04-13 2007-03-12 Electric power steering control system
CN2007800072385A CN101395056B (zh) 2006-04-13 2007-03-12 电动动力转向控制装置
JP2008510762A JP4767315B2 (ja) 2006-04-13 2007-03-12 電動パワーステアリング制御装置
US12/962,191 US8019507B2 (en) 2006-04-13 2010-12-07 Electric power steering control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-111239 2006-04-13
JP2006111239 2006-04-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/160,438 A-371-Of-International US7983815B2 (en) 2006-04-13 2007-03-12 Electric power steering control system
US12/962,191 Division US8019507B2 (en) 2006-04-13 2010-12-07 Electric power steering control system

Publications (1)

Publication Number Publication Date
WO2007119333A1 true WO2007119333A1 (ja) 2007-10-25

Family

ID=38609135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054840 WO2007119333A1 (ja) 2006-04-13 2007-03-12 電動パワーステアリング制御装置

Country Status (6)

Country Link
US (2) US7983815B2 (ja)
EP (2) EP2006188B1 (ja)
JP (2) JP4767315B2 (ja)
KR (1) KR100984884B1 (ja)
CN (1) CN101395056B (ja)
WO (1) WO2007119333A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305538A1 (en) * 2008-07-30 2011-04-06 Mitsubishi Electric Corporation Motor-driven power steering control device
US8346435B2 (en) 2008-04-04 2013-01-01 Mitsubishi Electric Corporation Motor-driven power steering control device
JP2013534490A (ja) * 2010-07-12 2013-09-05 ツェットエフ、レンクジステメ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング ステアリングシステムにおけるステアリングホイールの回転振動を補償するための方法及び装置
WO2013168564A1 (ja) * 2012-05-11 2013-11-14 日本精工株式会社 電動パワーステアリング装置
JP6022117B2 (ja) * 2014-04-21 2016-11-09 三菱電機株式会社 電動パワーステアリング装置
JP2021169253A (ja) * 2020-04-15 2021-10-28 トヨタ自動車株式会社 操舵制御システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612094B2 (en) * 2008-03-12 2013-12-17 Steering Solutions Ip Holding Corporation Systems and methods involving velocity dependent damping
JP4807422B2 (ja) * 2009-03-09 2011-11-02 株式会社デンソー 電動パワーステアリングシステム
US8862324B2 (en) * 2011-03-07 2014-10-14 Steering Solutions Ip Holding Corporation Damping methods and systems for electric power steering
EP2726353B1 (de) * 2011-06-28 2020-10-07 Schaeffler Technologies AG & Co. KG Hybridischer antriebsstrang mit aktiver drehschwingungsdämpfung und verfahren zur durchführung der aktiven drehschwingungsdämpfung
WO2013018420A1 (ja) * 2011-08-04 2013-02-07 本田技研工業株式会社 電動パワーステアリング装置
US9278709B2 (en) * 2011-12-12 2016-03-08 Steering Solutions Ip Holding Corporation Steering system having compensation command calibration
JP6378887B2 (ja) * 2014-02-04 2018-08-22 Kyb株式会社 電動パワーステアリング装置
CN105882736A (zh) * 2014-12-16 2016-08-24 重庆邮电大学 一种车辆电动助力转向系统阻尼控制方法
JP6646070B2 (ja) * 2015-02-10 2020-02-14 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH 電気式自動車用補助アセンブリおよび自動車用補助アセンブリの整流のための方法
US10399597B2 (en) 2015-10-09 2019-09-03 Steering Solutions Ip Holding Corporation Payload estimation using electric power steering signals
US10569801B2 (en) 2015-10-09 2020-02-25 Steering Solutions Ip Holding Corporation Payload estimation using electric power steering signals
JP6656390B2 (ja) * 2016-09-20 2020-03-04 クノールブレムゼステアリングシステムジャパン株式会社 パワーステアリング装置
KR102330546B1 (ko) * 2017-07-28 2021-11-25 현대모비스 주식회사 전동식 동력 조향장치의 진동 저감 장치 및 방법
JP7005402B2 (ja) * 2018-03-20 2022-02-04 日立Astemo株式会社 パワーステアリング装置の制御装置
US11511790B2 (en) 2019-02-14 2022-11-29 Steering Solutions Ip Holding Corporation Road friction coefficient estimation using steering system signals
US11498613B2 (en) 2019-02-14 2022-11-15 Steering Solutions Ip Holding Corporation Road friction coefficient estimation using steering system signals
US11407442B2 (en) * 2019-07-31 2022-08-09 Steering Solutions Ip Holding Corporation Steer-by-wire system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106682A (ja) * 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd アクテイブ・ダイナミツクダンパの制御装置
JPH05155352A (ja) * 1991-12-02 1993-06-22 Omron Corp 電動式パワーステアリング装置
JPH0891236A (ja) 1994-09-21 1996-04-09 Honda Motor Co Ltd 電動パワーステアリング装置
JP2000168600A (ja) 1998-12-01 2000-06-20 Mitsubishi Electric Corp 電動式パワーステアリング制御装置
JP2006062390A (ja) * 2004-08-24 2006-03-09 Mitsubishi Electric Corp 電動パワーステアリング制御装置及びその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005786B1 (ko) * 1992-04-27 1997-04-21 미쓰비시덴키 가부시키가이샤 전동조향 제어장치
US6122579A (en) * 1999-05-28 2000-09-19 Delphi Technologies, Inc. Electric power steering control with torque ripple and road disturbance damper
JP2003081102A (ja) * 2001-09-12 2003-03-19 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005065443A (ja) * 2003-08-18 2005-03-10 Koyo Seiko Co Ltd 電動パワーステアリング装置
US6863150B1 (en) * 2003-09-25 2005-03-08 Mitsubishi Denki Kabushiki Kaisha Electric power steering control apparatus
US8346435B2 (en) 2008-04-04 2013-01-01 Mitsubishi Electric Corporation Motor-driven power steering control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106682A (ja) * 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd アクテイブ・ダイナミツクダンパの制御装置
JPH05155352A (ja) * 1991-12-02 1993-06-22 Omron Corp 電動式パワーステアリング装置
JPH0891236A (ja) 1994-09-21 1996-04-09 Honda Motor Co Ltd 電動パワーステアリング装置
JP2000168600A (ja) 1998-12-01 2000-06-20 Mitsubishi Electric Corp 電動式パワーステアリング制御装置
JP2006062390A (ja) * 2004-08-24 2006-03-09 Mitsubishi Electric Corp 電動パワーステアリング制御装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006188A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346435B2 (en) 2008-04-04 2013-01-01 Mitsubishi Electric Corporation Motor-driven power steering control device
EP2305538A1 (en) * 2008-07-30 2011-04-06 Mitsubishi Electric Corporation Motor-driven power steering control device
EP2305538A4 (en) * 2008-07-30 2013-04-03 Mitsubishi Electric Corp CONTROL DEVICE FOR MOTORIZED POWER STEERING
US8548684B2 (en) 2008-07-30 2013-10-01 Mitsubishi Electric Corporation Electric power steering control apparatus
JP2013534490A (ja) * 2010-07-12 2013-09-05 ツェットエフ、レンクジステメ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング ステアリングシステムにおけるステアリングホイールの回転振動を補償するための方法及び装置
WO2013168564A1 (ja) * 2012-05-11 2013-11-14 日本精工株式会社 電動パワーステアリング装置
JP2013233907A (ja) * 2012-05-11 2013-11-21 Nsk Ltd 電動パワーステアリング装置
CN104169160A (zh) * 2012-05-11 2014-11-26 日本精工株式会社 电动助力转向装置
US9056626B2 (en) 2012-05-11 2015-06-16 Nsk Ltd. Electric power steering apparatus
JP6022117B2 (ja) * 2014-04-21 2016-11-09 三菱電機株式会社 電動パワーステアリング装置
JP2021169253A (ja) * 2020-04-15 2021-10-28 トヨタ自動車株式会社 操舵制御システム
JP7339204B2 (ja) 2020-04-15 2023-09-05 トヨタ自動車株式会社 操舵制御システム

