WO2007108418A1 - アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体 - Google Patents

アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体 Download PDF

Info

Publication number
WO2007108418A1
WO2007108418A1 PCT/JP2007/055412 JP2007055412W WO2007108418A1 WO 2007108418 A1 WO2007108418 A1 WO 2007108418A1 JP 2007055412 W JP2007055412 W JP 2007055412W WO 2007108418 A1 WO2007108418 A1 WO 2007108418A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
surfactant
mass
desiccant
drying
Prior art date
Application number
PCT/JP2007/055412
Other languages
English (en)
French (fr)
Inventor
Naoki Nakamura
Hiroyuki Masui
Yutaka Abe
Takao Matsuo
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2008506284A priority Critical patent/JP5122439B2/ja
Publication of WO2007108418A1 publication Critical patent/WO2007108418A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Definitions

  • the present invention relates to a technique for suppressing the solidification of a surfactant-containing powder used in a powder detergent for clothing and the like.
  • a Powders mainly composed of a key surfactant such as sulfo fatty acid ester salts are suitably used as powder detergents for clothing.
  • Patent Document 1 discloses that a finely-flowed surfactant powder can be obtained by coating powder obtained by pulverizing flakes with A-type zeolite.
  • Patent Document 1 Japanese Patent Laid-Open No. 09-87700
  • the key-on surfactant powder obtained by such a method has a compact state filled in, for example, a container, even if the initial fluidity is good.
  • a container even if the initial fluidity is good.
  • particles may adhere to each other and solidify, resulting in poor handling.
  • the present invention has been made in view of the above circumstances, and provides a light-on surfactant powder that is hard to solidify over time even when it is allowed to stand at high temperature in a compacted state. This is an issue.
  • Means for solving the problem
  • the production method of the char-on surfactant powder of the present invention comprises the surfactant-containing powder having a char-on surfactant content force of S 70% by mass or more and a water content of 5% by mass or less.
  • the particle surface of the body (A) is coated with a non-deliquescent powder desiccant (B) that has a mass increase of 10% by mass or more when left for 6 hours at 40 ° C and 80% humidity. It has a process.
  • the powder desiccant (B) is preferably a dried A-type zeolite.
  • the anionic surfactant is preferably an oc sulfofatty acid alkyl ester salt having 10 to 20 carbon atoms derived from a fatty acid.
  • the powder desiccant (B) is preferably dried by a drying apparatus having a drying tank whose inner peripheral surface is a heat transfer surface and a stirring means for stirring the inside of the drying tank.
  • a drying apparatus having a drying tank whose inner peripheral surface is a heat transfer surface and a stirring means for stirring the inside of the drying tank.
  • the drying process is performed at 300 to 650 ° C. It is preferable that the drying process is performed under the condition that the Fr number in the drying apparatus is 0.25 to 25!
  • the char-on surfactant powder of the present invention is characterized by being produced by any one of the above methods.
  • FIG. 1 is a longitudinal sectional view of a vertical heat transfer 'stirring type drying apparatus.
  • FIG. 2 is a graph showing the increase in mass when the powder desiccant (B-1) used in the examples is kept in the atmosphere at 40 ° C. and 80% humidity.
  • FIG. 3 is a schematic view of a horizontal heat transfer and stirring type drying apparatus.
  • Horizontal heat transfer is a cross-sectional view of a stirring type drying apparatus.
  • the surface of the particle of the surfactant-containing powder (A) having a content of the ionic surfactant of 70% by mass or more and a water content of 5% by mass or less is applied at 40 ° C. and a humidity of 80
  • a non-deliquescent powder desiccant (B) that has a mass increase of 10% by mass or more when left for 6 hours under the condition of% a ⁇ ⁇ on surfactant powder is produced.
  • the term “coating” does not mean that the entire particle surface of the surfactant-containing powder (A) is covered with the powder desiccant (B), but the particle surface of the surfactant-containing powder (A). This includes a state in which particles of the powder desiccant (B) are attached and present on at least a part of the above.
  • surfactants contained in the surfactant-containing powder A
  • Well-known 'conventional technology collection (powder detergent for clothing) 6-14 pages "3.1.1 1-on surfactant” V such as linear alkylbenzene sulfonate (LAS), alkyl Sulfate (AS), a-olefin sulfonate (AOS), polyoxyethylene alkyl ether sulfate (AES), a sulfo fatty acid ester salt (a SFE), secondary alkane sulfonate (SAS), higher fatty acid Examples include salt.
  • LAS linear alkylbenzene sulfonate
  • AS alkyl Sulfate
  • AOS a-olefin sulfonate
  • AES polyoxyethylene alkyl ether sulfate
  • SFE sulfo fatty acid ester salt
  • SAS secondary alkane
  • a-SFE is preferable because of its excellent detergency, ⁇ -sulfo fatty acid alkyl ester salt having 10 to 20 carbon atoms derived from fatty acid, more preferably carbon number derived from fatty acid. 14 to 18 a-sulfo fatty acid alkyl ester salts, and among these, methyl ester salts and Z or ethyl ester salts are preferred.
  • the salt is preferably an alkali metal salt such as sodium salt or potassium salt.
  • Such a surfactant surfactant is contained in the surfactant-containing powder (A) in an amount of 70% by mass or more. More preferably 80% by mass or more is preferable. The upper limit is practically 98% by mass.
  • the surfactant-containing powder (A) may contain other components in the range of less than 30% by mass other than the anionic surfactant. By-products and unreacted substances derived from the production process, and solvent components such as moisture.
  • the water content of the surfactant-containing powder (A) is 5% by mass or less, preferably 4% by mass or less. If the water content exceeds 5% by mass, the resulting anionic surfactant powder will solidify over time when it is left in a compacted state at a high temperature, or it will soon have poor handling properties. .
  • the water content of the surfactant-containing powder (A) is a value measured by the Karl Fischer method.
  • the average particle diameter measured by the sieving method of the surfactant-containing powder (A) is preferably 100 to L000 m.
  • a paste containing a solid content containing a key-on surfactant in a liquid such as water at a high concentration is used.
  • the paste is concentrated to obtain a concentrated product having a water content of 5% by mass or less.
  • this concentrated product is cooled and solidified, and it is made into solids such as flakes, noodles and pellets, and then these are pulverized.
  • the paste containing the solid content containing the er-on surfactant for example, when the er-on surfactant is a-SFE, using a thin film reactor or the like, the raw fatty acid The ester is brought into contact with sulfuric anhydride to sulfonate, and the resulting sulfonic acid is neutralized with sodium hydroxide to form ⁇ -SFE, followed by flash distillation of solvent components such as water and methanol. It can manufacture by the method of removing by.
  • bleaching may be performed with hydrogen peroxide or hydrogen peroxide.
  • the solid content in the obtained paste is preferably 50 to 80% by mass, more preferably 70 to 80% by mass, because the subsequent concentration can be efficiently performed.
  • the raw material fatty acid esters include force puric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid (18 carbon atoms), Examples thereof include methyl ester and ethyl ester of quinic acid (20 carbon atoms), and these may be used alone or in a mixture of two or more.
  • the apparatus used for concentrating the paste obtained in this way to obtain a concentrated product is not particularly limited, but can be concentrated efficiently even at a relatively low temperature. Is preferred. According to concentration at a relatively low temperature, the key surfactant is Even ⁇ -SFE, which is prone to water decomposition, can be concentrated while inhibiting its hydrolysis.
  • vane plate-like scraping means that rotate around an axis are installed inside a cylindrical processing section that has pressure resistance and has an inner wall as a heat transfer surface.
  • An apparatus having a configuration may be mentioned.
  • the tip peripheral speed of the stirring blade is preferably 5 to 30 mZs, more preferably 5 to 25 mZs.
  • the tip peripheral speed is 5 mZs or more, the thin film of the paste existing on the wall surface and the liquid exchange are performed smoothly. If it is 30 mZ s or less, little frictional heat is generated between the paste and the temperature of the resulting concentrated product does not increase, and the mechanical load on the vacuum thin film evaporator does not increase.
  • the temperature of the heat transfer surface is 100 to 160 ° C, and the pressure in the processing section is 0.004 MPa to atmospheric pressure. By processing under such concentration conditions, the water content is reduced to 5% by mass or less. The concentrated product can be obtained efficiently.
  • the concentrated product obtained immediately after concentration is usually a liquid at a high temperature of about 70 to 120 ° C, and then cooled and solidified to obtain flakes, noodles, pellets, etc. Make it a solid product. Then, by pulverizing the solid with a pulverizer, a surfactant-containing powder (A) having a desired size such as the above-mentioned average particle diameter can be easily obtained.
  • the liquid material may be cooled and solidified to about 20 to 40 ° C. with a drum flaker, for example, and then flaked. Further, in order to make the liquid material a dollar, the liquid material is intensively cooled with a kneader or the like and cooled to about 40 to 70 ° C., and then formed into a noodle shape with an extruder or the like. At this time, a pellet is obtained by installing a cutter at the outlet of the extruder and cutting the formed noodle.
  • pulverizer for pulverizing solids such as flakes, noodles and pellets! / Repulsive force
  • a crushing and granulating machine equipped with a rotating body and a screen can be used, preferably a hammer mill.
  • impact-type crushers such as atomizers and pulverizers, and cutting and shearing crushers such as cutter mills and feather mills.
  • Fitzmill manufactured by Hoso Tsuki Micron Co., Ltd.
  • Speed Mill manufactured by Seida Okada Co., Ltd.
  • Crushing Granulator Power Mill manufactured by Dalton Co., Ltd.
  • Atomizer I Fluji Pudal ( Co., Ltd.)
  • Pulverizer I Hosokawa Micron ( Co., Ltd.)
  • Comminator manufactured by Fuji Padal Co., Ltd.
  • the screen is not particularly limited, such as a wire mesh type, a herringbone type, a punching metal type, etc.
  • the punching metal type is preferable.
  • pulverizers it is preferable to use a cutting / shearing pulverizer such as a cutter mill or a feather mill because fine powder is not generated by impact pulverization.
  • a cutter treated with stellite or tandasten carnoid because the cutter blade is less likely to be worn even when operated for a long time.
  • the cold air temperature is preferably 5-30 ° C, more preferably 5-25 ° C.
  • the cold air after dehumidification. Further, as the cold air, air diluted with nitrogen may be used.
  • the surfactant-containing powder (A) is obtained by mixing the surfactant-containing powder (A) thus obtained with a powder desiccant (B) described below. By coating the particle surface with the powder desiccant (B), it is possible to produce a cationic surfactant powder in which solidification of the surfactant-containing powder (A) over time is suppressed.
  • the powder desiccant (B) has a mass increase of 10% by mass or more, preferably 15% by mass or more, more preferably when left for 6 hours at 40 ° C. and 80% humidity. It is necessary to be a powdery desiccant of 20% by mass or more. When used with a mass increase of less than 10% by weight when left for 6 hours at 40 ° C and 80% humidity, the on-active surfactant powder has been prevented from solidifying over time. Can't get.
