WO2010134144A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2010134144A1
WO2010134144A1 PCT/JP2009/006324 JP2009006324W WO2010134144A1 WO 2010134144 A1 WO2010134144 A1 WO 2010134144A1 JP 2009006324 W JP2009006324 W JP 2009006324W WO 2010134144 A1 WO2010134144 A1 WO 2010134144A1
Authority
WO
WIPO (PCT)
Prior art keywords
air chamber
tire
rib
circumferential direction
groove
Prior art date
Application number
PCT/JP2009/006324
Other languages
English (en)
French (fr)
Inventor
木脇幸洋
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US13/321,787 priority Critical patent/US8534334B2/en
Priority to CN200980159433.9A priority patent/CN102438845B/zh
Priority to EP09844878.0A priority patent/EP2433815B1/en
Publication of WO2010134144A1 publication Critical patent/WO2010134144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • B60C11/0323Patterns comprising isolated recesses tread comprising channels under the tread surface, e.g. for draining water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves

Definitions

  • the present invention relates to a tire including a rib-like land portion adjacent to a circumferential groove extending along the tire circumferential direction, and in particular, a Helmholtz resonator having an air chamber portion and a narrowed groove portion is provided in the rib-like land portion.
  • a Helmholtz resonator having an air chamber portion and a narrowed groove portion is provided in the rib-like land portion.
  • a tire is known in which a Helmholtz resonator having an air chamber portion and a narrowed groove portion communicating with the air chamber portion and the circumferential groove is provided in a rib-like land portion extending along the tire circumferential direction (for example, a patent) Reference 1).
  • the conventional tire described above has the following problems. That is, a Helmholtz resonator provided in the rib-like land portion, specifically, a so-called “stone bite” in which the air chamber portion bites pebbles or the like is likely to occur, which causes an increase in tire noise. Eventually, there was a problem that the tire noise could not be effectively reduced despite the tread pattern taking into account the reduction of air columnar resonance noise. Of course, if the size of the air chamber portion is increased, the stone bite is reduced, but another problem that the air columnar resonance noise cannot be effectively reduced is caused.
  • the present invention provides a Helmholtz-type resonator having an air chamber portion that forms a certain space by contacting with the road surface, and a narrowed groove portion that communicates with the air chamber portion and the circumferential groove.
  • An object of the present invention is to provide a tire in which air columnar resonance noise is effectively reduced while suppressing biting.
  • the present invention has the following features.
  • a rib-like land portion for example, a circumferential groove (for example, the circumferential groove 21)
  • the tire circumferential direction for example, the circumferential groove 21
  • the depth of the concave portion (depth DP1) is deeper at the one end (end portion 220b) of the air chamber portion in the tire circumferential direction than the other end (end portion 220a) of the air chamber portion.
  • the height from the (bottom surface 222) to the ground contact surface is around the tire
  • the volume of the space formed by the narrowed groove portion and the road surface is smaller than the volume of the space formed by the concave portion and the road surface, and one end of the narrowed groove portion is the air chamber portion.
  • the other end of the narrowed groove portion communicates with the circumferential groove, and the depth (depth DP2) of the narrowed groove portion is determined from the ground surface.
  • the gist is that the narrowed groove portion has an extended portion (inner groove portion 232) extending to one end of the air chamber portion deeper than the depth of the concave portion.
  • a second feature of the present invention relates to the first feature of the present invention, and the bottom surface of the concave portion is a curved portion (curved portion 223) that is a curved shape in a sectional view along the tire circumferential direction, A straight portion (straight portion 224) that is linear in a cross-sectional view along the tire circumferential direction, and the center of the arc (center CT2) along the curved portion is in the tire radial direction than the bottom surface
  • the linear portion is located on one end side of the air chamber, and one end (end portion 224a) of the linear portion is connected to the curved portion and the other end of the linear portion.
  • the gist is that the (end portion 224b) is continuous with the ground contact surface.
  • a third feature of the present invention relates to the first or second feature of the present invention, and is summarized in that the narrowed groove portion communicates with the other end of the air chamber portion in the tire circumferential direction.
  • a fourth feature of the present invention relates to the first to third features of the present invention, and is summarized in that the extending portion is formed between the concave portion and the grounding surface.
  • a fifth feature of the present invention relates to the first to fourth features of the present invention, wherein a cross-sectional area (cross-sectional area S) along the tread width direction and the tire radial direction of the concave portion is the curve-shaped portion.
  • the gist is that it is substantially the same from one end (end portion 223a) to the other end (end portion 223b) in the tire circumferential direction.
  • a sixth feature of the present invention relates to the first to fifth features of the present invention, wherein the rib-shaped land portion is a first rib-shaped land portion in which a plurality of the air chamber portions are provided along a tire circumferential direction. (Rib-shaped land portion 210) and a plurality of the air chamber portions are provided along the tire circumferential direction, and a second rib-shaped land portion (rib-shaped) provided at a position different from the first rib-shaped land portion in the tread width direction.
  • a position in the tire circumferential direction of the air chamber portion (air chamber portion 220) formed in the first rib-shaped land portion is the air space formed in the second rib-shaped land portion. It is different from the position of the chamber (air chamber 250).
  • a seventh feature of the present invention relates to the sixth feature of the present invention, wherein the position (end portion 223b) where the depth from the ground contact surface of the concave portion formed in the second rib-shaped land portion is the deepest.
  • the gist is that, in the tire circumferential direction, the depth of the concave portion formed in the first rib-shaped land portion from the ground contact surface is substantially the same as the shallowest position (end portion 223a).
  • An eighth feature of the present invention relates to the first to seventh features of the present invention, in which the air chamber portion goes from the other end of the air chamber portion to one end of the air chamber portion in a tread surface view.
  • the gist is that the width in the tread width direction (width W) is tapered.
  • a Helmholtz resonator having an air chamber portion that forms a certain space by contacting with the road surface and a narrowed groove portion that communicates with the air chamber portion and the circumferential groove is provided, It is possible to provide a tire that effectively reduces air column resonance noise while suppressing biting of pebbles and the like.
  • FIG. 1 is a partial perspective view of a pneumatic tire 10 according to an embodiment of the present invention.
  • FIG. 2 is a partial front view of the pneumatic tire 10 according to the embodiment of the present invention.
  • FIG. 3 is a partial perspective view of the rib-like land portion 110 according to the embodiment of the present invention.
  • FIG. 4 is a partial perspective view of the rib-like land portion 110 from which the portion of the land portion 120A according to the embodiment of the present invention is omitted.
  • FIG. 5 is a diagram illustrating a shape of the Helmholtz resonator R1 according to the embodiment of the present invention when viewed in the tread width direction.
  • FIG. 1 is a partial perspective view of a pneumatic tire 10 according to an embodiment of the present invention.
  • FIG. 2 is a partial front view of the pneumatic tire 10 according to the embodiment of the present invention.
  • FIG. 3 is a partial perspective view of the rib-like land portion 110 according to the embodiment of the present invention.
  • FIG. 4 is
  • FIG. 6 is a diagram showing a shape of the Helmholtz resonator R1 according to the embodiment of the present invention in a tread plan view.
  • FIG. 7 is a partial perspective view of the rib-like land portion 210 and the rib-like land portion 240 according to the embodiment of the present invention.
  • FIG. 8 is a partial perspective view of the rib-like land portion 210 and the rib-like land portion 240 in which a part of the rib-like land portion 210 according to the embodiment of the present invention is omitted.
  • FIG. 9 is an enlarged perspective view of the air chamber 220 according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the air chamber 220 along the line F10-F10 shown in FIG.
  • FIG. 11 is a diagram showing the shape of the Helmholtz resonator R2 according to the embodiment of the present invention when viewed in the tread width direction.
  • FIG. 12 is a partially enlarged plan view of the rib-like land portion 210 and the rib-like land portion 240 according to the embodiment of the present invention.
  • FIG. 13 is a view showing an air chamber according to a modification of the present invention.
  • FIG. 14 is a view showing an air chamber according to another modification of the present invention.
  • FIG. 15 is a view showing an air chamber according to still another modification of the present invention.
  • FIG. 1 is a partial perspective view of a pneumatic tire 10 according to this embodiment.
  • FIG. 2 is a partial front view of the pneumatic tire 10.
  • a plurality of circumferential grooves are formed in the pneumatic tire 10.
  • the pneumatic tire 10 is provided with a plurality of rib-like land portions that are partitioned by the circumferential groove and extend along the tire circumferential direction (direction D1 in FIG. 1).
  • the pneumatic tire 10 is a tire that is designed to reduce tire noise such as air columnar resonance and is mounted on a passenger car or the like that requires high silence.
  • the pneumatic tire 10 may be filled with an inert gas such as nitrogen gas instead of air.
  • circumferential grooves 11, 12, 21, and 22 are formed in the pneumatic tire 10.
  • the circumferential grooves 11, 12, 21, and 22 extend along the tire circumferential direction.
  • a rib-like land portion 110 is provided between the circumferential groove 11 and the circumferential groove 12. That is, the rib-like land portion 110 is adjacent to the circumferential groove 11 and the circumferential groove 12 and extends along the tire circumferential direction.
  • a rib-shaped land portion 210 is provided between the circumferential groove 12 and the circumferential groove 21.
  • a rib-like land portion 240 is provided between the circumferential groove 21 and the circumferential groove 22.
  • the rib-shaped land portion 210 and the rib-shaped land portion 240 also extend along the tire circumferential direction in the same manner as the rib-shaped land portion 110.
  • the rib-like land portion 110 is provided with an air chamber portion 130A and an air chamber portion 130B (see FIGS. 3 and 4) in which a concave portion recessed toward the inner side in the tire radial direction repeats at a predetermined interval along the tire circumferential direction. It is done.
  • the rib-shaped land portion 210 is provided with a plurality of air chamber portions 220 (see FIGS. 7 to 9) along the tire circumferential direction.
  • the rib-like land portion 240 is provided with a plurality of air chamber portions 250 (see FIG. 7) along the tire circumferential direction.
  • FIG. 3 is a partial perspective view of the rib-like land portion 110.
  • the rib-shaped land portion 110 includes a land portion 120 ⁇ / b> A, a land portion 120 ⁇ / b> B, and a land portion 140.
  • the land portion 120A, the land portion 120B, and the land portion 140 are grounded to the road surface RS (not shown in FIG. 3, refer to FIG. 5) as the pneumatic tire 10 rolls. That is, the land portion 120A, the land portion 120B, and the land portion 140 constitute a contact surface of the pneumatic tire 10 that contacts the road surface RS.
  • the land portion 120A and the land portion 120B are provided at both ends of the rib-like land portion 110 in the tread width direction (direction D2 in FIG. 2).
  • the land portion 120 ⁇ / b> A is adjacent to the circumferential groove 11.
  • the land portion 120 ⁇ / b> B is adjacent to the circumferential groove 12.
  • the rib-shaped land portion 110 is provided with an air chamber portion 130A and an air chamber portion 130B.
  • the air chamber part 130A is provided between the land part 120A and the land part 140.
  • the air chamber portion 130A is formed with a recessed portion 131 that is recessed toward the inside in the tire radial direction.
  • FIG. 4 is a partial perspective view of the rib-like land portion 110 from which the land portion 120A is omitted. As shown in FIG. 4, the recessed portion 131 is repeated at intervals P (predetermined intervals) along the tire circumferential direction.
  • the air chamber portion 130A and the air chamber portion 130B are provided in the same rib-shaped land portion (rib-shaped land portion 110), but the air chamber portion 130B is different from the air chamber portion 130A in the tread width direction (direction D2). Provided in position. Specifically, the air chamber part 130 ⁇ / b> B is provided between the land part 120 ⁇ / b> B and the land part 140. The shape of the air chamber portion 130B is the same as that of the air chamber portion 130A. That is, in the air chamber portion 130A and the air chamber portion 130B, the recessed portion 131 is repeated at the interval P.
  • the air chamber portion 130A constitutes a first air chamber portion
  • the air chamber portion 130B constitutes a second air chamber portion.
  • the shape of the air chamber portion 130A and the air chamber portion 130B are the same, the shape of the air chamber portion 130A will be mainly described below.
  • the bottom surface 132 of the air chamber portion 130 ⁇ / b> A repeats an arch shape that forms an arc in a cross-sectional view along the tire circumferential direction. That is, the height H from the bottom surface 132 of the air chamber portion 130A to the ground contact surface (for example, the surface of the land portion 120A that contacts the road surface RS) varies along the tire circumferential direction.
  • the center CT1 of the arc of the bottom surface 132 is located on the inner side in the tire radial direction than the bottom surface 132.
  • the bottom surface 132 contacts the road surface RS at the highest position 132a having the highest height to the ground contact surface. Specifically, the bottom surface 132 is in line contact with the road surface RS along a direction different from the tire circumferential direction. That is, the bottom surface 132 has such a shape that the width along the tire circumferential direction of the bottom surface 132 in contact with the road surface RS is as small as possible.
  • the shape of the bottom surface of the air chamber portion 130B is the same as the shape of the bottom surface 132, but the highest position 132a of the bottom surface 132 of the air chamber portion 130A and the highest position 132a of the bottom surface of the air chamber portion 130B are in the tire circumferential direction. , The phase P is shifted by a half phase.
  • a narrow groove portion 121 and a narrow groove 122 are formed in the land portion 120A.
  • the narrowed groove 121 and the narrow groove 122 are narrow grooves having a groove width of about several mm.
  • the narrowed groove 121 communicates with the concave portion 131.
  • the volume of the space formed by the narrowed groove 121 and the road surface RS is smaller than the space formed by the concave portion 131 and the road surface.
  • FIGS. 5 and 6 show the shape of the Helmholtz resonator R1 formed by the pneumatic tire 10 and the road surface RS.
  • FIG. 5 shows the shape of the Helmholtz resonator R1 when viewed in the tread width direction.
  • FIG. 6 shows the shape of the Helmholtz resonator R1 in the tread plan view.
  • the narrowed groove 121 and the air chamber 130 ⁇ / b> A having the recessed portion 131 constitute a Helmholtz resonator R ⁇ b> 1.
  • the height H from the bottom surface 132 of the air chamber portion 130A to the ground contact surface varies along the tire circumferential direction, but since the plurality of highest positions 132a repeated at every interval P are in contact with the road surface RS, An air chamber communicating with the narrowed groove 121 is formed. That is, an air chamber for the Helmholtz resonator R1 is formed by the bottom surface 132 between the two highest positions 132a adjacent to each other and the road surface RS in contact with the land portion 120A and the land portion 140.
  • the method for reducing the air columnar resonance using the Helmholtz resonator R1 has been disclosed in the prior art document described in the present specification, and will not be described here.
  • one end (end portion 121a) of the narrowed groove portion 121 communicates with a closed space formed by the air chamber portion 130A and the road surface RS. Specifically, the end 121a communicates with a closed space formed by the recessed portion 131, the highest positions 132a formed at both ends of the recessed portion 131 in the tire circumferential direction, and the road surface RS.
  • the other end (end portion 121 b) of the narrowed groove portion 121 communicates with the circumferential groove 11.
  • the end 121a communicates with the recessed portion 131 at the lowest position 132b where the bottom surface 132 is lowest. For this reason, only one end of the Helmholtz resonator R1 is open, and the other end is closed.
  • the narrow groove 122 communicates only with the circumferential groove 11. That is, the narrow groove 122 does not communicate with the concave portion 131. For this reason, the narrow groove 122 is not a component of the Helmholtz resonator R1.
  • FIG. 7 is a partial perspective view of the rib-like land portion 210 and the rib-like land portion 240.
  • FIG. 8 is a partial perspective view of the rib-like land portion 210 and the rib-like land portion 240 in which a part of the rib-like land portion 210 is omitted.
  • the rib-like land portion 210 is provided with a land portion 211 that contacts the road surface RS (see FIG. 11) and a plurality of air chamber portions 220.
  • the plurality of air chamber portions 220 are provided along the tire circumferential direction.
  • the rib-like land portion 240 is provided with a land portion 241 having the same shape as the land portion 211 and an air chamber portion 250 having the same shape as the air chamber portion 220.
  • the rib-like land portion 240 is provided at a position different from the rib-like land portion 210 in the tread width direction.
  • the rib-like land portion 210 constitutes a first rib-like land portion
  • the rib-like land portion 240 constitutes a second rib-like land portion.
  • FIG. 9 is an enlarged perspective view of the air chamber 220.
  • FIG. 10 is a cross-sectional view of air chamber 220 along line F10-F10 shown in FIG. As shown in FIGS. 9 and 10, the air chamber 220 has a recessed portion 221 that is recessed toward the inside in the tire radial direction.
  • the depth DP1 of the concave portion 221 with respect to the contact surface on which the land portion 211 contacts the road surface is defined as one end of the air chamber portion 220 in the tire circumferential direction (end portion 220b, 7 and FIG. 8), it is deeper than the other end of the air chamber 220 (the end 220a, see FIGS. 7 and 8). Further, the height from the bottom surface 222 of the concave portion 221 to the ground contact surface changes along the tire circumferential direction.
  • the bottom surface 222 of the concave portion 221 has a curved portion 223 that is curved in a sectional view along the tire circumferential direction.
  • a center CT2 of the arc along the curved portion 223 is located on the inner side in the tire radial direction than the bottom surface 222.
  • the curved portion 223 may be configured by a plurality of arcs. In this case, the center CT2 is the center of one arc approximated to a curve formed by the plurality of arcs.
  • the bottom surface 222 has a linear portion 224 that is linear in a cross-sectional view along the tire circumferential direction.
  • the straight portion 224 is formed on the end 220 b (see FIGS. 7 and 8) side of the air chamber 220.
  • One end (end portion 224a) of the linear portion 224 is connected to the end portion 223b of the curved portion 223, and the other end (end portion 224b) of the linear portion 224 is connected to a ground plane on which the land portion 211 contacts the road surface. .
  • the narrow chamber 230 communicates with the air chamber 220. Specifically, the narrowed groove 230 communicates with the end 220a of the air chamber 220 in the tire circumferential direction. That is, the narrowed groove portion 230 communicates with a closed space formed by the air chamber portion 220 and the road surface RS. Further, the narrowed groove portion 230 communicates with the circumferential groove 21. The volume of the space formed by the narrowed groove portion 230 and the road surface is smaller than the volume of the space formed by the concave portion 221 and the road surface.
  • the narrowed groove portion 230 includes an outer groove portion 231 and an inner groove portion 232.
  • the outer groove portion 231 communicates with the circumferential groove 21 and extends to the end portion 220 a of the air chamber portion 220.
  • the inner groove portion 232 communicates with the outer groove portion 231 and extends to the end portion 220 b of the air chamber portion 220, specifically, to the side of the linear portion 224.
  • the inner groove portion 232 constitutes an extended portion.
  • the inner groove portion 232 is formed between the concave portion 221 and the ground surface on which the land portion 211 contacts the road surface.
  • the depth DP2 of the narrowed groove portion 230 is deeper than the depth DP1 of the concave portion 221 from the ground contact surface where the land portion 211 contacts the road surface.
  • FIG. 11 shows the shape of the Helmholtz resonator R2 formed by the pneumatic tire 10 and the road surface RS. Specifically, FIG. 11 shows the shape of the Helmholtz resonator R2 when viewed in the tread width direction. Moreover, the area
  • the air chamber portion 220 having the concave portion 221 and the narrowed groove portion 230 constituted by the outer groove portion 231 and the inner groove portion 232 constitute a Helmholtz resonator R2.
  • the Helmholtz resonator R2 has only one end opened and the other end closed.
  • FIG. 12 is a partially enlarged plan view of the rib-like land portion 210 and the rib-like land portion 240.
  • the air chamber 220 has a tapered shape in which the width W in the tread width direction becomes narrower from the end 220 a to the end 220 b of the air chamber 220 in the tread surface view.
  • the cross-sectional area S (see FIG. 10) along the tread width direction (direction D2) and the tire radial direction (direction D3 in the drawing) of the concave portion 221 is one end (end portion 223a) of the curved portion 223 in the tire circumferential direction. ) To the other end (end portion 223b).
  • the position of the air chamber portion 220 formed in the rib-like land portion 210 in the tire circumferential direction is the position of the air chamber portion 250 formed in the rib-like land portion 240.
  • the deepest position (end portion 223b) from the ground contact surface (land portion 241) of the concave portion formed in the rib-like land portion 240 is the rib-like land portion 210 in the tire circumferential direction.
  • the depth of the concave portion 221 to be formed from the ground contact surface (land portion 211) is substantially the same as the shallowest position (end portion 223a).
  • the height H from the bottom surface 132 of the air chamber portion 130A (130B) to the ground contact surface where the land portion 120A (120B) contacts the road surface RS is in the tire circumferential direction. Change along. That is, since the depth of the air chamber portion 130A from the ground contact surface changes along the tire circumferential direction, even if the air chamber portion 130A bites pebbles or the like, the biting pebbles or the like bite the rolling of the pneumatic tire 10. If it is accompanied and moved in the tire circumferential direction, it will be easy to come off from the air chamber portion 130A. As a result, the occurrence of so-called “stone” can be suppressed.
  • the bottom surface 132 of the air chamber portion 130A is in line contact with the road surface RS along a direction different from the tire circumferential direction. For this reason, it is easy to enlarge the space of the air chamber part 130A, and a Helmholtz resonator corresponding to a frequency band in which sound absorption is desired can be easily configured.
  • the end 121a of the narrowed groove 121 communicates with the concave portion 131 at the lowest position 132b of the bottom surface 132. For this reason, the function of the Helmholtz resonator can be maintained even after the pneumatic tire 10 is worn out by a certain amount.
  • the bottom surface 132 of the air chamber portion 130A repeats an arch shape.
  • the center of the arc forming the arch shape is located on the inner side in the tire radial direction than the bottom surface 132. For this reason, it is possible to more effectively suppress the stone bite while ensuring the function of the Helmholtz resonator.
  • the highest position 132a of the bottom surface 132 of the air chamber portion 130A and the highest position 132a of the bottom surface of the air chamber portion 130B are shifted by a half phase with a spacing P in the tire circumferential direction. For this reason, the rigidity of the tread portion of the pneumatic tire 10 that contacts the road surface RS becomes substantially uniform in the tire circumferential direction.
  • the depth DP1 of the recessed portion 221 of the air chamber 220 is deeper at the end 220b of the air chamber 220 than at the end 220a of the air chamber 220.
  • the bottom surface 222 of the concave portion 221 has a curved portion 223.
  • pebbles or the like that have bitten into the air chamber portion 220 are supported at approximately three points on the curved portion 223 and the side surfaces (land portion 211) of the concave portion 221, so that the bottom surface 222 is flat.
  • the occurrence of “stone rock” can be suppressed.
  • the Helmholtz resonator corresponding to the frequency band to be absorbed is constituted by the narrowed groove portion 230 and the air chamber portion 220, the air columnar resonance noise caused by the circumferential groove 21 and the like can be effectively reduced.
  • the bottom surface 222 of the concave portion 221 has a curved portion 223 and a linear portion 224 connected to the ground plane. For this reason, when the bited pebbles are moved along with the rolling of the pneumatic tire 10, the pebbles and the like easily come off from the air chamber part 220 through the linear part 224 connected to the curved part 223.
  • the constricted groove 230 communicates with the end 220a of the air chamber 220. Further, the narrowed groove portion 230 has an inner groove portion 232 that is deeper than the depth DP1 of the concave portion 221 and extends to the end portion 220b of the air chamber portion 220. Furthermore, the inner groove part 232 is formed between the recessed part 221 and the land part 211 (grounding surface). For this reason, the function of the Helmholtz resonator can be maintained even after the pneumatic tire 10 is worn out by a certain amount.
  • the cross-sectional area S is substantially the same from the end 223a to the end 223b of the curved portion 223.
  • the position (end portion 223b) having the deepest depth from the ground contact surface formed in the rib-like land portion 240 is from the ground contact surface of the concave portion 221 formed in the rib-like land portion 210 in the tire circumferential direction.
  • the depth is substantially the same as the shallowest position (end portion 223a). For this reason, the rigidity of the tread portion of the pneumatic tire 10 that contacts the road surface becomes substantially uniform in the tire circumferential direction.
  • FIGS. 13A and 13B correspond to FIGS. 3 and 4 of the above-described embodiment, respectively.
  • FIGS. 13A and 13B show an air chamber according to a modified example of the present invention.
  • the bottom surfaces of the air chamber portions 130 ⁇ / b> C and 130 ⁇ / b> D have a sinusoidal shape in a cross-sectional view along the tire circumferential direction.
  • the highest position 132a on the bottom surface of the air chamber portion 130C and the highest position 132a on the bottom surface of the air chamber portion 130B are approximately half of the interval P in the tire circumferential direction. It is off.
  • the groove volume (negative rate) of the tread portion of the pneumatic tire 10 that contacts the road surface becomes more uniform in the tire circumferential direction.
  • FIGS. 14A and 14B show an air chamber according to another modification of the present invention.
  • the bottom surfaces of the air chamber portions 130E and 130F are chevron shapes (triangles) in a cross-sectional view along the tire circumferential direction.
  • the arrangement relationship of the highest position 132a is the same as that in the above-described embodiment.
  • the bottom surfaces of the air chamber portions 130G and 130H are the same as the air chamber portion 130A and the air chamber portion 130B described above in that they have an arch shape that forms an arc in a cross-sectional view along the tire circumferential direction.
  • the center of the arc forming the bottom surface of the air chamber portion is located not on the tire radial direction inner side but on the tire radial direction outer side than the bottom surface. That is, the bottom surfaces of the air chamber portions 130G and 130H have a reverse arch shape as compared with the air chamber portion 130A and the air chamber portion 130B.
  • the arrangement relationship of the highest position 132a is the same as that in the above-described embodiment.
  • the bottom surface shape of the air chamber may be a zigzag shape, a staircase shape, a combination of a straight line and an arc, or the like.
  • the position of the air chamber portion 130A and the air chamber portion 130B in the tire circumferential direction and the positional relationship of the air chamber portion 220 and the air chamber portion 250 in the tire circumferential direction are the tread portion of the pneumatic tire 10. In order to make the rigidity of the tire uniform in the tire circumferential direction, they did not match, but such a positional relationship is not necessarily required.
  • the narrowed groove portion 230 communicates with the end portion 220a of the air chamber portion 220 and has the inner groove portion 232 extending to the end portion 220b. It does not have to be a shape.
  • the narrowed groove 230 may communicate with the central portion of the air chamber 220.
  • the end 121a of the narrowed groove 121 may not necessarily communicate with the concave portion 131 at the lowest position 132b of the bottom surface 132.
  • the narrow groove 122 is formed in the land portion 120A, but the narrow groove 122 may not be formed.
  • the air chamber portion 130A and the air chamber portion 130B are provided in the same rib-shaped land portion. However, both air chamber portions may be provided in separate rib-shaped land portions. Good.
  • the circumferential grooves 11, 12, 21, and 22 extend linearly along the tire circumferential direction. However, if the circumferential grooves extend along the tire circumferential direction, they are not necessarily straight.
  • the shape is not limited to a zigzag shape and a wave shape.
  • the tire according to the present invention is provided with a Helmholtz resonator having an air chamber portion that forms a certain space by contacting the road surface, and a narrowed groove portion that communicates with the air chamber portion and the circumferential groove.
  • air columnar resonance noise can be effectively reduced while suppressing biting of pebbles and the like, which is useful in the tire manufacturing field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤ10では、凹部分221を有する気室部と、気室部及び周方向溝21に連通する狭窄溝部とがリブ状陸部に形成される。路面と接地する陸部211を基準とする凹部分221の深さDP1は、タイヤ周方向における気室部の一端において気室部の他端よりも深い。凹部分221の底面222から接地面までの高さは、タイヤ周方向に沿って変化する。狭窄溝部と路面とによって形成される空間の容積は、凹部分221と路面とによって形成される気室部の空間の容積よりも小さい。また、気室部は、気室部の他端から気室部の一端に行くに連れてトレッド幅方向の幅が狭くなる先細り状である。

Description

タイヤ
 本発明は、タイヤ周方向に沿って延びる周方向溝に隣接したリブ状陸部を備えるタイヤに関し、特に、気室部と狭窄溝部とを有するヘルムホルツ型共鳴器がリブ状陸部に設けられたタイヤに関する。
 近年、乗用自動車などでは、車両騒音(風切り音や機械音など)の低減化が一層進展したことや、環境へのさらなる配慮に伴って、タイヤ騒音の低減化の要求が以前にも増して高まっている。
 タイヤ騒音のうち、タイヤ周方向に沿って延びる周方向溝と路面とによって形成される空間に起因する気柱管共鳴音を低減するため、トレッドが路面と接触することによって一定の空間を形成する気室部と、気室部及び周方向溝に連通する狭窄溝部とを有するヘルムホルツ型共鳴器がタイヤ周方向に沿って延びるリブ状陸部に設けられたタイヤが知られている(例えば、特許文献1)。
特開2008-179289号公報(第4-5頁、第3図)
 しかしながら、上述した従来のタイヤには、次のような問題があった。すなわち、リブ状陸部に設けられたヘルムホルツ型共鳴器、具体的には気室部が小石などをかみ込む、いわゆる「石かみ」が起こり易く、タイヤ騒音の増大原因となる。結局、気柱管共鳴音の低減に配慮したトレッドパターンであるにもかかわらず、タイヤ騒音を効果的に低減できない問題があった。勿論、気室部のサイズを大きくすれば、石かみは減少するが、気柱管共鳴音を効果的に低減できない別の問題を惹起する。
 そこで、本発明は、路面と接触することによって一定の空間を形成する気室部と、気室部及び周方向溝に連通する狭窄溝部とを有するヘルムホルツ型共鳴器が設けられる場合において、小石などのかみ込みを抑制しつつ、気柱管共鳴音を効果的に低減したタイヤの提供を目的とする。
 上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、タイヤ周方向(方向D1)に沿って延びる周方向溝(例えば、周方向溝21)に隣接し、タイヤ周方向に沿って延びるリブ状陸部(例えば、リブ状陸部210)を備えるタイヤ(空気入りタイヤ10)であって、タイヤ径方向内側に向かって凹んだ凹部分(凹部分221)を有する気室部(気室部220)と、前記気室部及び前記周方向溝に連通する狭窄溝部(狭窄溝部230)とが前記リブ状陸部に形成され、前記リブ状陸部が路面と接地する接地面(陸部211)を基準とする前記凹部分の深さ(深さDP1)は、タイヤ周方向における前記気室部の一端(端部220b)において前記気室部の他端(端部220a)よりも深く、前記凹部分の底面(底面222)から前記接地面までの高さは、タイヤ周方向に沿って変化し、前記狭窄溝部と前記路面とによって形成される空間の容積は、前記凹部分と路面とによって形成される空間の容積よりも小さく、前記狭窄溝部の一端は、前記気室部と前記路面とによって形成される閉空間に連通するとともに、前記狭窄溝部の他端は、前記周方向溝に連通し、前記狭窄溝部の深さ(深さDP2)は、前記接地面からの前記凹部分の深さよりも深く、前記狭窄溝部は、前記気室部の一端まで延在する延在部分(内溝部232)を有することを要旨とする。
 本発明の第2の特徴は、本発明の第1の特徴に係り、前記凹部分の底面は、タイヤ周方向に沿った断面視において、曲線状である曲線状部分(曲線部分223)と、タイヤ周方向に沿った断面視において直線状である直線状部分(直線状部分224)とを有し、前記曲線状部分に沿った円弧の中心(中心CT2)は、前記底面よりもタイヤ径方向内側に位置し、前記直線状部分は、前記気室部の一端側に形成され、前記直線状部分の一端(端部224a)は、前記曲線状部分に連なるとともに、前記直線状部分の他端(端部224b)は、前記接地面に連なることを要旨とする。
 本発明の第3の特徴は、本発明の第1または第2の特徴に係り、前記狭窄溝部は、タイヤ周方向における前記気室部の他端に連通することを要旨とする。
 本発明の第4の特徴は、本発明の第1乃至第3の特徴に係り、前記延在部分は、前記凹部分と、前記接地面との間に形成されることを要旨とする。
 本発明の第5の特徴は、本発明の第1乃至第4の特徴に係り、前記凹部分のトレッド幅方向及びタイヤ径方向に沿った断面積(断面積S)は、前記曲線状部分のタイヤ周方向における一端(端部223a)から他端(端部223b)まで略同一であることを要旨とする。
 本発明の第6の特徴は、本発明の第1乃至第5の特徴に係り、前記リブ状陸部は、前記気室部がタイヤ周方向に沿って複数設けられた第1リブ状陸部(リブ状陸部210)と、前記気室部がタイヤ周方向に沿って複数設けられ、トレッド幅方向において前記第1リブ状陸部と異なる位置に設けられる第2リブ状陸部(リブ状陸部240)とを含み、前記第1リブ状陸部に形成される前記気室部(気室部220)のタイヤ周方向における位置は、前記第2リブ状陸部に形成される前記気室部(気室部250)の位置と異なることを要旨とする。
 本発明の第7の特徴は、本発明の第6の特徴に係り、前記第2リブ状陸部に形成される凹部分の前記接地面からの深さが最も深い位置(端部223b)は、タイヤ周方向において、前記第1リブ状陸部に形成される凹部分の前記接地面からの深さが最も浅い位置(端部223a)と略同一であることを要旨とする。
 本発明の第8の特徴は、本発明の第1乃至第7の特徴に係り、前記気室部は、トレッド面視において、前記気室部の他端から前記気室部の一端に行くに連れてトレッド幅方向の幅(幅W)が狭くなる先細り状であることを要旨とする。
 本発明の特徴によれば、路面と接触することによって一定の空間を形成する気室部と、気室部及び周方向溝に連通する狭窄溝部とを有するヘルムホルツ型共鳴器が設けられる場合において、小石などのかみ込みを抑制しつつ、気柱管共鳴音を効果的に低減したタイヤを提供できる。
図1は、本発明の実施形態に係る空気入りタイヤ10の一部斜視図である。 図2は、本発明の実施形態に係る空気入りタイヤ10の一部正面図である。 図3は、本発明の実施形態に係るリブ状陸部110の一部斜視図である。 図4は、本発明の実施形態に係る陸部120Aの部分を省略したリブ状陸部110の一部斜視図である。 図5は、本発明の実施形態に係るヘルムホルツ型共鳴器R1のトレッド幅方向視における形状を示す図である。 図6は、本発明の実施形態に係るヘルムホルツ型共鳴器R1のトレッド平面視における形状を示す図である。 図7は、本発明の実施形態に係るリブ状陸部210及びリブ状陸部240の一部斜視図である。 図8は、本発明の実施形態に係るリブ状陸部210の一部を省略したリブ状陸部210及びリブ状陸部240の一部斜視図である。 図9は、本発明の実施形態に係る気室部220の拡大斜視図である。 図10は、本発明の実施形態に係る図9に示したF10-F10線に沿った気室部220の断面図である。 図11は、本発明の実施形態に係るヘルムホルツ型共鳴器R2のトレッド幅方向視における形状を示す図である。 図12は、本発明の実施形態に係るリブ状陸部210及びリブ状陸部240の一部拡大平面図である。 図13は、本発明の変更例に係る気室部を示す図である。 図14は、本発明の他の変更例に係る気室部を示す図である。 図15は、本発明のさらに他の変更例に係る気室部を示す図である。
 次に、本発明に係るタイヤの実施形態について、図面を参照しながら説明する。具体的には、(1)タイヤの全体概略構成、(2)リブ状陸部の形状、(3)作用・効果、及び(4)その他の実施形態について説明する。
 なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意されたい。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 (1)タイヤの全体概略構成
 図1は、本実施形態係る空気入りタイヤ10の一部斜視図である。図2は、空気入りタイヤ10の一部正面図である。
 空気入りタイヤ10には、複数の周方向溝が形成される。また、空気入りタイヤ10には、当該周方向溝によって区画され、タイヤ周方向(図1の方向D1)に沿って延びる複数のリブ状陸部が設けられる。空気入りタイヤ10は、気柱管共鳴音などのタイヤ騒音の低減に配慮されたタイヤであり、高い静粛性が要求される乗用自動車などに装着される。なお、空気入りタイヤ10には、空気ではなく、窒素ガスなどの不活性ガスを充填してもよい。
 具体的には、空気入りタイヤ10には、周方向溝11,12,21及び22が形成される。周方向溝11,12,21及び22は、タイヤ周方向に沿って延びる。
 周方向溝11と周方向溝12との間には、リブ状陸部110が設けられる。すなわち、リブ状陸部110は、周方向溝11及び周方向溝12に隣接し、タイヤ周方向に沿って延びる。
 周方向溝12と周方向溝21との間には、リブ状陸部210が設けられる。また、周方向溝21と周方向溝22との間には、リブ状陸部240が設けられる。リブ状陸部210及びリブ状陸部240もリブ状陸部110と同様にタイヤ周方向に沿って延びる。
 リブ状陸部110には、タイヤ径方向内側に向かって凹んだ凹部分がタイヤ周方向に沿って所定の間隔で繰り返す気室部130A及び気室部130B(図3及び図4参照)が設けられる。
 リブ状陸部210には、気室部220(図7~図9参照)がタイヤ周方向に沿って複数設けられる。同様に、リブ状陸部240には、気室部250(図7参照)がタイヤ周方向に沿って複数設けられる。
 (2)リブ状陸部の形状
 次に、リブ状陸部の形状について説明する。具体的には、リブ状陸部110及びリブ状陸部210,240の形状について説明する。
 (2.1)リブ状陸部110
 図3は、リブ状陸部110の一部斜視図である。図3に示すように、リブ状陸部110は、陸部120A、陸部120B及び陸部140を有する。陸部120A、陸部120B及び陸部140は、空気入りタイヤ10が転動することによって路面RS(図3において不図示、図5参照)と接地する。すなわち、陸部120A、陸部120B及び陸部140は、路面RSと接地する空気入りタイヤ10の接地面を構成する。
 陸部120A及び陸部120Bは、リブ状陸部110のトレッド幅方向(図2の方向D2)における両端に設けられる。陸部120Aは、周方向溝11に隣接する。陸部120Bは、周方向溝12に隣接する。
 また、リブ状陸部110には、気室部130A及び気室部130Bが設けられる。気室部130Aは、陸部120Aと陸部140との間に設けられる。気室部130Aには、タイヤ径方向内側に向かって凹んだ凹部分131が形成される。
 図4は、陸部120Aの部分を省略したリブ状陸部110の一部斜視図である。図4に示すように、凹部分131は、タイヤ周方向に沿って間隔P(所定の間隔)で繰り返される。
 気室部130Aと気室部130Bとは、同一のリブ状陸部(リブ状陸部110)に設けられるが、気室部130Bは、トレッド幅方向(方向D2)において気室部130Aと異なる位置に設けられる。具体的には、気室部130Bは、陸部120Bと陸部140との間に設けられる。気室部130Bの形状は、気室部130Aと同一である。つまり、気室部130Aと気室部130Bとは、凹部分131が間隔Pで繰り返される。本実施形態において、気室部130Aは、第1気室部を構成し、気室部130Bは、第2気室部を構成する。
 気室部130A及び気室部130Bの形状は同一であるため、以下、気室部130Aの形状について主に説明する。図4に示すように、気室部130Aの底面132は、タイヤ周方向に沿った断面視において、円弧を形成するアーチ状を繰り返す。つまり、気室部130Aの底面132から接地面(例えば、路面RSと接地する陸部120Aの表面)までの高さHは、タイヤ周方向に沿って変化する。底面132の円弧の中心CT1は、底面132よりもタイヤ径方向内側に位置する。
 底面132は、接地面までの高さが最も高い最高位置132aにおいて路面RSと接触する。具体的には、底面132は、タイヤ周方向と異なる方向に沿って路面RSと線接触する。つまり、底面132は、路面RSと接触する底面132のタイヤ周方向に沿った幅が極力狭くなるような形状を有する。
 気室部130Bの底面の形状は、底面132の形状と同一であるが、気室部130Aの底面132の最高位置132aと、気室部130Bの底面の最高位置132aとは、タイヤ周方向において、間隔Pの半位相ずれている。
 また、陸部120Aには、狭窄溝部121及び細溝122が形成される。狭窄溝部121及び細溝122は、溝幅が数mm程度の細溝である。狭窄溝部121は、凹部分131に連通する。狭窄溝部121と路面RSとによって形成される空間の容積は、凹部分131と路面とによって形成される空間よりも容積が小さい。
 図5及び図6は、空気入りタイヤ10と路面RSとによって形成されるヘルムホルツ型共鳴器R1の形状を示す。具体的には、図5は、トレッド幅方向視におけるヘルムホルツ型共鳴器R1の形状を示す。図6は、トレッド平面視におけるヘルムホルツ型共鳴器R1の形状を示す。図5及び図6に示すように、狭窄溝部121と、凹部分131を有する気室部130Aとは、ヘルムホルツ型共鳴器R1を構成する。
 上述したように、気室部130Aの底面132から接地面までの高さHは、タイヤ周方向に沿って変化するが、間隔P毎に繰り返される複数の最高位置132aが路面RSと接するため、狭窄溝部121に連通する気室が形成される。つまり、互いに隣接する2つの最高位置132a間の底面132と、陸部120A及び陸部140に接する路面RSとによって、ヘルムホルツ型共鳴器R1用の気室が形成される。なお、ヘルムホルツ型共鳴器R1を用いた気柱管共鳴音の低減方法については、本明細書に記載した先行技術文献など開示されているため、ここでの説明は省略する。
 図3に示すように、狭窄溝部121の一端(端部121a)は、気室部130Aと路面RSとによって形成される閉空間に連通する。具体的には、端部121aは、凹部分131と、凹部分131のタイヤ周方向における両端に形成される最高位置132aと、路面RSとによって形成される閉空間に連通する。
 一方、狭窄溝部121の他端(端部121b)は、周方向溝11に連通する。本実施形態では、端部121aは、底面132の位置が最も低い最低位置132bにおいて、凹部分131に連通する。このため、ヘルムホルツ型共鳴器R1は、一端のみが開口し、他端などは閉口している。
 細溝122は、周方向溝11にのみ連通する。つまり、細溝122は、凹部分131には連通していない。このため、細溝122は、ヘルムホルツ型共鳴器R1の構成要素とはなっていない。
 (2.2)リブ状陸部210,240
 図7は、リブ状陸部210及びリブ状陸部240の一部斜視図である。図8は、リブ状陸部210の一部を省略したリブ状陸部210及びリブ状陸部240の一部斜視図である。図7及び図8に示すように、リブ状陸部210には、路面RS(図11参照)と接地する陸部211、及び複数の気室部220が設けられる。複数の気室部220は、タイヤ周方向に沿って設けられる。リブ状陸部240には、陸部211と同一形状の陸部241、及び気室部220と同一形状の気室部250が設けられる。リブ状陸部240は、トレッド幅方向においてリブ状陸部210と異なる位置に設けられる。本実施形態において、リブ状陸部210は、第1リブ状陸部を構成し、リブ状陸部240は、第2リブ状陸部を構成する。
 気室部220及び気室部250の形状は同一であるため、以下、気室部220の形状について主に説明する。図9は、気室部220の拡大斜視図である。図10は、図9に示したF10-F10線に沿った気室部220の断面図である。図9及び図10に示すように、気室部220は、タイヤ径方向内側に向かって凹んだ凹部分221を有する。
 陸部211が路面と接地する接地面(路面RSと接地する陸部211の表面)を基準とする凹部分221の深さDP1は、タイヤ周方向における気室部220の一端(端部220b、図7及び図8参照)において気室部220の他端(端部220a、図7及び図8参照)よりも深い。また、凹部分221の底面222から接地面までの高さは、タイヤ周方向に沿って変化している。
 凹部分221の底面222は、タイヤ周方向に沿った断面視において、曲線状である曲線部分223を有する。曲線部分223に沿った円弧の中心CT2は、底面222よりもタイヤ径方向内側に位置する。なお、曲線部分223は、複数の円弧によって構成されてもよい。この場合、中心CT2は、当該複数の円弧によって形成された曲線に近似したひとつの円弧の中心とする。
 また、底面222は、タイヤ周方向に沿った断面視において直線状である直線状部分224を有する。直線状部分224は、気室部220の端部220b(図7及び図8参照)側に形成される。直線状部分224の一端(端部224a)は、曲線部分223の端部223bに連なるとともに、直線状部分224の他端(端部224b)は、陸部211が路面と接地する接地面に連なる。
 気室部220には、狭窄溝部230が連通する。具体的には、狭窄溝部230は、タイヤ周方向における気室部220の端部220aに連通する。つまり、狭窄溝部230は、気室部220と路面RSとによって形成される閉空間に連通する。また、狭窄溝部230は、周方向溝21に連通する。狭窄溝部230と路面とによって形成される空間の容積は、凹部分221と路面とによって形成される空間の容積よりも小さい。
 狭窄溝部230は、外溝部231と内溝部232とによって構成される。外溝部231は、周方向溝21に連通し、気室部220の端部220aまで延びる。内溝部232は、外溝部231に連通し、気室部220の端部220b、具体的には直線状部分224の側方まで延びる。本実施形態において、内溝部232は、延在部分を構成する。内溝部232は、凹部分221と、陸部211が路面と接地する接地面との間に形成される。
 図10に示すように、狭窄溝部230、具体的には、内溝部232の深さDP2は、陸部211が路面と接地する接地面からの凹部分221の深さDP1よりも深い。
 図11は、空気入りタイヤ10と路面RSとによって形成されるヘルムホルツ型共鳴器R2の形状を示す。具体的には、図11は、トレッド幅方向視におけるヘルムホルツ型共鳴器R2の形状を示す。また、図12の一点鎖線で囲われた領域は、トレッド平面視におけるヘルムホルツ型共鳴器R2の形状を示す。
 図11に示すように、凹部分221を有する気室部220と、外溝部231及び内溝部232によって構成される狭窄溝部230とは、ヘルムホルツ型共鳴器R2を構成する。ヘルムホルツ型共鳴器R2は、ヘルムホルツ型共鳴器R1と同様に、一端のみが開口し、他端などは閉口している。
 図12は、リブ状陸部210及びリブ状陸部240の一部拡大平面図である。図12に示すように、気室部220は、トレッド面視において、気室部220の端部220aから端部220bに行くに連れてトレッド幅方向の幅Wが狭くなる先細り状である。
 また、凹部分221のトレッド幅方向(方向D2)及びタイヤ径方向(図中方向D3)のに沿った断面積S(図10参照)は、曲線部分223のタイヤ周方向における一端(端部223a)から他端(端部223b)まで略同一である。
 さらに、本実施形態では、図12に示すように、リブ状陸部210に形成される気室部220のタイヤ周方向における位置は、リブ状陸部240に形成される気室部250の位置と異なる。具体的には、リブ状陸部240に形成される凹部分の接地面(陸部241)からの深さが最も深い位置(端部223b)は、タイヤ周方向において、リブ状陸部210に形成される凹部分221の接地面(陸部211)からの深さが最も浅い位置(端部223a)と略同一である。
 (3)作用・効果
 空気入りタイヤ10によれば、気室部130A(130B)の底面132から陸部120A(120B)が路面RSと接地する接地面までの高さHは、タイヤ周方向に沿って変化する。つまり、気室部130Aの接地面からの深さがタイヤ周方向に沿って変化するため、気室部130Aが小石などをかみ込んでも、かみ込んだ小石などが空気入りタイヤ10の転動に伴ってタイヤ周方向に移動させられると、気室部130Aから外れ易くなる。この結果、いわゆる「石かみ」の発生を抑制できる。
 また、狭窄溝部121と気室部130Aとによって、具体的には、狭窄溝部121と、間隔P毎に繰り返される複数の最高位置132aが路面RSと接することによって形成される気室によって、吸音したい周波数帯に対応したヘルムホルツ型共鳴器R1,R2が構成されるため、周方向溝11などによる気柱管共鳴音を効果的に低減できる。
 本実施形態では、気室部130Aの底面132は、タイヤ周方向と異なる方向に沿って路面RSと線接触する。このため、気室部130Aの空間を大きくすることが容易であり、吸音したい周波数帯に対応したヘルムホルツ型共鳴器を容易に構成できる。
 本実施形態では、狭窄溝部121の端部121aは、底面132の最低位置132bにおいて、凹部分131に連通する。このため、空気入りタイヤ10が一定量摩耗した後においてもヘルムホルツ型共鳴器の機能を維持できる。
 本実施形態では、気室部130Aの底面132は、アーチ状を繰り返す。また、アーチ状を形成する円弧の中心は、底面132よりもタイヤ径方向内側に位置する。このため、ヘルムホルツ型共鳴器の機能を確保しつつ、より効果的に石かみを抑制できる。
 本実施形態では、気室部130Aの底面132の最高位置132aと、気室部130Bの底面の最高位置132aとは、タイヤ周方向において、間隔Pの半位相ずれている。このため、路面RSと接地する空気入りタイヤ10のトレッド部分の剛性がタイヤ周方向において略均一となる。
 また、空気入りタイヤ10によれば、気室部220の凹部分221の深さDP1は、気室部220の端部220bにおいて、気室部220の端部220aよりも深い。また、凹部分221の底面222は、曲線部分223を有する。つまり、気室部220にかみ込んだ小石などは、曲線部分223、凹部分221の両側面(陸部211)の概ね3点で支持されることになるため、底面222が平面な場合と比較して、気室部220から外れ易い。この結果、「石かみ」の発生を抑制できる。
 また、狭窄溝部230と気室部220とによって、吸音したい周波数帯に対応したヘルムホルツ型共鳴器が構成されるため、周方向溝21などによる気柱管共鳴音を効果的に低減できる。
 本実施形態では、凹部分221の底面222は、曲線部分223及び接地面に連なる直線状部分224を有する。このため、かみ込んだ小石が空気入りタイヤ10の転動に伴って移動させられると、曲線部分223に連なる直線状部分224を通じて小石などが気室部220から外れ易い。
 狭窄溝部230は、気室部220の端部220aに連通する。また、狭窄溝部230は、凹部分221の深さDP1よりも深く、気室部220の端部220bまで延在する内溝部232を有する。さらに、内溝部232は、凹部分221と、陸部211(接地面)との間に形成される。このため、空気入りタイヤ10が一定量摩耗した後においてもヘルムホルツ型共鳴器の機能を維持できる。
 本実施形態では、断面積Sは、曲線部分223の端部223aから端部223bまで略同一である。また、リブ状陸部240に形成される接地面からの深さが最も深い位置(端部223b)は、タイヤ周方向において、リブ状陸部210に形成される凹部分221の接地面からの深さが最も浅い位置(端部223a)と略同一である。このため、路面と接地する空気入りタイヤ10のトレッド部分の剛性がタイヤ周方向において略均一となる。
 (4)その他の実施形態
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例が明らかとなる。例えば、本発明の実施形態は、次のように変更することができる。
 図13(a)及び(b)は、上述した実施形態の図3及び図4とそれぞれ対応する。具体的には、図13(a)及び(b)は、本発明の変更例に係る気室部を示す。図13(a)及び(b)に示すように、気室部130C,130Dの底面は、タイヤ周方向に沿った断面視において正弦波の形状である。上述した気室部130A及び気室部130Bと同様に、気室部130Cの底面の最高位置132aと、気室部130Bの底面の最高位置132aとは、タイヤ周方向において、間隔Pの略半分ずれている。
 このように底面の形状が正弦波の場合、路面と接地する空気入りタイヤ10のトレッド部分の溝ボリューム(ネガティブ率)が、タイヤ周方向においてより均一になる。
 図14(a)及び(b)は、本発明の他の変更例に係る気室部を示す。気室部130E,130Fの底面は、タイヤ周方向に沿った断面視において山形(三角形)である。なお、最高位置132aの配置関係は、上述した実施形態と同様である。
 図15(a)及び(b)は、本発明のさらに他の変更例に係る気室部を示す。気室部130G,130Hの底面は、タイヤ周方向に沿った断面視において円弧を形成するアーチ状である点において上述した気室部130A及び気室部130Bと同様である。但し、気室部130G,130Hでは、気室部の底面を形成する円弧の中心は、底面よりもタイヤ径方向内側ではなく、タイヤ径方向外側に位置する。つまり、気室部130G,130Hの底面は、気室部130A及び気室部130Bと比較すると逆アーチ状である。なお、最高位置132aの配置関係は、上述した実施形態と同様である。
 また、このような変更例以外にも、気室部の底面形状は、ジグザク状、階段状、直線と円弧の組合せなどであってもよい。
 上述した実施形態では、気室部130Aと気室部130Bとのタイヤ周方向における位置、及び気室部220と気室部250とのタイヤ周方向における位置関係は、空気入りタイヤ10のトレッド部分の剛性をタイヤ周方向において均一にするため、一致していなかったが、必ずしもこのような位置関係にしなくてもよい。
 上述した実施形態では、狭窄溝部230は、気室部220の端部220aに連通するとともに、端部220bまで延在する内溝部232を有していたが、狭窄溝部230は、必ずしもこのような形状でなくても構わない。例えば、狭窄溝部230は、気室部220の中央部分に連通するようにしてもよい。同様に、狭窄溝部121の端部121aは、必ずしも底面132の最低位置132bにおいて凹部分131に連通しなくても構わない。
 上述した実施形態では、陸部120Aに細溝122が形成されていたが、細溝122は、形成されなくてもよい。また、上述した実施形態では、気室部130Aと気室部130Bとは、同一のリブ状陸部に設けられていたが、両気室部は、別個のリブ状陸部にそれぞれ設けてもよい。
 上述した実施形態では、周方向溝11,12,21,22は、タイヤ周方向に沿って直線状に延びていたが、周方向溝は、タイヤ周方向に沿って延びていれば、必ずしも直線状に限らず、ジグザグ状や波形状でもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。

