WO2006010543A1 - Wärmestabilisierte polyamide - Google Patents

Wärmestabilisierte polyamide Download PDF

Info

Publication number
WO2006010543A1
WO2006010543A1 PCT/EP2005/007890 EP2005007890W WO2006010543A1 WO 2006010543 A1 WO2006010543 A1 WO 2006010543A1 EP 2005007890 W EP2005007890 W EP 2005007890W WO 2006010543 A1 WO2006010543 A1 WO 2006010543A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
molding compositions
weight
thermoplastic molding
compositions according
Prior art date
Application number
PCT/EP2005/007890
Other languages
English (en)
French (fr)
Inventor
Jens Assmann
Peter Eibeck
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2006010543A1 publication Critical patent/WO2006010543A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Abstract

Thermoplastische Formassen, enthaltend A) 25 bis 99 Gew.-% eines thermoplastischen Polyamids B) 0,05 bis 3 Gew.-% eines Aluminium-, Zink-, Erdalkali- oder Alkalisalzes einer aliphatischen Carbonsäure mit 10 bis 44 C-Atomen, C) 0,01 bis 3 Gew.-% einer aliphatischen oder aromatischen Dicarbonsäure mit 2 bis 40 C-Atomen D) 1 bis 5000 ppm eines Cu(I)-Salzes, E) 0 bis 60 Gew.-% weiterer Zusatzstoffe wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100 % ergibt.

