WO2007100113A1 - 精錬用吹き込みランス、精錬用吹き込みランス設備、溶銑の脱珪処理方法及び溶銑の予備処理方法 - Google Patents
精錬用吹き込みランス、精錬用吹き込みランス設備、溶銑の脱珪処理方法及び溶銑の予備処理方法 Download PDFInfo
- Publication number
- WO2007100113A1 WO2007100113A1 PCT/JP2007/054109 JP2007054109W WO2007100113A1 WO 2007100113 A1 WO2007100113 A1 WO 2007100113A1 JP 2007054109 W JP2007054109 W JP 2007054109W WO 2007100113 A1 WO2007100113 A1 WO 2007100113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lance
- hot metal
- oxygen
- blowing lance
- blowing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
- C21C5/4613—Refractory coated lances; Immersion lances
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/04—Removing impurities other than carbon, phosphorus or sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/072—Treatment with gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
- F27D1/0006—Linings or walls formed from bricks or layers with a particular composition or specific characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/10—Monolithic linings; Supports therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
Definitions
- the present invention relates to a blow lance equipment that blows oxygen gas into a molten metal in order to refine the molten metal.
- the present invention also relates to a method for pretreatment of hot metal held in a transfer container using the blow lance and the lance equipment, and more particularly to a method for desiliconizing hot metal.
- the lance may be used for blowing a neat agent together with oxygen gas, and it is not forbidden to blow carrier gas other than oxygen gas at a time during the preliminary treatment.
- the hot metal produced by reducing iron ore in a blast furnace contains impurities such as silicon, sulfur and phosphorus.
- impurities such as silicon, sulfur and phosphorus.
- hot metal dephosphorizat ion proces s hot metal dephosphorizat ion proces s, converters, hot metal pans or kneaders have been used with the aim of reducing the phosphorus content accompanying the upgrading of steel materials or rationalizing the steelmaking process Widely used in transport containers such as torpedo cars.
- a desiliconization process (desilicon ion process) is performed in advance to remove silicon in the hot metal before the dephosphorization process. These are collectively referred to as hot metal pretreatment. .
- the dephosphorization treatment and desiliconization treatment of the hot metal supplies an oxygen source such as oxygen gas or iron oxide to the hot metal, and the oxygen source supplies the phosphorus in the hot metal.
- silicon is removed by oxidation.
- a flux such as quicklime is also added.
- the reaction that oxidizes and removes silicon in the hot metal is called desiliconization reaction, and the reaction that oxidizes and removes soot in the hot metal is called degassing reaction.
- the method of supplying oxygen gas to the hot metal in the dephosphorization treatment and desiliconization treatment of hot metal is roughly classified into two types.
- One method is to supply oxygen gas from the top blowing lance that is not in contact with the hot metal. This is a method of spraying toward the bath surface, a so-called “upper spraying” method (referred to as “oxygen top blowing J”) (for example, see JP-A-53-78913).
- oxygen top blowing J oxygen top blowing
- injection of oxygen gas See, for example, JP-A-61-42763.
- Each method has its own characteristics.
- the blow-in acid transfer method there are advantages such as high oxygen gas addition efficiency and improved stirring power, while the heat load in the immersion part is large (for example, There are problems such as the fact that the wing and the mouth subjected to the heat load in only one direction are more exhausted than the mouth and the like, and the service life is limited.
- the top blowing acid method has the advantage that the heat load on the top blowing lance is small and can be used over a long period of time, but the addition efficiency of oxygen gas is low and the stirring power is obtained. There are problems such as inability.
- the top blowing acid method has poor reaction efficiency, and the blowing acid method may have to be adopted.
- the shape of the container is less likely to be stirred and mixed, and in addition, the number of openings is small relative to the capacity of the molten metal, and the desired efficiency of the reaction cannot be obtained by the top blowing acid method. It is.
- the blow lance used in the blow acid delivery method suffers from severe wear of the immersion part. For example, In Japanese Patent Laid-Open No.
- a blowing lance comprising a tip portion immersed in a molten metal bowl and a holder portion for holding the tip portion
- the tip portion has a single tube structure, and the entire surface thereof is calorized ( and a technique for preventing melting of the tip of the blowing lance by coating the outer periphery with a refractory.
- Japanese Patent Application Laid-Open No. 58-221210 discloses a blowing lance having a double pipe structure with a refractory coated on the outer circumference, blowing a refined agent and oxygen gas from the inner pipe, and a hydrocarbon-based pipe from the outer pipe.
- a technique for preventing melting damage at the tip end of the blowing lance by blowing gas is disclosed.
- Japanese Patent Laid-Open No. Sho 58-221210 is a technique in which hydrocarbon gas decomposes when heated and absorbs heat when decomposed, so that the tip of the blowing lance is cooled using this endotherm. .
- Japanese Patent Application Laid-Open No. 54-23019 provides a horizontal portion at the tip of the blowing lance to reduce the reaction force during gas blowing and vibration of the immersion portion.
- a technique for extending the life of the blowing lance by reducing the pressure, that is, by reducing the stress acting on the immersion part is disclosed. Further, Japanese Patent Application Laid-Open No.
- 60-234908 discloses that an upper fixing device constituted by a mouth-raiser provided in a direction in which the blowing lance is installed and an open / close-type clamping lower fixing device are provided. A technique for reducing vibration during gas blowing is disclosed. Invention Disclosure ''
- the above prior art has the following problems.
- desiliconization is performed in a vessel such as a torpedo car that is unsuitable for stirring and mixing and has a small opening with respect to the hot metal capacity, it is desirable to blow a large amount of oxygen into the hot metal.