  • the particle surface dissolves and releases the water confined in the solid. This is thought to cause adhesion between particles. Therefore, the present inventors consider that it is important to remove the free water released by this dissolution in order to suppress solidification, and for that purpose, the temperature is such that the surfactant-containing powder is solidified, and free water is used.
  • a powder desiccant (B) with a mass increase of 10% or more when left for 6 hours under the conditions of 40 ° C and 80% humidity Is effective in suppressing solidification. And found.
  • the powder desiccant (B) can be increased in mass as described above as it is or after being dried as necessary, and has a non-deliquescent property that does not exhibit deliquescence. It is necessary to consist of a substance, and examples of such a substance include zeolite and calcium carbonate.
  • the deliquescent substance itself is easy to dissolve in moisture in the atmosphere, so even if it covers the particle surface of the surfactant-containing powder (A), it exhibits the effect of suppressing solidification over time. It is difficult.
  • zeolite A is particularly preferred because it tends to increase by 20% or more when it is left for 6 hours at 40 ° C and 80% humidity.
  • calcium carbonate is highly reactive with water, so even if it is not subjected to drying treatment, the mass increase when left for 6 hours at 40 ° C and 80% humidity is 20% by mass or more. It is preferable because it is easy to be.
  • non-deliquescent refers to a substance that does not cause a phenomenon in which an aqueous solution is formed by water vapor in the atmosphere even if the solid is exposed to the atmosphere (see “Iwanami Science Dictionary”). ) In this specification, it means that an aqueous solution is not formed by water vapor in the environment, particularly at 40 ° C and 80% humidity.
  • the A-type zeolite In order to dry the A-type zeolite so that the mass increase when left for 6 hours at 40 ° C and 80% humidity is 10% by mass or more, It is preferable to use a heating furnace such as a rotary kiln that dries the contents by introducing, because a uniform and uniform drying process can be carried out efficiently.
  • the inner peripheral surface is a heat transfer surface, and a drying apparatus (hereinafter referred to as heat transfer ') having a drying tank for drying the contents with heat from the heat transfer surface and a stirring means for stirring the inside of the drying tank. When the drying process is performed with), the contents are less likely to become lumpy than when a rotary kiln is used! .
  • the drying temperature (kiln furnace temperature) is 300 to 650 ° C, It is preferable to dry the contents under a drying condition of 3 minutes to 2 hours. Heat transfer • Even when a stirring type drying apparatus is used, the drying temperature is preferably 350 to 600 ° C, more preferably 400 to 550 ° C, more preferably 300 to 650 ° C. In such a temperature range, it is easy to dry sufficiently without destroying the structure of zeolite.
  • the amount of increase in mass when dried for 6 hours at 40 ° C and 80% humidity is dried by a drying device such as a rotary kiln or heat transfer and stirring type drying device.
  • a type zeolite prepared so that it may become 10 mass% or more is called dry processing
  • the Fr number is defined by the following formula.
  • the heat transfer / stirring type drying apparatus either a vertical type or a horizontal type can be used, but the vertical type is preferable because it tends to effectively use the heat transfer surface.
  • the cylindrical inner wall surface of the drying tank is used as the heat transfer surface, and an undried powder desiccant is introduced into this drying tank, and the rotation is supported at the center of the bottom of the drying tank. While rotating the blades, the powder desiccant is wound up with the downward force directed upward as well, and the powder desiccant is pressed against the heat transfer surface by the centrifugal force accompanying the rotation of the rotary blades.
  • a drying apparatus of a type that dries the powder desiccant while evaporating moisture contained in the powder desiccant by heat transmitted by force is preferable.
  • FIG. 1 A specific example of the vertical heat transfer / stirring type drying apparatus is shown in FIG.
  • the heat transfer stirrer type drying apparatus in FIG. 1 includes a drying tank 1, and the cylindrical inner peripheral surface of the drying tank 1 serves as a heat transfer surface 2 that transfers heat from the heat transfer means to the zeolite to be dried. And is provided with a stirring means for stirring the inside of the drying tank 1.
  • the heat transfer means of this example includes a jacket 3 formed around the drying tank 1 and into which the heat medium is fed.
  • the jacket 3 includes a heat medium inflow portion 4a that guides the heat medium into the jacket 3, and A heat medium discharge section 4b for discharging the heat medium to the outside of the jacket 3 is provided.
  • the heating medium is not particularly limited, but hot air (combustion gas) can be suitably used because the drying temperature can be increased.
  • the drying temperature refers to the temperature of the heat medium at the outlet of the jacket 3 (corresponding to the heat medium discharge section 4b).
  • a conduit 5 is connected to the lower side surface of the drying tank 1, and a screw 6 provided in the conduit 5 is used for drying from a charging tank (not shown) into the drying tank 1. Zeolite can be supplied, and the zeolite dried in the drying tank 1 can be discharged to a storage tank (not shown) outside the drying tank 1. Further, the upper side of the drying tank 1 is also provided with a screw 7 having a configuration similar to that of the conduit 5 provided with a screw 8 so that zeolite can be supplied and discharged in the same manner.
  • zeolite When drying in the notch type, zeolite can be supplied and discharged from the upper and lower conduits 5 and 7, but in the case of continuous drying, generally the lower side is used. It is preferable that the conduit 5 is used for supply, and the zeolite that has been raised while being dried in the drying tank 1 is discharged from the conduit 7. In addition, if drying is performed on a small scale by the Notch method, the zeolite without the above-described conduits 5 and 7 is supplied into the feeder-drying tank 1 and the zeolite dried in the drying tank 1 is supplied. It is also possible to discharge directly from the discharge port.
  • the stirring means in this example includes a rotating shaft 9a provided in the center of the bottom surface of the drying tank 1 along the height direction of the drying tank 1, and an agitating blade 9 that rotates around the rotating shaft 9a. And equipped with.
  • the stirring blade 9 can be rotated around a rotating shaft 9 a by a motor 10 attached to the bottom of the drying tank 1.
  • the stirring blade 9 in this example is composed of a rotating blade type ribbon blade (one stage), and specifically, a plurality of (three in this example) fins 9b arranged at regular intervals around the rotation shaft 9a. Have these 9b have the same shape.
  • Each fin 9b is formed so as to extend obliquely upward in the direction opposite to the rotational direction X of the rotating shaft 9a along the heat transfer surface 2 with the base end force connected to the rotating shaft 9a also directed toward the distal end. ing. Further, the tip end of each fin 9b extends to above the base end of the adjacent fin 9b.
  • a clearance C is provided between each fin 9b and the heat transfer surface 2 to bring the contents into contact with the heat transfer surface 2.
  • zeolite When drying zeolite using such a heat transfer stirrer-type drying device, a heated heat medium is introduced into the jacket 3 in advance, and the heat transfer surface 2 is heated in advance. It is preferable to keep it. Next, for example, the screw 6 in the conduit 5 is rotated, and the charging tank is also charged with zeolite in the drying tank 1. In the case of a Notch type, as described above, zeolite may be supplied from the conduit 7.
  • the motor 10 is driven and the stirring blade 9 is rotated.
  • the zeolite in the drying tank 1 is rolled up from the lower side by the rotation of the stirring blades 9 and is pressed against the heat transfer surface 2 by the centrifugal force accompanying the rotation of the stirring blades 9.
  • the zeolite rolls up along the heated heat transfer surface 2 and spreads in a thin film shape over the entire surface of the heat transfer surface 2.
  • the moisture contained in the zeolite is evaporated by the heat transferred from the heat transfer surface 2, and the moisture is discharged through an exhaust port force (not shown). As a result, the zeolite is dried.
  • the zeolite thus dried in the drying tank 1 rises along the heat transfer surface 2 and is transferred to a storage tank (not shown) outside the drying tank 1 by, for example, a screw 8 rotating in the guide 7. Discharged.
  • the zeolite may be discharged from the conduit 5 as described above.
  • a carbonizer and a super heat dryer manufactured by Taira Dora Co., Ltd. can be preferably used.
  • the horizontal type heat transfer / stirring type drying apparatus used in the present invention includes a horizontal cylindrical drum whose both end surfaces are closed, and a horizontal stirrer inside the drum so as to penetrate both end surfaces of the drum.
  • a stirring shaft is provided, a plurality of ski-type stirring blades are attached along the axial direction, and a jacket for supplying a heating medium for drying is provided on the outer periphery of the horizontal cylindrical drum.
  • Preferable type drying equipment Preferable type drying equipment.
  • reference numeral 21 denotes a horizontal cylindrical drum whose both end faces are closed. Inside the cavity of the drum 21, undried powder desiccant is fluidized in the circumferential direction of the drum 21.
  • the horizontal cylindrical drum 21 is provided with an inlet 23 for introducing undried powder desiccant and an air vent 24 at the upper part of the horizontal cylindrical drum 21, and a dried powder desiccant is provided at the lower part of the horizontal cylindrical drum 21.
  • a discharge port 25 is provided for discharge.
  • a stirring shaft 26 is disposed in the center portion of the drum 21, and both end portions thereof penetrate the both end surfaces of the cylindrical drum 21 and protrude to the outside. One end thereof is attached to the horizontal uniaxial drive unit 27, and the other end is rotatably supported by the bearing unit 28. When the drive unit 27 is driven, the stirring shaft 26 is rotated. It is configured.
  • a plurality (3 to 8) of ski-type stirring blades 29 are attached to the stirring shaft 26 at regular intervals along the axial direction and at equal angles along the circumferential direction.
  • the agitation blades 29 rotate along the circumferential direction in the horizontal cylindrical drum 21 integrally therewith.
  • a clearance is formed between the stirring blade 29 and the inner wall of the drum 21 when the stirring blade 29 rotates.
  • the clearance is preferably l-30mm 3 ⁇ : LOmm is more preferred.
  • a chopper 210 is provided in the horizontal cylindrical drum 21 from the viewpoint of imparting a high-speed shearing action, and a jacket 211 for supplying a heating medium for drying is provided on the outer periphery of the horizontal cylindrical drum 21. ing.
  • the average particle size of the powder desiccant (B) is not particularly limited, but it is more preferable that the average particle size calculated by the particle size distribution measured by the laser diffraction method is 100 m or less. 0.1 to: LOO m, more preferably 0.1 to 75 m. Within this range, the surfactant-containing powder (A) can be coated particularly effectively.
  • the increase in mass after 6 hours of retention time was 22.1% by mass for dry-treated A-type zeolite and 29.2% by mass for calcium oxide.
  • Type A zeolite Mizusawa Chemical Co., Ltd., trade name; Shilton B (bulk density; 0.30 g / cm 3 ), average particle size (laser diffraction method) 2 m)
  • Acid calcium manufactured by Kanto Chemical Co., Ltd., deer grade 1 reagent, average particle size (laser diffraction method) 14 ⁇ m
