WO2006051894A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2006051894A1
WO2006051894A1 PCT/JP2005/020701 JP2005020701W WO2006051894A1 WO 2006051894 A1 WO2006051894 A1 WO 2006051894A1 JP 2005020701 W JP2005020701 W JP 2005020701W WO 2006051894 A1 WO2006051894 A1 WO 2006051894A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
output
torque
torque signal
frequency
Prior art date
Application number
PCT/JP2005/020701
Other languages
English (en)
French (fr)
Inventor
Akihiko Nishimura
Original Assignee
Jtekt Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Corporation filed Critical Jtekt Corporation
Priority to US11/719,262 priority Critical patent/US7684912B2/en
Priority to EP05806267A priority patent/EP1839998B1/en
Publication of WO2006051894A1 publication Critical patent/WO2006051894A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations

Definitions

  • the present invention has a torque detection device that detects torque applied to a steering member, a control amount corresponding to the torque detected by the torque detection device, and a torque dead zone that does not output the control amount
  • the present invention relates to an electric power steering apparatus including a control unit and a steering assisting electric motor that is driven and controlled based on a control amount output by the control unit.
  • An electric power steering device installed in a vehicle assists the steering force of the vehicle with an electric motor.
  • the steering member is connected to a steering mechanism in which a steering member (steering) and a steering shaft are connected.
  • a steering assist force according to the steering torque detected by the torque sensor by providing a torque sensor for detecting the steering torque applied to the steering wheel and a steering assist electric motor for assisting the operation of the steering mechanism.
  • the electric motor By driving the electric motor, the operation force to the steering member is reduced.
  • the steering assist force according to the vehicle speed can be obtained so that the operation force on the steering member is not too light.
  • Patent Document 1 a first current controller that outputs a first control signal based on a difference between a target current value and a current current value of the motor, and a motor that is generated from the target voltage signal and the current detection value.
  • a disturbance voltage estimator that estimates an estimated disturbance voltage value corresponding to the disturbance voltage
  • a second current controller that outputs a second control signal based on the output of the disturbance voltage estimator
  • a first Adding means for adding the outputs of the current controller and the second current controller to output a target voltage signal, and the disturbance voltage estimator is connected to the secondary side at least on the input side and the output side.
  • a current control device for an electric power steering device having the above-described high-nos filter is described.
  • Patent Document 2 provides a torque signal mixed and filtered by the first and second filter means connected in parallel, and the first filter means has a torque frequency smaller than the mixing frequency.
  • the second filter means has a first function characteristic, and the second filter means has a second function characteristic at a torque frequency greater than the mixing frequency.
  • An electrical assist 'steering system control device is described that maintains the width during system operation.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-249061
  • Patent Document 2 Japanese Patent No. 2838053 (US 5 4 7 3231, US 55 04403)
  • the present invention has been made in view of the circumstances as described above, and it is possible to clearly switch between control for suppressing disturbance input from a tie rod and steering control, and to disturbance disturbance.
  • An object of the present invention is to provide an electric power steering device capable of suppressing the influence of the above.
  • An electric power steering apparatus is a torque detection device that detects torque stored in a steering member, and outputs a control amount corresponding to a torque signal output from the torque detection device.
  • An electric power steering apparatus comprising: a first control unit having a dead zone of the torque signal that does not output the control amount; and a steering assist electric motor that is driven and controlled based on the control amount output by the first control unit.
  • a second control unit that outputs a control amount and a dead zone that does not output the control amount; and a torque gain output unit that outputs gain data only when the torque signal detected by the torque detection device is within a predetermined range; Means for detecting the steering angular velocity of the steering member; angular velocity gain output means for outputting gain data only when the steering angular velocity detected by the means is within a predetermined range; and the given vehicle speed is equal to or higher than the predetermined speed. Only when the vehicle speed gain output means for outputting gain data, the gain data output by the torque gain output means, the angular speed gain output means and the vehicle speed gain output means, and the control amount output by the second control means are multiplied. And means for adding the result of multiplication by the means to the control amount output by the first control means.
  • the first frequency is 7.5 Hz
  • the second frequency is 10 Hz
  • the phase advance filter means attenuates and outputs the torque signal when the frequency of the applied torque signal is lower than the first frequency, When higher than the 1st frequency and higher than the 2nd frequency, the phase is advanced and a torque signal is output.
  • the second control means outputs a control amount corresponding to the torque signal output from the phase advance filter means, and has a dead zone that does not output the control amount.
  • the torque gain output means detects the torque signal detected by the torque detection device. Gain data is output only when is within the specified range.
  • the angular velocity gain output means outputs gain data only when the steering angular velocity is within a predetermined range
  • the vehicle speed gain output means outputs gain data only when the given vehicle speed is equal to or higher than the predetermined speed.
  • the multiplying means multiplies each gain data output from the torque gain output means, angular velocity gain output means and vehicle speed gain output means, and the control amount output from the second control means, and the adding means adds the multiplication result. Add to the control amount output by the first control means.
  • FIG. 1 is a block diagram showing a main configuration of an embodiment of an electric power steering apparatus according to the present invention.
  • FIG. 2 is a Bode diagram showing input / output characteristics of a third-order high-pass filter.
  • FIG. 3 is a characteristic diagram showing input / output characteristics of a controlled variable map.
  • FIG. 4 is a characteristic diagram showing input / output characteristics of a torque gain map.
  • FIG. 5 is a characteristic diagram showing input / output characteristics of a steering angular velocity gain map.
  • FIG. 6 is a characteristic diagram showing input / output characteristics of a vehicle speed gain map.
  • FIG. 7 is a characteristic diagram showing test results of a bench test of the electric power steering apparatus according to the present invention.