Description

Wärmestabilisierte Polyamide
Beschreibung
Die Erfindung betrifft thermoplastische Formassen enthaltend
A) 25 bis 99 Gew.-% eines thermoplastischen Polyamids
B) 0,05 bis 3 Gew.-% eines Aluminium-, Zink-, Erdalkali- oder Alkalisalzes einer aliphatischen Carbonsäure mit 10 bis 44 C-Atomen, oder deren Mischungen
C) 0,01 bis 3 Gew.-% einer aliphatischen oder aromatischen Dicarbonsäure mit
2 bis 40 C-Atomen
D) 1 bis 5000 ppm eines Cu-(l)-Salzes,
E) 0 bis 60 Gew.-% weiterer Zusatzstoffe
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100 % ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art sowie die hierbei erhältlichen Formkör¬ per jeglicher Art.
Aus dem Kunststoff-Handbuch 3. Technische Thermoplaste, 4. Polyamide, 1998 Carl Hanser Verlag München Wien, Herausgeber L. Bottenbruch, R. Binsack geht in den Kapiteln
i) Kapitel 2.3.1.1 „Stabilisierung gegen Hitze", S. 77-82 eine Beschreibung ver¬ schiedener Stabilisatorkonzepte hervor sowie in
ii) Kapitel 2.3.7 „Gleit- und Entformungsmittel", S. 99 eine Beschreibung fettsaurer
Salze als Schmiermittel für Polyamide.
Weiterhin findet man in den Lehren der DE-A 1142696, DE-A 1170639 sowie EP- A 23635 geeignete Schmiermittel- und Stabilisatorsysteme.
Die Wirkung der bekannten Schmiermittel- und Stabilisatorsysteme ist verbesserungs- würdig. Aufgabe der vorliegenden Erfindung war es daher, thermoplastische Formmassen zur Verfügung zu stellen, welche eine verbesserte Wärmestabilisierung bei gleichzeitig guter Verarbeitung und mechanischen Eigenschaften aufweist.
Demgemäss wurden die eingangs definierten Formmassen gefunden. Bevorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 25 bis 99, vor¬ zugsweise 30 bis 98 und insbesondere 40 bis 95 Gew.% mindestens eines Polyami- des.
Die Polyamide der erfindungsgemäßen Formmassen weisen im allgemeinen eine Viskositätszahl von 90 bis 350, vorzugsweise 110 bis 240 ml/g auf bestimmt in einer 0,5 gew.-%igen Lösung in 96 gew.-%iger Schwefelsäure bei 25°C gemäß ISO 307.
Halbkristalline oder amorphe Harze mit einem Molekulargewicht (Gewichtsmittelwert) von mindestens 5.000, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251, 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt.
Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedem ableiten, wie Polycaprolactam, Polycapryllactam und Polylaurinlactam sowie Poly¬ amide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden.
Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10
Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Hier seien nur Adipin- säure, Azelainsäure, Sebacinsäure, Dodecandisäure und Terephthal- und/oder I- sophthalsäure als Säuren genannt.
Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin, Di-(4-aminophenyl)methan, Di-(4-amino- cyclohexyl)-methan, 2,2-Di- (4-aminophenyl)-propan oder 2,2-Di-(4-aminocyclohexyl)- propan.
Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Polyhexamethylen- sebacinsäureamid und Polycaprolactam sowie Copolyamide 6/66, insbesondere mit einem Anteil von 5 bis 95 Gew.-% an Caprolactam-Einheiten.
Weiterhin geeignete Polyamide sind erhältlich aus ω-Aminoalkylnitrilen wie beispiels- weise Aminocapronitril (PA 6) und Adipodinitril mit Hexamethylendiamin (PA 66) durch sog. Direktpolymerisation in Anwesenheit von Wasser, wie beispielsweise in der DE-A 10313681 , EP-A 1198491 und EP 922065 beschrieben. Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kondensation von 1 ,4- Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid 4,6). Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weiterhin sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vor¬ genannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide geeignet, wobei das Mischungsverhältnis beliebig ist.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als besonders vorteilhaft erwiesen, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299444).
Die Herstellung der bevorzugten teilaromatischen Copolyamide mit niedrigem Triamin¬ gehalt kann nach den in den EP-A 129 195 und 129 196 beschriebenen Verfahren erfolgen.
Die nachfolgende nicht abschließende Aufstellung enthält die genannten, sowie weite¬ re Polyamide A) im Sinne der Erfindung und die enthaltenen Monomeren.
AB-Polymere:
PA 4 Pyrrolidon
PA 6 ε-Caprolactam
PA 7 Ethanolactam
PA 8 Capryllactam
PA 9 9-Aminopelargonsäure
PA 11 11-Aminoundecansäure
PA 12 Laurinlactam
AA/BB-Polymere
PA 46 Tetramethylendiamin, Adipinsäure
PA 66 Hexamethylendiamin, Adipinsäure
PA 69 Hexamethylendiamin, Azelainsäure
PA 610 Hexamethylendiamin, Sebacinsäure
PA 612 Hexamethylendiamin, Decandicarbonsäure
PA 613 Hexamethylendiamin, Undecandicarbonsäure
PA 1212 1 , 12-Dodecandiamin, Decandicarbonsäure
PA 1313 1 , 13-Diaminotridecan, Undecandicarbonsäure
PA 6T Hexamethylendiamin, Terephthalsäure
PA MXD6 m-Xylylendiamin, Adipinsäure AA/BB-Polymere
PA 61 Hexamethylendiamin, Isophthalsäure
PA 6-3-T Trimethylhexamethylendiamin, Terephthalsäure
PA 6/6T (siehe PA 6 und PA 6T)
PA 6/66 (siehe PA 6 und PA 66)
PA 6/12 (siehe PA 6 und PA 12)
PA 66/6/610 (siehe PA 66, PA 6 und PA 610)
PA 6I/6T (siehe PA 6I und PA 6T)
PA PACM 12 Diaminodicyclohexylmethan, Laurinlactam
PA 6I/6T/PACM wie PA 6I/6T + Diaminodicyclohexylmethan
PA 12/MACMI Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Isophthalsäure