- the oxygen source to be supplied is mainly iron oxide, and oxygen gas
- the upper limit of the ratio that is, the ratio of the oxygen gas supply amount to the total oxygen gas supply amount (iron oxide (converted to oxygen gas) + oxygen gas) is 20 to 30%.
- the oxygen gas ratio is increased (that is, when the oxygen gas flow rate is increased or when only oxygen gas is blown), the heat generation is so strong that the single tube structure cannot withstand. Effective use of heat generated by oxidation reaction
- the oxygen gas ratio is preferably 100%, but this technique does not have sufficient durability against the blowing of oxygen gas alone.
- the tip of the blowing lance is cooled by the decomposition endotherm of the carbon-hydrogen gas, but the absorption effect by the decomposition of the hydrocarbon-based gas is extremely extreme.
- the main part is the blowout part and does not contribute to the cooling of the refractory coated on the blower lance. Accordingly, it is necessary to ensure the durability of the refractory itself, but JP-A-58-221210 does not specifically disclose the composition of the refractory.
- Japanese Patent Application Laid-Open No. 54-23019 discloses a method for reducing the reaction force at the time of gas injection by providing a horizontal portion at the tip of the injection lance and reducing the stress at the immersion portion.
- Japanese Patent Application Laid-Open No. 60-234908 attempts to suppress vibrations by using an upper fixing device composed of rollers provided in a direction in which the blowing lance is installed and an openable and closable lower fixing device.
- This device is effective for vertical drop type blow lances S, and it is difficult to apply open / close-type clamping devices to blow lances that are immersed at an angle, and vibration cannot be prevented.
- the pretreatment technology itself has the following problems.
- Oxygen gas blowing lance that blows oxygen gas into molten metal such as hot metal has high durability and can be used many times compared to conventional oxygen lances, contributing to a reduction in manufacturing costs. Providing a gas blowing lance
- a blower lance for blowing at least oxygen gas into the molten metal which has a double pipe structure consisting of an inner pipe and an outer pipe. Oxygen gas is blown from the inner pipe and the inner pipe and the outer pipe. Hydrocarbon gas is blown from the gap with the pipe, and the outer circumference of the outer pipe is coated with an A 1 2 O 3 -Mg O system refractory containing 5 to 30% by mass of MgO.
- the boundary between the above-mentioned amorphous refractory at the tip and the amorphous refractory at the trunk is preferably below the molten metal surface.
- molten metal comprising the scouring blow lance described in any one of (1) to (3) above, a holding part for holding the blow lance, and a lifting device for raising and lowering the holding part.
- a sperm blowing lance facility for blowing oxygen gas at least, and as a mechanism for suppressing vibration of the blowing lance, a blade plate holding the upper end side of the blowing lance, and the lifting device are provided,
- An insufflation lance facility for a sperm having a blade support for holding the blade.
- the angle formed between the plane formed by the blade plate and the molten metal bath surface is the same as the inclination angle of the blowing lance with respect to the molten metal bath surface.
- a solid oxygen source is supplied into the hot metal at the time of the desiliconization reaction, Is sprayed onto the hot metal bath surface, and gaseous oxygen is blown into the hot metal from the fine metal blow lance described in the above (1) or (2).
- a solid oxygen source into the hot metal and to blow gaseous oxygen onto the bath surface of the hot metal.
- the total oxygen supply rate of the solid oxygen source and gaseous oxygen supplied into the hot metal at the time of the desiliconization reaction is a value less than 0.23 N mV t Z min.
- FIG. 1 is a schematic cross-sectional view of an acid gas blowing lance according to the present invention.
- FIG. 2 is a view showing a situation where the hot metal contained in the kneading vehicle is desiliconized using the oxygen gas blowing lance according to the present invention.
- FIG. 3 is a schematic sectional view of another oxygen gas blowing lance according to the present invention.
- FIG. 4 is a schematic view showing that the hot metal contained in the kneading vehicle is desiliconized by using the refinery blowing system according to the present invention.
- FIG. 5 is a schematic cross-sectional view taken along the line X—X ′ in FIG.
- FIG. 6 is a schematic view taken along the line Y—Y ′ in FIG.
- FIG. 7 is a schematic cross-sectional view of still another blowing lance used in the present invention.
- FIG. 8 is a view showing the structure of the hot metal pretreatment according to the present invention.
- FIG. 9 is a view showing the procedure of the hot metal pretreatment according to the present invention.
- FIG. 10 is a graph showing the relationship between the oxygen supply rate (the supply rate of the combined solid oxygen and gaseous oxygen blown into the molten iron) and the occurrence of throbbing at the time of the desiliconization reaction according to the present invention. It is.
- FIG. 11 is a diagram showing changes in the concentration of hot metal components when hot metal pretreatment according to the present invention is performed.
- FIG. 12 is a schematic sectional view of still another oxygen gas blowing lance according to the present invention. '
- the inventors of the present invention have studied about extending the life of a gas blowing lance in the desiliconization process of hot metal by immersing an oxygen gas blowing lance in hot metal contained in a kneading vehicle and blowing oxygen gas from the gas blowing lance into the molten iron. I reviewed it.
- the immersion part in the hot metal is a single pipe structure, even if it is coated with a refractory, the durability is poor.Therefore, at least a double pipe structure is used, and hydrocarbon gas for cooling is used between It has been found that it is preferable to flow through the gap. This is because it was confirmed that at least the tip of the oxygen gas blowing lance was cooled by the endothermic reaction when the hydrocarbon-based gas was decomposed, thereby suppressing the melting of the tip. . .