  • Drying conditions for A-type zeolite Externally heated rotary kiln (size: 235EQ X 3200L, heating unit effective length: 1700L, tilt lZlOO, manufactured by Kurimoto Kyosho Co., Ltd.) Charged at a feed rate of lOkgZhr (residence time is 30 minutes) and dried at a furnace temperature of 600 ° C. Then, leave it in an atmosphere of 25 ° C and 50% humidity, cool it to 50 ° C, and store it sealed in a sample bottle.
  • Crushing of acid calcium sieving conditions After crushing acid calcium in a menor mortar (size: outer diameter 110 x inner diameter 90 x depth approx. 26 cm), using a sieve with a mesh opening of 75 m and a saucer After classification, the sample that passed through a 75 m sieve is sealed in a sample bottle and stored.
  • a specific example of the coating method is a method in which the surfactant-containing powder (A) and the powder desiccant (B) are mixed by dry mixing.
  • the mixer used for dry mixing is not limited as long as these particles can be sufficiently mixed with each other, but a horizontal cylindrical type, double cone type, V type, rotation / revolution type, etc. are suitable. Available to: Moreover, you may use a stirring granulator and a rolling granulator. Preferably, a horizontal cylindrical or double-conical rolling mixer is used, the temperature is 0 to 50 ° C, and the Fr number defined by the following formula is 0.01 to 0.2 (the calculation formula is Mix under formula (1)).
  • R Radius from the rotation center on the outermost periphery of the container rotating mixer (m)
  • the powder containing the surfactant-containing powder (A) is obtained by adding the powder desiccant (B) to the pulverizer and the particles thereof.
  • a method of coating the surface with the powder desiccant (B) can also be suitably exemplified.
  • the production of the surfactant-containing powder (A) and the covering with the powder desiccant (B) can be performed in one step, which is efficient and the powder desiccant ( B) can also act as a pulverization aid to obtain effects such as reduction of pulverization power, improvement of pulverization particle size, and improvement of properties in pulverized products.
  • the ratio of the surfactant-containing powder (A) to 100 parts by mass of the powder desiccant (B) is preferably 1 to 25 parts by mass, more preferably 3 to 20 parts by mass, and still more preferably 5 to 15 parts by mass. If the amount of the powder desiccant (B) is less than 1 part by mass, the effect of suppressing solidification over time tends to be not obtained. On the other hand, when it exceeds 25 parts by mass, the ratio of the surfactant-containing powder (A) in the anionic surfactant powder tends to be relatively small, and a sufficient cleaning effect tends to be obtained.
  • the surface of the particle of the surfactant-containing powder (A) having a content of the ionic surfactant of 70% by mass or more and a moisture content of 5% by mass or less Since it has a process of coating with a non-deliquescent powder desiccant (B) that has a mass increase of 10% by mass or more when left for 6 hours at 40 ° C and 80% humidity,
  • the surfactant-containing powders (A) are kept in contact with each other over time even when placed in a ship for transportation, etc., at a high temperature of about 35-50 ° C. It is possible to suppress the solidification of the surfactant, and to produce a solid surfactant powder with good handling properties.
  • the cation surfactant powder thus obtained is placed in a cylindrical cell having an inner diameter of 51.6 mm and a depth of 42.5 mm, and is solidified even when stored at 45 ° C for 1 hour.
  • HANG- UP INDICIZER trade name, manufactured by Johanson Innovations, Inc.
  • SCIENTIFIC MODE compression pressure: 45kPa, internal friction angle: 25 °
  • methyl palmitate made by Lion Corporation, Pastel M-16
  • methyl stearate made by Lion Corporation, Pastel M-18
  • on-active surfactant (1) the on-ionic surfactant using the former mixture as a raw material
  • ⁇ ion surfactant (2) the on-active surfactant using the latter mixture as a raw material
  • methanol and 35% aqueous hydrogen peroxide were added to the resulting sulfonic acid, mixed uniformly, and subjected to a bleaching reaction at 80 ° C. for 180 minutes.
  • the amount of methanol and hydrogen peroxide water used is 20% when the weight of sulfonic acid is 100% by weight, It was used so that the mass of pure hydrogen was 2%.
  • a neutralization reaction was carried out with an aqueous sodium hydroxide solution to obtain a liquid containing 47% of a-SFE as a neutralized product.
  • This liquid material also evaporated methanol and water by recycle flash concentration to obtain an ⁇ -SFE-containing paste having an ⁇ -SFE concentration of 65.6%.
  • the color tone (measured with a Kret photoelectric photometer using a No. 42 blue filter as a 5% ethanol solution with a 40 mm optical path length) was 30.
  • the obtained a SFE-containing paste was a mixture containing the following components.
  • Vacuum thin film evaporator Etaseba (heat transfer surface: 0. 0), rotating ⁇ -SFE-containing paste obtained in (1) above at a rotation speed of 1,060 rpm and blade tip speed of about 1 lmZsec.
  • the temperature of the obtained concentrated product was 70-100 ° C, and the water content of the concentrated product was 3%.
  • Fitzmill Hosokawa Micron Co., Ltd., DKA-3 type, 1st stage screen diameter 8mm ⁇ , 2nd stage screen diameter 3.5mm ⁇ , blade rotation speed 1st stage: 47 OOrpm
  • ⁇ -SFE-containing flakes were introduced together with 15 ° C dehumidified cold air (dew point: -5 ° C, air volume: 6Nm 3 Zmin), ground at a processing speed of 200kgZhr, and powder containing surfactant Body (A) was obtained.
  • the water content of the obtained surfactant-containing powder (A) was measured using a Karl Fischer moisture meter (Kyoto Denshi Kogyo Co., Ltd., model: MKC-210, Method: 2, stirring speed: 4). Determined by. The sample amount was about 0.3 g.
  • the table shows the content of the surfactant surfactant and the moisture content in the powder (A).
  • the average particle size of the surfactant-containing powder (A) was 400 to 450 ⁇ m as determined by the method of sieving and dividing described later.
  • the average particle diameter of this powder desiccant (B-1) was 2 ⁇ m.
  • the powder desiccant (B-1) was used, it was used after first removing aggregates (dama) that did not pass through the sieve using a lmm sieve.
  • Moisture content (%) A (g) / B (g) X 100 (2)
  • the obtained char-on surfactant powder was evaluated for solidification by the method described later.
  • the bulk density and the average particle diameter were measured by the method described later.
  • 50 or more, less than lOOkPa ⁇ : 100 to less than 160kPa
  • the opening of the first sieve with a calculated weight frequency of 50% or more is set to am, and it is one step larger than am, and the opening of the sieve is set to b ⁇ m.
  • the average particle size (weight 50%) was calculated by the following equation, where c% was the cumulative frequency and d% was the weight frequency on the am screen.
  • the bulk density was measured in accordance with IS K3362.
  • Comparative Examples 1 to 3 instead of the powder desiccant (B-1), A-type zeolite made by Mizusawa Igaku Co., Ltd., trade name: Shilton B (bulk density; 0.30 gZcm 3 ) was dried. Used without Below, it is called untreated zeolite. o The amount used was as shown in the table.
  • Example 2 a char-on surfactant powder was obtained, and the same evaluation and measurement were performed. The results are shown in the table.
  • Fitzmill Hosokawa Micron Co., Ltd., DKA-3 type, 1st stage screen diameter 8mm ⁇ , 2nd stage screen diameter 3.5mm ⁇ , blade rotation speed 1st stage: 47 OOrpm
  • the second stage 2820 rpm
  • the obtained ⁇ -SFE-containing flakes and the same powder desiccant ( ⁇ ) used in Example 1 or the same untreated zeolite as in Comparative Example 1 are charged in the ratio shown in the table.
  • the ionic surfactant (1) means methyl palmitate (made by Lion, Pastel M-16) and methyl stearate (made by Lion, Pastel M-18) in a mass ratio of 6
  • the raw material strength mixed at 4: 4 was also obtained.
  • the surfactant surfactant (2) was obtained from the raw material mixture mixed at 45:55.
  • (I) refers to a production method in which the surfactant-containing powder (A) is obtained and then the powder surface is coated with the powder desiccant (B-1).
  • (B-1) Refers to a method of coating by adding a powder desiccant (B-1) during pulverization to obtain a surfactant-containing powder (A).
  • a powder desiccant (B-1) As described above, according to Examples 1 to 7, it was possible to produce a light-on surfactant powder which hardly solidifies with time.
  • Silton B is a professional share mixer WB-300 manufactured by Taiheiyo Machinery Co., Ltd.
  • a char-on surfactant powder was obtained and evaluated in the same manner. And measurements were performed. The results are shown in Table 4.
  • Shilton B was put into a drying tank, and then stirring was started by a stirring means. Also, hot air was sent to the jacket as a heat medium.
  • Classification operation was performed using two types of sieves and trays with mesh openings of 4750 m and 1000 m.
  • a sieve with an opening of 1000 ⁇ m and a sieve with an opening of 4750 ⁇ m were stacked in this order on the tray. Then, put a sample of 200 g / times from the top of the sieve with the opening of 4750 m, which is placed at the top, and cover with a low-tap sieve shaker (made by Iida Manufacturing Co., Ltd., taping: 60 times Z min. Rolling: 60 times Z minutes) and vibrated for 3 minutes.
  • a low-tap sieve shaker made by Iida Manufacturing Co., Ltd., taping: 60 times Z min. Rolling: 60 times Z minutes
  • Dama generation amount (%) (Mass of powder desiccant (B-2) that did not pass through sieve with 4750 ⁇ m openings (g) Sample amount during Z classification operation (g)) X 100
  • the content was measured by the method described above. It should be noted that the powder desiccant that did not pass through a 4750 ⁇ m mesh sieve ( In the case of B-2), the force was also measured by loosening the lumps well beforehand.
  • Heat transfer ⁇ Evaluation was based on the degree of dust generation at the exhaust port of the agitation dryer.
  • the powder desiccant (B-3 to 12) was dried under the conditions shown in Table 3 and then cooled under the cooling conditions shown in Table 3.
  • Cydra dryer SD-500 B-H type made by Dora Co., Ltd.
  • Dora Co., Ltd. heat transfer area 0.6 m 2
  • rotating ribbon type 3 ribbon blades as stirring means 1
  • stage equipment 197 rpm (peripheral speed 5. lmZs)
  • Example 1 except that the furnace temperature was set to 730 ° C, the kiln rotation speed was set to 2 rpm, and the cooling conditions were set to 25 ° C and the humidity of 30% to be cooled to 30 ° C.
  • a powder desiccant (B-13) was obtained.
  • a powder desiccant (B-13) was used to obtain a char-on surfactant powder in the same manner as in Example 1, and the same evaluation and measurement were performed.
  • the results are shown in Table 5.
  • the powder desiccant (B-13) as with the powder desiccant (B-1), the amount of increase in mass was measured when left for 6 hours at 40 ° C and 80% humidity. The amount of dust and dust generation during processing was evaluated and measured. The results are shown in Table 3.
  • ⁇ Powder desiccant (B— 14)> After crushing acid calcium (manufactured by Kanto Igaku Co., Ltd., deer grade 1 reagent) with a menor mortar (size: outer diameter 110 X inner diameter 90 X depth approx. 26 cm), Classification was carried out using a saucer, and the sample that passed through a 75 ⁇ m sieve was sealed in a sample bottle and used as a powder desiccant (B-14).
  • the average particle diameter of this powder desiccant (B-14) was 14 ⁇ m.
  • the mass when 5g of this powder desiccant (B-14) is kept in the atmosphere at 40 ° C and 80% humidity using a constant temperature and humidity chamber (ENVIROS KCL-1000) manufactured by Tokyo Rika Kikai Co., Ltd.) The increase was as shown in Fig. 2 (square plot: calcium carbonate), and the mass increase after holding for 6 hours (corresponding to the amount of moisture absorption) was 29.2%.
  • Example 18 ANION Surfactant ANION Surfactant (1) 90 Consists of Surfactant Powder Contained Powder ANION Surfactant (2)-Number of parts by mass of each component (A) Moisture 3
  • an anionic surfactant powder can be provided that does not solidify with time even when it is allowed to stand at a high temperature in a compacted state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Glanulating (AREA)

Abstract

圧密のある状態で高温下に静置された場合でも、経時的に固化しにくいアニオン界面活性剤粉体を提供する。アニオン界面活性剤の含有量が70質量%以上で、水分含有量が5質量%以下である界面活性剤含有粉体(A)の粒子表面を、40°C、湿度80%の条件で6時間放置された際の質量増加量が10質量%以上である非潮解性の粉末乾燥剤(B)で被覆する工程を有するアニオン界面活性剤粉体の製造方法。前記界面活性剤含有粉体(A)100質量部に対して、前記粉末乾燥剤(B)1~25質量部を混合することが好ましい。

Description

明 細 書
ァニオン界面活性剤粉体の製造方法およびァニオン界面活性剤粉体 技術分野
[0001] 本発明は、衣料用粉末洗剤などに使用される界面活性剤含有粉体の固化を抑制 する技術に関する。
本願は、 2006年 3月 17日に日本に出願された特願 2006— 74241号及び 2006 年 12月 5日に日本に出願された特願 2006— 328031号に基づき優先権を主張し、 その内容をここに援用する。
背景技術
[0002] a スルホ脂肪酸エステル塩などのァ-オン界面活性剤を主成分とする粉体は、 衣料用粉末洗剤として好適に使用されている。
このような粉体の製造方法としては、ァ-オン界面活性剤を高濃度で含有するべ一 ストを原料とし、これを濃縮して濃縮品を得て、ついでこの濃縮品を冷却、固化すると ともにフレーク化し、さらに得られたフレークを粉砕する方法がある。そして、例えば特 許文献 1には、フレークを粉砕して得られた粉体を A型ゼオライトでコーティングする ことにより、流動性の良好なァ-オン界面活性剤粉体が得られることが開示されてい る。
特許文献 1:特開平 09— 87700号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、このような方法で得られたァ-オン界面活性剤粉体は、初期の流動 性がたとえ良好であっても、例えば、容器などに充填された圧密のある状態で、輸送 用の船舶内などで 35〜50°C程度の高温下に静置された際には、粒子同士が付着 して固化し、ハンドリング性が低下してしまうことがあった。
[0004] 本発明は上記事情に鑑みてなされたもので、圧密のある状態で高温下に静置され た場合でも、経時的に固化しにくいァ-オン界面活性剤粉体を提供することを課題と する。 課題を解決するための手段
[0005] 本発明のァ-オン界面活性剤粉体の製造方法は、ァ-オン界面活性剤の含有量 力 S70質量%以上で、水分含有量が 5質量%以下である界面活性剤含有粉体 (A)の 粒子表面を、 40°C、湿度 80%の条件で 6時間放置された際の質量増加量が 10質 量%以上である非潮解性の粉末乾燥剤 (B)で被覆する工程を有することを特徴とす る。
前記界面活性剤含有粉体 (A) 100質量部に対して、前記粉末乾燥剤 (B) 1〜25 質量部を使用することが好まし 、。
前記粉末乾燥剤 (B)は、乾燥処理 A型ゼオライトであることが好ま 、。 前記ァニオン界面活性剤は、脂肪酸由来の炭素数が 10〜20の oc スルホ脂肪酸 アルキルエステル塩であることが好まし 、。
前記粉末乾燥剤 (B)は、内周面が伝熱面である乾燥槽と、該乾燥槽内を攪拌する 攪拌手段とを有する乾燥装置により乾燥処理されたものであることが好ましい。その 際、乾燥処理は 300〜650°Cで行われることが好ましぐ乾燥装置内の Fr数が 0. 25 〜25の条件下で行われることが好まし!/、。
本発明のァ-オン界面活性剤粉体は、前記 ヽずれかの方法で製造されたことを特 徴とする。
発明の効果
[0006] 本発明によれば、圧密のある状態で高温下に静置された場合でも、経時的に固化 しにく ヽァ-オン界面活性剤粉体を提供できる。
図面の簡単な説明
[0007] [図 1]縦型の伝熱'攪拌型乾燥装置の縦断面図である。
[図 2]実施例で使用した粉末乾燥剤 (B- 1)を 40°C、湿度 80%の大気中で保時した 際の質量増加量を示すグラフである。
[図 3]横型の伝熱'攪拌型乾燥装置の概略図である。
圆 4]横型の伝熱 '攪拌型乾燥装置の断面図である。
符号の説明 [0008] 1 乾燥槽
2 伝熱面
発明を実施するための最良の形態
[0009] 以下、本発明を詳細に説明する。
本発明では、ァ-オン界面活性剤の含有量が 70質量%以上で、水分含有量が 5 質量%以下である界面活性剤含有粉体 (A)の粒子表面を、 40°C、湿度 80%の条 件で 6時間放置された際の質量増加量が 10質量%以上である非潮解性の粉末乾燥 剤 (B)で被覆することにより、ァ-オン界面活性剤粉体を製造する。
なお、ここで被覆とは、界面活性剤含有粉体 (A)の粒子表面全体を粉末乾燥剤 (B )が覆った状態のみを指すものではなぐ界面活性剤含有粉体 (A)の粒子表面の少 なくとも一部に粉末乾燥剤 (B)の粒子が付着、存在した状態をも含むものである。
[0010] 界面活性剤含有粉体 (A)に含まれるァ-オン界面活性剤としては特に制限はなく 、例えば、平成 10年 3月 26日発行の特許庁公報 10 (1998)— 25 [7159]周知'慣 用技術集 (衣料用粉末洗剤) 6〜14頁「3. 1. 1ァ-オン界面活性剤」に記載されて V、るような直鎖アルキルベンゼンスルホン酸塩(LAS)、アルキル硫酸塩 (AS)、 a ォレフインスルホン酸塩 (AOS)、ポリオキシエチレンアルキルエーテル硫酸塩 (AES )、 a スルホ脂肪酸エステル塩 ( a SFE)、二級アルカンスルホン酸塩(SAS)、 高級脂肪酸塩 (石けん)など挙げられる。
これらのなかでも、洗浄力に優れることから、 a—SFEが好ましぐより好ましくは脂 肪酸由来の炭素数が 10〜20の α スルホ脂肪酸アルキルエステル塩、さらに好ま しくは脂肪酸由来の炭素数が 14〜18の a—スルホ脂肪酸アルキルエステル塩であ り、これらのなかでもメチルエステル塩および Zまたはェチルエステル塩が好まし 、。 また、塩としてはナトリウム塩、カリウム塩などのアルカリ金属塩が好ましい。
[0011] このようなァ-オン界面活性剤は、界面活性剤含有粉体 (A)中、 70質量%以上含 まれることが、得られるァ-オン界面活性剤粉体の洗浄力の点など力 好ましぐ 80 質量%以上含まれることがより好ましい。上限は実質的には 98質量%である。
界面活性剤含有粉体 (A)には、ァニオン界面活性剤以外の成分が 30質量%未満 の範囲で他の成分が含まれてもよぐそのような成分としては、ァ-オン界面活性剤 の製造過程に由来する副生物や未反応物、水分などの溶媒分などが挙げられる。
[0012] また、界面活性剤含有粉体 (A)の水分含有量は 5質量%以下であり、好ましくは 4 質量%以下である。水分含有量が 5質量%を超えると、得られるァニオン界面活性剤 粉体は、圧密のある状態で高温下に静置された場合などに経時的に固化しやすぐ ハンドリング性の悪いものとなる。なお、ここで界面活性剤含有粉体 (A)の水分含有 量とは、カールフィッシャー法により測定された値である。
また、界面活性剤含有粉体 (A)の篩い分け法により測定された平均粒子径は、 10 0〜: L 000 mが好ましい。
[0013] このような界面活性剤含有粉体 (A)を好適に製造するには、まず、ァ-オン界面活 性剤を含む固形分が水などの液体中に高濃度で含まれるペーストを製造し、ついで 、このペーストを濃縮して水分含有量が 5質量%以下の濃縮品を得る。そして、この 濃縮品を冷却、固化するとともにフレーク、ヌードル、ペレットなどの固形物とし、つい でこれらを粉砕すればょ ヽ。
[0014] ァ-オン界面活性剤を含む固形分を含有するペーストは、例えばァ-オン界面活 性剤が a—SFEである場合には、薄膜式反応装置などを使用して、原料の脂肪酸 エステルを無水硫酸に接触させてスルホン化し、つ 、で得られたスルホン酸を水酸 化ナトリウムにより中和して α— SFEを生成させた後、水分、メタノール分などの溶媒 分をフラッシュ蒸留などで除去する方法により製造できる。
なお、中和の前には、過酸ィ匕水素などで漂白を行ってもよい。また、得られたぺー スト中の固形分量は、 50〜80質量%であることが、後の濃縮を効率的に行える点な ど力も好ましぐより好ましくは 70〜80質量%である。
原料の脂肪酸エステルとしては、力プリン酸 (炭素数 10)、ラウリン酸 (炭素数 12)、 ミリスチン酸 (炭素数 14)、パルミチン酸 (炭素数 16)、ステアリン酸 (炭素数 18)、ァラ キジン酸 (炭素数 20)のメチルエステル、ェチルエステルなどが挙げられ、これらを 1 種単独で使用しても、 2種以上の混合物を使用してもよい。
[0015] このようにして得られたペーストを濃縮して濃縮品を得る際に使用する装置には、 特に制限ないが、比較的低温でも濃縮を効率的に行えることから、真空薄膜蒸発装 置が好ましい。比較的低温での濃縮によれば、ァ-オン界面活性剤が加熱によりカロ 水分解しやすい α— SFEなどである場合でも、その加水分解を抑制しながら濃縮す ることがでさる。
真空薄膜蒸発装置としては、耐圧性を備え内壁が伝熱面となっている筒状処理部 の内部に、軸を中心として回転する羽根板状の搔き取り手段 (撹拌羽根)が設置され た構成の装置などが挙げられる。好ましい濃縮条件としては、撹拌羽根の先端周速 は 5〜30mZsが好ましぐより好ましくは 5〜25mZsである。先端周速が 5mZs以 上であると、壁面に存在するペーストの薄膜ィ匕と液交換とが円滑に行われる。 30mZ s以下であると、ペーストとの間に摩擦熱がほとんど発生せず、得られる濃縮品の温 度が上昇することもな 、し、真空薄膜蒸発装置への機械負荷が大きくなることもな!、 。また伝熱面の温度は 100〜160°C、処理部内の圧力は 0. 004MPa〜大気圧であ り、このような濃縮条件で処理することにより、水分含有量が 5質量%以下にまで低減 された濃縮品を効率的に得ることができる。
[0016] このようにして得られた濃縮直後の濃縮品は、通常、 70〜120°C程度の高温の液 状物であるため、ついでこれを冷却、固化して、フレーク、ヌードル、ペレットなどの固 形物にする。そして、この固形物を粉砕機で粉砕することにより、例えば上述した平 均粒子径のような所望のサイズの界面活性剤含有粉体 (A)を容易に得ることができ る。
ここで液状物をフレークにするには、例えばドラムフレーカーなどにより、液状物を 2 0〜40°C程度まで冷却、固化するとともにフレーク化すればよい。また、液状物をヌ 一ドルにするには、液状物を混練機などであら力じめ 40〜70°C程度まで冷却した後 、これを押出機などでヌードル状に成形すればよい。また、この際に押出機の出口に カッターを設置して、成形されたヌードルを切断することにより、ペレットが得られる。
[0017] フレーク、ヌードル、ペレットなどの固形物を粉砕する粉砕機には特に制限はな!/ヽ 力 一般に内部に回転体とスクリーンを装着した破砕造粒機が使用でき、好ましくは 、ハンマーミル、アトマイザ一、パルべライザ一等の衝撃式破砕機、カッターミル、フエ ザ一ミル等の切断'剪断式破砕機等が挙げられる。具体的には、フィッツミル (ホソ力 ヮミクロン (株)製)、スピードミル (岡田精ェ (株)製)、破砕式造粒機パワーミル( (株) ダルトン製)、アトマイザ一(不二パゥダル (株)製)、パルべライザ一(ホソカワミクロン( 株)製)、コミニューター (不二パゥダル (株)製)等が挙げられ、粉砕された粉体を所 定穴径のスクリーン力 排出するもの等が好適に用いられる。スクリーンは、金網タイ プ、ヘリンボンタイプ、パンチングメタルタイプ等、特に限定されないが、スクリーンの 強度、破砕物の形状を考慮すると、パンチングメタルタイプが好ましい。
また、これら粉砕機の中では、衝撃破砕による微粉の発生が少ないことから、カツタ 一ミル、フェザーミル等の切断 ·剪断式破砕機等を使用することが好ましい。また、そ の際には、長時間運転してもカッターの刃が摩耗しにくいため、ステライトやタンダス テンカーノイド等で処理されたカッターを採用することが好ましい。
[0018] また、粉枠の際には、破枠熱により破枠物が軟ィ匕して破碎機に付着することを防止 するために、破砕機内へ冷風を導入することが好ましい。この場合、冷風温度は 5〜 30°Cが好ましぐより好ましくは 5〜25°Cである。また、冷風は脱湿して使用すること が好ましい。さらに、冷風としては、空気を窒素で希釈したものを用いてもよい。
[0019] このようにして得られた界面活性剤含有粉体 (A)に対して、次に説明する粉末乾燥 剤 (B)を混合するなどして、界面活性剤含有粉体 (A)の粒子表面を粉末乾燥剤 (B) で被覆することにより、界面活性剤含有粉体 (A)の経時的な固化が抑制されたァ- オン界面活性剤粉体を製造することができる。
[0020] ここで粉末乾燥剤 (B)は、 40°C、湿度 80%の条件で 6時間放置された際の質量増 加量が 10質量%以上、好ましくは 15質量%以上、より好ましくは 20質量%以上の粉 末状の乾燥剤であることが必要である。 40°C、湿度 80%の条件で 6時間放置された 際の質量増加量が 10質量%未満のものを使用した場合には、経時的な固化が抑制 されたァ-オン界面活性剤粉体を得ることはできない。
界面活性剤含有粉体は 35〜50°Cの高温条件下 (輸送用の船舶内などの環境条 件)に置かれると、粒子表面が溶解して固体内に閉じ込められていた水を放出し、粒 子同士の付着を引き起こすと考えられる。よって、本発明者らは、固化抑制にはこの 溶解によって放出された自由水を取り除くことが重要であると考え、そのためには、界 面活性剤含有粉体が固化する温度で、かつ自由水が十分にある環境を模擬的に再 現した「40°C、湿度 80%」という条件において、 6時間放置された際の質量増加量が 10質量%以上である粉末乾燥剤 (B)を使用することが、固化抑制に効果的であるこ とを見出した。
[0021] また、粉末乾燥剤 (B)は、そのままで、または、必要に応じて乾燥処理されることで 、上述のような質量増加が可能であるとともに、潮解性を示さない非潮解性の物質か らなることが必要であり、このような物質としては、例えばゼォライト、酸ィ匕カルシウム が挙げられる。潮解性の物質は、それ自身が大気中の水分に溶解しやすいため、こ れで界面活性剤含有粉体 (A)の粒子表面を被覆したとしても、経時的な固化抑制効 果を発揮することは困難である。
ゼォライトのなかでは、乾燥処理により、 40°C、湿度 80%の条件で 6時間放置され た際の質量増加量が 20質量%以上となりやすいことから、特に A型ゼオライトが好ま しい。また、酸ィ匕カルシウムは、水との反応性が高いため、乾燥処理を施さなくても、 40°C、湿度 80%の条件で 6時間放置された際の質量増加量が 20質量%以上となり やすいことから好適である。
[0022] なお、非潮解性とは、固体が大気中にさらされても、大気中の水蒸気により水溶液 をつくる現象を生じない物質のことをいい(「岩波理ィ匕学辞典」等参照。)、本明細書 においては、特に 40°C、湿度 80%の条件において、環境中の水蒸気により水溶液 をつくらないことをいう。
[0023] 40°C、湿度 80%の条件で 6時間放置された際の質量増加量が 10質量%以上とな るように、 A型ゼオライトを乾燥処理するためには、乾燥装置として、熱風を導入して 内容物を乾燥するロータリーキルンのような加熱炉を使用することがムラのない均一 な乾燥処理を効率的に実施できることから好ましい。また、内周面が伝熱面であって 、この伝熱面からの熱で内容物を乾燥する乾燥槽と、この乾燥槽内を攪拌する攪拌 手段とを有する乾燥装置 (以下、伝熱'攪拌型乾燥装置ということもある。 )により乾燥 処理をすると、ロータリーキルンを用いた場合に比べて内容物がダマになりにく!/、た めに、より一層ムラなく均一に十分に乾燥処理できる。また、伝熱 '攪拌型乾燥装置 によれば、ロータリーキルンのように内容物に熱風を直に接触させる必要がないため 、内容物が粉塵となって系外に飛散し (発塵)、歩留まり低下や作業環境の悪ィ匕など を引き起こすこともない。
[0024] ロータリーキルンを使用する場合には、乾燥温度(キルン炉内温度) 300〜650°C、 内容物の滞留時間 3分間〜 2時間の乾燥条件で乾燥処理することが好ましい。伝熱 •攪拌型乾燥装置を使用する場合にも、乾燥温度は 300〜650°Cが好ましぐより好 ましくは 350〜600°Cであり、さらに好ましくは 400〜550°Cである。このような温度範 囲であると、ゼォライトの構造を破壊することなぐ充分に乾燥処理しやすい。
[0025] また、攪拌手段として、回転軸と回転軸の中心に回動する攪拌羽根とを備えた伝熱 •攪拌型乾燥装置の場合には、乾燥装置内の Fr数が 0. 25〜25の条件になるように 乾燥処理することが好ましい。より好ましい Fr数は 0. 64〜16であり、さらに好ましく は 1〜9である。 Fr数がこの範囲であれば、発塵を抑制しつつ、効果的に乾燥処理し やすい。この際、内容物の乾燥槽への好ましい充填率(内容物の体積 Z乾燥槽の容 積)は、 2〜30%である。
本明細書では、例えばロータリーキルン、伝熱'攪拌型乾燥装置などの乾燥装置に より上述の条件で乾燥処理され、 40°C、湿度 80%の条件で 6時間放置された際の 質量増加量が 10質量%以上となるように調製された A型ゼオライトのことを乾燥処理 A型ゼオライトという。
また、 Fr数とは、以下の式で定義されるものである。
Figure imgf000010_0001
V:攪拌羽根先端の周速 (mZs)
R:攪拌羽根の回転中心からの半径 (m)
g :重力加速度 (mZs2)
[0026] 伝熱'攪拌型乾燥装置としては、縦型、横型のいずれをも使用できるが、縦型の方 が伝熱面を有効に利用できる傾向が高 、ために好適である。
縦型は、乾燥槽の円筒状に形成された内壁面が伝熱面とされ、この乾燥槽内に未 乾燥の粉末乾燥剤を投入し、前記乾燥槽内の底面中央に軸支された回転羽根を回 転させながら、前記粉末乾燥剤を下方力も上方に向力つて巻き上げると共に、前記 回転羽根の回転に伴う遠心力により前記粉末乾燥剤を前記伝熱面に押し付けて、こ の伝熱面力 伝わる熱によって前記粉末乾燥剤中に含まれる水分を蒸発させながら 、前記粉末乾燥剤の乾燥を行う形式の乾燥装置が好ま 、。
縦型の伝熱'攪拌型乾燥装置の具体例としては、図 1のものが挙げられる。 図 1の伝熱'攪拌型乾燥装置は、乾燥槽 1を備え、この乾燥槽 1の円筒状の内周面 が伝熱手段力 の熱を乾燥対象のゼォライトに伝える伝熱面 2となっているとともに、 乾燥槽 1内を攪拌する攪拌手段を備えて構成されて!ヽる。
[0027] この例の伝熱手段は、乾燥槽 1の周囲に形成され、熱媒体が送り込まれるジャケット 3を備え、ジャケット 3には、熱媒体をジャケット 3内に導く熱媒体流入部 4aと、熱媒体 をジャケット 3外に排出する熱媒体排出部 4bとが設けられて 、る。熱媒体としては特 に制限はないが、乾燥温度を高温にできることから、熱風 (燃焼ガス)が好適に使用 できる。
また、このような伝熱'攪拌型乾燥装置を用いた乾燥処理において乾燥温度とは、 ジャケット 3の出口(熱媒体排出部 4bに相当)における熱媒体温度のことを言う。
[0028] 乾燥槽 1の下部側面には、導管 5が連設されており、この導管 5内に設けられたスク リュー 6によって、投入槽 (図示せず)から乾燥槽 1内へと乾燥対象のゼォライトを供 給したり、乾燥槽 1内で乾燥されたゼオライトを乾燥槽 1の外にある蓄積槽 (図示せず )へと排出したりすることが可能となっている。また、乾燥槽 1の上部側面にも、スクリュ 一 8を備え導管 5と同様の構成の導管 7が連設されており、同様にゼォライトを供給し たり、排出したりできるようになつている。
[0029] なお、ノ ツチ式で乾燥する場合には、上下何れの導管 5, 7からもゼオライトの供給 や排出が可能であるが、連続式で乾燥する場合には、一般的に下部側の導管 5を供 給用とし、乾燥槽 1内で乾燥させながら上昇させたゼォライトを導管 7から排出するこ とが好ましい。なお、ノ ツチ式による小規模での乾燥であれば、上述した導管 5, 7を 配置することなぐゼォライトをフィーダ一乾燥槽 1内に供給し、この乾燥槽 1内で乾 燥されたゼオライトを排出口カゝら直接排出することも可能である。
[0030] この例の攪拌手段は、乾燥槽 1の底面中央にこの乾燥槽 1の高さ方向に沿って設 けられた回転軸 9aと、この回転軸 9aを中心として回動する攪拌羽根 9とを備えている 。攪拌羽根 9は、乾燥槽 1の底部に取り付けられたモータ 10によって回転軸 9aを中 心に回動可能となっている。
この例の攪拌羽根 9は、回転卷上げ式のリボン翼(1段)からなり、具体的には、回 転軸 9aの軸回りに等間隔に並ぶ複数 (この例では 3枚)のフィン 9bを有し、これらフィ ン 9bは、互いに同一形状を為している。そして、各フィン 9bは伝熱面 2に沿って、回 転軸 9aに繋がる基端部力も先端部に向力つて回転軸 9aの回転方向 Xとは逆方向に 斜め上方に延びるように形成されている。また、各フィン 9bの先端部は、隣接するフィ ン 9bの基端部の上方まで延びている。各フィン 9bと伝熱面 2との間には、内容物を 伝熱面 2に接触させるようなクリアランス Cが設けられている。
[0031] このような伝熱'攪拌型乾燥装置を用いてゼォライトを乾燥させる際は、予めジャケ ット 3内に加熱された熱媒体を導いておき、事前に伝熱面 2を加温しておくことが好ま しい。ついで、例えば導管 5内のスクリュー 6を回転させ、投入槽カも乾燥槽 1内にゼ オライトを投入する。なお、ノツチ式であれば、上述したように、導管 7からゼォライト を供給してもよい。
そして、モータ 10を駆動し、攪拌羽根 9を回転させる。このとき、乾燥槽 1内のゼォ ライトは、攪拌羽根 9の回転により下方から上方に向力つて巻き上げられるとともに、こ の攪拌羽根 9の回転に伴う遠心力により伝熱面 2に押し付けられる。これにより、ゼォ ライトは、加熱された伝熱面 2に沿って巻き上がり、この伝熱面 2の全面に亘つて薄膜 状に拡がることになる。さらに、乾燥槽 1内では、伝熱面 2から伝わる熱によってゼォ ライト中に含まれる水分が蒸発し、水分は図示略の排気口力 排出される。これによ り、ゼォライトの乾燥が行われる。
こうして乾燥槽 1内で乾燥されたゼオライトは、伝熱面 2に沿って上昇し、例えば導 菅 7内で回転するスクリュー 8によって、乾燥槽 1の外にある蓄積槽(図示せず)へと 排出される。なお、バッチ式であれば、上述したように、導管 5からゼォライトを排出し てもよい。
[0032] 図示例のような縦型の伝熱'攪拌型乾燥装置としては、例えば、(株)才力ドラ製の カーボナイザー、スーパーヒートドライヤーが好適に使用できる。
[0033] 本発明に用いられる横型の伝熱'攪拌型乾燥装置としては、両端面が閉塞された 横型円筒ドラムと、このドラム内部には、ドラムの両端面を貫通するように、水平に撹 拌軸が配設され、複数個のスキ型撹拌羽根が、軸方向に沿って取り付けられ、さらに 、横型円筒ドラム外周部には、乾燥用の加熱媒体を供給するジャケットが備えられて V、る形式の乾燥装置が好ま 、。 本発明に用いられる横型の伝熱 '攪拌型乾燥装置について、図 3、 4を用いて説明 する。
[0034] 図 3、 4において、 21は両端面が閉塞された横型円筒ドラムであり、このドラム 21の 空洞内部で、未乾燥の粉末乾燥剤が前記ドラム 21の周方向に流動化される。この横 型円筒ドラム 21の上部には、未乾燥の粉末乾燥剤を投入する投入口 23と、エアー 抜き口 24とが設けられ、横型円筒ドラム 21の下部には、乾燥された粉末乾燥剤を排 出させる排出口 25が設けられている。上記ドラム 21内中央部には、撹拌軸 26が配 設され、その両端部は円筒ドラム 21の両端面を貫通し、外部に突出されている。その 一方の端部は水平一軸駆動部 27に取り付けられていると共に、他方の端部は軸受 け部 28に回転可能に支承され、上記駆動部 27が駆動すると、撹拌軸 26が回転する ように構成されている。
この撹拌軸 26には、複数個(3〜8個)のスキ型撹拌羽根 29が、軸方向に沿って等 間隔ずつかつ周方向に沿って等角度ずつ離間した状態で取り付けられている。これ により、これら撹拌羽根 29は、上記撹拌軸 26が回転すると、これと一体に横型円筒ド ラム 21内を周方向に沿って回転するようになっている。この場合、撹拌羽根 29が回 転する際に、撹拌羽根 29とドラム 21内壁との間にクリアランスを形成する構造である ことが好ましい。クリアランスは l〜30mmであるのが好ましぐ 3〜: LOmmがより好まし い。さらに、横型円筒ドラム 21内には、高速剪断作用を付与する点から、チョッパー 2 10が設けられ、横型円筒ドラム 21外周部には、乾燥用の加熱媒体を供給するジャケ ット 211が備えられている。
[0035] また、横型の伝熱'攪拌型乾燥装置としては、松坂貿易 (株)より入手可能なレーデ ィゲミキサー、大平洋機ェ (株)製のプロシェア一ミキサーなどが使用できる。
[0036] 粉末乾燥剤 (B)の平均粒子径には特に制限はないが、レーザー回折法による粒度 分布測定値力も算出した平均粒子径が 100 m以下であるものが好ましぐより好ま しくは 0. 1〜: LOO m、さらに好ましくは 0. 1〜75 mである。この範囲であれば、特 に効果的に界面活性剤含有粉体 (A)を被覆することができる。
[0037] なお、 A型ゼオライトにっ 、ては以下の条件で乾燥処理した後、酸化カルシウムに ついては特に乾燥処理を施さず粉砕'篩分けしたものを、それぞれ 40°C、湿度 80% の大気中で保時した際の質量増加量を図 2に示す。