PA 12/MACMT Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Terephthalsäure
PA PDA-T Phenylendiamin, Terephthalsäure
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,05 bis 3, vor¬ zugsweise 0,1 bis 1 und insbesondere 0,01 bis 0,05 eines Zink-, Erdalkali- oder Alkali oder Aluminiumsalzes einer aliphatischen Carbonsäure mit 10 bis 44 C-Atomen, vor- zugsweise 16 bis 40 C-Atomen oder deren Mischungen.
Die 1 -wertigen Carbonsäuren können gesättigt oder ungesättigt sein. Als Beispiele seien Pelargonsäure, Myristinsäure, Ölsäure, Palmitinsäure, Laurinsäure, Margarin¬ säure, Behensäure, Linolsäure, Linolensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.
Die Metallionen sind vorzugsweise Erdalkali, Zn, AI, wobei Zn, Ca oder Mg besonders bevorzugt sind.
Bevorzugte Metallsalze sind Ca-Stearat und Ca-Montanat sowie Zn- Stearat und Al- Stearat.
Es können auch Mischungen verschiedener Salze eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 0,01 bis 3, vor¬ zugsweise 0,01 bis 1 und insbesondere 0,1 bis 0,5 Gew:5 einer aliphatischen oder aromatischen Dicarbonsäure mit 2 bis 40, vorzugsweise 2 bis 15 C-Atomen. Bevorzugt sind Dicarbonsäuren mit einem Molgewicht ≤ 200 g/mol, insbesondere ≤ 150 g/mol. Geeignete Dicarbonsäuren sind Malonsäure, Bemsteinsäure, Glutarsäure, Adipin- säure, Maleinsäure, Fumarsäure, Oxalsäure, Phthalsäure, Isophthalsäure, Terephthal- säure, wobei Oxalsäure besonders bevorzugt ist.
Als Komponente D) enthalten die erfindungsgemäßen Formmassen 1 bis 5000, vor¬ zugsweise 10 bis 1000 und insbesondere 50 bis 500 ppm eines Cu-(l)-Salzes, vor¬ zugsweise eines Cu-(l)-Halogenids, insbesondere in Mischung mit einem Alkalihalo- genid, vorzugsweise KJ.
Als Salze des einwertigen Kupfers kommen vorzugsweise Kupfer(l)-Acetat, Kupfer(l)- Chlorid, -Bromid und -Jodid in Frage. Sie sind in Mengen von 5 bis 500 ppm Kupfer, vorzugsweise 10 bis 250 ppm, bezogen auf Polyamid, enthalten.
Die vorteilhaften Eigenschaften werden insbesondere erhalten, wenn das Kupfer in molekularer Verteilung im Polyamid vorliegt. Dies wird erreicht, wenn man der Form¬ masse ein Konzentrat zusetzt, das Polyamid, ein Salz des einwertigen Kupfers und ein Alkalihalogenid in Form einer festen, homogenen Lösung enthält. Ein typisches Kon¬ zentrat besteht z.B. aus 79 bis 95 Gew.% Polyamid und 21 bis 5 Gew.% eines Ge¬ misches aus Kupferjodid oder -bromid und Kaliumjodid. Die Konzentration der festen homogenen Lösung an Kupfer liegt bevorzugt zwischen 0,3 und 3, insbesondere zwi¬ schen 0,5 und 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung und das molare Verhältnis von Kupfer(l)-Jodid zu Kaliumjodid liegt zwischen 1 und 11 ,5, vorzugsweise zwischen 1und 5.
Geeignete Polyamide für das Konzentrat sind Homopolyamide und Copolyamide, insbesondere Polyamid 6 und Polyamid 6.6.
Als Komponente E) können die erfindungsgemäßen Formmassen 0 bis 60, insbeson¬ dere bis zu 50 Gew.-% weiterer Zusatzstoffe und Verarbeitungshilfsmittel enthalten, welche verschieden von B) bis D) sind.
Als Komponente E) können die erfindungsgemäßen Formmassen 0 bis 5, vorzugs¬ weise 0,05 bis 3 und insbesondere 0,1 bis 2 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40, bevor- zugt 16 bis 22 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40, vorzugsweise 2 bis 6 C-Atomen enthalten.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und beson- ders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fett¬ säuren mit 30 bis 40 C-Atomen) genannt. Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmitrat, Glycerintrilaurat, Glycerinmonobehenat und Pen- taerythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Weitere übliche Zusatzstoffe E) sind beispielsweise in Mengen bis zu 40, vorzugsweise bis zu 30 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke bezeichnet).
Ganz allgemein handelt es sich dabei um Copolymerisate die bevorzugt aus mindes- tens zwei der folgenden Monomeren aufgebaut sind: Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Meth- acrylsäureester mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Derartige Polymere werden z.B. in Houben-Weyl, Methoden der organischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961). Seiten 392 bis 406 und in der Mono¬ graphie von CB. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben.
Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen-Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, wäh- rend EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C-Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1 ,4- dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa-1 ,4-dien, cyclische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopen- tadien sowie Alkenylnorbornene wie 5-Ethyliden-2-norbomen, 5-Butyliden-2-norbomen, 2-Methallyl-5-norbornen, 2-lsopropenyl-5-norbornen und Tricyclodiene wie 3-Methyl- tricyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1,5-dien, 5-Ethylidennorbornen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Kautschuks.
EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z.B. Acrylsäure, Methacrylsäure und deren Derivate, z.B. Glycidyl(meth)acrylat, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acryl¬ säure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Dicarbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z.B. Ester und Anhydride, und/oder Epoxy-Gruppen enthaltende Mo¬ nomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxygruppen enthaltende Mo- nomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der allgemeinen Formeln I oder Il oder III oder IV zum Mo- nomerengemisch in den Kautschuk eingebaut
R1C(COOR2)=C(COOR3)R4 (I)
Figure imgf000008_0001
CHR7=CH (CH2)m O (CHR6)α CH A CHR5 ("')
CH2=CR9 COO ( CH2)p CH-CHR8 (|V)
O wobei R1 bis R9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist
Vorzugsweise bedeuten die Reste R1 bis R9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Malein- Säureanhydrid, AIIyIg Iy cidy lether und Vinylglycidylether.
Bevorzugte Verbindungen der Formeln I, Il und IV sind Maleinsäure, Maleinsäurean¬ hydrid und Epoxygruppen-enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat, Glycidylmethacrylat und die Ester mit tertiären Alkoholen, wie t-Butylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeichnet.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0,1 bis 20 Gew.- % Epoxygruppen enthaltenden Monomeren und/oder Methacrylsäure und/oder Säure¬ anhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acryl- säureestem.
Besonders bevorzugt sind Copolymerisate aus
50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,
0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/oder Glycidyl¬ methacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid, und
1 bis 45, insbesondere 10 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexyl- acrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. bei Blackley in der Monographie "Emulsion Polymerization" beschrieben wird. Die ver¬ wendbaren Emulgatoren und Katalystoren sind an sich bekannt.
Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabe¬ reihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zugabereihenfolge beeinflußt.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Mono- meren können mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinylethern und weiteren Acrylaten oder Methacrylaten wie Methylmethacrylat, Methylacrylat, Ethyl- acrylat und Propylacrylat copolymerisiert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter O0C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischaligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphäse noch eine oder mehrere Hartkomponenten (mit Glas¬ übergangstemperaturen von mehr als 2O0C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacryl- nitril, α-Methylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäureestern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funk¬ tionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel
R10 R11
CH2 = C X N C R12
O eingeführt werden können,
wobei die Substituenten folgende Bedeutung haben können:
R10 Wasserstoff oder eine C1- bis C4-Alkylgruppe,
R11 Wasserstoff, eine C1- bis C8-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,
R12 Wasserstoff, eine C1- bis C10-Alkyl-, eine C6- bis C12-Arylgruppe oder -OR13
R13 eine C1- bis C8-Alkyl- oder C6- bis C12-Arylgruppe, die gegebenenfalls mit O- oder N-haltigen Gruppen substituiert sein können, X eine chemische Bindung, eine Cr bis C10-Alkylen- oder C6-C12-Arylengruppe oder
O
— C — Y
Y O-Z oder NH-Z und
Z eine C1- bis C10-Alkylen- oder C6- bis C12-Arylengruppe.
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino)-ethylrnethacrylat, (N,N-Dimethyl- amino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyl- acrylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-1 ,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclopentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannten pfropfvernetzende Monomere (graft-linking mono¬ mers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Dop¬ pelbindungen, die bei der Polymerisation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindes- tens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monome¬ ren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deutlich langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisa¬ tionsgeschwindigkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbin¬ dungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbin¬ dungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemi¬ schen Bindungen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Mo¬ nomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie Allylacrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die ent¬ sprechenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvemetzender Monomerer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen. Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh modifizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:
Figure imgf000012_0001
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch ho¬ mogene, d.h. einschalige Elastomere aus Buta-1,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mit¬ verwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacrylat/(Meth)acrylsäure- Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat- Copolymere, Pfropfpolymerisate mit einem inneren Kern aus n-Butylacrylat oder auf Butadienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reaktive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind ebenfalls bevorzugt. Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuk¬ typen eingesetzt werden.
Als faser- oder teilchenförmige Füllstoffe C) seien Kohlenstoffasem, Glasfasern, Glas¬ kugeln, amorphe Kieselsäure, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen bis zu 50 Gew.-%, insbesondere bis zu 40 % eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstoffasem, Aramid-Fasem und Kaliumtitanat-Fasem genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen ein¬ gesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermo¬ plasten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(O-CmH2m+i)4-k
in der die Substituenten folgende Bedeutung haben:
X NH2-, CH2-CH-, HO-,
\ /
O n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 k eine ganze Zahl von 1 bis 3, bevorzugt 1
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth- oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechen¬ den Silane, welche als Substituent X eine Glycidylgruppe enthalten.
Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugs¬ weise 0,5 bis 1 ,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf C) zur Ober- flächenbeschichtung eingesetzt.
Geeignet sind auch nadeiförmige mineralische Füllstoffe.
Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein minera- lischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Beispiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D-(l_änge Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt sowie zusätzlich plättchen- oder nadeiförmige Nanofüllstoffe bevorzugt in Mengen zwischen 0,1 und 10 % . Bevorzugt werden hierfür Böhmit, Bentonit, Montmo- rillonit, Vermicullit, Hektorit und Laponit eingesetzt. Um eine gute Verträglichkeit der plättchenförmigen Nanofüllstoffe mit dem organischen Bindemittel zu erhalten, werden die plättchenförmigen Nanofüllstoffe nach dem Stand der Technik organisch modifi¬ ziert. Der Zusatz der plättchen- oder nadeiförmigen Nanofüllstoffe zu den erfindungs¬ gemäßen Nanokompositen führt zu einer weiteren Steigerung der mechanischen Fes¬ tigkeit.
Als Komponente E) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungs- mittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, Flammschutzmittel usw. enthalten.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehin¬ derte Phenole und/oder Phosphite und Amine (z.B. TAD), Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, SaIi- cylate, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalocyanine, Chinacridone, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Silizium¬ dioxid sowie bevorzugt Talkum eingesetzt werden.
Weitere Gleit- und Entformungsmittel werden üblicherweise in Mengen bis zu 1 Gew.- % eingesetzt. Es sind bevorzugt langkettige Fettsäuren (z.B. Stearinsäure oder Behen- säure), deren Salze (z.B. Ca- oder Zn-Stearat) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Kettenlängen von 28 bis 32 C-Atomen) sowie Ca- oder Na-Montanat sowie niedermolekulare Polyethylen- bzw. Polypropylen¬ wachse.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich be- kannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbu- ry-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 32O0C.
Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) bis D) sowie gegebenenfalls E) mit einem Präpolymeren gemischt, konfektioniert und granu¬ liert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunk¬ tes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine verbesserte Wärmestabilisierung und sehr gute Mechanik aus. Daher eignen sich diese zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, insbesondere für Anwendungen im Spritzguss für Bauteile wie z.B. Elektro-Anwendungen wie Ka¬ belbäume, Kabelbaumelemente, Scharniere, Stecker, Steckerteile, Steckerverbinder, Schaltungsträger, elektrische Verbindungselemente, mechatronische Komponenten, optoelektronische Bauelemente, insbesondere Anwendungen im Automobilbereich und unter der Motorhaube.
Beispiele
Es wurden folgende Komponenten verwendet
Komponente A:
Polyamid 6 (Polycaprolactam) mit einer Viskositätszahl VZ von 150 ml/g, gemessen als
0,5 Gew.-%ige Lösung in 96 Gew.-%iger Schwefelsäure bei 25 0C nach ISO 307 (Es wurde Ultramid® B 3 der BASF AG verwendet).
Komponente B/1 :
Calciumstearat
Komponente B/2: Calciummontanat Komponente C: Oxalsäure
Komponente D: Ein Konzentrat (Batch) aus 80 Gew.% PA 6 (Ultramid® B3)
15,5 Gew. % KJ 4,5 Gew.% Cu-I-J
Komponente E: Glasfasern des mittleren Durchmessers: 10 μm
Herstellung der Formmassen
2-Schnecken-Compounder (ZSK 30/3 Voarb. 35 B)
Drehzahl 200 min"1
Durchsatz 15 kg/h
horizontales T-Profil von 270 0C
Die Stränge wurden ins Wasserbad geleitet, granuliert und getrocknet auf ca. 1 % Restfeuchte.
Herstellung von Prüfkörpern und Eigenschaftsprüfung
Das Granulat wurde auf einer Spritzgussanlage zu Prüfkörpern verarbeitet, deren mechanische Eigenschaften in einem Schlagzähigkeitsversuch gemäß ISO 527-2 bestimmt wurden.
Die Charpy-Schlagzähigkeit wurde nach Lagerung bei 140 0C (Umlufttrockenschrank) nach 50, 100, 250, 500 und 1000 Stunden Lagerungsdauer gemessen.
Die Zusammensetzungen der Formmassen und die Ergebnisse der Messungen sind den Tabellen zu entnehmen. Tabelle 1:
Nr. Komponenten [Gew.%]
1 V 68,95 A 0,35 B1 0,7 D 30 E
2 V 68,95 A 0,35 B2 0,7 D 30 E
3 18,75 A 0,35 B1 0,7 D 30 E 0,2 C
Tabelle 2:
Lagerdauer / Stunden. 1 V 2 V 3
0 87,2 97,4 100
50 84 100 106
100 86,5 96,1 108
250 81,3 92,4 100
500 80,7 94,8 103
1000 74,4 88,7 98,5

