WO2007116881A1 - 排気ガス触媒およびそれを用いた排気ガス処理装置 - Google Patents

排気ガス触媒およびそれを用いた排気ガス処理装置 Download PDF

Info

Publication number
WO2007116881A1
WO2007116881A1 PCT/JP2007/057453 JP2007057453W WO2007116881A1 WO 2007116881 A1 WO2007116881 A1 WO 2007116881A1 JP 2007057453 W JP2007057453 W JP 2007057453W WO 2007116881 A1 WO2007116881 A1 WO 2007116881A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
layer
gas catalyst
layers
Prior art date
Application number
PCT/JP2007/057453
Other languages
English (en)
French (fr)
Inventor
Jin Cho
Tomotaka Hirota
Kenji Tanikawa
Original Assignee
Johnson Matthey Japan Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Japan Incorporated filed Critical Johnson Matthey Japan Incorporated
Priority to CN2007800118247A priority Critical patent/CN101415491B/zh
Priority to BRPI0709934A priority patent/BRPI0709934B1/pt
Priority to US12/295,811 priority patent/US8999252B2/en
Priority to EP07740889A priority patent/EP2050495A4/en
Publication of WO2007116881A1 publication Critical patent/WO2007116881A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9027More than three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function

Definitions

  • the present invention relates to an exhaust gas catalyst in which a plurality of layers are formed on a carrier.
  • exhaust gas catalysts for internal combustion engines include the following. Three-way catalyst that treats hydrocarbons, carbon monoxide, and nitrogen oxides (NOx) in exhaust gas simultaneously; Oxidation catalyst that treats hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas simultaneously NOx occlusion reduction type catalyst that stores NOx in exhaust gas when the air-fuel ratio is lean, and reduces the NOx by switching the air-fuel ratio to the stoichiometric air-fuel ratio or rich state before the NOx becomes saturated; and Examples include NOx selective reduction type catalysts that reduce NOx in exhaust gas with a reducing agent.
  • Three-way catalysts, oxidation catalysts, NOx occlusion reduction type catalysts and NOx selective reduction type catalysts are prepared by applying a slurry of these catalyst components to a support such as a ceramic honeycomb shape. Manufactured.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-191988 (Patent Document 1) and Japanese Patent Laid-Open No. 2002-253968 (Patent Document 2), a porous structure provided with pores having specific pore diameters is disclosed.
  • a NOx occlusion reduction type catalyst has been proposed in which a precious metal and a NOx occlusion agent are supported on the resulting coating layer, thereby improving the gas diffusibility of the exhaust gas and improving the NOx purification efficiency.
  • exhaust gas catalysts there is still a demand for improving the exhaust gas treatment efficiency by increasing the gas diffusibility of the exhaust gas in the catalyst component layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-191988
  • Patent Document 2 JP-A-2002-253968
  • the present inventors have found a configuration of an exhaust gas catalyst that improves the treatment of exhaust gas.
  • a catalyst formed of a plurality of layers at least one layer of the plurality of layers has a void having a specific minor axis and a major axis, and comprises a catalyst component having heat resistance.
  • the knowledge that the treatment of exhaust gas can be improved was obtained. Therefore, the present invention is based on powerful knowledge. Therefore, the present invention provides an exhaust gas catalyst capable of improving the exhaust gas treatment by improving the gas diffusibility of the exhaust gas.
  • the exhaust gas catalyst according to the present invention is an exhaust gas catalyst comprising at least a carrier and a plurality of layers formed on the carrier,
  • At least one of the plurality of layers has voids in the layer, at least one of the plurality of layers has voids in the layer, and a noble metal as a catalyst component, It contains alumina and one or more complex oxides mainly composed of one or two or more rare earth elements excluding ceria, zirconium, and ceria.
  • FIG. 1 (A) to (E) are schematic views of an exhaust gas catalyst according to the present invention.
  • FIG. 2 is a schematic view of an apparatus for treating exhaust gas according to the present invention.
  • the exhaust gas catalyst according to the present invention is configured such that at least one of a plurality of layers has voids in the layers.
  • the present invention is characterized in that at least one of the plurality of layers contains a catalyst component and has voids in the layer.
  • the “void” in the layer means that there is a space in the layer, and specifically includes pores, pores, tunnel-like (cylinder, prism) elongated pores, and the like. It is done. [ooii] l. mm
  • FIGS. I (A) to (E) show cross-sectional views of one embodiment of the exhaust gas catalyst according to the present invention.
  • FIG. 1 (A) shows an exhaust gas catalyst in which a first layer 2 is formed on a carrier 1 and a second layer 3 having pores 31 is formed thereon.
  • FIG. (B) shows an exhaust gas catalyst in which a first layer 2 having a through-passage 22 is formed on a carrier 1 in a convex shape and a second layer 3 having a hole 31 is formed thereon. It is a thing.
  • FIG. (C) shows an exhaust gas catalyst in which a first layer 2 having a through passage 22 is formed on a carrier 1 in the shape of a sea island, and a second layer 3 having pores 31 is formed thereon.
  • the first layer 2 having the holes 21 and the through passages 22 on the carrier 1 is formed in a concave-convex shape and a sea island shape, and the second layer having the holes 31 and the through passages 32 thereon.
  • the exhaust gas catalyst in which the layer 3 is formed is shown.
  • FIG. (E) shows an exhaust gas catalyst in which a first layer 2 having pores 21 is formed on a support 1 in an irregular shape and a second layer 3 having pores 31 is formed thereon. It is.
  • This exhaust gas catalyst has a portion where the first layer 2 is not partially covered by the second layer 3 as indicated by reference numeral 4 in FIG. As shown in Fig. 1 (A) to (E), the exhaust gas catalyst is such that the first layer 2 and the second layer 3 are adjacent to each other, and voids (21 Or 31) or through passage (22 or 32). The first layer 2 and the second layer 3 may have the same or different average porosity.
  • Such an exhaust gas catalyst improves the gas diffusibility of the exhaust gas, and increases the contact area of the exhaust gas, so that the exhaust gas can be treated effectively.
  • first layer 2 and the second layer 3 contain a catalyst component.
  • the holes or through paths in the first layer 2 and the second layer 3 are examples of voids in the respective layers, but the present invention is not limited to these shapes.
  • the average diameter of the voids is 0.2 111 or more and 500 111 or less, preferably the lower limit is 0.5 xm or more and the upper limit is 300 zm or less.
  • the “average diameter” means a value obtained by dividing four times the cross-sectional area by the total perimeter of the cross section with respect to the maximum cross-sectional area of the void.
  • the void when a void exists in at least one layer of the plurality of layers, the void is present.
  • the average porosity of these voids is 5% or more and 80% or less, preferably the lower limit is 10% or more and the upper limit is 60% or less.
  • adjacent layers in the plurality of layers may have the same or different average porosity.
  • void means a portion that exists in a plurality of layers itself, and does not include a void such as a substrate on which the plurality of layers are supported.
  • the shape of the formed plurality of layers may be any shape, but is preferably formed in an uneven shape. According to another preferred embodiment of the present invention, it is preferable that at least one of the plurality of layers is formed in a sea island shape on the carrier. These shapes may be physically formed when a plurality of layers are formed on the carrier, and are preferably formed by appropriately adjusting the shape and amount of the molding agent.
  • each layer in the plurality of layers is 1 am or more and 300 ⁇ m or less, preferably the lower limit is 2 ⁇ m or more and the upper limit is 280 am or less, more preferably the lower limit is 5 ⁇ m or more.
  • the upper limit is 250 ⁇ or less.
  • a slurry is prepared by adding a porous structure powder, a catalyst component (when forming a catalyst layer) and a forming agent, if necessary, to a solvent (for example, water) and stirring.
  • This slurry is attached to a carrier and fired to form a single layer on the carrier.
  • it adheres to one layer in which another slurry is formed and is fired, and another layer is formed on this one layer by the above procedure.
  • the exhaust gas catalyst according to the present invention is prepared.
  • the molding agent is preferably one that burns during firing or drying and does not leave its chemical characteristics in the exhaust gas catalyst.
  • the molding agent preferably has a form such as a thermally decomposable or combustible sphere or cylinder.
  • foaming agents include foaming agents, surfactants, foaming synthetic resins, activated carbon, graphite powder, pulp powder, organic fibers, plastic fibers and the like.
  • foaming agents include La (CO), A1 (CO), Ce (CO)
  • the surfactant include anionic surfactants such as sulfonic acid type and carboxylic acid type, cationic surfactants such as amine type, and zwitterionic surfactants such as fatty acid ester type.
  • the foamable synthetic resin include polyurethane, polystyrene, polyethylene, polyester, and acrylic synthetic resins.
  • the voids may be formed by a device that can generate bubbles of uniform size (for example, microbubbles), not just those formed by the foaming agent.
  • the addition amount of the molding agent is 1% by weight or more and 80% by weight or less, and preferably the lower limit is 2% by weight or more and the upper limit is 70% by weight or less with respect to the total amount of the components of each layer. More preferably, the lower limit is 3% by weight or more and the upper limit is 60% by weight or less.
  • the porous structure powder include aluminum oxide, ceria-zirconia composite oxide, cerium oxide, zirconium oxide, titanium oxide, and crystalline zeolite.
  • the catalyst component can be appropriately selected according to the component in the exhaust gas.
  • the catalyst of the three-way catalyst Preferably it comprises ingredients.
  • Catalyst component As the catalyst component in the present invention, one or two or more complex oxides mainly containing one or two or more rare earth elements except alumina or ceria, dinoleconia and ceria (hereinafter simply referred to as "complex oxide”) And “composite oxide”.
  • the composite oxide includes one kind or two or more kinds.
  • the specific surface area of at least one complex oxide of one or more complex oxides is 40 m 2 / g or more at a temperature of 1000 ° C. (preferably 45 m 2 / g) or more is preferable.
  • the specific surface area of the composite oxide is determined by heating in air at 1000 ° C for 2 hours using an electric furnace, and then measuring the specific surface area of the sample by the nitrogen adsorption method. Can be obtained. In the present invention, this specific surface area can be used as a heat resistance standard.
  • the structure of the composite oxide is preferably one that is stable in either a single crystal system of tetragonal crystal or cubic crystal.
  • the structure of complex oxides varies depending on the ceria content. Specifically, complex oxides with high ceria content have a cubic structure, and complex oxides with low ceria content have a tetragonal structure. It is said that.
  • a single crystal system particularly a complex oxide that stably maintains the single crystal system after a heat resistance test (for example, the above-described test) is preferable.
  • the addition amount of the composite oxide is 5% by weight or more and 95% by weight or less with respect to the total weight of the exhaust gas catalyst, preferably the lower limit is 10% by weight or more and the upper limit is 90% by weight or less. More preferably, the lower limit is 15% by weight or more and the upper limit is 85% by weight or less. Further, according to a preferred aspect of the present invention, the composition of the composite oxide may be the same or different in each layer.
  • the constituent weight ratio of alumina as the catalyst component to the composite oxide is about 1: 9 or more and 9: 1 or less, preferably 2: 8 or more and 8: It is preferably about 2 or less.
  • the noble metal one or more metals belonging to the noble metal group can be used.
  • the metal include platinum, palladium, and rhodium, preferably those selected from the group consisting of platinum, palladium, rhodium, and mixtures thereof.
  • the amount of noble metal supported is 0.001 to 10.4% by weight with respect to the total weight of the exhaust gas catalyst, preferably the lower limit is 0.005% by weight. % And the upper limit is 9.2% by weight or less, more preferably the lower limit is 0.01% by weight or more and the upper limit is 8.0% by weight or less.
  • the noble metal is supported on a composite oxide mainly composed of one or two or more rare earth elements excluding alumina or ceria, zirconia and ceria. It is preferable that
  • rare earth elements include, except for ceria, scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), yu Mouth Pium (Eu), Gadolinium (Gd), Terbium (Td), Dysprosium (D y), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu) and these One kind or two or more kinds selected from a mixture of these are mentioned, and one or more kinds selected from the group consisting of lanthanum, praseodymium, neodymium, and yttrium are preferably used.
  • the addition amount of the rare earth element is from 0.10% by weight to 48% by weight with respect to the total weight of the exhaust gas catalyst, preferably the lower limit is 0.20% by weight and the upper limit is 45% by weight or less. More preferably, the lower limit is 0.30% by weight or more and the upper limit is 43% by weight or less.
  • the catalyst component further includes one or more selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and mixtures thereof.
  • alkali metal are selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), and mixtures thereof. Things.
  • alkaline earth metals include those selected from the group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and mixtures thereof. Can be mentioned.
  • transition metals include titanium (Ti), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), iron (Fe), ruthenium (Ru), iridium (Ir), nickel (Ni), copper (Cu), silver (Ag), gold (Au), and a mixture thereof.
  • the addition amount of alkali metal, alkaline earth metal, transition metal and a mixture thereof is 0.10 wt% or more and 28.9 wt% or less with respect to the total weight of the exhaust gas catalyst, preferably the lower limit. Is 0.19% by weight or more and the upper limit is 23.1% by weight or less, more preferably the lower limit is 0.29% by weight or more and the upper limit is 17.4% by weight or less. [0030] Carrier
  • the carrier include a pellet type shape (granular shape) made of alumina, or a monolith type shape (knob two-cam type) made of metal such as cordierite ceramics or stainless steel.
  • a monolithic shape having excellent heat resistance, thermal shock resistance, and mechanical strength is preferable.
  • an exhaust gas treatment device including the exhaust gas catalyst according to the present invention.
  • the contents of the exhaust gas treatment apparatus according to the present invention will be described with reference to FIG.
  • FIG. 2 shows a schematic view of an exhaust gas treatment apparatus equipped with an exhaust gas catalyst according to the present invention.
  • An exhaust gas treatment device 50 according to the present invention is configured such that an exhaust gas catalyst 51 according to the present invention is provided in a device body provided with an exhaust gas inlet 52 and an exhaust gas outlet 53. The exhaust gas flows into the inlet 52, and the exhaust gas is processed in the exhaust gas catalyst 51 according to the present invention.
  • exhaust gas from the internal combustion engine flows into the exhaust gas catalyst 51 (three-way catalyst) of the present invention from the exhaust gas inlet 52, and in the exhaust gas catalyst 51, exhaust gas is exhausted. At least one of hydrocarbon (HC), carbon monoxide, and nitrogen oxide in the gas is oxidized or reduced, and the treated exhaust gas is discharged as carbon dioxide, water, or nitrogen gas through the outlet 53.
  • the exhaust gas device is preferably one in which one or more exhaust gas catalysts according to the present invention are arranged. When a plurality of exhaust gas catalysts are arranged, the catalyst components of the exhaust gas catalyst may be the same or different.
  • the plurality of layers containing the catalyst component are composed of catalyst components having different compositions on the inlet side (52) and the outlet side (53) of the exhaust gas.
  • the ratio of the catalyst component on the inlet side and the catalyst component on the outlet side to the entire flow direction is about 1: 9 to 9: 1, preferably 2: 8 or more and 8: 2 The following are preferred.
  • the exhaust gas catalyst Z exhaust gas treatment device is used for purification of exhaust gas.
  • the exhaust gas catalyst and the exhaust gas processing apparatus are exhaust systems (exhaust gas exhaust side) of internal combustion engines, in particular, spark ignition engines (eg, gasoline engines), compression ignition engines (eg, diesel engines). Used for. These engines may be engines that adjust the air-fuel ratio and burn fuel, and preferred examples thereof include lean burn engines, direct-injection engines, and preferably engines that combine these (that is, Direct injection type lean burn engine).
  • the direct injection engine is an engine that employs a fuel supply system that can increase the compression ratio, improve the combustion efficiency, and reduce the exhaust gas. For this reason, when combined with a lean burn engine, it is possible to further improve combustion efficiency and reduce exhaust gas.
  • the exhaust gas catalyst and the exhaust gas treatment device according to the present invention are used for an exhaust system of an internal combustion engine mounted on a transporter, a machine, or the like.
  • transporters and machines include transporters, and specific examples of machines such as automobiles, buses, trucks, dump trucks, airways, automobiles, motorbikes, ships, tankers, motor boats, aircraft, etc.
  • Agricultural and forestry machinery such as cultivators, tractors, combine harvesters, wood saws, timber transporters; fisheries and fishery machinery such as fishing boats; civil engineering machinery such as tank trucks, cranes, squeezers, and excavators; generators, etc.
  • the exhaust gas catalyst according to the present invention can be installed as a start catalyst, an under floor, or a manifold converter.
  • y-Al 2 O powder 20 parts by weight, Ce using neodymium and lanthanum as rare earth elements
  • ⁇ -A1 soot powder 10 parts by weight, ceria-zirconia containing neodymium as a rare earth element
  • This exhaust gas catalyst had a Pt (platinum) and Rh (rhodium) loading of 0.24 g and a Pd (palladium) loading of 1.3 g per liter of honeycomb substrate.
  • the composite oxide used in the first layer is surface area force S48m 2 Zg after heat treatment at 1000 ° C for 2 hours in air, and the surface area of the composite oxide used in the second layer is 46m 2 Zg. there were.
  • the first and second layers are made of ceria dinoleconia composite oxide that does not contain rare earth elements.
  • the supported amount of Pt (platinum) and Rh (rhodium) per liter of honeycomb substrate is 0.1 lg.
  • An exhaust gas catalyst was obtained in the same manner as in Example 1 except that the amount of (palladium) supported was 1.6 g.
  • the composite oxide used in the first layer has a surface area of 22 m2 / g after heat treatment at 1000 ° C for 2 hours in air, and the surface area of the composite oxide used in the second layer is 22 m 2 / g. Met
  • Example 1 In a test apparatus (Horiba Seisakusho) having an exhaust gas inlet / outlet, a catalyst of 25.4 mm in diameter and 81.2 mm in length cut out from the catalyst of Example 1 and Comparative Example 1 was placed. At each gas temperature (900 ° C, 1000 ° C, 1100 ° C), the rich composition gas and lean composition gas shown in Table 1 are alternately flown from the inlet of this equipment every 3 minutes for 20 hours. Heat treatment was performed. After that, the rich composition gas and lean composition gas shown in Table 2 were introduced at 1 Hz from the inlet of this device, respectively, and then the C0 and NOx purification rates were measured. The gas temperature is measured from 100 ° C to 500 ° C. Table 3 shows the CO, N0x purification rate (%) at 400 ° C when the temperature was raised to C at 25 ° CZmin. (%) In Table 1 and Table 2 means volume%. The purification rate is calculated according to the following formula. Set.
  • ⁇ -Al ⁇ powder 14 parts by weight, ceria-zirconia using lanthanum as a rare earth element
  • ⁇ -A1 soot powder 8 parts by weight, ceria-dioxide containing neodymium and lanthanum as rare earth elements
  • This exhaust gas catalyst has a supported amount of Pt (platinum) of 0.52 g, a supported amount of Pd (palladium) of 2.42 g and a supported amount of Rh (rhodium) per liter of honeycomb substrate. It was 35g.
  • the composite oxide used in the first layer has a surface area of 44m 2 Zg after heat treatment at 1000 ° C for 2 hours in air, and the composite oxide used in the second layer has a surface area of 48m 2 / g. suddenly.
  • An exhaust gas catalyst was obtained in the same manner as in Example 2 except that the catalyst was formed using a ceria-zircoua composite oxide containing no rare earth element in the first layer.
  • the composite oxide used for the first layer had a surface area of 22 m 2 / g after heat treatment at 1000 ° C for 2 hours in air.
  • Each of the exhaust gas purification catalysts obtained in Example 2 and Comparative Example 2 was stored in a catalyst storage can, installed in the exhaust system of a gasoline engine with a displacement of 4000 CC, and allowed to stand for 150 hours at a catalyst bed temperature of 950 ° C. .
  • each catalyst was stored in a cylinder with a diameter of 15 cm and a length of 40 cm, placed on a 2.4 L engine (gasoline) bench, burned with regular gasoline fuel, and a light-off test was conducted.
  • the temperature when the purification rate of HC, CO, Nx reaches 50% when the temperature of the gas entering the catalyst is 15C / min from 100C to 400C at a constant AZF 14.35.
  • T50 (° C) was measured.
  • a trade name “MEXA9500” manufactured by Horiba, Ltd.
  • the evaluation results are as shown in Table 4 below. The smaller the value, the higher the exhaust gas purification capacity. [Table 4]
  • a cordierite honeycomb substrate (capacity 635 cc, 900 cells / in 2 : manufactured by Coyung Co., Ltd.), apply the above slurry, blow off excess slurry, and then in the atmosphere
  • the first layer was laminated by baking at 500 ° C for 1 hour.
  • This exhaust gas catalyst had a supported amount of Pd (palladium) of 0.83 g and a supported amount of Rh (rhodium) of 0.17 g per liter of the honeycomb substrate.
  • the composite oxide used in the first layer has a surface area of 22 m 2 / g after heat treatment at 1000 ° C for 2 hours in air, and the surface area of the composite oxide used in the second layer is 43 m 2 / g. Met.
  • Exhaust gas is the same as in Example 3 except that the first layer and the second layer are formed without adding the molding agent. A catalyst was obtained.
  • Each of the exhaust gas purification catalysts obtained in Example 3 and Comparative Example 3 was stored in a catalyst storage can, installed in the exhaust system of a gasoline engine with a displacement of 4000 CC, and left for 100 hours at a catalyst bed temperature of 830 ° C. .
  • each catalyst was housed in a cylinder with a diameter of 15 cm and a length of 40 cm, placed on a 2.4 L engine (gasoline) bench, burned with regular gasoline fuel, and evaluated for AZF characteristics.
  • the temperature of the gas entering the catalyst was 400, 500, and 600 ° C, and the cross purification rate (maximum purification rate) (%) of HC_NOx and C0_NOx when AZF was changed was measured.
  • a trade name “MEXA9500” manufactured by Horiba, Ltd.
  • the evaluation results are as shown in Table 5 below. The larger the value, the higher the exhaust gas purification capacity.
  • the purification rate of each component of HC, CO, and NOx changes with the change of A / F.
  • the purification rate at A / F which shows the maximum purification rate of each other, was defined as the cross purification rate.
  • ⁇ -AlO powder 15 parts by weight, ceria-di containing lanthanum and yttrium as rare earth elements
  • honeycomb substrate made of cordierite (capacity 1003 cc, 400 cells / in 2 : manufactured by NGK Co., Ltd.) was prepared, the slurry was applied, and the excess slurry was blown off.
  • the first layer was laminated by baking at ° C for 1 hour.
  • the composite oxide used for the first layer has a surface area of 52 m 2 / g after heat treatment at 1000 ° C in air for 2 hours, and the surface area of the composite oxide used for the second layer is 43 m 2 / g. Met.
  • ⁇ -AlO powder 15 parts by weight, ceria-di containing lanthanum and yttrium as rare earth elements
  • Luconia complex oxide 15 parts by weight of Luconia complex oxide, 5 parts by weight of barium hydroxide, 50 parts by weight of water, and a palladium nitrate solution are mixed and stirred in a high-speed stirrer (manufactured by Syno Leverson) for 30 minutes in an air atmosphere.
  • a cordierite honeycomb substrate (capacity 1003cc, 400 Senole / in 2 : manufactured by NGK Co., Ltd.) was prepared, the slurry was applied, and excess slurry was blown off.
  • the first layer was laminated by baking at ° C for 1 hour.
  • This exhaust gas catalyst had a supported amount of Pd (palladium) of 0.59 g and a supported amount of Rh (rhodium) of 0.12 g per liter of the honeycomb substrate.
  • the composite oxide used for the first layer has a surface area of 52 m 2 / g after heat treatment at 1000 ° C in air for 2 hours, and the surface area of the composite oxide used for the second layer is 43 m 2 / g. Met.
  • Exhaust gas catalysts were obtained in the same manner as in Examples 4 and 5 except that the first layer and the second layer were formed without adding the molding agent.
  • Example 4 Each of the exhaust gas purifying catalysts obtained in Example 4, Example 5 and Comparative Example 4 was stored in a catalyst storage can, installed in the exhaust system of a 4000 CC gasoline engine, and at a catalyst bed temperature of 950 ° C, 96 Left for hours.
  • each catalyst is stored in a cylindrical body with a diameter of 11.6 cm and a length of 21.0 cm, and installed on a 2.4 L engine (gasoline) bench to burn regular gasoline fuel, and A / F characteristics evaluation Carried out.
  • the temperature of each gas entering the catalyst was 500C, 600C, and 700C, and the HC, C0, and NOx purification rates (%) when A / F was changed were measured.
  • the product name “MEXA9500J manufactured by HORIBA, Ltd. was used as the evaluation device.
  • the evaluation results are as shown in Table 6 below, and the larger the value, the higher the exhaust gas purification performance.
  • the purification rate of the components was calculated according to the following formula.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

明 細 書
排気ガス触媒およびそれを用いた排気ガス処理装置
技術分野
[0001] 本発明は、担体に複数層を形成させた排気ガス触媒に関する。
背景技術
[0002] 内燃機関、とりわけ自動車エンジン用の排気ガス触媒の具体例としては以下のもの が挙げられる。排気ガス中の炭化水素と一酸化炭素と窒素酸化物 (NOx)とを同時 に処理する三元触媒;排気ガス中の炭化水素 (HC)と一酸化炭素 (CO)とを同時に 処理する酸化触媒;排気ガス中の NOxを空燃比がリーン状態において吸蔵し、この NOxが飽和状態になる前に空燃比を理論空燃比またはリッチ状態に切り替えること により NOxを還元処理する NOx吸蔵還元型触媒;および排気ガス中の NOxを還元 剤により還元処理する NOx選択的還元型触媒等が挙げられる。
[0003] 三元触媒、酸化触媒、 NOx吸蔵還元型触媒および NOx選択的還元型触媒は、こ れらの触媒成分をスラリーとしたものをセラミック製ハニカム形状等の担体に塗布し焼 成して製造される。
[0004] しかし、従来の排気ガス触媒は触媒成分が担体に均一に形成されたものが殆どで あることから、排気ガスが排気ガス触媒に流入した場合、排気ガスのガス拡散速度が 遅ぐその結果排気ガスの処理が十分に行われないことがしばしば見受けられた。ま た、排気ガス温度の上昇にともなレ、、排気ガス触媒に要求される耐熱性が高まってい る。しかし、従来の複合酸化物では耐熱性が不十分で、熱処理後において触媒性能 が十分維持されないことがしばしば見受けられた。
[0005] これに対して、特開平 2002— 191988号公報(特許文献 1)および特開平 2002— 253968号公報 (特許文献 2)では、特定の孔径を有する細孔を設けた多孔質構造 体からなるコート層に貴金属と NOx吸蔵剤とを担持させることにより、排気ガスのガス 拡散性を高めて、 NOxの浄化効率を向上させた NOx吸蔵還元型触媒が提案されて いる。し力 ながら、今なお、排気ガス触媒にあっては、触媒成分の層中における排 気ガスのガス拡散性を高めて排気ガスの処理効率を向上させることが要求されてい る。
[0006] 特許文献 1 :特開平 2002— 191988号公報
特許文献 2:特開平 2002— 253968号公報
発明の概要
[0007] 本発明者等は、本発明時に、排気ガスの処理を向上させる排気ガス触媒の構成を 見出した。とりわけ、複数層から形成される触媒にあって、複数層の少なくとも一層が 特定の短径と長径とを示す空隙を有するものであり、かつ、耐熱性を有する触媒成分 を含んでなることにより、排気ガスの処理を向上させることができるとの知見を得た。 従って、本発明は力かる知見に基づくものである。よって、本発明は、排気ガスのガス 拡散性を高めて排気ガスの処理を向上させることができる、排気ガス触媒を提供する
[0008] 従って、本発明による排気ガス触媒は、担体と、該担体上に形成された複数層とを 少なくとも備えてなる排気ガス触媒であって、
前記複数層の少なくとも一つの層が該層中に空隙を有するものであり、 前記複数層の少なくとも一つの層が、該層中に空隙を有してなり、かつ、触媒成分 として、貴金属と、アルミナと、並びにセリア、ジルコユア及びセリアを除く一種又は二 種以上の希土類元素を主成分とする一種又は二種以上の複合酸化物とを含んでな るものである。
図面の簡単な説明
[0009] [図 1]図 1 (A)〜(E)は、本願発明による排気ガス触媒の概略図を示す。
[図 2]図 2は、本願発明による排気ガスを処理する装置の概略図を示す。
発明の具体的説明
[0010] 排気ガス触媒
本発明による排気ガス触媒は、複数層の少なくとも一つの層が該層中に空隙を有 するものとして構成されてなる。本発明にあっては、複数層の少なくとも一つの層が触 媒成分を含んでなり、かつ、該層中に空隙を有してなることを特徴とする。ここで、層 中の「空隙」とは、層中に空間が存在することを意味し、具体的には、空孔、細孔、ト ンネル状(円柱、角柱)の細長い細孔等が挙げられる。 [ooii] l. mm
本発明による排気ガス触媒の態様を、図 1を用いて説明する。図 I (A)〜(E)は本 発明による排気ガス触媒の一態様の断面図を示すものである。図 1 (A)は担体 1の 上に第一層 2が形成され、その上に空孔 31を有する第二層 3が形成されてなる排気 ガス触媒を示したものである。図(B)は担体 1の上に通貫路 22を有する第一層 2が凹 凸状に形成され、その上に空孔 31を有する第二層 3が形成されてなる排気ガス触媒 を示したものである。図(C)は担体 1の上に通貫路 22を有する第一層 2が海島状に 形成され、その上に空孔 31を有する第二層 3が形成されてなる排気ガス触媒を示し たものである。図(D)は担体 1の上に空孔 21および通貫路 22を有する第一層 2が凹 凸状および海島状に形成され、その上に空孔 31および通貫路 32を有する第二層 3 が形成されてなる排気ガス触媒を示したものである。図(E)は担体 1の上に空孔 21を 有する第一層 2が凹凸状に形成され、その上に空孔 31を有する第二層 3が形成され てなる排気ガス触媒を示したものである。この排気ガス触媒は、図 1 (E)の符号 4に示 す通り、第一層 2が第二層 3により一部覆わない部分が存在しているものである。 図 1 (A)〜(E)で示される通り、排気ガス触媒は、第一層 2と第二層 3とが相互に隣 り合うものであり、これらの層中に空隙として空孔(21または 31)または通貫路(22ま たは 32)を有する。そして、第一層 2と第二層 3とは同一または異なる平均空隙率を 有するものであってよい。この様な排気ガス触媒は、排気ガスのガス拡散性が向上し 、また排気ガスの接触面積が拡大するため、排気ガスを有効に処理することが可能と なる。
上記において、第一層 2と第二層 3とは少なくとも一方または両方が触媒成分を含 んでなるものである。また、第一層 2と第二層 3における空孔または貫通路は、各々の 層における空隙の一例であるが、本発明はこれらの形状に限定されるものではない。
[0012] 2.空隙の平均释
本発明にあっては、空隙の平均径が 0. 2 111以上500 111以下でぁり、好ましくは 下限が 0. 5 x m以上であり上限が 300 z m以下である。本発明において、「平均径」 とは空隙の最大断面積に対して、断面積の 4倍を断面の全周長で割ったものをいう。 本発明にあっては、複数層における少なくとも一つの層に空隙が存在する場合、そ の空隙の平均空隙率は 5%以上 80%以下であり、好ましくは下限が 10%以上であり 上限が 60%以下である。本発明の好ましい態様によれば、複数層における相互に隣 り合う層が、同一または異なる平均空隙率を有するものであってよい。本項目におい て、「空隙」とは、複数層自体に存在するものを意味し、複数層が担持される基材等 の空隙を含むものではない。
[0013] 本発明の好ましい態様によれば、形成される複数層の形状はいずれのものであつ てよいが、好ましくは凹凸状に形成されることが好ましい。また、本発明の別の好まし い態様によれば、複数層の少なくとも一つの層が担体に海島状に形成されてなること が好ましい。これらの形状は担体に複数層を形成させる際に物理的に形成されてよく 、成形剤の形状、量を適宜調整することにより形成されることが好ましい。
[0014] 複数層における各層の厚さは、 1 a m以上 300 μ m以下であり、好ましくは下限が 2 μ m以上であり上限が 280 a m以下であり、より好ましくは下限が 5 μ m以上であり上 限が 250 μ ΐη以下である。
[0015] 複数層の形成
複数層を担体上に形成させる手段の具体例としては以下のようなものが挙げられる 。溶媒 (例えば水)に、多孔質構造体粉末と、必要に応じて触媒成分 (触媒層を形成 する場合)と、成形剤とを添加し撹拌しスラリーを調製する。このスラリーを担体に付 着し焼成し、担体に一の層を形成させる。次に、他のスラリーを形成させた一つの層 に付着し焼成し、この一の層に上記手順により別の層を形成させる。これを繰り返す ことにより、本発明による排気ガス触媒が調製される。
[0016] 成形剤は焼成時または乾燥時に燃焼しその化学的特性を排気ガス触媒に残存さ せなレ、ものが好ましい。成形剤は熱分解性または可燃性の球体、円柱体等の形態を 有するものが好ましい。このような具体例としては、発泡剤、界面活性剤、発泡性合 成樹脂、活性炭、グラフアイト粉末、パルプ粉末、有機物繊維、プラスチックファイバ 一等が挙げられる。発泡剤の具体例としては、 La (CO ) 、A1 (CO) 、 Ce (CO)
2 3 3 2 3 2 3 等が挙げられ、触媒成分と同様な元素を含んでなるものが好ましい。界面活性剤の 具体例としては、スルホン酸型、カルボン酸型等のァニオン性界面活性剤、アミン型 等のカチオン性界面活性剤、脂肪酸エステル型等の両性イオン性界面活性剤等が 挙げられる。発泡性合成樹脂の具体例としては、ポリウレタン系、ポリスチレン系、ポリ エチレン系、ポリエステル系、アクリル系等の合成樹脂が挙げられる。また、空隙は発 泡剤のみによって形成されるものではなぐ均一な大きさの気泡(例えば、マイクロバ ブル)を発生できる装置によって形成されてもょレ、。
[0017] 成形剤の添加量は、複数層の各層の成分全量に対して、 1重量%以上 80重量% 以下であり、好ましくは下限が 2重量%以上であり上限が 70重量%以下であり、より 好ましくは下限が 3重量%以上であり上限が 60重量%以下である。
[0018] 多孔質構造体粉末の具体例としては、酸化アルミニウム、セリア—ジルコニァ複合 酸化物、酸化セリウム、酸化ジルコニウム、酸化チタン、結晶性ゼオライト等が挙げら れる。複数層の少なくとも一の層が触媒成分を含んでなる場合、触媒成分は排気ガ ス中の成分に応じて適宜選択することができるが、本発明の好ましい態様によれば、 三元触媒の触媒成分を含んでなることが好ましい。
[0019] 3.触媒成分 本発明における触媒成分として、アルミナまたはセリア、ジノレコニァ及びセリアを除 く一種又は二種以上の希土類元素を主成分とする一種又は二種以上の複合酸化物 (以下、単に「複合酸化物」とレ、うことがある)を含んでなる。
[0020] 本発明にあっては、複合酸化物は、一種又は二種以上のものを含んでなるもので ある。本発明の好ましい態様によれば、一種又は二種以上の複合酸化物の少なくと も一種の複合酸化物の比表面積が 1000°Cの温度下で 40m2/g以上 (好ましくは、 45m2/g以上)を維持するものが好ましい。本発明にあっては、複合酸化物の比表 面積は、電気炉を用いて、空気中で 1000°Cの温度下で 2時間加熱放置し、その後、 試料の比表面積を窒素吸着法で測定して求めることができる。本発明にあっては、こ の比表面積を耐熱性基準として利用することができる。
[0021] また、複合酸化物の構造は、正方晶又は立方晶のいずれか一方の単一晶系にお レ、て安定なものが好ましくは利用される。一般に、セリア含有量の大小により、複合酸 化物の構造が異なると云われている。具体的には、セリア含有量が多い複合酸化物 は立方晶系構造を有し、セリア含有量が少ない複合酸化物は正方晶系構造を有す ると云われている。本発明にあっては、単一晶系、特に、耐熱性試験 (例えば、上記 した試験)後において単一晶系を安定して維持する複合酸化物が好ましい。
[0022] 本発明の好ましい態様によれば、前記複合酸化物において、前記セリウム(Ce)と、 前記ジノレコニゥム (Zr)と、前記希土類元素 (R)と、酸素原子(〇)との構成原子比率 が [ 1 _ (X + y) ]: X: y: 2である場合に、下記一般式 (I)乃至 (III):
0 (好ましく fま 0. 02)≤[1 - (x + y) ] < 0. 95 (好ましく fま 0. 85
(I)
0. 05 (好ましくは) 0. 13≤χ< 1. 0 (好ましくは 0. 96) (II)
0 (好ましくは) 0. 02<y≤0. 5 (好ましくは 0. 2) (III)
の全てを満たすものが利用される。
[0023] 複合酸化物の添加量は、排気ガス触媒の全重量に対して、 5重量%以上 95重量 %以下であり、好ましくは下限が 10重量%以上であり上限が 90重量%以下であり、 より好ましくは下限が 15重量%以上であり上限が 85重量%以下である。また、本発 明の好ましい態様によれば、複合酸化物の組成は、各層において同一又は異なるも のであってよい。
[0024] 本発明の好ましい態様によれば、触媒成分としての、アルミナと、複合酸化物との 構成重量比率が、 1: 9以上 9: 1以下程度であり、好ましくは 2: 8以上 8: 2以下程度で あるものが好ましい。
[0025] 眚金属
貴金属としては、貴金属群に属する金属の一種又は二種以上のものが使用できる 。金属の具体例としては、白金、パラジウム、ロジウムが挙げられ、好ましくは白金、パ ラジウム、ロジウムおよびこれらの混合物からなる群から選択されるものが挙げられる 。貴金属の担持量は、排気ガス触媒の全重量に対して、排気ガス触媒の全重量に対 して、 0. 001重量%以上 10. 4重量%以下であり、好ましくは下限が 0. 005重量% 以上であり上限が 9. 2重量%以下であり、より好ましくは下限が 0. 01重量%以上で あり上限が 8. 0重量%以下である。
[0026] 本発明の好ましい態様によれば、貴金属は、アルミナまたはセリア、ジルコユア及び セリアを除く一種又は二種以上の希土類元素を主成分とする複合酸化物上に担持さ れてなるのが好ましい。
[0027] 希十類元素
希土類元素の具体例としては、セリアを除いて、スカンジウム(Sc)、イットリウム (Y) 、ランタン(La)、プラセォジゥム(Pr)、ネオジゥム(Nd)、プロメチウム(Pm)、サマリゥ ム(Sm)、ユウ口ピウム(Eu)、ガドリニウム(Gd)、テルビウム(Td)、ジスプロシウム(D y)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチ ゥム (Lu)およびこれらの混合物から選択される一種又は二種以上のものが挙げられ 、ランタン、プラセォジゥム、ネオジゥム、及びイットリウムからなる群から選択される一 種又は二種以上のものが好ましくは利用される。希土類元素の添加量は、排気ガス 触媒の全重量に対して、 0. 10重量%以上 48重量%以下であり、好ましくは下限が 0 . 20重量%以上であり上限が 45重量%以下であり、より好ましくは下限が 0. 30重量 %以上であり上限が 43重量%以下である。
[0028] アルカリ金属、アルカリ十類金属、遷移金属
本発明にあっては、触媒成分として、アルカリ金属、アルカリ土類金属、遷移金属 及びこれらの混合物からなる群から選択される一種又は二種以上のものをさらに含 んでなるものが好ましい。アルカリ金属の具体例としては、リチウム(Li)、ナトリウム(N a)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、およびこれら の混合物からなる群から選択されるものが挙げられる。アルカリ土類金属の具体例と しては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、 バリウム(Ba)、およびこれらの混合物からなる群から選択されるものが挙げられる。遷 移金属の具体例としては、チタン (Ti)、バナジウム (V)、ニオブ(Nb)、タンタル (Ta) 、クロム(Cr)、モリブデン(Mo)、タングステン (W)、マンガン(Mn)、鉄(Fe)、ルテニ ゥム(Ru)、イリジウム(Ir)、ニッケル(Ni)、銅(Cu)、銀 (Ag)、金 (Au)およびこれら の混合物からなる群から選択されるものが挙げられる。
[0029] アルカリ金属、アルカリ土類金属、遷移金属及びこれらの混合物の添加量は、排気 ガス触媒の全重量に対して、 0. 10重量%以上 28. 9重量%以下であり、好ましくは 下限が 0. 19重量%以上であり上限が 23. 1重量%以下であり、より好ましくは下限 が 0. 29重量%以上であり上限が 17. 4重量%以下である。 [0030] 担体
担体の具体例としては、アルミナからなるペレット型形状 (粒状形)、またはコージェ ライトセラミックスもしくはステンレス等の金属からなるモノリス型形状 (ノヽ二カム形)のも のが挙げられる。特に、耐熱性、耐熱衝撃性、および機械的強度に優れたモノリス型 形状のものが好ましい。
[0031] 排気ガス処理装置
本発明による別の態様によれば、本発明による排気ガス触媒を備えた排気ガス処 理装置が提供される。本発明による排気ガス処理装置の内容を図 2により説明する。 図 2は本発明による排気ガス触媒を備えた排気ガス処理装置の概略図を示す。本発 明による排気ガス処理装置 50は、排気ガス流入口 52と、排気ガス流出口 53とが設 けられた装置本体に、本発明による排気ガス触媒 51が設けられてなるものである。排 気ガスが流入口 52に流入し、本発明による排気ガス触媒 51において、排気ガスが 処理される。
[0032] 本発明の好ましい態様によれば、内燃機関からの排気ガスが排気ガス流入口 52か ら本発明の排気ガス触媒 51 (三元触媒)に流入し、この排気ガス触媒 51において、 排気ガス中の炭化水素 (HC)、一酸化炭素、窒素酸化物の少なくとも一つ酸化また は還元処理され、処理された排気ガスは流出口 53を経て二酸化炭素、水、又は窒 素気体として排出される。本発明の好ましい態様によれば、排気ガス装置は、本発明 による排気ガス触媒を一又は二以上配置してなるものが好ましい。排気ガス触媒が、 複数配置されてなる場合、排気ガス触媒の触媒成分は、同一又は異なるものであつ てよい。
[0033] 本発明の好ましレ、排気ガス触媒は、触媒成分を含んでなる複数層が、排気ガスの 入口側(52)と出口側(53)でそれぞれ異なる組成の触媒成分で構成されてよレ、。こ の排気ガス触媒は、入口側の触媒成分と出口側の触媒成分が、流れ方向全体に対 して占める比率が 1: 9から 9: 1程度であり、好ましくは 2: 8以上 8: 2以下程度であるも のが好ましい。
[0034] 排気ガス触媒/排気ガス処理奘置の用凃
本発明による排気ガス触媒 Z排気ガス処理装置は、排気ガスの浄化に用いられる 。本発明による排気ガス触媒および排気ガス処理装置は、内燃機関、特に、火花点 火型エンジン(例えば、ガソリンエンジン)、圧縮着火型エンジン (例えば、ディーゼル エンジン)の排気系(排気ガスの排出側)に用いられる。また、これらのエンジンは、空 燃比を調製して燃料を燃焼するエンジンであってよぐその好ましい具体例として、リ ーンバーンエンジン、直噴型エンジン、好ましくはこれらを組み合わせたエンジン(即 ち、直噴型リーンバーンエンジン)が挙げられる。直噴型エンジンは、高圧縮比化、燃 焼効率の向上、さらには排気ガスの低減化を図ることができる燃料供給システムを採 用したエンジンである。このため、リーンバーンエンジンと組み合わせることによって、 さらに燃焼効率の向上と排気ガスの低減化を図ることが可能となる。
[0035] 本発明による排気ガス触媒および排気ガス処理装置は、運搬機、機械等に搭載さ れた内燃機関の排気系に利用される。運搬機、機械の具体例としては、運搬機、機 械の具体例としては、例えば、自動車、バス、トラック、ダンプカー、気道車、オートバ ィ、原動機付き自転車、船舶、タンカー、モーターボート、航空機などの運送機;耕耘 機、トラクター、コンバイン、チェンソー、木材運搬機などの農林産業機械;漁船等の 水産漁業機械;タンクローリー、クレーン、圧搾機、掘削機等の土木作業機械;発電 機;等が挙げられる。本発明による排気ガス触媒は、例えば、車両の排気系の場合、 スタートキヤタリスト、アンダーフロアー、マ二ホールドコンバータとして設置することが できる。
実施例
[0036] 本発明の内容を実施例によってより詳細に説明する。し力、しながら、本発明の内容 は実施例によって限定して解釈されるものではない。
[0037] 排気,ガス触媒の調製
Ml
y -Al O粉末 20重量部、希土類元素としてネオジゥムおよびランタンを用いたセ
2 3
リア-ジルコニァ複合酸化物粉末 30重量部、水酸化バリウム 5重量部、水 60重量部、 硝酸パラジウム溶液を混合した。そして、高速撹拌器 (シルバーソン社製)により、大 気雰囲気中で 30分撹拌し、触媒成分が均一に分散したスラリーを得た。次に、コー ジェライト製ハニカム基材 (容量 713cc、 600セル/ in2 :日本ガイシ (株)社製)を用 意し、上記スラリーを基材に塗布し、余分なスラリーを吹き払った後、大気中にて 500 °Cで 1時間焼成して第一層を積層させた。
γ -A1 Ο粉末 10重量部、希土類元素としてネオジゥムを含むセリア-ジルコニァ
2 3
複合酸化物粉末 10重量部、水 50重量部、硝酸白金溶液と硝酸ロジウム溶液を混合 して、上記高速撹拌器により、大気雰囲気中で 30分撹拌し、触媒成分が均一に分散 したスラリーを得た。次に、第一層が形成されたハニカム基材にこのスラリーを塗布し 、余分なスラリーを吹き払った後、大気中にて 500°Cで 1時間焼成して第二層を積層 させて、排気ガス触媒 (三元触媒)を得た。
この排気ガス触媒は、ハニカム基材 1Lあたり、 Pt (白金)と Rh (ロジウム)の担持量 が 0. 24gであり、 Pd (パラジウム)の担持量が 1. 3gであった。また、第一層に使用し た複合酸化物は空気中で 1000°C、 2時間の熱処理後の表面積力 S48m2Zgであり、 第二層に使用した複合酸化物の表面積は 46m2Zgであった。
[0038] 比較例 1
第一層、第二層に、希土類元素を含まないセリア ジノレコニァ複合酸化物を用レ、、 ハニカム基材 1Lあたり、 Pt (白金)と Rh (ロジウム)の担持量が 0. lgであり、 Pd (パラ ジゥム)の担持量が 1. 6gで形成した以外は、例 1と同様にして排気ガス触媒を得た。 また、第一層に使用した複合酸化物は空気中で 1000°C、 2時間の熱処理後の表面 積が 22m2/gであり、第二層に使用した複合酸化物の表面積は 22m2/gであった
[0039] 評価試験 1
排気ガス入出口を有する試験装置 (堀場製作所)内に、例 1および比較例 1の触媒 から、直径 25. 4mm、長さ 81. 2mmを切り出したものをそれぞれ配置した。各ガス 温度(900°C、 1000°C、 1100°C)で 3分毎に交互に、表 1に示すリッチ組成ガスとリ ーン組成ガスとをこの装置の入口部から流入させて 20時間熱処理を行った。この後 、表 2に示すリッチ組成ガスとリーン組成ガスとをこの装置の入口部から 1Hzでそれぞ れ流入させた後、 C〇、 NOxの浄化率を測定した。測定は、ガス温度を 100°Cから 5 00。Cまで 25°CZminで昇温させ、 400°Cでの CO, N〇x浄化率(%)を表 3に示した 。表 1および表 2中の(%)は体積%を意味する。また、浄化率は下記の式に従って算 定した。
浄化率(%) = { 1—(触媒通過後の各ガス濃度/触媒通過前の各ガス濃度) } X 100 [表 1]
Figure imgf000013_0001
ほ 2]
Figure imgf000013_0002
4 0 0 °Cにおける浄化率 (%)
Figure imgf000013_0003
気,ガス ^:の m
Ύ -Al Ο粉末 14重量部、希土類元素としてランタンを用いたセリア-ジルコニァ
2 3
複合酸化物粉末 24重量部、水酸化バリウム 5重量部、水 40重量部、硝酸白金溶液 、硝酸パラジウム溶液を混合した。そして、高速撹拌器 (シルバーソン社製)により、大 気雰囲気中で 30分撹拌し、触媒成分が均一に分散したスラリーを得た。次に、コー ジェライト製ハニカム基材(容量 1150cc、 600セノレ/ in2 :日本ガイシ (株)社製)を用 意し、上記スラリーを基材に塗布し、余分なスラリーを吹き払った後、大気中にて 500 °Cで 1時間焼成して第一層を積層させた。
γ -A1 Ο粉末 8重量部、希土類元素としてネオジゥムとランタンを含むセリア-ジ
2 3
ルコニァ複合酸化物粉末 24重量部、水 75重量部、硝酸ロジウム溶液を混合して、上 記高速撹拌器により、大気雰囲気中で 30分撹拌し、触媒成分が均一に分散したスラ リーを得た。次に、第一層が形成されたハニカム基材にこのスラリーを塗布し、余分な スラリーを吹き払った後、大気中にて 500°Cで 1時間焼成して第二層を積層させて、 排気ガス触媒 (三元触媒)を得た。
この排気ガス触媒は、ハニカム基材 1Lあたり、 Pt (白金)の担持量が 0. 52gであり 、 Pd (パラジウム)の担持量が 2. 42gであり、 Rh (ロジウム)の担持量が 0. 35gであつ た。また、第一層に使用した複合酸化物は空気中で 1000°C、 2時間の熱処理後の 表面積が 44m2Zgであり、第二層に使用した複合酸化物の表面積は 48m2/gであ つに。
[0041] 比較例 2
第一層に希土類元素を含まないセリア ジルコユア複合酸化物を用いて触媒を形 成した以外は、例 2と同様にして排気ガス触媒を得た。また、第一層に使用した複合 酸化物は空気中で 1000°C、 2時間の熱処理後の表面積が 22m2/gであった。
[0042] 評価試験 2
例 2および比較例 2で得た排気ガス浄化用触媒それぞれを触媒収納缶に収納し、 排気量 4000CCのガソリンエンジンの排気系に設置し、触媒床内温度 950°Cで、 15 0時間放置した。
その後、それぞれの触媒を直径 15cm、長さ 40cmの円筒体に収納し、排気量 2. 4 Lのエンジン (ガソリン)ベンチに設置し、レギュラーガソリン燃料を燃焼させ、ライトォ フ試験を実施した。 AZF= 14. 35で一定にして、触媒への入りガス温度を 100Cか ら 400Cまで 15C/minでさせたときの HC、 CO、 N〇xの浄化率が 50%に達したと きの温度 T50 (°C)を測定した。評価装置は、商品名「MEXA9500」(堀場製作所社 製)を用いた。その評価結果は下記表 4に記載した通りであり、数値が小さいほど排 気ガス浄化能が高レ、ことを示す。 [表 4]
T 5 0 (V )
Figure imgf000015_0001
3
γ -Al Ο粉末 30重量部、希土類元素を含まないセリア-ジノレコニァ複合酸化物 1
2 3
6重量部、水酸化バリウム 5重量部、水 50重量部、硝酸パラジウム溶液を混合し、成 形剤としてアクリル系樹脂〔平均径が 4 μ m程度から 7 β m程度(平均的には 5 μ m程 度)の樹脂を使用した〕を全体の 15重量%になるようにさらに混合した。そして、高速 撹拌器 (シルバーソン社製)により、大気雰囲気中で 30分撹拌し、成形剤が均一に 分散したスラリーを得た。次に、コ一ジエライト製ハニカム基材 (容量 635cc、 900セ ル/ in2 :コーユング (株)社製)を用意し、上記スラリーを塗布し、余分なスラリーを吹 き払った後、大気中にて 500°Cで 1時間焼成して第一層を積層させた。
y - Al O粉末 10重量部、添加剤としてランタンとネオジゥムを含むセリア一ジル
2 3
コニァ複合酸化物 10重量部、水 40重量部、硝酸ロジウム溶液を混合し、成形剤とし てアクリル系樹脂〔平均径が 4 μ m程度から 7 μ m程度(平均的には 5 μ m程度)の樹 脂を使用した〕を全体の 15重量%になるように混合して、上記高速撹拌器により、大 気雰囲気中で 30分撹拌し、成形剤が均一に分散したスラリーを得た。次に、第一層 が形成されたハニカム基材にこのスラリーを塗布し、余分なスラリーを吹き払った後、 大気中にて 500°Cで 1時間焼成して第二層を積層させて、排気ガス触媒(三元触媒) を得た。
この排気ガス触媒は、ハニカム基材 1Lあたり、 Pd (パラジウム)の担持量が 0. 83g であり、 Rh (ロジウム)の担持量が 0. 17gであった。また、第一層に使用した複合酸 化物は空気中で 1000°C、 2時間の熱処理後の表面積が 22m2/gであり、第二層に 使用した複合酸化物の表面積は 43m2/gであった。
比較例 3
成形剤を添加せずに第一層と第二層とを形成した以外は、例 3と同様にして排気ガ ス触媒を得た。
評価試験 3
例 3および比較例 3で得た排気ガス浄化用触媒それぞれを触媒収納缶に収納し、 排気量 4000CCのガソリンエンジンの排気系に設置し、触媒床内温度 830°Cで、 10 0時間放置した。
その後、それぞれの触媒を直径 15cm、長さ 40cmの円筒体に収納し、排気量 2. 4 Lのエンジン (ガソリン)ベンチに設置し、レギュラーガソリン燃料を燃焼させ、 AZF特 性評価を実施した。触媒への入りガス温度は 400、 500、 600°Cで、 AZFを変化さ せたときの HC_NOx、 C〇_NOxのクロス浄化率(最高浄化率)(%)を測定した。 評価装置は、商品名「MEXA9500」(堀場製作所社製)を用いた。その評価結果は 下記表 5に記載した通りであり、数値が大きいほど排気ガス浄化能が高いことを示す 。 HC、 CO、 NOxの各成分の浄化率は A/Fの変化にともなって変化する力 互い に最高浄化率を示す A/Fでの浄化率をクロス浄化率とした。
[表 5]
4 0 0 Cでの浄化率 (%)
Figure imgf000016_0001
γ -Al O粉末 15重量部、希土類元素としてランタンとイットリウムを含むセリア -ジ
2 3
ルコニァ複合酸化物 15重量部、水酸化バリウム 5重量部、水 50重量部、硝酸パラジ ゥム溶液を混合し、成形剤としてアクリル系樹脂〔平均径が 4 β m程度から 7 μ m程度 (平均的には 5 μ m程度)の樹脂を使用した〕を全体の 7重量%になるようにさらに混 合した。そして、高速撹拌器 (シルバーソン社製)により、大気雰囲気中で 30分撹拌 し、成形剤が均一に分散したスラリーを得た。次に、コージヱライト製ハニカム基材( 容量 1003cc、 400セル/ in2 :日本ガイシ (株)社製)を用意し、上記スラリーを塗布 し、余分なスラリーを吹き払った後、大気中にて 500°Cで 1時間焼成して第一層を積 層させた。
y - Al O粉末 10重量部、添加剤としてランタンとネオジゥムを含むセリア一ジル
2 3
コニァ複合酸化物 10重量部、水 45重量部、硝酸ロジウム溶液を混合し、上記高速 撹拌器により、大気雰囲気中で 30分撹拌してスラリーを得た。次に、第一層が形成さ れたハ二カム基材にこのスラリーを塗布し、余分なスラリーを吹き払った後、大気中に て 500°Cで 1時間焼成して第二層を積層させて、排気ガス触媒 (三元触媒)を得た。 この排気ガス触媒は、ハニカム基材 1Lあたり、 Pd (パラジウム)の担持量が 0. 59g であり、 Rh (ロジウム)の担持量が 0. 12gであった。また、第一層に使用した複合酸 化物は空気中で 1000°C、 2時間の熱処理後の表面積が 52m2/gであり、第二層に 使用した複合酸化物の表面積は 43m2/gであった。
5
γ -Al O粉末 15重量部、希土類元素としてランタンとイットリウムを含むセリア -ジ
2 3
ルコニァ複合酸化物 15重量部、水酸化バリウム 5重量部、水 50重量部、硝酸パラジ ゥム溶液を混合し、高速撹拌器 (シノレバーソン社製)により、大気雰囲気中で 30分撹 拌してスラリーを得た。次に、コージエライト製ハニカム基材(容量 1003cc、 400セノレ /in2 :日本ガイシ (株)社製)を用意し、上記スラリーを塗布し、余分なスラリーを吹き 払った後、大気中にて 500°Cで 1時間焼成して第一層を積層させた。
y - Al O粉末 10重量部、添加剤としてランタンとネオジゥムを含むセリア一ジル
2 3
コニァ複合酸化物 10重量部、水 45重量部、硝酸ロジウム溶液を混合し、成形剤とし てアクリル系樹脂〔平均径が 4 μ m程度から 7 μ m程度(平均的には 5 μ m程度)の樹 脂を使用した〕を全体の 6重量%になるように混合して、上記高速撹拌器により、大気 雰囲気中で 30分撹拌し、成形剤が均一に分散したスラリーを得た。次に、第一層が 形成されたハニカム基材にこのスラリーを塗布し、余分なスラリーを吹き払った後、大 気中にて 500°Cで 1時間焼成して第二層を積層させて、排気ガス触媒 (三元触媒)を 得た。
この排気ガス触媒は、ハニカム基材 1Lあたり、 Pd (パラジウム)の担持量が 0. 59g であり、 Rh (ロジウム)の担持量が 0. 12gであった。また、第一層に使用した複合酸 化物は空気中で 1000°C、 2時間の熱処理後の表面積が 52m2/gであり、第二層に 使用した複合酸化物の表面積は 43m2/gであった。
成形剤を添加せずに第一層と第二層とを形成した以外は、例 4、例 5と同様にして 排気ガス触媒を得た。
評価試験 4
例 4、例 5および比較例 4で得た排気ガス浄化用触媒それぞれを触媒収納缶に収 納し、排気量 4000CCのガソリンエンジンの排気系に設置し、触媒床内温度 950°C で、 96時間放置した。
その後、それぞれの触媒を直径 11. 6cm、長さ 21. 0cmの円筒体に収納し、排気量 2. 4Lのエンジン (ガソリン)ベンチに設置し、レギュラーガソリン燃料を燃焼させ、 A /F特性評価を実施した。触媒への各入りガス温度は 500C、 600C, 700Cで、 A/ Fを変化させたときの HC、 C〇、 NOx浄化率(%)を測定した。評価装置は、商品名「 MEXA9500J (堀場製作所社製)を用いた。その評価結果は下記表 6に記載した通 りであり、数値が大きいほど排気ガス浄化能が高いことを示す。また、各成分の浄化 率は下記の式に従って算定した。
浄化率(%) = { 1 - (触媒通過後の各ガス濃度 Z触媒通過前の各ガス濃度) } X 100 [表 6] 5 0 0 Cでの浄化率 (%)
HC-NO X CO-NOx 例 4 74. 0 76. 6 例 5 74. 0 78. 0 比較例 4 72. 0 73. 6
6 0 0 Cでの浄化率 (%)
HC-NO X CO-NO x 例 4 79. 3 79. 1 例 5 79. 0 78. 7 比較例 4 77. 4 76. 1
7 0 0 Cでの浄化率 (%)
HC-NO X CO-NO x 例 4 79. 3 80. 0 例 5 77. 5 77. 4 比較例 4 72. 0 71. 3

Claims

請求の範囲
[1] 担体と、該担体上に形成された複数層とを少なくとも備えてなる排気ガス触媒であ つて、
前記複数層の少なくとも一つの層が該層中に空隙を有するものであり、 前記複数層の少なくとも一つの層が、該層中に空隙を有してなり、かつ、触媒成分 として、貴金属と、アルミナと、並びにセリア、ジルコユア及びセリアを除く一種又は二 種以上の希土類元素を主成分とする一種又は二種以上の複合酸化物とを含んでな る、排気ガス触媒。
[2] 前記複数層の少なくとも一つの層が該層中に空隙を有する場合、前記層の平均空 隙率が 5%以上 80%以下である、請求項 1に記載の排気ガス触媒。
[3] 前記空隙の平均径が 0. 2 μ m以上 500 μ m以下である、請求項 1又は 2に記載の 排気ガス触媒。
[4] 前記複数層における相互に隣り合う層が、同一または異なる平均空隙率を有するも のである、請求項 1〜3のいずれか一項に記載の排気ガス浄化触媒。
[5] 前記複数層における最下層が、前記担体の上に凹凸状または海島状に形成され てなる、請求項 1〜4のいずれか一項に記載の排気ガス触媒。
[6] 前記一種又は二種以上の複合酸化物の少なくとも一種の比表面積が、 1000°Cの 温度下で 40m2/g以上を維持するものである、請求項:!〜 5のいずれか一項に記載 の排気ガス触媒。
[7] 前記複合酸化物の構造が、正方晶又は立方晶のいずれか一方の単一晶系におい て安定なものである、請求項 1〜6のいずれか一項に記載の排気ガス触媒。
[8] 前記複合酸化物において、前記セリウム(Ce)と、前記ジノレコニゥム (Zr)と、前記希 土類元素 (R)と、酸素原子(〇)との構成原子比率が [1 _ (x+y) ] : x:y: 2である場 合に、下記一般式 (I)乃至 (III) :
0≤[1 - (x + y) ] < 0. 95 (I)
0. 05≤χ< 1. 0 (II)
0<y≤0. 5 (III)
の全てを満たすものである、請求項 1〜7のいずれか一項に記載の排気ガス触媒。
[9] 前記アルミナと、前記複合酸化物との構成重量比率が、 1: 9以上 9: 1以下である、 請求項 1〜8のいずれか一項に記載の排気ガス触媒。
[10] 前記複合酸化物の組成が、各層において同一又は異なるものである、請求項:!〜 9 のレ、ずれか一項に記載の排気ガス触媒。
[11] 前記貴金属が、貴金属群に属する一種又は二種以上のものである、請求項:!〜 10 のレ、ずれか一項に記載の排気ガス触媒。
[12] 前記貴金属が、前記アルミナまたは前記複合酸化物上に担持されてなる、請求項
:!〜 11のレ、ずれか一項に記載の排気ガス触媒。
[13] 前記希土類元素が、セリアを除レ、て、スカンジウム(Sc)、イットリウム (Y)、ランタン(
La)、プラセォジゥム(Pr)、ネオジゥム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、 ユウ口ピウム(Eu)、ガドリニウム(Gd)、テルビウム(Td)、ジスプロシウム(Dy)、ホルミ ゥム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu) およびこれらの混合物から選択される一種又は二種以上のものである、請求項:!〜 1
2のレ、ずれか一項に記載の排気ガス触媒。
[14] 前記触媒成分として、アルカリ金属、アルカリ土類金属、遷移金属及びこれらの混 合物からなる群から選択される一種又は二種以上のものをさらに含んでなる、請求項
1〜: 13のいずれか一項に記載の排気ガス触媒。
[15] 前記触媒成分を含んでなる複数層が、排気ガスの入口側と出口側でそれぞれ異な る組成の触媒成分で構成されてなる、請求項:!〜 14のいずれか一項に記載の排気 ガス触媒。
[16] 前記入口側の触媒成分と出口側の触媒成分が、流れ方向全体に対して占める比 率が 1 : 9から 9 : 1の範囲内にある、請求項 15に記載の排気ガス触媒。
[17] 火花点火型エンジンまたは圧縮着火型エンジンに用いられる、請求項 1〜: 16のい ずれか一項に記載の排気ガス触媒。
[18] 前記エンジンから排出される排気ガス側に、請求項:!〜 16のいずれか一項に記載 の排気ガス触媒が一又は二以上配置されてなる、排気ガス装置。
[19] 前記排気ガス触媒が、複数配置されてなる場合、前記排気ガス触媒の触媒成分は
、同一又は異なるものであってよい、請求項 18に記載の排気ガス装置。
[20] 排気ガス中の炭化水素、一酸化炭素または窒素酸化物を処理する装置であって、 請求項 1〜: 16のいずれか一項に記載の排気ガス触媒を備えてなり、
前記排気ガス触媒において、前記排気ガス中の炭化水素、一酸化炭素または窒素 酸化物を酸化または還元し、二酸化炭素、水、または窒素気体として処理する、装置
[21] 火花点火型エンジンまたは圧縮着火型エンジンの排気ガス処理に用いられる、請 求項 20に記載の排気ガス装置。
PCT/JP2007/057453 2006-04-03 2007-04-03 排気ガス触媒およびそれを用いた排気ガス処理装置 WO2007116881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800118247A CN101415491B (zh) 2006-04-03 2007-04-03 尾气净化催化剂和使用其的尾气处理装置
BRPI0709934A BRPI0709934B1 (pt) 2006-04-03 2007-04-03 catalisador para gás de escapamento, e, aparelho de gás de escapamento
US12/295,811 US8999252B2 (en) 2006-04-03 2007-04-03 Exhaust gas catalyst and exhaust gas processing apparatus using same
EP07740889A EP2050495A4 (en) 2006-04-03 2007-04-03 EXHAUST GAS CATALYST AND DEVICE FOR PROCESSING EXHAUST GASES USING THIS CATALYST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006102224A JP2007275704A (ja) 2006-04-03 2006-04-03 排気ガス触媒およびそれを用いた排気ガス処理装置
JP2006-102224 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007116881A1 true WO2007116881A1 (ja) 2007-10-18

Family

ID=38581171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057453 WO2007116881A1 (ja) 2006-04-03 2007-04-03 排気ガス触媒およびそれを用いた排気ガス処理装置

Country Status (7)

Country Link
US (1) US8999252B2 (ja)
EP (1) EP2050495A4 (ja)
JP (1) JP2007275704A (ja)
CN (1) CN101415491B (ja)
BR (1) BRPI0709934B1 (ja)
RU (1) RU2440187C2 (ja)
WO (1) WO2007116881A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097634A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a positive ignition engine
WO2011077168A1 (en) 2009-12-24 2011-06-30 Johnson Matthey Plc Exhaust system for a vehicular positive ignition internal combustion engine
US8153549B2 (en) 2004-10-15 2012-04-10 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas and device for treating exhaust gas using the same
WO2013030584A1 (en) 2011-08-31 2013-03-07 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
DE102014117672A1 (de) 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company Wandstromfilter, das einen katalytischen washcoat umfasst

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0924487B1 (pt) * 2009-03-25 2017-11-28 Honda Motor Co., Ltd. Exhaust gas purification catalyst for a vehicle type selim.
WO2011004912A1 (ja) * 2009-07-09 2011-01-13 トヨタ自動車株式会社 排ガス浄化触媒及びその製造方法
EP2519718A4 (en) * 2009-12-31 2013-09-11 Nanostellar Inc WITH BISMUT OR MANGAN DOTED ENGINE GAS CATALYST
JP5576420B2 (ja) * 2012-03-21 2014-08-20 トヨタ自動車株式会社 排ガス浄化触媒
JP2013244437A (ja) * 2012-05-24 2013-12-09 Toyota Motor Corp 触媒コンバーター
US9409152B2 (en) * 2012-06-20 2016-08-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support for purification of exhaust gas, catalyst for purification of exhaust gas using the same, and method for producing the catalyst support for purification of exhaust gas
US9381510B2 (en) 2013-09-11 2016-07-05 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purifying catalyst comprising a catalyst layer comprising at least two inorganic porous particles
JP6464191B2 (ja) * 2013-12-30 2019-02-06 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company ドープされたセリアを使用する選択的触媒的還元方法
DE102014215112A1 (de) 2014-07-31 2016-02-04 Johnson Matthey Public Limited Company Verfahren zur Herstellung eines Katalysators sowie Katalysator-Artikel
US10022705B2 (en) 2014-12-12 2018-07-17 Honda Motor Co., Ltd. Exhaust gas purifying catalyst
KR20180084968A (ko) * 2015-11-20 2018-07-25 맥어스 홀딩스 엘티디 성층 연소 엔진
GB2545747A (en) * 2015-12-24 2017-06-28 Johnson Matthey Plc Gasoline particulate filter
US20200030745A1 (en) 2016-02-22 2020-01-30 Umicore Ag & Co. Kg Catalyst for reduction of nitrogen oxides
US10610829B2 (en) * 2017-02-28 2020-04-07 Nippon Steel Chemical & Material, Co., Ltd. Honeycomb substrate for catalyst support, and catalytic converter for exhaust gas purification
CN107308930A (zh) * 2017-05-15 2017-11-03 盐城复华环保产业开发有限公司 一种脱硝催化剂及其制备方法
WO2019244272A1 (ja) * 2018-06-20 2019-12-26 日本碍子株式会社 多孔質複合体
US20200030776A1 (en) 2018-07-27 2020-01-30 Johnson Matthey Public Limited Company Twc catalysts containing high dopant support
JP7266603B2 (ja) * 2018-08-02 2023-04-28 日本碍子株式会社 多孔質複合体
AU2018446394A1 (en) * 2018-10-22 2021-04-01 Pujing Chemical Industry Co., Ltd Catalyst for treatment of coal-based ethylene glycol tail gas and preparation thereof
JP2022554292A (ja) * 2019-10-31 2022-12-28 中国石油化工股▲ふん▼有限公司 担持触媒、その調製方法およびその適用
CN111921540B (zh) * 2020-08-22 2021-04-20 湖南第一师范学院 一种汽车尾气用的三效催化剂的制备方法及其产品和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (ja) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd 排気ガス浄化用触媒
JP2000042368A (ja) * 1998-07-27 2000-02-15 Nissan Motor Co Ltd 排気ガス浄化方法
JP2000271480A (ja) * 1999-01-18 2000-10-03 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2001079392A (ja) * 1999-09-10 2001-03-27 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用助触媒
JP2002191988A (ja) 2000-12-25 2002-07-10 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2002253968A (ja) 2001-03-02 2002-09-10 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2003326170A (ja) * 2002-03-06 2003-11-18 Nissan Motor Co Ltd 排気ガス浄化触媒、その製造方法及び排気ガス浄化方法
JP2006110485A (ja) * 2004-10-15 2006-04-27 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939104A (en) * 1972-10-04 1976-02-17 Imperial Chemical Industries Limited Catalytic process
US4027476A (en) * 1973-10-15 1977-06-07 Rocket Research Corporation Composite catalyst bed and method for making the same
US4793980A (en) * 1978-09-21 1988-12-27 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalyst
JPS5768143A (en) * 1980-10-11 1982-04-26 Mazda Motor Corp Carrier made of metal for monolithic catalyst
US4426320A (en) * 1981-01-27 1984-01-17 W. R. Grace & Co. Catalyst composition for exhaust gas treatment
US5175136A (en) * 1990-05-31 1992-12-29 Monsanto Company Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
DE4206699C2 (de) * 1992-03-04 1996-02-01 Degussa NO¶x¶-Verminderung im mageren Abgas von Kraftfahrzeugmotoren
JP3358766B2 (ja) * 1994-12-16 2002-12-24 トヨタ自動車株式会社 排ガス浄化用触媒
JP3750178B2 (ja) * 1995-04-05 2006-03-01 株式会社デンソー 排ガス浄化用フィルタ及びその製造方法
JPH09215922A (ja) 1996-02-09 1997-08-19 Toyota Motor Corp 排ガス浄化用触媒
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
BR9912563A (pt) * 1998-07-07 2001-05-02 Silentor Notox As Filtro de gás de escapamento de diesel
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
US6346140B2 (en) * 2000-03-31 2002-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous solid for gas adsorption separation and gas adsorption separation process employing it
DE10022842A1 (de) * 2000-05-10 2001-11-22 Dmc2 Degussa Metals Catalysts Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
JP4889873B2 (ja) * 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
JP3851521B2 (ja) * 2000-09-26 2006-11-29 ダイハツ工業株式会社 排ガス浄化用触媒
US6864214B2 (en) * 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
JP2004509740A (ja) * 2000-09-29 2004-04-02 オーエムゲー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 触媒すすフィルターおよびリーン排気ガスの処理おけるその使用
JP2002355561A (ja) * 2001-03-26 2002-12-10 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化方法
JP3727550B2 (ja) * 2001-05-30 2005-12-14 株式会社デンソー 排ガス浄化フィルタ及びその製造方法
JP3997825B2 (ja) * 2001-06-28 2007-10-24 株式会社デンソー セラミックフィルタおよび触媒付セラミックフィルタ
JP2003200062A (ja) * 2001-10-26 2003-07-15 Denso Corp 車両用触媒
DE20117659U1 (de) * 2001-10-29 2002-01-10 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Offener Partikelfilter mit Heizelement
EP1340541A1 (en) * 2002-02-28 2003-09-03 Corning Incorporated Structured catalysts incorporating thick washcoats and method of preparation thereof
US7214643B2 (en) * 2002-03-22 2007-05-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide and method for producing the same, and catalyst
AU2003220810A1 (en) * 2002-03-28 2003-10-13 Ngk Insulators, Ltd. Cell structural body, method of manufacturing cell structural body, and catalyst structural body
JP3758601B2 (ja) * 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
JP2004033933A (ja) * 2002-07-04 2004-02-05 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
US6964817B2 (en) * 2002-07-15 2005-11-15 Hitachi Metals, Ltd. Porous sintered metal and filter thereof, and method for producing porous sintered metal
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US7572311B2 (en) * 2002-10-28 2009-08-11 Geo2 Technologies, Inc. Highly porous mullite particulate filter substrate
US6946013B2 (en) * 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
US6936561B2 (en) * 2002-12-02 2005-08-30 Corning Incorporated Monolithic zeolite coated structures and a method of manufacture
JP4284588B2 (ja) * 2003-01-10 2009-06-24 トヨタ自動車株式会社 排ガス浄化フィルタ触媒
JP2004330025A (ja) * 2003-05-02 2004-11-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
JP4329432B2 (ja) * 2003-07-15 2009-09-09 トヨタ自動車株式会社 排ガス浄化用触媒
US8016125B2 (en) * 2005-05-20 2011-09-13 Lutek, Llc Materials, filters, and systems for immobilizing combustion by-products and controlling lubricant viscosity
KR101051418B1 (ko) * 2006-03-16 2011-07-22 인터내쇼날 카탈리스트 테크놀로지, 인코포레이티드 배기가스 정화용 촉매, 그 제조방법 및 이러한 촉매를이용한 배기가스의 정화방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286462A (ja) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd 排気ガス浄化用触媒
JP2000042368A (ja) * 1998-07-27 2000-02-15 Nissan Motor Co Ltd 排気ガス浄化方法
JP2000271480A (ja) * 1999-01-18 2000-10-03 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2001079392A (ja) * 1999-09-10 2001-03-27 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用助触媒
JP2002191988A (ja) 2000-12-25 2002-07-10 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2002253968A (ja) 2001-03-02 2002-09-10 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2003326170A (ja) * 2002-03-06 2003-11-18 Nissan Motor Co Ltd 排気ガス浄化触媒、その製造方法及び排気ガス浄化方法
JP2006110485A (ja) * 2004-10-15 2006-04-27 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2050495A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153549B2 (en) 2004-10-15 2012-04-10 Johnson Matthey Public Limited Company Catalyst for treating exhaust gas and device for treating exhaust gas using the same
DE202010018081U1 (de) 2009-02-26 2014-02-17 Johnson Matthey Public Limited Company Filter
WO2010097638A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
DE102010002425A1 (de) 2009-02-26 2010-09-23 Johnson Matthey Public Limited Company Filter
EP3777998A1 (en) 2009-02-26 2021-02-17 Johnson Matthey Public Limited Company Filter
WO2010097634A1 (en) 2009-02-26 2010-09-02 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a positive ignition engine
US8012439B2 (en) 2009-02-26 2011-09-06 Johnson Matthey Public Limited Company Filter
US8211393B2 (en) 2009-02-26 2012-07-03 Johnson Matthey Public Limited Company Exhaust system for a vehicular positive ignition internal combustion engine
DE102010002425B4 (de) * 2009-02-26 2016-03-31 Johnson Matthey Public Limited Company Filter
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
US8608820B2 (en) 2009-02-26 2013-12-17 Johnson Matthey Public Limited Company Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
DE202010018079U1 (de) 2009-02-26 2014-02-04 Johnson Matthey Public Limited Company Motor mit Funkenzündung, der ein Abgassystem mit einem Filter hierfür umfasst
DE102010056223A1 (de) 2009-12-24 2011-07-28 Johnson Matthey Public Limited Company Abgassystem für einen Fahrzeugverbrennungsmotor mit Fremdzündung
RU2548997C2 (ru) * 2009-12-24 2015-04-20 Джонсон Мэтти Плс Выхлопная система двигателя внутреннего сгорания с принудительным воспламенением топлива транспортного средства
WO2011077168A1 (en) 2009-12-24 2011-06-30 Johnson Matthey Plc Exhaust system for a vehicular positive ignition internal combustion engine
WO2013030584A1 (en) 2011-08-31 2013-03-07 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
DE102014117672A1 (de) 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company Wandstromfilter, das einen katalytischen washcoat umfasst

Also Published As

Publication number Publication date
RU2008143301A (ru) 2010-05-10
EP2050495A1 (en) 2009-04-22
BRPI0709934A2 (pt) 2011-08-02
JP2007275704A (ja) 2007-10-25
BRPI0709934B1 (pt) 2016-09-27
US20090173065A1 (en) 2009-07-09
US8999252B2 (en) 2015-04-07
CN101415491A (zh) 2009-04-22
RU2440187C2 (ru) 2012-01-20
CN101415491B (zh) 2012-11-14
EP2050495A4 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
WO2007116881A1 (ja) 排気ガス触媒およびそれを用いた排気ガス処理装置
WO2006040842A1 (ja) 排気ガス触媒およびそれを用いた排気ガス処理装置
KR101538183B1 (ko) 다층상 촉매 조성물
JP5996538B2 (ja) 改善されたno酸化活性度を有するリーン燃焼ガソリンエンジン用の触媒
KR100978394B1 (ko) 탄화수소 흡착제, 배기가스 정화용 촉매 및 배기가스정화방법
JP5014845B2 (ja) 排ガス浄化用触媒、その製造方法、およびかかる触媒を用いた排ガスの浄化方法
JP5447377B2 (ja) 排気ガス浄化触媒
JP2000510761A (ja) 上流に多層ゾーンを含めた排気ガス用触媒
JP3817443B2 (ja) 排気ガス浄化用触媒
JP2006263582A (ja) 排気ガス浄化用触媒
CN110785230B (zh) 废气净化用催化剂及使用其的废气净化方法
CN113042045A (zh) 排气净化用催化剂
CN110785232B (zh) 废气净化用催化剂及使用其的废气净化方法
JP2004330025A (ja) 排気ガス触媒およびそれを用いた排気ガス処理装置
JPH09248462A (ja) 排気ガス浄化用触媒
CN110785231B (zh) 废气净化用催化剂及使用其的废气净化方法
JP2003299967A (ja) 触媒担体構造体及び排気ガス浄化用触媒
JP2010227873A (ja) 排ガス浄化用触媒および排ガス浄化用触媒の製造方法
WO2023002772A1 (ja) 排ガス浄化用触媒
JP2003200061A (ja) 排ガス浄化触媒及び排ガス浄化装置
JP3264696B2 (ja) 排気ガス浄化用触媒およびこれを用いてなる浄化システム
CN116438139A (zh) 排气净化用催化剂
JP2004105841A (ja) 排気ガス浄化用触媒
JP5138132B2 (ja) NOx吸蔵還元型触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007740889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780011824.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12295811

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5324/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008143301

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0709934

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080930