  • Tonolek gain map (Tonolek gain output means)
  • Vehicle speed gain map (vehicle speed gain output means)
  • FIG. 1 is a block diagram showing a main configuration of an embodiment of an electric power steering apparatus according to the present invention.
  • This electric power steering apparatus is sampled by a steering torque signal force interface 20 output from a torque sensor 21 that detects a steering torque applied to a steering member (steering, steering wheel) (not shown), and the sampled steering torque signal Ts is given to the phase compensation unit 11.
  • the phase compensation unit 11 performs phase compensation of the steering torque signal Ts.
  • the steering torque signal T phase-compensated by the phase compensator 11 is given to the function generator 12 (first control means).
  • the function generation unit 12 is also provided with a vehicle speed signal V output by the vehicle speed sensor 3 that detects the traveling speed of the vehicle and sampled by the interface 4.
  • the target current 1 (control amount) increases proportionally as the steering torque signal T increases
  • a function that saturates the target current I when the steering torque signal T exceeds a predetermined value is variably determined according to the vehicle speed signal V.
  • the function is such that as the vehicle speed signal V increases, the ratio of the target current I to the steering torque signal T decreases and the saturation value of the target current I decreases.
  • the target current I determined by the function generator 12 is given to the adding means 13.
  • the sampled steering torque signal Ts is also supplied to the third-order high-pass filter 17 (advanced filter means; for example, a filter in which three stages of RC filters are stacked).
  • the tertiary high-pass filter 17 has input / output characteristics as shown in the Bode diagram of FIG. 2 according to the frequency of the steering torque signal Ts. For example, when a given steering torque signal Ts has a frequency (including a third-order component) lower than 7.5 Hz, the steering torque signal Ts is attenuated and output. To prevent the increase.
  • the steering torque signal Ts is amplified by a gain of 1 or more, and the phase of the steering torque signal Ts is set to 90 to Odeg. Advance and output.
  • the target output by the control amount map 18 described later is output.
  • the current Ic control amount
  • a second-order high-pass filter or a fourth-order or higher-order high-pass filter may be used.
  • the steering torque signal Ts output from the third-order high-pass filter 17 is given to the control amount map 18 (second control means).
  • the control amount map 18 has a function with a large dead zone, and outputs a target current Ic (control amount) corresponding to the steering torque signal Ts.
  • the steering torque signal Ts is also given to the torque gain map 22 (torque gain output means).
  • the torque gain map 22 shows gain data (for example, 1.0 to 1.0.0) only when a given steering torque signal Ts is, for example, -1.0 to + 1.ON'm. 9N-m; 0 to 1, -0. 9 to + 0. 9N'm; l, 0.9 to 1. ON'm; 1 to 0). This eliminates the effect of suppressing disturbance when the vehicle is steered greatly (for example, other than -1.0 to + 1. ON ⁇ ⁇ ), and prevents an increase in viscosity.
  • the steering angular velocity sensor 8 outputs the steering angular velocity signal force sampled by the interface 9 and is given to the steering angular velocity gain map 23 (angular velocity gain output means). As shown in FIG. 5, the steering angular velocity gain map 23 is obtained only when a given steering angular velocity signal is, for example, ⁇ 100 to +100 deg / s. ⁇ + 90degZs; l, 90 ⁇ : L00deg; l ⁇ 0) is output. This eliminates the disturbance suppression effect when the vehicle is steered quickly (for example, other than ⁇ 100 to +100 degZs), and prevents an increase in viscosity.
  • the vehicle speed sensor 3 outputs the vehicle speed signal force sampled by the interface 4 and is given to the vehicle speed gain map 24 (vehicle speed gain output means). As shown in FIG. 6, the vehicle speed gain map 24 outputs gain data (for example, 60 to 80 kmZh; 0 to 1, 80 kmZh to 1) only when the given vehicle speed signal is 60 kmZs or more, for example.
  • gain data for example, 60 to 80 kmZh; 0 to 1, 80 kmZh to 1
  • the target current Ic output from the control amount map 18 and the gain data output from the torque gain map 22, the steering angular velocity gain map 23, and the vehicle speed gain map 24 are given to the multiplication means 19 and multiplied.
  • the multiplied result is given to the adding means 13, and the function generator 12 It is added to the set target current I.
  • the addition result of the adding means 13 is given to the subtracting means 15.
  • the subtracting means 15 is also provided with a motor current detection signal Is output from a motor current detection circuit 7 that detects a current flowing through the electric motor 6 that assists steering.
  • the subtraction means 15 subtracts the addition result force motor current detection signal Is of the addition means 13 and gives the subtraction result to the motor voltage calculation section 16.
  • the motor voltage calculation unit 16 performs PID calculation on the given subtraction result, and gives a PWM signal based on the calculation result to the motor drive circuit 5.
  • the motor drive circuit 5 drives the electric motor 6 by the given PWM signal.
  • Phase compensation unit 11, function generation unit 12, third-order high-pass filter 17, control amount map 18, torque gain map 22, steering angular velocity gain map 23, vehicle speed gain map 24, multiplication unit 19, addition means 13, the subtracting means 15 and the motor voltage calculation unit 16 constitute a control unit 1.
  • the control unit 1 can also be configured in hardware without using a force microcomputer configured in software with a microcomputer, for example.
  • control unit 1 reads the sampled steering torque signal Ts, steering angular velocity signal, vehicle speed signal V, and motor current detection signal Is.
  • the steering torque signal Ts is given to the third-order high-pass filter 17 and the torque gain map 22.
  • the phase compensation unit 11 performs phase compensation on the read steering torque signal Ts, and the steering torque signal T subjected to phase compensation is given to the function generation unit 12.