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 25 bis 99 Gew.-% eines thermoplastischen Polyamids
B) 0,05 bis 3 Gew.-% eines Aluminium-, Zink-, Erdalkali- oder Alkalisalzes einer aliphatischen Carbonsäure mit 10 bis 44 C-Atomen, oder deren Mischungen
C) 0,01 bis 3 Gew.-% einer aliphatischen oder aromatischen Dicarbonsäu- re mit 2 bis 40 C-Atomen
D) 1 bis 5000 ppm eines Cu-(l)-Salzes,
E) 0 bis 60 Gew.-% weiterer Zusatzstoffe
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100 % er- gibt.
2. Thermoplastische Formmassen nach Anspruch 1 , in denen die Komponente B) aus einem Salz einer Carbonsäure mit 16 bis 40 C-Atomen aufgebaut ist.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Metallionen der Carbonsäuresalze aus Mg, Zn, AI oder Ca- aufgebaut sind.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente C) aus Dicarbonsäuren mit einem Molgewicht ≤ 200 g/mol aufge- baut ist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente D) aus einem Cu-(l)-Halogenid aufgebaut ist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die
Komponente D) aus einer Mischung eines Cu-(l)-Halogenids mit einem Alkali- halogenid aufgebaut ist.
7. Verwendung der Thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 6 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art.
8. Fasern, Folien und Formkörper erhältlich aus den thermoplastischen Formmas¬ sen gemäß den Ansprüchen 1 bis 6.
PCT/EP2005/007890 2004-07-26 2005-07-20 Wärmestabilisierte polyamide WO2006010543A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004036199.1 2004-07-26
DE200410036199 DE102004036199A1 (de) 2004-07-26 2004-07-26 Wärmestabilisierte Polyamide