Also Published As

Publication number Publication date
EP2371676B1 (en) 2013-09-04
US20100235047A1 (en) 2010-09-16
JPWO2007119333A1 (ja) 2009-08-27
EP2006188A4 (en) 2009-08-19
US8019507B2 (en) 2011-09-13
CN101395056B (zh) 2010-07-21
EP2006188A2 (en) 2008-12-24
KR20080085178A (ko) 2008-09-23
JP5355610B2 (ja) 2013-11-27
JP4767315B2 (ja) 2011-09-07
US20110137525A1 (en) 2011-06-09
CN101395056A (zh) 2009-03-25
EP2006188B1 (en) 2015-02-25
JP2011147343A (ja) 2011-07-28
US7983815B2 (en) 2011-07-19
EP2371676A1 (en) 2011-10-05
KR100984884B1 (ko) 2010-10-04
EP2006188A9 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2007119333A1 (ja) 電動パワーステアリング制御装置
JP4475434B2 (ja) 電動パワーステアリング制御装置
EP2269892B1 (en) Motor-driven power steering control device
JP4134158B2 (ja) 電動パワーステアリング制御装置
JPWO2009078074A1 (ja) 電動パワーステアリング制御装置
WO2006051894A1 (ja) 電動パワーステアリング装置
JP4227133B2 (ja) 電動パワーステアリング制御装置
JP2007083827A (ja) 電動パワーステアリング装置
EP2290804A1 (en) Motor control device
JP2004345596A (ja) 電動パワーステアリング装置の制御装置
JP2011088491A (ja) 電動パワーステアリング装置
JP4776656B2 (ja) 電動パワーステアリング制御装置
JP4290670B2 (ja) 電動パワーステアリング制御装置
JP4415791B2 (ja) 電動パワーステアリング制御装置
JP5050476B2 (ja) 電動パワーステアリング装置
JP4618614B2 (ja) 電動式パワーステアリング制御装置
JP4413098B2 (ja) 電動パワーステアリング装置
JP2004114711A (ja) 電動パワーステアリング装置
JP2005278350A (ja) 電動パワーステアリング装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510762

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12160438

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007738312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780007238.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE