WO2007113116A1 - Wärmeleitfähige polyamide - Google Patents
Wärmeleitfähige polyamide Download PDFInfo
- Publication number
- WO2007113116A1 WO2007113116A1 PCT/EP2007/052728 EP2007052728W WO2007113116A1 WO 2007113116 A1 WO2007113116 A1 WO 2007113116A1 EP 2007052728 W EP2007052728 W EP 2007052728W WO 2007113116 A1 WO2007113116 A1 WO 2007113116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molding compositions
- thermoplastic molding
- compositions according
- weight
- component
- Prior art date
Links
- 0 *c1cc(CCC(O*OC(CCc(cc2*)cc(S)c2O)=O)=O)cc(*)c1O Chemical compound *c1cc(CCC(O*OC(CCc(cc2*)cc(S)c2O)=O)=O)cc(*)c1O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0091—Complexes with metal-heteroatom-bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/006—Preparation of organic pigments
- C09B67/0061—Preparation of organic pigments by grinding a dyed resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/20—Carboxylic acid amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
Definitions
- thermoplastic molding compositions comprising
- thermoplastic polyamide A) 19.9 to 59.9 wt .-% of a thermoplastic polyamide.
- the invention relates to the use of the molding compositions according to the invention for the production of fibers, films and moldings of any kind, as well as the moldings obtainable in this case.
- PA compositions containing MgO or Al oxide are known from JP-A 63/270,761.
- thermal conductivity (WLF) of polymers can be increased by the addition of mineral or metallic fillers.
- WLF thermal conductivity
- the addition of large amounts of filler is necessary, which adversely affects the processability of the composites and the mechanical properties and the surface quality of the moldings obtainable therefrom.
- the present invention was therefore based on the object to provide readily processable molding compositions that can be processed into moldings with increased thermal conductivity and good mechanical properties (in particular toughness).
- the novel molding materials contain from 19.9 to 59.9, preferably from 20 to 49.8 and in particular from 27 to 49,% by weight of at least one polyamide.
- the polyamides of the molding compositions according to the invention generally have a viscosity number of 70 to 350, preferably 70 to 170 ml / g, determined in a 0.5% strength solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307th ,
- Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
- Examples include polyamides derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam and polyamides obtained by reacting dicarboxylic acids with diamines.
- Suitable dicarboxylic acids are alkanedicarboxylic acids having 6 to 12, in particular 6 to 10, carbon atoms and aromatic dicarboxylic acids.
- adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid are mentioned as acids.
- Suitable diamines are in particular alkanediamines having 6 to 12, in particular 6 to 8 carbon atoms and m-xylylenediamine, di (4-aminophenyl) methane, di (4-amino-cyclohexyl) methane, 2,2-di (4 -aminophenyl) -propane, 2,2-di (4-aminocyclohexyl) propane or 1, 5-diamino-2-methyl-pentane.
- Preferred polyamides are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and also copolyamides 6/66, in particular with a content of 5 to 95% by weight of caprolactam units.
- polyamides are obtainable from ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
- ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
- polyamides which are e.g. are obtainable by condensation of 1, 4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Manufacturing processes for polyamides of this structure are known e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
- polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, the mixing ratio being arbitrary.
- partially aromatic copolyamides as PA 6 / 6T and PA 66 / 6T have proven to be particularly advantageous, the triamine content is less than 0.5, preferably less than 0.3 wt .-% (see EP-A 299 444).
- the production of the preferred partly aromatic copolyamides with a low triamine content can be carried out by the processes described in EP-A 129 195 and 129 196.
- PA 1 1 1 1-aminoundecanoic acid
- PA 46 tetramethylenediamine, adipic acid
- PA 66 hexamethylenediamine, adipic acid
- PA 610 hexamethylenediamine, sebacic acid
- PA 612 hexamethylenediamine, decanedicarboxylic acid
- PA 613 hexamethylenediamine, undecanedicarboxylic acid
- PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
- PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
- PA 6T hexamethylenediamine, terephthalic acid
- PA MXD6 m-xylylenediamine, adipic acid
- PA 6I hexamethylenediamine, isophthalic acid
- PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
- PA 6 / 6T (see PA 6 and PA 6T)
- PA 6/66 (see PA 6 and PA 66)
- PA 6/12 see PA 6 and PA 12
- PA 66/6/610 see PA 66, PA 6 and PA 610)
- PA 6I / 6T see PA 6I and PA 6T
- PA PACM 12 diaminodicyclohexylmethane, laurolactam PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane
- thermoplastic molding compositions contain as component B) according to the invention 40 to 80 wt .-% of an Al oxide or MgOxids or mixtures thereof.
- the proportion B) in the novel molding materials is preferably from 50 to 70 and in particular from 50 to 60% by weight.
- Suitable oxides preferably have an aspect ratio of less than 10, preferably less than 7.5 and in particular less than 5.
- Preferred oxides have a BET surface area according to DIN 66131 of less than or equal to 14 m 2 / g, preferably less than or equal to 10 m 2 / g.
- the preferred average particle diameter (dso) is from 0.2 to 20, preferably from 0.3 to 15 and in particular from 0.35 to 10 microns according to laser granulometry according to ISO 13320 EN.
- Such products are commercially available, for example, from Almatis.
- the molding compositions of the invention contain 0.1 to 2, preferably 0.2 to 1, 5 and in particular 0.25 to 1 wt .-% of a nigrosine.
- Nigrosines are generally understood to mean a group of black or gray indulene-related phenazine dyes (azine dyes) in various embodiments (water-soluble, fat-soluble, gas-soluble) used in wool dyeing and printing, in black dyeing of silks, for dyeing of leather, shoe creams, varnishes, plastics, stoving lacquers, inks and the like, as well as being used as microscopy dyes.
- azine dyes in various embodiments (water-soluble, fat-soluble, gas-soluble) used in wool dyeing and printing, in black dyeing of silks, for dyeing of leather, shoe creams, varnishes, plastics, stoving lacquers, inks and the like, as well as being used as microscopy dyes.
- Component C) can be used as free base or as salt (eg hydrochloride). Further details on nigrosines can be found, for example, in the electronic lexicon Rompp Online, Version 2.8, Thieme-Verlag Stuttgart, 2006, keyword "nigrosine".
- the molding compositions of the invention may contain 0 to 20, preferably up to 10 wt .-% of other additives.
- the molding compositions according to the invention may contain 0 to 3, preferably 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a lubricant.
- the metal ions are preferably alkaline earth and Al, with Ca or Mg being particularly preferred.
- Preferred metal salts are Ca-stearate and Ca-montanate as well as Al-stearate.
- the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and, with particular preference, stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
- the aliphatic alcohols can be 1 to 4 valent.
- examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
- the aliphatic amines can be monohydric to trihydric. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
- preferred esters or amides are glycerol distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
- the molding compositions according to the invention may comprise heat stabilizers or antioxidants or mixtures thereof selected from the group consisting of copper compounds, sterically hindered phenols, sterically hindered aliphatic amines and / or aromatic amines.
- Copper compounds may contain in the molding compositions according to the invention to 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-%, preferably as Cu (l) halide, in particular in admixture with an alkali halide , preferably KJ, in particular in a ratio of 1: 4, or of a sterically hindered phenol or an amine stabilizer or mixtures thereof.
- Suitable salts of monovalent copper are preferably copper (I) acetate, copper (I) chloride, bromide and iodide. They are contained in amounts of 5 to 500 ppm copper, preferably 10 to 250 ppm, based on polyamide.
- the advantageous properties are obtained in particular when the copper is present in molecular distribution in the polyamide.
- This is achieved by adding to the molding compound a concentrate containing polyamide, a salt of monovalent copper and an alkali halide in the form of a solid, homogeneous solution.
- a typical concentrate is e.g. from 79 to 95 wt .-% polyamide and 21 to 5 wt .-% of a mixture of copper iodide or bromide and potassium iodide.
- the concentration of the solid homogeneous solution of copper is preferably between 0.3 and 3, in particular between 0.5 and 2 wt .-%, based on the total weight of the solution and the molar ratio of copper (I) iodide to potassium iodide is between 1 and 11, 5, preferably between 1 and 5.
- Suitable polyamides for the concentrate are homopolyamides and copolyamides, in particular polyamide 6 and polyamide 6.6.
- Suitable hindered phenols are in principle all compounds having a phenolic structure which have at least one sterically demanding group on the phenolic ring.
- R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted triazole group, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substituted amino group.
- Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
- Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
- Particularly preferred compounds of this class are compounds of the formula
- R 4 , R 5 , R 7 and R 8 independently of one another represent d-Cs-alkyl groups which in turn may be substituted (at least one of which is a sterically demanding group) and R 6 is a divalent aliphatic radical having 1 to 10 C atoms means that may also have CO bonds in the main chain.
- the phenolic antioxidants which may be used singly or as mixtures are in an amount of 0.05 to 3% by weight, preferably 0.1 to 1.5% by weight, more preferably 0.1 to 1% by weight .-%, based on the total weight of the molding compositions A) to E).
- sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
- the amine stabilizers may be present in the molding compositions of 0 to 3, preferably 0.01 to 2, preferably 0.05 to 1, 5 wt .-% of an amine stabilizer.
- amine stabilizers Preferably suitable are sterically hindered amine compounds. There are e.g. Compounds of the formula
- R is the same or different alkyl radicals
- R ' is hydrogen or an alkyl radical and A represents an optionally substituted 2- or 3-membered alkylene chain.
- Preferred components are derivatives of 2,2,6,6-tetramethylpiperidine, such as: 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-aryloyloxy-2, 2,6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine 4 -Phenoxy-2,2,6,6-tetramethylpiperidine, 4-benzoxy-2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine.
- 4-acetoxy-2,2,6,6-tetramethylpiperidine 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-aryloyloxy-2,
- Tris (2,2,6,6-tetramethyl-4-piperidyl) benzene-1, 3,5-tricarboxylate suitable.
- piperidine derivatives such as the dimethyl succinate polymer with 4-hydroxy-2,2,6,6-tetramethyl-7-piperidinethanol or poly-6- (1,1,3,3-tetramethylbutyl) amino-1, 3,5-triazine-2,4-diyl (2,2,6,6-tetramethyl-4-piperidinyl) imino-1,6-hexanediyl (2,2,6,6-tetramethyl-14-piperidinyl) imino which, like bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, are particularly suitable.
- Tinuvin® or Chimasorb® registered trademark of Ciba Spezialitätenchemie GmbH.
- stabilizers which can be used according to the invention are also those based on secondary aromatic amines, such as adducts of phenylenediamine with acetone (Naugard® A), adducts of phenylenediamine with linolen, Naugard® 445 (II), N, N " -dinaphthyl- p-phenylenediamine (IM), N-phenyl-NT-cyclohexyl-p-phenylenediamine (IV) or mixtures of two or more thereof
- additives D are, for example, in amounts of up to 10, preferably 1 to 5 wt .-% rubber-elastic polymers (often also referred to as impact modifiers, elastomers or rubbers).
- these are copolymers which are preferably composed of at least two of the following monomers: ethylene, propylene, butadiene, isobutene, isoprene, chloroprene, vinyl acetate, styrene, acrylonitrile and acrylic or methacrylic acid esters having 1 to 18 C atoms in the alcohol component.
- elastomers In the following some preferred types of such elastomers are presented. Preferred types of such elastomers are the so-called ethylene-propylene (EPM) and ethylene-propylene-diene (EPDM) rubbers.
- EPM ethylene-propylene
- EPDM ethylene-propylene-diene
- EPM rubbers generally have practically no double bonds, while EPDM rubbers can have from 1 to 20 double bonds / 100 carbon atoms.
- diene monomers for EPDM rubbers for example, conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-1, 4-diene, hexa-1, 4-diene, hexa-1, 5 -diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadienes and also alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5- Butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes such as 3-methyltricyclo (5.2.1.0.2.6) -3,8-decadiene or mixtures thereof.
- the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8 wt .-%, based on the total weight of the rubber.
- EPM or EPDM rubbers may preferably also be grafted with reactive carboxylic acids or their derivatives.
- reactive carboxylic acids or their derivatives e.g. Acrylic acid, methacrylic acid and its derivatives, e.g. Glycidyl (meth) acrylate, and called maleic anhydride.
- Another group of preferred rubbers are copolymers of ethylene with acrylic acid and / or methacrylic acid and / or the esters of these acids.
- the rubbers may still contain dicarboxylic acids such as maleic acid and fumaric acid or derivatives of these acids, e.g. Esters and anhydrides, and / or monomers containing epoxy groups.
- dicarboxylic acid derivatives or monomers containing epoxy groups are preferably incorporated into the rubber by addition of monomers containing dicarboxylic acid or epoxy groups of the general formulas I or II or III or IV to the monomer mixture
- R 1 to R 9 represent hydrogen or alkyl groups having 1 to 6 carbon atoms and m is an integer from 0 to 20, g is an integer from 0 to 10 and p is an integer from 0 to 5
- the radicals R 1 to R 9 preferably denote hydrogen, where m is O or 1 and g is 1.
- the corresponding compounds are maleic acid, fumaric acid, maleic anhydride, allyl glycidyl ether and vinyl glycidyl ether.
- Preferred compounds of the formulas I, II and IV are maleic acid, maleic anhydride and epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate, glycidyl methacrylate and the esters with tertiary alcohols, such as t-butyl acrylate. Although the latter have no free carboxyl groups, their behavior is close to the free acids and are therefore termed monomers with latent carboxyl groups.
- the copolymers advantageously consist of 50 to 98% by weight of ethylene, 0.1 to 20% by weight of monomers containing epoxy groups and / or methacrylic acid and / or monomers containing acid anhydride groups, and the remaining amount of (meth) acrylic acid esters.
- 0.1 to 40 in particular 0.3 to 20 wt .-% glycidyl acrylate and / or glycidyl methacrylate, (meth) acrylic acid and / or maleic anhydride, and
- esters of acrylic and / or methacrylic acid are the methyl, ethyl, propyl and i- or t-butyl esters.
- vinyl esters and vinyl ethers can also be used as comonomers.
- the ethylene copolymers described above can be prepared by methods known per se, preferably by random copolymerization under high pressure and elevated temperature. Corresponding methods are generally known.
- Preferred elastomers are also emulsion polymers, their preparation e.g. at Blackley in the monograph "Emulsion Polymerization".
- the emulsifiers and catalysts which can be used are known per se.
- homogeneously constructed elastomers or those with a shell structure can be used.
- the shell-like structure is determined by the order of addition of the individual monomers; the morphology of the polymers is also influenced by this order of addition.
- acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
- monomers for the preparation of the rubber portion of the elastomers acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
- monomers may be reacted with other monomers such as e.g. Styrene, acrylonitrile, vinyl ethers and other acrylates or methacrylates such as methyl methacrylate, methyl acrylate, ethyl acrylate and propyl acrylate are copolymerized.
- the soft or rubbery phase (having a glass transition temperature lower than 0 ° C.) of the elastomers may be the core, the outer shell, or a middle shell (for elastomers having more than two shell construction); in the case of multi-shell elastomers, it is also possible for a plurality of shells to consist of a rubber phase.
- one or more hard components on the structure of the elastomer involved, these are generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, Acrylklareestern and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as the main monomers.
- these hard components with glass transition temperatures of more than 2O 0 C
- these are generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, Acrylklareestern and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as the main monomers.
- methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as the
- emulsion polymers which have reactive groups on the surface.
- groups are, for example, epoxy, carboxyl, latent carboxyl, amino or amide groups and functional groups obtained by concomitant use of monomers of the general formula R 10 R 11
- R 10 is hydrogen or a C 1 to C 4 alkyl group
- R 11 is hydrogen, a C 1 to C 8 alkyl group or an aryl group, in particular
- R 12 is hydrogen, a C 1 to C 10 alkyl, a C 1 to C 12 aryl group or -OR 13
- R 13 is a C 1 to C 1 alkyl or C 1 to C 12 aryl group, which is optionally substituted by O or
- X is a chemical bond, a C 1 -C 10 -alkylene or C 6 -C 12 -arylene group or
- Z is a C 1 -C 10 -alkylene or C 1 -C 12 -arylene group.
- the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
- acrylamide methacrylamide and substituted esters of acrylic acid or methacrylic acid, such as (Nt-butylamino) -ethyl methacrylate, (N, N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) -methyl acrylate and (N, N-) Diethylamino) ethyl acrylate.
- the particles of the rubber phase can also be crosslinked.
- monomers acting as crosslinkers are buta-1,3-diene, divinylbenzene, diallyl phthalate and dihydrodicyclopentadienyl acrylate, and also the compounds described in EP-A 50 265.
- graft-linking monomers ie monomers having two or more polymerizable double bonds which react at different rates during the polymerization. act. Preference is given to using those compounds in which at least one reactive group polymerizes at about the same rate as the other monomers, while the other reactive group (or reactive groups), for example, polymerizes (polymerizes) much more slowly.
- the different polymerization rates entail a certain proportion of unsaturated double bonds in the rubber. If a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the graft monomers to form chemical bonds, ie the grafted phase is at least partially linked to the graft base via chemical bonds.
- graft-crosslinking monomers examples include allyl-containing monomers, in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
- allyl-containing monomers such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
- allyl-containing monomers in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
- the proportion of these crosslinking monomers in the impact-modifying polymer is up to 5% by weight, preferably not more than 3% by weight, based on the impact-modifying polymer.
- graft polymers with a core and at least one outer shell are listed.
- graft polymers with a core and at least one outer shell are to be named here, which have the following structure:
- graft polymers having a multi-shell structure it is also possible to use homogeneous, ie single-shell, elastomers of buta-1,3-diene, isoprene and n-butyl acrylate or copolymers thereof. These products can also be prepared by concomitant use of crosslinking monomers or monomers having reactive groups.
- emulsion polymers examples include n-butyl acrylate / (meth) acrylic acid copolymers, n-butyl acrylate / glycidyl acrylate or n-butyl acrylate / glycidyl methacrylate copolymers, graft polymers having an inner core of n-butyl acrylate or butadiene-based and an outer shell of the above copolymers and copolymers of ethylene with comonomers which provide reactive groups.
- the described elastomers may also be prepared by other conventional methods, e.g. by suspension polymerization.
- Silicone rubbers as described in DE-A 37 25 576, EP-A 235 690, DE-A 38 00 603 and EP-A 319 290, are likewise preferred.
- fibrous or particulate fillers D which may be mentioned are carbon fibers, glass fibers, glass spheres, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, which are available in quantities of up to 20% by weight. %, in particular 1 to 15 wt .-% are used.
- Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
- the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastic with a silane compound.
- Suitable silane compounds are those of the general formula
- O n is an integer from 2 to 10, preferably 3 to 4 m, an integer from 1 to 5, preferably 1 to 2 k, an integer from 1 to 3, preferably 1
- Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
- the silane compounds are generally used in amounts of 0.01 to 2, preferably 0.025 to 1, 0 and in particular 0.05 to 0.5 wt .-% (based on the fibrous fillers fillers) for surface coating.
- acicular mineral fillers are also suitable.
- the term "needle-shaped mineral fillers” is understood to mean a mineral filler with a pronounced, needle-like character.
- An example is acicular wollastonite.
- the mineral has a UD (length diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 1: 1: 1.
- the mineral filler may optionally be pretreated with the silane compounds mentioned above; however, pretreatment is not essential.
- the platelet-shaped nanofillers according to the prior art are organically modified.
- the addition of the platelet- or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
- thermoplastic molding compositions according to the invention may contain customary processing auxiliaries, such as stabilizers, antioxidants, further agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, flameproofing agents, etc.
- customary processing auxiliaries such as stabilizers, antioxidants, further agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, flameproofing agents, etc.
- antioxidants and heat stabilizers are phosphites and other amines (eg TAD), hydroquinones, various substituted representatives of these Groups and mixtures thereof in concentrations up to 1 wt .-%, based on the weight of the thermoplastic molding compositions called.
- TAD phosphites and other amines
- hydroquinones various substituted representatives of these Groups and mixtures thereof in concentrations up to 1 wt .-%, based on the weight of the thermoplastic molding compositions called.
- UV stabilizers which are generally used in amounts of up to 2% by weight, based on the molding composition, of various substituted resorcinols, salicylates, benzotriazoles and benzophenones may be mentioned.
- inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black and / or graphite, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as nigrosine and anthraquinones as colorants.
- sodium phenylphosphinate, alumina, silica and preferably talc may be used as nucleating agents.
- thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which mixing the starting components in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
- the mixing temperatures are usually 230 to 320 ° C.
- the components B) to C) and optionally D) can be mixed with a prepolymer, formulated and granulated.
- the resulting granules are then condensed in solid phase under inert gas continuously or discontinuously at a temperature below the melting point of component A) to the desired viscosity.
- thermoplastic molding compositions according to the invention are characterized by good flowability combined with good mechanical properties, as well as a significantly improved thermal conductivity.
- the molding compositions described are suitable for better dissipation of heat from heat sources.
- the dissipated heat may be power loss of electrical assemblies or deliberately heat generated by heating elements.
- Electrical components with power loss contain, for example, CPUs, resistors, ICs, batteries, rechargeable batteries, motors, coils, relays, diodes, printed conductors, etc.
- the best possible contact between the heat source and the molding material must be produced so that heat can be released from the source via the molding compound to the environment (gaseous, liquid, solid).
- thermal compounds can be used. The heat transfer works best if the heat source is injected with the molding compounds.
- the molding compositions are also suitable for the production of heat exchangers.
- Heat exchangers are usually flowed through by a hotter medium (gaseous, liquid), which releases heat via a wall to a cooler medium (usually also gaseous or liquid). Examples include radiators in the living area or cooling water radiator in the automobile.
- a hotter medium gaseous, liquid
- cooler medium usually also gaseous or liquid
- the heat exchange between the participating media is usually improved by actively circulating, regardless of the wall material used.
- PA 66 with a VZ of 75 ml / g (Ultramid® A15 from BASF AG)
- Flexamine about 65% condensation product of diphenylamine and acetone / formaldehyde and about 35% of 4,4'-diphenyl-p-phenylenediamine
- Exxelor® VA 1803 from Exxon Mobile Chemicals Ethylene-propylene copolymer (about 53% propylene) modified with about 1% maleic anhydride
- the molding compositions were prepared on a ZSK 30 at a throughput of 10 kg / h and about 280 ° C flat temperature profile.
- Component B) was added to melt A) at 2 metering points.
- compositions of the molding compositions and the results of the measurements are shown in the table.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicon Polymers (AREA)
- Insulated Conductors (AREA)
- Conductive Materials (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0708925-2A BRPI0708925A2 (pt) | 2006-03-29 | 2007-03-22 | composiÇço de moldagem termoplÁstica, uso da mesma, e, fibras, folhas, ou corpo moldado de qualquer tipo |
CN2007800112490A CN101410447B (zh) | 2006-03-29 | 2007-03-22 | 导热性聚酰胺 |
DE502007002744T DE502007002744D1 (de) | 2006-03-29 | 2007-03-22 | Wärmeleitfähige polyamide |
AT07727204T ATE456617T1 (de) | 2006-03-29 | 2007-03-22 | Wärmeleitfähige polyamide |
US12/295,100 US20100311882A1 (en) | 2006-03-29 | 2007-03-22 | Thermally conductive polyamides |
EP07727204A EP2001951B1 (de) | 2006-03-29 | 2007-03-22 | Wärmeleitfähige polyamide |
JP2009502031A JP2009531493A (ja) | 2006-03-29 | 2007-03-22 | 熱伝導性ポリアミド |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06111931.9 | 2006-03-29 | ||
EP06111931 | 2006-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007113116A1 true WO2007113116A1 (de) | 2007-10-11 |
Family
ID=38157808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/052728 WO2007113116A1 (de) | 2006-03-29 | 2007-03-22 | Wärmeleitfähige polyamide |
Country Status (11)
Country | Link |
---|---|
US (1) | US20100311882A1 (zh) |
EP (1) | EP2001951B1 (zh) |
JP (1) | JP2009531493A (zh) |
KR (1) | KR20080108575A (zh) |
CN (1) | CN101410447B (zh) |
AT (1) | ATE456617T1 (zh) |
BR (1) | BRPI0708925A2 (zh) |
DE (1) | DE502007002744D1 (zh) |
ES (1) | ES2339179T3 (zh) |
MY (1) | MY144314A (zh) |
WO (1) | WO2007113116A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009156342A1 (de) * | 2008-06-27 | 2009-12-30 | Basf Se | Wärmeleitfähige polyamide mit diatomeenerde |
WO2010028975A2 (de) * | 2008-09-09 | 2010-03-18 | Basf Se | Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit |
WO2011066595A1 (de) * | 2009-12-01 | 2011-06-09 | Isovoltaic Gmbh | Solarmodul und coextrudatkörper |
CN105153688A (zh) * | 2008-11-11 | 2015-12-16 | 巴斯夫欧洲公司 | 稳定的聚酰胺 |
EP3502174A1 (de) | 2017-12-22 | 2019-06-26 | EMS-Patent AG | Wärmeleitfähige polyamid-formmassen |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2060607B2 (de) | 2007-11-16 | 2019-11-27 | Ems-Patent Ag | Gefüllte Polyamidformmassen |
KR20120051712A (ko) * | 2009-07-24 | 2012-05-22 | 티코나 엘엘씨 | 열전도성 중합체 조성물 및 이로부터 제조된 물품 |
DE102010030212A1 (de) * | 2010-06-17 | 2011-12-22 | Robert Bosch Gmbh | Stabilisatorzusammensetzung für Polyamide |
CN102838828B (zh) * | 2011-06-20 | 2015-01-28 | 上海安凸塑料添加剂有限公司 | 用于abs工程塑料的亮丽黑功能黑色母粒及其制备方法 |
CN102408710B (zh) * | 2011-10-14 | 2013-05-22 | 中国工程物理研究院化工材料研究所 | 高导热尼龙66复合材料及其制备方法 |
WO2013071474A1 (en) | 2011-11-14 | 2013-05-23 | Honeywell International Inc. | Polyamide composition for low temperature applications |
US9071970B2 (en) | 2011-12-05 | 2015-06-30 | Sony Corporation | Terminal device |
US10093035B1 (en) * | 2012-03-30 | 2018-10-09 | Northwestern University | Colorant dispersion in polymer materials using solid-state shear pulverization |
EP2666803B1 (de) | 2012-05-23 | 2018-09-05 | Ems-Patent Ag | Kratzfeste, transparente und zähe Copolyamidformmassen, hieraus hergestellte Formkörper und deren Verwendung |
JP6035061B2 (ja) * | 2012-06-22 | 2016-11-30 | 旭化成株式会社 | ポリアミド樹脂組成物 |
EP2716716B1 (de) * | 2012-10-02 | 2018-04-18 | Ems-Patent Ag | Polyamid-Formmassen und deren Verwendung bei der Herstellung von Formkörpern |
SI2746339T1 (sl) | 2012-12-18 | 2015-05-29 | Ems-Patent Ag | Poliamidna oblikovalna masa in oblikovalni deli proizvedeni iz enakega |
EP2778190B1 (de) | 2013-03-15 | 2015-07-15 | Ems-Patent Ag | Polyamidformmasse sowie hieraus hergestellter Formkörper |
KR101945836B1 (ko) * | 2015-06-29 | 2019-02-08 | 사빅 글로벌 테크놀러지스 비.브이. | 열적으로-전도성 폴리머 복합물 |
CN110387123A (zh) * | 2018-04-20 | 2019-10-29 | 杭州本松新材料技术股份有限公司 | 铜盐环境制法苯胺黑用于加强模塑耐热性的用途、热稳定剂、复配型热稳定剂及模塑复合物 |
BR112021001400A2 (pt) | 2018-07-27 | 2021-04-27 | Milliken & Company | composições estabilizadas que compreendem leucocompostos |
WO2020023812A1 (en) * | 2018-07-27 | 2020-01-30 | The Procter & Gamble Company | Leuco colorants as bluing agents in laundry care compositions |
WO2021110903A1 (en) * | 2019-12-05 | 2021-06-10 | Basf Se | Polyamide composition which is dyed in black, production and use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0413258A1 (de) * | 1989-08-16 | 1991-02-20 | BASF Aktiengesellschaft | Flammfeste thermoplastische Formmassen auf der Basis von Polyamiden und Polyester-Elastomeren |
WO1996028503A1 (fr) * | 1995-03-10 | 1996-09-19 | Nyltech France | Composition a base de polyamide a stabilite lumiere elevee |
EP0796886A2 (en) * | 1996-03-21 | 1997-09-24 | Orient Chemical Industries, Ltd. | Black polyamide resin composition |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1338392C (en) * | 1987-04-20 | 1996-06-11 | Mitsui Chemicals, Incorporated | Fire-retardant polyamide composition having good heat resistance |
JPH0379665A (ja) * | 1989-08-22 | 1991-04-04 | Showa Denko Kk | ポリアミド樹脂組成物 |
US6028134A (en) * | 1995-07-12 | 2000-02-22 | Teijin Limited | Thermoplastic resin composition having laser marking ability |
US5678165A (en) * | 1995-12-06 | 1997-10-14 | Corning Incorporated | Plastic formable mixtures and method of use therefor |
US5763561A (en) * | 1996-09-06 | 1998-06-09 | Amoco Corporation | Polyamide compositions having improved thermal stability |
JP3989086B2 (ja) * | 1997-05-27 | 2007-10-10 | フクビ化学工業株式会社 | ポリアミド成形品 |
JP3406816B2 (ja) * | 1997-11-19 | 2003-05-19 | カネボウ株式会社 | 熱可塑性樹脂組成物 |
JP4108175B2 (ja) * | 1998-03-26 | 2008-06-25 | 旭化成ケミカルズ株式会社 | 耐候性に優れた黒着色ポリアミド系樹脂組成物 |
US6121388A (en) * | 1998-05-12 | 2000-09-19 | Toray Industries, Inc. | Polyamide resin composition |
DE10011452A1 (de) * | 2000-03-10 | 2001-09-13 | Bayer Ag | Hydrolyseresistente PA66-Formmassen für GIT |
JP4032656B2 (ja) * | 2001-03-16 | 2008-01-16 | 東レ株式会社 | 樹脂成形品およびその製造方法 |
JP2003231807A (ja) * | 2002-02-13 | 2003-08-19 | Asahi Kasei Corp | ポリアミド樹脂着色組成物及びその成形品 |
DE10218902A1 (de) * | 2002-04-26 | 2003-11-06 | Basf Ag | Flammgeschützte schwarze thermoplastische Formmassen |
JP2004059638A (ja) * | 2002-07-25 | 2004-02-26 | Kuraray Co Ltd | ポリアミド組成物 |
JP2004155927A (ja) * | 2002-11-07 | 2004-06-03 | Asahi Kasei Chemicals Corp | 低耐候変色性ポリアミド樹脂組成物 |
FR2858624B1 (fr) * | 2003-08-08 | 2005-09-09 | Rhodia Engineering Plastics Sa | Composition electrostatique a base de matrice polyamide |
JP2006056938A (ja) * | 2004-08-18 | 2006-03-02 | Toray Ind Inc | ポリアミド樹脂組成物 |
CN100426562C (zh) * | 2005-09-14 | 2008-10-15 | 松下电器产业株式会社 | 非水电解质二次电池 |
DE102007037316A1 (de) * | 2007-08-08 | 2009-02-12 | Lanxess Deutschland Gmbh | Thermisch leitfähige und elektrisch isolierende thermoplastische Compounds |
FR2921069B1 (fr) * | 2007-09-18 | 2010-07-30 | Rhodia Operations | Composition polyamide |
FR2922552B1 (fr) * | 2007-10-19 | 2013-03-08 | Rhodia Operations | Composition polyamide chargee par des fibres |
-
2007
- 2007-03-22 BR BRPI0708925-2A patent/BRPI0708925A2/pt not_active IP Right Cessation
- 2007-03-22 DE DE502007002744T patent/DE502007002744D1/de active Active
- 2007-03-22 AT AT07727204T patent/ATE456617T1/de active
- 2007-03-22 EP EP07727204A patent/EP2001951B1/de not_active Not-in-force
- 2007-03-22 ES ES07727204T patent/ES2339179T3/es active Active
- 2007-03-22 JP JP2009502031A patent/JP2009531493A/ja active Pending
- 2007-03-22 KR KR1020087026317A patent/KR20080108575A/ko not_active Application Discontinuation
- 2007-03-22 CN CN2007800112490A patent/CN101410447B/zh not_active Expired - Fee Related
- 2007-03-22 WO PCT/EP2007/052728 patent/WO2007113116A1/de active Application Filing
- 2007-03-22 US US12/295,100 patent/US20100311882A1/en not_active Abandoned
-
2008
- 2008-09-26 MY MYPI20083827A patent/MY144314A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0413258A1 (de) * | 1989-08-16 | 1991-02-20 | BASF Aktiengesellschaft | Flammfeste thermoplastische Formmassen auf der Basis von Polyamiden und Polyester-Elastomeren |
WO1996028503A1 (fr) * | 1995-03-10 | 1996-09-19 | Nyltech France | Composition a base de polyamide a stabilite lumiere elevee |
EP0796886A2 (en) * | 1996-03-21 | 1997-09-24 | Orient Chemical Industries, Ltd. | Black polyamide resin composition |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009156342A1 (de) * | 2008-06-27 | 2009-12-30 | Basf Se | Wärmeleitfähige polyamide mit diatomeenerde |
US8119718B2 (en) | 2008-06-27 | 2012-02-21 | Basf Se | Thermally conductive polyamides with diatomaceous earth |
WO2010028975A2 (de) * | 2008-09-09 | 2010-03-18 | Basf Se | Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit |
WO2010028975A3 (de) * | 2008-09-09 | 2010-07-15 | Basf Se | Wärmeleitfähiges polyamid mit erhöhter fliessfähigkeit |
CN105153688A (zh) * | 2008-11-11 | 2015-12-16 | 巴斯夫欧洲公司 | 稳定的聚酰胺 |
WO2011066595A1 (de) * | 2009-12-01 | 2011-06-09 | Isovoltaic Gmbh | Solarmodul und coextrudatkörper |
EP2737998A1 (de) * | 2009-12-01 | 2014-06-04 | Isovoltaic Ag | Coextrudatkörper für Solarmodul |
EP3502174A1 (de) | 2017-12-22 | 2019-06-26 | EMS-Patent AG | Wärmeleitfähige polyamid-formmassen |
WO2019122170A1 (de) | 2017-12-22 | 2019-06-27 | Ems-Patent Ag | Wärmeleitfähige polyamid-formmassen |
Also Published As
Publication number | Publication date |
---|---|
ES2339179T3 (es) | 2010-05-17 |
EP2001951B1 (de) | 2010-01-27 |
KR20080108575A (ko) | 2008-12-15 |
CN101410447A (zh) | 2009-04-15 |
CN101410447B (zh) | 2012-01-18 |
EP2001951A1 (de) | 2008-12-17 |
JP2009531493A (ja) | 2009-09-03 |
ATE456617T1 (de) | 2010-02-15 |
BRPI0708925A2 (pt) | 2011-06-14 |
MY144314A (en) | 2011-08-29 |
US20100311882A1 (en) | 2010-12-09 |
DE502007002744D1 (de) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2001951B1 (de) | Wärmeleitfähige polyamide | |
EP1851265B1 (de) | Wärmealterungsbeständige polyamide | |
EP2379644B1 (de) | Wärmealterungsbeständige polyamide | |
EP2510056B1 (de) | Teilaromatische, teilkristalline copolyamide | |
EP2294120B1 (de) | Wärmeleitfähige polyamide mit diatomeenerde | |
EP2652032B1 (de) | Glühdrahtbeständige polyamide | |
EP2356174B1 (de) | Stabilisierte polyamide | |
EP2493968A1 (de) | Wärmealterungsbeständige polyamide | |
EP2861666B1 (de) | Flammgeschützte polyamide mit polyacrylnitrilhomopolymerisaten | |
WO2006010543A1 (de) | Wärmestabilisierte polyamide | |
EP2828336B1 (de) | Hellgefärbte flammgeschützte polyamide | |
EP2817363B1 (de) | Cuo/zno-mischungen als stabilisatoren für flammgeschützte polyamide | |
WO2011069942A1 (de) | Teilaromatische copolyamidformmassen auf der basis von octamethylendiamin | |
EP2650331A1 (de) | Polyamide für Trinkwasseranwendungen | |
EP3283562B1 (de) | Polyamide mit besseren optischen eigenschaften | |
EP2756033B1 (de) | Silber-zinkoxid-mischungen als stabilisator für flammgeschützte polyamide enthaltend roten phosphor | |
WO2012146624A1 (de) | Flammgeschütze formmassen | |
EP2415827A1 (de) | Flammgeschützte Polyamide mit Schichtsilikaten | |
DE102015215118A1 (de) | Polyamide mit 2,6-BAMP-Derivaten | |
WO2013083508A1 (de) | Flammgeschützte polyamide mit flüssigkristallinen polyestern | |
DE102008058246A1 (de) | Hochmolekulare Polyamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07727204 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780011249.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009502031 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007727204 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087026317 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12295100 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0708925 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080925 |