 なお、日本国特許出願第2009-124615号(2009年5月22日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係るタイヤは、路面と接触することによって一定の空間を形成する気室部と、気室部及び周方向溝に連通する狭窄溝部とを有するヘルムホルツ型共鳴器が設けられる場合において、小石などのかみ込みを抑制しつつ、気柱管共鳴音を効果的に低減させることができるため、タイヤの製造分野において有用である。
 10…空気入りタイヤ、11,12,21,22…周方向溝、110…リブ状陸部、120A,120B…陸部、121…狭窄溝部、121a,121b…端部、122…細溝、130A~130H…気室部、131…凹部分、132…底面、132a…最高位置、132b…最低位置、140…陸部、210…リブ状陸部、211…陸部、220…気室部、240…リブ状陸部、220a,220b…端部、221…凹部分、222…底面、223…曲線部分、224…直線状部分、223a,223b,224a,224b…端部、230…狭窄溝部、231…外溝部、232…内溝部、241…陸部、250…気室部、CT1,CT2…中心、DP1,DP2…深さ、H…高さ、P…間隔、R1,R2…ヘルムホルツ型共鳴器、RS…路面、S…断面積、W…幅

Claims (8)

  1.  タイヤ周方向に沿って延びる周方向溝に隣接し、タイヤ周方向に沿って延びるリブ状陸部を備えるタイヤであって、
     タイヤ径方向内側に向かって凹んだ凹部分を有する気室部と、
     前記気室部及び前記周方向溝に連通する狭窄溝部とが前記リブ状陸部に形成され、
     前記リブ状陸部が路面と接地する接地面を基準とする前記凹部分の深さは、タイヤ周方向における前記気室部の一端において前記気室部の他端よりも深く、
     前記凹部分の底面から前記接地面までの高さは、タイヤ周方向に沿って変化し、
     前記狭窄溝部と前記路面とによって形成される空間の容積は、前記凹部分と前記路面とによって形成される空間の容積よりも小さく、
     前記狭窄溝部の一端は、前記気室部と前記路面とによって形成される閉空間に連通するとともに、前記狭窄溝部の他端は、前記周方向溝に連通し、
     前記狭窄溝部の深さは、前記接地面からの前記凹部分の深さよりも深く、
     前記狭窄溝部は、前記気室部の一端まで延在する延在部分を有するタイヤ。
  2.  前記凹部分の底面は、
     タイヤ周方向に沿った断面視において、曲線状である曲線状部分と、
     タイヤ周方向に沿った断面視において直線状である直線状部分とを有し、
     前記曲線状部分に沿った円弧の中心は、前記底面よりもタイヤ径方向内側に位置し、
     前記直線状部分は、前記気室部の一端側に形成され、
     前記直線状部分の一端は、前記曲線状部分に連なるとともに、前記直線状部分の他端は、前記接地面に連なる請求項1に記載のタイヤ。
  3.  前記狭窄溝部は、タイヤ周方向における前記気室部の他端に連通する請求項1または2に記載のタイヤ。
  4.  前記延在部分は、前記凹部分と、前記接地面との間に形成される請求項1乃至3の何れか一項に記載のタイヤ。
  5.  前記凹部分のトレッド幅方向及びタイヤ径方向に沿った断面積は、前記曲線状部分のタイヤ周方向における一端から他端まで略同一である請求項1乃至4の何れか一項に記載のタイヤ。
  6.  前記リブ状陸部は、
     前記気室部がタイヤ周方向に沿って複数設けられた第1リブ状陸部と、
     前記気室部がタイヤ周方向に沿って複数設けられ、トレッド幅方向において前記第1リブ状陸部と異なる位置に設けられる第2リブ状陸部とを含み、
     前記第1リブ状陸部に形成される前記気室部のタイヤ周方向における位置は、前記第2リブ状陸部に形成される前記気室部の位置と異なる請求項1乃至5の何れか一項に記載のタイヤ。
  7.  前記第2リブ状陸部に形成される凹部分の前記接地面からの深さが最も深い位置は、タイヤ周方向において、前記第1リブ状陸部に形成される凹部分の前記接地面からの深さが最も浅い位置と略同一である請求項6に記載のタイヤ。
  8.  前記気室部は、トレッド面視において、前記気室部の他端から前記気室部の一端に行くに連れてトレッド幅方向の幅が狭くなる先細り状である請求項1乃至7の何れか一項に記載のタイヤ。
PCT/JP2009/006324 2009-05-22 2009-11-24 タイヤ WO2010134144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/321,787 US8534334B2 (en) 2009-05-22 2009-11-24 Tire having air chamber and constriction groove in rib shaped land portion
CN200980159433.9A CN102438845B (zh) 2009-05-22 2009-11-24 轮胎
EP09844878.0A EP2433815B1 (en) 2009-05-22 2009-11-24 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-124615 2009-05-22
JP2009124615A JP4592802B2 (ja) 2009-05-22 2009-05-22 タイヤ

Publications (1)

Publication Number Publication Date
WO2010134144A1 true WO2010134144A1 (ja) 2010-11-25

Family

ID=43125843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006324 WO2010134144A1 (ja) 2009-05-22 2009-11-24 タイヤ

Country Status (6)

Country Link
US (1) US8534334B2 (ja)
EP (1) EP2433815B1 (ja)
JP (1) JP4592802B2 (ja)
KR (1) KR20120024811A (ja)
CN (1) CN102438845B (ja)
WO (1) WO2010134144A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751467B2 (ja) * 2009-05-22 2011-08-17 株式会社ブリヂストン タイヤ
DE102012108384A1 (de) * 2012-09-10 2014-03-13 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP7017981B2 (ja) * 2018-05-18 2022-02-09 Toyo Tire株式会社 空気入りタイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161921A (ja) * 2003-12-01 2005-06-23 Bridgestone Corp 空気入りタイヤ
JP2007237816A (ja) * 2006-03-06 2007-09-20 Bridgestone Corp 空気入りタイヤ
WO2007114430A1 (ja) * 2006-03-31 2007-10-11 Bridgestone Corporation 空気入りタイヤ
JP2008155798A (ja) * 2006-12-25 2008-07-10 Bridgestone Corp 空気入りタイヤ
JP2009124615A (ja) 2007-11-17 2009-06-04 Ricoh Co Ltd 画像処理装置及びこれを備えた画像形成装置、並びに、画像処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104109A (ja) * 1994-10-06 1996-04-23 Bridgestone Corp 空気入りタイヤ
WO2002078982A1 (en) * 2001-03-30 2002-10-10 Pirelli Pneumatici S.P.A. Tread pattern for car tire
EP1580032B1 (de) * 2004-03-26 2010-10-20 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
US8210220B2 (en) * 2005-12-21 2012-07-03 Bridgestone Corporation Pneumatic tire
JP5060790B2 (ja) 2007-01-25 2012-10-31 株式会社ブリヂストン 空気入りタイヤ
US8297323B2 (en) * 2007-02-19 2012-10-30 Bridgestone Corporation Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161921A (ja) * 2003-12-01 2005-06-23 Bridgestone Corp 空気入りタイヤ
JP2007237816A (ja) * 2006-03-06 2007-09-20 Bridgestone Corp 空気入りタイヤ
WO2007114430A1 (ja) * 2006-03-31 2007-10-11 Bridgestone Corporation 空気入りタイヤ
JP2008155798A (ja) * 2006-12-25 2008-07-10 Bridgestone Corp 空気入りタイヤ
JP2009124615A (ja) 2007-11-17 2009-06-04 Ricoh Co Ltd 画像処理装置及びこれを備えた画像形成装置、並びに、画像処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2433815A4

Also Published As

Publication number Publication date
JP2010269740A (ja) 2010-12-02
EP2433815A4 (en) 2012-10-31
KR20120024811A (ko) 2012-03-14
JP4592802B2 (ja) 2010-12-08
CN102438845A (zh) 2012-05-02
CN102438845B (zh) 2014-02-26
US8534334B2 (en) 2013-09-17
EP2433815B1 (en) 2014-04-16
US20120125500A1 (en) 2012-05-24
EP2433815A1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2011016100A1 (ja) タイヤ
JP5615680B2 (ja) タイヤ
JP5427560B2 (ja) タイヤ
JP2014097725A (ja) 空気入りタイヤ
WO2010134144A1 (ja) タイヤ
WO2012147191A1 (ja) 空気入りタイヤ
WO2011077561A1 (ja) 空気入りタイヤ用トレッド
JP5396203B2 (ja) タイヤ
JP2010280266A (ja) タイヤ
JP4751467B2 (ja) タイヤ
US9688101B2 (en) Tire
JP5400492B2 (ja) タイヤ
WO2015029861A1 (ja) タイヤ
WO2010137089A1 (ja) タイヤ
JP5346689B2 (ja) タイヤ
JP5135402B2 (ja) タイヤ
JP5346688B2 (ja) タイヤ
WO2019044514A1 (ja) 空気入りタイヤ
KR100756327B1 (ko) 대칭형 트레드 패턴을 갖는 타이어
JP5753037B2 (ja) タイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159433.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9741/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117030593

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009844878

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321787

Country of ref document: US