図 2に示すように、保持時間 6時間後の質量増加量は、乾燥処理 A型ゼオライトで は 22. 1質量%、酸化カルシウムでは 29. 2質量%であった。
(条件)
A型ゼオライト:水澤化学 (株)製、商品名;シルトン B (嵩密度; 0. 30g/cm3)、平 均粒子径 (レーザー回折法) 2 m)
酸ィ匕カルシウム:関東ィ匕学 (株)製、鹿 1級試薬、平均粒子径 (レーザー回折法) 14 μ m
A型ゼオライトの乾燥条件:キルン回転数 4rpmで回転して ヽる外熱式ロータリーキ ルン(サイズ: 235EQ X 3200L、加熱部有効長: 1700L、傾斜 lZlOO、(株)栗本 鐡ェ所製)に供給速度 lOkgZhrで投入し (滞留時間は 30分間)、炉内温度 600°C で乾燥処理。その後、これを 25°C、湿度 50%の大気中に放置して 50°Cまで冷却し た後、サンプル瓶に密封して保管。
酸ィ匕カルシウムの粉砕 ·篩分け条件:酸ィ匕カルシウムをメノー乳鉢 (サイズ:外径 11 0 X内径 90 X深さ約 26cm)で粉砕した後、目開き 75 mの篩と受け皿を用いて分 級操作を行い、 75 mの篩を通過したものをサンプル瓶に密閉して保管。
[0038] 被覆の具体的な方法としては、界面活性剤含有粉体 (A)と粉末乾燥剤 (B)とを乾 式混合により混合する方法が好適な一例として挙げられる。
乾式混合に使用する混合機としては、これら粒子同士を充分に混合できるものであ る限り制限はないが、水平円筒型、二重円錐型、 V型、自転 ·公転型等の混合機が 好適に利用できる。また、撹拌造粒機、転動造粒機を用いてもよい。好ましくは、水平 円筒型または二重円錐型の転動混合機を用い、温度 0〜50°C、下記式で定義され る Fr数が 0. 01〜0. 2となる条件 (算出式は下記式(1) )下で混合する。
Fr=V2/ (RX g) - - - (l)
V:容器回転型混合機最外周の周速 (mZs)
R:容器回転型混合機最外周の回転中心からの半径 (m)
g :重力加速度 (mZs2)
[0039] 他の被覆方法としては、上述したようにフレーク、ヌードル、ペレットなどの固形物を 粉砕機で粉砕して界面活性剤含有粉体 (A)を製造する際に、粉砕機に粉末乾燥剤 (B)を添加することにより、界面活性剤含有粉体 (A)を得るとともにその粒子表面に 粉末乾燥剤 (B)を被覆する方法も好適に例示できる。
このような方法であれば、界面活性剤含有粉体 (A)の製造と、粉末乾燥剤 (B)の被 覆とを一工程で行うことができ、効率的であるとともに、粉末乾燥剤 (B)が粉砕助剤と しても作用して、粉砕動力の低減、粉砕粒度の改善、粉砕製品における性状改善等 の効果を得ることができる。
[0040] このようにして界面活性剤含有粉体 (A)の粒子表面を粉末乾燥剤 (B)で被覆する 際には、界面活性剤含有粉体 (A)と粉末乾燥剤 (B)との比率は、界面活性剤含有 粉体 (A) 100質量部に対して粉末乾燥剤 (B)が 1〜25質量部の範囲が好ましぐよ り好ましくは 3〜20質量部、さらに好ましくは 5〜15質量部である。粉末乾燥剤(B)が 1質量部未満であると、経時的な固化抑制効果が得られない傾向がある。一方、 25 質量部を超えると、ァニオン界面活性剤粉体中の界面活性剤含有粉体 (A)の比率 が相対的に小さくなり、十分な洗浄効果が得られに《なる傾向がある。
[0041] 以上説明した方法は、ァ-オン界面活性剤の含有量が 70質量%以上で、水分含 有量が 5質量%以下である界面活性剤含有粉体 (A)の粒子表面を、 40°C、湿度 80 %の条件で 6時間放置された際の質量増加量が 10質量%以上である非潮解性の粉 末乾燥剤(B)により被覆する工程を有しているので、容器に充填された圧密のある状 態で、輸送用の船舶内などで 35〜50°C程度の高温下に静置された際などでも、界 面活性剤含有粉体 (A)同士が経時的に固化することを抑制でき、固化しに《ハンド リング性の良好なァ-オン界面活性剤粉体を製造できる。
こうして得られたァ-オン界面活性剤粉体は、例えば、内径 51. 6mm、深さ 42. 5 mmの円筒状セルに約 37g入れられ、 45°C雰囲気で 1時間保存されても固化しにく く、 1時間保存後のセルを HANG— UP INDICIZER (商品名、 Johanson Innov ations, Inc.製)にセットして SCIENTIFIC MODE (圧縮圧力: 45kPa、内部摩 擦角度: 25° )にて破壊荷重を測定した場合、その測定値は 50kPa未満となる。
[0042] このように特定の粉末乾燥剤 (B)で界面活性剤含有粉体 (A)を被覆することにより 、上述の優れた効果が得られる理由の詳細は明らかではないが、このような粉末乾 燥剤 (B)で被覆することで、 5質量%以下にまでその水分含有量があらかじめ低減さ れている界面活性剤含有粉体 (A)からさらに水分を奪うことができると考えられる。そ の結果、界面活性剤含有粉体 (A)中のァ-オン界面活性剤の結晶形、融点などの 性質が変化し、経時的に固化しにくいァ-オン界面活性剤粉体が得られると推察で きる。
実施例
[0043] 以下、実施例および比較例を示し、本発明を具体的に説明するが、本発明は下記 の実施例に制限されるものではない。なお、下記の例において特に明記のない場合 は、「%」は質量%を示す。
[0044] [実施例 1〜6]
<界面活性剤含有粉体 (A) >
(1) a SFE含有ペーストの製造
(i)スルホン化
薄膜式反応装置 (単管式、内径 = 10mm、リアクター長さ = 2. 5m)により、原料の 脂肪酸メチルエステルをスルホンィ匕して、反応率 97%でスルホン酸を得た。
具体的には、原料の脂肪酸メチルエステルとしては、パルミチン酸メチル (ライオン( 株)製、パステル M— 16)とステアリン酸メチル (ライオン (株)製、パステル M— 18)を 質量比 6 :4で混合したもの、または、 45 : 55で混合したものを用いた。なお、前者の 混合物を原料としたァ-オン界面活性剤については、表中、ァ-オン界面活性剤(1 )と記載し、後者の混合物を原料としたァ-オン界面活性剤については、表中、 Ύ二 オン界面活性剤(2)と記載した。スルホン化では、液体 SOを窒素ガスで希釈した 8
3
%so含有不活性ガスを使用し、反応モル比(so Zメチルエステル) 1. 2として、ガ
3 3
ス吸収反応を行った。この反応の後、気液分離し、 80°C、 60分間の熟成反応を行つ て、反応率 97%のスルホン酸を得た。
(ii)漂白
ついで、得られたスルホン酸にメタノールと 35%過酸化水素水とを添カ卩し、均一に 混合し、 80°C、 180分間漂白反応を行った。なお、メタノール、過酸化水素水の使用 量は、スルホン酸の質量を 100質量%とした場合、メタノールの質量が 20%、過酸化 水素純分の質量が 2%となるように使用した。
(iii)中和
ついで、水酸ィ匕ナトリウム水溶液による中和反応を行って、中和物である a—SFE を 47%含有する液状物を得た。そして、この液状物力もリサイクルフラッシュ濃縮によ りメタノールと水を蒸発させ、 α—SFEの濃度が 65. 6%の α—SFE含有ペーストを 得た。これの色調(5%エタノール溶液として、 40mm光路長、 No. 42ブルーフィル ターを用いてクレット光電光度計で測定した値)は 30であった。
[0045] なお、得られた a SFE含有ペーストは以下の各成分を含む混合物であった。
a—スルホ脂肪酸メチルエステルナトリウム塩 (脂肪酸由来炭素数が 16と 18) : 65 . 6%
メチルサルフェート: 3. 28%
硫酸ナトリウム: 1. 31%
ひ スルホ脂肪酸ジナトリウム: 3. 08%
メタノール: 1. 51%
未反応の脂肪酸メチルエステル: 1. 21%
[0046] (2) a SFE含有ペーストの濃縮、フレーク化、粉砕
(i)濃縮
上記(1)で得られた α— SFE含有ペーストを回転数 1, 060rpm、羽根先端速度約 l lmZsecで回転している真空薄膜蒸発機エタセバ (伝熱面: 0.
Figure imgf000017_0001
筒状の処理 部の内径: 205mm、伝熱面と搔き取り手段である羽根先端とのクリアランス: 2〜4m m、神鋼パンテック (株)製)に 5〜90kgZhrで導入し、内壁加熱温度 (伝熱面の温 度) 120〜160°C、真空度(処理部内の圧力) 0. 007〜0. 014MPaの条件で濃縮 を行った。
得られた濃縮品の温度は 70〜100°Cであり、濃縮品の水分含有量は 3%であった
(ii)フレーク化
ついで、得られた濃縮品をドラムフレーカー((株)楠木機械製作所製)により、 20〜 30°Cまで冷却、固化するとともにフレーク化して、 α—SFE含有フレークを得た。 (iii)粉砕
ついで、 2段直列に配列したフィッツミル (ホソカワミクロン (株)製、 DKA—3型、 1 段目スクリーン径 8mm φ、 2段目スクリーン径 3. 5mm φ、ブレード回転数 1段目: 47 OOrpm、 2段目 2820rpm)に、 α— SFE含有フレークを 15°Cの除湿した冷風(露点 :ー 5°C、風量: 6Nm3Zmin)とともに導入し、処理速度 200kgZhrで粉砕し、界面 活性剤含有粉体 (A)を得た。
[0047] 得られた界面活性剤含有粉体 (A)の水分含有量を、カールフィッシャー水分計 (京 都電子工業 (株)製、モデル: MKC— 210、 Method: 2、攪拌速度: 4)により求めた 。サンプル量は約 0. 3gとした。界面活性剤含有粉体 (A)中のァ-オン界面活性剤 含有量、水分含有量を表に示す。
また、界面活性剤含有粉体 (A)の平均粒子径を後述の篩!、分けによる方法で求め たところ、 400〜450 μ mであった。
[0048] <粉末乾燥剤 (B— 1) >
A型ゼオライトである水澤ィ匕学 (株)製、商品名;シルトン B (嵩密度; 0. 30g/cm3) をキルン回転数 4rpmで回転している外熱式ロータリーキルン(サイズ: 235EQ X 32 00L、加熱部有効長: 1700L、傾斜 1Z100、(株)栗本鐡ェ所製)に供給速度 10kg Zhrで投入し (滞留時間は 30分間)、炉内温度 600°Cで処理した後、これを 25°C、 湿度 50%の大気中に放置して 50°Cまで冷却した後、サンプル瓶に密封し、粉末乾 燥剤(B— 1)とした。炉内圧力は latmとした。
この粉末乾燥剤 (B- 1)の平均粒子径は 2 μ mであった。なお、粉末乾燥剤 (B- 1 )の使用時には、目開き lmmの篩を用いて、篩を通過しない凝集体 (ダマ)をあらか じめ除去してから、使用した。
[0049] この粉末乾燥剤 (B- 1)の水分含有量を測定した結果、水分含有量は 3. 5%であ つた o
なお、ここでの水分含有量の測定は、以下のように行った。
粉末乾燥剤(B— 1)約 2gを容量 30mLのアルミナ製るつぼに入れ、電気炉( (株) いす 製作所製、タイプ: ETR— 13KX)で 800°C、 30分間乾燥した。乾燥後、るつ ぼをデシケータに移し、 20分間保持し、冷却 (放冷)した。冷却後、質量を測定し、質 量減少量から水分含有量を次式 (2)により求めた。
水分含有量 (%) =A(g) /B (g) X 100· · · (2)
A:質量減少量 (g)
B:るつぼに入れた粉末乾燥剤 (B)の質量 (g)
[0050] また、この粉末乾燥剤 (B— l) 5gを 40°C、湿度 80%の大気中で保持 (東京理化器 械 (株)製恒温恒湿槽 (ENVIROS KCL— 1000)を使用)した際の質量増加は、図 2 (丸プロット:乾燥処理 A型ゼオライト)に示した通りであり、 6時間保持した後の質量 増加量(吸湿量に相当)は 22. 1%であった。
[0051] <被覆>
水平円筒型転動混合機(円筒直径 585mm、円筒長さ 490mm、容器 131. 7Lのド ラム内部壁面に内部壁面とのクリアランス 20mm、高さ 45mmの邪魔板を 2枚有する もの)で、充填率 30容積%、回転数 22rpm、 25°C、上記式(1)により決定される Fr 数が 0. 16の条件下で、界面活性剤含有粉体 (A)と粉末乾燥剤 (B— 1)とを表 1に 示す質量比で 5分間混合し、界面活性剤含有粉体 (A)の表面を粉末乾燥剤 (B— 1) で被覆し、ァ-オン界面活性剤粉体を得た。
そして、得られたァ-オン界面活性剤粉体について、後述の方法で固化性を評価 した。
また、嵩密度と平均粒子径を後述の方法で測定した。
これらの結果を表に示す。
[0052] <固化性の評価 >
内径 51. 6mm、深さ 42. 5mmの円筒状セルに、得られたァ-オン界面活性剤粉 体を約 37g入れ、 45°C雰囲気で 1時間保存した。次に、 HANG— UP INDICIZE R (商品名、 Johanson Innovations, Inc.製)にセルをセットして SCIENTIFIC MODE (圧縮圧力: 45kPa、内部摩擦角度: 25° )にて破壊荷重を測定した。測定 値から下記基準により固化性を評価した。
(評価基準)
◎ : 50kPa未満
〇:50以上 lOOkPa未満 Δ: 100以上 160kPa未満
X : 160kPa以上
[0053] <平均粒子径の測定 (篩!/、分けによる方法) >
目開さ力 Sそれぞれ 1680 m、 1410 m、 1190 /ζ πι、 1000 m、 710 m、 500 μ m、 350 μ m、 250 μ m、 149 μ mの 9種類の篩と受け皿を用いて分級操作を行つ た。
分級操作では、まず、目開きが小さいものから順次大きなものになるように篩いを受 け皿の上に積み重ねた。そして、最も上に配置された 1680 /z mの篩の上から 100g Z回のベースサンプルを入れ、蓋をしてロータップ型ふる 、振盪機 ( (株)飯田製作 所製、タッピング: 156回 Z分、ローリング: 290回 Z分)に取り付け、 10分間振動さ せた。その後、それぞれの篩と受け皿上に残留したサンプルを篩目ごとに回収した。 この操作を繰り返すことによって 1410〜1680 /ζ πι (1410 m. on) , 1190〜141
Figure imgf000020_0001
on) , 1000〜1190 m ( 1000 m. on) , 710〜: ίΟΟΟ m (7 10 μ m. on)、 500〜710 μ m (500 μ m. on)、 350〜500 μ m (350 μ m. on)、 2 50〜350 πι(250 πι. on)、 149~250 ^ m (149 μ m. on)、 J!〜 149 m (14 9 m. pass)の各粒子径の分級サンプルを得て、重量頻度(%)を算出した。
次に、算出した重量頻度が 50%以上となる最初の篩の目開きを a mとし、また a mよりも一段大き 、篩の目開きを b μ mとし、受け皿力も a μ mの篩までの重量頻度の 積算を c%、また a mの篩上の重量頻度を d%として、次式によって平均粒子径 (重 量 50%)を求めた。
[0054] [数 1] 平均粒子 ί?· 量 5 0 % = 1 0 (50~(c dバ l。gb-loga) x l。gb)) / (<V (logb-loga) )
[0055] <嵩密度の測定 >
嵩密度 ίお IS K3362に準じて測定した。
[0056] [比較例 1〜3]
比較例 1〜3では、粉末乾燥剤 (B— 1)の代わりに、 A型ゼオライトである水澤ィ匕学 ( 株)製、商品名;シルトン B (嵩密度; 0. 30gZcm3)を乾燥処理せずに使用した (以 下、未処理ゼォライトと言う。 ) o使用量は表に示すとおりとした。
それ以外は実施例 1と同様にして、ァ-オン界面活性剤粉体を得て、同様の評価 および測定を実施した。結果を表に示す。
なお、未処理ゼォライトを 40°C、湿度 80%の大気中で 6時間保持したところ、その 際の質量増加量は 1%未満であった。
[0057] [実施例 7、比較例 4]
実施例 1と同様にして a—SFE含有ペーストを製造し、 a— SFE含有フレークを得 た。
ついで、 2段直列に配列したフィッツミル (ホソカワミクロン (株)製、 DKA—3型、 1 段目スクリーン径 8mm φ、 2段目スクリーン径 3. 5mm φ、ブレード回転数 1段目: 47 OOrpm、 2段目 2820rpm)に、得られた α— SFE含有フレークと実施例 1で使用し たものと同じ粉末乾燥剤 (Β)もしくは比較例 1と同じ未処理ゼォライトとを表に示す比 で投入するとともに、 15°Cの除湿した冷風(露点:—5°C、風量: 6Nm3Zmin)を導 入し、処理速度 200kgZhrで処理し、界面活性剤含有粉体 (A)を得るとともにその 粒子表面に粉末乾燥剤 (B— 1)を被覆することで、ァ-オン界面活性剤粉体を製造 した。
そして、これについて、実施例 1と同様の評価および測定を実施した。結果を表に 示す。
[0058] [表 1]
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
表中、ァ-オン界面活性剤(1)とは、パルミチン酸メチル (ライオン (株)製、パステル M— 16)とステアリン酸メチル (ライオン (株)製、パステル M— 18)を質量比 6 :4で混 合した原料力も得られたものであって、一方、ァ-オン界面活性剤(2)とは、 45 : 55 で混合した原料カゝら得られたものである。
また、製造方法の欄において、(I)とは、界面活性剤含有粉体 (A)を得てから、そ の粒子表面に粉末乾燥剤 (B— 1)を被覆する製法を指し、(II)とは、界面活性剤含 有粉体 (A)を得るための粉砕中に粉末乾燥剤 (B— 1)を添加することで被覆する製 法を指す。 [0061] 以上のように各実施例 1〜7によれば、経時的に固化しにくいァ-オン界面活性剤 粉体を製造できた。
[0062] [実施例 8]
粉末乾燥剤 (B— 1)の代わりに、水澤化学 (株)製、商品名;シルトン Bを太平洋機 ェ (株)製のプロシェア一ミキサー WB— 300型 (横型の伝熱 ·攪拌型乾燥装置)で表 3の条件で乾燥処理したものを粉末乾燥剤 (B— 2)として使用した以外は、実施例 1 と同様にして、ァ-オン界面活性剤粉体を得て、同様の評価および測定を実施した。 結果を表 4に示す。乾燥処理の際には、まず、シルトン Bを乾燥槽に投入し、ついで、 攪拌手段により攪拌を開始した。また、ジャケットには熱媒体として熱風を送り込んだ 。なお、粉末乾燥剤(B— 2)は、表 3の条件で乾燥処理した後、 25°C、相対湿度 30 %RHの大気中に放置して表 3に示す温度まで冷却した後、サンプル瓶に密封した。 また、粉末乾燥剤 (B— 2)について、粉末乾燥剤 (B— 1)の場合と同様にして 40°C 、湿度 80%の条件で 6時間放置した際の質量増加量を測定し、また、乾燥処理時の ダマ発生量および発塵性を評価、測定した。結果を表 3に示す。
[0063] <ダマ発生量と水分含有量 >
目開きが 4750 mと 1000 mの 2種類の篩と受け皿を用いて分級操作を行った。 分級操作では、受け皿の上に目開き 1000 μ mの篩、目開き 4750 μ mの篩の順で 積み重ねた。そして、最も上に配置された目開き 4750 mの篩の上から 200g/回 のサンプルを入れ、蓋をしてロータップ型ふるい振盪機((株)飯田製作所製、タツピ ング : 60回 Z分、ローリング: 60回 Z分)に取り付け、 3分間振動させた。その後、そ れぞれの篩と受け皿上に残留したサンプルを篩目ごとに回収し、目開き 4750 μ mの 篩を通過しな力つた粉末乾燥剤 (B- 2)の質量頻度 (%)を算出し、この値をダマ発 生量とした。
ダマ発生量(%) = (目開き 4750 μ mの篩を通過しなかった粉末乾燥剤(B— 2)の 質量 (g) Z分級操作時サンプル量 (g) ) X 100
次に、目開き 4750 mの篩を通過しな力つた粉末乾燥剤(B— 2) (4750 m on )と、受け皿上に残留した粉末乾燥剤(B— 2) (1000 m pass)の水分含有量を上 述の方法にて測定した。なお、目開き 4750 μ mの篩を通過しな力つた粉末乾燥剤 ( B— 2)の場合は予めよくダマをほぐして力も測定した。
[0064] <発塵性>
伝熱 ·攪拌型乾燥装置の排気口における発塵の度合いにより評価した。
◎:発塵が殆どない
〇:やや発塵がある
△:発塵がやや多い
X:発塵がかなり多い
[0065] [実施例 9〜17、比較例 5]
粉末乾燥剤 (B— 1)の代わりに、水澤化学 (株)製、商品名;シルトン Bを (株)才力ド ラ製カーボナイザー SD— 800 C型((株)才力ドラ製の縦型の伝熱 '攪拌型乾燥装 置、バッチ式、伝熱面積 1. 5m2,攪拌手段として回転軸とこれの中心を回動する回 転卷上げ式 3枚リボン翼 (攪拌羽根)を 1段装備、乾燥槽内圧力 latm)で乾燥処理し たものを粉末乾燥剤(B— 3〜 12)として使用した以外は、実施例 1と同様にして、ァ 二オン界面活性剤粉体をそれぞれ得て、同様の評価および測定を実施した。結果を 表 4〜5に示す。乾燥処理の際には、まず、シルトン Bを乾燥槽に投入し、ついで、攪 拌手段により攪拌を開始した。また、ジャケットには熱媒体として熱風を送り込んだ。 具体的な乾燥処理の条件を表 3に示す。
なお、粉末乾燥剤 (B— 3〜12)は、表 3の条件で乾燥処理した後、表 3に示す冷却 条件にて、冷却した。冷却には、(株)才力ドラ製サイクロンドライヤー SD— 500 B- H型((株)才力ドラ製、伝熱面積 0. 6m2、攪拌手段として回転卷上げ式 3枚リボン翼 を 1段装備(197rpm (周速 5. lmZs) )、ジャケットに通す冷却媒体には 15°Cの水を 使用)を用い、冷却後には粉末乾燥剤(B— 3〜12)をサンプル瓶に密封した。
粉末乾燥剤(B— 3〜12)について、粉末乾燥剤 (B- 1)と同様に 40°C、湿度 80% の条件で 6時間放置した際の質量増加量を測定するとともに、乾燥処理時のダマ発 生量および発塵性を評価、測定した。結果を表 3に示す。
[0066] [比較例 6]
炉内温度を 730°C、キルン回転数を 2rpmとするとともに、冷却条件を 25°C、湿度 3 0%の大気中に放置して 30°Cまで冷却する条件とした以外は、実施例 1と同様にし て粉末乾燥剤 (B— 13)を得た。そして、粉末乾燥剤 (B— 13)を使用し、実施例 1と 同様にしてァ-オン界面活性剤粉体を得て、同様の評価および測定を実施した。結 果を表 5に示す。また、粉末乾燥剤 (B— 13)についても、粉末乾燥剤 (B— 1)と同様 に 40°C、湿度 80%の条件で 6時間放置した際の質量増加量を測定するとともに、乾 燥処理時のダマ発生量および発塵性を評価、測定した。結果を表 3に示す。
なお、粉末乾燥剤(B— 13)の使用時には、目開き lmmの篩を用いて、篩を通過し ない凝集体 (ダマ)をあらかじめ除去してから、使用した。
[表 3]
Figure imgf000027_0001
Figure imgf000027_0002
9006
Figure imgf000028_0001
Figure imgf000029_0001
[0070] 縦型および横型の伝熱 ·攪拌型乾燥装置を用いて乾燥処理し、 40°C、湿度 80% の条件で 6時間放置された際の質量増加量が 10質量%以上である粉末乾燥剤 (B —2〜: 11)を使用した実施例 8〜: 17でも、経時的に固化しにくいァニオン界面活性 剤粉体を製造できた。また、これら粉末乾燥剤 (B— 2〜11)は、表 3に示すように、発 塵性が良好で、ダマの発生も認められな力つた。
[0071] [実施例 18]
<粉末乾燥剤 (B— 14) > 酸ィ匕カルシウム(関東ィ匕学 (株)製、鹿 1級試薬)をメノー乳鉢 (サイズ:外径 110 X 内径 90 X深さ約 26cm)で粉砕した後、目開き 75 μ mの篩と受け皿を用いて分級操 作を行い、 75 μ mの篩を通過したものをサンプル瓶に密閉し粉末乾燥剤 (B- 14)と した。
この粉末乾燥剤 (B- 14)の平均粒子径は 14 μ mであった。また、この粉末乾燥剤 (B— 14) 5gを 40°C、湿度 80%の大気中で保持 (東京理化器械 (株)製恒温恒湿槽 (ENVIROS KCL— 1000)を使用)した際の質量増加は、図 2 (四角プロット:酸ィ匕 カルシウム)に示した通りであり、 6時間保持した後の質量増加量(吸湿量に相当)は 29. 2%であった。
[0072] <被覆 >
水平円筒型転動混合機(円筒直径 585mm、円筒長さ 490mm、容器 131. 7Lのド ラム内部壁面に内部壁面とのクリアランス 20mm、高さ 45mmの邪魔板を 2枚有する もの)で、充填率 30容積%、回転数 22rpm、 25°C、上記式(1)により決定される Fr 数が 0. 16の条件下で、実施例 1と同様にして得られたァ-オン界面活性剤粉体 (A )と粉末乾燥剤 (B— 14)を表 6に示す質量比で 5分間混合し、界面活性剤含有粉体 (A)の表面を粉末乾燥剤 (B- 14)で被覆し、ァニオン界面活性剤粉体を得た。 そして、得られたァ-オン界面活性剤粉体について、実施例 1と同様の評価および 測定を実施した。結果を表 6に示す。
[0073] [表 6]
実施例 18 ァニオン 界面活性剤 ァニオン界面活性剤 (1) 90 界面活性剤粉体を構成 含有粉体 ァニオン界面活性剤 (2) ― する各成分の質量部数 (A) 水分 3
その他 7 被覆剤 酸化カルシウム 1 1 ァニオン 質量比 (A) / (B) 100/11 界面活性剤粉体 製造方法 (I) 平均粒子径 [ t m] 420 嵩密度 [g/cm3] 0. 67 固化性 〇 産業上の利用可能性
本発明によれば、圧密のある状態で高温下に静置された場合でも、経時的に固化 しにく 、ァニオン界面活性剤粉体を提供できる。

Claims

請求の範囲
[1] ァ-オン界面活性剤の含有量が 70質量%以上で、水分含有量が 5質量%以下で ある界面活性剤含有粉体 (A)の粒子表面を、 40°C、湿度 80%の条件で 6時間放置 された際の質量増加量が 10質量%以上である非潮解性の粉末乾燥剤 (B)で被覆 する工程を有することを特徴とするァニオン界面活性剤粉体の製造方法。
[2] 前記界面活性剤含有粉体 (A) 100質量部に対して、前記粉末乾燥剤 (B) 1〜25 質量部を使用することを特徴とする請求項 1に記載のァニオン界面活性剤粉体の製 造方法。
[3] 前記粉末乾燥剤 (B)は、乾燥処理 A型ゼオライトであることを特徴とする請求項 1ま たは 2に記載のァ-オン界面活性剤粉体の製造方法。
[4] 前記ァ-オン界面活性剤は、脂肪酸由来の炭素数が 10〜20の oc スルホ脂肪酸 アルキルエステル塩であることを特徴とする請求項 1な 、し 3の 、ずれかに記載のァ 二オン界面活性剤粉体の製造方法。
[5] 前記粉末乾燥剤 (B)は、内周面が伝熱面である乾燥槽と、該乾燥槽内を攪拌する 攪拌手段とを有する乾燥装置により乾燥処理されたものであることを特徴とする請求 項 1な!、し 4の 、ずれかに記載のァ-オン界面活性剤粉体の製造方法。
[6] 前記乾燥処理は、 300〜650°Cで行われることを特徴とする請求項 5に記載のァ- オン界面活性剤粉体の製造方法。
[7] 前記乾燥処理は、前記乾燥装置内の Fr数が 0. 25〜25の条件下で行われること を特徴とする請求項 5または 6に記載のァニオン界面活性剤粉体の製造方法。
[8] 請求項 1な!、し 7の 、ずれかの方法で製造されたことを特徴とするァ-オン界面活 性剤粉体。
PCT/JP2007/055412 2006-03-17 2007-03-16 アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体 WO2007108418A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506284A JP5122439B2 (ja) 2006-03-17 2007-03-16 アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-074241 2006-03-17
JP2006074241 2006-03-17
JP2006328031 2006-12-05
JP2006-328031 2006-12-05

Publications (1)

Publication Number Publication Date
WO2007108418A1 true WO2007108418A1 (ja) 2007-09-27

Family

ID=38522447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055412 WO2007108418A1 (ja) 2006-03-17 2007-03-16 アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体

Country Status (3)

Country Link
JP (1) JP5122439B2 (ja)
MY (1) MY162257A (ja)
WO (1) WO2007108418A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018756A (ja) * 2008-07-14 2010-01-28 Kao Corp 粒状アニオン界面活性剤の製造法
JP2011026585A (ja) * 2009-06-30 2011-02-10 Lion Corp 脂肪酸アルキルエステルスルホナート金属塩固形物の製造方法
US8501972B2 (en) 2007-10-22 2013-08-06 Lion Corporation Solid fatty alkyl ester sulfonate metal salt and method for producing powder thereof with sharp particle size distribution
WO2016104799A1 (ja) * 2014-12-26 2016-06-30 ライオン株式会社 被覆α-スルホ脂肪酸アルキルエステル塩粒子群及びその製造方法並びに粉末洗剤
WO2018003818A1 (ja) * 2016-06-30 2018-01-04 ライオン株式会社 被覆α-スルホ脂肪酸アルキルエステル塩粒子群

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598800A (ja) * 1982-07-05 1984-01-18 ライオン株式会社 カチオン界面活性剤の造粒方法
JPH06128598A (ja) * 1992-10-16 1994-05-10 Lion Corp 高嵩密度粒状洗剤の製造方法
JP2002529581A (ja) * 1998-11-09 2002-09-10 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 可溶性界面活性剤顆粒
JP2003301199A (ja) * 2002-04-11 2003-10-21 Kao Corp 高嵩密度洗剤の製造方法
JP2004155896A (ja) * 2002-11-06 2004-06-03 Kao Corp 液体洗浄剤組成物
JP2006016426A (ja) * 2004-06-30 2006-01-19 Lion Corp 界面活性剤含有粒子及びその製造方法、並びに洗浄剤組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598800A (ja) * 1982-07-05 1984-01-18 ライオン株式会社 カチオン界面活性剤の造粒方法
JPH06128598A (ja) * 1992-10-16 1994-05-10 Lion Corp 高嵩密度粒状洗剤の製造方法
JP2002529581A (ja) * 1998-11-09 2002-09-10 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 可溶性界面活性剤顆粒
JP2003301199A (ja) * 2002-04-11 2003-10-21 Kao Corp 高嵩密度洗剤の製造方法
JP2004155896A (ja) * 2002-11-06 2004-06-03 Kao Corp 液体洗浄剤組成物
JP2006016426A (ja) * 2004-06-30 2006-01-19 Lion Corp 界面活性剤含有粒子及びその製造方法、並びに洗浄剤組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501972B2 (en) 2007-10-22 2013-08-06 Lion Corporation Solid fatty alkyl ester sulfonate metal salt and method for producing powder thereof with sharp particle size distribution
JP5561822B2 (ja) * 2007-10-22 2014-07-30 ライオン株式会社 脂肪酸アルキルエステルスルホナート金属塩固形物及び粒度分布のシャープな脂肪酸アルキルエステルスルホナート金属塩粉末の製造方法
JP2010018756A (ja) * 2008-07-14 2010-01-28 Kao Corp 粒状アニオン界面活性剤の製造法
JP2011026585A (ja) * 2009-06-30 2011-02-10 Lion Corp 脂肪酸アルキルエステルスルホナート金属塩固形物の製造方法
WO2016104799A1 (ja) * 2014-12-26 2016-06-30 ライオン株式会社 被覆α-スルホ脂肪酸アルキルエステル塩粒子群及びその製造方法並びに粉末洗剤
CN107109295A (zh) * 2014-12-26 2017-08-29 狮王株式会社 包覆α‑磺基脂肪酸烷基酯盐粒子群及其制造方法,以及粉末洗涤剂
WO2018003818A1 (ja) * 2016-06-30 2018-01-04 ライオン株式会社 被覆α-スルホ脂肪酸アルキルエステル塩粒子群

Also Published As

Publication number Publication date
JP5122439B2 (ja) 2013-01-16
MY162257A (en) 2017-05-31
JPWO2007108418A1 (ja) 2009-08-06

Similar Documents

Publication Publication Date Title
US4427417A (en) Process for preparing detergent compositions containing hydrated inorganic salts
WO2007108418A1 (ja) アニオン界面活性剤粉体の製造方法およびアニオン界面活性剤粉体
JP3179186B2 (ja) アニオン活性剤粉粒体の製造方法
JP7014496B2 (ja) 硫化リチウム、及びその製造方法
Al-Ali et al. Novel drying of formulated naproxen sodium using microwave radiation: Characterization and energy comparison
US6864221B1 (en) Granules for carrying surfactant and method for producing the same
KR20000069500A (ko) 과탄산나트륨의 제조방법
JP6173931B2 (ja) ヨウ化アルカリ金属またはヨウ化アルカリ土類金属の製造方法
CN1765733A (zh) 一种干法制备过碳酸钠的方法
JPH08170093A (ja) α−スルホ脂肪酸アルキルエステル塩粉粒体の製造方法
JPH11504893A (ja) ホウ素酸化物の製造
JPS6286099A (ja) 顆粒状複合石けんの製造法
JP5297642B2 (ja) アニオン界面活性剤粉粒体の製造方法
US5286470A (en) Silicate products
JPH04348198A (ja) 高嵩密度洗剤組成物の製造方法
US9708252B2 (en) Fatty acid alkyl ester sulfonate metal salt powder mixture and method for producing the same
JPH1088197A (ja) 高嵩密度粒状洗剤用粉体原料の製造方法
JP2003105398A (ja) 粒状洗剤組成物の製造方法
JP2003105396A (ja) 粒状洗剤組成物の製造方法
JP2011006636A (ja) 水溶性中性無機塩を含有するα−スルホ脂肪酸アルキルエステル塩固形物及びその製造方法
WO2016104799A1 (ja) 被覆α-スルホ脂肪酸アルキルエステル塩粒子群及びその製造方法並びに粉末洗剤
JP2011116807A (ja) 被覆α−スルホ脂肪酸アルキルエステル塩粒子及びその製造方法
WO2018003818A1 (ja) 被覆α-スルホ脂肪酸アルキルエステル塩粒子群
JP5489996B2 (ja) 脂肪酸アルキルエステルスルホナート金属塩フレーク及びその製造方法
JP2558862B2 (ja) 高密度洗剤用ペースト原料の連続乾燥方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738857

Country of ref document: EP

Kind code of ref document: A1