Publications (1)

Publication Number Publication Date
WO2006010543A1 true WO2006010543A1 (de) 2006-02-02

Family

ID=34972974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007890 WO2006010543A1 (de) 2004-07-26 2005-07-20 Wärmestabilisierte polyamide

Country Status (2)

Country Link
DE (1) DE102004036199A1 (de)
WO (1) WO2006010543A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512407B2 (en) 2005-03-31 2013-08-20 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US20130338260A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer
US20130338261A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with amino acid heat stabilizer
US20130338301A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer and processes for their preparation
US20140288220A1 (en) * 2013-03-25 2014-09-25 E I Du Pont De Nemours And Company Heat resistant polyamide compositions
US9505912B2 (en) 2006-08-23 2016-11-29 Basf Se Polyamide molding materials with improved thermal aging and hydrolysis stability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013002686B4 (de) 2013-02-15 2017-03-23 Audi Ag Verfahren zum Betreiben eines Kraftwagens sowie Kraftwagen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562898A (en) * 1975-06-07 1980-03-19 Tba Industrial Products Ltd Glass-reinforced thermoplastic moulding compositions
WO1985005372A1 (en) * 1984-05-21 1985-12-05 General Electric Company Modified polyphenylene ether-polyamide compositions and process
EP0395994A2 (de) * 1989-05-03 1990-11-07 General Electric Company Polyphenylenether - Polyamid Zusammensetzung
EP0747436A2 (de) * 1995-06-07 1996-12-11 General Electric Company Zusammensetzungen aus Polyphenylenether und Polyamidharzen
EP0936237A2 (de) * 1998-02-12 1999-08-18 General Electric Company Verfahren zur Herstellung von Polyphenylenether-Polyamidharzmischungen mit verbessertem Fluss
EP1179568A1 (de) * 2000-02-16 2002-02-13 Asahi Kasei Kabushiki Kaisha Polyamidharzzusammensetzung
US20030130406A1 (en) * 2000-05-04 2003-07-10 Van Bennekom Antoinette C. M. Method for improving the paint adhesion of compatibilized polyphenylene ether-polyamide compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562898A (en) * 1975-06-07 1980-03-19 Tba Industrial Products Ltd Glass-reinforced thermoplastic moulding compositions
WO1985005372A1 (en) * 1984-05-21 1985-12-05 General Electric Company Modified polyphenylene ether-polyamide compositions and process
EP0395994A2 (de) * 1989-05-03 1990-11-07 General Electric Company Polyphenylenether - Polyamid Zusammensetzung
EP0747436A2 (de) * 1995-06-07 1996-12-11 General Electric Company Zusammensetzungen aus Polyphenylenether und Polyamidharzen
EP0936237A2 (de) * 1998-02-12 1999-08-18 General Electric Company Verfahren zur Herstellung von Polyphenylenether-Polyamidharzmischungen mit verbessertem Fluss
EP1179568A1 (de) * 2000-02-16 2002-02-13 Asahi Kasei Kabushiki Kaisha Polyamidharzzusammensetzung
US20030130406A1 (en) * 2000-05-04 2003-07-10 Van Bennekom Antoinette C. M. Method for improving the paint adhesion of compatibilized polyphenylene ether-polyamide compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512407B2 (en) 2005-03-31 2013-08-20 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US9505912B2 (en) 2006-08-23 2016-11-29 Basf Se Polyamide molding materials with improved thermal aging and hydrolysis stability
US20130338260A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer
US20130338261A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with amino acid heat stabilizer
WO2013188488A1 (en) * 2012-06-13 2013-12-19 E. I. Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer
US20130338301A1 (en) * 2012-06-13 2013-12-19 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-carboxylic acid compound heat stabilizer and processes for their preparation
CN104364315A (zh) * 2012-06-13 2015-02-18 纳幕尔杜邦公司 具有环氧-羧酸化合物热稳定剂的熔融混合的热塑性组合物
US9080034B2 (en) * 2012-06-13 2015-07-14 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with amino acid heat stabilizer
US20140288220A1 (en) * 2013-03-25 2014-09-25 E I Du Pont De Nemours And Company Heat resistant polyamide compositions

Also Published As

Publication number Publication date
DE102004036199A1 (de) 2006-03-23

Similar Documents

Publication Publication Date Title
EP1851265B1 (de) Wärmealterungsbeständige polyamide
EP2001951B1 (de) Wärmeleitfähige polyamide
EP2379644B1 (de) Wärmealterungsbeständige polyamide
EP2510056B1 (de) Teilaromatische, teilkristalline copolyamide
EP2356174B1 (de) Stabilisierte polyamide
EP2493968B1 (de) Wärmealterungsbeständige polyamide
EP2652032B1 (de) Glühdrahtbeständige polyamide
EP2294120B1 (de) Wärmeleitfähige polyamide mit diatomeenerde
WO2007042446A1 (de) Flammgeschütze formmassen
WO2006010543A1 (de) Wärmestabilisierte polyamide
EP2861666B1 (de) Flammgeschützte polyamide mit polyacrylnitrilhomopolymerisaten
EP2828336B1 (de) Hellgefärbte flammgeschützte polyamide
WO2011069942A1 (de) Teilaromatische copolyamidformmassen auf der basis von octamethylendiamin
EP2817363B1 (de) Cuo/zno-mischungen als stabilisatoren für flammgeschützte polyamide
EP2756033B1 (de) Silber-zinkoxid-mischungen als stabilisator für flammgeschützte polyamide enthaltend roten phosphor
EP2650331A1 (de) Polyamide für Trinkwasseranwendungen
EP2702102A1 (de) Flammgeschütze formmassen
DE102008058246A1 (de) Hochmolekulare Polyamide
EP2415827A1 (de) Flammgeschützte Polyamide mit Schichtsilikaten
WO2013083508A1 (de) Flammgeschützte polyamide mit flüssigkristallinen polyestern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase