WO2007114430A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2007114430A1
WO2007114430A1 PCT/JP2007/057415 JP2007057415W WO2007114430A1 WO 2007114430 A1 WO2007114430 A1 WO 2007114430A1 JP 2007057415 W JP2007057415 W JP 2007057415W WO 2007114430 A1 WO2007114430 A1 WO 2007114430A1
Authority
WO
WIPO (PCT)
Prior art keywords
air chamber
resonator
pneumatic tire
tire
neck
Prior art date
Application number
PCT/JP2007/057415
Other languages
English (en)
French (fr)
Inventor
Fumio Takahashi
Seiji Ishikawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to CN2007800198307A priority Critical patent/CN101454168B/zh
Priority to US12/295,411 priority patent/US8151842B2/en
Priority to JP2008508698A priority patent/JP5366539B2/ja
Priority to EP07740851.6A priority patent/EP2011671B1/en
Publication of WO2007114430A1 publication Critical patent/WO2007114430A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C2011/0334Stiffness

Definitions

  • the present invention relates to a pneumatic tire, particularly a passenger car tire, and particularly generated by a circumferential groove extending continuously in a linear shape, a zigzag shape, a crank shape, or the like in the circumferential direction of a tread surface.
  • Air column resonance sound is noise generated by resonance of air in a pipe surrounded by a circumferential groove continuously extending in the circumferential direction of the tread tread and a road surface in the tread tread ground contact area.
  • the frequency of the air column resonance is often observed in the range of 800 to 1200 Hz in a typical passenger car, and the sound pressure level of the peak is high. become.
  • Patent Document 1 International Publication No. 04Z103737 Pamphlet
  • Patent Document 2 Japanese Patent Laid-Open No. 5-338411
  • Patent Document 3 JP 2000-118207 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-191734
  • the present invention has been made to solve such problems of the prior art, and the object of the invention is to reduce the drainage performance due to the reduction of the circumferential groove volume. It is possible to ensure the total performance and mass productivity of the tire without causing damage, and at the same time, realize a high degree of freedom in the design of the tread pattern and the desired land rigidity. It is an object of the present invention to provide a pneumatic tire that can effectively reduce air column resonance noise.
  • the tread tread surface is provided with a circumferential groove continuously extending in an annular form such as a linear shape and a zigzag shape in the circumferential direction, and the circumferential groove more directly.
  • a resonator that terminates in the land, such as a rib, block, etc., that opens into the groove wall of the groove, and this resonator provides communication between the air chamber that opens on the land surface and the air chamber and the circumferential groove.
  • the tire is composed of a narrow neck as a narrow passage, and the tire mounted on the applicable rim is filled with a specified air pressure and a load corresponding to 80% of the specified mass is applied to the tire. Under the attitude, each resonator is arranged so that a plurality of resonators having different resonance frequencies are always completely included in the ground plane.
  • appcable rim refers to the rim defined in the following standards depending on the tire size
  • regulated air pressure refers to the maximum load capacity in the following standards.
  • the maximum load capacity is the maximum mass allowed to be applied to the tire according to the following standards.
  • the “specified mass” refers to the above maximum load capacity.
  • the air here may be replaced with an inert gas such as nitrogen gas or the like.
  • the standard is determined by an industrial standard effective in the region where the tire is produced or used. For example, in the United States, it is “THE TIRE AND RIM ASSOCIA TION INC. YEAR BOOK”. In Europe, it is “STANDARDS MANUA” of "THE European Tire and Rim Technical Organization", and in Japan it is “JATMA YEAR BOOK” of the Japan Automobile Tire Association.
  • the "resonance frequency” here is the radius of the constriction neck!:, The length is 1, and the neck cross-sectional area is S
  • the tube end correction in the above formula is often obtained by experiment, and its value varies depending on the document. Here, 1.3r is used.
  • the difference between the maximum value and the minimum value of the resonance frequency of a plurality of resonators that are always included in the ground plane is in the range of 200 to 800 Hz, particularly 300 to 600 Hz. .
  • the number of resonators always included in the ground plane is three or more, especially four or more, particularly six or more per circumferential groove.
  • adjustment of the resonance frequency of the resonator in the tread pattern to which the pitch variation is given can be performed by changing the circumferential dimension of the air chamber of the resonator according to the length of the pitch length. preferable.
  • a resonator having an average resonance frequency in the range of 700 to 1800 Hz is disposed in at least one pitch on the circumference. I prefer that.
  • the “average value of the resonance frequency” means that a certain circumferential groove is opened over the entire circumference.
  • the average value of all resonance frequencies for all the resonators to be used is defined as follows.
  • the resonance frequency is 609 to 2 within at least one pitch on the circumference.
  • One or more resonators in the range of 153 Hz are arranged.
  • the frequency can be adjusted using the land opening area of the air chamber or the inclination angle of the air chamber side wall as a parameter.
  • the constriction neck of the resonator can be formed by sipes.
  • the neck radius r in the equation of the resonance frequency f is the sipe section as the neck section area S.
  • the radius r can be calculated back from the product.
  • the opening shape of the air chamber to the surface of the land portion may be a curved contour shape as well as a square contour shape, and such an air chamber has an entire depth direction thereof.
  • the cross-sectional area may be gradually increased or gradually decreased in the depth direction.
  • the bottom wall of such an air chamber is not only a flat surface but also a force that can be convex or concave toward the opening side. More preferably, 1. Concavities with a height of 6 mm or more shall be provided.
  • the depth of the narrowed neck is equal to or shallower than the narrowed depth of the air chamber, and the extending angle of the narrowed neck with respect to the tread width direction is The range of 10 ° to 60 °, especially 20 ° to 40 °, and the aspect ratio of the airway's land surface opening outline to the range of 2 to 20, especially 10 or less.
  • the opening area of the air chamber to the land surface is directed from the center of the tread to the outside in the tread width direction. It is preferable to gradually reduce the width of the air chamber, to make the opening area of the air chamber to the surface of the land portion larger than the area of the bottom wall of the air chamber, and to narrow the width of the constriction neck toward the bottom portion.
  • the resonator is separately opened in one air chamber opened on the surface of the land portion and in the groove wall of the same circumferential groove, and the two or more resonators communicated with the circumferential groove. Consists of a narrowed neck.
  • the two or more constricted necks can be constructed by branching into two or more in the middle of the extension, and they can be constructed completely independent from each other without being crossed or branched. You can also.
  • the resonance frequency when a plurality of independent, for example, two constriction necks are arranged for one air chamber is as follows.
  • Stenosis neck 1 1, r , s
  • Stenosis neck 2 1, r , S
  • the cross-sectional area of the stenosis neck is the sum (the sum of the cross-sectional areas), and the length of the stenosis neck affects the resonance frequency.
  • the number of numerators is added, and the numerator coefficient is changed to an expression that shows the number of numerators.
  • the resonance frequency in the case where the stenosis neck is branched into a plurality of parts in the middle of the extension can be handled by assuming that the plurality of stenosis necks are bundled up to the branch point. , And can be calculated by the above formula.
  • a Helmholtz type resonator including an air chamber and a constricted neck as a narrow passage is provided in the circumferential groove, and the resonance frequency of the resonator is set to the circumferential groove. Therefore, the primary resonance energy of the circumferential groove can be absorbed by the vibration of air in the constriction neck of the resonator, so that the air column resonance sound in the circumferential groove reduces the groove volume of the circumferential groove. It is effectively reduced without reducing it.
  • the air chamber of the resonator is formed by opening on the surface of the land portion. Therefore, the vulcanization molding of the raw tire is performed to the portion corresponding to the air chamber of the mold portion. Even if it is carried out with the intrusion of the product, the extraction of the mold part of the air force of the product tire is always smooth and smooth regardless of whether the air cross section changes somewhat in the depth direction. As a result, the tire can be easily manufactured in the same manner as a conventional tire without a resonator.
  • a plurality of resonators having different resonance frequencies are provided in the ground plane under the tire posture in which a load corresponding to 80% of the specified mass is applied to the tire most frequently.
  • the drainage performance is not lowered due to the reduction of the circumferential groove volume, and the die-out property of the product tire, in other words, the mass productivity of the tire is not impaired.
  • the chamber, and thus the resonator can effectively perform its original functions.
  • the maneuverability is improved by the proper arrangement of the land, the wear resistance, the land This makes it possible to design a resonator that takes into account the road surface collision noise and the like.
  • the difference between the maximum value and the minimum value of the resonance frequency of a plurality of resonators that are always included in the ground plane is 200 to 800 Hz, preferably 300 to 600 Hz. In this case, air column resonance noise can be more effectively reduced over a wide frequency band.
  • the noise reduction effect cannot be expected to increase much as compared to the case where a plurality of resonators having the same resonance frequency are included in the ground plane, while a plurality of resonators are not expected. If the resonance frequency is dispersed so as to exceed 800 Hz, the frequency band force of the air column resonance noise in the circumferential groove will deviate, and similarly, it will be difficult to achieve a high noise reduction effect.
  • the number of resonators having different resonance frequencies that are always simultaneously included in the ground plane is three or more, preferably four or more, more preferably six or more per circumferential groove. Sometimes, each resonator itself becomes smaller, but as a result, a greater noise reduction effect is obtained.
  • the resonance frequency of the resonator can be changed according to the pitch length, and as a result, the resonator can be operated over a wider frequency band.
  • the constriction neck of the resonator can be formed in a tunnel shape that is not exposed to the surface of the land portion, but when formed by a sipe that opens to the surface of the land portion, Regardless of its required length, depth, extension mode, etc., it can be easily and easily molded as expected with a vulcanizing mold or the like. Thus, the manufacture of the tire can be further facilitated.
  • the sipe has a sufficient depth to effectively prevent the stenosis neck from disappearing even if wear of the tread land portion progresses, and to function the resonator for a long time. It is possible to make full use.
  • the sipe may be a so-called flask sipe having an enlarged space portion at the bottom, and this may cause an unexpected blockage of the stenosis neck under the action of the enlarged space portion. Can be effectively removed.
  • any side of the polygon is the tire ground contact surface.
  • the air chamber in a posture that does not exist along the stepping edge and the kicking edge, it is possible to suppress the occurrence of pitch noise due to the air chamber opening edge colliding with the road surface.
  • the opening shape of the air chamber is a polygonal contour shape, the design of the resonator that works more effectively is facilitated by the easy setting of the air chamber volume.
  • the opening shape is a curved contour shape such as a circle or an ellipse
  • the occurrence of pitch noise is advantageously suppressed while the air chamber is arranged as required, and The occurrence of uneven wear on the opening edge portion can be suppressed.
  • the bottom wall of the air chamber is provided with irregularities of 1.6 mm or more, stone stagnation into the air chamber can be advantageously prevented. It is more effective when unevenness is provided.
  • the resonance frequency of the resonator becomes the resonance of the air column in the circumferential groove due to a decrease in the air chamber volume due to wear of the tread contact surface. If it changes so as not to contribute to sound reduction, the resonator can be deactivated by wear of the constriction neck.
  • the extension angle of the narrowed neck with respect to the tread width direction is 10 ° to 60 °, and in particular, 20
  • the extension angle is less than 10 °, a relatively large pitch noise may be generated by the stenosis neck, while if it exceeds 60 °, the sharp corner between the stenosis neck and the circumferential groove on the land portion. There is a high risk of uneven wear on the part.
  • the aspect ratio of the land surface opening contour of the air chamber is in the range of 2 to 20, more preferably in the range of 10 or less, the occurrence of pitch noise and uneven wear is suppressed.
  • the air chamber can fully perform its original function.
  • the air chamber may act like a local void, which may worsen pitch noise and uneven wear. It becomes difficult to cause resonance at a frequency of ⁇ .
  • the opening area of the air chamber to the land surface is larger than the bottom wall area of the air chamber, even if stone stagnation occurs in the air chamber, Can be made sufficiently smooth, and the formation of the air chambers during vulcanization molding of the green tire can be facilitated.
  • the resonance frequency is reduced by reducing the neck cross-sectional area corresponding to the decrease in the air chamber volume accompanying the air chamber wear. It can be maintained as expected.
  • the resonator has one air chamber that opens to the surface of the land portion, and two or more constricted necks that open separately to the groove wall of the same circumferential groove and communicate the air chamber with the circumferential groove.
  • water that has entered the air chamber through one stenosis neck is drained into the circumferential groove through the other stenosis neck, while ensuring excellent sound reduction.
  • the degree of freedom in designing the tread pattern can be increased in terms of adjustment of land rigidity and design.
  • the air chamber 25 ⁇ 300Mm 2 the opening area of the land portion surface, and more preferably, is 72 ⁇ 180mm 2, more preferably, when the range of 100 to 150 mm 2, air chamber
  • it is possible to effectively suppress the road surface collision noise at the edge of the air chamber opening that is, the increase in pitch noise [] and the uneven wear of the air chamber opening edge itself, even if the original functions are effectively exhibited. .
  • the planar maximum width of the constricted neck in the development plan view of the tread pattern is 3 to 50%, more preferably 3 to 20%, and further preferably 3 to the planar maximum width of the air chamber. In the range of ⁇ 15%, the function as expected can be fully exerted on the stenosis neck and the air chamber.
  • FIG. 1 A diagram schematically showing an embodiment of the present invention with respect to a ground plane.
  • FIG. 2 is a diagram schematically showing a modification of FIG.
  • FIG. 3 is a diagram schematically showing a Helmholtz type resonator.
  • FIG. 4 is a diagram exemplifying an arrangement mode of resonators within a ground plane.
  • FIG. 5 is a perspective view of a principal part illustrating a mode of forming a resonator.
  • FIG. 6 is an enlarged cross-sectional view of the air chamber bottom wall along line VI-VI in FIG. 5 (a).
  • FIG. 7 is a diagram showing a planar form and arrangement of resonators.
  • FIG. 8 shows the results of Example 2.
  • FIG. 9 shows the results of Example 3.
  • FIG. 10 shows the results of Example 4.
  • FIG. 11 shows the results of Example 6.
  • FIG. 12 shows the results of Example 7.
  • FIG. 14 is a schematic diagram showing another embodiment as a ground plane.
  • FIG. 15 is a perspective view illustrating a molding part of a resonator of a vulcanization mold.
  • FIG. 16 is a perspective view showing the resonator shown in FIG. 14 in a Helmholtz type resonator.
  • ⁇ 17 It is a principal part perspective view which illustrates the formation aspect of a resonator.
  • FIG. 18 is a diagram showing dimensions of the resonator.
  • FIG. 19 is a diagram illustrating another form of the resonator.
  • FIG. 20 is a diagram exemplifying an arrangement mode of resonators.
  • FIG. 21 is a diagram illustrating another arrangement mode of resonators.
  • FIG. 22 is a graph showing the results of Example 9.
  • FIG. 23 is a graph showing the results of Example 12.
  • FIG. 24 is a graph showing the results of Example 13.
  • FIG. 25 is a graph showing the results of Example 14.
  • FIG. 26 is a view showing the results of Example 18.
  • FIG. 27 shows the results of Example 19.
  • FIG. 28 shows the results of Example 20.
  • FIG. 29 shows the results of Example 21.
  • FIG. 30 shows the results of Example 23.
  • FIG. 31 is a developed enlarged plan view illustrating a resonator according to another embodiment.
  • FIG. 32 shows the results of Example 28.
  • FIG. 33 shows the results of Example 29.
  • FIG. 34 shows the results of Example 30.
  • FIG. 35 shows the results of Example 30.
  • FIG. 36 is a view showing a result in Example 31.
  • FIG. 37 is a view showing a result in Example 31.
  • FIG. 38 is a diagram showing an arrangement mode of resonators in Example 34.
  • Fig. 1 is a diagram schematically showing an embodiment of the present invention.
  • reference numeral 1 denotes a tread tread, in particular, a tire mounted on an applicable rim is filled with a prescribed air pressure, and the tire is loaded.
  • the circumferential groove that extends to form a ring shape as a whole is shown.
  • a resonator 5 is provided in the circumferential groove 3 formed in this way, which opens at one end and ends at the other end within the land portion 4, and this resonator 5 is provided at the other end side thereof.
  • the resonance frequency of the plurality of resonators 5, which are always included in the ground plane 2 at the same time and completely, is different from each other.
  • the opening area of the air chamber 6 to the land surface can be, for example, in the range of 25 to 300 mm 2 , particularly preferably in the range of 100 to 150 mm 2 .
  • the cross-sectional area and contour shape in the cross section parallel to the land surface can be made the same as those of the land opening toward the bottom wall side of the air chamber 6, and of course, the vulcanized molded tire From the air chamber 6, the mold part can be gradually increased to the extent that it is not constrained, and conversely, it can be gradually decreased.
  • the resonator 5 that can be configured in this manner has a helm as schematically shown in Fig. 3 in a state where both the land opening of the air chamber 6 and the narrowed neck 7 are sealed by the road surface.
  • a Holz-type resonator is formed, and the resonance frequency f of the resonator 5 is As shown, the radius of the constriction neck 7 is:!, The length is 1, the neck cross-sectional area is S, and the air volume is
  • This resonance frequency f is equal to the air column resonance frequency of the circumferential groove 3.
  • neck radius r neck length 1
  • neck cross-sectional area S neck cross-sectional area S
  • air chamber volume V air chamber volume
  • the resonator 5 in the range of 700 to 1400 Hz within at least one pitch on the circumference with a tread surface having a tread pattern to which pitch variations are given.
  • the resonance frequency f of each of the plurality of resonators 5 that are always included in the ground plane 2 is the difference between the maximum value and the minimum value in the range of 200 to 800 Hz.
  • the resonators 5 are arranged so that the number of resonators that are simultaneously included in the ground plane is always three or more per circumferential groove. Is more preferable, both resonators opened in one circumferential groove 3 have the same resonance frequency f.
  • the resonators 5a, 5b, and 5c have different 0s.
  • the circumferential dimension of the air chamber 6 of the resonator, and hence the volume of the air chamber can be changed according to the length of the pitch accompanying the pitch variation. It is advantageous.
  • the opening shape of the air chamber 6 to the land surface is a circular contour shape. This opening shape is different from the elliptical shape and other curved contour shapes. It can also be a quadrilateral or other polygonal contour.
  • the constriction neck 7 has a tunnel-like shape embedded in the land portion 4, here the block 4a, as illustrated in the perspective view of the main part in Fig. 5 (a).
  • the surface of the block 4a can be opened.
  • the open neck 7 like the latter is formed by, for example, pressing a blade of a vulcanization mold or the like, the constriction neck 7 should be formed easily in addition to the air chamber 6. Can do.
  • the narrowed neck 7 can also be formed by sipe.
  • the shape of the sipe is a so-called flask-like shape having an enlarged space portion at the bottom.
  • portions other than the enlarged space portion have sipe walls in the ground plane.
  • the shape of the opening to the block surface of the air chamber 6 is an irregular contour shape consisting only of a curve, but this shape has a required contour shape including a circle, a square, and the like. Of course, it can be changed appropriately.
  • the bottom wall of the air chamber 6 can be a flat surface or a surface that is convex or concave toward the opening side thereof. More preferably, as shown in FIG. 6 in an enlarged manner along the line VI-VI in FIG. 5 (a), one or more protrusions 6a that protrude upward are provided on the bottom wall,
  • the resulting unevenness difference ⁇ is 1.6 mm or more, more preferably 3. Omm or more.
  • the protrusion 6a is formed to protrude from the side wall of the air chamber and is independent from the bottom wall.
  • a tire with a size of 195Z65R15 was mounted on a 6JJ rim and the air pressure was 210 kPa. Measure the side sound of the tire at this time according to the conditions specified in JASO C606, In the 1Z3 octave band, the partial overall values for the center frequency of 800 Hz, lOOOHz and 1250 Hz were obtained.
  • the resonance frequency f of the resonator is, as described above,
  • the sound velocity c was 343.7 mZs.
  • a conventional tire in which four straight circumferential grooves each having a groove width and a groove depth of 8 mm are extended in the ground plane,
  • Fig. 7 (a) Each of the four linear circumferential grooves extending in the ground plane and having a groove width and depth of 8 mm is shown in Fig. 7 (a).
  • Fig. 7 (b) 60 resonators having a planar shape opening in the circumference are arranged on the circumference at a pitch of 33.4 mm, and three types of resonators that always enter the ground plane at the same time.
  • Table 1 the measurement results of the example tires with the resonant frequency of about 800 Hz, about lOOOHz, and about 1250 Hz were compared as shown in Table 1.
  • the example tires had a noise reduction effect of 3.3 dB. Admitted.
  • the comparative example tire in which the resonance frequency of the resonator included in the ground plane at the same time was only 1014 Hz, the noise reduction effect over the conventional tire was 2.6 dB.
  • Example 2 can bring about a greater effect by simultaneously operating the respective resonators with respect to a wide band of frequencies.
  • Example 2
  • the average value of the resonance frequency f is set within the range of 700 to 1800 Hz.
  • the target air column resonance can be reduced by 2 dB or more, and it is clear that the effect is particularly significant in the range of 700-1400 Hz.
  • the desired level is an effect that is more than ldB better than the noise reduction effect when the difference in resonance frequency is 0 (both the resonance frequencies of the three resonators are about 1000 Hz), the difference in frequency is 200
  • a high noise reduction effect was obtained in the range of ⁇ 800Hz, especially in the range of 300 ⁇ 600Hz.
  • FIG. 10 shows the noise reduction effect of the example tire at this time.
  • the opening of the resonator chamber has a circular outline shape, and a plurality of resonators are arranged in the manner shown in Fig. 4 in the ground plane, and the resonance frequency (action of each resonator)
  • the noise reduction effect of the tire of the example tire in which the dimensions of the resonator to match the frequency (frequency) shown in Table 1 were set as shown in Table 2 below with respect to the conventional tire. It was 3.35dB when calculated.
  • the pitch noise is measured by measuring with a microphone on a smooth road surface in accordance with JASO C606 using an indoor drum tester. Any differences above are considered significant. (It is considered to be a size that is judged to have a difference in actual vehicle feeling.)
  • the uneven wear level is determined by measuring the amount of uneven wear level before and after the neck part (circumferential direction) after traveling 1000 km with an indoor drum tester, and that the average level difference is within 0.5 mm. did.
  • Driving conditions were set by braking 0.1G for 10km and free rolling 90km as a set, and repeating these 10 sets.
  • the pitch noise difference is effectively improved when the neck angle is 10 ° or more and 20 ° or more, and the average uneven wear level difference is 60 ° or less. In particular, it can be seen that it is effectively reduced below 40 °.
  • the depth of the narrowed neck 7 is equal to the depth of the air chamber 6 as illustrated in Fig. 13 (a) as a cross section of the resonator 5. Or, it can be shallower than the depth of the air chamber 6, as illustrated by a virtual line in the figure.
  • the constriction neck 7 has an extension angle I ⁇ I with respect to the tread width direction X—X of 10 ° to 60 ° as shown in FIG. It is preferably in the range of -40 °.
  • the ratio of the air chamber length Z air space width is 2 to 20 Range, especially 10 or less
  • the opening area of the air chamber 6 is gradually reduced to the surface of the land portion from the center of the tread toward the outside in the tread width direction.
  • the opening area to the land surface is preferably larger than the bottom wall area of the air chamber 6 as illustrated in a cross-sectional view in FIG.
  • the narrowed neck 7 is gradually narrowed toward the bottom.
  • FIG. 14 is a ground plane schematic view similar to FIG. 1 showing another embodiment of the present invention by taking one resonator as an example, and the same parts as those described above are the same as those shown in FIG.
  • the resonator 15 that functions in the same manner as the resonators 5, 5 b, 5 c described above is formed in one air chamber 16 that opens on the surface of the land portion and the groove wall of the same circumferential groove 3. It is composed of two constricted necks 17a and 17b which are opened separately and communicate with the circumferential groove 3 and are completely independent of each other.
  • the resonator 15 having such a structure is, for example, as shown in a perspective view in FIG. 15, and is provided with a protrusion P that protrudes from the molding surface of the vulcanization mold and contributes to the formation of the air chamber 16, and By simply vulcanizing the green tire with a vulcanization mold that has two sipe blades U that project sideways from the peripheral surface of the protrusion P and contribute to the formation of the constricted necks 17a and 17b, And can be formed reliably.
  • the powerful resonator 15 is configured such that the road surface side opening of each of the air chamber 16 and the constriction necks 17a and 17b is closed by the road surface.
  • the resonance frequency f of this resonator 16 is the total radius and the total length of both constriction necks 17a and 17b.
  • this resonance frequency f has a radius!:, In relation to the air column resonance frequency of the circumferential groove 3.
  • the average value of the resonance frequency f is in the range of 700 to 1800 Hz.
  • constriction necks 17a and 17b have a tunnel shape embedded in the land portion 4, here the block 4a, as illustrated in the perspective view of the main part in Fig. 17 (a). As shown in Fig. 17 (b), it can be assumed that it is open on the surface of the block 4a.
  • the stenosis necks 17a and 17b are formed by, for example, a sipe blade of a vulcanization mold or other pushing, the stenosis necks 17a and 17b are formed in addition to the air chamber 16. Can also be formed easily.
  • the narrowed necks 17a and 17b can be formed by sipe.
  • the shape of the sipe is a so-called flask-like shape having an enlarged space portion at the bottom.
  • portions other than the enlarged space portion have sipe walls in the ground plane.
  • the depth h of the air chamber 16 on the land surface that is, the surface force of the block 4a in FIG. 20% or more of depth H, especially 40 to 80%, and preferably, the depth dimension d from the block surface of the constriction necks 17a and 17b is 70% or less of the maximum depth h of the air chamber 16. Especially 50% or less.
  • the width t of the constricted necks 17a and 17b is preferably 3 to 50%, particularly 3 to 20% of the width T of the air chamber 16.
  • the length L of the air chamber 16 means a dimension (axial dimension) passing through the center of the width t of the narrowed necks 17a and 17b as illustrated in FIG.
  • the dimension of the perpendicular direction is the width T of the air chamber 16.
  • the opening shape of the air chamber 16 to the surface of the land portion is circular, and the constriction network is formed. 17a and 17b are shown as straight lines, and in FIG. 17, the opening shape of the air chamber 16 to the block surface is shown as a deformed contour shape with only a curved force.
  • the shape may be an ellipse or other curved contour shape, a quadrilateral or other polygonal shape, and the narrowed necks 17a and 17b may also have a curved portion and a bent portion.
  • FIGS. 19 and 20 Other examples of the opening shape of the air chamber 16 and the narrowed necks 17a and 17b are shown in FIGS. 19 and 20, respectively.
  • the bottom wall of the air chamber 16 of the resonator 15 can also be a flat surface, but a curved surface or the like that is convex or concave toward the opening side thereof. You can also.
  • the bottom wall is provided with one or more protrusions 6a that protrude upward, and the resulting unevenness difference ⁇ is 1.6 mm or more. More preferably, it should be 3. Omm or more.
  • the arrangement of the resonator 15 configured as described above with respect to the circumferential groove 3 is that when one circumferential groove 3 is formed on the tread surface 1 and when a plurality of circumferential grooves 3 are formed. Even in this case, at least one resonator 15 provided in at least one circumferential groove 3 is always completely included in the ground plane 2 under the conditions described above with reference to FIG. More preferably, as shown in FIG. 21, a plurality of resonators are arranged in a ground plane 2 that is grounded under the same conditions as described above. It is assumed that each of the resonators 15 is always included.
  • a plurality of resonators 15 having different resonance frequencies are included in ground plane 2 for each of all circumferential grooves 3 extending in ground plane 2.
  • the opening area of the land portion surfaces of the air chamber 16 is 25 ⁇ 300Mm 2, yo Ri preferably be in the range of 72 ⁇ 180mm 2.
  • the air chamber opening edge is because it is possible to effectively suppress an increase in the road crash noise, in the opening area is less than 25 mm 2
  • the depth of the air chamber should be increased and the air chamber 16 A function as a resonance chamber in addition to be difficult to sufficiently exhibit the while longer narrowed neck in the frequency adjustment is required defect occurs, when it exceeds 300 mm 2, the length of the opening edge is long This is because it is impossible to deny the manifestation of road surface collision noise.
  • the maximum depth h of the air chamber 16 from the land surface is 20% of the maximum depth H of the circumferential groove 3 that divides the land 4 on the tread surface. More preferably, the force is within the range of 40 to 80%. The reason is that the air chamber 16 has a sufficient volume related to the land opening area and functions effectively as a resonance chamber. This is to make it happen.
  • the width t of the stenosis necks 17a and 17b is restricted to 3 to 50% of the width T of the air chamber 16 when viewed in a two-dimensional pattern diagram (multiple stenosis necks exist per air chamber)
  • the reason is that the widths of the stenosis necks 17a, 17b and the air chamber 16 need to be different in order to play their respective roles.
  • 17 When the width t of 7b is less than 3% of the width T of the air chamber 16, the constricted necks 17a, 17b are not closed and the intended resonance action is not observed. This is because the necks 17a and 17b become more effective as pipes, and the resonance effect is reduced.
  • the diameter 2r of the neck of the resonance frequency f of the resonator is half the sipe cross-sectional area.
  • the constriction necks 17a and 17b of the resonator 15 can be formed in a tunnel shape that is not exposed on the surface of the land portion 4 as described above. Resonator 15, and thus the tires can be manufactured more easily, and the sufficient depth of the sipe makes it possible to eliminate the constriction neck even if tread tread wear progresses. Thus, the resonator 15 can always function effectively.
  • the cross-sectional area of the stenosis necks 17a and 17b is set to the total, and the length is set to the average value using the average value.
  • constriction necks 17a and 17b are too shallow, they will disappear immediately as the wear progresses.On the other hand, if the constriction necks 17a and 17b are too deep, opening and closing of the constriction necks 17a and 17b, which can be sipe, etc. is likely to occur.
  • the cross-sectional area of the neck changes greatly, and the resonance frequency f is specified.
  • the frequency of the resonator 15 can be tuned by using an analysis means such as a finite element method or a boundary element method.
  • the initial value of the depth d of the constriction necks 17a and 17b is as follows. 70% or less of maximum depth h, preferably 50% or less.
  • a tire of size 195Z65R15 (four circumferential grooves, its width 8mm, depth 8mm, pitch variation pitch length 50mm) with a contact surface as shown in Fig. 21 is attached to the 6JJ rim. Then, with the air pressure set at 210 kPa, the rolling test was performed at a speed of 80 kmZh under the action of a load of 4.47 kN using an indoor drum tester. The partial overall values for the center frequencies of 800 Hz, 1000 Hz, and 1250 Hz in the 1Z3 octave band were obtained.
  • the resonance frequency f of the resonator is, as described above,
  • the sound velocity c was set to 343.7 mZs.
  • a conventional tire in which a straight circumferential groove extends in the ground plane
  • resonators with different resonance frequencies are placed in a straight circumferential groove extending in the ground plane.
  • the chambers are opened in the form shown in Fig. 17 (b), the volume V of each air chamber is 864 mm d , 1123 mm 3 and 605 mm 3 , the cross-sectional area S of the stenosis neck is lmm 2 , and the radius r of the stenosis neck is The measurement results were compared with those of Example tires in which the resonance frequency of each resonator was 1014 Hz, 889 Hz, and 12 12 Hz, and the air chamber was opened on the land surface.
  • Each air chamber has an air chamber width T: 6 mm, length L: 24 mm, 31.2 mm and 16.8 mm, maximum depth H: 6 mm, constriction neck depth d: 2 mm, width t : 0.5mm (The size of the constriction neck is shown as the size per one).
  • the working frequency of the resonator was changed in the range of 600-2000Hz, and the tires of the example shown in Table 3 and the conventional tire (four straight circumferential grooves with a width of 8mm and a depth of 8mm)
  • the difference in noise level in the frequency band of the tire was measured under the same conditions as in Example 8. The result is shown in FIG.
  • Example tires (reacting under the same conditions as in Example 8) with the resonator operating frequency set to 600-2000 ⁇ were prepared, mounted on the vehicle, and run on the test course (running).
  • narrowed neck of the shape as shown in FIG. 17 (b) (cross-sectional area S is 2 mm 2 in total) have a volume V 864 mm 3, ll 23 mm 3 and 605 mm 3 ⁇ Konaru air chamber
  • the tire having the ground contact surface as shown in FIG. 21 and the tire having the resonator having only one narrowed neck (the width of the narrowed neck is enlarged and the sectional area S is made the same).
  • the noise reduction effect of a conventional tire with four straight circumferential grooves (straight rib patterns) was tested under the same conditions as in Example 8. A comparison was made.
  • the three types of resonators are: air chamber width T: 6 mm, length L: 24 mm, 31.2 mm and 16.8 mm depth H: 6 mm, constriction neck depth d: 2 mm, width t: 0. 5mm (stenotic neck (Dimensions are shown as per one dimension.)
  • Fig. 23 The results are shown in Fig. 23 as the difference from the noise level of a conventional tire (a tire with four straight circumferential grooves with a width of 8 mm and a depth of 8 mm).
  • air chamber comprising the opening shape as shown in FIG. 21 (opening area 144 mm 2, 101 mm 2 and 18 7. 2 mm 2, the volume V is 864mm 3, 1123mm 3 and 605 mm 3 maximum depth both 6mm)
  • the bottom wall as shown in Table 7 was provided with undulations (steps), a running experiment was conducted (same conditions as in Example 8), and the occurrence of stagnation was investigated.
  • the difference in noise level is that the resonator does not enter the ground plane.
  • the difference in noise level was about 1.5 dB, whereas there was always one resonator.
  • the tire according to the present invention was found to have a high noise reduction effect.
  • the noise level difference was found to be about 3.3 dB, and by providing three types of resonators with different operating frequencies, the resonators can be simultaneously operated over a wide band. As a result, it has become clear that a large noise reduction effect can be obtained. This is presumably due to the characteristic that air column resonance has a broad peak in the frequency space.
  • an air chamber 6 opening on the surface of the land portion 4;
  • the air chamber 6 is in a tire-unloaded state.
  • the opening area to the land surface below should be in the range of 25-300 mm 2 , more preferably 100-150 mm 2 .
  • the cross-sectional area and contour shape of the air chamber 6 in the cross section parallel to the land surface are the same as those of the land opening toward the bottom wall of the air chamber 6.
  • it can be gradually increased to the extent that the extraction of the mold part from the air chamber 6 of the tire after vulcanization molding is not restricted.
  • the resonator 5 that can be configured in this manner can function as a Helmholtz resonator described with reference to Fig. 3, and has a resonance frequency f similar to that described above.
  • this resonance frequency f is also a neck in the relationship with the air column resonance frequency of the circumferential groove 3.
  • the average value of 0 is 70
  • the opening shape of the air chamber 6 to the land surface is circular, but this opening shape can also be an ellipse or other curved contour shape. , Quadrilateral and other polygonal shapes.
  • the constriction neck 7 has a tunnel shape embedded in the block 4a as illustrated in Fig. 5 (a).
  • Fig. 5 (b) it can be opened on the surface of the block 4a, and the open neck 7 like the latter can be formed by, for example, pressing a blade of a vulcanization mold or the like.
  • the constriction neck 7 can also be easily formed.
  • the narrowed neck 7 can also be formed by sipe.
  • the shape of the sipe is a so-called flask-like shape having an enlarged space portion at the bottom. For example, portions other than the enlarged space portion have sipe walls in the ground plane.
  • the surface of the air chamber 6 has a land surface, in the figure, the maximum depth h of the block surface force, the tread tread surface 1 has a land part, and in the figure, a groove defining the block 4a,
  • it is set to 20% or more of the maximum depth H of the circumferential groove 3, particularly 40 to 80%, and preferably, the depth d of the block surface force of the constriction neck 7 is set to the maximum depth h of the air chamber 6. 70% or less, especially 50% or less.
  • the shape of the opening of the air chamber 6 to the block surface has a deformed contour shape consisting only of a curve.
  • the bottom wall of the air chamber 6 is not only a flat surface, but also a curved surface or the like that is convex or concave toward the opening side thereof as described above with reference to FIG.
  • one or more protrusions 6a that protrude upward are provided on the bottom wall, and the resulting unevenness difference ⁇ is 1.6 mm or more, more preferably 3 Omm or more.
  • the protrusion 6a is formed so as to protrude from the side wall of the air chamber and is independent of the bottom wall. In other words, the protrusion 6a can be separated from the bottom wall.
  • the arrangement of the resonator 5 having such a configuration with respect to the circumferential groove 3 is, for example, as shown in FIG. 1, in the case where one circumferential groove 3 is formed on the tread surface 1, and a plurality of In the case where the circumferential groove is formed, it is necessary that the ground plane 2 under the conditions described with reference to FIG. 1 always includes a plurality of resonators 5 having different resonance frequencies.
  • a plurality of resonators 5a, 5b, 5a, 5b, and 5b having different resonance frequencies are provided in each circumferential groove 3 within the ground plane 2 grounded under the same conditions as described above. It is preferable to adopt an arrangement mode in which each of 5c is always included.
  • a tire of size 195Z65R15 was mounted on a 6JJ rim and the air pressure was 210 kPa.
  • the side sound of the tire at this time was measured in accordance with the conditions specified in JASO C606, and the partial overall values of the center frequencies of 800 Hz, 1000 Hz, and 1250 Hz were obtained in the 1Z3 octave band.
  • the resonance frequency f of the resonator is, as described above,
  • the sound velocity c was 343.7 mZs.
  • Each of the four linear circumferential grooves extending in the ground plane has a configuration as shown in Fig. 7 (a).
  • 60 resonators each having an air chamber open in a square shape on the surface of the land portion are formed with the arrangement shown in FIG. 7 (b), and the air chamber volume V of each of the three types of resonators is defined respectively.
  • the partial overall values at the center frequencies described above of 800 Hz, 1000 Hz, and 1250 Hz were reduced by 2.6 dB.
  • the difference in the partial overall values in the 1Z3 octave band and the center frequencies of 800 Hz, 1000 Hz, and 1250 Hz from the conventional tire was determined under the same conditions as in Example 1.
  • FIG. 26 shows the noise reduction effect of the example tire at that time.
  • air chamber opening area can Rukoto reduce noise 2dB or more between 25 ⁇ 300Mm 2, among others, the effect is remarkable between 72 ⁇ 180Mm 2 Kotogawa Power.
  • FIG. 27 shows the noise reduction effect of the example tire at that time.
  • the average value of the resonance frequency f should be set within the range of 700-1800Hz.
  • the target air column resonance can be reduced by 2 dB or more.
  • Example tires provided with protrusions with irregularities of 1.6 mm, 3. Omm and 4. Omm on the bottom wall of the air chamber of the resonator, running on the gravel road of the test course, As shown in Fig. 29, when the presence or absence of stone stagnation in the air chamber and stenosis neck was tested, stone stagnation was observed in the air chamber with the bottom wall without uneven steps, but the protrusions The tire of the example provided with a force was free of stagnation.
  • the stenosis neck is formed by sipe, and the resonance frequency of the resonator is
  • the radius of the stenosis neck r obtained by the above equation was also calculated back to the sipe cross-sectional area force.
  • the three resonance frequencies f at that time are about 900 Hz, about lOOOHz, and about 120, respectively.
  • the noise reduction effect of the example tire with a pitch length of 77 mm at 0 Hz with respect to the conventional tire was 2.5 dB under the measurement conditions described in Example 1.
  • the noise reduction effect of the provided example tire having a pitch length of 77 mm with respect to the conventional tire was determined in the same manner as in Example 1, and the result shown in FIG. 30 was obtained.
  • the narrowed neck itself is advantageous to uneven wear, but if it is too shallow, the neck disappears during the wear of the land as described above. Resulting in There is a fear.
  • the air chamber it is advantageous in terms of both partial wear and wear resistance when the air chamber is shallow and the opening area to the land surface is small.
  • Fig. 7 (a) On the surface of the land portion, as shown in Fig. 7 (a), there are provided three types of resonators having air chambers opened in a square shape. 4mm, 12mm and 15.6mm, air chamber depth 6mm, neck width 0.5mm, neck length 6mm, neck depth 2mm, resonance frequencies 889Hz and 1014Hz respectively.
  • the tire of the example tire provided with a resonator having a circular opening shape on the surface of the land and a radius of 4.8 mm, which provides the same noise reduction effect as the above,
  • the noise reduction effect for conventional tires was found in the same way to be 2.7 dB.
  • an air chamber that functions as a resonance chamber can sufficiently function as a resonator even if it is configured by a combination of a simple two-dimensional shape and depth that is easy to create. It is understood that it can be volatilized.
  • each resonator having a square-open air chamber operating at about 800 Hz, about 1000 Hz, and about 1250 Hz is always illustrated in the ground plane as shown in Fig. 7 (b).
  • the partial overall values in the 1Z3 octave band, center frequency 800 Hz, 1000 Hz, and 1250 Hz bands were measured in the same manner as in Example 1. Then, the noise reduction effect of the example tire was determined to be 3.3 dB.
  • the noise generated by the tire can be further reduced by providing the respective resonators that simultaneously function over a wide frequency band.
  • the maximum plane width of the constriction neck is set in a range of 3 to 50% of the maximum plane width of the air chamber, particularly when no load is applied to the tire. .
  • FIG. 31 is expanded and expanded with the resonator shown in FIG. 5 (a) as an example.
  • the maximum plane width of the narrowed neck 7 measured in the direction perpendicular to the plane center line CL of the resonator 5, here, the projected width of the narrowed neck 7 forming a tunnel shape onto the land surface The maximum width w of, measured in the direction perpendicular to the plane center line CL of the air chamber 6
  • the range is 3 to 50% of w, more preferably 3 to 20%.
  • the maximum planar width w of the constriction neck 7 is 0.5 to 4. Omm
  • the maximum plane width w of the air chamber 6 should be in the range of 3.0 to 15. Omm, especially 5.0 to LO. Omm. preferable.
  • the plane length 1 of the constriction neck 7 measured on the plane center CL is 2 to 50 m.
  • the plane length 1 of the air chamber measured on the plane centerline CL should be 5 to 50 mm, especially 5 to 30 mm. Is preferred.
  • the bottom wall of the air chamber 6 is preferably provided with one or more protrusions 6a projecting upward on the bottom wall as described above with reference to FIG.
  • the resulting unevenness difference ⁇ is 1.6 mm or more, more preferably 3. Omm or more.
  • the arrangement of the resonator 5 having such a configuration with respect to the circumferential groove 3 is, for example, as shown in Fig. 1, in the case where one circumferential groove 3 is formed on the tread surface 1, and a plurality of When the circumferential groove is formed, a plurality of resonators 5 having at least one circumferential groove 3 having different resonance frequencies are provided in the ground plane 2 under the conditions described in FIG.
  • a plurality of resonators having different resonance frequencies are provided in the ground plane 2 that is grounded under the same conditions as described above, as illustrated in FIG.
  • Each of the resonators 5a, 5b, and 5c is always included at the same time.
  • a plurality of resonators are included in the ground plane 2 for each of all the circumferential grooves 3 extending in the ground plane 2. This means that only a plurality of resonators provided in at least one circumferential groove 3 among the grooves 3 are included in the ground plane 2.
  • a tire of size 195Z65R15 was mounted on a 6JJ rim and the air pressure was 210 kPa.
  • the side sound of the tire at this time was measured in accordance with the conditions specified in JASO C606, and the partial overall values of the center frequencies of 800 Hz, 1000 Hz, and 1250 Hz were obtained in the 1Z3 octave band.
  • the resonance frequency f of the resonator is, as described above,
  • the sound velocity c was 343.7 mZs.
  • a conventional tire in which four linear circumferential grooves each having a width and a depth of 8 mm are extended in the contact surface;
  • Each of the four linear circumferential grooves extending in the ground plane and having a width and depth of 8 mm.
  • 60 resonators having a configuration as shown in FIG. 7 (a), in which the air chambers open squarely on the surface of the land portion, are formed in the arrangement mode shown in FIG. 7 (b).
  • the maximum plane width of the resonator is 6. Omm, the length of the plane is 8.4 mm, 12 mm and 15.6 mm, the depth of the chamber is 6.
  • the maximum plane of the constriction neck By setting 0.5mm to a large size, 6mm to the plane length and 2.Omm to the neck depth, the air chamber volume V is 302mm 3 , 432mm 3 and 562mm 3 , and the neck cross-sectional area S is lmm 2 .
  • the center frequencies of the example tires were 800 Hz and 1000
  • the partial overall values at Hz and 1250 Hz were reduced by 2.6 dB.
  • FIG. 32 shows the noise reduction effect of the example tire at that time.
  • the noise can be reduced by 2.5 dB or more when the ratio of the maximum plane width is 3 to 50%, and in particular, the effect is 3 dB or more between 3 and 20%. It turns out that it is remarkable.
  • FIG. 33 shows the noise reduction effect of the example tire at that time.
  • the resonance frequency f is set within the range of 700 to 1800Hz.
  • the air column resonance can be reduced by 2 dB or more, and in particular, an excellent effect can be obtained in the range of 700 to 1400 Hz.
  • Example 30 Example tires using the maximum plane width of the narrowed neck as a parameter of the resonator resonating at about 1000 Hz, and the example tires using the maximum plane width of the air chamber as a parameter, and noise from the conventional tire Levels were measured as in Example 27.
  • FIGS. 34 and 35 The resulting noise reduction effect of the example tire is shown in FIGS. 34 and 35, respectively.
  • Example 27 which is an example tire using the plane length of the constriction network of three types of resonators resonating at about 900 Hz, about 1000 Hz, and about 1200 Hz as a parameter, and the conventional tire described above.
  • the overall overall value and the partial overall value with the tire using the plane length of the air chamber as parameters were measured under the same conditions as in Example 27.
  • FIGS. 36 and 37 The noise reduction effect of the example tires at that time is shown in FIGS. 36 and 37, respectively.
  • Fig. 36 it can be seen that when the plane length of the constriction neck is in the range of 2 to 50 mm, noise reduction effect of 2 dB or more can be brought about, especially in the range of 2 to 30 mm.
  • Fig. 37 it is possible to achieve an effect of 2 dB or more when the plane length of the air chamber is in the range of 5 to 50 mm, and in particular, it is possible to achieve an effect of 2.5 dB or more in the range of 5 to 30 mm. Is solved.
  • a resonator with a protrusion on the bottom wall of the air chamber can ensure the required air chamber volume and function as expected as long as the unevenness does not divide the air chamber. The ability to demonstrate this
  • the stenosis neck is formed by sipe, and the resonance frequency of the resonator
  • the radius r of the constriction neck in the case of 2 ⁇ I +1 s .3r) V was calculated from the sipe cross section.
  • the noise reduction effect was 2.5 dB under the measurement conditions described in Example 1.
  • the depth of the air chamber of each of the three types of resonators was 7.8mm, 6. Omm, and 4.2mm.
  • the air chamber functioning as a resonance chamber exhibits its full function as a resonator even if it is composed of a combination of a simple two-dimensional shape and depth that is easy to create. I understand that I can get it.
  • a plurality of resonators (resonant frequencies 889Hz, 1014Hz and 1212Hz) are opened in a single groove with dimensions of 8mm in width and 8mm in depth extending in the center of the tread ground plane,
  • the comparative tires (with 38.5 mm only on the half circumference of the tire) were placed in such a way that there was a moment when the resonator did not enter the ground contact surface (contact length 140 mm) when rolling the tire.
  • Example tires that have a resonator with a pitch length) and one resonator that always has one resonator in the ground plane (pitch length of 38.5 X 2 (mm) on the entire circumference of the tire)
  • pitch length 38.5 X 2 (mm) on the entire circumference of the tire
  • the noise reduction effect of the partial overall values in the 1Z3 octave band, center frequency 800 Hz, 1000 Hz, and 1250 Hz bands with respect to the conventional tire is In the case of the comparative tire, 1. 5 dB, and 2.5 dB for the example tires.
  • the respective resonators operating at about 800 Hz, about 1000 Hz, and about 1250 Hz are always arranged on the ground surface in a manner as illustrated in Fig. 7 (b), and the resonators are arranged.
  • the partial overall values of 1/3 octave band, center frequency 800 Hz, 1000 Hz, and 1250 Hz band are shown in the case of Example 26.
  • the noise reduction effect of the tire of the example was measured in the same manner and found to be 3.3 dB.
  • the noise generated by the tire can be further reduced by providing the respective resonators that simultaneously function over a wide frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 周溝の狭幅化による排水性能の低下をもたらすことなく、タイヤのトータル性能および量産性等を十分に確保し、併せて、トレッドパターンの設計上の高い自由度および、所期した通りの陸部剛性を実現してなお、周溝によって発生される気柱共鳴騒音を効果的に低減できる空気入りタイヤを提供するものであり、トレッド踏面1に、周方向に直線状に連続して延びる周溝3を設けるとともに、その周溝3に開口して陸部4内で終了する共鳴器5を設け、この共鳴器5を、陸部表面に開口する気室6と、気室6と周溝3との連通をもたらす狭窄ネック7とで構成し、この狭幅ネック7の平面最大幅w0を気室6の平面最大幅w1の3~50%の範囲としてなる。

Description

明 細 書
空気入りタイヤ
技術分野
[0001] この発明は空気入りタイヤ、なかでも乗用車用タイヤに関するものであり、とくには、 トレッド踏面の周方向に直線状、ジグザグ状、クランク状等に連続して延びる周溝に よって発生される気柱共鳴音を、共鳴器の作用下で有効に低減させる技術を提案す るものである。
背景技術
[0002] 気柱共鳴音とは、トレッド踏面の周方向に連続して延びる周溝と、トレッド踏面接地 域内の路面とによって囲繞される管内の空気の共鳴によって発生される騒音であり、 この気柱共鳴音の周波数は、一般的な乗用車では 800〜1200Hz程度に観測され ることが多ぐピークの音圧レベルが高ぐ周波数帯域が広いことから、タイヤの発生 騒音の大きな部分を占めることになる。
[0003] また、人間の聴覚は、上記の周波数帯域でとくに敏感であるので、フィーリング面で の静粛性を向上させる上においても、気柱共鳴音の低減は有効である。
[0004] そこで、気柱共鳴音の低減を目的として、周溝の容積を減じることが広く行われて いる他、特許文献 1に開示されているように、一端だけが周溝に開口し、他端が陸部 内で終了する長い横溝を設けて、その横溝内での反共振を用いて気柱共鳴音を低 減させることが提案されており、また、特許文献 2〜4に記載されているように、ヘルム ホルツ共鳴器によって、気柱共鳴音の共鳴周波数付近のエネルギーを吸収する技 術も提案されている。
特許文献 1:国際公開 04Z103737号パンフレット
特許文献 2:特開平 5— 338411号公報
特許文献 3:特開 2000— 118207号公報
特許文献 4:特開 2001 - 191734号公報
発明の開示
発明が解決しょうとする課題 [0005] し力るに、周溝の溝容積を減少させる従来技術では、排水性能の低下が余儀なくさ れることになり、また、長い横溝の配設を必須とする、特許文献 1に記載された発明に よれば、トレッドパターンの設計上の自由度、適切な陸部剛性の確保等についての 難点がある、という問題があった。
[0006] この一方で、特許文献 2〜4のそれぞれに記載された発明はいずれも、タイヤ陸部 の路面衝突音の低減、陸部の耐摩耗性、耐石嚙み性等の性能全般や、タイヤの量 産可能性等を十分に考慮した上で、ヘルムホルツタイプの共鳴器の、トレッドへの具 体的かつ効果的な配設方法を開示しているとはいい難ぐ未だ実用化には到ってい ない状況にある。
[0007] この発明は、従来技術が抱えるこのような問題点を解決することを課題としてなされ たものであり、それの目的とするところは、周溝容積の低減に起因する、排水性能の 低下をもたらすことなぐタイヤのトータル性能および量産性等を十分に確保し、併せ て、トレッドパターンの設計上の高い自由度および所期した通りの陸部剛性を実現し てなお、周溝によって発生される気柱共鳴騒音を効果的に低減できる空気入りタイヤ を提供するにある。
課題を解決するための手段
[0008] この発明に係る空気入りタイヤは、トレッド踏面に、周方向に直線状、ジグザグ状等 の延在形態で連続して環状に延びる周溝を設けるとともに、その周溝、より直接的に はそれの溝壁に開口して、リブ、ブロック等の陸部内で終了する共鳴器を設け、この 共鳴器を、陸部表面に開口する気室と、気室と周溝との連通をもたらす、狭小通路と しての狭窄ネックとで構成し、そして、適用リムに装着したタイヤに規定の空気圧を充 填し、そのタイヤに、規定の質量の 80%に対応する負荷を作用させたタイヤ姿勢の 下で、接地面内に、共鳴周波数の異なる複数個の共鳴器が常に完全に含まれるよう に、それぞれの共鳴器を配置してなるものである。
[0009] ここで、「適用リム」とは、タイヤのサイズに応じて下記の規格に規定されたリムを、「 規定の空気圧」とは、下記の規格において、最大負荷能力に対応して規定される空 気圧をいい、最大負荷能力とは、下記の規格で、タイヤに負荷することが許容される 最大の質量をいう。また「規定の質量」とは、上記の最大負荷能力をいう。 なお、ここでいう空気は、窒素ガス等の不活性ガスその他に置換することも可能で ある。
[0010] そして規格とは、タイヤが生産または使用される地域に有効な産業規格によって決 められたものであり、たとえば、アメリカ合衆国では、 "THE TIRE AND RIM ASSOCIA TION INC.の YEAR BOOK"であり、欧州では、 "THE European Tyre and Rim Tech nical Organisation"の" STANDARDS MANUAじ,であり、日本では日本自動車タイヤ 協会の" JATMA YEAR BOOK"である。
[0011] なおここでいう「共鳴周波数」は、狭窄ネックの半径を!:、長さを 1、ネック断面積を S
0
とし、また、気室容積を V、音速を cとしたとき、
[数 1]
Figure imgf000005_0001
として表わすことができる。
なお、上記式中の管端補正は、実験によって求められることが多ぐその値は文献 ごとに異なる力 ここでは 1. 3rを用いるものとする。
[0012] 力かるタイヤにおいてより好ましくは、接地面内に常に含まれる複数個の共鳴器の 、共鳴周波数の最大値と最小値の差を、 200〜800Hz、とりわけ、 300〜600Hzの 範囲とする。
[0013] また好ましくは、接地面内に常に含まれる共鳴器の数を、周溝一本当り三個以上、 なかでも四個以上、とくには六個以上とする。
[0014] ここで、ピッチバリエーションを付与したトレッドパターンにおける共鳴器の共鳴周波 数の調整は、ピッチ長さの長短に応じて、共鳴器の気室の周方向寸法を変化させる ことによって行うことが好ましい。
[0015] また、ピッチバリエーションを付与したトレッドパターンを有するトレッド踏面では、周 上の少なくとも一つのピッチ内に、共鳴周波数の平均値が 700〜1800Hzの範囲内 の値となる共鳴器を配設することが好まし 、。
なおここで、「共鳴周波数の平均値」とは、ある一本の周溝に、全周にわたって開口 する全ての共鳴器にっ 、ての共鳴周波数の平均値を 、うものとする。
[0016] そしてまた好ましくは、周上の少なくとも一つのピッチ内に、共鳴周波数が 609〜2
153Hzの範囲内の一個以上の共鳴器を配設する。
[0017] なお、共鳴器の、上述したような共鳴周波数の調整は、
[数 2]
Figure imgf000006_0001
の計算式中の、ネック断面積 Sに影響を及ぼす、狭窄ネックそれ自身の幅、深さの他 、狭窄ネックの長さ 1
0を変化させることによって行うことができるとともに、気室容積 Vに 影響を及ぼす、気室の幅、深さおよび長さを変化させることによつても行うことができ、 また、この気室容積 Vに関しては、気室の陸部開口面積または、気室側壁の傾き角 度をパラメータとして周波数調整を行うこともできる。
[0018] ここで、共鳴器の狭窄ネックはサイプによって形成することもできる。なおこの場合 は、上記共鳴周波数 f の式中の、ネック半径 rは、ネック断面積 Sとしてのサイプ断面
0
積から半径 rを逆算することによって求めることができる。
[0019] またここで、気室の、陸部表面への開口形状は、角形輪郭形状とする他、曲線輪郭 形状とすることもでき、このような気室は、それの深さ方向の全体にわたって、開口面 積と同一の横断面積を有するものとすることができる他、深さ方向に向けて、横断面 積が漸増もしくは漸減するものとすることもできる。
[0020] ところで、このような気室の底壁は、平坦面とすることの他、開口側に向けて凸もしく は凹となる面とすることもできる力 より好ましくは、底壁に、 1. 6mm以上の高さの凹 凸を設けてなるものとする。
[0021] 以上に述べたいずれのタイヤにおいても、狭窄ネックの深さを、気室の狭さ深さと同 等もしくは、それより浅くすること、狭窄ネックの、トレッド幅方向に対する延在角度を、 10° 〜60° の範囲、とくには 20° 〜40° の範囲とすること、気室の、陸部表面開 口輪郭線のアスペクトレシオを 2〜20の範囲、なかでも 10以下とすることが好ましぐ 気室の、陸部表面への開口面積を、トレッド中央部からトレッド幅方向の外側に向か うにつれて次第に減少させること、気室の、陸部表面への開口面積を、気室の底壁 面積より大きくすること、狭窄ネックの幅を、それの底部に向けて次第に狭めることが 好ましい。
[0022] また好ましくは、共鳴器を、陸部表面に開口する一個の気室と、同一の周溝の溝壁 に別個に開口して、その気室を周溝に連通させる二本以上の狭窄ネックとで構成す る。
なおこの場合の、二本以上の狭窄ネックは、延在途中で二本以上に分岐させること によって構成することができる他、交差も分岐もさせることなぐ相互に完全に独立さ せて構成することもできる。
[0023] ところで、一個の気室に対して、独立した複数本、たとえば二本の狭窄ネックを配設 した場合の共鳴周波数は、
Figure imgf000007_0001
狭窄ネック 1 :1 、r、s
01 1 1
狭窄ネック 2 :1 、r、S
02 2 2
として表わすことができ、狭窄ネックの断面積はその合計 (断面積の総和)が、また長 さは、それらの平均値が共鳴周波数に影響を及ぼすことになる。
ここで、狭窄ネックが三本以上の場合は、ルート内の(1 + 1. 3r)および Sがそれら
0
の本数に応じて加算され、分子の係数がそれらの本数分を表示した式に変更される ことになる。
[0024] なお、狭窄ネックが、延在途中で複数本に分岐されるものである場合の共鳴周波数 は、その分岐個所までは、複数本の狭窄ネックが一括りにされているとして扱うことで 、上記の式をもって算出することができる。
[0025] そしてまた、上述した 、ずれの空気入りタイヤにお!、ても、気室の、陸部表面への 開口面積を、 25〜300mm2、な力でも 72〜180mm2、そしてとくには、 100〜150m m2範囲とすることが好ましぐ狭窄ネックの平面最大幅を、気室の平面最大幅の 3〜 50%、なかでも 3〜20%、とくには 3〜15%の範囲とすることが好ましい。
発明の効果
[0026] この発明に係る空気入りタイヤでは、周溝に、気室と、狭小通路としての狭窄ネック とからなるヘルムホルツタイプの共鳴器を開口させて設け、この共鳴器の共鳴周波数 を、周溝のそれに合わせることにより、周溝の一次共鳴エネルギーを、共鳴器の狭窄 ネック内での空気の振動によって吸収することができるので、周溝内の気柱共鳴音は 、その周溝の溝容積を減少させることなしに有効に低減されることになる。
[0027] ところで、このタイヤでは、共鳴器の気室を、陸部表面に開口させて形成して 、るの で、生タイヤに対する加硫成形を、金型部分の、その気室相当部分への入り込みを もって行う場合でも、製品タイヤの気室力 のその金型部分の抜き出しを、気室の横 断面積が、それの深さ方向で幾分変化すると否とにかかわらず、常に円滑かつ確実 なものとすることができ、この結果として、タイヤの製造を、共鳴器を有しない従来の 一般的なタイヤと同様にして容易に行うことができる。
[0028] なお、陸部表面に開口するこのような気室も、トレッド踏面の接地面内では、路面に よる開口の閉止下で、密閉空間を画成することになるので、その気室に、共鳴室とし ての機能を十分に発揮させることができる。
[0029] またここでは、タイヤに、最も使用頻度の高い、規定質量の 80%に対応する負荷を 作用させたタイヤ姿勢の下で、接地面内に、共鳴周波数の異なる複数個の共鳴器が 常に完全に含まれるように共鳴器を配置することにより、タイヤの回転位置のいかん にかかわらず、共鳴周波数の異なるそれぞれの共鳴器をもって、広い周波数帯域の 周溝気柱共鳴騒音を同時に、効果的に低減させることができる。
[0030] 力べして、この空気入りタイヤでは、周溝容積の低減による排水性能の低下をもたら すことなぐまた、製品タイヤの型抜け性、いいかえれば、タイヤの量産性を損なうこと なぐ気室、ひいては、共鳴器にそれ本来の機能を効果的に発揮させることができ、 併せてここでは、陸部の適切な配置による操縦性の向上、二次元デザイン時点での 、耐摩耗性、陸部の路面衝突騒音等を考慮した共鳴器設計が可能になる。
[0031] 力かるタイヤにおいて、接地面内に常に含まれる複数個の共鳴器の、共鳴周波数 の最大値と最小値の差を、 200〜800Hz、好適には 300〜600Hzの範囲内としたと きは、広い周波数帯域にわたって、気柱共鳴騒音をより効果的に低減させることがで きる。
すなわち、その差が 200Hz未満では、共鳴周波数が同一の共鳴器の複数個が接 地面内に含まれる場合に比して、騒音低減効果のそれほどの増加は見込めず、一 方、複数の共鳴器の共鳴周波数を、 800Hzを越えるほどに分散させたときは、周溝 の気柱共鳴騒音の周波数帯域力 外れることになるため、同様に、高い騒音低減効 果を期し難くなる。
[0032] またここで、接地面内に、常に同時に含まれる、共鳴周波数の異なる共鳴器の数を 、周溝一本あたり三個以上、好ましくは四個以上、より好ましくは六個以上としたとき は、各個の共鳴器それ自体は小型になるも、結果として、より大きな騒音低減効果が 得られる。
これは、周溝内で音圧振幅が最大となる、タイヤ中心軸の直下付近に共鳴器を配 置している時間が長くなることによるものと考えられる。
[0033] この一方で、接地面内に含まれる共鳴器の数が二個では、それが一個の場合に比 して、さほどの効果をもたらし得ない。
[0034] そしてまた、ピッチバリエーションの付与に伴うピッチ長さの長短に応じて、共鳴器 の気室の寸法を変化させる場合は、ピッチノリエーシヨンの付与に際し、気室の周方 向長さを、ピッチ長さに応じて伸縮させることで対処することができるので、共鳴器の 配置設計が容易になる。
また、ピッチ長さに応じて共鳴器の共鳴周波数を変化させることができ、結果として 、より広い周波数帯域に対して共鳴器を作用させることが可能となる。
[0035] さらに、周上の少なくとも一のピッチ内に、共鳴周波数の平均値が 700〜 1800Hz 、とりわけ 700〜1400Hzの範囲内の値となる共鳴器を配設したときは、それが接地 面内に完全に入り込んだ状態で、ドライバーに不快な騒音として認識されることの多 い、 1Z3オクターブバンドで 800〜1250Hzの帯域の周溝気柱共鳴音に有効に対 処させることができ、また、それを、高周波ノイズと称される、 1000〜2000Hzの高音 域の騒音に対する不快感の低減に有利に寄与させることができる。
[0036] そしてまた、周上の少なくとも一つのピッチ内に、共鳴周波数力 ½09〜2153Ηζと なる一個以上の共鳴器を配設したときは、気柱共鳴音の低減に有意な効果を持つと 分かった。
[0037] ところで、共鳴器の狭窄ネックは、それを、陸部の表面に露出しないトンネル状に形 成することは可能であるが、陸部表面に開口するサイプによって形成するときは、サ イブは、それの所要の長さ、深さ、延在態様等のいかんにかかわらず、加硫金型その 他によって、所期した通りに簡単かつ容易に成形することができるので、共鳴器、ひ いては、タイヤの製造を一層容易にすることができる。
[0038] また、サイプは、それの深さを十分にとることで、トレッド陸部の摩耗が進行しても、 狭窄ネックの消滅を有効に防止して、共鳴器に、その機能を長期間にわたって十分 に発揮させることができる。
[0039] なおこの場合、サイプを、底部に拡大空間部を有する、いわゆるフラスコサイプとす ることもでき、これによれば、拡大空間部の作用下で、狭窄ネックの不測の閉塞のお それを有効に取り除くことができる。
[0040] ここで、気室の、陸部表面への開口形状は、それを、形成が容易な多角形輪郭形 状としたときは、その多角形のいずれの辺も、タイヤ接地面の、踏込み縁および蹴出 し縁に沿って存在しない姿勢として気室を配設することで、気室開口縁が、路面に衝 突することによるピッチノイズの発生を抑制することができる。また、気室の開口形状 を多角形輪郭形状としたときは、気室容積の設定が容易になることにより、より効果的 に作用する共鳴器の設計が容易になる。
[0041] この一方で、その開口形状を、円形、楕円形等の曲線輪郭形状としたときは、気室 を所要に応じた配設姿勢としてなお、ピッチノイズの発生を有利に抑制し、また、開口 縁部分への偏摩耗の発生を抑制することができる。
[0042] そしてさらに、気室の底壁に、 1. 6mm以上の凹凸を設けた場合には、気室への石 嚙みを有利に防止することができ、このことは、 3. Omm以上の凹凸を設けた場合に より効果的である。
[0043] 力かる空気入りタイヤにおいて、狭窄ネックの深さを、気室の深さと同等としたときは 、狭窄ネックの摩滅とほぼ同時期に気室もまた摩滅することになるので、それらのい ずれか一方だけがいつまでも残存する場合に比し、陸部の剛性段差を取り除いて、 偏摩耗の発生を有利に抑制することができる。
この一方で、狭窄ネックの深さを気室のそれより浅くしたときは、トレッド接地面の摩 耗に伴う気室容積の減少等によって、共鳴器の共鳴周波数が、周溝内の気柱共鳴 音の低減に寄与し得ないほどに変化する場合に、狭窄ネックの摩滅をもって、共鳴 器にその機能を停止させることができる。
[0044] また、狭窄ネックのトレッド幅方向に対する延在角度を 10° 〜60° 、なかでも、 20
° 〜40° の範囲としてときは、その狭窄ネックが陸部表面に開口するものである場 合に、偏摩耗の発生および、狭窄ネックの縁部が路面に衝突することに起因するピッ チの発生をともに有効に防止することができる。
いいかえれば、その延在角度が 10° 未満では、狭窄ネックによって比較的大きな ピッチノイズが生じるおそれが有り、一方、 60° を越えると、陸部の、狭窄ネックと周 溝との間の鋭角隅部に、偏摩耗の発生のおそれが高くなる。
[0045] そしてまた、気室の、陸部表面開口輪郭線のアスペクトレシオを 2〜20の範囲、より 好適には 10以下の範囲として場合には、ピッチノイズや偏摩耗の発生を抑制しつつ
、気室にそれ本来の機能を十分に発揮させることができる。
すなわち、アスペクトレシオが 2未満では、気室が、局所的なボイドの如くに作用し て、ピッチノイズや偏摩耗を悪化させるおそれがある一方、それが 20を超えると、共 鳴器に、所要の周波数の共鳴を生じさせることが難しくなる。
[0046] ところで、気室の、陸部表面への開口面積を、トレッド中央部からトレッド幅方向の 外側に向かうにつれて次第に減少させたときは、偏摩耗の発生し易いトレッド接地面 の側部域から、ボイドの如くに振るまって偏摩耗の発生の核となり易 、気室の占有面 積を有効に低減させることができる。
[0047] ここで、気室の、陸部表面への開口面積を、気室の底壁面積より大きくした場合に は、その気室への石嚙みが生じても、気室力もの石の抜け出しを十分円滑に行なわ せることができ、また、生タイヤに対する加硫成形に当ってのその気室の形成を一層 容易にすることができる。
[0048] そして、狭窄ネックの幅を、それの底部に向けて次第に狭めた場合は、気室の摩耗 に伴う気室容積の減少に対応させてネック断面積を減少させることで、共鳴周波数を 所期した通りに維持することができる。
[0049] さらに、共鳴器を、陸部表面に開口する一個の気室と、同一の周溝の溝壁に別個 に開口してその気室を周溝に連通させる二本以上の狭窄ネックとで構成したときは、 すぐれた減音効果を確保しつつ、たとえば、一方の狭窄ネックを経て気室内へ侵入 した水を、他方の狭窄ネックを経て周溝内へ排水させること等によって排水性を改善 することができ、さらには、陸部剛性の調整や意匠の点で、トレッドパターンの設計の 自由度を高めることができる。
[0050] なおこの場合、複数本の狭窄ネックのそれぞれを、相互に完全に独立させて形成し たときは、とくに優れた排水性能を確保することができ、この一方で、複数本の狭窄ネ ックを、一本もしくは複数本の狭小ネックの延在途中で分岐させて形成したときは、ト レッド陸部剛性の調整が容易となる他、偏摩耗性その他の性能を向上させることがで きる。
[0051] またここで、気室の、陸部表面への開口面積を 25〜300mm2、より好ましくは、 72 〜180mm2、さらに好ましくは、 100〜150mm2の範囲としたときは、気室にそれ本 来の機能を有効に発揮させてなお、気室開口縁の、路面衝突騒音、すなわち、ピッ チノイズの増力 []、気室開口縁それ自体の偏摩耗を有効に抑制することができる。
[0052] すなわち、開口面積が 25mm2未満では、気室に共鳴室としての機能を十分に発 揮させるためには、細く長い狭窄ネックを設けることが必要になるところ、そのネックが 閉じるおそれが高くなるため、共鳴器に所期した騒音低減効果を常に確実に発揮さ せることが困難〖こなる。一方 300mm2を超えると、陸部剛性の低下による操縦性の悪 化の他、開口縁の長さが長くなる事に起因する、ピッチノイズの増大、早期の偏摩耗 の発生が否めなくなる。
[0053] 以上のようなタイヤにおいて、トレッドパターンの展開平面視で、狭窄ネックの平面 最大幅を、気室の平面最大幅の 3〜50%、より好ましくは 3〜20%、さらに好ましくは 3〜15%の範囲とした場合は、狭窄ネックと気室とに、所期した通りの機能を十分に 発揮させることができる。
つまり、狭窄ネックの最大幅が 3%未満では、そのネックが閉塞されることで、所要 の騒音低減効果を、常に確実に実現することが難しぐ一方、それが 50%を越えると 、そのネック内の空気体積が大きくなくなりすぎて、共鳴周波数でのその空気の、十 分な振動振幅をもたらすことが難しくなり、結果として、騒音低減効果が小さくなる。 図面の簡単な説明
圆 1]この発明の一の実施形態を接地面について模式的に示す図である。
圆 2]図 1の変形例を模式的に示す図である。
[図 3]ヘルムホルツタイプの共鳴器を模式的に示す図である。
[図 4]接地面内での共鳴器の配置態様を例示する図である。
圆 5]共鳴器の形成態様を例示する要部斜視図である。
[図 6]図 5 (a)の VI— VI線に沿う気室底壁の拡大断面図である。
[図 7]共鳴器の平面形態および配置態様を示す図である。
[図 8]実施例 2の結果を示す図である。
[図 9]実施例 3の結果を示す図である。
[図 10]実施例 4の結果を示す図である。
[図 11]実施例 6の結果を示す図である。
[図 12]実施例 7の結果を示す図である。
圆 13]共鳴器の変形例を示す断面図および平面図である。
圆 14]他の実施形態を接地面で示す模式図である。
[図 15]加硫金型の、共鳴器の成形部を例示する斜視図である。
[図 16]図 14に示す共鳴器をヘルムホルツタイプの共鳴器に摸して示す斜視図であ る。
圆 17]共鳴器の形成態様を例示する要部斜視図である。
[図 18]共鳴器の各寸法を示す図である。
[図 19]共鳴器の他の形態を例示する図である。
圆 20]共鳴器の配置態様を例示する図である。
[図 21]共鳴器の他の配置態様を例示する図である。
[図 22]実施例 9の結果を示すグラフである。
[図 23]実施例 12の結果を示すグラフである。
[図 24]実施例 13の結果を示すグラフである。 [図 25]実施例 14の結果を示すグラフである。
[図 26]実施例 18の結果を示す図である。
[図 27]実施例 19の結果を示す図である。
[図 28]実施例 20の結果を示す図である。
[図 29]実施例 21の結果を示す図である。
[図 30]実施例 23の結果を示す図である。
[図 31]他の実施態様の共鳴器を例示する展開拡大平面図である。
[図 32]実施例 28の結果を示す図である。
[図 33]実施例 29の結果を示す図である。
[図 34]実施例 30の結果を示す図である。
[図 35]実施例 30の結果を示す図である。
[図 36]実施例 31での結果を示す図である。
[図 37]実施例 31での結果を示す図である。
[図 38]実施例 34での共鳴器の配置態様を示す図である。
符号の説明
1 トレッド踏面
2 接地面
3 周溝
4 陸部
4a ブロック
5, 5a, 5b, 5c, 15 共鳴器
6, 16 気室
6d 突部
7, 17a, 17b 狭窄ネック
δ 凹凸差
Θ 延在角度
CL 平面中心線
w , w 平面琅大幅 1 , 1 平面長さ
0 1
発明を実施するための最良の形態
[0056] 図 1は、この発明の実施の形態を模式的に示す図であり、図中 1はトレッド踏面、な かでも、適用リムに装着したタイヤに規定の空気圧を充填し、そのタイヤに、規定の 質量の 80%に対応する負荷を作用させた状態で路面に接地する接地面 2を示し、 3 は、その接地面 2の中央部を通って、周方向へ、たとえば直線状に連続して延びて、 全体として円環形状をなす周溝を示す。
[0057] ここでは、このようにして形成される周溝 3に一端で開口して他端が陸部 4内で終了 する共鳴器 5を設け、この共鳴器 5を、それの他端側にあって、陸部 4の表面に開口 する、所要の容積の気室 6と、この気室 6と周溝 3との連通をもたらす、陸部 4内への 埋め込みを可とする、狭小通路としての狭窄ネック 7とで構成するとともに、接地面 2 内に、常に同時に、かつ完全に含まれる複数個、図では二個の共鳴器 5の共鳴周波 数を相互に相違させる。
[0058] なお、ここにおいては、接地面内に、常に同時に含まれることとなる複数個の共鳴 器が二種類以上の共鳴周波数を有していればよぐ従って、接地面 2内に、たとえば 一本の周溝 3にっき三個以上の共鳴器 5が含まれる場合であっても、共鳴周波数の 種類は二種類以上とすることができ、また、複数本の周溝 3のそれぞれに共鳴器 5を 設ける場合には、図 2に例示するように、各個の周溝 3に設けた共鳴器 5の相互間で 、共鳴周波数を二種類以上、図では三種類に相違させることを可とする。
[0059] ここで、気室 6の、陸部表面への開口面積は、たとえば 25〜300mm2の範囲、とく に好ましくは、 100〜150mm2の範囲とすることができ、この気室 6の、陸部表面と平 行な断面内での横断面積および輪郭形状は、その気室 6の底壁側に向けて、陸部 開口のそれらと同一にできることはもちろん、加硫成形を終えたタイヤの気室 6からの 、金型部分の抜き出しが拘束されることのない程度に漸増させることもでき、逆に、漸 次減少、させることちできる。
[0060] このように構成することができる共鳴器 5は、気室 6の陸部開口および狭窄ネック 7 がともに、路面によって密閉された状態の下では、図 3に模式的に示すようなヘルム ホルツタイプの共鳴器を形成することになり、その共鳴器 5の共鳴周波数 f は、前述 したように、狭窄ネック 7の半径を!:、長さを 1、ネック断面積を Sとするとともに、気室容
0
積を V、音速を cとしたとき、
Figure imgf000016_0001
として表わすことができるので、この共鳴周波数 f は、周溝 3の気柱共鳴周波数との
0
関連の下で、ネック半径 r、ネック長さ 1、ネック断面積 Sおよび気室容積 Vを、先に述
0
ベたようにして直接的もしくは間接的に選択することによって、所要に応じて適宜に 調整することができる。
[0061] ところで、このような共鳴周波数 f に関し、その平均値が、 700〜1800Hzの範囲、
0
なかでも、 700〜1400Hzの範囲内の共鳴器 5を、ピッチバリエーションを付与したト レッドパターンを有するトレッド踏面で、周上の少なくとも一つのピッチ内に配設するこ とが好ましい。
[0062] そしてまた、接地面 2内に、常に同時に含まれることになる複数個の共鳴器 5のそれ ぞれの共鳴周波数 f は、それらの最大値と最小値の差を 200〜800Hzの範囲とする
0
ことが、騒音低減効果をより実効あるものとする上で好ましぐこのことは、それぞれの 共鳴器 5の共鳴周波数 f の平均値を、 700〜1800Hzの範囲内に特定した場合に
0
一層効果的である。
[0063] ここにおいて、共鳴器 5の配置は、図 4に例示するように、接地面内に、常に同時に 含まれる共鳴器の数が、周溝一本当り三個以上となるように行うことがより好ましぐこ の場合、一本の周溝 3に開口するそれぞれの共鳴器はともに、同一の共鳴周波数 f
0 を有するものとすることもできるが、図示のように、共鳴周波数 f
0が相互に異なる共鳴 器 5a、 5b、 5cとすることがより好適である。
[0064] なおここで、周溝 3に開口する共鳴器の共鳴周波数 f をこのように相違させる場合
0
は、ピッチバリエーションの付与に伴うピッチ長さの長短に応じて、共鳴器の気室 6の 周方向寸法、ひいては気室容積を変化させることが、共鳴器の配置設計を容易にす る上で有利である。 [0065] ところで、図 1、 2および 4に示すところでは、気室 6の、陸部表面への開口形状を円 形輪郭形状としているも、この開口形状は、楕円形その他の曲線輪郭形状とすること もでき、また、四角形その他の多角形輪郭形状とすることもできる。
[0066] このような共鳴器 5において、狭窄ネック 7は、図 5 (a)に要部斜視図で例示するよう に、陸部 4、ここではブロック 4a内に埋め込み配置したトンネル状のものとすることが できる他、図 5 (b)に示すように、ブロック 4aの表面に開口したものとすることもできる。 ここで、後者のような開口ネック 7を、たとえば、加硫金型のブレードその他の押し込 み等によって形成するときは、気室 6に加えて、狭窄ネック 7をもまた簡易に形成する ことができる。
そしてこの場合は、狭窄ネック 7をサイプによっても形成することができる。 このとき、サイプの形状を、図 5 (c)に例示するように、底部に拡大空間部を有する、 いわゆるフラスコ状とし、たとえば、拡大空間部以外の部分は、接地面内でサイプ壁 が相互に接触する程度の狭幅部とすることにより、狭窄ネック 7の各種の寸法を、図 5
(a)に示す場合と同様に常に一定のものとすることができる。
[0067] なお、図 5に示すところでは、気室 6のブロック表面への開口形状を、曲線のみから なる異形輪郭形状としているも、この形状は、円形、角形等を含む所要の輪郭形状 に適宜変更できることはもちろんである。
[0068] 以上に述べたところにぉ 、て、気室 6の底壁は、平坦面とすることの他、それの開口 側に向けて凸もしくは凹となる面等とすることもできるが、より好ましくは、図 6に、図 5 ( a)の VI— VI線に沿う断面を拡大して示すように、その底壁に、上方に向けて凸とな る突部 6aを一個以上設け、この結果として生じる凹凸差 δを 1. 6mm以上、一層好 ましくは 3. Omm以上とする。
なおこの場合の突部 6aは、気室側壁に突出形成されて、底壁からは独立するもの
、いいかえれば、底壁からは分離されたものとすることもできる。
実施例 1
[0069] サイズが 195Z65R15のタイヤを、 6JJのリムに装着し、空気圧を 210kPaとした状 態で、室内ドラム試験機により、 4. 47kNの荷重の作用下で 80kmZhの速度で負荷 転動させ、このときのタイヤの側方音を JASO C606に定める条件に従って測定し、 1Z3オクターブバンドで、中心周波数 800Hz、 lOOOHzおよび 1250Hzの帯域の パーシャルオーバオール値を求めた。
[0070] この場合、効果有りと判断するのは、実車試験によるドライバーのフィーリング評価 で改善効果が見込める 2dB以上の音圧低下とした。
[0071] なお共鳴器の共鳴周波数 f は、前述したように、
0
[数 5]
Figure imgf000018_0001
で求められる値とした。
ここで、音速 cは 343. 7mZsを用いた。
[0072] 接地面内に、溝幅および溝深さがともに 8mmの四本の直線状周溝を延在させてな る従来タイヤと、
接地面内に延在する、溝幅および溝深さがともに 8mmの四本の直線状周溝のそ れぞれにっき、図 7 (a)に示すように、気室が陸部表面に四角形に開口する平面形 態を有する共鳴器を、図 7 (b)に示す態様にて、 33. 4mmのピッチで周上に 60個配 置して、接地面内に、常に同時に入り込む三種類の共鳴器の共鳴周波数を、表 1に 示すように、約 800Hz、約 lOOOHzおよび約 1250Hzとしてなる実施例タイヤとの測 定結果を比較したところ、実施例タイヤでは、 3. 3dBの騒音低減効果が認められた。 これに対し、接地面内に同時に含まれる共鳴器の共鳴周波数を、一種類だけの 10 14Hzとした比較例タイヤでは、従来タイヤに対する騒音低減効果は 2. 6dBであつ た。
[0073] [表 1]
Figure imgf000018_0002
これによれば、実施例タイヤでは、広い帯域の周波数に対してそれぞれの共鳴器 を同時に作用させることで、より大きな効果をもたらし得ることが解かる。 実施例 2
[0075] 図 7 (b)に示すように配置した共鳴器の共鳴周波数 f をそれぞれの帯域で変化させ
0
た実施例タイヤと、前記従来タイヤとの騒音レベルの差を、実施例 1の場合と同様に して求めた。
そのときの、実施例タイヤの騒音低減効果を図 8に示す。
[0076] 図 8によれば、共鳴周波数 f の平均値を 700〜1800Hzの範囲内に設定すること
0
で、狙いとする気柱共鳴音を 2dB以上低減させることができ、なかでも、 700-1400 Hzの範囲ではその効果がとくに大き 、ことが明らかである。
実施例 3
[0077] 一本の周溝につき、三個の共鳴器が、常に同時に接地面内に入り込むように共鳴 器を配設し、中間の共鳴周波数を約 lOOOHzとして固定し、他の二個の共鳴器のそ れぞれの共鳴周波数を、その約 1000Hzを境として低周波側および高周波側へ変 化させた実施例タイヤと、前記従来タイヤとの騒音を、実施例 1の場合と同様にして 測定した。
[0078] この測定結果による騒音の低減効果を、実施例タイヤの、共鳴周波数の最大値と 最小値との差をパラメータとして整理したところ図 9に示す通りとなった。
[0079] ここで、共鳴周波数の差が 0 (三個の共鳴器の共鳴周波数がともに約 1000Hz)で ある場合の騒音低減効果より ldB以上すぐれた効果を希求水準とすると、周波数の 差力 200〜800Hzの範囲、とりわけ、 300〜600Hzの範囲で高い騒音低減効果が 得られた。
実施例 4
[0080] 一本の周溝につき、接地面内に含まれる、共鳴周波数が二種類以上に異なる、共 鳴器の数を変化させた実施例タイヤと、前記従来タイヤとの発生騒音を、実施例 1の 場合と同様にして測定した。
このときの、実施例タイヤの騒音低減効果を図 10に示す。
[0081] 図 10によれば、接地面内に一個の共鳴器だけが含まれる比較例タイヤに対し、そ れより ldB以上の騒音低減効果があることを希求水準とした場合、接地面内に、三個 以上の共鳴器が含まれることで、効果がより高まることになり、このことは、共鳴器の個 数の増加につれて顕著になることが解かる。
なお、これらのタイヤでは、共鳴器の個数が異なる力 公平な比較とするため、共鳴 周波数範囲がほぼ等しぐさらに、気室合計容積が同一となるようにしている。
実施例 5
[0082] 共鳴器の気室の開口形状を円形輪郭形状とするとともに、複数の共鳴器を、接地 面内に、図 4に示すような態様で配置し、それぞれの共鳴器の共鳴周波数 (作用周 波数)を表 1に示すところに合わせるベぐ共鳴器の寸法等を以下の表 2に示すように 設定した実施例タイヤの、前記従来タイヤに対する騒音低減効果を、実施例 1と同様 にして求めたところ 3. 35dBであった。
[0083] [表 2]
Figure imgf000020_0001
[0084] 従って、これによれば、共鳴器の共鳴周波数を所要に応じて選択することで、気室 の、陸部表面への開口形状のいかんにかかわらず、同等の騒音低減効果をもたらし 得ることが解かり、また共鳴室として機能する気室は、それを、作成が容易な、単純二 次元形状と深さの組み合わせによって構成しても、共鳴器としての機能を十分に発 揮し得ることが解カゝる。
実施例 6
[0085] 共鳴器の気室の底壁に、凹凸段差量が 1. 6mm、 3. Ommおよび 4. Ommとなるそ れぞれの突部を設けた、実施例 1で述べたものと同様の条件設定をした実施例タイ ャで、テストコースの砂利道を走行して、気室および狭窄ネックへの石嚙みの発生の 有無を試験したところ、図 11に示すように、凹凸段差のない底壁とした気室には石嚙 みがみられたものの、突部を設けた実施例タイヤでは石嚙みが生じな力つた。
なお、気室底壁に突部を設けたこの共鳴器は、図 11のグラフから明らかなように、 所要の気室容積を確保でき、かつ、凹凸が気室を分断しない限り、所期した通りの騒 音低減機能を発揮することができる。 実施例 7
[0086] 接地面内に含まれる、共鳴周波数が 813Hz、 1014Hzおよび 1242Hzのそれぞ れの共鳴器の狭窄ネックの、トレッド幅方向に対する延在角度を、図 12の表に示すよ うに変化させた場合の、発生ピッチノイズおよび偏摩耗段差を求めたところ、図 12に グラフで示す結果を得た。なお本実施例は、表 1に記載の実施例にて、ネック角度を 変えたものである。
[0087] なおここで、ピッチノイズは、室内ドラム試験機にて JASO C606に則り、平滑路面 にてマイク一個で計測することにより測定し、ピッチノイズの一次ピークにおいて、ネッ ク 0度対比マイナス ldB以上の差があれば有意とみなして 、る。(実車フィーリングで 差有りと判定される大きさと考える。 )
ところで、計測諸条件は、実施例 1と同様とした。
また、偏摩耗段差は、室内ドラム試験機にて 1000km走行後、ネック部前後 (周方 向)の偏摩耗段差量を測定して、段差平均値が 0. 5mm以内であることを必要条件と した。
走行条件はブレーキング 0. 1Gを 10kmと、フリーローリングを 90kmとをセットとし、 これらを 10セット繰返すことにより行った。
その他の諸条件 (荷重、内圧、速度など)は、実施例 1と同様とした。
[0088] 図 12のグラフによれば、ピッチノイズ差は、ネック角度が 10° 以上なかでも 20° 以 上で有効に改善されることになり、また、偏摩耗段差平均値は 60° 以下、なかでも 4 0° 以下で効果的に低減されることが解かる。
[0089] 以上に述べたような空気入りタイヤにおいて、狭窄ネック 7の深さは、図 13 (a)に、 共鳴器 5を横断面として例示するように、気室 6の深さと同等とすること、または、図に 仮想線で例示するように、気室 6の深さより浅いものとすることもできる。
この一方で、狭窄ネック 7は、図 13 (b)に共鳴器 5を平面図に示すように、トレッド幅 方向 X— Xに対する延在角度 I θ Iを 10° 〜60° 、なかでも、 20° 〜40° の範囲と することが好ましい。
[0090] また好ましくは、気室 6の、陸部表面開口輪郭線のアスペクトレシオ、図 7 (a)に示す ところを例にとると、気室長さ Z気室幅の比を、 2〜20の範囲、なかでもとくに 10以下 とする。
[0091] ところで、このような気室 6の、陸部表面への開口面積は、トレッド中央部からトレッド 幅方向の外側に向力うにつれて次第に減少させることが好ましぐまた、気室 6の陸 部表面への開口面積は、図 13 (a)に横断面図で例示するように、気室 6の底壁面積 より大きくすることが好ましい。
なお、図示はしないが、狭窄ネック 7は、それの幅を、底部に向けて次第に狭めるも のであることが好ましい。
[0092] 図 14は、この発明の他の実施形態を、一個の共鳴器を例にとって示す、図 1と同様 の接地面摸式図であり、前述したところと同様の部分は、それらと同一の符号で示す これは、先に述べた共鳴器 5, 5b, 5cと同様に機能する共鳴器 15を、陸部表面に 開口する一個の気室 16と、同一の周溝 3の溝壁に別個に開口してその気室 6を周溝 3に連通させる、相互に完全に独立させて設けた二本の狭窄ネック 17a, 17bとで構 成したものである。
[0093] このような構造の共鳴器 15は、たとえば図 15に斜視図で例示するように、加硫金型 の成形面に突設されて気室 16の成形に寄与する突部 Pおよび、その突部 Pの周面 から側方へ突出して狭窄ネック 17a, 17bの成形に寄与する二枚のサイプブレード U を具える加硫金型をもって生タイヤに加硫成形を施すことで、簡易に、かつ確実に形 成することができる。
[0094] 力かる共鳴器 15は、トレッド踏面 1の接地面 2内で、気室 16および狭窄ネック 17a, 17bのそれぞれの、路面側の開口を、その路面によって閉止されることで、図 16に例 示するようなヘルムホルツタイプの共鳴器を構成することになり、この共鳴器 16の共 振周端数 f は、両狭窄ネック 17a, 17bのトータル半径 、トータル長さを 1そして、
0 0
両狭窄ネック 17a, 17bのトータル断面積を Sとするとともに、気室容積を V、音速を c としたとき、
[数 6]
Figure imgf000022_0001
として求めることができる。
[0095] 従って、この共鳴周波数 f は、周溝 3の気柱共鳴周波数との関連の下で、半径!:、
0
長さ 1、断面積 Sおよび気室容積 Vを選択することによって、所要に応じて適宜に調
0
整することができ、たとえば、その共鳴周波数 f の平均値を、 700〜1800Hzの範囲
0
に設定することにより、高周波ノイズと、気柱共鳴による騒音を効果的に低減させるこ とがでさる。
[0096] このような共鳴器 15においても、狭窄ネック 17a, 17bは、図 17 (a)に要部斜視図 で例示するように、陸部 4、ここではブロック 4a内に埋め込み配置したトンネル状のも のとすることができる他、図 17 (b)に示すように、ブロック 4a表面に開口したものとす ることちでさる。
[0097] ここで、後者のような狭窄ネック 17a, 17bを、たとえば、加硫金型のサイプブレード その他の押し込み等によって形成するときは、気室 16に加えて、狭窄ネック 17a, 17 bをもまた簡易に形成することができる。
そしてこの場合は、狭窄ネック 17a, 17bをサイプによっても形成することがでこる。 このとき、サイプの形状を、図 17 (c)に例示するように、底部に拡大空間部を有する 、いわゆるフラスコ状とし、たとえば、拡大空間部以外の部分は、接地面内でサイプ 壁が相互に接触する程度の狭幅部とすることにより、狭窄ネック内 17a, 17bの各種 の寸法を、図 17 (a)に示す場合と同様に常に一定のものとすることが可能となる。
[0098] このような共鳴器 15においてより好ましくは、気室 16の、陸部表面、図 17ではブロ ック 4aの表面力もの深さ hを、陸部 4を区画する周溝 3の最大深さ Hの 20%以上、とく には 40〜80%とし、また好ましくは、狭窄ネック 17a, 17bの、ブロック表面からの深 さ寸法 dを、気室 16の最大深さ hの 70%以下、とくには 50%以下とする。そして、狭 窄ネック 17a, 17bの幅 tについては、気室 16の幅 Tの 3〜50%、なかでも 3〜20% の範囲とすることが好まし 、。
[0099] ここにおいて、気室 16の長さ Lは、図 18に例示するように狭窄ネック内 17a, 17bの 幅 tの中心を通りそれに沿う寸法 (軸方向寸法)をいうものとし、これに直角な向きの寸 法を気室 16の幅 Tとする。
[0100] なお、図 14においては、気室 16の、陸部表面への開口形状を円形とし、狭窄ネッ ク 17a, 17bについては直線とした場合を、また、図 17では、気室 16のブロック表面 への開口形状を、曲線のみ力もなる異形輪郭形状とした場合を示したが、気室 16の 開口形状は楕円形その他の曲線輪郭形状、四角形その他の多角形状とすることもで き、また、狭窄ネック 17a, 17bについても曲線部、屈曲部を含んだ形状とすることが できる。
気室 16の開口形状及び狭窄ネック 17a, 17bの他の例を図 19、図 20にそれぞれ 示す。
[0101] そして、このような共鳴器 15の気室 16の底壁は、これもまた平坦面とすることができ るが、それの開口側に向けて凸もしくは凹となる曲面等とすることもできる。
そしてこの場合、より好ましくは、図 6について述べたように、その底壁に、上方に向 けて凸となる突部 6aを一個以上設け、この結果として生じる凹凸差 δを 1. 6mm以 上、一層好ましくは 3. Omm以上とする。
[0102] 以上のようにして構成される共鳴器 15の、周溝 3に対する配置態様は、トレッド踏面 1に一本の周溝 3を形成した場合、および複数本の周溝 3を形成した場合の 、ずれ においても、図 1について先に述べた条件の下での接地面 2内に、少なくとも、いず れか一本の周溝 3に設けた共鳴器 15の一個以上が常に完全に含まれる態様とし、よ り好ましくは、複数個の共鳴器の配置態様を、図 21に示すように、前述したと同一の 条件の下で接地する接地面 2内に、共鳴周波数の異なる複数個の共鳴器 15のそれ ぞれが常に含まれる態様とする。
[0103] なお、図 21に示すところでは、接地面 2内に延在する全ての周溝 3のそれぞれにつ いて、共鳴周波数の異なる複数個の共鳴器 15が接地面 2内に含まれる構成としてい るが、複数本の周溝 3のうち、少なくとも一本の周溝 3に設けた複数個の共鳴器 15だ けが接地面 2内に含まれる配置態様とすることも可能である。
[0104] この実施形態においては、気室 16の陸部表面への開口面積は 25〜300mm2、よ り好ましくは、 72〜180mm2の範囲とすることができる。
その理由は、気室 16にそれ本来の機能を有効に発揮させてなお、気室開口縁の、 路面衝突騒音の増加を有効に抑制することができるからであり、開口面積が 25mm2 未満では、気室に所要の容積を確保するべぐ気室の深さを深くしてなお、気室 16 に共鳴室としての機能を十分に発揮させることが困難となるのに加えて、周波数調整 に長い狭窄ネックが必要となる不具合が生じる一方、 300mm2を超えると、開口縁の 長さが長くなることに起因する、路面衝突音の顕在化が否めなくなるからである。
[0105] また、この実施形態においては、好ましくは、気室 16の、陸部表面からの最大深さ h を、トレッド表面に陸部 4を区画する周溝 3の最大深さ Hの 20%以上、より好ましくは 4 0〜80%の範囲とする力 その理由は、気室 16の、陸部開口面積と関連する十分な 容積を確保して、その気室 16を共鳴室として有効に機能させるためである。
[0106] V 、かえれば、平均深さ hが 20%未満では、空気の共鳴を十分に励起できな!/、お それがあり、一方、それが 80%を越えると、気室開口縁の路面衝突騒音、すなわち、 ピッチノイズが増大するおそれがある。
[0107] 狭窄ネック 17a, 17bの幅 tは、二次元パターン図で見た場合において、気室 16の 幅 Tの 3〜50%の幅に規制する(狭窄ネックが一つの気室につき複数存在する場合 は、その合計をいう。)が、その理由は、狭窄ネック 17a, 17bと気室 16がそれぞれの 役割を果たすためにはその幅に違いがある必要があるからであり、狭窄ネック 17a, 1 7bの幅 tが気室 16の幅 Tの 3%未満では該狭窄ネック 17a, 17bが閉じることにより狙 い通りの共鳴作用が見られず、一方、 50%を超えた場合には該ネック 17a, 17bは 管としての振る舞いが強まるため共鳴効果力 、さくなるからである。
共鳴器 15としての機能をより効果的に発揮させるためには、 3〜20%の範囲に設 定するのが良好となる。
[0108] なお、狭窄ネック 17a, 17bをサイプタイプとする場合は、底部に拡大空間部を有す る、いわゆるフラスコサイプ等を適用することができる。
[0109] また、この場合、共鳴器の共鳴周波数 f のネックの直径 2rは、サイプ断面積から半
0
径 rを逆算することによって求めることができる。
[0110] 共鳴器 15の狭窄ネック 17a, 17bは、陸部 4の表面に露出しないトンネル状とするこ とができることは前述したとおりである力 陸部表面に開口するサイプタイプとする場 合には、共鳴器 15、ひいては、タイヤの製造を一層容易にすることができ、また、サイ プの深さを十分にとることで、トレッド踏面の摩耗が進行しても、狭窄ネックの早期消 滅を回避して共鳴器 15を常に有効に機能させることができる。 [0111] 狭窄ネック 17a, 17bの断面積はその合計を、長さは平均値を用いて気室の設定を 行うことになる。狭窄ネック 17a, 17bが浅すぎると、摩耗の進行に伴ってすぐに消滅 することになる一方で、深すぎると、サイプ等とすることができる狭窄ネック 17a, 17b の開閉が生じ易くなつて、そのネックの断面積が大きく変化し、共鳴周波数 f の特定
0 が困難になり、共鳴器 15を所期した通りに機能させることができなくなることも懸念さ れるので、狭窄ネック 17a, 17bの深さについてはその点を考慮して設定する。 なお、共鳴器 15の周波数は有限要素法や境界要素法等の解析手段を用いて特 定するチューニングを行うこともできる。
[0112] 周溝 3の気柱共鳴音は、摩耗の進行による周溝容積の減少に伴って小さくなるの で、狭窄ネック 17a, 17bの深さ dの初期設定値としては、気室 16の最大深さ hの 70 %以下、好ましくは、 50%以下とする。
実施例 8
[0113] 図 21に示すような接地面を有する、サイズが 195Z65R15のタイヤ(周溝四本でそ の幅 8mm、深さ 8mm、ピッチバリエーションのピッチ長さは 50mm)を、 6JJのリムに 装着し、空気圧を 210kPaとした状態で、室内ドラム試験機により、 4. 47kNの荷重 の作用下で 80kmZhの速度で負荷転動させ、このときのタイヤの側方音を JASO C606に定める条件に従って測定し、 1Z3オクターブバンドで、中心周波数 800Hz , 1000Hz, 1250Hz帯域のパーシャルオーバオール値を求めた。
[0114] この場合、効果有りと判断するのは、実車試験によるドライバーのフィーリング評価 で改善効果が見込める 2dB以上の音圧低下とした。
[0115] なお共鳴器の共鳴周波数 f は、前述したように、
Figure imgf000026_0001
で求められる値とした。ここで、音速 cは 343. 7mZsとした。
接地面内に一本の直線状周溝を延在させた従来タイヤと、
接地面内に延在する一本の直線状周溝に、共鳴周波数の異なる三個の共鳴器の気 室を、図 17 (b)に示す形態でもって開口させ、それぞれの気室の容積 Vを 864mmd 、 1123mm3および 605mm3とし、狭窄ネックの断面積 Sを lmm2、狭窄ネックの半径 rを 0. 56mmとして、それぞれの共鳴器の共鳴周波数を 1014Hz、 889Hzおよび 12 12Hzとするとともに、気室を陸部表面に開口させた実施例タイヤとの測定結果を比 較した。
その結果、実施例タイヤでは、 1000Hzの周波数帯域で発生騒音が 2. 6dB低減さ れた。なお、それぞれの気室は、気室の幅 T: 6mm、長さ L : 24mm、 31. 2mmおよ び 16. 8mm、最大深さ H : 6mm、狭窄ネックの深さ d: 2mm、幅 t: 0. 5mmとした(狭 窄ネックの寸法は 1本当たりの寸法として表示)。
実施例 9
[0116] 共鳴器の作用周波数を 600〜2000Hzの範囲で変更した、表 3に示す緒元になる 実施例タイヤと、従来タイヤ(幅 8mm、深さ 8mmになるストレートの周溝を四本有す るタイヤ)の周波数帯域での騒音レベルの差を実施例 8と同一の条件にて測定した。 その結果を図 22に示す。
[0117] [表 3]
Figure imgf000028_0001
[0118] 図 22より、共鳴器の作用周波数の平均値を 700〜1800Ηζに設定しておく場合に 効果があり、とくに 700〜1400Ηζ程度の範囲に設定しておくことにより従来タイヤに 比較して騒音レベルが著しく改善されることが明らカ^なつた。
実施例 10
[0119] 共鳴器の作用周波数を 600〜2000Ηζに設定した実施例タイヤ(実施例 8と同一 の条件になるタイヤ)を用意して、これを車両に装着してテストコースで走行実験(走 行条件:リム 6JJ、乗用車 (セダン)、アスファルト直線路にて 80kmZhにて走行)を行 レ、、ドライバーのノイズフィーリングについて評価(一般的に認知される程度の差とし て + 3点を希求水準とする。)した。その結果を表 4に示す。
[0120] [表 4]
Figure imgf000029_0001
[0121] 表 4より明らかなように、三個の共鳴器の設定周波数の平均値を 700〜: 1800Hz程 度の範囲に設定しておくことで気柱共鳴に加え、様々な要因が混在する高周波ノィ ズに対しても軽減効果があることが確認された。
実施例 11
[0122] 図 17 (b)に示すような形状の狭窄ネック(断面積 Sは合計で 2mm2)を有し、容積 V が864 mm3、 l l23mm3および 605mm3〖こなる気室を備えた、図 21に示す如き接地 面を有するタイヤと、図 21にお 、て狭窄ネックを一本のみとした共鳴器を有するタイ ャ(狭窄ネックの幅を拡大して断面積 Sを同じにしたもの。図示せず。)の騒音の低減 効果につき、実施例 8と同様の条件の下で試験を行い、四本の直線状周溝 (ストレー トリブパターン)を延在させた従来タイヤとの対比を行った。
なお、三種類の共鳴器は、気室の幅 T: 6mm、長さ L : 24mm、 31. 2mmおよび 16 . 8mm深さ H : 6mm、狭窄ネックの深さ d : 2mm、幅 t : 0. 5mmとした(狭窄ネックの 寸法は 1本当たりの寸法として表示)。
[0123] その結果、単一の狭窄ネックを有するタイヤは、 1Z3オクターブバンドで、中心周 ¾¾800Hz, 1000Hz, 1250Hz のノ ーシャノレ才ーノく才ーノレ直で、 2. 6dBig 減されることが明らカ^なつた力 二本の狭窄ネックを有する実施例タイヤにぉレ、ては 、 2. 8dB低減されており、騒音の低減効果がより高いことが確認された。
実施例 12
[0124] 図 17 (a)に示した構成になる共鳴器を具えたタイヤについて、共鳴器の作用周波 数の平均値を約 1000Hzに設定したうえで表 5の如ぐ気室の幅と狭窄ネックの幅を 変更して騒音の低減効果に与える影響につ V、て調査 (試験条件は実施例 8と同じ)し た。
その結果を従来タイヤ(幅 8mm、深さ 8mmになるストレートの周溝を四本有するタ ィャ)の騒音レベルとの差で図 23に示す。
[0125] [表 5]
Figure imgf000030_0001
図 23より明らかな如ぐ狭窄ネックの幅の、気室の幅に対する割合が 3〜50%程度 の範囲においては、騒音の低減効果が著しく改善される傾向にあることが確認された 実施例 13
図 17 (a)に示した共鳴器を有するタイヤについて、共鳴器の作用周波数の平均値 を約 1000Hzに設定したうえで、気室の最大深さと狭窄ネックの深さを表 6に示す如 く変更して騒音の低減効果に与える影響について調査 (試験条件は実施例 8と同じ) した。
その結果を、従来タイヤ(幅 8mm、深さ 8mmになるストレートの周溝を四本有する タイヤ)の騒音レベルとの差で図 24に比較して示す。
[¾6]
Figure imgf000031_0001
[0129] 図 24より明らかな如く、狭窄ネックの深さの、気室の最大深さに対する割合が 70% 程度までは、騒音の低減効果が著しく改善される傾向にあり、とく狭窄ネックの深さが 気室の最大深さの 50%以下では騒音の低減効果が顕著であることが確認された。 実施例 14
[0130] 図 21に示したような開口形状になる気室(開口面積が 144mm2、 101mm2および 18 7. 2mm2,容積 Vが 864mm3、 1123mm3および 605mm3最大深さはともに 6mm) を有するタイヤにつき、その底壁に表 7に示す如き起伏 (段差)を設け、走行実験を 行レ、(実施例 8と同じ条件)、石嚙みの発生状況について調査した。
その結果は、表 7に併せて示したように、気室の底壁に 1. 6mm、 3mm、 5mmの起 伏 (段差)を設けた場合には石嚙みの発生が見られず、また、騒音レベルについては 図 25に示すように、高いレベルに維持されることが確認された。
[0131] [表 7] 気室の底壁の 石嚙みの有
起伏 (凹凸) 効果 [dB]
[mm]
0 有 2.6
1.6 無し 2.7
3 無し 2.8
5 無し 2.8 実施例 15
[0132] 図 21に示した接地面を有するタイヤにつき、三種類の共鳴器 (作用周波数: 1014 mmHz、 890Hzおよび 1212Hz)をタイヤの半周に一ピッチおきに配置した比較タイ ャ(タイヤの転動中に接地面に共鳴器が入らな 、場合)と、タイヤの全周にわたりーピ ツチおきに配置した実施例のタイヤ(タイヤの転動中に常に共鳴器の一つが接地面 内に入る場合)の騒音レベルについて、ストレートリブパターンになるタイヤの騒音レ ベルと対比(実施例 8と同じ条件)したところ (一ピッチ当たりの共鳴器の数は同じ)、 比較タイヤでは、 1. 5dBであるのに対して実施例タイヤでは、 2. 7dBであって騒音 の低減効果が高いことが判明し、とくに、この実施例では、タイヤの接地面 (接地長さ 約 140mmの範囲)で常に共鳴器が存在することが有効であることがわ力つた。
[0133] その結果、騒音レベルの差は、共鳴器が接地面に入らな 、場合がある比較タイヤ においては騒音レベルの差は 1. 5dB程度にあつたのに対して、常に一つの共鳴器 が入る実施例タイヤにおいては、 2. 7dB程度であって、この発明に従うタイヤは騒音 の低減効果が高いことが判明した。
実施例 16
[0134] 表 8に示す作用周波数の平均値を有する共鳴器を一セットとして常に接地面に存 在する図 21に示す如き実施タイヤを用いて走行試験を行 、、単なるストレートリブパ ターンになるタイヤとの騒音レベルとの差について調査した(実施例 8と同じ条件)。
[0135] [表 8] 狭窄ネック 狭窄ネック 作用周波数 気室の幅 τ 気室の長さ 気室の深さ 狭窄ネック
の長さ lo の深さ d の平均値
[mm] L[mm] [mm] の幅 t[mm]
[mm] [mm] [Hz]
6 36 4 6 2 0.5 1014
4 36 4 6 2 0.5 1242
6 36 6.5 6 2 0.5 796
[0136] その結果、騒音レベルの差は、 3. 3dB程度であることが判明し、作用周波数の異 なる三種類の共鳴器を設けることで、広い帯域に対して同時に共鳴器を作用させるこ とが可能であり、トータルとして大きな騒音低減効果が得られることが明らかとなった。 これは、気柱共鳴が周波数空間でブロードなピークをもつ特性によるものと推察され る。
[0137] そしてまた、この発明のさらに他の実施形態では、先に述べたいずれかのタイヤ、 たとえば図 1に示すものを例にとると、陸部 4の表面に開口する気室 6と、この気室 6と 周溝 3との連通をもたらす、陸部 4内への埋め込みを可とする狭窄ネック 7とを具えて なる共鳴器 5において、その気室 6の、タイヤの無負荷状態の下での、陸部表面への 開口面積を 25〜300mm2、より好ましくは 100〜150mm2の範囲とする。
[0138] なお、ここでもまた、気室 6の、陸部表面と平行な断面内での横断面積および輪郭 形状は、その気室 6の底壁側に向けて、陸部開口のそれらと同一にできる他、加硫 成形を終えたタイヤの気室 6からの、金型部分の抜き出しが拘束されることのない程 度に漸増させる
こと、逆に、漸次減少させることもできる。
[0139] このように構成することができる共鳴器 5は、図 3に関連して述べたヘルムホルツタ イブの共鳴器として機能することができ、そこで述べたと同様の共鳴周波数 f
0
[数 8]
Figure imgf000033_0001
を有することになる。
[0140] 従って、この共鳴周波数 fもまた、周溝 3の気柱共鳴周波数との関連の下で、ネック
0
半径!:、ネック長さ 1、ネック断面積 Sおよび気室容積 Vを選択することによって、所要 に応じて適宜に調整することができ、好ましくは、その共鳴周波数 f
0の平均値を、 70
0〜1800Hzの範囲内のもの、より好適には、 700〜1400Hzの範囲内のものとする
[0141] なお、図 1に示すところでは、気室 6の、陸部表面への開口形状を円形としているも 、この開口形状もまた、楕円形その他の曲線輪郭形状とすることもでき、また、四角形 その他の多角形状とすることもできる。
[0142] このような共鳴器 5では、図 5について前述したように、狭窄ネック 7は、図 5 (a)に例 示するように、ブロック 4a内に埋め込み配置したトンネル状のものとすることができる 他、図 5 (b)に示すように、ブロック 4aの表面に開口したものとすることもでき、後者の ような開口ネック 7を、たとえば、加硫金型のブレードその他の押し込み等によって形 成するときは、気室 6に加えて、狭窄ネック 7をもまた簡易に形成することができる。 そしてこの場合は、狭窄ネック 7をサイプによっても形成することができる。 このとき、サイプの形状を、図 5 (c)に例示するように、底部に拡大空間部を有する、 いわゆるフラスコ状とし、たとえば、拡大空間部以外の部分は、接地面内でサイプ壁 が相互に接触する程度の狭幅部とすることにより、狭窄ネック 7の各種の寸法を、図 5 (a)に示す場合と同様に常に一定のものとすることができる。
[0143] 力かる共鳴器 5においてより好ましくは、気室 6の、陸部表面、図ではブロック表面 力もの最大深さ hを、トレッド踏面 1に陸部、図ではブロック 4aを区画する溝、たとえば 周溝 3の最大深さ Hの 20%以上、とくには 40〜80%とし、また好ましくは、狭窄ネック 7の、ブロック表面力もの深さ寸法 dを、気室 6の最大深さ hの 70%以下、とくには 50 %以下とする。
[0144] ところで、図 5に示すところでは、気室 6のブロック表面への開口形状は、曲線のみ からなる異形輪郭形状をなす。
[0145] 以上に述べたところにおいて、気室 6の底壁は、平坦面とすることの他、図 6につい て前述したように、それの開口側に向けて凸もしくは凹となる曲面等とすることもでき、 この場合、より好ましくは、その底壁に、上方に向けて凸となる突部 6aを一個以上設 け、この結果として生じる凹凸差 δを 1. 6mm以上、一層好ましくは 3. Omm以上と する。 なおこの場合の突部 6aは、気室側壁に突出形成されて、底壁からは独立するもの 、いいかえれば、底壁からは分離されたものとすることもできる。
[0146] このような構成を有する共鳴器 5の、周溝 3に対する配置態様は、たとえば図 1に示 すように、トレッド踏面 1に一本の周溝 3を形成した場合、および複数本の周溝を形成 した場合において、図 1について述べた条件の下での接地面 2内に、共鳴周波数の 異なる複数個の共鳴器 5が常に完全に含まれる態様とすることが必要になる。
[0147] この場合、図 4に例示するように、前述したと同一の条件の下で接地する接地面 2 内で、各周溝 3に、共鳴周波数の異なる複数個の共鳴器 5a, 5b, 5cのそれぞれが 常に含まれる配置態様とすることが好ま 、。
[0148] しかるに、図 4に示すところに限定されることなぐ複数本の周溝 3のうち、少なくとも 一本の周溝 3に設けた複数個の共鳴器だけが接地面 2内に含まれる配置態様とする ことも可能である。
実施例 17
[0149] サイズが 195Z65R15のタイヤを、 6JJのリムに装着し、空気圧を 210kPaとした状 態で、室内ドラム試験機により、 4. 47kNの荷重の作用下で 80kmZhの速度で負荷 転動させ、このときのタイヤの側方音を JASO C606に定める条件に従って測定し、 1Z3オクターブバンドで、中心周波数 800Hz、 1000Hzおよび 1250Hzの帯域の パーシャルオーバオール値を求めた。
[0150] この場合、効果有りと判断するのは、実車試験によるドライバーのフィーリング評価 で改善効果が見込める 2dB以上の音圧低下とした。
[0151] なお共鳴器の共鳴周波数 f は、前述したように、
0
[数 9]
Figure imgf000035_0001
で求められる値とした。
ここで、音速 cは 343. 7mZsを用いた。
[0152] 接地面内に四本の直線状周溝を延在させてなる従来タイヤと、
接地面内に延在する四本の直線状周溝のそれぞれに、図 7 (a)に示すような形態 を有し、気室が陸部表面に四角形に開口する共鳴器を、図 7 (b)に示す配置態様を もって 60個ずつ形成し、その三種類の共鳴器の気室容積 Vをそれぞれ、 302mm3、 432mm3および 562mm3、ネック断面積 Sを lmm2、ネック半径 rを 0. 56mmとして、 共鳴器の共鳴周波数を 1014Hzとしてなる実施例タイヤとの測定結果を比較したとこ ろ、実施例タイヤ 1では、上述した中心周波数が 800Hz、 1000Hzおよび 1250Hz のパーシャルオーバーオール値が 2. 6dB低減された。
実施例 18
[0153] 約 900Hz、約 1000Hzおよび約 1200Hzで共鳴する三種類の共鳴器の気室の、 陸部への開口面積をパラメータとした、ピッチ長さが 38. 5mmの実施例タイヤと、上 記従来タイヤとの、 1Z3オクターブバンドで、中心周波数が 800Hz、 1000Hzおよ び 1250Hzのパーシャルオーバーオール値の差を、実施例 1と同一の条件の下で求 めた。
そのときの実施例タイヤの騒音低減効果を図 26に示す。
[0154] 図 26によれば、気室開口面積が 25〜300mm2の間では騒音を 2dB以上低減させ ることができ、とりわけ、 72〜180mm2の間でその効果が顕著であることがわ力る。 実施例 19
[0155] 三種類の共鳴器の共鳴周波数 f を変化させた実施例タイヤと、前記従来タイヤとの
0
騒音レベルの差を、実施例 1の場合と同様にして測定した。
そのときの、実施例タイヤの騒音低減効果を図 27に示す。
[0156] 図 27によれば、共鳴周波数 f の平均値を 700〜1800Hzの範囲内に設定すること
0
で、狙いとする気柱共鳴音を 2dB以上低減させ得ることが明らかである。
実施例 20
[0157] 約 1000Hzで共鳴する共鳴器の気室の、最大深さが 8mmの周溝に対する最大深 さをパラメータとした、ピッチ長さが 38. 5mmの実施例タイヤと、前記従来タイヤとの 騒音レベルの差を、実施例 1と同一の条件の下で求めた。
その結果としての、実施例タイヤの騒音低減効果を図 28に示す。
[0158] 図 28によれば、気室の最大深さが 20%以上、なかでも 40〜80%で騒音低減効果 が大きくなることが解力る。 実施例 21
[0159] 共鳴器の気室の底壁に、凹凸段差量が 1. 6mm、 3. Ommおよび 4. Ommとなる突 部を設けた実施例タイヤで、テストコースの砂利道を走行して、気室および狭窄ネッ クへの石嚙みの発生の有無を試験したところ、図 29に示すように、凹凸段差のない 底壁とした気室には石嚙みがみられたものの、突部を設けた実施例タイヤでは石嚙 みが生じな力 た。
なお、気室底壁に突部を設けたこの共鳴器は、図 29のグラフから明らかなように、 所要の気室容積を確保でき、かつ、凹凸が気室を分断しない限り、所期した通りの騒 音低減機能を発揮することができる。
実施例 22
[0160] 狭窄ネックをサイプによって形成し、共鳴器の共鳴周波数を
[数 10]
Figure imgf000037_0001
によって求める場合の、狭窄ネックの半径 rを、サイプ断面積力も逆算した。
そのときの三種類の共鳴周波数 f をそれぞれ約 900Hz、約 lOOOHzおよび約 120
0
0Hzとした、ピッチ長さが 77mmの実施例タイヤの、前記従来タイヤに対する騒音低 減効果は、実施例 1で述べた測定条件の下で 2. 5dBであった。
実施例 23
[0161] 気室の最大深さに対する、表面に開口した (サイプのような)狭窄ネックの、トレッド 表面からの深さの比率をパラメータとして、約 lOOOHzに共鳴周波数の平均値をもつ 共鳴器を設けた、ピッチ長さが 77mmの実施例タイヤの、従来タイヤに対する騒音低 減効果を、実施例 1と同様にして求めたところ、図 30に示す結果を得た。
図 30によれば、上記の比率が 70%以下で 2. OdB以上の騒音低減効果が得られ、 それが 25〜50%では 3. OdB以上の低減効果が得られることが解かる。
[0162] なお、狭窄ネックそれ自体にっ 、てみれば、浅 、ほど偏摩耗に対して有利であるが 、それが浅すぎると、前述したように陸部の摩耗途中で、そのネックが消滅してしまう おそれがある。
また、気室については、それが浅ぐかつ陸部表面への開口面積が小さい方が偏 摩耗、耐摩耗両面で有利となる。
実施例 24
[0163] 陸部表面に、図 7 (a)に示すように四角形に開口させた気室を有する三種類の共鳴 器を設け、その気室の開口幅を 6mm、開口長さをそれぞれ、 8. 4mm、 12mmおよ び 15. 6mmとし、気室深さを 6mmとするとともに、ネック幅を 0. 5mm、ネック長さを 6 mm、ネック深さを 2mmとして、共鳴周波数をそれぞれ 889Hz、 1014Hzおよび 121 2Hzとした、ピッチ長さが 38. 5mmの実施例タイヤの、前記従来タイヤに対する騒音 低減効果を、実施例 1と同様にして求めたところ、 2. 6dBとなった。
[0164] これと同様の騒音低減効果をもたらすベぐ気室の、陸部表面への開口形状を円 形とするとともに、その半径を 4. 8mmとしてなる共鳴器を設けた実施例タイヤの、従 来タイヤに対する騒音低減効果を同様にして求めたところ、 2. 7dBとなった。
[0165] これらのによれば、共鳴室として機能する気室は、それを、作成が容易な、単純二 次元形状と深さの組み合わせによって構成しても、共鳴器としての機能を十分に発 揮し得ることが解カゝる。
実施例 25
[0166] トレッド接地面の中央部に直線状に延びる幅 8mm、深さ 8mmの一本の周溝に、三 種類の共鳴器(共鳴周波数 889Hz、 1014Hzおよび 1212Hz)を開口させて設け、 それらの共鳴器を、タイヤの負荷転動に当って、接地面 (接地長さ約 140mm)内に 共鳴器が入らない瞬間がある配置とした比較例タイヤと、接地面内に常に一個の共 鳴器が存在する配置とした実施例タイヤとのそれぞれにっき、前記従来タイヤに対す る、 1Z3オクターブバンド、中心周波数 800Hz、 1000Hz、 1250Hz帯域のパーシ ャルオーバーオール値についての騒音低減効果を、実施例 1の場合と同様にして求 めたところ、比較タイヤでは、 1. 5dBであり、実施例タイヤでは 2. 5dBであった。 実施例 26
[0167] 表 9に示すように、約 800Hz、約 1000Hzおよび約 1250Hzで作用する、四角形に 開口する気室を有するそれぞれの共鳴器が常に接地面内に、図 7 (b)に例示するよ うな態様で存在するように配置した実施例タイヤと、前記従来タイヤとのそれぞれに つき、 1Z3オクターブバンド、中心周波数 800Hz、 1000Hz、 1250Hz帯域のパー シャルオーバーオール値を実施例 1の場合と同様に測定して、実施例タイヤの騒音 低減効果を求めたところ 3. 3dBであった。
[0168] [表 9]
Figure imgf000039_0001
これによれば、広い周波数帯域に対して同時に機能するそれぞれの共鳴器を設け ることで、タイヤの発生騒音をより大きく低減させ得ることが解力る。
[0169] さらに、この発明の他の実施形態では、とくに、タイヤへの無負荷状態での、狭窄ネ ックの平面最大幅を、気室の平面最大幅の 3〜50%の範囲とする。
[0170] すなわち、このタイヤでは、図 5に要部斜視図で例示するように構成することができ る共鳴器 5において、図 31に、図 5 (a)に示す共鳴器を例として展開拡大平面図で 示すように、共鳴器 5の平面中心線 CLと直交する方向に測った狭窄ネック 7の平面 最大幅、ここでは、トンネル状をなすその狭窄ネック 7の、陸部表面への投影幅のうち の最大幅 wを、気室 6の、その平面中心線 CLと直交する方向に測った平面最大幅
0
wの 3〜50%、より好ましくは 3〜20%の範囲とする。
[0171] ここで、より具体的には、狭窄ネック 7の平面最大幅 wは、 0. 5〜4. Omm、なかで
0
ち 0. 5〜2. Ommの範囲とし、また、気室 6の平面最大幅 wは、 3. 0〜15. Omm、と くには 5. 0〜: LO. Ommの範囲内とすることが好ましい。
[0172] そしてさらに、上記平面中心 CL上で測った、狭窄ネック 7の平面長さ 1は 2〜50m
0
m、とくには 2〜30mmの範囲とすることが好ましぐまた、その平面中心線 CL上で測 つた気室の平面長さ 1は、 5〜50mm、なかでも 5〜30mmの範囲とすることが好まし い。
[0173] 以上に述べたところにおいて、気室 6の底壁は、好ましくは、図 6について前述した ように、その底壁に、上方に向けて凸となる突部 6aを一個以上設け、この結果として 生じる凹凸差 δを 1. 6mm以上、一層好ましくは 3. Omm以上とする。 [0174] このような構成を有する共鳴器 5の、周溝 3に対する配置態様は、たとえば図 1に示 すように、トレッド踏面 1に一本の周溝 3を形成した場合、および複数本の周溝を形成 した場合において、図 1について述べた条件の下で、接地面 2内に、少なくともいず れか一本の周溝 3に設けた共鳴器 5の、共鳴周波数の異なる複数個が常に完全に 含まれる態様とし、より好ましくは、複数個の共鳴器を、図 4に例示するように、前述し たと同一の条件の下で接地する接地面 2内に、共鳴周波数の異なる複数個の共鳴 器 5a, 5b, 5cのそれぞれが常に同時に含まれる態様とする。
[0175] なお図 4に示すところでは、接地面 2内に延在する全ての周溝 3の各々について、 複数個の共鳴器が接地面 2内に含まれることとしているも、複数本の周溝 3のうち、少 なくとも一本の周溝 3に設けた複数個の共鳴器だけが接地面 2内に含まれる配置態 様とすることちでさる。
実施例 27
[0176] サイズが 195Z65R15のタイヤを、 6JJのリムに装着し、空気圧を 210kPaとした状 態で、室内ドラム試験機により、 4. 47kNの荷重の作用下で 80kmZhの速度で負荷 転動させ、このときのタイヤの側方音を JASO C606に定める条件に従って測定し、 1Z3オクターブバンドで、中心周波数 800Hz、 1000Hzおよび 1250Hzの帯域の パーシャルオーバオール値を求めた。
[0177] この場合、効果有りと判断するのは、実車試験によるドライバーのフィーリング評価 で改善効果が見込める 2dB以上の音圧低下とした。
[0178] なお共鳴器の共鳴周波数 f は、前述したように、
0
[数 11] f
0 I l0 +1 s.3r)V
で求められる値とした。
ここで、音速 cは 343. 7mZsを用いた。
[0179] 接地面内に四本の、幅および深さがともに 8mmの直線状周溝を延在させてなる従 来タイヤと、
接地面内に延在する四本の、幅および深さがともに 8mmの直線状周溝のそれぞ れに、図 7 (a)に示すような形態を有し、気室が陸部表面に四角形に開口する共鳴器 を、図 7 (b)に示す配置態様をもって 60個ずつ形成し、それらの共鳴器の、気室の平 面最大幅を 6. Omm、気室平面の長さを 8. 4mm、 12mmおよび 15. 6mmとし、気 室深さを 6. Omm、そして、狭窄ネックの平面最大幅を 0. 5mm、平面長さを 6mm、 ネック深さを 2. Ommとすることで、気室容積 Vをそれぞれ、 302mm3, 432mm3およ び 562mm3、ネック断面積 Sを lmm2、ネック半径 rを 0. 56mmとして、共鳴器の共鳴 周波数をそれぞれ、 889Hz, 1014Hzおよび 1212Hzとしてなる実施例タイヤとの測 定結果を比較したところ、実施例タイヤでは、上述した中心周波数が 800Hz、 1000 Hzおよび 1250Hzのパーシャルオーバーオール値が 2. 6dB低減された。
実施例 28
[0180] 約 1000Hzの平均周波数で共鳴する、図 7 (a)に示すような、三種類の共鳴器の、 ネックの平面最大幅と、気室の平面最大幅との比率をパラメータとした、ピッチ長さが 38. 5mmの実施例タイヤと、上記従来タイヤとの、 1Z3オクターブバンドで、中心周 波数が 800Hz、 1000Hzおよび 1250Hzのパーシャルオーバーオール値の差を、 実施例 27と同一の条件の下で求めた。
そのときの実施例タイヤの騒音低減効果を図 32に示す。
[0181] 図 32によれば、平面最大幅の比率が 3〜50%の間では騒音を 2. 5dB以上低減さ せることができ、とりわけ、 3〜20%の間でその効果が 3dB以上となって顕著であるこ とがわかる。
実施例 29
[0182] 共鳴器の、図 7 (b)に示すような配置態様の下で、共鳴周波数 f の平均値を変化さ
0
せた実施例タイヤと、前記従来タイヤとの騒音レベルの差を、実施例 27の場合と同 様にして測定した。
そのときの、実施例タイヤの騒音低減効果を図 33に示す。
[0183] 図 33によれば、共鳴周波数 f を 700〜1800Hzの範囲内に設定することで、狙い
0
とする気柱共鳴音を 2dB以上低減させることができ、なかでも、 700〜 1400Hzの範 囲内でとくにすぐれた効果をもたらし得ることが明らかである。
実施例 30 [0184] 約 1000Hzで共鳴する共鳴器の、狭窄ネックの平面最大幅をパラメータとした実施 例タイヤおよび、気室の平面最大幅をパラメータとした実施例タイヤのそれぞれと、 前記従来タイヤとの騒音レベルを、実施例 27と同様にして測定した。
その結果としての、実施例タイヤの騒音低減効果を図 34および 35のそれぞれに示 す。
[0185] 図 34によれば、狭窄ネックの平面最大幅が 0. 5〜4. Ommの範囲内で、 2dBを越 える騒音低減効果があり、なかでも、 0. 5〜2. Ommの間でその効果が、 2. 5dB以 上となって顕著であることが解かる。
また、図 35によれば、気室の平面最大幅が 3. 0〜15. Ommの範囲で、 2dBを越 える騒音低減効果があることが解かる。
実施例 31
[0186] 約 900Hz、約 1000Hzおよび約 1200Hzで共鳴する三種類の共鳴器の狭窄ネッ クの平面長さをパラメータとした実施例タイヤと、前記従来タイヤとの、実施例 27で述 ベたパーシャルオーバオール値、および、気室の平面長さをパラメータとした実施例 タイヤとのパーシャルオーバオール値のそれぞれを、実施例 27と同様の条件の下で 測定した。
そのときの、実施例タイヤによる騒音低減効果を図 36および 37にそれぞれ示す。 図 36によれば、狭窄ネックの平面長さが 2〜50mmの範囲で、 2dB以上の騒音低 減効果をもたらすことができ、なかでも、 2〜30mmの範囲で効果がとくに大きいこと が解かり、図 37によれば、気室の平面長さが 5〜50mmの範囲で 2dB以上の効果を もたらすことができ、なかでも、 5〜30mmの範囲では 2. 5dB以上の効果を実現でき ることが解カゝる。
実施例 32
[0187] 889Hz, 1014Hzおよび 1212Hzのそれぞれで共鳴する、気室幅が 6. Omm、気 室長さがそれぞれ、 8. 4mm、 12mmおよび 15. 6mm、気室深さが 6. Ommで、ネッ ク長さが 6mm、ネック深さが 2. Omm、ネック幅が 0. 5mmの共鳴器の気室の底壁に 、凹凸段差量が 1. 6mm、 3. Ommおよび 4. Ommとなるそれぞれの突部を設けて、 テストコースで砂利道を 5km走行し、気室およびネックへの石嚙みの発生の有無を 確認したところ表 10に示す結果を得た。
[0188] [表 10]
Figure imgf000043_0001
表 10によれば、凹凸段差のない底壁とした気室には石嚙みがみられたものの、突 部を設けた気室には石嚙みが生じな力つた。
また、表 10からは、気室底壁に突部を設けた共鳴器は、所要の気室容積を確保で き、かつ、凹凸が気室を分断しない限り、所期した通りの騒音低減機能を発揮するこ とができることが解力ゝる。
実施例 33
[0189] 狭窄ネックをサイプによって形成し、共鳴器の共鳴周波数を
[数 12] f =上
。 2ττ I +1 s.3r)V によって求める場合の、狭窄ネックの半径 rを、サイプ断面積から逆算した。
そのときの共鳴周波数 f の平均値を約 1000Hzとした場合、前記従来タイヤに対す
0
る騒音低減効果は、実施例 1で述べた測定条件の下で 2. 5dBであった。
実施例 34
[0190] 実施例 27で述べたように、気室が陸部表面に四角形に開口する共鳴器を設けた 場合と同様の騒音低減効果をもたらすベぐ気室の陸部表面への開口形状を円形と するとともに、その半径を 4. 8mmとしてなる共鳴器を、図 38に示すような配置態様 で設けた実施例タイヤの、従来タイヤに対する騒音低減効果を同様にして求めたとこ ろ、 2. 7dBとなった。
なお、三種類の共鳴器(共鳴周波数 889Hz、 1014Hzおよび 1212Hz)のそれぞ れの気室の深さは、 7. 8mm、 6. Ommおよび 4. 2mmとした。 [0191] これらによれば、共鳴室として機能する気室は、それを、作成が容易な、単純二次 元形状と深さの組み合わせによって構成しても、共鳴器としての機能を十分に発揮し 得ることが解かる。
実施例 35
[0192] トレッド接地面の中央部に直線状に延びる幅 8mm、深さ 8mmの寸法の一本の周 溝に、複数個の共鳴器(共鳴周波数 889Hz、 1014Hzおよび 1212Hz)を開口させ て設け、それらの共鳴器を、タイヤの負荷転動に当って、接地面 (接地長さ 140mm) 内に共鳴器が入らない瞬間がある配置とした比較例タイヤ(タイヤの半周にのみ、 38 . 5mmのピッチ長さで共鳴器を配設したもの)と、接地面内に常に一個の共鳴器が 存在する配置とした実施例タイヤ (タイヤの全周に、 38. 5 X 2 (mm)のピッチ長さで 共鳴器を配設したもの)とのそれぞれにっき、前記従来タイヤに対する、 1Z3ォクタ ーブバンド、中心周波数 800Hz、 1000Hz、および 1250Hz帯域のパーシャルォー バーオール値についての騒音低減効果を、実施例 1の場合と同様にして求めたとこ ろ、比較タイヤでは、 1. 5dBであり、実施例タイヤでは 2. 5dBであった。
なおここで、両タイヤの共鳴器はいずれも、実施例 27で述べたものと同一とした。 実施例 36
[0193] 約 800Hz、約 1000Hzおよび約 1250Hzで作用するそれぞれの共鳴器が常に接 地面内に、図 7 (b)に例示するような態様で存在するように配置するとともに、それら の共鳴器を、表 11に示す構成を有するものとした実施例タイヤと、前記従来タイヤと のそれぞれにっき、 1/3オクターブバンド、中心周波数 800Hz、 1000Hz、 1250H z帯域のパーシャルオーバーオール値を実施例 26の場合と同様に測定して、実施 例タイヤの騒音低減効果を求めたところ 3. 3dBであった。
[0194] [表 11] 気室幅 気室長さ 気室深さ ネック長さ ネック深さ ネック幅 作用周波数
Lmmj Lmm] Lmm] 〔mm〕 Lmmj Lmm] 〔Hz〕
6 12 4 6 2 0.5 1242
6 12 6 6 2 0.5 1014
7 16 6 6 2 0.5 813 これによれば、広い周波数帯域に対して同時に機能するそれぞれの共鳴器を設け ることで、タイヤの発生騒音をより大きく低減させ得ることが解力る。

Claims

請求の範囲
[I] トレッド踏面に、周方向に連続して延びる周溝を設けるとともに、その周溝に開口し て陸部内で終了する共鳴器を設け、この共鳴器を、陸部表面に開口する気室と、気 室と周溝との連通をもたらす狭窄ネックとで構成し、適用リムに装着したタイヤに規定 の空気圧を充填し、そのタイヤに、規定の質量の 80%に対応する負荷を作用させた 状態で、接地面内に、共鳴周波数の異なる複数個の共鳴器が常に完全に含まれる ように共鳴器を配置してなる空気入りタイヤ。
[2] 接地面内に常に含まれる複数個の共鳴器の、共鳴周波数の最大値と最小値の差 を、 200〜800Hzの範囲内としてなる請求項 1に記載の空気入りタイヤ。
[3] 接地面内に常に含まれる共鳴器の数を、周溝一本当り三個以上としてなる請求項
1もしくは 2に記載の空気入りタイヤ。
[4] ピッチノ リエーシヨンの付与に伴うピッチ長さの長短に応じて、共鳴器の気室の寸 法を変化させてなる請求項 1〜3のいずれかに記載の空気入りタイヤ。
[5] ピッチバリエーションを付与したトレッドパターンを有するトレッド踏面で、周上の少 なくとも 1つのピッチ内に、共鳴周波数の平均値が 700〜1800Hzの範囲内の値とな る共鳴器を配設してなる請求項 1〜4のいずれかに記載の空気入りタイヤ。
[6] 周上の少なくとも一つのピッチ内に、共鳴周波数力 ½09〜2153Hzの範囲内の一 個以上の共鳴器を配設してなる請求項 1〜5のいずれかに記載の空気タイヤ。
[7] 気室の底壁に、 1. 6mm以上の高さの凹凸を設けてなる請求項 1〜6のいずれかに 記載の空気入りタイヤ。
[8] 狭窄ネックの深さを、気室の深さと同等もしくは、それより浅くしてなる請求項 1〜7 の!、ずれかに記載の空気入りタイヤ。
[9] 狭窄ネックの、トレッド幅方向に対する延在角度を 10° 〜60° の範囲としてなる請 求項 1〜8のいずれかに記載の空気入りタイヤ。
[10] 気室の、陸部表面開口輪郭線のアスペクトレシオを 2〜20の範囲としてなる請求項
1〜9の 、ずれかに記載の空気入りタイヤ。
[II] 気室の、陸部表面への開口面積をトレッド中央部からトレッド幅方向の外側に向か うにつれて次第に減少させてなる請求項 1〜10のいずれかに記載の空気入りタイヤ
[12] 気室の、陸部表面への開口面積を、気室の底壁面積より大きくしてなる請求項 1〜
11の 、ずれかに記載の空気入りタイヤ。
[13] 狭窄ネックの幅を、それの底部に向けて次第に狭めてなる請求項 1〜12のいずれ かに記載の空気入りタイヤ。
[14] 共鳴器を、陸部表面に開口する一個の気室と、同一の周溝の溝壁に別個に開口し てその気室を周溝に連通させる二本以上の狭窄ネックとで構成してなる請求項 1〜1
3の 、ずれかに記載の空気入りタイヤ。
[15] 二本以上の狭窄ネックのそれぞれを、相互に完全に独立させて設けてなる請求項
14に記載の空気入りタイヤ。
[16] 気室の、陸部表面への開口面積を 25〜300mm2の範囲としてなる請求項 1〜15 の!、ずれかに記載の空気入りタイヤ。
[17] 狭窄ネックの平面最大幅を、気室の平面最大幅の 3〜50%の範囲としてなる請求 項 1〜16のいずれかに記載の空気入りタイヤ。
PCT/JP2007/057415 2006-03-31 2007-04-02 空気入りタイヤ WO2007114430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800198307A CN101454168B (zh) 2006-03-31 2007-04-02 充气轮胎
US12/295,411 US8151842B2 (en) 2006-03-31 2007-04-02 Pneumatic tire
JP2008508698A JP5366539B2 (ja) 2006-03-31 2007-04-02 空気入りタイヤ
EP07740851.6A EP2011671B1 (en) 2006-03-31 2007-04-02 Pneumatic tire

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-099339 2006-03-31
JP2006098306 2006-03-31
JP2006-097866 2006-03-31
JP2006-098306 2006-03-31
JP2006099339 2006-03-31
JP2006-096510 2006-03-31
JP2006096510 2006-03-31
JP2006097866 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114430A1 true WO2007114430A1 (ja) 2007-10-11

Family

ID=38563694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057415 WO2007114430A1 (ja) 2006-03-31 2007-04-02 空気入りタイヤ

Country Status (6)

Country Link
US (1) US8151842B2 (ja)
EP (1) EP2011671B1 (ja)
JP (1) JP5366539B2 (ja)
KR (1) KR101032211B1 (ja)
CN (1) CN101454168B (ja)
WO (1) WO2007114430A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2926037A1 (fr) * 2008-01-09 2009-07-10 Michelin Soc Tech Dispositif pour bande de roulement.
JP2010018092A (ja) * 2008-07-09 2010-01-28 Bridgestone Corp 空気入りタイヤ
JP2010047230A (ja) * 2008-08-25 2010-03-04 Bridgestone Corp タイヤ
JP2010260403A (ja) * 2009-04-30 2010-11-18 Bridgestone Corp 空気入りタイヤ
WO2010134146A1 (ja) * 2009-05-22 2010-11-25 株式会社ブリヂストン タイヤ
WO2010134144A1 (ja) * 2009-05-22 2010-11-25 株式会社ブリヂストン タイヤ
US20110108175A1 (en) * 2008-06-30 2011-05-12 Pirelli Tyres S.P.A. Rain tyre
JP2011143897A (ja) * 2010-01-18 2011-07-28 Bridgestone Corp 空気入りタイヤ
US20120067479A1 (en) * 2009-05-28 2012-03-22 Bridgestone Corporation Method of designing resonator and pneumatic tire having the resonator
US20120118460A1 (en) * 2009-05-29 2012-05-17 Bridgestone Corporation Tire
US20120186711A1 (en) * 2009-08-07 2012-07-26 Bridgestone Corporation Tire
JP2013086683A (ja) * 2011-10-19 2013-05-13 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
RU2521885C1 (ru) * 2010-10-14 2014-07-10 Компани Женераль Дез Этаблиссман Мишлен Усовершенствованные шумоподавляющие устройства для шин
JP2014159244A (ja) * 2013-02-20 2014-09-04 Bridgestone Corp 空気入りタイヤ
WO2014174830A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン 空気入りタイヤ
JP2014213742A (ja) * 2013-04-25 2014-11-17 株式会社ブリヂストン 空気入りタイヤ
JP5657773B1 (ja) * 2013-12-12 2015-01-21 株式会社ブリヂストン タイヤ
US9393839B2 (en) 2010-03-29 2016-07-19 Bridgestone Corporation Tire
US10632793B2 (en) 2014-04-04 2020-04-28 Bridgestone Corporation Tire

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231405B2 (ja) * 2007-05-14 2013-07-10 株式会社ブリヂストン 空気入りタイヤ
JP5294735B2 (ja) * 2008-07-03 2013-09-18 株式会社ブリヂストン 空気入りタイヤ
CN102470705A (zh) * 2009-06-29 2012-05-23 米其林研究和技术股份有限公司 用于改善雪地牵引、公路耐磨和越野性能的方法和构造
WO2011002703A1 (en) * 2009-06-29 2011-01-06 Michelin Recherche Et Technique S.A. Method and construction for improved snow traction, highway wear, and off-road performance of a tire
JP5613195B2 (ja) * 2012-04-11 2014-10-22 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6166913B2 (ja) 2013-02-28 2017-07-19 株式会社ブリヂストン 空気入りタイヤ
JP5827663B2 (ja) * 2013-10-28 2015-12-02 住友ゴム工業株式会社 不整地走行用の自動二輪車用タイヤ
CN103738121A (zh) * 2014-02-11 2014-04-23 三角轮胎股份有限公司 降噪轮胎
KR101830141B1 (ko) * 2014-08-12 2018-02-20 요코하마 고무 가부시키가이샤 공기입 타이어
JP6887908B2 (ja) * 2017-07-27 2021-06-16 株式会社ブリヂストン タイヤ
JP7091232B2 (ja) * 2018-11-27 2022-06-27 株式会社ブリヂストン タイヤ
WO2020128237A1 (fr) * 2018-12-19 2020-06-25 Compagnie Generale Des Etablissements Michelin Bande de roulement comportant des rainures interrompues
FR3090481A3 (fr) * 2018-12-19 2020-06-26 Michelin & Cie Bande de roulement comportant des rainures interrompues
KR102267902B1 (ko) * 2019-11-12 2021-06-24 한국타이어앤테크놀로지 주식회사 소음 저감을 위한 공명기를 갖는 타이어
KR102604580B1 (ko) * 2021-10-19 2023-11-21 넥센타이어 주식회사 공명음 감쇄층부를 종그루브에 형성한 공기입 타이어
EP4446130A1 (en) * 2023-04-13 2024-10-16 Sumitomo Rubber Industries, Ltd. Tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169302A (ja) * 1985-01-23 1986-07-31 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH05338411A (ja) 1992-06-10 1993-12-21 Hino Motors Ltd 低騒音リブタイヤ
JPH0776203A (ja) * 1993-06-17 1995-03-20 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2000118207A (ja) 1998-09-24 2000-04-25 Continental Ag 吸音特性を有する空気タイヤ
JP2001191734A (ja) 2000-01-12 2001-07-17 Bridgestone Corp 重荷重用空気入りタイヤ
JP2003063212A (ja) * 2001-08-23 2003-03-05 Bridgestone Corp 空気入りタイヤ
JP2003097371A (ja) * 2001-09-26 2003-04-03 Toyota Motor Corp 内燃機関の吸気装置
WO2004103737A1 (ja) 2003-05-21 2004-12-02 Bridgestone Corporation 空気入りタイヤおよびそのタイヤのトレッドパターンの設計方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178199A (en) * 1976-04-05 1979-12-11 Uniroyal, Inc. Noise reduction in pneumatic tires
DE19901820C2 (de) * 1998-09-24 2002-06-27 Continental Ag Luftreifen mit schallabsorbierenden Eigenschaften
JP3930391B2 (ja) * 2002-07-29 2007-06-13 住友ゴム工業株式会社 空気入りタイヤ
US20050257870A1 (en) * 2002-08-30 2005-11-24 Yasuo Ohsawa Pneumatic tire and tire wheel assembly
JP4369734B2 (ja) * 2003-12-09 2009-11-25 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169302A (ja) * 1985-01-23 1986-07-31 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH05338411A (ja) 1992-06-10 1993-12-21 Hino Motors Ltd 低騒音リブタイヤ
JPH0776203A (ja) * 1993-06-17 1995-03-20 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2000118207A (ja) 1998-09-24 2000-04-25 Continental Ag 吸音特性を有する空気タイヤ
JP2001191734A (ja) 2000-01-12 2001-07-17 Bridgestone Corp 重荷重用空気入りタイヤ
JP2003063212A (ja) * 2001-08-23 2003-03-05 Bridgestone Corp 空気入りタイヤ
JP2003097371A (ja) * 2001-09-26 2003-04-03 Toyota Motor Corp 内燃機関の吸気装置
WO2004103737A1 (ja) 2003-05-21 2004-12-02 Bridgestone Corporation 空気入りタイヤおよびそのタイヤのトレッドパターンの設計方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"JATMA YEAR BOOK", JAPAN AUTOMOBILE TIRES MANUFACTURES ASSOCIATION
"STANDARDS MANUAL", THE EUROPEAN TYRE AND RIM TECHNICAL ORGANISATION
"YEAR BOOK", THE TIRE AND RIM ASSOCIATION INC.

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA017520B1 (ru) * 2008-01-09 2013-01-30 Компани Женераль Дез Этаблиссман Мишлен Устройство для протектора
FR2926037A1 (fr) * 2008-01-09 2009-07-10 Michelin Soc Tech Dispositif pour bande de roulement.
US8770240B2 (en) 2008-01-09 2014-07-08 Michelin Recherche Et Technique S.A. Tire with tread having circumferential grooves, resonators and incisions
WO2009095288A1 (fr) * 2008-01-09 2009-08-06 Societe De Technologie Michelin Dispositif pour bande de roulement
US20110017374A1 (en) * 2008-01-09 2011-01-27 Societe De Technologie Michelin Device for Tread
US20110108175A1 (en) * 2008-06-30 2011-05-12 Pirelli Tyres S.P.A. Rain tyre
US8931532B2 (en) * 2008-06-30 2015-01-13 Pirelli Tyre, S.P.A. Rain tyre
JP2010018092A (ja) * 2008-07-09 2010-01-28 Bridgestone Corp 空気入りタイヤ
JP2010047230A (ja) * 2008-08-25 2010-03-04 Bridgestone Corp タイヤ
JP2010260403A (ja) * 2009-04-30 2010-11-18 Bridgestone Corp 空気入りタイヤ
US8627863B2 (en) 2009-05-22 2014-01-14 Bridgestone Corporation Tire having air chambers in rib-shaped land portion
US8534334B2 (en) 2009-05-22 2013-09-17 Bridgestone Corporation Tire having air chamber and constriction groove in rib shaped land portion
CN102438845A (zh) * 2009-05-22 2012-05-02 株式会社普利司通 轮胎
CN102438846A (zh) * 2009-05-22 2012-05-02 株式会社普利司通 轮胎
WO2010134146A1 (ja) * 2009-05-22 2010-11-25 株式会社ブリヂストン タイヤ
US20120132336A1 (en) * 2009-05-22 2012-05-31 Bridgestone Corporation Tire
WO2010134144A1 (ja) * 2009-05-22 2010-11-25 株式会社ブリヂストン タイヤ
JP2011006048A (ja) * 2009-05-22 2011-01-13 Bridgestone Corp タイヤ
JP2010269740A (ja) * 2009-05-22 2010-12-02 Bridgestone Corp タイヤ
US20120067479A1 (en) * 2009-05-28 2012-03-22 Bridgestone Corporation Method of designing resonator and pneumatic tire having the resonator
US20120118460A1 (en) * 2009-05-29 2012-05-17 Bridgestone Corporation Tire
US8397773B2 (en) * 2009-05-29 2013-03-19 Bridgestone Corporation Tire with tread having circumferential grooves, first resonators and second resonators
US20120186711A1 (en) * 2009-08-07 2012-07-26 Bridgestone Corporation Tire
US8695656B2 (en) * 2009-08-07 2014-04-15 Bridgestone Corporation Tire
JP2011143897A (ja) * 2010-01-18 2011-07-28 Bridgestone Corp 空気入りタイヤ
US9393839B2 (en) 2010-03-29 2016-07-19 Bridgestone Corporation Tire
RU2521885C1 (ru) * 2010-10-14 2014-07-10 Компани Женераль Дез Этаблиссман Мишлен Усовершенствованные шумоподавляющие устройства для шин
JP2013086683A (ja) * 2011-10-19 2013-05-13 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2014159244A (ja) * 2013-02-20 2014-09-04 Bridgestone Corp 空気入りタイヤ
US10195905B2 (en) 2013-04-25 2019-02-05 Bridgestone Corporation Pneumatic tire
JP2014213742A (ja) * 2013-04-25 2014-11-17 株式会社ブリヂストン 空気入りタイヤ
JP2014213744A (ja) * 2013-04-25 2014-11-17 株式会社ブリヂストン 空気入りタイヤ
WO2014174830A1 (ja) * 2013-04-25 2014-10-30 株式会社ブリヂストン 空気入りタイヤ
JP5657773B1 (ja) * 2013-12-12 2015-01-21 株式会社ブリヂストン タイヤ
WO2015087572A1 (ja) * 2013-12-12 2015-06-18 株式会社ブリヂストン タイヤ
JP2015113040A (ja) * 2013-12-12 2015-06-22 株式会社ブリヂストン タイヤ
US10632793B2 (en) 2014-04-04 2020-04-28 Bridgestone Corporation Tire

Also Published As

Publication number Publication date
EP2011671B1 (en) 2014-07-16
KR20080113036A (ko) 2008-12-26
EP2011671A4 (en) 2010-01-06
JPWO2007114430A1 (ja) 2009-08-20
KR101032211B1 (ko) 2011-05-02
EP2011671A1 (en) 2009-01-07
US20090165908A1 (en) 2009-07-02
US8151842B2 (en) 2012-04-10
JP5366539B2 (ja) 2013-12-11
CN101454168B (zh) 2011-03-02
CN101454168A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2007114430A1 (ja) 空気入りタイヤ
JP5013731B2 (ja) 空気入りタイヤ
JP4803318B1 (ja) 空気入りタイヤ
EP1637356B1 (en) Pneumatic tire and method of designing tread pattern of the tire
JP4921889B2 (ja) 空気入りタイヤ
US9174497B2 (en) Pneumatic tire with tread having chamfered circumferential groove portion of bent auxiliary groove
JP5475476B2 (ja) 空気入りタイヤ
JP6125142B2 (ja) 空気入りタイヤ
JP7091232B2 (ja) タイヤ
JP4939979B2 (ja) 空気入りタイヤ
JP2008155798A (ja) 空気入りタイヤ
JP2014166827A (ja) 空気入りタイヤ
JP5728018B2 (ja) 空気入りタイヤ用トレッド
JP2006027508A (ja) 空気入りタイヤ
JP5103042B2 (ja) 空気入りタイヤ
JP4895790B2 (ja) 空気入りタイヤ
CN111479707B (zh) 充气轮胎
WO2007114383A1 (ja) 空気入りタイヤ
JP2008201200A (ja) 空気入りタイヤ
JP5121251B2 (ja) 空気入りタイヤ
JP6076137B2 (ja) 空気入りタイヤ
JP5039376B2 (ja) 空気入りタイヤ
JP5072345B2 (ja) 空気入りタイヤ
CN108081876B (zh) 轮胎
JP2010047208A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019830.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508698

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087023714

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12295411

Country of ref document: US