WO2004024472A1 - 空気入りタイヤおよびタイヤ・ホイール組立体 - Google Patents

空気入りタイヤおよびタイヤ・ホイール組立体 Download PDF

Info

Publication number
WO2004024472A1
WO2004024472A1 PCT/JP2003/011162 JP0311162W WO2004024472A1 WO 2004024472 A1 WO2004024472 A1 WO 2004024472A1 JP 0311162 W JP0311162 W JP 0311162W WO 2004024472 A1 WO2004024472 A1 WO 2004024472A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread
groove
tire
row
mounting
Prior art date
Application number
PCT/JP2003/011162
Other languages
English (en)
French (fr)
Inventor
Yasuo Ohsawa
Takafumi Sawada
Takanari Saguchi
Kazuto Fujita
Arata Tomita
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002252754A external-priority patent/JP2004090729A/ja
Priority claimed from JP2002254053A external-priority patent/JP4275371B2/ja
Priority claimed from JP2002255455A external-priority patent/JP4275373B2/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/526,068 priority Critical patent/US20050257870A1/en
Priority to EP03795276A priority patent/EP1552966B1/en
Priority to ES03795276T priority patent/ES2382545T3/es
Publication of WO2004024472A1 publication Critical patent/WO2004024472A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/124Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern inclined with regard to a plane normal to the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1384Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane

Definitions

  • the present invention proposes a pneumatic tire and a tire-wheel assembly that have both reduced rolling noise of a tire and high anti-drooping performance at a high level, as well as improved uneven wear resistance. Is what you do.
  • Japanese Patent Application Laid-Open No. H10-217719 discloses a conventional technique for improving the jet performance of a tire and suppressing uneven wear and tire noise.
  • the longitudinal main grooves are asymmetrical about the tire equator.
  • an outer inclined groove inclined at an angle of 45 to 70 ° with respect to the circumferential direction is provided, Tilting the shoulder between the vertical main groove in the second inner region and the ground end in the inner region at an angle of 60 to 80 ° with respect to the circumferential direction and in the opposite direction to the outer inclined groove.
  • the inner inclined groove is spaced apart, and furthermore, in the crane portion between the outer main area vertical main groove and the second inner area vertical main groove, A central inclined groove that is inclined at an angle of 20 to 45 ° and in the same direction as the outer inclined groove is separated. According to this, one outer side, two inner side vertical main grooves and an inclined groove are provided.
  • a tread pattern is formed asymmetrically in the circumferential direction of a tread surface, and a shoulder pattern is formed.
  • An outer area and an inner area having a row of blocks, and a central area which is laterally delimited by a circumferential groove belonging to this area, a lateral groove extending from the shoulder block row of the inner area to the center area, and treads.
  • the width of the central area of the pattern is 25 to 35% of the tread width, and at most every other lateral groove from the shoulder block row of the inner area, this central area Continues as a groove that crosses at least almost all the way, and this groove makes a maximum angle of 30 ° to the equatorial line in the central area over at least one third of the length of the central area.
  • pneumatic tires which is set to be as uniform as possible wear of the patterns, to improve drainage and gives a good effect for the rolling noise.
  • the negative ratio is reduced by placing importance on the tire's kinetic performance on the dry road surface at the part that is mounted on the vehicle and on the outer side of the mounting, while the part that is mounted on the inner side is Increasing the negative rate to ensure high performance has been widely used in the past.
  • the tread wear when the negative camber is applied, the ground contact length of the shoulder portion inside the mounting becomes longer than that of the shoulder portion outside the mounting, so that the tire has a small toe angle such as a toe angle.
  • the inner shoulder portion bears extra lateral force against lateral slippage when a slip angle is applied, etc.
  • the vertical flexion inside the mounting is larger than the vertical radius outside.
  • the large longitudinal deflection causes a decrease in the radius of rotation of the tire, the small-diameter side portion of the tread tread is dragged by the large-diameter side portion and relatively receives the force in the braking direction.
  • Each of these causes premature wear of the tread inside the mounting, or in other words, uneven wear of the tread.
  • the load of the force in these cases generally increases in the area closer to the ground contact end, and uneven wear nuclei tend to occur in that area, and the uneven wear generated there gradually increases from the tire equatorial line. Will progress to the side.
  • the belt tension is reduced by filling the internal pressure. It is effective to add a tread pattern that increases the rigidity in the tread width direction at each of the tread center part, which becomes particularly large, and the part where the grounding length becomes longer and the rigidity of the tread pattern is particularly large.
  • the longest part of the ground contact length will be slightly shifted inside the mounting from the tread center part, so in this case, the tread center part and the longest part of the ground contact length
  • a tread pattern having high rigidity in the width direction over each of the ribs For example, it is preferable to form a rib.
  • the water is drained outward in both widthwise outer regions than the circumferential main groove.
  • the drainage groove extends in a direction along the streamline of water.
  • the streamline near the shoulder area on the inner side of the mounting is 45 in the tread width direction. Since it goes outward in the width direction at the above angle, it is necessary to form a drainage groove in the streamline direction-and to open it at least to the outer circumferential groove in the widthwise direction. It is preferable for further improvement.
  • a shoulder land row may be formed at the part that is mounted on the vehicle and inside the mounting area
  • the sum of the circumferential groove volume per unit width in the circumferential direction per unit width is made smaller than the similar sum of the lateral groove groove volumes formed in the shoulder-land portion row on the outer side of the mounting, and the tire equator
  • the ribs are located on the land row in the central area, which includes the line or is located closest to the tire equator line, and the second inner side adjacent to the tire equator side of the shoulder land row on the inner side of the mounting On land line
  • a plurality of inclined grooves extending at an average angle of 45 ° or more with respect to the width direction of the tread are provided
  • the “circumferential main groove” means a groove having a groove width of 2.5% or more of the tread width.
  • tread width '' refers to the contact width when the tire is mounted on the applicable rim, filled with the specified air pressure, and loaded with a mass corresponding to the maximum load capacity.
  • the applicable rim here means the rim specified in the following standards.
  • the maximum load capacity is the maximum mass that can be applied to the tire in the following standards, and the specified air pressure is In the following standards, it means the air pressure specified corresponding to the maximum load capacity.
  • the sum of the groove volumes of the lateral grooves that may be formed in the shoulder land portion row at the portion inside the mounting is determined by the groove volume of the lateral groove formed in the shoulder land portion row at the portion outside the mounting.
  • the groove ratio in the shoulder land row is reduced, and It can be dealt with by increasing the row stiffness.
  • the uneven wear caused by the reduced radius of rotation inside the mounting due to the tire's vertical radius, the total width of the horizontal groove in the shoulder land row Based on the reduced volume, this can be dealt with by suppressing the land row from deforming in the direction to reduce the width of the lateral groove on the ground contact surface and reducing the radius of gyration.
  • the center where the contact length is the longest is the part of the contact shape determined by the alignment of the vehicle to which the tire is attached, the tire internal pressure, the load weight, etc.
  • an inclined groove for guiding water on the road surface away from the tread center is provided in the second inner land row, and the extending direction of the inclined groove is In accordance with the inclination of the drainage streamline, it shall be at least 45 ° with respect to the tread width direction to ensure smooth and quick drainage.
  • the second inner land portion row when the center land portion row rib having high rigidity in the width direction as described above is provided across the tread center portion and the longest portion of the ground contact length, the second inner land portion row is provided.
  • the belt tension at the tread center is smaller than that at the tread center part, and the contact length of the inner cross section is shorter than the above ribs, so that the contribution ratio of the second inner land section to the steering stability is so large. Therefore, even if the extension angle of the inclined groove of the second inner ridge row is set to 45 ° or more as described above, it does not significantly affect the steering stability, and as described above.
  • the lateral grooves in the shoulder land row have the flow grooves. It is preferable to extend in the linear direction.
  • the ground shape is rounded, and the entry of road surface water into the tread tread surface itself is effectively prevented by the action inherent to the tread tread profile Therefore, even if a lateral groove is not provided, the hydroplaning resistance does not decrease.
  • circumferential main grooves are provided, and one end is provided on the second outer land portion row adjacent to the tire equator line side of the shoulder land portion row for a portion to be mounted outside.
  • a number of lateral grooves are provided that open into the circumferential main groove and have the other end ending in the land row.
  • a circumferential narrow groove having a groove width of less than 2.5% of the tread width is provided in the shoulder land portion row on the inner side of the mounting, and the shoulder land row is divided in the trad width direction.
  • the average inclination angle of the lateral grooves provided on the shoulder land row on the outside of the mounting with respect to the tread width direction shall be 15 ° or less.
  • the portion of the inner shoulder ridge row near the landing end where the uneven wear is most likely to occur is separated from the other portion of the shoulder land row by a circumferential narrow groove, so that the portion near the grounding end is formed.
  • the uneven wear that occurs in the shoulder land row can be advantageously suppressed from progressing to other parts.
  • the position where the drainage streamline is directed in the circumferential direction of the tread is closer to the inner shoulder than the case where no camber is provided. While it is displaced to one side, the shape of the grounding contour is rounded on the side where the grounding length is short-drainage to the outside in the tread width direction is effective, and in the outer shoulder land row, the direction of the drainage streamline.
  • the width of the lateral grooves on the outer shoulder land row is 15 ° or less with respect to the tread width direction. In this way, the drainage efficiency is increased and the improvement of the anti-hydroplaning performance is ensured.
  • the widthwise stiffness of the shoulder land row on the outside where the ground contact length is short is particularly large for steering stability when a relatively large slip angle is applied, as represented by mountain road running.
  • the average angle of the lateral grooves formed in the shoulder land row with respect to the tread width direction is set to 15 ° or less to suppress the decrease in the rigidity of the land row in the width direction. As a result, excellent friction resistance is achieved while ensuring high steering stability.
  • the shoulder land portion row on the inner side of the mounting is divided into two in the width direction by a narrow groove extending in the circumferential direction, and one of the divided portions located on the tread end side is formed as a narrow rib, A plurality of small holes independent of the groove are provided in the other wide-width divided portion that may be formed.
  • the ground contact length in the tread circumferential direction within the tread tread surface is determined based on the tire posture at zero camber angle.
  • the length of the ground becomes longer by increasing the length at the inner part and shortening at the outer part.
  • the wheel rim approaches the road surface and the radius of rotation decreases, while the grounding length decreases. Since the turning radius is large on the outside, for example, when the vehicle is running straight, there is a problem that the relative force in the braking direction acts on the inside of the mounting, causing early wear there.
  • Japanese Patent Application Laid-open No. 2001-354 As disclosed in Japanese Patent Publication No.
  • the tire circumferential rigidity of the shoulder land portion inside the mounting is determined by the tire of the shoulder land portion outside the mounting.
  • the wear resistance in the braking direction of the shoulder-land portion on the inner side of the mounting in other words, on the side where the contact length increases, may be improved.
  • the shoulder land portion row on the inner side of the bonding is divided into two in the width direction by narrow grooves extending in the circumferential direction, and one of the narrow divided portions located on the tread end side is used as a wear sacrificial portion.
  • a plurality of small holes independent of the grooves are provided in the wide division to reduce the shear rigidity of the division in the ground plane in each direction, so that the wide division is dragged in the braking direction.
  • the load of force can be advantageously reduced under high flexibility, and early wear can be advantageously reduced.
  • the change of the total volume of the small holes can be realized by, for example, changing the opening size or depth thereof, changing the arrangement pitch, and the like.
  • the tread structure including the area where small holes are formed in the wide-split section is reduced under the action of a load of 40% of the maximum load capacity at a camber angle of 10.5.
  • the load is smaller than that of the front wheels, such as the rear wheels when braking an FF vehicle. Therefore, even when the contact width becomes narrow, the effect of reducing rigidity under the action of the small hole can be effectively exhibited.
  • the side surface on the tread end side has a concave curved surface shape with the center of curvature outside the cross-sectional contour line.
  • the center line of the rib as the central region land row located closest to the tire equator line is aligned with the tire equatorial line.
  • the ribs shall be biased toward the inside of the mounting, and the rib shall be provided with a plurality of narrow grooves extending in the width direction of the tread.
  • the inclination angle of the narrow groove in the width direction is an average angle in the range of 5 to 55 ° and the groove width is 2 mm or less.
  • the center of the tread that provides the highest tread rigidity by increasing the belt tension which is the so-called hoop effect, is maximized.
  • the rigidity in the tread width direction is high and the high tension part of the belt
  • the groove width is set to 2 mm or less is that only a small groove width is sufficient to absorb the circumferential deformation of rubber, and if it exceeds 2 mm, the pattern becomes larger. This is due to an increase in noise and a greater decrease in rib width stiffness. If the angle of the narrow groove is set to 5 ° or more, the pattern noise due to the contact of the groove edge with the road surface cannot be denied unless it is less than 5 °. The upper limit of 55 ° is set to 55 ° If the angle exceeds °, the rigidity in the width direction of the rib becomes too low.
  • such narrow grooves in the width direction are separated from each other in the depth direction, for example, in the width direction of the groove, the circumferential direction of the tread, or the like, with the middle portion in the extending direction as a boundary. It is formed to be flat or curved. Note that this In this case, three or more flat planar portions inclined in a direction away from each other can be formed in one narrow groove.
  • the narrow groove width in the presence of the narrow groove width, it is possible to sufficiently allow the rubber to escape in the circumferential direction.
  • the narrow groove is formed at the groove bottom side from the opening position.
  • a plurality of such narrow grooves in the width direction can be terminated at least partially at both ends in the extending direction in the ribs as the row of land portions.
  • the rigidity in the width direction of the rib is kept high, and the steering stability can be further improved.
  • the allowance of the rubber escape deformation in the circumferential direction is particularly necessary at the center in the width direction of the rib where there is no rubber escape, so even if a narrow groove in the width direction is extended there, while it is possible for the rubber to deform in the outward direction of the ribs, the rigidity in the width direction is low near the side walls of the ribs. It is possible to allow the rubber to escape in the circumferential direction while suppressing the decrease.
  • the center line of the center area land row closest to the tire equator line is biased toward the inside of the mounting with respect to the tire equator line, and the rib is
  • a plurality of recesses having a substantially elliptical shape including an oval shape are provided, and the long axis of each recess is set at 5 to 45 ° with respect to the width direction of the tread.
  • the rib is extended at an angle within the range, and the shoulder land row side inside the mounting of the rib is defined by a circumferential main groove extending linearly.
  • the sipe when a sipe extending in the longitudinal direction of the dent is provided in at least a part of the plurality of substantially elliptical dents and is provided on the side wall of the rib, the sipe is sealed in the dent when grounded and compressed. Since air can be exhausted to the outside through the sipe, the air in the depression is confined, has a high compression pressure, and is prevented from being released when kicking out and producing noise.
  • the ribs in the central region land row closest to the equator line of the tire are partitioned by a pair of linear main grooves extending linearly, and the rib located on the shoulder land row side inside the mounting. It is preferable that the width of the directional main groove be wider than the width of the circumferential main groove located on the side of the shoulder land portion row on the outer side of the mounting.
  • the maximum width is the largest in comparison with the maximum width and the maximum length of the contact shape during actual load rolling of the tire. According to the knowledge that the circumferential main groove drains more water when the ground contact length is longer than when the ground contact length is longer, as in the former, the maximum width is smaller than the maximum length. When it becomes larger, for example, by providing more circumferential grooves at the center of the tread where the streamline direction of the drainage is almost circumferential, the drainage is improved and It is possible to improve the easiness.
  • the circumferential main groove forms an air column tube equal to the grounding length in the grounding plane, and causes air column resonance sound. Even if the dimensions of the column tube are the same, the size depends on the position of the tread in the width direction. The inner side of the mounting where the tread contact length becomes longer under the negative camber from the tread center position The new knowledge that the air column resonance sound at this point decreases at a greater rate than the increase rate of the resonance sound outside the mounting where the contact length becomes shorter toward the tread edge side has been obtained.
  • the circumferential main groove located on the shoulder land row side on the inner side of the mounting where the tread length of the tread is long is made wider than the other circumferential main grooves, so that resonance noise is generated. Hold-out opening resistance Bring on.
  • each block defined by the lateral groove in the land row have a surface height facing at least one of the block edge and the central area of the block.
  • a tire equipped with a block provided with such a peripheral ridge can be loaded without providing a camber corner. In the case of rolling, when the block is depressed, a loud impact sound is generated due to the inclined raised surface of the peripheral raised portion colliding with the road surface.
  • peripheral ridges described above are provided on the shoulder lock on the outer side of the tire to be used with the negative camber, the load on the outer shoulder block is small during straight running, so the load on the outer side is small. Addition of noise due to the presence of the ridge can be effectively prevented.
  • At least the height of the stepping edge and the height of the kick-out edge of the block defined by the inclined groove in the second inner land row are set in the tread width direction.
  • the tall portions are extended in the tread circumferential direction while changing the position in the tread width direction according to the circumferential position.
  • the outer part of the tire When a negative camber is applied to the tire, the outer part of the tire has a shorter ground contact length and lower contact pressure, so the outer part of the tire is affected by the impact noise caused by the block's impact on the road surface. While the occurrence is relatively small, the contact length and the contact pressure are both large in the area inside the attachment, and the rate of occurrence of the impact sound increases. In this case, since the land row in the central area is a rib, there is no noise due to the block abutment, and the inner shoulder land row generally has a small number of lateral grooves, so this is also the impact sound. While the rate of occurrence is small, the noise generated by the block in the second inner land row, which is defined by the inclined grooves, is particularly large.
  • the height of the stepping edge and the height of the kicking edge are made different in the direction of the tread width, and Extend in the tread circumferential direction while changing the position in the tread width direction according to the circumferential position.
  • the kick edge is gradually separated from the road surface over time to reduce noise generation in the later stage of contact with the ground, and third, the height extending in the circumferential direction of the tread, Based on changing the position in the tread width direction of each part with high tread width in accordance with the circumferential position, the compressive force generated in the block due to the rolling of the tire is distributed and supported by the entire block, and is generated by the block. Noise level can be suppressed.
  • each of the tall portions extending in the circumferential direction of the tread is continuous in the circumferential direction of the tread, the noise from the point where the block comes into contact with the road surface until it leaves the road surface will be reduced.
  • the level can be kept low.
  • the height is gradually reduced toward the tapered tip at an acute corner of a block or the like defined by at least one of the lateral groove and the inclined groove extending at an average angle of 45 ° or more with respect to the tread width direction.
  • An inclined surface composed of a flat surface, a convex curved surface, etc. is provided.
  • the second inner land row which is ribbed and located adjacent to the land row in the central area and is formed with inclined grooves to improve drainage performance
  • Increasing the rigidity in the tread width direction is effective in improving the steering stability.
  • reducing the difference in rigidity with respect to the rib is effective in bringing the increase in cornering force due to the increase in the slip angle given to the tire closer to a linear shape.
  • the slope of the block in the second inner land row is increased to increase the rigidity of the block in the tread width direction and to further improve drainage performance. I do.
  • a protruding part When a protruding part is provided, it occurs due to the edge of the land part, which is more rigid than the groove part such as a lateral groove, coming into contact with the road surface during tire rolling.
  • the decrease in rigidity at the groove such as the lateral groove is effectively compensated for by the protrusion into the main groove in the circumferential direction, and the rigidity of the part where the groove is formed and the rigidity of the land such as the block
  • the above-described impact sound can be advantageously suppressed, and this is the same regardless of whether or not a negative chamber is provided to the tire.
  • the depth of the inclined grooves provided in the second inner land portion row which extends at an average angle of 45 ° or more with respect to the tread width direction, is changed from the tire equatorial plane side to the tread end side. For example, gradually or stepwise deepen.
  • the cross-sectional area of the slope In order to improve drainage efficiency by the inclined grooves provided in the second inner land row and contributing to the improvement of drainage performance, the cross-sectional area of the slope must be gradually increased toward the end of the tread or a sufficiently large constant Although it is preferable that the second inner ridge row adjacent to the center area land row contributes to the improvement of the steering stability, as described above, it is preferable that Since it is effective to secure large rigidity in the tread width direction of the blocks in the train row, the purpose here is to achieve both high anti-hydroplaning performance and steering stability at a high level.
  • the cross-sectional area is increased toward the tread edge by making the depth of the inclined groove shallower on the equator line side and then deeper toward the tread edge side.
  • the extending directions of the inclined grooves provided in the second inner land portion row with respect to the tire equator line may be the same direction, or alternatively, may be alternately opposite in the tread circumferential direction.
  • the inclined grooves in the second inner land row greatly contribute to the improvement of drainage performance, and the tread pattern specifies the rotation direction.
  • the directional pattern is a directional pattern, the inclined groove extends in the tire equatorial line at a predetermined fixed direction, and the desired function of the inclined groove can be sufficiently exhibited.
  • the tread pattern has no directivity
  • the tires of the left and right wheels are relatively rotated in the opposite directions.
  • the extending direction of the inclined groove is alternately opposite to the tire equator line in the circumferential direction of the tread as in the latter case.
  • the integral value of the rigidity in the width direction of the tread in the respective land rows defined by the circumferential main grooves over the entire grounding length is calculated between the adjacent land rows.
  • the value shall be within 50% of the larger value.
  • the rigidity of the shoulder land row on the inner side of the mounting which is divided into two parts in the width direction by the circumferential narrow groove, is the rigidity of only the wide divided part closer to the center than the narrow groove.
  • the “integral value over the entire contact length” is, for example, the sum of the rigidity in the width direction of each land section row divided by the circumferential groove over the entire perimeter of the tread,
  • the value obtained by dividing the contact length of the row by the perimeter of the land row after filling with air pressure can be obtained by multiplying the above sum. More specifically, for example, if one land row consists of 60 monopitch blocks, the widthwise stiffness of one block is determined and multiplied by 60. By calculating the sum of the stiffnesses and multiplying it by (the number of blocks in contact with the block 60), the integrated ground over the entire length of the pile can be obtained.
  • the total rigidity can be obtained by calculating the widthwise rigidity of the block of each dimension, multiplying it by the number of blocks of each dimension in one round, and adding the rigidity for each dimension. .
  • the belt tension on the equatorial plane often becomes the highest, and the tread stiffness based on the belt tension also becomes maximum in this part.
  • the longest part of the ground contact length is also located on the equatorial plane, and on the equatorial plane, the belt rigidity and grounding length Since both are maximized, the tread on the equatorial plane is where the maximum cornering force is generated.
  • the difference in the rigidity in the width direction between the adjacent mating member rows was set to the larger value of 5 0% or less.
  • the tires described above are mounted on the applicable rim, filled with the specified air pressure, and loaded with a mass equivalent to the maximum load capacity, and the effective contact area of either the inside or outside of the mounting is
  • the other is larger than the other, and in the prescribed air pressure filling posture, the radial distance from the tread outer surface tangent perpendicular to the equatorial plane of the tire to each tread tread edge is smaller than the effective tread area.
  • the ratio of the effective contact area is large (three / three). And the ratio of the magnitude of the radial distance (H large / H small)
  • A is 1.0 to 1.4
  • the tire located outside the cornering increases the load and increases the ground contact area.
  • the rigidity of the land on the outer part of the tire tread is higher than that of the inner part on the tire. It is widely practiced to increase the cornering force by increasing the size. The specific configuration for this is to reduce the negative rate of the outer part of the mounting and increase the rigidity of the land, while increasing the rigidity of the inner part of the mounting. It is common to increase the negative rate to ensure drainage.
  • the ground contact area of the outer part of the mounting becomes larger than that of the inner part of the mounting.
  • the widthwise shearing force that the tread surface receives from the road surface is greatly different between the inside and outside of the mounting, and this difference is caused by the conicity as if a camber corner was added to the tire. It has been found that a lateral force is applied to the tyre in the outward direction as a cause of the force.
  • A is 1.0 1.4
  • A is smaller than 1.0, a cosity force in the opposite direction is likely to be generated, and if it is larger than 1.4, the effect of canceling the conicity force is reduced.
  • the connecting portion between the wheel rim and the disc when the connecting portion between the wheel rim and the disc is located outside the vehicle to be mounted with respect to the equatorial plane of the tire mounted on the rim, the road surface input to the tire is reduced. This was done to effectively control transmission to the axle.
  • connection between the rim and the disc is located on the outside of the vehicle with respect to the tire equatorial plane, when viewed in the radial cross section of the wheel, the protruding portion of the rim toward the inside of the vehicle is the disc.
  • the rigidity of the wheel is particularly low against radial input from the tire side to the bead seat located inside the vehicle from the tire side of the rim.
  • the radial input causes a particularly large deformation of the wheel itself, and the deformation of the wheel is transmitted to the axle, which contributes to axle vibration and the like.
  • the transmission of road surface input to the rim must be suppressed.
  • the tire-wheel assembly according to the present invention is obtained by dividing the above-described pneumatic tire, in particular, the shoulder land row on the inner side of the mounting into two parts in the width direction by a narrow groove extending in the circumferential direction.
  • a tire in which one of the divided portions located on the tread edge side is a narrow rib, and a plurality of small holes independent of the groove are provided in the other wide divided portion where a lateral groove may be formed.
  • the transmission rate of tire vibration transmitted from the tread portion of the tire to the vehicle body via the right and left side wall portions, the left and right bead portions, and the wheels to the vehicle body is examined.
  • the transmissivity through the rim end located on the front side of the disc and the vibration transmissibility through the rim end located on the back side of the wheel disc are different, and which side is more likely to cause axle vibration
  • the wheel position was determined by the connection position between the wheel rim and the disk, regardless of the offset of the wheel disk from the rim and, consequently, the tire equatorial plane. For example, if their connection position is located outside the tire equatorial plane, In this case, the vibration inside the opposite mounting tends to generate vibration on the axle.
  • the compression rigidity is reduced by the small holes, and the reaction force against the input to the tire due to uneven road surface etc. is reduced, so that the vibration is transmitted to the axle. And the quietness of the vehicle interior can be improved.
  • the shoulder land row on the outer side even if the rigidity is large and the reaction force against the tire input becomes large, the transmission rate of vibration from the wheel to the axle is low in this part, The vibration of the axle does not increase and the quietness is not impaired.
  • FIG. 1 is a developed view of a tread pattern showing an embodiment of the present invention.
  • FIG. 2 is a developed view showing another tread pattern.
  • FIG. 3 is a developed view showing another tread pattern.
  • FIG. 4 is a diagram showing an example of changing the total volume of the stoma.
  • FIG. 5 is a diagram illustrating an example of forming a circumferential narrow groove and a contour shape of a side surface of a narrow rib on a tread end side.
  • FIG. 6 is a diagram exemplifying the contour shape of the ground contact surface.
  • FIG. 7 is a developed view of a tread pattern showing another embodiment.
  • FIG. 8 is a plan view showing an example of forming a narrow groove in the width direction in the land area row in the central region.
  • FIG. 9 is a diagram showing a relative relationship between circumferential main groove widths.
  • FIG. 10 is a diagram showing an example of formation of a depression in the land row in the central region.
  • FIG. 11 is a cross-sectional view in the width direction of a block illustrating a peripheral raised portion.
  • FIG. 12 is a developed view of a tread pattern showing another embodiment.
  • FIG. 13 is a perspective view showing an example of forming a tall portion on the block of the second inner land row.
  • FIG. 14 is a developed view of a tread pattern showing another embodiment.
  • FIG. 15 is a development view of a tread pattern showing another embodiment.
  • FIG. 16 is a diagram showing another embodiment.
  • FIG. 17 is a development view of a tread pattern showing still another embodiment.
  • FIG. 18 is an explanatory diagram illustrating, as an index, an integral value of the rigidity in the width direction of each land row over the entire contact length.
  • FIG. 19 is a development view of a tread pattern showing another embodiment.
  • FIG. 20 is a diagram showing an example of changing a tread pattern.
  • FIG. 21 is a diagram showing a tire configuration for suppressing co-city force.
  • FIG. 22 is a cross-sectional view of a principal part showing an embodiment of a tire-wheel assembly.
  • FIG. 23 is a developed view of a tread pattern of the comparative example tire 1.
  • FIG. 24 is a developed view of a tread pattern of the comparative example tire 2.
  • FIG. 25 is a developed view showing a tread pattern of the test tire of Example 2.
  • FIG. 26 is a developed view showing a tread pattern of the comparative example tire 6.
  • FIG. 27 is a developed view showing a tread pattern of the comparative example tire 7.
  • FIG. 28 is an expanded view showing a tread pattern of the tires 13 and 16 of the example.
  • FIG. 29 is a developed view showing a tread pattern of the example tire 14 c .
  • FIG. 30 is an exploded view showing a tread pattern of the example tires 15 and 17.
  • FIG. 31 is a developed view showing a tread pattern of Example Tire 18.
  • FIG. 32 is a developed view showing a tread pattern of the example tire 19.
  • FIG. 33 is a developed view showing a tread pattern of the example tire 20 ;
  • FIG. 34 is a developed view showing a tread pattern of the example tire 21 c;
  • FIG. 9 is a developed view showing a tread pattern of the test tire of Example 5.
  • FIG. 36 is a developed view showing a tread pattern of the example tire 22 t
  • FIG. 37 is a developed view showing a tread pattern of the comparative tire 10 c
  • E indicates the tire equator line.
  • a central area land row 6 adjacent to the left of the main ditch 4 and including the equator line E is defined as being located closest to the equator line E, and attached to the vehicle.
  • the shoulder land row 7 located at the end of the tread, and the shoulder land row 7 and the central area land row 6 are located in the side area on the left half of the figure
  • the second inner land row 8 is divided into two land rows, and the shoulder land row 9 and the shoulder land row 9 and the central land
  • the second lateral land row 10 and the second outer land row 10 located between the row 6 define two side area land rows.
  • the central area land row 6 and the shoulder land row 7 on the inside are both ribs, while the shoulder land row 9 on the outside is mounted in the tread width direction.
  • Block defined by a lateral groove 1 1 with an average extension angle of 15 ° or less The total sum of the groove volumes of the lateral grooves, which may be formed in the shoulder land row 7 on the inner side of the mounting, in the circumferential direction per unit width, is stored in the shoulder land row 9 on the outer side of the mounting.
  • the groove volume of the formed lateral groove 11 should be smaller than the similar sum.
  • the second inner land row 8 is provided with a plurality of inclined grooves 13 extending in the same direction as the transverse grooves 11 at an average extending angle of 45 ° or more with respect to the tread width direction, These inclined grooves 13 are opened at least in the circumferential main grooves 2 on the shoulder land row side inside the mounting. Therefore, the other end of the inclined groove 13 can be terminated in the land row as shown in the figure, and can also be opened in the circumferential main groove 3 on the center area land row side.
  • a plurality of grooves extending in the second outer land row 10 in the same direction as the lateral grooves 11 and the inclined grooves 13 and opening in adjacent circumferential main grooves 4, 5 are provided.
  • the horizontal grooves 14 are provided, so that the land row 10 is a block row composed of the blocks 15.
  • the lateral groove 14 here may be such that only one end opens into the circumferential main groove and the other end ends in the land row, in which case, as shown in FIG.
  • the ribs of the central region land row 6 can be provided with sipes 16 extending in the direction crossing the ribs in order to enhance the contact property and secure an edge component in the tread width direction.
  • FIG. 3 is a development view of a tread pattern showing another embodiment.
  • three or more main grooves 2 to 5 extending continuously linearly in the circumferential direction of the tread in the figure are formed asymmetrically with respect to the tire equator line E. Is located closest to its equator line E here
  • a central land line 6 extending on the equator line is defined, and one shoulder land line 7 located on the edge of the tread is located in the left side area in the figure, which is inside the mounting area.
  • the other shoulder land row 9 on the other side of the tread edge, and the second outer land row 9 located between this shoulder land row 9 and the central land row 6 Partition the two land rows.
  • the central land portion row 6 that is located somewhat deviated inside the mounting is used as a rib
  • the shoulder land portion row 7 inside the mounting is narrowed by narrow grooves 17 that extend in the circumferential direction of the tread. It is divided into two in the width direction of the tread, and one of the divided portions located at the end of the tread is made a narrow rib 18, and the divided portion near the tread center is made a wide rib 19 which is somewhat wider than that.
  • the total polymer per unit width in the circumferential direction of the tread of the lateral groove which is not provided in the figure, which may be formed on the wide rib 19, is stored in the shoulder land row 9
  • the plurality of lateral grooves 11 are formed smaller than that, and the average extending angle of the lateral grooves 11 with respect to the tread width direction is preferably 15 ° or less.
  • a plurality of small holes 20 independent of each groove are formed in the wide rib 19, and preferably, the total volume of these small holes 20 in the circumferential direction of the tread is exemplified in FIG. 4, for example. As shown in the figure, the gap is larger on the narrow groove 17 side than on the thread center side.
  • the formation density of the small holes 20 is increased on the narrow groove 17 side, so that the total amount of the small holes 20 is increased on the narrow groove side.
  • at least one of the hole diameter and the hole depth can be increased on the narrow groove side to provide a required total volume.
  • the groove width of the circumferential narrow groove 17 provided on the shoulder mating section row 7 on the inner side of the mounting gradually increases toward the tread surface side as shown in the figure. It is preferable to increase the width gradually or stepwise.
  • the narrow rib 18 divided by the narrow groove 17 has a side surface of the tread end face, which is also illustrated in FIG. However, it is preferable to have a concave curved shape having a center of curvature outside the cross-sectional contour line.
  • the treads and, consequently, the treads will be constructed so that at least a part of the small rib formation area of the wide ribs 19 is included in the contact area.
  • the second inner land row 8 is provided with a plurality of inclined grooves 13 extending preferably at an average angle of 45 ° or more with respect to the tread width direction.
  • the inclined groove 13 is opened at least in the circumferential main groove 2 extending on the tread end side.
  • the inclined grooves 13 with each end opened in each of the circumferential main grooves 2 and 3 adjacent to each other specify the rotation direction of the tire in one direction.
  • a sufficient drainage function can be exhibited by setting the direction of inclination to the line E to be a fixed direction.However, for tires whose rotation direction is not specified, it is necessary to secure the drainage performance for rotation in any direction. It is preferable that the extending direction of the tire with respect to the equatorial plane E of the tire is alternately opposite in the circumferential direction of the tread as shown in the figure.
  • the depth of the inclined groove 13 is gradually increased from the tire equator side to the tread end side. .
  • a plurality of lateral grooves 14, one end of which is open to the circumferential groove and the other end ends in the land row, are formed in the tread circumference.
  • the openings are alternately opened in the adjacent circumferential main grooves 4 and 5 in the direction.
  • FIG. 7 is a development view of a tread pattern showing another embodiment.
  • the tread pattern is obtained by giving a center angle C in the width direction of the central land row 6 to the tire equator line E by giving a camber angle.
  • the ground contact length of the tread is long, and it is located at an angle in the range of 5 to 45 ° with respect to the tread width direction.
  • a plurality of widthwise narrow grooves 22 having a groove width are provided to allow circumferential deformation of the land portion rows 6 as ribs.
  • the arrangement pitch of these widthwise narrow grooves 22 which are alternately extended in the circumferential direction in the opposite direction is the rubber required in the circumferential direction. Can be selected in consideration of the run-out deformation and securing the rigidity in the width direction.
  • the plurality of width-direction narrow grooves 22 formed in this manner can be terminated at least in both ends of the ribs in at least some of them, and each of the narrow grooves 22 As shown in the partial perspective views of FIGS. 8 (a) and 8 (b) with diagonal lines at the middle of the extension direction, It is preferable to form it in such a manner that it is inclined in a curved shape.
  • the inclination direction may be a circumferential direction, a direction orthogonal to the narrow groove opening, or the like. Further, three or more inclined portions may be provided in one narrow groove 22.
  • the pair of linear circumferential main grooves 3, 4 that define the central region land row 6, as shown in FIG. 9, are located on the second inner land row 8 side. It is preferable to make the width wider than that located on the outer land row 10 side in order to enhance drainage and suppress air column resonance.
  • Fig. 10 is a view showing another form of the main part. This shows that the center line length of the center line C in the central area land line 6 is longer than that of the equator line E by the camber angle. And the ribs in the land row 6 are provided with a substantially elliptical recess 23, the major axis of which is 5 to 45 ° with respect to the tread width direction. A plurality of recesses 23 are provided in an inclined position at an angle in the range, and the extending direction of the long axis of each of the depressions 23 is alternately reversed in the circumferential direction of the tread.
  • the side of the inner land row 8 is defined by a circumferential main groove 3 extending linearly.
  • the depression 23 may be formed into an elliptical shape or the like, and at least a part of the plurality of depressions 23 may have a depression 2 as shown in FIG. 10 (b).
  • Sipe 24 extending in the long axis direction of 3 can be provided, for example, at both ends thereof.
  • the sipe 24 may be provided only at one end of the depression 23.
  • the length of the sipe 24 may be one that ends in the land row, and the sipe 24 may be provided in the circumferential main groove. It can be open.
  • each block 12 of the shoulder land row 9 on the outer side of the mounting section which is defined by the lateral groove 11, has a peripheral edge of the block as shown in the cross-sectional view in the width direction in FIG. 11.
  • the figure can be provided with a peripheral ridge 25 with a decreasing surface height towards both of them, this peripheral ridge 25 being the block 12 When grounding, it functions to equalize the ground pressure.
  • FIG. 12 is a developed view of a tread pattern showing another embodiment.
  • the land row 8 is a block row composed of blocks 26, and the lateral grooves 11 of the shoulder land row 9 on the outer side of the mounting are substantially extended in the tread width direction.
  • the second inner land row 8 is a block row such as this, in each block 26 constituting the same, for example, as shown in a schematic perspective view in FIG.
  • the height of 6 and the kick-out edge 2 The height of 7 is made different in the width of the tread, and the higher parts are moved in the circumferential direction of the tread as shown by diagonal lines in the figure. It can be extended while changing the position in the tread width direction according to the circumferential position. In this case, preferably, both of them are formed continuously in the tread circumferential direction as shown.
  • the part of the stepping edge 27 that has the highest contact with the ground first is biased to the tire equator side, and the kicking edge 28 is the slowest part from the road surface.
  • the high part is offset to the shoulder side inside the mounting, the direction of deviation of the high part can be reversed, and the high part can be By extending the tread in the circumferential direction into a bent shape as shown in FIG. 13 Cb), for example, the stepped edge 27 and the kick-out edge 28 can both have high portions. It can be biased to the shoulder side inside the mounting, and both of them can be biased in the opposite direction. Further, the extension of the high portion may be a zigzag shape as shown in FIG. 13 (c).
  • FIG. 14 is a view showing another embodiment, which is an embodiment in which the inclined grooves 13 provided in the second inner land portion row 8 are formed to extend in a convex shape downward in the figure, and At each corner between the inclined groove 13 and the circumferential main groove 3 of each block 26, an inclined surface 29 as shown by oblique lines in the figure is gradually reduced in height toward the tip. According to this, the rigidity in the tread width direction of the block 26, particularly the sharp corner, can be increased, and the groove volume can be substantially increased.
  • such an inclined surface can be provided on a block other than the block 26 and the like, which means that the peripheral groove and the lateral groove extending at an average angle of 45 ° or more with respect to the tread width direction. This is particularly effective when provided at an acute corner defined by the direction main groove.
  • reference numeral 30 denotes a sipe provided on the wide rib 19 of the shoulder mating section row 7 on the inner side of the mounting.
  • FIG. 15 is a view showing still another embodiment, in which the inclined main grooves 3 on the tire equatorial line side where the inclined grooves 13 provided in the second inner land row 8 open are inclined.
  • the projecting part 3 2 into the groove is integrated with the groove bottom at the position facing the opening position of the groove 13 in the tread width direction. It is provided. According to this, the difference in rigidity in the second inner land row 8 due to the presence of the inclined groove 13 due to the rolling of the load on the tire is reduced by the protrusion 32 so that the inclined groove 1
  • the contact noise of the groove edge of No. 3 against the road surface can be reduced.
  • every other one of the projections 32 is provided for the inclined groove opening to the circumferential main groove 3, but the projections 32 can be provided corresponding to all the openings. . Also, projecting according to the opening position of the other lateral groove An outlet may also be provided.
  • the inclined grooves 13 provided in the second inner land portion row 8 and extending in a downwardly convexly curved shape in the figure are provided as compared with the case shown in FIG. 14. with a narrow, its depth, it is obtained by gradually deeper toward urchin i shown in the graph, from the tire equator line side P i to tread end P 2 in FIG. 1 6 (b).
  • the extending direction of the inclined groove 13 provided in the second inner land portion row 8 with respect to the tire equator line is similar to that shown in FIGS.
  • the ends of the lateral grooves 14 provided in the second outer land portion row 10 are alternately opposite in the circumferential direction of the tread.
  • Grooves 4 and 5 are alternately opened in the circumferential direction of the tread, and the other ends are terminated in the land.
  • the wide ribs 1 of the shoulder land row 7 on the inside of the mounting are installed.
  • 9 is provided with a sipe 30 whose inclination direction is alternately different in the circumferential direction.
  • the integral value of the rigidity in the tread width direction over the entire contact length is calculated between the adjacent land rows. Within 50% of the larger value.
  • Fig. 18 illustrates this with a stiffness index.
  • the stiffness index of each land row is 90, in order from the shoulder-land row on the inside on the left side of the figure. 60, 100, 110, and 120.
  • FIG. 19 shows another embodiment, in particular the shoulders on the inside of the mounting, which may be formed in the land row 7, in the figure formed by the transverse grooves 33 provided in the land row 7.
  • the sum of the extension of the edge 34 in the tread width direction in the tread circumferential direction is calculated by adding the sum of the edge 34 in the tread width direction to the edge 35 formed by the lateral groove 11 formed in the shoulder land row 9 on the outer side of the mounting.
  • component And a plurality of inclined grooves extending in the second inner land row 8 at an average angle of 45 ° or more with respect to the tread width direction and opening at least in the circumferential groove 1. 13 is provided.
  • all the lateral grooves 14 provided in the second outer land row 10 are assumed to be open only to the circumferential groove 5 on the tread end side, and the opposite ends thereof are in the land row. To end.
  • FIG. 20 shows an example of the above-mentioned modification, in which the shoulder ribs 7 on the inner side of the mounting are replaced with the wide ribs 19 divided by the narrow grooves 17 and the lateral grooves 23 described above.
  • a sipe 36 is provided, and an edge is formed by the sipe 36.
  • a sipe 37 is provided in addition to the lateral groove 11 in the shoulder land row 9 on the outer side of the mounting, and an edge is formed by both of them. is there.
  • the tread contact surface is schematically shown in Fig. 21 (a) by making the negative contact ratio between the inside and outside of the tread tread different.
  • the outer rim is shaded in the figure under the condition that it is assembled to the applicable rim, filled with the specified air pressure, and loaded with the mass corresponding to the maximum load capacity.
  • Effective contact area S When ut is larger than the effective contact area S in of the inner part of the installation, to suppress the generation of the cosity force directed to the outer side of the installation, fill the specified air pressure as shown in Fig. 21 (b).
  • each tread de ground ⁇ EI, radial distance H in up EO, H. ut is the effective ground contact area smaller so as to increase in inner side of (H in> H. ut) , it is effective to constitute the tire, for example, with selection of the inner surface shape of the vulcanization mold.
  • the tire is configured so as to satisfy the following relationship.
  • the large effective contact area is S large
  • the small effective contact area is small S
  • the radial distance on the side where the effective contact area is large is H (large S side).
  • A is 1.0 to 1.4
  • FIG. 22 is a cross-sectional view of a principal part showing an embodiment of the tire-wheel assembly according to the present invention. This is a compression stiffness of the shoulder land row in the pneumatic tire described above. After connecting the rim 39 and the disc 40 of the wheel 38 to the tire equatorial plane EP, position the wheel 38 at the outside of the vehicle to be mounted. It is a thing.
  • the transmission of vibration from the tire to the axle can be advantageously suppressed based on the decrease in the compression rigidity of the shoulder land row 7 inside the mounting.
  • Each of the example tire and the comparative tire having a size of 2 25/5 5 R 16 is mounted on a 7.0 J—16 rim, and is filled with an air pressure of 210 kPa to produce a passenger car. Wear ratio of each shoulder land row when the vehicle is driven with the front wheel negative kyambar set to 0.3 ° and the rear wheel negative kyambar set to 0.5 ° with two passengers. The speed of the hydroplaning phenomena, vehicle interior noise, and steering stability on dry road surfaces were determined.
  • the example tire 1 has the tread pattern shown in FIG.
  • the inclined grooves of the second inner land portion row have an angle of 45 ° with respect to the tread width direction, and the second outer land
  • the extension angle of the lateral grooves in the row was 30 °, and the average extension angle of the lateral grooves in the outer shoulder land row was 15 °.
  • Example tire 2 had the tread pattern shown in FIG. 2, and each groove angle was the same as that of example tire 1.
  • Example Tire 3 has a tread pattern shown in FIG. 12, the angle of extension of the inclined grooves in the second inner land row is 50 °, and the angle of the lateral grooves in the second outer land row is Was 30 °, and the lateral groove angle of the outer row of shoulder ridges was 0 °.
  • Example tire 4 has the tread pattern shown in FIG. 1 and has the same groove angle as example tire 1. Ridges are provided.
  • Example Tire 5 has the tread pattern shown in FIG. 12 and has the same groove angle as Example Tire 3, and is provided in the block of the second inner mating member row, as shown in FIG. 13 (a). A tall portion of the extending mode shown is provided.
  • Example tire 6 has a tread pattern shown in FIG.
  • Example tire 7 has a tread pattern shown in FIG. 15, the angle of the inclined groove of the second inner land row is 45 °, and the angle of the lateral groove of the second outer land row is 30 °. °, the groove angle of the shoulder land row outside the mounting was set to 0 °.
  • Example tire 8 has a tread pattern shown in FIG. 16, the average angle of the inclined grooves in the second inner land row is 60 °, and the depth of the inclined grooves is from 2.0 mm. 6. The width was changed over 5 mm, and the lateral groove angle of the second outer land row was 30 °, and the lateral groove angle of the outer shoulder row was 0 °.
  • Example tire 9 has a tread pattern shown in FIG. 17, the inclined groove angle of the second inner land row is ⁇ 50 °, and the average angle of the lateral groove of the second outer land row is 3 At 0 °, the lateral groove angle of the shoulder land row outside the mounting was set to 0 °.
  • the comparative example tire 1 has a tread pattern shown in FIG. 23.
  • the lateral groove angle of the shoulder land row on the inner side of the mounting is 10 °
  • the inclined groove angle of the second inner land row is 50 °
  • the lateral groove angle of the second outer land row was 30 °
  • the lateral groove angle of the shoulder land row on the outer side was 10 °.
  • Comparative Example Tire 2 has a tread pattern shown in FIG. 24, the inclined groove angle of the second inner land row is 40 °, the lateral groove angle of the second outer land row is 30 °, The lateral groove angle of the shoulder mating section row on the outside of the mounting was 17 °.
  • the wear in the widthwise center of both shoulder land rows Evaluation was made by measuring the amounts and determining their ratio. If the inside of the mounting wears a lot, the value is less than 1. Conversely, if the outside of the mounting wears a lot, the value is greater than 1.
  • the preferred range of the wear ratio is 1.0 to 1.2.
  • Table 1 shows the test results.
  • Each of the example tire and the comparative example tire having the tread pattern shown in Fig. 25 and having a size of 2 15/4 5 R 17 was assembled on a 7.5 JX 17 rim, and the internal filling pressure was reduced to 2 mm. 20 kPa, giving a camper angle of 10.5 ° to increase the ground contact length inside the mounting, and increasing the slip angle from 0 ° to 5 ° at a speed of 30 km
  • the code generated by changing The nulling force was measured.
  • the difference between the cornering forces at 0 and 1 degrees is C f 1
  • the difference between the 0 and 2 and 5 degree cornering forces is C f 2
  • the difference between 0 and 5 degrees is C f 3
  • C f 3 / C f 1 force If S 5, a cornering force is generated linearly, and if C f 2 / C fl is greater than 2,5, the slip will occur. It shows that the cornering force increases nonlinearly at a large angle, and that the cornering force decreases nonlinearly when C f 2 / C f 1 is smaller than 3.
  • the index value in Table 2 was set to be higher as the rigidity was higher.
  • the tires of Examples 10 to 12 can increase the cornering force almost linearly, whereas the tires of Comparative Examples 3 and 5 have a large slip angle, and the tires of Comparative Example It can be seen that Fig. 4 becomes nonlinear from the small slip angle.
  • Example tires and comparative tires with a size of 23.5 / 45R17 were mounted on a rim of 8JXI7 at an internal pressure of 210 kPa and mounted on a passenger car, with two passengers riding.
  • the camber angle of the front wheel was set to 10.4 ° and the rear wheel was set to 10.6 °.
  • a wear test was performed on this vehicle.
  • the test conditions were as follows: 50%, 40%, 10% on expressways, general roads and mountain roads, the width of both shoulder land rows of the front two wheels after traveling 200,000 km.
  • the ratio of the amount of wear at the center in the direction was determined. If it is larger than 100, it indicates that the inside of the mounting is worn a lot, and if it is smaller than 100, it indicates that the outside of the mounting is worn a lot.
  • Noise was measured on this test vehicle on a smooth road surface of the test course. Riding at a constant speed of 60 km / h, measured with a microphone placed near the driver's ear near the center of the vehicle. The noise is indicated by an index, with a large index indicating low noise.
  • ⁇ Comparative tire 6 has the tread pattern shown in Fig. 26,
  • the shoulder land row on the inner side of the mounting is provided with a transverse groove of 12 ° to the width direction
  • the second inner land row is provided with a 55 ° inclined groove
  • the central area is a rib-
  • the outer land has a 35 ° transverse groove
  • the outer shoulder land row has 1 2.
  • ⁇ Comparative tire 7 has the tread pattern shown in Fig. 27-The shoulder ridge row inside the mounting is a rib, the second inner land part is provided with a 42 ° inclined groove, and the center is The ribs in the area have sipes, the second outer land row has a transverse groove extending at a 32 ° angle and opens only to the outside of the mounting, and the outer shoulder shoulder row has a 17 ° transverse groove. Is provided.
  • Example tire 13 It has the tread pattern shown in Fig. 28.
  • the shoulder land row inside the mounting is ribbed, and the second inside land is open only inside the mounting. Sipe in the central rib, 32 ° in the second outer land row, and upwardly convex in the shoulder-land row outside the mounting.
  • Each of the grooves has a transverse groove that curves in the direction and has an average angle of 12 °.
  • Example tires 14 These tires have the tread pattern shown in FIG. 29, and are different from the example tires 16 only in that the lateral grooves in the second outer land portion row are opened only outside the mounting. It is different.
  • Example tire 15 It has a tread pattern shown in Fig. 30.
  • the shoulder land part inside the mounting is divided into two by narrow grooves, and a 55 ° inclined groove is provided in the second inner land part row.
  • a sipe was formed in the central rib, and a 32 ° lateral groove provided in the second outer land row was opened only to the outer side of the mounting, and a 5 ° horizontal groove was provided in the shoulder land row outside the mounting. Things.
  • Example tire 16 a point having the tread pattern shown in Fig. 28, the angle of the inclined groove provided in the second inner land row being 45 °, and the outer shoulder being one land row.
  • the embodiment differs from the embodiment in that the block is provided with a peripheral ridge shown in FIG. It is different from channel 13.
  • Example tire 17 has the tread pattern shown in FIG. 30 and has the height of the stepping edge of the land portion and the kick in each of the second inner land portion row and the second outer mating portion row.
  • the height of the protruding edge is made different in the tread width direction, and each high part is changed in the tread width direction in the tread width direction according to the circumferential position.
  • the tire is different from the tire 15 of the embodiment in that it is extended linearly and these portions are continued in the circumferential direction.
  • Example tire 18 It has the tread pattern shown in Fig. 31. A sipe is provided on the wide rib of the shoulder land row on the inside, and the inclined groove is provided on the second inner land row. With the average extension angle of 60 °, except that an inclined surface that gradually decreases in height toward the tip end is provided at the acute angle corner of the block defined by the inclined groove. Thus, the configuration is the same as that of the embodiment 15 ′.
  • Example tire 19 It has the tread pattern shown in Fig. 32, and corresponds to the opening position of the 45 ° inclined groove provided in the second inner land row on the side of the center area rib.
  • a protrusion having two openings at one pitch is provided on the side wall of the central region rib, and the other configuration is the same as that shown in FIG.
  • the depth of the inclined groove is 2 mm at the edge of the tread center, and the depth is gradually increased toward the edge of the tread. The depth is 6.5 mm at the open end to the shoulder-side main groove. Except for this, the configuration is the same as that shown in FIG. 30 (Example tire 15).
  • Example tire 21 a tire having a tread pattern shown in FIG.
  • a sipe is provided on the divided wide rib of the shoulder land row on the inner side of the mounting, the inclined grooves provided on the second inner land row are set at an angle of 50 °, and their extending directions are circumferential.
  • the sipe is provided in the center area rib, and one end of the lateral groove of the second outer land row is opened alternately in the circumferential direction adjacent to the circumferential groove, and the other end is landed. It ends in the row, and the lateral groove angle of the outer shoulder land row is 5 °.
  • all of the tires of the present example can advantageously reduce the difference in wear between the shoulder land rows on the inner and outer sides of the mounting, and achieves both low hydroplaning resistance, quietness, and steering stability. It can be improved effectively.
  • Comparative Example Tire 8 The pattern is similar to that shown in Fig. 35.
  • the center line of the central rib coincides with the Tya equator line, there are no small holes in the shoulder land row inside the mounting, and the shoulder circumferential narrow groove width Is almost constant in the depth direction, and has a lateral groove extending at an angle of 5 ° to the width direction on the shoulder land side outside the mounting.
  • Example tire 22 The pattern is shown in Fig. 36.
  • the small holes in the shoulder land row inside the mounting are dense on the shoulder side as shown in Fig. 4, sparse on the center side, and in the center land row.
  • the three-dimensional three-sipe of the type shown in (b) shall be installed.
  • the width of the narrow groove in the circumferential direction of the shoulder shall be 3 mm on the new tire tread surface and 0.5 mm at the groove bottom, and the width shall gradually decrease from the surface to the bottom. did.
  • a plurality of sipes extending in the same direction at an angle of 15 ° to the tire width direction are placed at intervals of 30 mm in the circumferential direction. It is formed over the entire width of the rib, the sipe depth is 10 mm, the opening width is 0.4 mm, and each sipe is divided into three parts in the depth direction as shown in Fig. 8 (b). The part is inclined at an angle of ⁇ 22.5 ° with respect to the tire radial direction.
  • a plurality of elliptical depressions are formed at intervals of 30 mm in the circumferential direction in the ribs in the center area of the tread pattern shown in Fig. 35, and the major axis length of the depressions Is 13 mm, the inclination angle of the major axis with respect to the tire width direction is 15 °, and the length of the minor axis is 3 mm.
  • Example 6 Measure the conicity force of each of the tires of the Example Tire and Comparative Example Tire with a size of 205 / 56.5R15, and determine the steering stability and anti-drop-planning performance. As a result, the results shown in Table 7 were obtained.
  • the example tire 25 in the table has a tread pattern shown in Fig. 12, and both have circumferential main grooves having a depth of 8 mm asymmetrically on the inside and outside of the mounting, and have a tire equator.
  • Comparative Example Tire 10 has a symmetrical tread pattern shown in FIG. 37, in which both circumferential main grooves having a depth of 8 mm are symmetrically arranged with respect to the tire equator.
  • the effective contact area is almost equal between the inside and outside of the mounting, and the radial distance from the outer surface tangent at 80% of the tread width W is also set to the inside and outside of the mounting. They are almost equal.
  • the comparative example tire 11 has the tread pattern shown in FIG. 12, the radial distance from the tread outer surface tangent T at the position of 80% of the tread width W is almost equal outside and outside the mounting. Things.
  • the steering stability was evaluated by sensory evaluation by running on a test course, and the anti-droop play performance was evaluated by sensory evaluation when running on a straight road at a depth of 6 mm.
  • the co-city force was determined by averaging the measured values of ten tires each.
  • the example tires provide high steering stability and high anti-lob racing performance, while having the same conicity force as the symmetric pattern tires of the comparative example 10 tires. It can be seen that it can be suppressed to the extent. [Usability of the invention]
  • both the anti-hydriding performance and the steering stability are improved without lowering the uneven wear resistance, and the tire rolling noise is advantageously reduced. be able to.

Description

明 細 書
空気入りタイヤおよびタイヤ 'ホイール組立体
[技術分野]
この発明は、 タイヤの転動騒音の低減と、 耐ハイ ドロプレーニング性 能とを高い次元で両立させ、 併せて、 耐偏摩耗性能を向上させた空気入 りタイヤおよびタイヤ ·ホイール組立体を提案するものである。
[背景技術]
タイヤのゥエツト性能を向上させるとともに、 偏摩耗およびタイヤ騒 音を抑制する従来技術としては、 特開平 1 0— 2 1 7 7 1 9号公報に開 示されたものがある。
これは、 タイヤトレッドを、 タイヤ赤道により、 車両外側に向く外側 域および内側に向く内側域に仮想区分したとき、 外側域に、 タイヤ周方 向に直線状で延びる 1本の外側域の縦主溝を配し、 かつ内側域に、 周方 向に直線状で延びる第 1、 第 2の内側域の縦主溝とを配することにより、 縦主溝を、 タイヤ赤道を中心とした非対称に配置し、 外側域の縦主溝と 外側域の接地端との間の外のショルダー部に、 周方向に対して 4 5〜 7 0 ° の角度で傾く外の傾斜溝を隔設するとともに、 第 2の内側域の縦主 溝と内側域の接地端との間の内のショルダー部に、 周方向に対して 6 0 〜 8 0 ° の角度かつ前記外の傾斜溝と逆の向きで傾く内の傾斜溝を隔 設し、 しかも外側域の縦主溝と第 2の内側域の縦主溝との間のクラゥン 部に、 周方向に対して 2 0〜 4 5 ° の角度かつ外の傾斜溝と同じ方向で 傾く中央の傾斜溝を隔設したものであり、 これによれば、 外側 1本、 内 側 2本の縦主溝ならびに傾斜溝の作用の下で、 ゥエツト性能を高める一 方で、 気柱共鳴による騒音を低減させることができ、 また、 車両外側域 の早期摩耗を抑制できるとしている。 また他の従来技術としては、 特開 2 0 0 0— 2 3 8 5 1 0号公報に開 示されているように、 トレッ ドパターンが、 トレッド面の周方向に関し て非対称に形成され、 ショルダープロック列を有する外側範囲および内 側範囲と、 この範囲に属する周溝によって側方を画成されている中央範 囲とを備え、 内側範囲のショルダープロック列から中央範囲まで横溝が 続き、 トレツドパターンの中央範囲の幅はトレッド幅の 2 5〜 3 5 %で あり、 内側範囲のショルダーブロック列から出る横溝のうちの最も多く ても 1つおきの横溝が、 中央範囲において、 この中央範囲を少なく とも ほとんど横切る溝として続いており、 この溝は中央範囲において中央範 囲の長さの少なく とも 3分の 1にわたつて、 赤道線に対して最大で 3 0 ° の角度をなしている車両用空気タイヤがあり、 これは、 パターンの 摩耗をできるだけ均一になるようにして、 排水性を改善し、 転動騒音に 対して良好な影響を与えるものである。
しかるに、 これらのタイヤはいずれも、 湿潤路面より水深の深い路面 に対する耐ハイ ドロプレーニング性能については十分な配慮がなされ ておらず、 しかも、 タイヤを車両に装着した場合の、 タイヤへのキャン バー角の付与を考慮の範囲外として設計されているため、 それらのタイ ャを車両に装着した実車走行に当たっては、 タイヤの転動騒音の低減と、 耐ハイ ドロプレーニング性能とをうまく両立させることができず、 しか も、 車両に装着されたタイヤの、 装着内側部分に偏摩耗が発生するとい う問題があった。
この発明は、 従来技術が抱えるこのような問題点を解決することを課 題とするものであり、 それの目的とするところは、 タイヤの転動騷音の 低減と、 耐ハイ ドロプレーニング性能の向上とを高い次元で両立させる とともに、 耐偏摩耗性能を有効に向上させた空気入りタイヤを提供する にめる。 [発明の開示]
非対称のトレツドパターンの設計に当たっては、 車両に装着されて装 着外側となる部分では、 ドライ路面に対するタイャの運動性能を重視し てネガティブ率を小さくする一方で、 装着内側となる部分では、 ゥエツ ト性能を確保するべくネガティブ率を大きくすることが、 従来から広く 一般に行われていた。
しかしながら、 このようにして構成されたトレツドパターンを有する タイヤでは、 特に、 それにネガティブキャンバを付与して使用に供する 場合に、 装着内側のトレッ ド摩耗が激しく、 また、 直進状態に近い走行 状態での操縦安定性が低下し、 さらには、 耐ハイ ドロプレーニング性能 が向上しないという問題があった。
これらに関連して、 トレツド摩耗についてみれば、 ネガティブキャン バの付与時には、 装着内側のショルダー部分の接地長さが、 装着外側の ショルダー部分のそれより長くなるので、 タイヤに、 トー角等の微小な スリップ角度が付与された場合等の横ずれに対し、 内側ショルダー部分 が横力を余計に負担することになり、 また、 ネガティブキャンバの付与 時には、 装着内側の縦撓みが外側の縦橈みより大きくなつて、 その大き な縦撓みがタイヤの回転半径の減少をもたらすことに起因して、 トレツ ド踏面の小径側部分が大径側部分に引きずられて相対的に制動方向の 力を受けることになり、 これらのいずれもが、 装着内側でのトレツドの 早期摩耗、 いいかえれば、 トレッ ドの偏摩耗の原因となる。
ここで、 これらの場合における力の負担は、 一般には接地端に近い領 域ほど大きくなつて、 偏摩耗の核はその領域に発生し易く、 そこで発生 した偏摩耗は、 そこから次第にタイャ赤道線側へ進行することになる。 ところで、 高速道路等での走行のように、 直進状態に近い走行状態の 下での操縦安定性の向上のためには、 内圧充填によってベルト張力がと くに大きくなる トレツドセンタ部分および、 接地長さが長くなってト レ ッドパターンの剛性の影響をとくに大きく受ける部分のそれぞれで、 ト レツ ド幅方向の剛性が大きくなる トレツ ドパターンを付与することが 有効であり、 タイヤにネガティブキャンバを付与した場合には、 接地長 さの最長部分がトレツ ドセンタ部分より装着内側に幾分ずれることに なるので、 この場合は、 トレッドセンタ部分と接地長さの最長部分との それぞれに跨がって幅方向剛性の高いトレッドパターンとすること、 た とえばリブを形成することが好ましく、 このようなリブに対しては、 そ れの装着内側に、 または両側に周方向主溝を設けることで、 トレッ ドの ほぼ円周方向に向く排水流線をもつことになる路面上の水を効率良く 排水して、 ハイ ドロプレーニング現象の発生を有利に防止することがで きる。
ここで、 耐ハイ ドロプレーニング性能の向上のための有限要素法によ る解析結果によれば、 ネガティブキャンバの付与時には、 接地長さの最 長部分がトレッ ドセンタ部分より装着内側に幾分ずれることに起因し て、 水の最も溜まり易い部分、 いいかえれば排水機能の低い部分が、 ト レツ ドセンタ部分より接地長さの長い側に存在することが明らかにな つた。 従って、 その部分に周方向主溝を設けて排水性能を高めることで 耐ハイド口プレーニング性能の向上が可能となる。
また、 この周方向主溝よりさらに幅方向両外側領域では、 それぞれの 外側に向けて排水することが好ましく、 この場合、 排水溝は、 水の流線 に沿う方向に延在させることが好ましい。 ここで、 装着内側となる部分 のショルダー域近傍での流線は、 トレッ ド幅方向に対して 4 5。 以上の 角度をなして幅方向外側に向かうので、 その流線方向に排水溝を形成し- そしてそれを、 少なく とも幅方向外側の周方向溝に開口させることが、 耐ハイ ドロプレーニング性能のより一層の向上を図る上で好ましい。 そこで、 この発明に係る空気入りタイヤでは、 トレッ ド踏面に、 タイ ャ赤道線に対して非対称に位置し、 たとえば、 トレッ ド周方向に直線状 に連続して延びる三本以上の周方向主溝を形成して、 中央領域および両 側部領域のそれぞれに一列以上の陸部列を区画したところにおいて、 車 両に装着されて装着内側となる部分でショルダー陸部列に形成される ことのある横溝の溝容積の、 単位幅当りでの円周方向の総和を、 装着外 側となる部分のショルダ一陸部列に形成される横溝の溝容積の、 同様の 総和より小さくするとともに、 タイヤ赤道線を含むまたは、 タイヤ赤道 線に最も近接して位置する、 中央領域の陸部列をリブとし、 また、 装着 内側となる部分のショルダー陸部列のタイヤ赤道線側に隣接する第 2 の内側陸部列に、 トレッ ド幅方向に対して 4 5 ° 以上の平均角度で延び る複数本の傾斜溝を設け、 これらの傾斜溝を、 第 2の内側陸部列の、 少 なくとも装着内側に隣接する周方向主溝に開口させる。
ここで、 「周方向主溝」 とは、 トレッ ド幅の 2 . 5 %以上の溝幅を有 するものをいう。
なお、 この明細書で 「トレッ ド幅」 というときは、 タイヤを適用リム に装着するとともに、 規定の空気圧を充填し、 そこに最大負荷能力に対 応する質量を負荷したときの接地幅をいうものとする。 ここにおける適 用リムとは下記の規格に規定されたリムをいい、 最大負荷能力とは、 下 記の規格で、 タイヤに負荷することが許される最大の質量をいい、 規定 の空気圧とは、 下記の規格において、 最大負荷能力に対応して規定され る空気圧をいう。
そして、 規格とは、 タイヤが生産又は使用される地域に有効な産業規 格によって決められているものをいい、 例えば、 アメ リカ合衆国では "THE TIRE AND RIM ASSOCIATION INC.の YEAR ROOK" であり、 欧州では " The European Tyre and Rim Technical Organization の STANDARDS MANUAL" であり、 日本では S本自動車タイヤ協会の " JATMA YEAR Book" である。
このタイヤによれば、 装着内側となる部分でショルダー陸部列に形成 されることのある横溝の溝容積の総和を、 装着外側となる部分のショル ダー陸部列に形成される横溝の溝容積のそれより小さくすることによ り、 それにネガティブキャンバを付与して使用する場合、 先に述べたそ れぞれの偏摩耗の発生原因に有効に対処して、 装着内側と装着外側との 制動力および駆動力のバランスを高めて、 耐偏摩耗性を有効に向上させ ることができる。
すなわち、 ネガティブキャンバおよびトー角等の付与によって、 内側 ショルダー陸部列がより大きな横力を負担することに起因する偏摩耗 に対して、 そのショルダー陸部列に占める溝割合を小さく して陸部列剛 性を高めることにより対処することができ、 また、 タイヤの縦橈みによ つて、 装着内側の回転半径が小さくなることに起因する偏摩耗に対して はショルダー陸部列で横溝のトータル容積を小さく したことに基き、 そ の陸部列が接地面内で、 横溝幅を減じる方向に変形して回転半径を縮小 するのを抑制することで対処することができる。
またここでは、 タイヤにネガティブキャンバを付与した場合に、 タイ ャが装着される車両のァライノント、 タイヤ内圧、 負荷質重等によって 決定される接地形状の、 接地長さが最も長くなる部分である中央領域の 陸部列をリブとして、 トレッド幅方向の剛性を高めることにより、 直進 状態に近い走行状態の下での、 タイヤへの比較的小さなスリ ップ角の付 与に対して操縦安定性を有効に向上させることができる。
ところで、 このようなタイヤにネガティブキャンバを付与する場合に は、 タイヤ赤道線より装着内側で、 その赤道線に最も近接して延在する 周方向主溝と、 その周方向主溝の装着内側に隣接する第 2の内側陸部列 とに路面上の水が溜まり易いことに起因して、 装着内側での路面水圧分 布は、 装着外側のそれより高くなる。
これを改善するため、 ここでは、 第 2の内側陸部列に、 路面上の水を トレッ ドセンタから離れる方向に誘導する傾斜溝を設け、 そして、 その 傾斜溝の延在方向を、 装着内側における排水流線の傾きと合わせて、 ト レッド幅方向に対して 4 5 ° 以上として、 排水の円滑性および迅速性を 担保する。
なおここで、 トレッ ドセンタ部分と、 接地長さの最長部分とに跨がつ て、 幅方向剛性の高い、 前述したような中央陸部列リブを設ける場合に は、 第 2の内側陸部列でのベルト張力はトレツドセンタ部分のそれより 小さくなり、 また、 その内側睦部列の接地長さも上記リブより短くなつ て、 第 2の内側陸部列の、 操縦安定性への寄与割合はそれほど大きくな いので、 第 2の内側隆部列の傾斜溝の延在角度を上述したように 4 5 ° 以上としても、 それが操縦安定性に大きな影響を及ぼすことはなく、 ま た、 前述したように、 装着内側のショルダー陸部列の溝割合を、 装着外 側のショルダー陸部列のそれより小さくすることで、 前記傾斜溝の延在 角度が大きくなつてなお、 内側ショルダー陸部列の、 踏面内の力の負担 に対して耐偏摩耗性が大きく損なわれることもない。
そしてさらに、 耐ハイ ドロプレーニング性能に関連して、 装着外側と なる部分のショルダー陸部列では排水流線が、 ほぼトレツド幅方向に向 いて延びるので、 そのショルダー陸部列の横溝は、 その流線方向に向け て延在させることが好ましい。 一方、 装着内側となる部分のショルダー 陸部列では接地形状が丸くなって、 路面水の、 トレッ ド接地面内への入 り込み自体が、 トレツ ド接地輪郭に固有の作用下で有効に阻止されるの で、 そこには横溝を設けずとも耐ハイ ドロプレーニング性能が低下する ことはない。 ここで好ましくは、 四本以上の周方向主溝を設け、 装着外側となる部 分のショルダー陸部列のタイヤ赤道線側に隣接する第 2の外側陸部列 に、 いずれか一方の端が周方向主溝に開口し、 他端がその陸部列内で終 了する複数本の横溝を設ける。
耐ハイ ドロプレーニング性能の向上のためには、 横溝の本数等を多く することが好ましいが、 これによれば、 タイヤの負荷転動に当たって、 横溝の溝縁が路面に衝接すること等に起因する騒音の増加が否めない。 また、 隣接する周方向主溝の相互を横溝によって連通させたときは、 両 周方向主溝に共通する大きな気柱共鳴音が発生することになる。
そこでここでは、 横溝の一端を周方向主溝に開口させることで、 すぐ れた排水性能を確保し、 その他端を陸部列内で終了させることで、 それ ぞれの周方向主溝の気柱共鳴周波数を分離して共鳴音のピーク値の分 散を図るとともに、 横溝の溝縁の、 路面への衝接長さを減少させて騒音 の低減を実現する。
また好ましくは、 装着内側となる部分のショルダー陸部列に、 トレツ ド幅の 2 . 5 %未満の溝幅の周方向細溝を設けて、 そのショルダー陸部 列をトレツド幅方向に-分割するとともに、 装着外側となる部分のショ ルダー陸部列に設けた横溝の、 トレツド幅方向に対する平均傾き角度を 1 5 ° 以下とする。
これによれば、 内側ショルダー隆部列の、 最も偏摩耗の発生し易い接 地端近傍部分を周方向細溝をもってそのショルダー陸部列の他の部分 から分離することで、 その接地端近傍部分に発生した偏摩耗の、 ショル ダー陸部列の他の部分への進行を有利に抑制することができる。
また、 ハイ ドロプレーニング現象の解析の結果によれば、 ネガティブ キャンバの付与時には、 キャンバーを付与しない場合に比し、 排水流線 がトレツ ド周方向に向く位置がトレツ ドセンタ部分から内側ショルダ 一側に変位する一方、 接地長さの短い側では接地輪郭形状が丸くなって- トレツド幅方向外側への排水が効果的であり、 外側ショルダー陸部列で は、 排水流線の延在方向が、 トレッド幅方向に対して 1 5 ° 以下になる ことが明らかになつたので、 ここでは、 外側ショルダー陸部列の横溝の 延在方向を、 トレツド幅方向に対して 1 5 ° 以下とすることで、 排水効 率を高めて耐ハイ ドロプレーニング性能の向上を担保する。
この一方で、 接地長さが短くなる装着外側のショルダー陸部列の幅方 向剛性は、 とくに、 山道走行に代表されるような、 比較的大きなスリッ プ角の付与時の操縦安定性に大きな影響を及ぼすことになるので、 ここ では、 そのショルダー陸部列に形成する横溝の、 トレッ ド幅方向に対す る平均角度を 1 5 ° 以下として、 その陸部列の幅方向剛性の低下を抑制 し、 これにより、 高い操縦安定性を確保しつつ、 すぐれた耐摩擦性をも たらす。
そしてまた好ましくは、 装着内側となる部分のショルダー陸部列を、 周方向に伸びる細溝により幅方向に二分割して、 トレツド端側に位置す る一方の分割部分を狭幅リブとし、 横溝を形成されることのある他方の 広幅分割部分に、 溝から独立した複数の小孔を設ける。
たとえば、 タイヤにネガティブキャンバ角を付与した状態の下でそこ に負荷を作用させた場合には、 トレツド接地面内でのトレツド周方向の 接地長さが、 キャンバ角零のタイヤ姿勢を基準として、 装着内側となる 部分で長くなり、 外側部分で短くなつて、 接地長さが増加する装着内側 では、 ホイールリムが路面に接近して回転半径が小さくなる一方で、 接 地長さが減少する装着外側では回転半径が大きくなるので、 たとえば、 車両の直進走行状態の下では、 装着内側部分には制動方向の相対力が作 用して、 そこに早期の摩耗を生じるという問題があり、 このようにして 発生する早期摩耗を抑制する従来技術としては、 特開 2 0 0 1— 3 5 4 0 1 0号公報に開示されているように、 ネガティブキャンバに設定され た車両に装着したときに装着の内側となるショルダー陸部のタイヤ周 方向剛性を、 装着の外側となるショルダー陸部のタイヤ周方向剛性より も大きくすることで、 装着内側、 いいかえれば、 接地長さの増加側のシ ョルダ一陸部の、 制動方向の耐摩耗性を高めるものがある。
ところが、 このような構成だけによるときは、 コーナリング等によつ てタイヤに、 それの横方向から作用する力が増加した場合に、 周方向剛 性を大きく したショルダー陸部の接地圧が大きくなつて、 そこに偏摩耗 の核が発生しゃすいとの新たな知見を得た。
これに対して、 上述したように、 接着内側のショルダー陸部列を、 周 方向に延びる細溝によって幅方向に二分割し、 トレツド端側に位置する 一方の狭幅分割部分を摩耗犠牲部として機能させることにより、 そこに 発生した摩耗の、 トレツドセンタ側に位置する他方の広幅分割部分への 進展を有利に抑制して、 その広幅分割部分を早期の摩耗から保護するこ とができる。
また、 広幅分割部分には、 溝から独立した複数の小孔を設けて接地面 内での、 その分割部分の剪断剛性を各方向について低減させることによ り、 広幅分割部分が制動方向に引き摺られても、 またそこへの横力の入 力が増えても、 高い可撓性の下で力の負担を有利に軽減して、 早期の摩 耗を有利に釋和することができる。
かかるタイヤにおいて、 装着内側のショルダー陸部列に設けた周方向 細溝の溝幅を、 溝底に比し、 トレッ ド表面側で漸次にまたは段階的に広 幅とした場合には、 路面上の小石等の異物を細溝内に嚙み込むことがあ つても、 異物の、 そこからの抜け出しを容易にして、 細溝内に異物を嚙 み込んだままタイヤが負荷転動することに起因する偏摩耗が、 その細溝 にて分割された、 タイヤ赤道線側の他方の分割部分に発生するのを有効 に防止する。
また、 装着内側のショルダー陸部列の、 広幅分割部分に設けた複数の 小孔の、 トレッド周方向のトータルボリ ームを、 それを区画する細溝 側で、 タイヤ赤道線側より大きく した場合には、 横力の負担が大きくな る接地端に近づくほどに広幅分割部分の剛性を低減させて、 入力を広い 領域で受けることで変形を逾らし、 その分割部分の摩耗をより有効に防 止することができ、 また、 広幅分割部分の全体にわたって小孔のトータ ルポリュームを大きくする場合に比して高い操縦安定性やトレツ ド耐 久性を確保することができる。
ここで、 小孔のトータルボリユームの変化は、 たとえば、 それらの開 口寸法もしくは深さを変化させること、 配設ピッチを変化させること等 によって実現することができる。
この一方で、 広幅分割部分への小孔の形成領域をも含むトレッド構造 を、 一 0 . 5のキャンバ角の付与姿勢での、 最大負荷能力の 4 0 %の負 荷の作用下で、 小孔を設けたその広幅分割部分が小孔形成領域の少なく とも一部で接地する トレツド構造とした場合には、 たとえば F F車両の 制動時の後輪のように、 前輪に比して負荷が小さくなり、 接地幅が狭く なった場合にも、 小孔の作用下での剛性の低減効果を有効に発揮させる ことができる。
また、 装着内側のショルダー陸部列に設けた周方向細溝によって分割 形成した狭幅リブの、 トレッド端側の側面を、 横断面輪郭線の外側に曲 率中心をもつ凹曲面形状としたときは、 摩耗犠牲部としてのその狭幅リ ブの摩耗体積の低減を図って、 新品タイヤに対する外観変化を小さく抑 え、 摩耗外観を向上させることができる。
このようなタイヤにおいてより好ましくは、 タイヤ赤道線に最も近接 して位置する中央領域陸部列としてのリブの中心線を、 タイヤ赤道線に 対し、 装着内側に偏せて位置させるとともに、 そのリブに、 ト レッ ド幅 方向に対して傾斜して延びる複数本の幅方向細溝を設ける。
この場合、 幅方向細溝の傾斜角度を、 5〜 5 5 ° の範囲の平均角度と するとともに、 それの溝幅を 2 mm以下とすることが好適である。
ドライ踏面上を高速走行する場合等の路面グリ ップ力および操縦安 定性の向上のためには、 いわゆるたが効果をもたらすベルトの張力が最 も大きくなって高いトレツ ド剛性をもたらすトレツド中央部分と、 トレ ッドの接地長さが最長となっている部分との間または、 それらの両者に 跨がる位置に、 トレッド幅方向の剛性が高く、 ベルトの高張力部分にタ ィャへの入力を迅速かつ確実に伝達できる陸部列、 たとえばリブを設け ることが好ましい。
しかるに、 このようなリブで、 トレツ ドゴムの、 周方向の逃げ変形が 許容されない場合には、 そのリブに偏摩耗が発生するので、. ここでは、 トレツ ド幅方向の剛性を確保してなお、 周方向の適度の逃げ変形を許容 するべく、 陸部列と してのリブに、 幅が 2 m m以下の幅方向細溝を、 5 〜5 5 ° の延在角度で形成する。
ここで、 溝幅を 2 m m以下とするのは、 ゴムの周方向の逃げ変形の吸 収のためには、 わずかな溝幅が存在するだけで十分であり、 それが 2 m mを超えるとパターンノイズが増加する他、 リブの幅方向剛性の低下が 大きくなることによる。 また、 細溝角度を 5 ° 以上とするのは、 それ未 満では、 溝縁の路面への衝接に起因するパターンノィズの増加が否めず. その上限を 5 5 ° とするのは、 5 5 ° を超えると、 リブの幅方向剛性が 低くなりすぎることによる。
また好ましくは、 このような幅方向細溝を、 それの延在方向の中間部 を境として、 深さ方向で、 たとえば、 溝幅方向、 トレッ ド周方向等に相 互に離隔する方向へ、 平坦面状、 曲面状等に傾けて形成する。 なおこの 場合、 相互に離隔する方向に傾く平坦面状部分等は、 一の細溝につき三 個以上形成することもできる。
これによれば、 細溝の溝幅の存在下で、 ゴムの周方向の逃げ変形を十 分に許容してなお、 ト レッ ド幅方向では、 その細溝を、 開口位置より溝 底側で相互に干渉させて、 リブとしての陸部列の、 幅方向剛性の低下を 効果的に防止することができる。
ところで、 複数本のこのような幅方向細溝は、 それらの少なく とも一 部で、 延在方向の両端をともに、 陸部列としてのリブ内で終了させるこ とができ、 これによれば、 リブの幅方向剛性を高く保って、 操縦安定性 を一層向上させることができる。
すなわち、 ゴムの周方向逃げ変形の許容は、 ゴムの逃げ場のないリブ の幅方向中央部分でとくに必要となるので、 そこには幅方向細溝を延在 させても、 リブの側壁近傍では、 ゴムの、 リブ外側方向への逃げ変形が 可能となる一方で、 リブの側壁近傍は幅方向剛性が低いので、 その部分 からは、 幅方向細溝を排除することで、 リブの幅方向剛性の低下を抑え つつ、 ゴムの周方向への逃げ変形を許容することができる。
また好ましくは、 タイヤ赤道線に最も近接して位置する中央域陸部列 と してのリブの中心線を、 タイヤ赤道線に対して、 装着内側に偏せて位 置させて、 リブに、 前述した幅方向細溝に代えて、 長円形状等をも含む ほぼ楕円形状をなす複数個の窪みを設け、 各窪みの長軸を、 ト レッ ド幅 方向に対して 5〜4 5 ° の範囲の角度で延在させるとともに、 このリブ の装着内側のショルダー陸部列側を直線状に延びる周方向主溝によつ て区画する。
赤道線近傍のリブが集中して摩耗するのを防ぐには、 周方向へのゴム の逃げ場を作るようにわずかな隙間をリブに設ければ良いことは先に 述べたが、 ここでは、 ゴムの逃げ場がなく、 かつ幅方向剛性に対する寄 与も少ないリブの中央部分に、 幅方向細溝に代えて、 ほぼ楕円形状の窪 みを設けることで、 ゴムの逃げ場をつく りながら幅方向剛性を確保する c 窪みの長軸方向がタイヤ幅方向に対して 5 ° 未満ではパターンノィ ズが大きくなりすぎ、 4 5 ° を超えると、 リブの幅方向剛性が下がりす ぎる。
またリブを区画する、 装着内側のショルダー陸部列側の周方向主溝を 直線状溝とすることで高い耐ハイ ドロプレーエング性をもたらすこと ができる。
ところで、 複数個のほぼ楕円形状窪みの少なく とも一部に、 窪みの長 軸方向に延びて、 リブ側壁に開口するサイプを付設した場合には、 接地 時に窪み内に封じ込みられて圧縮される空気をサイプを経て外部へ排 出することができるので、 窪み内の空気が封じ込められて高い圧縮圧力 を持ちそれが蹴り出し時に解放されて音を出すのを防止することがで きる。
そしてさらには、 タイヤの赤道線に最も近接して位置する中央領域陸 部列のリブを、 直線状に延びる一対の周方向主溝で区画し、 装着内側の ショルダー陸部列側に位置する周方向主溝の溝幅を、 装着外側のショル ダー陸部列側に位置する周方向主溝の溝幅より広幅とすることが好ま い。
タイヤの扁平率等の相違に起因する トレツ ド接地形状の違いについ てみるに、 タイヤの実際の負荷転動時の接地形状の、 最大幅と最大長さ とを対比して、 最大幅が最大長さより大きい場合には、 接地長さの方が 大きくなる場合に比して周方向主溝がより多くの水を排水するとの知 見に従えば、 前者のように、 最大幅が最大長さより大きくなるときは、 たとえば、 排水の流線方向がほぼ周方向となる トレッド中央部分により 多くの周溝を設けることにより、 排水性を高めて耐ハイ ドロプレーニン グ性を向上させることができる。
ところで、 周方向主溝は、 接地面内では、 接地長さと等しい気柱管を 形成して、 気柱共鳴音の発生原因となることが知られているが、 この気 柱共鳴音は、 気柱管の寸法が同一であっても、 その大きさは、 トレッ ド の幅方向位置によって異なり、 トレッ ドセンタ位置を境として、 ネガテ ィブキャンバーの付与下で、 トレツ ドの接地長さが長くなる装着内側で の気柱共鳴音は、 トレツド端側に向けて接地長さが短くなる装着外側で の共鳴音の増加割合に比して、 より大きな割合で低下するとの新たな知 見を得たことにより、 ここでは、 トレッ ドの接地長さが長くなる装着内 側のショルダー陸部列側に位置する周方向主溝を他の周方向主溝より 広い幅とし、 これにより、 共鳴音の発生.を抑えつつ耐ハイ ド口プレー- ング性の向上をもたらす。
以上に述べたようなタイヤにおいて、 装着外側となる部分のショルダ 一陸部列の、 横溝にて区画される各ブロックに、 ブロックの辺縁および プロック中央域の少なく とも一方に向けて表面高さが漸減する周辺隆 起部を設けた場合には、 操縦性能の一層の向上を実現することができる c このような周辺隆起部を設けたプロックを具えるタイヤを、 キャンバ 一角の付与なしに負荷転動させる場合には、 プロックの踏み込みに際し て、 周辺隆起部の傾斜隆起面が路面に面をもって衝接することに起因す る大きな打撃音が発生することになる。
しかるに、 ネガティブキャンバを付与して使用されるタイヤの、 装着 外側のショルダープロックに上述したような周辺隆起部を設けた場合 には、 直進走行時には、 その外側ショルダーブロックによる荷重負担が 少ないので、 周辺隆起部の存在に起因する騒音の增加は有効に防止する ことができる。
一方、 操縦のためにタイヤにスリ ップ角を付与したときは、 装着外側 のショルダ一部が接地して、 ネガティブキャンバの付与の有無にかかわ らず、 その部分の接地圧が高くなるので、 周辺隆起部は、 それ本来の機 能の下で、 ブロックの接地圧分布の均一化をもたらすことができる。 と ころで、 スリ ップ角の付与時には、 ブロックの滑りによる騒音が支配的 になり、 プロックの路面打撃による騒音の影響は相対的に小さくなるの で、装着外側のショルダーブロックに、周辺隆起部を設けることにより、 騒音を増加させるこ 'となしに操縦性能を有効に向上させることができ る。
ここで好ましくは、 少なく とも第 2の内側陸部列の、 傾斜溝で.区画さ れるブ口ックの、 踏み込み縁の高さおよび蹴り出し縁の高さのそれぞれ を、 トレッ ド幅方向で異ならせるとともに、 高さの高いそれぞれの部分 を、 トレッ ド周方向へ、 周方向位置に応じてト レッ ド幅方向の位置を変 化させながら延在させる。
タイヤにネガティブキャンバを付与した場合は、 装着外側の部分は、 接地長さが短くなるとともに、 接地圧が低くなるので、 その外側部分で は、 プロックの路面への衝接に起因する打撃音の発生は比較的少ないの に対し、 装着内側の部分では、 接地長さおよび接地圧がともに大きくな つて、 打撃音の発生割合が大きくなる。 この場合、 中央領域の陸部列は リブであるので、 ブロックの衝接による騒音の発生はなく、 また、 内側 ショルダー陸部列は一般に、 横溝の本数が少ないので、 これもまた、 打 撃音の発生割合が小さい一方で、 第 2の内側陸部列の、 傾斜溝により区 画されたプロックの発生騒音がとくに大きくなる。
そこでここでは、 少なく とも、 第 2の内側陸部列のブロックにつき、 踏み込み縁の高さおよび蹴り出し縁の高さのそれぞれを、 トレツド幅方 向で異ならせるとともに、 高さの高いそれぞれの部分を、 ト レッ ド周方 向へ、 周方向位置に応じてトレツド幅方向の位置を変化させながら延在 させることにより、 第 1には、 踏み込み縁の、 路面への衝接を時間をか けて徐々に行わせてその衝接カを経時的に分散させることで、 ブロック 接地初期の打撃騒音の発生を緩和し、 第 2には、 蹴り出し縁を、 時間を かけて路面から徐々に離隔させることで、 接地後期における騒音の発生 を抑え、 そして第 3には、 トレッド周方向に延びる、 高さの高いそれぞ れの部分の、 トレツド幅方向位置を周方向位置に応じて変化させること に基づき、 タイヤの転動によってブロックに生じる圧縮力を、 ブロック 全体で分散支持して、 プロックによって発生される騒音レベルを抑制す ることができる。
これをいいかえれば、 高さの高い部分を、 トレッド幅方向に変化させ ない場合には、 高さの高いプロックの一部分にだけ大きな圧縮応力が局 所的に作用し、 入力のレベルとしては大きくなつてしまう。
そして、 これらのことに加えて、 トレッド周方向に延びる高さの高い それぞれの部分をトレツド周方向に連続させた場合には、 プロックが路 面に接触してから離れるまでの間の全体にわたって騒音レベルを低く 抑えることができる。
また好ましくは、 トレッド幅方向に対して 4 5 ° 以上の平均角度で延 びる横溝および傾斜溝の少なく とも一方により区画されるブロック等 の鋭角隅部に、 先細り先端に向けて高さを漸減させる、 平坦面、 凸曲面 等からなる傾斜面を設ける。
主には、 リブとした、 中央領域の陸部列に隣接させて配設されて、 排 水性能の向上のために傾斜溝を形成される第 2の内側陸部列では、 プロ ックの、 トレッド幅方向の剛性を大きくすることが操縦安定性を高める 上で有効である。 すなわち、 リブに隣接する第 2の内側陸部列は、 その リブに対する剛性差を小さくすることが、 タイヤに付与したスリ ップ角 の増加に伴うコーナリングフォースの増加を線形状に近付ける上で有 利であるので、 ここでは、 第 2の内側陸部列のブロックに傾斜面を設け ることで、 そのブロックの、 トレッド幅方向の剛性を高め、 併せて、 排 水性能の一層の向上を担保する。
ところで、 周方向主溝の、 横溝おょぴ傾斜溝の少なく とも一方が開口 する溝壁とは反対側の溝壁の、 溝開口位置と トレツ ド幅方向に対向する 位置に、 溝内への突出部を設けた場合には、 タイヤの負荷転動に当たつ て、 横溝等の溝部に比して剛性の高い陸部部分の辺縁が、 路面に衝接す ることに起因して発生する打撃音に関し、 横溝等の溝部での剛性の低下 を、 周方向主溝内への突出部によって有効に補って、 その溝部の形成部 分の剛性と、 プロック等の陸部剛性との間の剛性差を緩和することによ り、 上述したような打撃音を有利に抑制することができ、 このことは、 タイヤへのネガティブキヤンバの付与の有無にかかわらず同様である。 また好ましくは、 ト レッ ド幅方向に対して 4 5 ° 以上の平均角度で延 びる、 第 2の内側陸部列に設けた傾斜溝の溝深さを、 タイヤ赤道面側か ら トレッド端側に向けて、 たとえば漸次に、 またはステップ状に深くす る。
第 2の内側陸部列に設けられて排水性能の向上に寄与する傾斜溝に よる排水効率の向上のためには、 それの横断面積をトレツド端側に向け て漸増させることまたは、 十分大きな一定値とすることが好適であるが、 中央領域陸部列に隣接する、 この第 2の内側隆部列を操縦安定性の向上 に寄与させるためには、 先にも述べたように、 その陸部列のブロック等 の、 ト レッ ド幅方向の剛性を大きく確保することが有効であるので、 こ こでは、 耐ハイ ドロプレーニング性能と、 操縦安定性とを高い次元で両 立させることを目的として、 傾斜溝の溝深さを、 赤道線側で浅く し、 そ こから トレツド端側に向けて深くすることにより、 横断面積をト レッ ド 端側へ向けて増加させる。 ところで、 第 2の内側陸部列に設けた傾斜溝の、 タイヤ赤道線に対す る延在方向はともに同方向とすることの他、 トレツ ド周方向で交互に逆 方向とすることもできる。
タイヤにネガティブキャンバを付与する場合には、 第 2の内側陸部列 の傾斜溝が排水性能の向上に大きく寄与することは前述した通りであ り、 ト レッ ドパターンが、 回転方向を特定された方向性パターンである ときは、 傾斜溝の、 タイヤ赤道線に対する延在方向を所定の一定方向と する前者にあってその傾斜溝に所期した機能を十分に発揮させること ができる。
しかるに、 トレッ ドパターンが方向性の無いものであるときは、 左右 輪のタイヤは、 相対的に逆方向に回転されることになるので、 このよう なパターンのタイヤにあっては、 いずれの方向の回転に対してもすぐれ た排水性能を確保するべく、傾斜溝の延在方向を、後者の場合のように、 タイヤ赤道線に対し、 トレツド周方向で交互に逆方向とすることが好ま しい。
そしてまた好ましくは、 周方向主溝で区画されるそれぞれの陸部列に おける、 ト レッ ド幅方向の剛性の、 接地長さの全体にわたる積分値を、 隣接する陸部列の相互間で、 大きい方の値からそれの 5 0 %以内の値と する。
なおこの場合、 周方向細溝によって幅方向に二分割される装着内側の ショルダー陸部列の剛性は、 細溝よりセンター寄りの広幅分割部分のみ の剛性とする。
ここで、 「接地長さの全体にわたる積分値」 は、 たとえば、 周溝で区 画された各陸部列の幅方向剛性のトレツ ド全周にわたる総和を求め、 実 車装着時のその陸部列の接地長さを、 空気圧を充填後の陸部列周長で除 した値を、 上記総和に乗じることで求めることができる。 より具体的には、 たとえば、 一の陸部列がモノピッチブロ ックの 6 0 個からなる場合は、 一のブ口ックの幅方向剛性を求めてそれを 6 0倍す ることで剛性の総和を求め、 その値に、 (ブロックの接地個数ノ 6 0 ) を乗じることで積地長さの全体にわたる積分地を求めることができる。 一方、 バリアプルピッチプロックからなる場合は、 各寸法のブロックの 幅方向剛性を求め、 一周中の各寸法のブロック個数をそれに乗じ、 寸法 毎の剛性を加算することで剛性総和を求めることができる。
操縦性の向上のためには、 タイヤへのスリ ップ角の付与によって発生 するコーナリングフォースが大きいことだけではなく、 そのコーナリン グフォースがスリ ップ角の増加に伴って線形に近い状態で増加するこ とが重要である。
ところで、 断面形状および構造が赤道面に対して対称なタイヤに内圧 を充填すると赤道面上でのベルト張力が一番高くなる場合が多く、 ベル ト張力に基づく トレッ ド剛性もこの部分で最大となり、 タイヤにキャン バーを付与しない状態の下での車両の直進走行時には、 接地長の最長部 分も赤道面上に位置することになつて、 赤道面上では、 ベルト剛性、 接 地長さの両者が最大になるので、 赤道面上のト.レツド部分が最大のコー ナリングフォースを発生する部分となる。
一方、 ネガティブキャンバを付与した状態での直進走行では接地長さ が最大になる部分はタイヤ赤道面とは一致しなくなり、 この場合は、 ト レツド陸部の剛性が同じの時は、 接地長さの長い部分の方が大きなコー ナリングフォースを発生する事が出来る。 また、 このキャンバ付きの直 進走行からスリ ップ角が増加し始める時、 最も大きなコーナリングフォ ースを発生する部分は、 ベルト張力が最大の部分と、 接地長さが最長に なる部分の間に存在することが詳細な観察から明らかになった。
そして、スリップ角がさらに増加すると、スリ ップ角の増大に伴って、 接地長さの最長部分が、 コーナリ ングの外側に移動し、 かつコーナリ ン グの外側での荷重負担が大きくなる。 かかる場合のタイヤのコーナリン グフォースは、 接地長さの増加と荷重負担の増加とにより、 コーナリ ン グの外側位置での発生量が増加することになる。
ところで、 このようなコーナリングフォースは、 それぞれの陸部列の トレツ ド幅方向の剛性が、 トレツドの幅方向位置によって相違すること によっても変化することになる。
そこで、 陸部列の剛性の、 トレッド幅方向での変動と、 コーナリング フォースの変化との関係について検討したところ、 陸部列の幅方向剛性 の低下は一般に、 コーナリングフォースの低下をもたらすことになるの に対し、 隣接する陸部列の相互間での剛性低下が 5 0 %以内にあるとき は、 タイヤへのスリップ角の付与時の陸部列の捩れ変化によってその陸 部列の接地長さが長くなり、 コーナリングフォースに関しては、 この接 地長さの増加が剛性の低下を補うことになって、 コーナリングフォース をほぼ一定に保ことができるとの知見を得た。 この一方で、 剛性低下が 5 0 %を超えると、 剛性低下に見合った接地長さの増加をもたらすこと が不可能となる。
これがためここでは、 スリップ角の増加に伴うコーナリングフォース のほぼ線形状の増加を実現するべく、 隣接する睦部列の相互間での、 ト レツド幅方向剛性の差を、 大きい方の値の 5 0 %以内としている。
以上に述べたようなタイヤは、 適用リムに取付けて、 規定の空気圧を 充填し、 最大負荷能力に相当する質量を負荷したタイヤ状態で、 装着内 側もしくは外側のいずれか一方の有効接地面積が他方のそれより大き くなり、 また、 規定の空気圧の充填姿勢で、 タイヤの赤道面と直交する トレツ ド外表面接線からそれぞれの トレツ ド接地縁までの半径方向距 離が、 有効接地面積の小さい装着側で、 他方の装着側より大きくなるよ うに構成してなる、 ものとすることが、 非対称パターンのタイヤに発生 し易い、 コニシティフォースを抑制する上で好ましく、 この場合は、 有 効接地面積の大小の比 (3大/ 3小) と、 半径方向距離の大小の比 (H 大 /H小) との関係を
S大 Z S小 = A X ( H大 /H小)
但し Aは、 1 . 0〜 1 . 4
となるように構成することが一層好ましい。
車両の旋回走行に当っては、 コーナリングの外側に存在するタイヤの. とくに負荷が大きくなるとともに、 接地面積もまた増加する、 タイヤト レツドの装着外側部分の陸部剛性を、 装着内側部分のそれより大きくす ることによって、 コーナリングフォースを高めることが広く行われてお り、 これがための具体的構成としては、 装着外側部分のネガティブ率を 小さく して陸部剛性を高める一方で、 装着内側部分のネガティブ率を大 きく して排水性を確保することが一般的である。
しかるに、 このような構成のいわゆる非対称トレツドパターンを採用 した場合には、 装着外側部分の接地面積が装着内側部分のそれより大き くなるため、 たとえば車両の直進走行に当って、 タイヤの接地面内で、 トレツド踏面が路面から受ける幅方向剪断力が、 装着内側部分と外側部 分との間で大きく相違することになり、 この相違が、 タイヤにキャンバ 一角を付与したかの如くのコニシティフォースの発生原因となって、 タ ィャに装着外側方向に向く横力を発生させることが明らかになった。
ところで、 このようなコニシティフォースにっき、 種々の検討を行つ た結果、 トレッ ド踏面に発生する幅方向剪断力は、 ト レッ ドショルダー 部で最も大きくなり、 しかも、 この剪断力は、 ト レッ ド踏面の、 タイヤ 赤道線からの離隔距離が大きくなるほど大きくなり、 また、 その離隔距 離に極めて敏感であるとの知見を得た。 そこでここでは、 装着内側もしくは外側のいずれか一方の有効接地面 積が他方のそれより大きくなる非対称トレツ ドパターンとしたところ において、 タイヤ赤道面と直交する トレツド外表面接線からそれぞれの トレツド接地縁まで半径方向距離を、 有効接地面積の小さい装着側で、 他方の装着側より大きくなるよう構成して、 半径方向距離の大きい側の トレツドショルダー部が発生する幅方向剪断力を、 有効接地面積が大き い側に発生するコニシティフォースの打消しに寄与させて、 とくには小 舵角時の操縦安定性の向上をもたらす
ところで、 この場合は、 有効接地面積の大小の比 (s大 Z s小) と、 半径方向距離の大小の比 (H大 /H小) との関係を、
S大 Z S小 A X ( H大 ZH小)
Aは、 1 . 0 1 . 4
とすることが、 コニシティフォースを、 より効果的に打ち消す上で好ま しい。
ここで、 Aを 1 . 0より小さくすると、 逆方向のコ-シティフォースが 発生しやすくなり、 1 . 4より大きくすると、 コニシティフォースの打 消し効果が小さくなる。
この一方で、 この発明は、 ホイールのリムとディスクとの連結部が、 リムに取付けたタイヤの赤道面に対し、 装着される車両の外側に位置す る場合における、 タイヤへの路面入力の、 車軸への伝達を有効に制御す るためになされたものでもある。
リムとディスクとの連結部が、 タイヤ赤道面に対して車両の外側に位 置する場合は、 ホイールの半径方向断面内でみると、 リムの、 車両の内 側方向への突出部分は、 ディスクによって片持ち支持されているかの如 くの構造となり、 そのリムの、 車両の内側に位置するビードシートへの タイヤ側からの半径方向入力に対してはホイールの剛性がとくに低く なって、 その半径方向入力が、 ホイール自体の特に大きな変形をもたら し、 このホイールの変形は車軸に伝達されることになり、 これが車軸振 動等の一因となるので、 タイヤ、 なかでも、 ネガティブキャンバを付与 されて、 接地圧および接地長さともに、 装着内側で大きくなるタイヤで は、 路面入力の、 リムへの伝達を抑制することが必要となる。
そこで、 この発明に係るタイヤ ' ホイール組立体は、 先に述べた空気 入りタイヤ、 なかでも、 装着内側となる部分のショルダー陸部列を、 周 方向に延びる細溝により幅方向に二分割して、 トレツ ド端側に位置する 一方の分割部分を狭幅リブと し、 横溝を形成されることのある他方の広 幅分割部分に、 溝からから独立した複数の小孔を設けてなるタイヤをホ ィールに組付けたところにおいて、 ホイールの、 リムとディスクとの連 結部を、 タイヤ赤道面に対して、 装着される車両の外側に位置させてな る。
車室内の静粛性を高めることを目的に、 固体伝播音を主体に研究を行 つたところ、 従来は、 ゴムなどの弾性体よりなるタイヤの弾性振動が主 因であると考えられていたその固体伝播音には、 ホイールの振動も大き な影響を及ぼしていることが明らかになった。
また、 タイヤの トレツ ド部から左右のサイ ドウオール部、 左右のビー ド部およびホイールを経て車体側へ伝達されるタイヤ振動の、 それぞれ のサイ ドウォール部からホィールへの伝達率を調べると、 ホイールディ スクの表側に位置するリム端を経る伝達率と、 ホイールディスクの裏側 に位置するリム端を経る振動伝達率とは相違する場合が多く、 そして、 どちら側の振動が車軸振動を発生させ易いかは、 ホイールディスクの、 リム、 ひいては、 タイヤ赤道面に対するオフセッ ト量によらず、 ホイ一 ルのリムとディスクとの連結位置によって決まることが明らかになつ た。 たとえば、 それらの連結位置がタイヤ赤道面より装着外側にある場 合は、 反対側の装着内側の振動は車軸に振動を発生させ易い。
従って、 タイヤの装着内側となる側のショルダー陸部列では、 圧縮剛 性を小孔によって低下させて、 路面凹凸等からタイヤへの入力に対する 反力を減少させることにより、 車軸への振動の伝達を抑制して、 車室内 の静粛性を高めることができる。 この一方で、 装着外側となる側のショ ルダー陸部列については、 剛性が大きくタイヤ入力に対する反力が大き くなつても、 この部分では、 ホイールから車軸への振動の伝達率が低い ので、 車軸の振動が大きくなることはなく、 それによつて静粛性が損わ れることもない。
[図面の簡単な説明]
図 1は、 この発明の実施の形態を示すトレツドパターンの展開図であ る。
図 2は、 他のトレツドパターンを示す展開図である。
図 3は、 他のトレツドパターンを示す展開図である。
図 4は、 小孔のトータルボリユームの変更例を示す図である。
図 5は、 周方向細溝の形成例および、 狭幅リブのトレツド端側側面の 輪郭形状を例示する図である。
図 6は、 接地面の輪郭形状を例示する図である。
図 7は、 他の実施形態を示すトレツドパターンの展開図である。
図 8は、 中央域陸部列への幅方向細溝の形成例を示す平面図である。 図 9は、 周方向主溝幅の相対関係を示す図である。
図 1 0は、 中央域陸部列への窪みの形成例を示す図である。
図 1 1は、 周辺隆起部を例示するブロックの幅方向断面図である。
図 1 2は、 他の実施形態を示すトレッドパターンの展開図である。
図 1 3は、 第 2の内側陸部列のブロックへの、 高さの高い部分の形成 例を示す斜視図である。 図 1 4は、 他の実施形態を示すトレツドパターンの展開図である。
図 1 5は、 他の実施形態を示すトレッ ドパターンの展開図である。
図 1 6は、 他の実施形態を示す図である。
図 1 7は、 さらに他の実施形態を示すトレッ ドパターンの展開図であ る。
図 1 8は、 それぞれの陸部列の幅方向剛性の、 接地長さの全体にわた る積分値を、 指数をもって例示する説明図である。
図 1 9は、 他の実施形態を示すトレッ ドパターンの展開図である。
図 2 0は、 トレツドパターンの変更例を示す図である。
図 2 1は、 コ-シティフォースを抑制するためのタイヤ構成を示す図 である。
図 2 2は、 タイヤ ' ホイール組立体の実施形態を示す要部断面図であ る。
図 2 3は、 比較例タイヤ 1の トレツドパターンの展開図である。
図 2 4は、 比較例タイヤ 2のトレツドパターンの展開図である。
図 2 5は、 実施例 2の供試タイヤのトレツ ドパターンを示す展開図で める。
図 2 6は、 比較例タイヤ 6の ト レツドパターンを示す展開図である。 図 2 7は、 比較例タイヤ 7の ト レツドパターンを示す展開図である。 図 2 8は、 実施例タイヤ 1 3および 1 6のトレツドパターンを示す展 開図である。
図 2 9は、 実施例タイヤ 1 4の ト レツ ドパターンを示す展開図である c 図 3 0は、 実施例タイヤ 1 5および 1 7の ト レツドパターンを示す展 開図である。
図 3 1は、 実施例タイヤ 1 8の ト レツ ドパターンを示す展開図である。 図 3 2は、 実施例タイヤ 1 9の ト レツ ドパターンを示す展開図である。 図 3 3は、 実施例タイヤ 2 0の ト レツ ドパターンを示す展開図である ; 図 3 4は、 実施例タイヤ 2 1の ト レツ ドパターンを示す展開図である c 図 3 5は、 実施例 5の供試タイヤのトレツドパターンを示す展開図で ある。
図 3 6は、 実施例タイヤ 2 2の ト レツ ドパターンを示す展開図である t 図 3 7は、 比較例タイヤ 1 0の ト レツ ドパターンを示す展開図である c
[発明の実施するための最良の形態]
図 1に示すトレツ ドパターンの展開図において、 図中 Eはタイヤ赤道 線を示す。
なお、 このタイヤの内部構造は一般的なラジアルタイヤのそれと同様 であるので図示は省略する。
ここでは、 ト レッ ド踏面 1に、 タイヤ赤道線 Eに対して非対称に位置 してト レッ ド周方向に直線状に連続して延びる四本の周方向主溝 2, 3 , 4 , 5を形成することにより、 赤道線 Eに最も近接して位置し、 図では その赤道線 Eを含む、 主溝 4の左側に隣接する一列の中央領域陸部列 6 を区画するとともに、 車両に装着されて装着内側となる図の左半部の側 部領域に、 ト レッ ド端側に位置するショルダー陸部列 7および、 このシ ョルダー陸部列 7と中央領域陸部列 6 との間に位置する第 2の内側陸 部列 8の二列の陸部列を区画し、 また、 装着外側となる図の右半部に、 ショルダー陸部列 9と、 このショルダー陸部列 9と中央領域陸部列 6と の間に位置する第 2の外側陸部列 1 0 との二列の側部領域陸部列を区 画する。
そして、 この図に示すところでは、 中央領域陸部列 6および、 装着内 側のショルダー陸部列 7のそれぞれをともにリブとする一方で、 装着外 側のショルダー陸部列 9を、 トレツド幅方向に対する平均延在角度を好 ましくは 1 5 ° 以下とした横溝 1 1によって区画されるブロック 1 2 よりなるブロック列として、 装着内側のショルダー陸部列 7に形成され ることのある横溝の溝容積の、 単位幅当りでの、 円周方向の総和を、 装 着外側のショルダー陸部列 9に形成される横溝 1 1の溝容積の、 同様の 総和より小さくする。
また、 第 2の内側陸部列 8には、 トレッド幅方向に対して 4 5 ° 以上 の平均延在角度で、 ここでは横溝 1 1と同方向に延びる複数本の傾斜溝 1 3を設け、 これらの傾斜溝 1 3を、 少なく とも装着内側のショルダー 陸部列側の周方向主溝 2に開口させる。 従って、 傾斜溝 1 3の他端は、 図示のように陸部列内で終了させることができる他、 中央領域陸部列側 の周方向主溝 3に開口させることもできる。
さらにここでは、 第 2の外側陸部列 1 0に、 前記横溝 1 1および傾斜 溝 1 3と同方向に傾いて延在して、 隣接するそれぞれの周方向主溝 4 , 5に開口する複数本の横溝 1 4を設け、 これにより、 この陸部列 1 0を、 ブロック 1 5よりなるブロック列とする。
なお、 ここにおける横溝 1 4は、 いずれか一方の端だけが周方向主溝 に開口し、 他端が陸部列内で終了するものとすることもでき、 この場合 には、 図 2に示すように、 装着外側のショルダー陸部列側の周方向主溝 5に開口させることまたは、 それとは逆側の周方向主溝 4だけに開口さ せることが可能である。
ところで、中央領域陸部列 6のリブには、それの接地性を高め、また、 トレツ ド幅方向のエッジ成分を確保するべく、 そのリブを横切る方向に 延びるサイプ 1 6を設けることもできる。
図 3は他の実施の形態を示すトレツドパターンの展開図である。
ここでは、 トレッ ドに三本以上、 図では、 トレッ ド周方向に直線状に 連続して延びる四本の周方向主溝 2〜 5を、 タイヤ赤道線 Eに対して非 対称に形成することにより、 その赤道線 Eに最も近接して位置し、 ここ では赤道線上に延在する中央域陸部列 6を区画するとともに、 装着内側 となる、 図では左半部の側部領域に、 ト レッ ド端側に位置する一方のシ ョルダー陸部列 7と、 このショルダー陸部列 7と中央域睦部列 6との間 に位置する第 2の内側陸部列 8 との二列の陸部列を区画し、 また、 装着 外側となる、 図の右半部の側部領域に、 トレツド端側の他方のショルダ 一陸部列 9と、 このショルダー陸部列 9と中央域陸部列 6との間に位置 する第 2の外側陸部列 9との二列の陸部列を区画する。
また、 この図では、 装着内側に幾分偏って位置する中央域陸部列 6を リブとするとともに、 装着内側のショルダー陸部列 7を、 ト レッ ド周方 向に延びる細溝 1 7によってトレツド幅方向に二分割して、 トレツ ド端 側に位置する一方の分割部分を狭幅リブ 1 8とする一方、 トレツドセン タ寄りの分割部分を、 それより幾分広い広幅リブ 1 9とする。
そしてここでは、 広幅リブ 1 9に形成されることのある、 図では設け ていない横溝の、 ト レッ ド周方向での、 単位幅当りのトータルポリユー ムを、 装着外側のショルダー陸部列 9に形成される複数本の横溝 1 1の それより小さく し、 その横溝 1 1のトレツド幅方向に対する平均延在角 度を好ましくは 1 5 ° 以下とする。
さらに、広幅リブ 1 9に、各溝から独立した複数の小孔 2 0を形成し、 好ましくは、 これらの小孔 2 0の、 トレツド周方向のトータルボリユー ムを、 たとえば図 4に例示するように、 細溝 1 7側で、 ト レッ ドセンタ 側より大きくする。
なおこの図に示すところでは、 小孔 2 0の形成密度を細溝 1 7側で大 きくすることで、 小孔 2 0のトータルポリユームを細溝側で大きく して いるも、 これに代えて、 もしくは加えて、 孔径および孔深さの少なく と も一方を細溝側で大きく して、 所要のトータルボリユームをもたらすこ ともできる。 ところで、 装着内側のショルダー睦部列 7に設けた周方向細溝 1 7の 溝幅は、 図 5に横断面図で例示するように、 ト レッ ド表面側に向けて、 図示のように次第に、 または段階的に広幅とすることが好ましく、また、 この細溝 1 7によって分割形成される狭幅リブ 1 8は、 それのト レッ ド 端面の側面を、 これも図 5に例示するように、 横断面輪郭線の外側に曲 率中心をもつ凹曲面形状とすることが好ましい。
また好ましくは、 一 0 . 5 ° のキャンバ角の付与下でのタイヤの負荷 転動に際し、 最大負荷能力の 4 0 %の負荷の作用条件での、 図 6に接地 輪郭線で囲って示すような接地域内に、 広幅リブ 1 9の小孔形成域の少 なく とも一部が含まれるように、 トレツ ド、 ひいてはトレツド踏面を構 成する。
加えて、 図 3に示すところでは、 第 2の内側陸部列 8に、 トレッ ド幅 方向に対して、 好ましくは 4 5 ° 以上の平均角度で延びる複数本の傾斜 溝 1 3を設け、 それらの傾斜溝 1 3を、 少なく とも、 トレツド端側に延 在する周方向主溝 2に開口させる。
図ではそれぞれの端を、 相互に隣接するそれぞれの周方向主溝 2, 3 に開口させた傾斜溝 1 3は、 タイヤの回転方向が一方向に特定される、 方向性パターンのタイヤでは、 赤道線 Eに対するそれの傾き方向を一定 方向として、 十分な排水機能を発揮することができるが、 回転方向が特 定されないタイヤでは、 いずれの方向の回転に対しても排水性能を確保 するべく、それの、タイヤ赤道面 Eに対する延在方向を、図示のように、 トレツド周方向で交互に逆向きとすることが好ましい。
また、 このような傾斜溝 1 3は、 十分な排水性能と、 高い陸部剛性と を両立させるため、 タイヤ赤道線側から トレッ ド端側に向けてそれの深 さを次第に深くすることが好ましい。
そしてまた、 トレッ ド幅方向に対して 4 5 ° 以上の平均角度で延びる 傾斜溝 1 3および他の横溝との関連において、 それと周溝とによって挟 まれる、 プロックの鋭角隅部、 少なく とも図 3に示すように、 タイヤ赤 道線側に位置する鋭角隅部に、 先端に向けて高さを漸減させる、 図に斜 線を施して示すような、平坦面状、凸曲面状等をなす傾斜面 2 1を設け、 これにより、 その鋭角隅部の剛性を確保するとともに、 排水性の向上を 図ることが好ましい。
さらに、 図 3に示すところでは、 第 2の外側陸部列 1 0に、 一端が周 溝に開口し、'他端が陸部列内で終了する複数本の横溝 1 4を、 トレッ ド 周方向で、 隣接するそれぞれの周方向主溝 4, 5に交互に開口させて配 設する。
図 7は、 他の実施形態を示すトレッ ドパターンの展開図であり、 これ は、 中央域陸部列 6の幅方向中心線 Cを、 タイヤ赤道線 Eに対し、 キヤ ンバ角の付与によってトレツ ドの接地長さが長くなる装着内側方向に 偏せて位置させるとともに、 その陸部列 6に、 トレッ ド幅方向に対して 5〜4 5 ° の範囲の平均角度で延びる, 2 m m以下の溝幅の複数本の幅 方向細溝 2 2を設けて、 リブとした陸部列 6の周方向の変形を許容する ものである。
ここでは、 陸部列 6の剛性バランス等の確保のために、 周方向で交互 に逆向きに延在させているこれらの幅方向細溝 2 2の配設ピッチは、 周 方向に必要なゴムの逃げ変形と、 幅方向剛性の確保とを考慮して選択す ることができる。
このようにして形成される複数本の幅方向細溝 2 2は、 少なく ともそ れらの一部のものにおいて、 両端をともにリブ内で終了させることがで き、また、各細溝 2 2は、それの延在方向の中間部を境として、図 8 ( a ), ( b ) の部分斜視図に斜線を施して例示するように、 深さ方向で相互に 離隔する方向に、 平面状、 曲面状等に傾けて形成することが好ましい。 なおこの場合の傾き方向は、 円周方向、 細溝開口と直交する方向等と することができ、 また、 傾き部分は、 一の細溝 2 2に三個以上設けるこ ともできる。
ところで、 中央域陸部列 6を区画する一対の直線状の周方向主溝 3 , 4は、 図 9に示すように、 第 2の内側陸部列 8側に位置するものを、 第 2の外側陸部列 1 0側に位置するものより広幅とすることが、 排水性を 高め、 気柱共鳴音を抑制する上で好ましい。
図 1 0は、 他の形態を要部について示す図であり、 これは、 中央域陸 部列 6の中心線 Cを、 赤道線 Eに対して、 キャンバ角の付与によって接 地長さが長くなる側に偏せて位置させ、 そして、 リブとしたその陸部列 6に、 ほぼ楕円状をなす窪み 2 3を、 その長軸が、 トレッ ド幅方向に対 して 5〜4 5 ° の範囲の角度で傾く姿勢で複数個設けるとともに、 それ ぞれの窪み 2 3の長軸の延在方向をトレツ ド周方向で交互に逆方向と し、 さらに、 陸部列 6の、 第 2の内側陸部列 8の側を、 直線状に延びる 周方向主溝 3で区画したものである。
なおここで、 窪み 2 3は長円形状等とすることも可能であり、 また、 複数個の窪み 2 3の少なく とも一部のものに、 図 1 0 ( b ) に示すよう に、 窪み 2 3の長軸方向に延びるサイプ 2 4を、 たとえばその両端に付 設することもできる。 なお、 サイプ 2 4は、 窪み 2 3の一端側にのみ付 設することもでき、 また、 サイプ 2 4の長さは、 陸部列内で終了するも のとする他、 周方向主溝に開口するものとすることもできる。
以上に述べたようなタイヤにおいて、 横溝 1 1によって区画される、 装着外側のショルダー陸部列 9の各プロック 1 2には、 図 1 1に幅方向 断面図で示すように、 ブロ ク辺縁およびプロック中央域の少なく とも 一方に向けて、 図ではそれらの双方に向けて表面高さが漸減する周辺隆 起部 2 5を設けることができ、 この周辺隆起部 2 5は、 ブロック 1 2の 接地に当たって、 接地圧を均一ならしめるべく機能する。
図 1 2は、 他の実施形態を示すトレッドパターンの展開図である。
これは、 装着内側のショルダー陸部列 7に周方向細溝 1 7を形成して- そのショルダー陸部列 7を、 トレツド端側の狭幅リブ 1 8と、 赤道線側 の広幅リブ 1 9とに二分割するとともに、 第 2の内側陸部列 8の、 そも に同方向へ等しい傾斜角度で延びる傾斜溝 1 3を、 隣接するそれぞれの 周方向主溝 2 , 3に開口させることによってその陸部列 8をプロック 2 6からなるブロック列とし、 そして、 装着外側のショルダー陸部列 9の 横溝 1 1を、 実質上トレツド幅方向に延在させたものである。
第 2の内側陸部列 8をこのようなブロック列としたときは、 それを構 成する各ブロック 2 6において、 たとえば図 1 3 ( a ) に略線斜視図で 示すように、 踏み込み縁 2 6の高さおよび蹴り出し縁 2 7の高さのそれ ぞれをトレツド幅方向で異ならせるとともに、 高さの高いそれぞれの部 分を、 図に斜線を施して示すように、 トレッド周方向へ、 周方向位置に 応じてトレツ ド幅方向の位置を変化させながら延在させることができ、 この場合、 好ましくはそれらの両者を、 図示のようにトレッド周方向に 連続させて形成する。
なおこの図に示すところでは、 踏み込み縁 2 7の、 最初に接地する高 さの高い部分を、 タイヤ赤道線側に偏せて、 また、 蹴り出し縁 2 8の、 路面から最も遅く離隔する、 高さの高い部分を、 装着内側のショルダー 側に偏せて設けているも、 高さの高い部分の偏り方向をこれとは逆にす ることもでき、また、高さの高い部分の、 トレツド周方向の延在態様を、 たとえば図 1 3 C b ) に示すような折れ曲がり形状とすることで、 踏み 込み縁 2 7および蹴り出し縁 2 8のそれぞれの高さの高い部分を、 とも に装着内側のショルダー側に偏せることもでき、 それらの両者をこれと は逆方向に偏せることも可能である。 そしてさらに、 高さの高い部分の延在態様は、 図 1 3 ( c ) に示すよ うなジグザグ形状とすることも可能である。
図 1 4は他の実施形態を示す図であり、 これは、 第 2の内側陸部列 8 に設けた傾斜溝 1 3を、 図の下方に凸形状に湾曲する延在態様とすると ともに、 各プロック 2 6の、 傾斜溝 1 3と周方向主溝 3とに挟まれる銳 角隅部に、 先端に向けて高さを漸減させる、 図に斜線を施して示すよう な傾斜面 2 9を設けたものであり、 これによれば、 ブロック 2 6、 とく には鋭角隅部の、 トレッド幅方向の剛性を高めることができ、 また、 溝 部容積の実質的な増加をもたらすことができる。
従って、 このような傾斜面は、 ブロック 2 6以外のブロック等に設け ることもでき、 このことは、 トレッ ド幅方向に対して 4 5 ° 以上の平均 角度で延びる横溝、 傾斜溝等と周方向主溝とによって区画される鋭角隅 部に設けた場合にとくに有効である。
なお、 図中 3 0は、 装着内側のショルダー睦部列 7の、 広幅リブ 1 9 に設けたサイプを示す。
図 1 5は、 さらに他の実施態様を示す図であり、 これは、 第 2の内側 陸部列 8に設けた傾斜溝 1 3が開口するタイヤ赤道線側の周方向主溝 3において、 傾斜溝 1 3が開口する溝壁とは反対側の溝壁 3 1の、 溝 1 3の開口位置と トレツド幅方向に対向する位置に、 溝内への突出部 3 2 を溝底に一体化させて設けたものである。 これによれば、 タイヤの負荷 転動に当っての、 傾斜溝 1 3の存在に起因する第 2の内側陸部列 8内の 剛性差を、 突出部 3 2をもって緩和して、 傾斜溝 1 3の溝縁の、 路面へ の衝接音を低減させることができる。
なおこの図に示すところでは、 周方向主溝 3への傾斜溝開口に対し、 一個おきに突出部 3 2を設けているも、 全ての開口に対応させて突出部 3 2を設けることもできる。 また、 他の横溝の開口位置に対応させて突 出部を設けることもできる。
そして、 図 1 6に示す実施形態は、 第 2の内側陸部列 8に設けた、 図 の下方に凸形状に湾曲して延びる傾斜溝 1 3を、 図 1 4に示す場合に比 して狭幅とするとともに、 その深さを、 図 1 6 ( b ) にグラフで示すよ うに、タイヤ赤道線側 P i から トレツド端側 P 2に向けて次第に深く した ものである。
また、 図 1 7に示す実施形態は、 図 3, 6 , 7等に示すと同様に、 第 2の内側陸部列 8に設けた傾斜溝 1 3の、 タイヤ赤道線に対する延在方 向を、 トレッ ド周方向で交互に逆方向とし、 また、 第 2の外側陸部列 1 0に設けたそれぞれの横溝 1 4の各一端を、 その外側陸部列 1 0を挟む それぞれの周方向主溝 4, 5に、 ト レッ ド周方向で交互に開口させ、 各 他端を陸部内で終了させ、 さらには、 図 1 4に示すように、 装着内側の ショルダー陸部列 7の広幅リブ 1 9に、 傾斜方向が周方向で交互に相違 するサイプ 3 0を設けたものである。
ところで、 このようにして構成されるそれぞれの陸部列において、 そ れらの、 それぞれのトレッド幅方向の剛性の、 接地長さの全体にわたる 積分値を、 隣接する陸部列の相互間で、 大きい方の値からそれの 5 0 % 以内の値とする。
図 1 8はこのことを剛性指数をもって例示する図であり、 これによれ ば、 それぞれの陸部列の剛性指数は、 図の左側の、 装着内側のショルダ 一陸部列から順に、 9 0、 6 0、 1 0 0、 1 1 0および 1 2 0となる。 図 1 9は他の実施形態を示し、 これはとくに、 装着内側のショルダー 陸部列 7に形成されることのあるエッジ、 図では、 その陸部列 7に設け た横溝 3 3によって形成されるエッジ 3 4の、 トレツド幅方向の延在成 分のトレツド周方向での総和を、 装着外側のショルダー陸部列 9に設け た横溝 1 1によって形成されるエッジ 3 5の、 トレツド幅方向延在成分 のそれより小さく し、 併せて、 第 2の内側陸部列 8に、 トレツ ド幅方向 に対して 4 5° 以上の平均角度で延びて、 少なく とも周溝 1に開口する 複数本の傾斜溝 1 3を設けたものである。
なおこの図に示すところでは、 第 2の外側陸部列 1 0に設けた横溝 1 4の全てを、 トレッド端側の周溝 5だけに開口するものとし、 それらの 反対端は陸部列内で終了させている。
図 2 0は、 上述したところの変更例を示し、 これは、 装着内側のショ ルダー睦部列 7の、 細溝 1 7で分割された広幅リブ 1 9に、 上述した横 溝 2 3に代えてサイプ 3 6を設け、 そのサイプ 3 6でエッジを形成する とともに、 装着外側のショルダー陸部列 9に、 横溝 1 1に加えてサイプ 3 7を設け、 それらの両者でエッジを形成したものである。
以上に述べたような非対称パターンタイヤにあって、 たとえば、 トレ ッ ド踏面の装着内側部分と装着外側部分とのネガティプ率を相違させ ることによって、 図 2 1 ( a ) にトレッド接地面を模式的に例示するよ うに、 適用リムに組付けて、 規定の空気圧を充填し、 そして最大負荷能 力に相当する質量を負荷した状態の下で、 装着外側部分の、 図に斜線を 施して示す有効接地面積 S。u tを、 装着内側部分の有効接地面積 S i nよ り大きく したときの、 装着外側方向に向くコ-シティフォースの発生を 抑制するためには、 図 2 1 ( b ) に、 規定の空気圧の充填状態のタイヤ の幅方向略線断面図で示すように、 タイヤ赤道面 E Pと直交する トレツ ド外表面接線丁から、 それぞれのトレッ ド接地緣 E I, EOまでの半径 方向距離 Hi n, H。u tが、 有効接地面積の小さい装着内側で大きくなる ように (Hi n>H。u t)、 たとえば加硫モールドの内表面形状の選択等 をもってタイヤを構成することが有効である。
そしてこのことは、 有効接地面積の大小関係を上述したところとは逆 に設定した場合 (S i n> S。u t) にも同様であり、 このときは、 それぞ れの半径方向距離 Hi n, H。u tが、
H。 u t >Hi n
の関係を満足するようにタイヤを構成する。
ところで、 この場合にあって、 より好適には、 大きい有効接地面積を S大、 小さい有効接地面積を S小とし、 また、 有効接地面積が大きい側 の半径方向距離を H ( S大側)、 小さい側の半径方向距離を H ( S小側) としたときに、
大/ S小 = A X (n (s小側) / cl ( s大側))
伹し、 Aは 1.0〜 1.4
の関係を満たすものとする。
図 2 2は、 この発明に係るタイヤ ·ホイール組立体の実施形態を示す 要部断面図であり、 これは先に述べた空気入りタイヤにあって、 装着内 側のショルダー陸部列の圧縮剛性を小さく したものをホイールに組付 けたところにおいて、 ホイール 3 8の、 リム 3 9とディスク 40との連 結部 4 1を、 タイヤ赤道面 E Pに対し、 装着される車両の外側に位置さ せたものである。
これによれば、 装着内側のショルダー陸部列 7の圧縮剛性の低下に基 き、 タイヤから車軸への振動の伝達を有利に抑制することができる。
〔実施例 1〕
サイズが 2 2 5 / 5 5 R 1 6の実施例タイヤおよび比較タイヤの それぞれを、 7. 0 J— 1 6のリムに組付けるとともに、 2 1 0 k P a の空気圧を充填して乗用車に装着し、 2名乗車の状態で、 前輪のネガテ ィブキヤンバーを 0. 3° 、 後輪のネガティブキヤンバーを 0. 5° と して実車走行した場合の、 それぞれのショルダー陸部列の摩耗比、 ハイ ドロプレーニング現象の発生速度、 車室内騒音および、 ドライ路面上で の操縦安定性を求めた。 ここで実施例タイヤ 1は、 図 1に示すトレツ ドパターンを有するもの とし、 第 2の内側陸部列の傾斜溝を、 トレツド幅方向に対して 4 5° の 角度とし、 第 2の外側陸部列の横溝の延在角度を 3 0° 、 装着外側ショ ルダー陸部列の横溝の平均延在角度を 1 5° とした。
実施例タイヤ 2は、 図 2に示すトレツ ドパターンを有するものとし、 ここでのそれぞれの溝角度は、 実施例タイヤ 1と同一とした。
実施例タイヤ 3は、 図 1 2に示すトレツ ドパターンを有するものとし、 第 2の内側陸部列の傾斜溝の延在角度を 5 0° 、 第 2の外側陸部列の横 溝の角度を 3 0° 、装着外側ショルダー隆部列の横溝角度を 0° とした。 実施例タイヤ 4は、 図 1に示すトレツ ドパターンを有するとともに、 実施例タイヤ 1 と同一の溝角度を有するものとし、 装着外側のショルダ 一陸部列のブロックに、 図 1 1に例示するような周辺隆起部を設けた。 実施例タイヤ 5は、 図 1 2に示すトレツドパターンを有するとともに、 実施例タイヤ 3と同一の溝角度を有するものとし、 第 2の内側睦部列の プロックに、図 1 3 ( a ) に示す延在態様の、高さの高い部分を設けた。 実施例タイヤ 6は、 図 1 4に示すトレツドパターンを有するものとし、 第 2の内側陸部列の傾斜溝の平均角度を 6 0° 、 第 2の外側陸部列の横 溝角度を 30° 、 装着外側のショルダー陸部列の溝角度を 0° とした。 実施例タイヤ 7は、 図 1 5に示すトレツドパターンを有するものとし、 第 2の内側陸部列の傾斜溝の角度を 4 5° 、 第 2の外側陸部列の横溝角 度を 3 0° 、 装着外側のショルダー陸部列の溝角度を 0° とした。
実施例タイヤ 8は、 図 1 6に示すトレツドパターンを有するものとし、 第 2の内側陸部列の傾斜溝の平均角度を 6 0° とするとともに、 傾斜溝 の深さを 2. Ommから 6. 5 mmにわたつて変化させ、 第 2の外側陸 部列の横溝角度を 3 0° 、 装着外側のショルダー睦部列の横溝角度を 0° とした。 実施例タイヤ 9は、 図 1 7に示すトレツドパターンを有するものとし、 第 2の内側陸部列の傾斜溝角度を ± 5 0° 、 第 2の外側陸部列の横溝の 平均角度を 3 0° 、 装着外側のショルダー陸部列の横溝角度を 0° とし た。
比較例タイヤ 1は、 図 2 3に示すトレツドパターンを有するものとし. 装着内側のショルダー陸部列の横溝角度を 1 0° 、 第 2の内側陸部列の 傾斜溝角度を 5 0° 、 第 2の外側陸部列の横溝角度を 3 0° 、 装着外側 のショルダー陸部列の横溝角度を 1 0° とした。
比較例タイヤ 2は、 図 2 4に示すトレツドパターンを有するものとし, 第 2の内側陸部列の傾斜溝角度を 4 0° 、 第 2の外側陸部列の横溝角度 を 3 0° 、 装着外側のショルダー睦部列の横溝角度を 1 7° とした。
試験方法
摩耗比
高速道路、 一般路および山岳路のそれぞれを、 5 0 %、 40 %および 1 0 %の比率の下で 2 00 0 0 km走行した後、 両ショルダー陸部列の 幅方向中央部分のそれぞれの摩耗量を測定してそれらの比を求めるこ とにより評価した。 装着内側が多く摩耗した場合は 1より小さい数値で- 逆に、 装着外側が多く摩耗した場合は 1より大きい数値で示す。 なお摩 耗比の好適範囲は 1. 0〜 1. 2である。
ハイ ドロプレーニング現象の発生速度
水深 6 mmのプール内で速度 5 0 k m/ hから加速試験を行い、 テス ト ドライバ一により、 ハイ ドロプレーニングの発生速度の評価を行った c 結果は左右輪で平均したハイ ドロプレーニング発生速度の指数で表現 し、 指数大を良とした。
車室内騒音
テストコースの平滑路面を時速 6 0 kmの一定速度で走行し、 ドライ バーの車両中央部側の耳もとに置いたマイク騒音レベルを計測した。 騒 音は指数で示し、 指数大が騒音が低いことを示す。
操縦安定性
テス トコースのドライ路面を走行し、 テス ト ドライバーによる官能評 価を行った。 結果は指数で示し、 指数大を良とした。
これらの試験結果を表 1に示す。
Figure imgf000042_0001
表 1から明らかなように、 実施例タイヤによれば、 耐ハイ ド口プレー ユング性能の向上と、 車室内騒音の低減と、 操縦安定性の向上とのそれ ぞれを有効に実現しつつ、 すぐれた耐偏摩耗性能を確保することができ る。
〔実施例 2〕
サイズが 2 1 5/4 5 R 1 7の、 図 2 5に示すトレツドパターンを 有する実施例タイヤおよび比較例タイヤのそれぞれを、 7. 5 J X 1 7 のリムに組み付けるとともに、充填内圧を 2 2 0 k P a とし、一 0. 5° のキャンパ角を付与して装着内側の接地長さが長くなるようにして、 速 度 3 0 k mでス リ ップ角を 0度から 5度まで変化させて発生するコー ナリングフォースを測定した。
0度と 1度の時のコーナリングフォースの差を C f 1 とし、 0度と 2 , 5度のコーナリングフォースの差を C f 2、 0度と 5度の差を C f 3と すると、 C f 2 /C f 1カ 2. 5、 C f 3 /C f 1力 S 5であれば線形に コーナリングフォースを発生しており、 C f 2/C f lが 2 , 5より大 きいとスリ ップ角の大きい所で非線形にコーナリ ングフォースが増大 する事を示し、 C f 2/C f 1が 3より小さいと逆に、 コーナリングフ オースが非線形に減少することを示す。
それぞれの供試タイヤの、 図 2 5に示すそれぞれの陸部列についての. トレツ ド幅方向の剛性の、 接地面内での積分値は表 2に剛性指数で示す 通りのものとし、 測定したコーナリングフォースの比を表 3に示す
なお表 2の指数値は、 剛性が高いものほど大きい値とした。
表 2
Figure imgf000043_0002
表 3
Figure imgf000043_0001
200
表 3によれば、 実施例タイヤ 1 0〜 1 2はいずれも、 コーナリングフ オースをほぼ線形に増加させ得るのに対し、 比較例タイヤ 3および 5は スリップ角の大きいところで、 また、 比較例タイヤ 4はスリップ角の小 さいところから非線形となることが解る。
〔実施例 3〕
サイズが 2 3 5 / 4 5 R 1 7の実施例タイャおよび比較例タイヤ を、 8 J X I 7のリムに、 内圧 2 1 0 k P aで組み付けて乗用車に装着 し、 二名が乗車した状態での前輪のキャンバ角を一 0 . 4 ° 、 後輪を一 0 . 6 ° とした。
◎ この車両で摩耗試験を実施した。 試験条件は高速道路、 一般路、 山岳路を 5 0 %、 4 0 %、 1 0 %の割合で走行し、 2 0 0 0 0 k m走行 後の前二輪の、 双方のショルダー陸部列の幅方向中央の摩耗量の比を求 めた。 1 0 0より大きい場合は装着内側が多く摩耗していることを示し、 1 0 0より小さい場合は装着外側が多く摩耗していることを示す。
◎ この車両で水深 6 m mのプール内で、 速度 5 0 k m / hから加速 試験を行い、 テス ト ドライバーによるハイ ドロプレーニングの発生速度 の評価を行った。 結果は左右輪で平均したハイ ドロプレーニング発生速 度の指数で表現し、 指数大が良とした。
◎ この車両でテス トコースの平滑路面で騷音計測を行った。 時速 6 0 k mの一定速度で走行し、 ドライバーの車両中央部寄りの耳もとに置 いたマイクにて計測。 騒音は指数で示し、 指数大が騷音が低いことを示 す。
◎ この車両で、 テス トコースでのテス ト ドライバーによる操縦安定 性の官能評価を行った。 結果は指数で表現し、 指数大が良とした。
これらの試験結果を表 4に示す。
〇比較例タイヤ 6 : 図 2 6に示すトレツ ドパターンを有するものであり、 装着内側のショルダー陸部列には、 幅方向に対して 1 2 ° の横溝を、 第 2の内側陸部列には 5 5 ° の傾斜溝をそれぞれ設け、 中央域はリブとし- 第 2の外側陸部には 3 5 ° の横溝を、 外側のショルダー陸部列には 1 2。 の横溝をそれぞれ設けたものである。
〇比較例タイヤ 7 :図 2 7に示すトレツ ドパターンを有するものであり - 装着内側のショルダ一隆部列はリブとし、 第 2の内側陸部には 4 2 ° の 傾斜溝を設け、 中央域のリブにはサイプを設け、 第 2の外側陸部列には 3 2 ° の角度で延びて装着外側にのみ開口する横溝を、 そして装着外側 のショルダー陸部列には 1 7 ° の横溝を設けたものである。
〇実施例タイヤ 1 3 : 図 2 8に示すトレツドパターンを有するものであ り、 装着内側のショルダー陸部列はリブとし、 第 2の内側陸部には装着 内側にのみ開口する 4 8 ° の傾斜溝を設け、 中央域のリブにはサイプを それぞれ設け、 第 2の外側陸部列には 3 2 ° の、 そして、 装着外側のシ ョルダ一陸部列には、 上方へ凸となる向きに湾曲する、 平均角度が 1 2 ° のそれぞれの横溝を設けたものである。
〇実施例タイヤ 1 4 :図 2 9に示すトレツドパターンを有するものであ り、 第 2の外側陸部列の横溝を装着の外側にのみ開口させた点だけが実 施例タイヤ 1 6と相違するものである。
〇実施例タイヤ 1 5 :図 3 0示すトレツドパターンを有するものであり, 装着内側のショルダー陸部を細溝で二分割し、 第 2の内側陸部列に 5 5 ° の傾斜溝を設け、 中央域めリブにサイプを形成し、 第 2の外側陸部 列に設けた 3 2 ° の横溝を装着外側にのみ開口させ、 装着外側のショル ダー陸部列に 5 ° の横溝を設けたものである。
〇実施例タイヤ 1 6 :図 2 8に示すトレッ ドパターンを有し、 第 2の内 側陸部列に設けた傾斜溝の角度を 4 5 ° とした点および、 外側ショルダ 一陸部列のプロックに、 図 1 1に示す周辺隆起部を設けた点で実施例タ ィャ 1 3と相違するものである。
〇実施例タイヤ 1 7 :図 3 0に示すトレツドパターンを有し、 第 2の内 側陸部列および第 2の外側睦部列のそれぞれで、 陸部の踏み込み縁の高 さおよび、 蹴り出し縁の高さのそれぞれを、 トレッ ド幅方向で異ならせ るとともに、 高さの高いそれぞれの部分を、 トレツ ド周方向へ、 周方向 位置に応じてト レッ ド幅.方向位置を変化させながら、 図 1 3 ( a ) に示 すように直線状に延在させて、 それらの部分を周方向に連続させた点で 実施例タイヤ 1 5と相違するものである。
〇実施例タイヤ 1 8 : 図 3 1に示すトレツドパターンを有するものであ り、 装着内側のショルダー陸部列の広幅リブにサイプを設け、 第 2の内 側陸部列に設けた傾斜溝を、 平均延在角度が 6 0 ° の下方凸曲線とする とともに、 この傾斜溝により区画されるブロックの鋭角隅部に、 先端側 に向けて高さを漸減する傾斜面を設けた点を除いて実施例 1 5'と同様 の構成としたものである。
〇実施例タイヤ 1 9 : 図 3 2に示すトレツドパターンを有するものであ り、 第 2の内側陸部列に設けた 4 5 ° の傾斜溝の、 中央域リブ側の開口 位置に対応させて、 その中央域リブの側壁に、 開口の二個分を一ピッチ とする突出部を設けたものであり、 その他の構成は、 図 3 1に示すとこ ろと同様としたものである。
〇実施例タィャ 2 0 : 0 3 3に示すトレツドパターンを有するものであ り、 第 2の内側陸部列に設けた傾斜溝を、 平均角度が 6 0 ° の下方凸曲 線とし、 その傾斜溝の深さをトレツドセンタ側端で 2 m mとするととも に、 トレッ ド端側に向けて漸次深く し、 その深さを、 ショルダー側周方 向主溝への開口端で 6 . 5 m mとした以外は、 図 3 0 (実施例タイヤ 1 5 ) に示したものと同様に構成したものである。
〇実施例タイヤ 2 1 : 図 3 4に示すトレツ ドパターンを有するものであ り、 装着内側のショルダー陸部列の分割広幅リブにサイプを設け、 第 2 の内側陸部列に設けた傾斜溝を 5 0° の角度とするとともに、 それらの 延在方向を円周方向で交互に逆向きとし、 中央域リブにサイプを設け、 第 2の外側陸部列の横溝の一端を、 円周方向で交互に隣接する周溝に開 口させるとともに、 それらの他端を陸部列内で終了させ、 外側のショル ダー陸部列の横溝角度を 5° としたものである。
表 4
Figure imgf000047_0001
表 4によれば、 実施例タイヤはいずれも、 装着の内外側のそれぞれの ショルダー陸部列の摩耗差を有利に低減させることができ、 耐ハイ ドロ プレーニング性、 静粛性および操縦安定性をともに有効に向上させるこ とができる。
〔実施例 4〕
P S R 2 0 5 /6 5 R 1 5 , リム 6 J J X 1 5、 内圧 2 0 0 k P a、 荷重 0. 5 8 8 kN、 0. 2 3 5 kNの二水準。
キャンバー 0. 5度で、 装着内側のショルダー陸部列についての室内 摩耗試験と、 室内でのハイ ドロプレーユング現象の発生試験を実施。 また車両に装着して一般道路を 1 0 0 0 k m走行し、 装着内側のショ ルダ一陸部列の細溝内に咬みこんだ石などの異物の個数を評価した。
比較例タイヤ 8 :パターンは図 3 5に示すものと類似で、 中央域のリブ の中心線がタィャ赤道線と一致し、 装着内側のショルダー陸部列の小穴 が無く、 ショルダー周方向細溝幅が深さ方向でほぼ一定で、 装着外側の ショルダー陸部側に、 幅方向に対して 5 ° の角度で延びる横溝を設けた もの。
なおこのタイヤは、 本願の請求の範囲 1に係る発明には包含されるも のである。
実施例タイヤ 2 2 :パターンは図 3 6に示すもので、 装着内側のショル ダー陸部列の小穴は図 4のようにショルダー側で密とし、 センター側で 疎、 センター陸部列には図 8 ( b ) の三分割タイプの三次元サイプを設 け、 ショルダー周方向細溝幅が新品時のタイヤトレツド表面では 3 m m、 溝底では 0 . 5 mmで表面から底へ幅が漸減するものとした。
性能は、 比較例タイヤ 8をコントロールとして、 指数にて表 5に指数 で示し、 指数値は大きいほどすぐれた結果を示すものとした。
表 5
Figure imgf000048_0001
〔実施例 5〕
サイズが 2 1 5 / 4 5 R 1 7の実施例タイヤと比較例タイヤとの それぞれにっき、 標準リムに組み込み、 2 2 0 k P aに調整してから、 テス トコースにて直進時の耐ハイ ドロプレーニング性と操縦安定性と を官能評価し、 またセンター摩耗については、 2 0 0 0 0 k mにわたつ て車両を走行させ、 トレツドセンター部の摩耗量を評価した。その結果、 比較例タイヤ 1 1をコントロールとする指数にて表 6に示した。
•比較タイヤ 9
図 3 5に示すトレツ ドパターンを有するものとし、 中央域陸部列を 1 8 mm幅のリブとしたものである。
なおこのタイヤは、 前述したように、 本願の請求の範囲 1に係る発明 に含まれるものである、
-実施例タイヤ 2 3
図 3 5に示すトレツドパターンの中央域のリブに、 タイヤ幅方向に対 して 1 5 ° の角度でともに同方向に延びる複数本のサイプを、 周方向に 3 0 mmの間隔をおいてリブの全幅にわたって形成し、 サイプの深さを 1 0 mm, 開口幅を 0. 4 mmとするとともに、 各サイプを、 それの深 さ方向で、 図 8 ( b ) に示すよう、 三つの分割部分として、 タイヤ半径 方向に対して ± 2 2. 5 ° の角度に傾けたものである。
-実施例タイヤ 2 4
図 3 5に示すトレツドパターンの中央域のリブに、 ともに周方向に傾 斜する複数の楕円状窪みを周方向に 3 0 mmの間隔をおいて形成し、 そ の窪みの長軸長さを 1 3 mm、 その長軸の、 タイヤ幅方向に対する傾き 角を 1 5 ° 、 短軸の長さを 3 mmとしたものである。
表 6
Figure imgf000049_0001
〔実施例 6〕 サイズが 2 0 5 / 6 5 R 1 5の実施例タイヤおよび比較例タイヤ のそれぞれの、 タイヤ 'ホイ一ノレ R立体についてコニシティフォースを 測定するとともに、 操縦安定性および耐ハイ ドロプレーニング性能を求 めたところ表 7に示す結果を得た。
表中の実施例タイヤ 2 5は、 図 1 2に示すトレツドパターンを有する ものであり、 ともに 8 m mの深さを有する周方向主溝を装着の内外側に 非対称に配設し、 タイヤ赤道面線 Eを境として装着外側の有効接地面積 S。u tの、 装着内側の接地面積 S i nに対する比を 1 . 1 4とし、 また、 トレツド幅 Wの 8 0 %の位置でのトレツ ド外表面接線 Tからの半径方 向距離を、 装着外側で 5 . 8 m m、 装着内側で 6 . 2 m mとしたものであ る。
比較例タイヤ 1 0は、 図 3 7に示す左右対称のトレツドパターンを有 するものであり、 ともに 8 m mの深さを有する周方向主溝をタイヤ赤道 線に対して対称に配設して、 有効接地面積を装着の内外側でほぼ等しく し、 また、 ト レッ ド幅 Wの 8 0 %の位置でのト レッ ド外表面接線丁から の半径方向距離を、 これも装着の内外側でほぼ等しく したものである。 そして比較例タイヤ 1 1は、 図 1 2に示すトレツドパターンを有する も、 トレツド幅 Wの 8 0 %の位置でのトレツド外表面接線 Tからの半径 方向距離を装着の內外側でほぼ等しく したものである。
ここで、 操縦安定性は、 テス トコースの走行によって官能評価し、 耐 ハイ ドロプレーユング性能は、 水深 6 m mの直進路面上を走行時の官能 により評価した。 なお、 これらについての表中の指数値は大きいほどす ぐれた結果を示すものとした。
また、 コ-シティフォースは、 各十本ずつのタイヤの実測値を平均す ることにより求めた。
表 7 耐ハイドロ
操縦安定性 プレーニング フォース (N) 実施例タイヤ 2 5 図 1 2 1 0 5 1 0 8 2 0 比較例タイヤ 1 0 図 3 7 1 0 0 1 0 0 1 8 比較例タイヤ 1 1 図 1 2 1 0 8 1 0 8 8 6 表 7によれば、 実施例タイヤは、 高い操縦安定性および耐ハイ ドロブ レーニング性能をもたらす一方で、 コニシティフォースを、 比較例タイ ャ 1 0の、対称パターンタイヤと同程度にまで、抑制できることが解る。 〔発明の利用可能性〕
以上に述べたところから明らかなように、 この発明によれば、 耐偏摩 耗性能の低下なしに、 耐ハイ ドロプレーニング性能および操縦安定性を ともに向上させ、 タイヤ転動騒音を有利に低減させることができる。

Claims

請 求 の 範 囲 '
1 . トレッ ド踏面に、 タイヤ赤道線に対して非対称に位置する三本以 上の周方向主溝を形成して、 中央領域および両側部領域のそれぞれに一 列以上の陸部列を区画した空気入りタイヤであって、
車両に装着されて装着内側となる部分でショルダー陸部列に形成さ れることのある横溝の溝容積の、 単位幅当りでの円周方向の総和を、 装 着外側となる部分のショルダ一陸部列に形成される横溝の溝容積の、 同 様の総和より小さくするとともに、
中央領域の陸部列をリブとし、
装着内側となる部分のショルダー陸部列のタィャ赤道線側に隣接す る第 2の内側隆部列に、 トレッド幅方向に対して 4 5 ° 以上の平均角度 で延びる複数本の傾斜溝を設け、
これらの傾斜溝を、 第 2の内側陸部列の、 少なく とも装着内側に隣接 する周方向主溝に開口させてなる空気入りタイヤ。
2 . 周方向主溝を四本以上とするとともに、
装着外側となる部分のショルダ一陸部列のタイヤ赤道線側に隣接す る第 2の外側陸部列に、 いずれか一方の端が周方向主溝に開口し、 他端 が陸部列内で終了する複数本の横溝を設けてなる請求の範囲 1に記載 の空気入りタイヤ。
3 . 装着内側となる部分のショルダー陸部列を、 周方向に延びる細溝 により幅方向に二分割するとともに、 装着外側となる部分のショルダー 陸部列に設けた横溝の、 トレッド幅方向に対する平均角度を 1 5 ° 以下 としてなる請求の範囲 1もしくは 2に記載の空気入りタイヤ。
4 . 装着内側となる部分のショルダー陸部列を、 周方向に延びる細溝 により幅方向に二分割して'、 トレツ ド端側に位置する一方の分割部分を 狭幅リブとし、 横溝を形成されることのある他方の広幅分割部分に、 溝 から独立した複数の小孔を設けてなる請求の範囲 1〜 3のいずれかに 記載の空気入りタイヤ。
5 . 細溝の溝幅を、 溝底に比してト レッ ド表面側で広幅としてなる請 求の範囲 3もしくは 4に記載の空気入りタイヤ。
6 . 広幅分割部分に設けた複数の小孔の、 トレッド周方向のトータル ボリュームを、 それを区画する細溝側で、 タイヤ赤道線側より大きく し てなる請求の範囲 4もしくは 5に記載の空気入りタイヤ。
7 . 一 0 . 5 ° のキャンバ角の付与姿勢での、 最大負荷能力の 4 0 % の負荷の作用下で、 小孔を設けた広幅分割部分が、 小孔形成域の少なく とも一部で接地する トレツ ド構造の少なく とも一部で接地する トレツ ド構造としてなる請求の範囲 4〜 6のいずれかに記載の空気入りタイ ャ。
8 . 狭幅リブの、 トレッ ド端側の側壁を、 横断面輪郭部線の外側に少 なく とも一つの曲率中心をもつ曲面形状としてなる請求の範囲 4〜 7 のいずれかに記載の空気入りタイヤ。
9 . タイヤ赤道線に最も近接して位置する中央領域陸部列のリブの中 心線を、 タイヤ赤道線に対し、 装着内側に偏せて位置させるとともに、 そのリブに、 トレツド幅方向に対して傾斜して延びる複数本の幅方向細 溝を設けてなる請求の範囲 1 ~ 8のいずれかに記載の空気入りタイヤ。
1 0 . 幅方向細溝の傾斜角度を、 5〜 5 5 ° の範囲の平均角度とする とともに、 それの溝幅を 2: m m以下としてなる請求の範囲 9に記載の空 気入りタイヤ。
1 1 . 幅方向細溝を、 それの延在方向の中間部を境として、 深さ方向 で相互に離隔する方向に傾けて形成してなる請求の範囲 9もしくは 1 0に記載の空気入りタイヤ。
1 2 . 複数本の幅方向細溝の少なく とも一部で、 両 をともにリブ内 で終了させてなる請求の範囲 9〜 1 1のいずれかに記載の空気入りタ ィャ。
1 3 . タイヤ赤道線に最も近接して位置する中央領域陸部列のリブの 中心線を、 タイヤ赤道線に対し、 装着内側に偏せて位置させ、 そのリブ に、 ほぼ楕円形状をなす複数個の窪みを設け、 各窪みの長軸を、 トレツ ド幅方向に対して 5〜4 5 ° の範囲の角度で延在させるとともに、 この リブの、 装着内側のショルダー陸部列側を、 直線状に延びる周方向主溝 で区画してなる請求の範囲 1〜 8のいずれかに記載の空気入りタイヤ。
1 4 . 複数個の窪みの少なくとも一部に、 長軸方向に延びるサイプを 付設してなる請求の範囲 1 3に記載の空気入りタイヤ。
1 5 . タイヤ赤道線に最も近接して位置する中央領域陸部列のリブを, 直線状に延びる一対の周方向主溝で区画し、 装着内側のショルダー陸部 列側に位置する周方向主溝の溝幅を、 装着外側のショルダー陸部列側に 位置する周方向主溝の溝幅より広幅としてなる請求の範囲 1〜 1 4の いずれかに記載の空気入りタイヤ。
1 6 . 装着外側となる部分のショルダー陸部列の、 横溝にて区画され る各プロックに、 プロック辺縁およびブロック中央域の少なく とも一方 に向けて表面高さが漸減する周辺隆起部を設けてなる請求の範囲 1〜 1 5のいずれかに記載の空気入りタイヤ。
1 7 . 少なく とも、 第 2の内側陸部列の、 傾斜溝で区画されるプロッ クの、 踏み込み縁の高さおよび蹴り出し縁の高さのそれぞれを、 トレツ ド幅方向で異ならせるとともに、 高さの高いそれぞれの部分を、 トレツ ド周方向へ、 周方向位置に応じてトレツド幅方向の位置を変化させなが ら延在させてなる請求の範囲 1〜 1 6のいずれに記載の空気入りタイ ャ。
1 8 . トレッド幅方向に対して 4 5 ° 以上の平均角度で延びる横溝お よび傾斜溝の少なく とも一方により区画されるプロックの鋭角隅部に、 先端に向けて高さを漸減させる傾斜面を設けてなる請求の範囲 1〜 1 7のいずれかに記載の空気入りタイヤ。
1 9 . 周方向主溝の、 横溝および傾斜溝の少なく とも一方が開口する 溝壁とは反対側の溝壁の、 溝開口位置と トレッド幅方向に対向する位置 に、 溝内への突出部を設けてなる請求の範囲 1〜 1 8のいずれかに記載 の空気入りタイヤ。
2 0 . トレッド幅方向に対して 4 5 ° 以上の平均角度で延びる、 傾斜 溝の溝深さを、 タイヤ赤道線側から トレツド端側に向けて深く してなる 請求の範囲 1〜 1 9のいずれかに記載の空気入りタイヤ。
2 1 . 第 2の内側陸部列に設けた傾斜溝の、 タイヤ赤道線に対する延 在方向を、 トレツド周方向で交互に逆方向としてなる請求の範囲 1〜2 0のいずれかに記載の空気入りタイヤ。
2 2 . 周方向主溝で区画されるそれぞれの陸部列における、 トレッド 幅方向の剛性の、 接地長さの全体にわたる積分値を、 隣接する陸部列の 相互間で、 大きい方の値からそれの 5 0 %以内の値としてなる請求の範 囲 1〜 2 1のいずれかに記載の空気入りタイヤ。
2 3 . 適用リムに組付けて、 規定の空気圧を充填し、 最大負荷能力に 相当する質量を負荷したタイヤ状態で、 装着内側もしくは外側のいずれ か一方の有効接地面積が他方のそれより大きくなり、 また、 規定の空気 圧の充填姿勢で、 タイヤの赤道面と直交する トレツド外表面接線からそ れぞれのトレツ ド接地縁までの半径方向距離が、 有効接地面積の小さい 装着側で、 他方の装着側より大きくなるように構成してなる請求の範囲 1〜 2 2のいずれかに記載の空気入りタイヤ。
2 4 . 有効接地面積の大小の比 (3大/ 3小) と、 半径方向距離の大 小の比 (H大ノ H小) との関係を、
S大ノ 小ニ八 X ( H大 / H小)
但し、 Aは 1 . 0 ~ 1 . 4
としてなる請求の範囲 2 3に記載の空気入りタイヤ。
2 5 . 請求の範囲 4〜 2 4のいずれかに記載の空気入りタィャをホイ 一ルに組付けてなるタイヤ 'ホイール組立体であり、
ホイールの、 リムとディスクとの連結部を、 タイヤ赤道面に対し、 装 着される車両の外側に位置させてなるタイヤ ·ホイール組立体。
PCT/JP2003/011162 2002-08-30 2003-09-01 空気入りタイヤおよびタイヤ・ホイール組立体 WO2004024472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,068 US20050257870A1 (en) 2002-08-30 2003-09-01 Pneumatic tire and tire wheel assembly
EP03795276A EP1552966B1 (en) 2002-08-30 2003-09-01 Pneumatic tire and tire wheel assembly
ES03795276T ES2382545T3 (es) 2002-08-30 2003-09-01 Neumático y montaje de rueda-neumático

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-254053 2002-08-30
JP2002252754A JP2004090729A (ja) 2002-08-30 2002-08-30 空気入りタイヤ
JP2002-252754 2002-08-30
JP2002254053A JP4275371B2 (ja) 2002-08-30 2002-08-30 空気入りタイヤ
JP2002-255455 2002-08-30
JP2002255455A JP4275373B2 (ja) 2002-08-30 2002-08-30 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2004024472A1 true WO2004024472A1 (ja) 2004-03-25

Family

ID=31998753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011162 WO2004024472A1 (ja) 2002-08-30 2003-09-01 空気入りタイヤおよびタイヤ・ホイール組立体

Country Status (5)

Country Link
US (1) US20050257870A1 (ja)
EP (1) EP1552966B1 (ja)
CN (1) CN100379587C (ja)
ES (1) ES2382545T3 (ja)
WO (1) WO2004024472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322386B2 (en) * 2005-08-23 2012-12-04 Kabushiki Kaisha Bridgestone Pneumatic tire with tread having rib with chamfered wing portions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348321B2 (ja) * 2005-06-30 2009-10-21 住友ゴム工業株式会社 空気入りタイヤ
WO2007114430A1 (ja) * 2006-03-31 2007-10-11 Bridgestone Corporation 空気入りタイヤ
JP4195054B2 (ja) * 2006-11-24 2008-12-10 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP5062881B2 (ja) * 2007-03-19 2012-10-31 東洋ゴム工業株式会社 空気入りタイヤ
KR20110026523A (ko) * 2008-07-10 2011-03-15 가부시키가이샤 브리지스톤 스터드리스 타이어
JP4521473B1 (ja) * 2009-05-29 2010-08-11 株式会社ブリヂストン タイヤ
JP2011057042A (ja) * 2009-09-08 2011-03-24 Bridgestone Corp タイヤ接地形状推定方法とその装置
JPWO2011090203A1 (ja) * 2010-01-25 2013-05-23 株式会社ブリヂストン タイヤ
JP5118742B2 (ja) * 2010-11-30 2013-01-16 住友ゴム工業株式会社 空気入りタイヤ
JP5140146B2 (ja) * 2010-12-09 2013-02-06 住友ゴム工業株式会社 空気入りタイヤ
DE102012110567A1 (de) * 2012-11-05 2014-05-08 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugreifens
CN103203887B (zh) * 2012-12-31 2015-10-28 特拓(青岛)轮胎技术有限公司 一种性能均衡的轮胎的制造方法
JP5913238B2 (ja) * 2013-09-09 2016-04-27 住友ゴム工業株式会社 空気入りタイヤ
FR3045476B1 (fr) * 2015-12-16 2017-12-22 Michelin & Cie Pneumatique presentant des proprietes d'usure et de resistance au roulement ameliorees
DE102017215185A1 (de) * 2017-08-30 2019-02-28 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP7412172B2 (ja) * 2018-12-27 2024-01-12 Toyo Tire株式会社 空気入りタイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159108A (ja) * 1986-12-22 1988-07-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPS6467404A (en) * 1987-09-07 1989-03-14 Yokohama Rubber Co Ltd Radial tire
JPH11208217A (ja) * 1998-01-21 1999-08-03 Ohtsu Tire & Rubber Co Ltd :The 空気入りラジアルタイヤ
US6105644A (en) * 1997-02-06 2000-08-22 Sumitomo Rubber Industries, Ltd. Pneumatic tire including three asymmetrically arranged main grooves
EP1029712A1 (de) * 1999-02-20 2000-08-23 Continental Aktiengesellschaft Fahrzeugluftreifen
JP2000296704A (ja) * 1999-04-15 2000-10-24 Toyo Tire & Rubber Co Ltd トラックまたはバスのタイヤ取付構造

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019776A (en) * 1961-12-18 1966-02-09 Ciba Ltd Basic ethers and process for preparing same
NL136547C (ja) * 1968-03-04 Michelin & Cie
JPS53133802A (en) * 1977-04-26 1978-11-22 Bridgestone Corp Wear resistant radial pneumatic type for heavy load
JPH0657485B2 (ja) * 1989-03-27 1994-08-03 株式会社ブリヂストン ラジアルタイヤ対
DK0473860T3 (da) * 1990-09-05 1995-02-13 Goodyear Tire & Rubber Dækslidbane til store motorkøretøjer
US5176766B1 (en) * 1991-03-08 1996-04-30 Goodyear Tire & Rubber Pneumatic tire having a unique footprint
US5360043A (en) * 1991-07-26 1994-11-01 The Goodyear Tire & Rubber Company Asymmetric tread for a tire
JPH05330313A (ja) * 1992-05-29 1993-12-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
US5421387A (en) * 1992-07-10 1995-06-06 Michelin Recherche Et Technique S.A. Asymmetrical tire tread
JPH06106916A (ja) * 1992-09-30 1994-04-19 Bridgestone Corp 空気入りタイヤ
US5603785A (en) * 1994-05-06 1997-02-18 The Goodyear Tire & Rubber Company Tire including two aquachannels on one side
EP1189770B1 (en) * 1999-06-30 2004-01-14 Pirelli Pneumatici Societa' Per Azioni High-performance tyre for a motor vehicle
CN2445952Y (zh) * 2000-03-23 2001-09-05 广州市华南橡胶轮胎有限公司 充气乘用子午线轮胎胎面花纹
ES2297017T3 (es) * 2001-05-11 2008-05-01 Bridgestone Corporation Neumatico.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159108A (ja) * 1986-12-22 1988-07-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPS6467404A (en) * 1987-09-07 1989-03-14 Yokohama Rubber Co Ltd Radial tire
US6105644A (en) * 1997-02-06 2000-08-22 Sumitomo Rubber Industries, Ltd. Pneumatic tire including three asymmetrically arranged main grooves
JPH11208217A (ja) * 1998-01-21 1999-08-03 Ohtsu Tire & Rubber Co Ltd :The 空気入りラジアルタイヤ
EP1029712A1 (de) * 1999-02-20 2000-08-23 Continental Aktiengesellschaft Fahrzeugluftreifen
JP2000296704A (ja) * 1999-04-15 2000-10-24 Toyo Tire & Rubber Co Ltd トラックまたはバスのタイヤ取付構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322386B2 (en) * 2005-08-23 2012-12-04 Kabushiki Kaisha Bridgestone Pneumatic tire with tread having rib with chamfered wing portions

Also Published As

Publication number Publication date
CN100379587C (zh) 2008-04-09
ES2382545T3 (es) 2012-06-11
US20050257870A1 (en) 2005-11-24
EP1552966A1 (en) 2005-07-13
EP1552966A4 (en) 2010-09-01
CN1684845A (zh) 2005-10-19
EP1552966B1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7163039B2 (en) High-performance tire for a motor vehicle
WO2004024472A1 (ja) 空気入りタイヤおよびタイヤ・ホイール組立体
KR101509318B1 (ko) 공기 타이어
EP2781372B1 (en) Pneumatic radial tire for passenger car and method for use thereof
EP1961587B1 (en) Studless tire
AU2006201886B2 (en) Pneumatic tire
KR20130119418A (ko) 공기 타이어
WO2014084320A1 (ja) 空気入りタイヤ
WO2004024471A1 (ja) 非対称トレッドパターンを有するタイヤおよびその装着方法
US8302644B2 (en) Pneumatic tire with tread having series of depressions in rib
WO2017082413A1 (ja) タイヤ
JPS585803B2 (ja) 低騒音ラグタイヤ
JP5030753B2 (ja) 空気入りタイヤ
WO2017082412A1 (ja) タイヤ
JP5211888B2 (ja) 空気入りタイヤ
US20140060717A1 (en) Tire with tread having bridged areas with split contact faces within a lateral groove
WO2017082410A1 (ja) タイヤ
WO2017082411A1 (ja) タイヤ
EP0787600B1 (en) A tire having good diverse properties
JP4545208B2 (ja) 空気入りタイヤ
JP4763260B2 (ja) 空気入りタイヤ
JP4503170B2 (ja) 車用の高性能タイヤ
JP2004090798A (ja) 空気入りタイヤ、タイヤ・ホイール組立体およびトレッド陸部列の設計方法
JP2004090729A (ja) 空気入りタイヤ
JP4690099B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10526068

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003795276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038230798

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003795276

Country of ref document: EP