  • the function generator 12 determines and outputs the target current I by the above-described function based on the steering torque signal T and the vehicle speed signal V given from the phase compensator 11.
  • the third-order high-pass filter 17 processes the sampled steering torque signal Ts according to the above-described frequency characteristic (FIG. 2), and gives it to the control amount map 18 (second control means).
  • the control amount map 18 determines and outputs a target current Ic (control amount) corresponding to the steering torque signal Ts by the function described above (FIG. 3).
  • the torque gain map 22 outputs gain data having the above-described characteristics (FIG. 4) based on the read steering torque signal Ts.
  • the steering angular velocity gain map 23 outputs gain data having the above-described characteristics (FIG. 5) based on the read steering angular velocity signal.
  • the vehicle speed gain map 24 outputs gain data having the above-described characteristics (FIG. 6) based on the read vehicle speed signal.
  • the multiplying means 19 multiplies the target current Ic output from the control amount map 18 by the gain data output from the torque gain map 22, the steering angular velocity gain map 23, and the vehicle speed gain map 24, and multiplies the result Ic. * Is given to the adding means 13.
  • the frequency of the steering torque signal Ts (including the third-order component) is 10 Hz or higher, which is the frequency of the steering torque signal Ts due to disturbance.
  • the result of multiplication by the multiplying means 19 is a control amount advanced by 0 to 90 degrees when there is an influence of disturbance on the steering torque signal Ts, and there is no influence of disturbance on the steering torque signal Ts. In this case, it is 0.
  • the addition result of the adding means 13 is influenced by disturbance on the steering torque signal Ts. If present, the influence of the disturbance is suppressed by the target current Ic advanced by 0 to 90 degrees. When there is no disturbance effect on the steering torque signal Ts, the target current I determined by the function generator 12 is not affected, and the steering feeling is not affected.
  • the addition result of the adding means 13 is given to the subtracting means 15, and the subtracting means 15 subtracts the addition result force motor current detection signal Is of the adding means 13, and the subtraction result is given to the motor voltage calculating section.
  • the motor voltage calculation unit 16 performs PID calculation on the given subtraction result, and gives a PWM signal based on the calculation result to the motor drive circuit 5.
  • the motor drive circuit 5 drives the electric motor 6 with the given PWM signal.
  • FIG. 7 shows the application of the electric power steering device as described above to a rack and pinion type steering device, and the disturbance is detected from the end of the axle integrated with the rack (329N'm calorie).
  • FIG. 6 is a characteristic diagram showing test results of a bench test.
  • the present invention can be applied to an electric power steering apparatus that detects torque applied to a steering member and drives and controls a steering assist electric motor in accordance with the detected torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 タイロッドから入力される外乱のステアリングへの影響を抑制することが出来る電動パワーステアリング装置を提供する。  トルク信号が有する周波数が、第1周波数より低いときは、減衰させて、第1周波数より高い第2周波数より高いときは、位相を進ませて、トルク信号を出力する進相フィルタ手段17と、進相フィルタ手段17が出力したトルク信号に応じた制御量を出力すると共に、不感帯を有する第2制御手段18と、トルク信号が所定範囲にあるときのみ、ゲインデータを出力する手段22と、操舵角速度が所定範囲にあるときのみ、ゲインデータを出力する手段23と、与えられた車速が所定速度以上であるときのみ、ゲインデータを出力する手段24と、前記各ゲインデータ及び制御量を乗算する手段19とを備え、その乗算した結果を第1制御手段12が出力した制御量に加算する構成である。      

Description

明 細 書
電動パワーステアリング装置
技術分野
[0001] 本発明は、操舵部材に加えられたトルクを検出するトルク検出装置と、トルク検出装 置が検出したトルクに応じた制御量を出力すると共に、制御量を出力しないトルクの 不感帯を有する制御手段と、制御手段が出力した制御量に基づき駆動制御される操 舵補助用の電動モータとを備える電動パワーステアリング装置に関するものである。 背景技術
[0002] 車両に装備される電動パワーステアリング装置は、車両の操舵力を電動モータによ り補助するものであり、操舵部材 (ステアリング)と操舵軸とが連結された舵取機構に、 操舵部材に加えられた操舵トルクを検出するトルクセンサと、舵取機構の動作を補助 する操舵補助用の電動モータとを設け、トルクセンサが検出した操舵トルクに応じた 操舵補助力を得られるように、電動モータを駆動させることにより、操舵部材への操 作力を軽減するように構成してある。また、車両の高速走行時に、操舵部材への操作 力が軽くなり過ぎな ヽように、車速に応じた操舵補助力を得られるようになって ヽる。
[0003] 特許文献 1には、目標電流値及び電動機の現在の電流値の差に基づく第 1の制御 信号を出力する第 1の電流制御器と、目標電圧信号及び電流検出値から電動機に 生じて!/ヽる外乱電圧に対応する外乱電圧推定値を推定する外乱電圧推定器と、外 乱電圧推定器の出力に基づく第 2の制御信号を出力する第 2の電流制御器と、第 1 の電流制御器及び第 2の電流制御器の出力を加算して目標電圧信号を出力する加 算手段とを有し、外乱電圧推定器が、その入力側及び出力側の少なくとも一方に、 2 次以上のハイノ スフィルタを有している電動パワーステアリング装置の電流制御装置 が記載されている。
[0004] 特許文献 2には、並列接続された第 1及び第 2のフィルタ手段により混合されフィル タされたトルク信号を提供し、第 1のフィルタ手段が、混合周波数よりも小さなトルク周 波数で第 1の関数特性を有し、第 2のフィルタ手段が、混合周波数よりも大きなトルク 周波数で第 2の関数特性を有する混合フィルタ手段と、混合フィルタ手段に動作的 に接続され、混合されフィルタされたトルク信号に応答して、制御信号をステアリング' アシスト手段に提供する制御手段とを備え、混合フィルタ手段は、トルク信号をフィル タし、選択可能なシステムの帯域幅をシステムの動作中に維持する電気アシスト'ス テアリング ·システムの制御装置が記載されている。
特許文献 1 :特開 2002— 249061号公報
特許文献 2:特許第 2838053号公報(US5473231,US5504403)
発明の開示
発明が解決しょうとする課題
[0005] ブレーキ振動等の外乱が、車輪に連結するタイロッドから入力されるとき、その外乱 は、ステアリングを介して操舵者に伝わる力 従来の電動パワーステアリング装置で は、タイロッドから入力される外乱のステアリングへの影響を抑制する上流感度低減 の為の制御は実現されていないという問題がある。また、実現しょうとしても、周期的 操舵による操舵トルク信号の周波数と、外乱による操舵トルク信号の周波数との境界 である 10Hz付近で、外乱を抑制する為の制御と操舵制御とを明確に切り換えること は、困難であるという問題がある。
[0006] 本発明は、上述したような事情に鑑みてなされたものであり、タイロッドから入力され る外乱を抑制する為の制御と操舵制御とを明確に切り換えることが出来、外乱のステ ァリングへの影響を抑制することが出来る電動パワーステアリング装置を提供すること を目的とする。
課題を解決するための手段
[0007] 第 1発明に係る電動パワーステアリング装置は、操舵部材にカ卩えられたトルクを検 出するトルク検出装置と、該トルク検出装置が出力したトルク信号に応じた制御量を 出力すると共に、該制御量を出力しない前記トルク信号の不感帯を有する第 1制御 手段と、該第 1制御手段が出力した制御量に基づき駆動制御される操舵補助用の電 動モータとを備える電動パワーステアリング装置において、与えられた前記トルク信 号が有する周波数が、第 1周波数より低いときは、前記トルク信号を減衰させて出力 し、前記第 1周波数より高い第 2周波数より高いときは、位相を進ませて前記トルク信 号を出力する進相フィルタ手段と、該進相フィルタ手段が出力したトルク信号に応じ た制御量を出力すると共に、該制御量を出力しない不感帯を有する第 2制御手段と 、前記トルク検出装置が検出したトルク信号が所定範囲にあるときのみ、ゲインデー タを出力するトルクゲイン出力手段と、前記操舵部材の操舵角速度を検出する手段 と、該手段が検出した操舵角速度が所定範囲にあるときのみ、ゲインデータを出力す る角速度ゲイン出力手段と、与えられた車速が所定速度以上であるときのみ、ゲイン データを出力する車速ゲイン出力手段と、前記トルクゲイン出力手段、角速度ゲイン 出力手段及び車速ゲイン出力手段が出力した各ゲインデータ、及び前記第 2制御手 段が出力した制御量を乗算する手段と、該手段が乗算した結果を前記第 1制御手段 が出力した制御量に加算する手段とを備えることを特徴とする。
[0008] 第 2発明に係る電動パワーステアリング装置は、前記第 1周波数は 7. 5Hzであり、 前記第 2周波数は 10Hzであることを特徴とする。
発明の効果
[0009] 本発明に係る電動パワーステアリング装置によれば、進相フィルタ手段が、与えら れたトルク信号が有する周波数が、第 1周波数より低いときは、トルク信号を減衰させ て出力し、第 1周波数より高い第 2周波数より高いときは、位相を進ませてトルク信号 を出力する。第 2制御手段が、進相フィルタ手段が出力したトルク信号に応じた制御 量を出力すると共に、制御量を出力しない不感帯を有し、トルクゲイン出力手段が、ト ルク検出装置が検出したトルク信号が所定範囲にあるときのみ、ゲインデータを出力 する。
[0010] 角速度ゲイン出力手段が、操舵角速度が所定範囲にあるときのみ、ゲインデータを 出力し、車速ゲイン出力手段が、与えられた車速が所定速度以上であるときのみ、ゲ インデータを出力する。乗算する手段が、トルクゲイン出力手段、角速度ゲイン出力 手段及び車速ゲイン出力手段が出力した各ゲインデータ、及び第 2制御手段が出力 した制御量を乗算し、加算する手段が、その乗算した結果を第 1制御手段が出力し た制御量に加算する。
これにより、タイロッドから入力される外乱を抑制する為の制御と操舵制御とを明確 に切り換えることが出来、外乱のステアリングへの影響を抑制することが出来る電動 ノ ワーステアリング装置を実現することが出来る。 図面の簡単な説明
[0011] [図 1]本発明に係る電動パワーステアリング装置の実施の形態の要部構成を示すブ ロック図である。
[図 2]3次ハイパスフィルタの入出力特性を示すボード線図である。
[図 3]制御量マップの入出力特性を示す特性図である。
[図 4]トルクゲインマップの入出力特性を示す特性図である。
[図 5]操舵角速度ゲインマップの入出力特性を示す特性図である。
[図 6]車速ゲインマップの入出力特性を示す特性図である。
[図 7]本発明に係る電動パワーステアリング装置のベンチ試験の試験結果を示す特 '性図である。
符号の説明
[0012] 1 制御部
3 車速センサ
5 モータ駆動回路
6 電動モータ
8 操舵角速度センサ
12 関数発生部 (第 1制御手段)
13 加算手段
15 減算手段
16 モータ電圧演算部
17 3次ハイパスフィルタ(進相フィルタ手段)
18 制御量マップ (第 2制御手段)
19 乗算手段
21 トルクセンサ
22 トノレクゲインマップ (トノレクゲイン出力手段)
23 操舵角速度ゲインマップ (角速度ゲイン出力手段)
24 車速ゲインマップ (車速ゲイン出力手段)
Ic 目標電流 (制御量) 発明を実施するための最良の形態
[0013] 以下に、本発明の実施の形態を、それを示す図面に基づいて説明する。
実施の形態
[0014] 図 1は、本発明に係る電動パワーステアリング装置の実施の形態の要部構成を示 すブロック図である。この電動パワーステアリング装置は、図示しない操舵部材 (ステ ァリング、ハンドル)に加えられた操舵トルクを検出するトルクセンサ 21が出力した操 舵トルク信号力 インタフェース 20によりサンプリングされ、サンプリングされた操舵ト ルク信号 Tsが位相補償部 11に与えられる。位相補償部 11は、操舵トルク信号 Tsの 位相補償を行う。位相補償部 11により位相補償された操舵トルク信号 Tは、関数発 生部 12 (第 1制御手段)に与えられる。
関数発生部 12には、車両の走行速度を検出する車速センサ 3が出力し、インタフエ ース 4がサンプリングした車速信号 Vも与えられている。
[0015] 関数発生部 12では、図中で示すように、操舵トルク信号 Tが所定の不感帯を超える と、操舵トルク信号 Tの増加に従って目標電流 1 (制御量)が比例的に増加し、さらに 操舵トルク信号 Tが所定値以上になると目標電流 Iが飽和するような関数が、車速信 号 Vに応じて可変的に定められている。前記関数は車速信号 Vが大となるに従って 操舵トルク信号 Tに対する目標電流 Iの比が小となると共に、目標電流 Iの飽和値が 小となるようになつている。
関数発生部 12が定めた目標電流 Iは加算手段 13へ与えられる。
[0016] 一方、サンプリングされた操舵トルク信号 Tsは、 3次ハイノ スフィルタ 17 (進相フィル タ手段;例えば RCフィルタを 3段重ねたフィルタ)へも与えられる。 3次ハイパスフィル タ 17は、操舵トルク信号 Tsが有する周波数に応じた、図 2のボード線図に示すような 入出力特性を有している。例えば、与えられた操舵トルク信号 Tsが有する周波数(3 次成分を含む)が、 7. 5Hzより低いときは、操舵トルク信号 Tsを減衰させて出力し、こ れにより、操舵したときの粘性感の増加を防止する。
[0017] また、操舵トルク信号 Tsが有する周波数(3次成分を含む)力 10Hzより高いときは 、操舵トルク信号 Tsを 1以上のゲインで増幅すると共に、操舵トルク信号 Tsの位相を 90〜Odeg進ませて出力する。これにより、後述する制御量マップ 18が出力した目標 電流 Ic (制御量)が、外乱の影響を抑制するように、 目標電流 Iに加算され、外乱によ るステアリングへの影響を低減する。尚、 3次ハイノ スフィルタ 17の代わりに、 2次ハイ パスフィルタもしくは 4次以上の高次のハイパスフィルタを使用しても良い。
[0018] 3次ハイパスフィルタ 17が出力した操舵トルク信号 Tsは、制御量マップ 18 (第 2制 御手段)へ与えられる。制御量マップ 18は、図 3に示すように、不感帯が大きい関数 を有しており、操舵トルク信号 Tsに応じた目標電流 Ic (制御量)を出力する。制御量 マップ 18の操舵トルク信号 Tsの不感帯を大きくすることにより、通常のゆっくりと操舵 したときの粘性感の増加を防止する。
[0019] 操舵トルク信号 Tsは、トルクゲインマップ 22 (トルクゲイン出力手段)へも与えられる 。トルクゲインマップ 22は、図 4に示すように、与えられた操舵トルク信号 Tsが例えば - 1. 0〜+ 1. ON'mにあるときのみ、ゲインデータ(例えば、 1. 0〜一 0. 9N-m; 0〜1、 -0. 9〜+ 0. 9N'm; l、 0. 9〜1. ON'm; 1〜0)を出力する。これにより、 大きく操舵したとき (例えば、 - 1. 0〜+ 1. ON ·πι以外)の外乱抑制効果を排除して 、粘性感の増加を防止する。
[0020] 操舵角速度センサ 8が出力し、インタフェース 9がサンプリングした操舵角速度信号 力 操舵角速度ゲインマップ 23 (角速度ゲイン出力手段)に与えられる。操舵角速度 ゲインマップ 23は、図 5に示すように、与えられた操舵角速度信号が例えば— 100〜 + 100deg/sにあるときのみ、ゲインデータ(例えば、 100〜一 90degZs ; 0〜l、 — 90〜 + 90degZs ; l、 90〜: L00deg ; l〜0)を出力する。これにより、速く操舵した とき (例えば、— 100〜 + 100degZs以外)の外乱抑制効果を排除して、粘性感の 増加を防止する。
[0021] 車速センサ 3が出力し、インタフェース 4がサンプリングした車速信号力 車速ゲイン マップ 24 (車速ゲイン出力手段)に与えられる。車速ゲインマップ 24は、図 6に示すよ うに、与えられた車速信号が例えば 60kmZs以上であるときのみ、ゲインデータ (例 えば、 60〜80kmZh;0〜l、 80kmZh〜; 1)を出力する。
[0022] 制御量マップ 18が出力した目標電流 Icと、トルクゲインマップ 22、操舵角速度ゲイ ンマップ 23及び車速ゲインマップ 24が出力した各ゲインデータとは、乗算手段 19に 与えられ乗算される。乗算された結果は、加算手段 13に与えられ、関数発生部 12が 定めた目標電流 Iに加算される。加算手段 13の加算結果は、減算手段 15へ与えら れる。
[0023] 減算手段 15には、操舵補助を行う電動モータ 6に流れる電流を検出するモータ電 流検出回路 7が出力したモータ電流検出信号 Isも与えられている。
減算手段 15は、加算手段 13の加算結果力 モータ電流検出信号 Isを減算し、そ の減算結果を、モータ電圧演算部 16に与える。モータ電圧演算部 16は、与えられた 減算結果に対して PID演算を行 、、その演算結果に基づく PWM信号をモータ駆動 回路 5へ与える。モータ駆動回路 5は、与えられた PWM信号により電動モータ 6を駆 動する。
[0024] 上述した位相補償部 11、関数発生部 12、 3次ハイパスフィルタ 17、制御量マップ 1 8、トルクゲインマップ 22、操舵角速度ゲインマップ 23、車速ゲインマップ 24、乗算手 段 19、加算手段 13、減算手段 15及びモータ電圧演算部 16は、制御部 1を構成して いる。制御部 1は、例えば、マイクロコンピュータでソフトウェア的に構成される力 マイ クロコンピュータを使用せずに、ハードウェア的に構成することも可能である。
[0025] 以下に、このような構成の電動パワーステアリング装置の動作を説明する。
制御部 1は、先ず、サンプリングされた操舵トルク信号 Ts、操舵角速度信号、車速 信号 V及びモータ電流検出信号 Isをそれぞれ読込む。操舵トルク信号 Tsは、 3次ハ ィパスフィルタ 17及びトルクゲインマップ 22に与えられる。位相補償部 11は、読込ん だ操舵トルク信号 Tsに位相補償を施し、位相補償を施された操舵トルク信号 Tは、関 数発生部 12に与えられる。
[0026] 関数発生部 12は、位相補償部 11から与えられた操舵トルク信号 Tと車速信号 Vと に基づいて、上述した関数により目標電流 Iを決定し出力する。
3次ハイパスフィルタ 17は、サンプリングされた操舵トルク信号 Tsを、上述した周波 数特性(図 2)により処理して、制御量マップ 18 (第 2制御手段)へ与える。
制御量マップ 18は、上述した関数(図 3)により、操舵トルク信号 Tsに応じた目標電 流 Ic (制御量)を決定し出力する。
[0027] トルクゲインマップ 22は、読込んだ操舵トルク信号 Tsに基づき、上述した特性(図 4 )を有するゲインデータを出力する。 操舵角速度ゲインマップ 23は、読込んだ操舵角速度信号に基づき、上述した特性 (図 5)を有するゲインデータを出力する。
車速ゲインマップ 24は、読込んだ車速信号に基づき、上述した特性(図 6)を有す るゲインデータを出力する。
[0028] 乗算手段 19は、制御量マップ 18が出力した目標電流 Icと、トルクゲインマップ 22、 操舵角速度ゲインマップ 23及び車速ゲインマップ 24が出力した各ゲインデータとを 乗算し、乗算した結果 Ic*を加算手段 13に与える。
乗算手段 19が乗算した結果は、操舵トルク信号 Tsの周波数 (3次成分を含む)が、 外乱による操舵トルク信号 Tsの周波数である 10Hz以上である場合、
(0〜90deg進んだ制御量) X (トルクゲイン X操舵角速度ゲイン = 1)
= (0〜90deg進んだ制御量)
となる。
[0029] 操舵トルク信号 Tsの周波数(3次成分を含む)力 通常の操舵による操舵トルク信 号 Tsの周波数である 0〜7. 5Hzである場合、
ゆっくりと操舵し (操舵周波数 =0. 1〜: LHz)、操舵トルク信号 Tsの周波数が 0. 1 〜3Hz (3次成分)であるとき、
(制御量マップの不感帯により制御量 =0) X
(トルクゲイン X操舵角速度ゲイン =0〜: L) = (制御量 =0)
となる。
[0030] 速く操舵し (操舵周波数 = 1〜2. 5Hz)、操舵トルク信号 Tsの周波数が 1〜7. 5Hz
(3次成分)であるとき、
(120〜240deg進み少し減衰した制御量) X
(トルクゲイン X操舵角速度ゲイン =0〜: L) = (制御量 =0)
となる。
[0031] 以上より、乗算手段 19が乗算した結果は、操舵トルク信号 Tsに外乱による影響が 存在する場合は、 0〜90deg進んだ制御量となり、操舵トルク信号 Tsに外乱の影響 が存在しな 、場合は 0となる。
これにより、加算手段 13の加算結果は、操舵トルク信号 Tsに外乱による影響が存 在する場合は、 0〜90deg進んだ目標電流 Icにより、外乱による影響が抑制される。 操舵トルク信号 Tsに外乱の影響が存在しない場合は、関数発生部 12が定めた目標 電流 Iは影響を受けず、操舵フィーリングへの影響は無 、。
[0032] 加算手段 13の加算結果は、減算手段 15へ与えられ、減算手段 15は、加算手段 1 3の加算結果力 モータ電流検出信号 Isを減算し、その減算結果を、モータ電圧演 算部 16に与える。モータ電圧演算部 16は、与えられた減算結果に対して PID演算 を行い、その演算結果に基づく PWM信号をモータ駆動回路 5へ与える。モータ駆動 回路 5は、与えられた PWM信号により電動モータ 6を駆動する。
[0033] 図 7は、以上のような電動パワーステアリング装置をラック &ピニオン方式のステアリ ング装置に適用し、ラックと一体ィ匕された車軸の端部から外乱をカ卩える(329N'mカロ 振)ベンチ試験の試験結果を示す特性図である。
図 7の特性図から、 10Hz以上のステアリング周方向の加速度が 4mZs2以下となり 、望ま 、外乱抑制性能を達成したことが確認出来た。
産業上の利用可能性
[0034] 本発明は、操舵部材に加えられたトルクを検出し、検出したトルクに応じて、操舵補 助用の電動モータを駆動制御する電動パヮーステアリング装置に適用できる。

Claims

請求の範囲
[1] 操舵部材に加えられたトルクを検出するトルク検出装置と、該トルク検出装置が出 力したトルク信号に応じた制御量を出力すると共に、該制御量を出力しない前記トル ク信号の不感帯を有する第 1制御手段と、該第 1制御手段が出力した制御量に基づ き駆動制御される操舵補助用の電動モータとを備える電動パワーステアリング装置に おいて、
与えられた前記トルク信号が有する周波数が、第 1周波数より低いときは、前記トル ク信号を減衰させて出力し、前記第 1周波数より高い第 2周波数より高いときは、位相 を進ませて前記トルク信号を出力する進相フィルタ手段と、該進相フィルタ手段が出 力したトルク信号に応じた制御量を出力すると共に、該制御量を出力しない不感帯を 有する第 2制御手段と、前記トルク検出装置が検出したトルク信号が所定範囲にある ときのみ、ゲインデータを出力するトルクゲイン出力手段と、前記操舵部材の操舵角 速度を検出する手段と、該手段が検出した操舵角速度が所定範囲にあるときのみ、 ゲインデータを出力する角速度ゲイン出力手段と、与えられた車速が所定速度以上 であるときのみ、ゲインデータを出力する車速ゲイン出力手段と、前記トルクゲイン出 力手段、角速度ゲイン出力手段及び車速ゲイン出力手段が出力した各ゲインデータ 、及び前記第 2制御手段が出力した制御量を乗算する手段と、該手段が乗算した結 果を前記第 1制御手段が出力した制御量に加算する手段とを備えることを特徴とする 電動パワーステアリング装置。
[2] 前記第 1周波数は 7. 5Hzであり、前記第 2周波数は 10Hzである請求項 1記載の 電動パワーステアリング装置。
PCT/JP2005/020701 2004-11-12 2005-11-11 電動パワーステアリング装置 WO2006051894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/719,262 US7684912B2 (en) 2004-11-12 2005-11-11 Electric power steering apparatus
EP05806267A EP1839998B1 (en) 2004-11-12 2005-11-11 Electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-329388 2004-11-12
JP2004329388A JP4525306B2 (ja) 2004-11-12 2004-11-12 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2006051894A1 true WO2006051894A1 (ja) 2006-05-18

Family

ID=36336568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020701 WO2006051894A1 (ja) 2004-11-12 2005-11-11 電動パワーステアリング装置

Country Status (4)

Country Link
US (1) US7684912B2 (ja)
EP (1) EP1839998B1 (ja)
JP (1) JP4525306B2 (ja)
WO (1) WO2006051894A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012933A (ja) * 2008-07-03 2010-01-21 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2016022927A (ja) * 2014-07-24 2016-02-08 マツダ株式会社 電動パワーステアリングの制御装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419997B2 (ja) 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP4967829B2 (ja) * 2007-06-04 2012-07-04 株式会社ジェイテクト 電動パワーステアリング装置
JP5262005B2 (ja) * 2007-07-13 2013-08-14 株式会社ジェイテクト 電動パワーステアリング装置
JP4281828B2 (ja) 2007-08-08 2009-06-17 トヨタ自動車株式会社 電動パワーステアリング装置
EP2221236B1 (en) * 2007-12-14 2014-08-06 Mitsubishi Electric Corporation Electric power-steering controller
JP4637933B2 (ja) * 2008-05-29 2011-02-23 三菱電機株式会社 電動パワーステアリング装置
US7765858B2 (en) * 2008-08-08 2010-08-03 Gm Global Technology Operations, Inc. Method of measuring torsional dynamics of a steering column at small dynamic amplitudes
DE102009028448B4 (de) 2009-08-11 2021-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen von Lenkraddrehschwingungen in einem Lenksystem sowie zu deren Behandlung
US8626394B2 (en) 2009-10-30 2014-01-07 Mitsubishi Electric Corporation Electric power steering control device
JP5093295B2 (ja) 2010-05-24 2012-12-12 トヨタ自動車株式会社 操舵装置及び操舵制御装置
DE102010031211A1 (de) 2010-07-12 2012-01-12 Zf Lenksysteme Gmbh Verfahren und Vorrichtung zur Kompensation von Lenkraddrehschwingungen in einem Lenksystem
US8798864B2 (en) * 2011-11-18 2014-08-05 Steering Solutions Ip Holding Corporation Road wheel disturbance rejection
US9676409B2 (en) 2013-03-11 2017-06-13 Steering Solutions Ip Holding Corporation Road wheel disturbance rejection based on hand wheel acceleration
CN105189254B (zh) 2013-04-23 2017-08-15 日本精工株式会社 电动助力转向装置
US10155531B2 (en) 2013-04-30 2018-12-18 Steering Solutions Ip Holding Corporation Providing assist torque without hand wheel torque sensor
JP6160860B2 (ja) 2013-06-11 2017-07-12 株式会社ジェイテクト 電動パワーステアリング装置
US9540044B2 (en) 2013-11-15 2017-01-10 Steering Solutions Ip Holding Corporation Hand wheel angle from vehicle dynamic sensors or wheel speeds
JP6274888B2 (ja) * 2014-01-31 2018-02-07 株式会社ショーワ 電動パワーステアリング装置
JP6378887B2 (ja) * 2014-02-04 2018-08-22 Kyb株式会社 電動パワーステアリング装置
BR112016017879A2 (pt) * 2014-03-25 2018-07-24 Nsk Ltd dispositivo de direção com alimentação elétrica
US9540040B2 (en) 2014-06-26 2017-01-10 Steering Solutions Ip Holding Corporation Phase plane based transitional damping for electric power steering
US10144445B2 (en) 2014-09-15 2018-12-04 Steering Solutions Ip Holding Corporation Modified static tire model for providing assist without a torque sensor for zero to low vehicle speeds
US9409595B2 (en) 2014-09-15 2016-08-09 Steering Solutions Ip Holding Corporation Providing assist torque without hand wheel torque sensor for zero to low vehicle speeds
JP6394519B2 (ja) * 2015-07-03 2018-09-26 マツダ株式会社 電動パワーステアリングの制御装置
JP6394520B2 (ja) * 2015-07-03 2018-09-26 マツダ株式会社 電動パワーステアリングの制御装置
US10336363B2 (en) 2015-09-03 2019-07-02 Steering Solutions Ip Holding Corporation Disabling controlled velocity return based on torque gradient and desired velocity error
US10464594B2 (en) 2015-09-03 2019-11-05 Steering Solutions Ip Holding Corporation Model based driver torque estimation
US10155534B2 (en) 2016-06-14 2018-12-18 Steering Solutions Ip Holding Corporation Driver intent estimation without using torque sensor signal
JP6918967B2 (ja) 2017-04-06 2021-08-11 コングスバーグ インコーポレイテッドKongsberg Inc. パワーステアリングシステムおよびその作動方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059860A (ja) * 2000-06-07 2002-02-26 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2002104220A (ja) * 2000-09-28 2002-04-10 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2002211429A (ja) * 2001-01-22 2002-07-31 Koyo Seiko Co Ltd 電動パワーステアリング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9501990A (pt) * 1994-05-11 1995-12-12 Trw Inc Aparelho e processo para controlar um sistema de direção assistida
US5473231A (en) 1994-05-11 1995-12-05 Trw Inc. Method and apparatus for controlling an electric assist steering system using an adaptive torque filter
JP2852640B2 (ja) * 1996-04-12 1999-02-03 光洋精工株式会社 電動パワーステアリング装置
JP3128531B2 (ja) * 1997-04-03 2001-01-29 本田技研工業株式会社 電動パワーステアリング装置
JP3712876B2 (ja) * 1998-12-01 2005-11-02 三菱電機株式会社 電動式パワーステアリング制御装置
JP3658681B2 (ja) * 2000-03-06 2005-06-08 光洋精工株式会社 電動パワーステアリング装置
JP2002249061A (ja) * 2001-02-22 2002-09-03 Mitsubishi Electric Corp 電動パワーステアリング装置の電流制御装置
FR2837161B1 (fr) * 2002-03-13 2004-06-11 Soc Mecanique Irigny Procede d'amortissement des vibrations parasites issues du train avant d'un vehicule automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059860A (ja) * 2000-06-07 2002-02-26 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2002104220A (ja) * 2000-09-28 2002-04-10 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2002211429A (ja) * 2001-01-22 2002-07-31 Koyo Seiko Co Ltd 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1839998A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012933A (ja) * 2008-07-03 2010-01-21 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2016022927A (ja) * 2014-07-24 2016-02-08 マツダ株式会社 電動パワーステアリングの制御装置

Also Published As

Publication number Publication date
JP2006137341A (ja) 2006-06-01
EP1839998A1 (en) 2007-10-03
US7684912B2 (en) 2010-03-23
EP1839998A4 (en) 2010-06-09
EP1839998B1 (en) 2011-11-02
JP4525306B2 (ja) 2010-08-18
US20090143938A1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
WO2006051894A1 (ja) 電動パワーステアリング装置
JP4767315B2 (ja) 電動パワーステアリング制御装置
EP2221235B1 (en) Electric power steering apparatus, control method thereof and program
EP1541445B1 (en) Control device for motorized power steering device
KR101606318B1 (ko) 전동식 조향장치 및 그 제어방법
EP3199426B1 (en) Electrically actuated power steering device
JPWO2014162769A1 (ja) 電動パワーステアリング装置
JP4776656B2 (ja) 電動パワーステアリング制御装置
JP4356456B2 (ja) 電動パワーステアリング装置の制御装置
JP4103747B2 (ja) 電動パワーステアリング装置
JP4849065B2 (ja) 電動パワーステアリング装置の制御装置
JP2009051278A (ja) 電動パワーステアリング装置の制御装置
JPH08175406A (ja) 電動パワーステアリング装置の制御装置
JP3036197B2 (ja) 電動式パワーステアリング装置
JP2006240479A (ja) 電動パワーステアリング装置
JP5017974B2 (ja) 電動パワーステアリング装置の制御装置
JP6760113B2 (ja) 電動パワーステアリング装置
JPH048190A (ja) 直流モータの回転速度,加速度検出装置
JP5265410B2 (ja) 電動パワーステアリング装置とその制御方法およびプログラム
JPH08108857A (ja) 電動パワーステアリング装置の制御装置
JP2004291815A (ja) 電動パワーステアリング装置
JP3922010B2 (ja) 電動パワーステアリング装置の制御装置
JP5040169B2 (ja) 電動パワーステアリング装置
JP2007237937A (ja) 車両用操舵制御装置
JPWO2018230609A1 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11719262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005806267

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005806267

Country of ref document: EP