- FIGS. 1 and 3 show schematic cross-sectional views of the oxygen gas blowing lances used in the test, and Fig. 2 shows the situation in which the hot metal contained in the kneading vehicle is desiliconized.
- 1 is an oxygen gas blowing lance
- 2 is an inner pipe
- 3 is an outer pipe
- 4 is an irregular refractory (a refractory that can be formed into a cemented shape into a desired shape, for example, castable. ), Etc.)).
- FIG. 1 is an oxygen gas blowing lance
- 2 is an inner pipe
- 3 is an outer pipe
- 4 is an irregular refractory (a refractory that can be formed into a cemented shape into a desired shape, for example, castable. ), Etc.)).
- FIG. 1 is an oxygen gas blowing lance
- 2 is an inner pipe
- 3 is an outer pipe
- 4 is an irregular refractory (a refractory that can be formed into a cemented shape into
- the refractory coating layer 4 is divided into a tip coating layer 4 A and a trunk coating layer B, and different refractories are used.
- Oxygen gas flows inside the inner pipe 2
- hydrocarbon gas flows through the gap between the inner pipe 2 and the outer pipe 3
- the oxygen gas and hydrocarbon-based gas flow at the tip 1A of the oxygen gas blowing lance 1. It is designed to be blown into hot metal.
- 1 C is the center of the lance opening
- 7 is the bend (defined by the intersection of the lance center lines before and after bending).
- 5 is a kneading wheel
- 6 is a hot metal
- the tip 1 A of the oxygen gas blowing lance 1 shown in FIG. 1 or 3 is immersed in the hot metal 6 accommodated in the kneading wheel 5
- Shown is oxygen gas blown from inner pipe 2 (further refined if necessary), hydrocarbon gas is blown from the gap between inner pipe 2 and outer pipe 3, and desiliconization treatment being performed on hot metal 6 Yes.
- a 1 2 O 3 — MgO-based castables the content of Mg 2 O was changed to 3, 5, 10, 20, 30, 40, 50, 70 mass%, and the refractory coating layer 4 was worn out The effect of MgO content on the rate was investigated.
- the wear rate per charge is 200 mm (hereinafter referred to as “mmZ ch”).
- the wear rate was 15 mm / ch or less in the A 1 2 O 3 — MgO based castable containing 5 to 30% by mass of Mg′O.
- MgO is 5 mass. /. In the case of less than 1, it was found that the wear rate was fast and the effect of MgO was small.
- the refractory coating layer 4 is optimally an A 1 20 3 — MgO-based amorphous refractory containing 5 to 30% by mass of MgO, and this amorphous refractory is used.
- a 1 2 0 3 to the tip - M g O using monolithic refractories A 1 2 0 3 in the barrel - S i O 2 based monolithic refractory This was a good result with a lower wear rate than when the whole was coated with A 1 2 0 3 — Mg O amorphous refractory.
- a 1 2 0 3-S i O 2 -based irregular refractories are basically superior in spalling resistance, This is particularly effective for the heat shock that is applied directly above the surface of the bath. For this reason, it is considered that the durability of the lance is further improved by making the body part an A 1 2 0 3 1 S i O 2 system refractory refractory.
- the present inventors have other A 1 2 O 3 - C r 2 0 3 system, AI 2 0 3 - Z R_ ⁇ 2 system, S i O 2 - Z r 0 2 systems were also tested singly or in combination However, the improvement effect as in the present invention was not obtained.
- the present invention is based on these test results.
- the oxygen gas blowing lance 1 for refinement according to the present invention is a double tube comprising an inner tube 2 and an outer tube 3 as shown in FIGS. 1 and 3 described above.
- the structure is such that oxygen gas (and a refinement agent if necessary) is blown from the inner pipe 2, and hydrocarbon gas is blown from the gap between the inner pipe 2 and the outer pipe 3. As shown in Fig.
- the outer circumference of the outer tube 3 is covered with an A 1 2 0 3 -Mg O amorphous refractory containing 5 to 30% by mass of Mg O or
- the tip is covered with A 1 2 0 3-MgO-based amorphous refractory, and the remaining body is covered with A 1 2 0 3-Si O 2 -based amorphous refractory. It is characterized by being.
- the A 1 2 O a -Mg O-based indefinite refractory at the tip is a mixture of 5 to 30% by mass of MgO.
- a 1 2 O 3-S i O 2 system indefinite form refractory is 10 to 40 mass of S i 0 2 .
- the body covering layer 4 B covers at least the molten metal surface.
- Tip coating layer 4 A is a sufficient range from the viewpoint of resistance to melting
- the tip coating layer 4 ⁇ and the trunk coating layer 4 B transition continuously at the boundary. This can be easily realized by making a mold around the outer pipe 3 and pouring an irregular shaped refractory to cover the lance and changing the refractory in the middle.
- Both the A 1 2 O 3 -MgO-based amorphous refractory and the A 1 2 O 3 —SiO 2 -based amorphous refractory used in the present invention contain no more than 7% impurities.
- the amount of MgO in the Al 2 O 3 -MgO-based amorphous refractory is most preferably 5 to 10% by mass. I like it.
- the thickness of the refractory layer is preferably about 25 mm or more.
- the refinery oxygen gas blowing lance 1 according to the present invention is applicable to any refinement as long as the refinement is performed by supplying oxygen gas or a refinement agent together with oxygen gas into the molten metal. It is optimal to apply as an oxygen gas supply means in the desiliconization treatment of hot metal.
- Slag generated by desiliconization treatment of molten pig iron are mainly of S i O 2
- refractory coating layer 4 there have in the present invention is used in 4 A tip coating layer, M g O from 5 to 3 0
- M g O from 5 to 3 0
- a fertility agent is a flux of iron oxide, raw stone ash, limestone, etc., which are oxygen sources.
- the lance according to the present invention particularly etc. desiliconization treatment in torpedo car, (or e.g., 1 0 N m 3 / min, preferably 1 5 N m 3 / min or more) large amount of oxygen-flow advancing the process by Suitable for use.
- oxygen gas blowing lance 1 for scouring When desiliconization of the hot metal 6 is performed using the oxygen gas blowing lance 1 for scouring according to the present invention, oxygen gas is blown from the inner pipe 2 in the same manner as the above test, and the inner pipe 2 and the outer pipe. Desiliconization is performed by blowing hydrocarbon-based gas through the gap between the two and other gases.
- An oxygen gas supply means may be used in combination.
- the inner tube 2 and the outer tube 3 do not branch up to the tip 1A, but the inner tube 2 and the outer tube near the tip.
- Branch 3 may be T-shaped or Y-shaped.
- Fig. 12 shows another aspect of the lance of the present invention.
- the tip coating layer 4A is located at a position twice the distance d from the center of the lance opening 1C to the tip of the lance. It is preferable to coat at least. That is, the boundary between the tip portion covering layer 4A and the trunk portion covering layer 4B is preferably positioned between the position 2d from the tip of the lance and the molten metal surface position '. The same applies to the Y-shaped lance.
- the inner pipe 2 and the outer pipe 3 do not need to be stainless steel pipes, and for example, there is no problem even if they are carbon steel pipes. Further, when the flow rate of the oxygen gas blown from the inner pipe 2 is reduced, an inert gas such as nitrogen gas or Ar gas may be mixed with the oxygen gas, or an oxygen-containing gas such as oxygen-rich air is used as appropriate. You may do it. The oxygen concentration may be appropriately determined from the amount of oxygen required. When reducing the flow rate of hydrocarbon-based gas from the outer tube 3 in accordance with the change in the flow rate of oxygen gas blow-in from the inner tube 2, inert gases such as nitrogen gas and Ar gas are also removed.
- inert gases such as nitrogen gas and Ar gas are also removed.
- the amount of the hydrocarbon gas is about 5 to 20% by volume of oxygen supplied from the inner pipe 2.
- hydrocarbon gas propane (C 3 H 8 ), methane (CH 4 ), ethane (C 2 H 6 ), butane (C 4 H 1C1 ), etc. are thermally decomposed at a relatively low temperature and have a large decomposition endotherm. For use in the steelmaking process.
- the present inventors examined particularly the improvement of the shape of the lance immersed diagonally. That is, when the opening is small with respect to the molten metal capacity as in a torpedo car, it is advantageous from the viewpoint of spreading the stirring while immersing the lance obliquely with respect to the molten metal surface. Is stronger than when immersed vertically.
- the tilt angle (angle between the lance (body) and the hot metal surface) when immersing the oxygen gas blowing lance 1 is 65 °, and the angle between the horizontal part 1B and the hot metal surface is about 0 °. It was.
- the test conditions for the silicon removal treatment were the same as those in Table 1.
- Table 3 shows the wear of the immersed part when the length (L) of the horizontal part 1 B is changed.
- the maximum wear rate when the horizontal part 1 B is not installed or the length (L) of the horizontal part 1 B is 0.3 times the outer diameter (D) of the oxygen gas blowing lance 1, the maximum wear rate In this case, the effect of vibration suppression by providing the horizontal part 1 B is not exerted (that is, the lance is easy to receive heat from the hot metal) There was no noticeable improvement in the lifespan.
- the maximum wear rate when the length (L) of the horizontal part 1 B is more than 2.5 times the outer diameter (D) of the oxygen gas blowing lance 1, the maximum wear rate is 10 to 12 mmZ c li and Nata. In this case, cracking of the non-immersed part of the oxygen gas blowing lance 1 became a net.
- the length (L) of the horizontal portion 1 B is optimally equivalent to 0.5 to 2.0 times the outer diameter (D) of the oxygen gas blowing lance 1.
- the durability of the oxygen gas blowing lance 1 was improved.
- the length (L) of the horizontal part .1 B to an appropriate value, vibration during oxygen gas blowing is suppressed, and the spalling of the immersion part of the oxygen gas blowing lance 1 It was found that cracks in the non-immersed part of the oxygen gas blowing lance 1 can be overcome, and stable oxygen gas blowing is possible.
- the present invention is based on the results of these tests.
- the blower lance 1 according to the invention is a molten material in which a coating layer 4 (or 4 A and 4 B) of an irregular refractory is formed on the outer surface.
- a blow lance immersed at an angle with respect to the metal bath surface, the tip is provided with a horizontal part 1 B having a length equivalent to 0.5 to 2.0 times the outside diameter of the blow lance. It is characterized by being.
- the inclination angle of the lance is preferably 45 to 85 °, more preferably 60 to 85 °. Further, it is preferable that the horizontal portion is set to be 20 to + 20 °, preferably 0 ° with respect to the molten metal surface (horizontal surface).
- the blowing lance vibrates more and wear due to spalling is generated.
- the vibration of the blowing lance may cause cracking or dropping of the refractory coating layer not only at the immersion part of the blowing lance, but also at the non-immersed part, as well as cracking of the lance lifting device.
- FIG. 4 is a schematic diagram of desiliconizing the hot metal contained in the kneading vehicle using the scouring blow lance facility according to the present invention.
- Fig. 5 is a view taken along the line X-X 'in Fig. 4.
- FIG. 6 is a schematic view taken along arrow Y—Y ′ in FIG.
- a refinery blow lance facility 11 holds an oxygen gas blow lance 1 immersed in an inclined manner with respect to the bath surface of the hot metal 6 and the oxygen gas blow lance 1. And a lifting device 12 that lifts and lowers the holding portion 13. That is, the holding portion 13 is fixed to the lifting device 1 2 at the holding portion upper portion 1 3 A, and the operation of the lifting device 1 2 immerses the oxygen gas blowing lance 1 in the hot metal 6 accommodated in the kneading vehicle 5.
- the holding portion 13 is fixed to the lifting device 1 2 at the holding portion upper portion 1 3 A, and the operation of the lifting device 1 2 immerses the oxygen gas blowing lance 1 in the hot metal 6 accommodated in the kneading vehicle 5.
- a horizontal portion 1 B oriented in the horizontal direction is installed at the tip of the oxygen gas blowing lance 1, and a refractory coating layer 4 made of an irregular refractory is formed on the outer periphery of the oxygen gas blowing lance 1.
- the refractory coating layer may be a composite structure as shown in FIG.
- Reference numeral 22 in the figure denotes a guide roll.
- the guide roll 2 2 is not essential, but it is possible to install one or more guide rolls 2 and to guide the oxygen gas blowing lance 1 to the guide roll 2 2 as well. This is an effective means for improvement.
- the vibration preventing jig 19 will be described with reference to FIG. 5 and FIG.
- the oxygen gas blowing lance 1 is provided with an iron blade 20 on the lower surface side.
- the material of the slats need not be made of iron. In other words, any material can be used as long as it has the necessary strength and can be combined with the material cost and the processing cost. From these viewpoints, it is preferably made of iron. It is important that the anti-vibration jigs be renewable at low cost because of the severe pain caused by the adhesion of slag metal from the position.
- the iron vane plate 20 fixes the oxygen gas blowing lance 1 by some means.
- One means is to connect and fix the vane to the oxygen gas blowing lance 1 by means of welding or the like.
- the lance may be joined to the iron blade 20 or the like, but from the viewpoint of omitting the work, the lance may be simply positioned without joining.
- the vibration preventing jig of FIG. 5 does not restrain the upward vibration of the lance. Since the vibration force in the direction is relatively weak, it may be left as it is. However, in order to restrain the upward vibration in the figure, a holding means may be provided.
- the pressing means for example, a gate-shaped pressing tool that is movably joined to the reinforcing material 20 A with a hinge or the like and is closed after the lance is installed can be considered.
- On the left and right sides of the iron vane plate 20 there is an iron vane plate receiver 2 1 composed of a member 21 A arranged in parallel with the vertical direction and a pair of members 21 B attached to the member 21 A. is set up.
- a pair of opposing members 21 B are provided with a gap, and an iron blade 20 is inserted into the gap.
- the iron blade receiver 21 is guided by sandwiching the iron blade 20 from the left and right.
- the plane formed by the iron blade 20 is parallel to the immersion direction of the oxygen gas blowing lance 1 and the angle formed between the plane formed by the iron blade 20 and the hot metal bath surface is oxygen gas blowing.
- the inclination angle of lance 1 with respect to the molten metal bath surface is preferably the same. If the lance and slats are not fixed, a fall prevention jig may be provided to prevent the slats from dropping before installing the lance.
- the iron vane plate 20 is guided by the iron vane plate holder 21 so that the vertical vibration of the oxygen gas blowing lance 1 is suppressed.
- the anti-vibration jig 19 is characterized by an iron blade plate 20 and an iron blade plate holder 21. Other details (for example, the structure and the space between the blade plate and the blade plate holder) “Play” design etc.) can be freely configured as needed.
- the blow-in lance facility for refinement 11 is a molten metal bath surface in which a refractory coating layer 4 of an irregular refractory is formed on the outer surface.
- the plane formed by the vane plate 20 is parallel to the immersion direction of the oxygen gas blowing lance 1 and the angle formed by the plane formed by the vane plate 20 and the molten metal bath surface is the same as that of the oxygen gas blowing lance 1. It is preferable that the inclination angle is the same as that of the molten metal bath surface.
- the refinery blow lance facility 11 can be applied to any refinement as long as it is refined by supplying a refined agent together with oxygen gas or oxygen gas into the molten metal.
- the fertility agent is a flux of iron oxide, quick lime, or the like that serves as an oxygen source.
- FIG. 8 shows a pretreatment facility according to one embodiment of the present invention
- reference numeral 5 denotes a torpedo car that holds hot metal 6 discharged from a blast furnace (not shown).
- the upper blowing lance 26 and the squeezing blowing lance facility 11 are installed so as to be movable up and down in the chaotic vehicle 5.
- the top blowing lance 26 is a device that blows and supplies gaseous oxygen to the bath surface 6 A of the hot metal 6 in the kneading wheel 5.
- the gaseous oxygen supplied by the top blowing lance 26 is referred to as top blowing gaseous oxygen.
- the refinery blow lance facility 11 is a device that blows and supplies gaseous oxygen into the hot metal 6 and supplies solid oxygen such as iron oxide into the hot metal 6.
- the gaseous oxygen supplied by the refinery blow lance facility 11 is referred to as injection gaseous oxygen.
- the kneading vehicle 5 moves to a converter (not shown) after pretreatment of the molten iron 6 and charges the molten iron 6 into the converter.
- a converter not shown
- solid oxygen and piston supply of gaseous oxygen from the refinery blow lance facility 11 and top blow lance 2 6 In this way, the supply of top-blown gaseous oxygen was performed.
- the supply of injection gas oxygen is stopped, and the supply of solid oxygen and top-blown gas oxygen is stopped. I continued to pay.
- the wisdom person increases the supply rate of oxygen (hereinafter referred to as the total oxygen supply rate), which is a combination of solid oxygen and injection gas oxygen supplied into the kneading vehicle 5 during the desiliconization reaction period.
- Solid oxygen and the injection gas are generated because there is a risk that sloping occurs due to the sudden reaction of carbon in the molten iron 6 and the formation of bumped material from the molten metal outlet of the kneading vehicle 5.
- FIG. 11 shows changes in the carbon (C) concentration, silicon (S i) concentration, and phosphorus (P) concentration in the molten iron 6 during the desiliconization reaction period and the denitrification reaction period.
- the hot metal 6 is sufficiently decarburized. A small amount of CO gas is generated.
- secondary combustion of this CO gas and the upwardly blown gaseous oxygen supplied from the upper blower lance 26 toward the bath surface 6A of the hot metal 6 becomes active. A large amount of secondary combustion heat is generated. Therefore, during the desiliconization reaction period, a large amount of secondary combustion heat is generated so that heat can be compensated effectively.
- the supply of the ejection gas oxygen is stopped, and the solid oxygen and the top blown gas oxygen are continuously supplied.
- the solid oxygen blown into the hot metal 6 reacts with [P] in the hot metal in preference to the reaction with [C] in the hot metal, and as shown by the line C in FIG.
- the carbon concentration decreases relatively slowly, and the decarburization reaction is suppressed.
- the gaseous oxygen is preferentially counteracted with the hot metal [C] rather than the hot metal [P]. Therefore, the carbon concentration decreases relatively rapidly as shown by the line C ′ in FIG. Therefore, troubles such as insufficient heat margin occur in the decarburization process in the post process.
- the dephosphorization reaction takes precedence over the decarburization reaction, so that the phosphorus concentration can be reliably reduced as shown by the line P in FIG. Can do.
- the decarburization reaction has a relatively higher priority than the dephosphorization reaction. As indicated by P ', the soot concentration in hot metal 6 does not decrease.
- the determination of the desiliconization reaction period and the dephosphorization reaction period can be determined by the exhaust gas temperature measured by the concentration system of the kneading vehicle 5 or sample collection. For example, the end of the desiliconization reaction period is detected when the exhaust gas temperature rises rapidly. be able to.
- the hot metal contained in the kneading car was desiliconized using the fine blast equipment shown in Fig. 4 and the lance shown in Figs. 1 and 7 (see Table 5).
- the vibration prevention jig shown in Fig. 5 and Fig. 6 was used (Invention ⁇ 3, 5, 6), but was not used in some examples (Invention Example 1, 2, 4). ).
- the inclination angle of the lance is 70. C. Only Example 7 of the present invention was immersed vertically using a T-shaped lance shown in FIG.
- the refractory coating layer of the oxygen gas blowing lance is A 1 2 O 3 "10 mass./. Is Mg O castable (invention example 1), or from the tip to the hot metal surface A 1 2 0 3 - 7 mass 0/0 M g O castables, hot metal bath level than the upper a 1 2 0 3 - 2 0 wt% S i O 2 was constructed in Kyasutapuru (embodiment 2-7).
- Composite coating 1 Tip-molten metal surface: AI 2 0 3 -7 mass 3 ⁇ 4MgO, molten metal surface: AI 2 O 3 -20 mass 3 ⁇ 4Si0 2
- T type lance vertical immersion Vertical immersion using the lance shown in Fig. 12
- the average lance life is 6.5 to 8.5 charges per lance (hereinafter, rc liZ) (Examples 1 to 5 of the present invention).
- rc liZ charges per lance
- the lance life is longer with composite coating (Comparison between Invention Example 1 and Invention Example 2), and the length of the tip horizontal part should be in the range of 0.5 to 2.0 times the external shape. This improves the lance life (Comparison between Invention Example 2 and Invention Example 4), and further improves the lance life by adopting the vibration prevention jig (Comparison between Invention Example 4 and Invention Example 5). ).
- Example 1 Castable oxygen gas blown lances were used, and in other cases when desiliconization was performed under the same conditions as Example 5 of the present invention (Comparative Example 1), the lance life was 1.0 c. there were. Similarly for vertical immersion type, A 1 2 O 3-20 mass. When / oS i O 2 castable is used as a refractory coating, the lance life is extremely shortened (Comparison between Invention Example 7 and Comparative Example 7).
- a 1 2 0 3 - 20 have use mass% S i 0 2 Kyasutapuru as refractory coatings, inner without using oxygen gas as the oxygen source, iron oxide and nitrogen gas as a carrier gas (the iron ore)
- oxygen gas as the oxygen source
- iron oxide and nitrogen gas as a carrier gas
- nitrogen gas is blown in from the gap between the inner tube and the outer tube, the lance life is good, but the sensible heat of the iron oxide used removes heat and the hot metal temperature rises. On the contrary, it was confirmed that the energy was reduced (thus increasing the energy for compensating for insufficient heat margin in the subsequent process) (Comparative Example 5 and Comparative Example 6).
- Table 7 compares the desiliconization reaction period of the hot metal pretreatment method between the present invention and a comparative method different from the present invention (hereinafter, comparative example).
- the pretreatment equipment shown in FIG. 8 was used, and the lance equipment used was the same as that shown in Example 5 (Table 5) of Example 1 of the present invention.
- solid oxygen and injection gaseous oxygen are supplied to the inside of the molten iron 6, and the top blown gaseous oxygen is supplied toward the bath surface 6 A of the molten iron 6.
- Comparative Example A solid oxygen and injection gaseous oxygen were supplied during the desiliconization reaction period.
- Comparative Example B solid oxygen and top-blown gas oxygen are supplied during the desiliconization reaction period.
- the heat margin in Table 7 is a numerical value obtained with the carbon concentration and hot metal temperature before and after the desiliconization reaction period. The higher the numerical value, the more effective heat compensation is obtained.
- Comparative Example A solid oxygen and injection gas oxygen are supplied, so that a sufficient amount of CO gas can be generated by the decarburization reaction of the hot metal. Subsequent combustion is unlikely to occur and the numerical value of thermal margin is lower than that of Comparative Example B and the present invention.
- Comparative Example B supplies only solid oxygen, so that the amount of CO gas generated from the hot metal is small, and heat generated by secondary combustion with the top-blown gaseous oxygen cannot be sufficiently generated.
- the numerical value of heat margin is low compared.
- a sufficient amount of C0 gas is generated by the decarburization reaction of the hot metal due to the supply of solid oxygen and injection gas oxygen.
- Heat generated by secondary combustion can be generated on the surface of the bath and heat can be applied, increasing the thermal margin.
- Table 8 shows a comparison between the method of the present invention and a method different from the present invention (hereinafter referred to as a comparative example) when the degassing treatment is performed following the desiliconization reaction period of the hot metal pretreatment method. is there.
- a comparative example a method different from the present invention
- solid oxygen is supplied into the hot metal 6 and the top blown gas oxygen is supplied toward the bath surface 6 A of the hot metal 6.
- Comparative Example C solid oxygen and injection gas oxygen are supplied during the dephosphorization reaction period
- Comparative Example D solid oxygen and injection gas are supplied during the dephosphorization reaction period.
- the heat margin in Table 8 is a value obtained from the carbon concentration and hot metal temperature before and after the dephosphorization reaction period. Like Table 7, the higher the value, the more effectively heat compensation can be obtained. Represents.
- the supply of injection gas oxygen is stopped, and the supply of solid oxygen and the supply of blown-up gas oxygen are performed, so that the decarburization reaction is suppressed and the dephosphorization reaction proceeds, and there is a thermal margin.
- the numerical value increases.
- the wear rate of the oxygen gas blowing lance can be greatly reduced as compared with the conventional one.
- the oxygen gas used in the refinement reaction can be increased without using equipment such as a converter bottom blowing tuyere. It can be added with the same blowing lance over a long period of time by a method capable of improving the stirring power efficiently.
- extending the life of the oxygen gas blowing lance has the advantages of reducing the frequency of lance replacement work and ensuring a large immersion depth at all times.
- the oxygen gas blowing lance of the present invention in the desiliconization treatment of the hot metal, it is possible to effectively use the heat generated by the desiliconization reaction.
- the refinery gas blow lance facility of the present invention the vibration of the blow lance when oxygen gas is blown is suppressed, the stress acting on the blow lance caused by the vibration is relieved, and the blow lance is immersed. Spalling in the part and cracking in the non-immersed part are further prevented, and the durability of the blowing lance can be greatly improved compared to the conventional one. As a result, the effects described above can be further improved.
- the hot metal pretreatment method of the present invention solid oxygen is supplied into the hot metal and gaseous oxygen is blown into the hot metal at the time of the desiliconization reaction, so that sufficient decarburization reaction in the hot metal is achieved. Amount of CO gas is generated.
- secondary combustion becomes active in the CO gas and gaseous oxygen supplied toward the hot metal bath surface and the bath surface, and a large amount of heat from the secondary combustion is generated. Is generated and the hot metal heats up.
- the hot metal can be effectively compensated for heat, and problems such as a decrease in the hot metal content and a lack of thermal margin in decarburization in the next converter can be solved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
溶融金属中に酸素ガスを吹き込むためのガス吹き込みランス1において、内管2及び外管3からなる2重管構造とし、内管からは酸素ガスを吹き込み、内管と外管との間隙からは炭化水素系ガスを吹き込み、外管の外周にはMgOを5~30質量%含有するAl2O3−MgO系不定形耐火物を少なくとも先端部の耐火物被覆層として用いることにより、耐用性が高く、従来に比べて多数回の使用が可能であり、製造コストの削減に寄与するガス吹き込みランスを提供するとともに、該吹き込みランスを使用した溶銑の脱珪処理方法を提供する。
Description
明 細 書 精鍊用吹き込みランス、 精鍊用吹き込みランス設備、 溶銑の脱珪処理方法及び溶銑の予備処理方法 技術分野
本発明は、溶融金属を精鍊するために、溶融金属中に酸素ガスを吹き込む 吹き込みランスおょぴランス設備(l ance equipment)に関するものである。 本発明はまた、前記吹き込みランスやランス設備を使用して、搬送容器内 に保持されている溶銑を予備処理 (pretreatment proce s s) する方法、 とぐ に溶銑の脱珪処理方法に関するものである。
なお、前記ランスは酸素ガスとともに精鍊剤を吹き込むために用いてもよ く、 また前記予備処理中の一時期に、 酸素ガス以外の搬送ガス等を吹き込む ことを禁ずるものではない。 背景技術
高炉で鉄鉱石を還元して製造された溶銑には、 珪素、 硫黄、 燐などの不純 物が含まれている。近年、鋼材の高級化に伴う燐含有量低下対策或いは製鋼 プ ロ セ ス の合理化を 目 的 と して、 溶銑の脱燐処理 ( hot metal dephosphorizat ion proces s ) 、 転炉や、 溶銑鍋若しくは混銑車 (「トー ピードカー」 ともいう) (torpedo car) 等の搬送容器などにおいて広く行わ れている。 また、 この脱燐処理を効率的に行うために、 脱燐処理の前に予め 溶銑中の珪素を除去する脱珪処理 (des i l i coni zat ion proce s s) も行われて いる。 これらは溶銑の予備処理と総称される。 .
溶銑中の燐及び珪素は酸化反応によって除去されるので、溶銑の脱燐処理 及ぴ脱珪処理は、溶銑に酸素ガスや酸化鉄などの酸素源を供給し、酸素源に よって溶銑中の燐或いは珪素を酸化除去させている。 その際に、反応効率を 高める或いは生成するスラグの組成を調整するために、生石灰などのフラッ クスも添加されている。 なお、溶銑中の珪素を酸化して除去する反応を脱珪 反応、 溶銑中の憐を酸化して除去する反応を脱憐反応と称する。
溶銑に酸素を供給する手段として、 酸化鉄 (固体酸素源) を溶銑中に投入 する方法があるが、固体酸素源は溶融分解によって溶.銑温度を降下させやす い。溶銑温度が降下すると、次工程の転炉での脱炭精鍊におけるスクラップ 配合率の低下や熱余裕の不足等の問題を誘発するおそれがある。 そこで、溶 銑の温度降下を抑制するため、気体酸素を溶銑に供給する方法も知られてい る。
溶銑の脱燐処理及び脱珪処理において溶銑に酸素ガスを供給する方法は、 大きく分けて 2種類に分類され、 1つの方法は、溶銑とは非接触の上吹きラ ンスなどから酸素ガスを溶銑浴面に向けて吹き付ける方法、所謂上吹きする' 方法 (「上吹き送酸法 (oxygen top b lowing ) J と呼ぶ) (例えば、 特開昭 53 - 78913号公報参照) である。 他の方法は、 溶銑中に浸漬させた吹き込みラ ンスゃ反応容器の底部などに設けた羽口から、溶銑中に酸素ガスを直接吹き 込む方法(「吹き込み送酸法(inj ect i on of oxygen gas:)」 と呼ぶ) (例えば、 特開昭 61- 42763号公報参照) である。 それぞれの方法には、 それぞれの特長 があり、 吹き込み送酸法の場合には、 酸素ガスの添加効率が高い、 攪拌力が 向上するなどの利点がある一方、浸漬部の熱負荷が大きく (例えば一方向の みの熱負荷をうける羽.口等に比べても消耗が激しい)、 耐用回数が限られる などの問題がある。 ;れに対して、 上吹き送酸法の場合には、 上吹きランス への熱負荷が小さく、長期間にわたって使用できるという利点があるが、酸 素ガスの添加効率が低い、 攪拌力が得られないなどの問題がある。
酸素ガスを供給する際に、上吹き送酸法とするか、吹き込み送酸法とする かは、 上記の特長を考慮して決められるが、 例えば混銑車の場合のように、 処理容器の形状から上吹き送酸法では反応効率が悪く、吹き込み送酸法を採 用せざるを得ないこともある。 混銑車の場合には、 その容器形状が攪拌 ·混 合されにく く、 それに加えて溶銑の収容量に対して開口部が少なく、上吹き 送酸法では所望する反応効率が得られないからである。 吹き込み送酸法で使用する吹き込みランスは、前述したように浸漬部の損 耗が激しいことから、 'これを改善する手段が提案されている。 例えば、 実開
平 6-6447号公報には、溶融金属ヰに浸漬する先端部と、該先端部を保持する ホルダー部とからなる吹き込みランスにおいて、前記先端部を単管構造とし、 その全表面をカロラィズ処理 (ca lori z ing treatment ) し、 更にその外周を 耐火物で被覆することにより、吹き込みランス先端部の溶損防止を図る技術 が開示されている。また、特開昭 58- 221210号公報には、吹き込みランスを、 外周に耐火物が被覆された 2重管構造とし、内管からは精鍊剤と酸素ガスを 吹き込み、外管からは炭化水素系ガスを吹き込むことで、 吹き込みランス先 端部の溶損防止を図る技術が開示されている。 特開昭 58 - 221210号公報の技 術は、 炭化水素系ガスは加熱されると分解し、 分解する際に吸熱するので、 この吸熱を利用して吹き込みランス先端部を冷却するという技術である。 また、 ランスにかかる外力に注目した技術として、特開昭 54- 23019号公報 には、,吹き込みランス先端部に水平部を設けることにより、 ガス吹き込み時 の反力を緩和し、 浸漬部の振動を減じることで、 つまり浸漬部に作用する応 力を減じることで、 吹き込みランスの延命を図る技術が開示されている。更 に、 特開昭 60- 234908号公報には、 吹き込みランスを取卷く方向に設けた口 —ラにより構成される上部固定装置と、開閉式挟持型の下部固定装置とを設 けることにより、ガス吹き込み時の振動を少なくする技術が開示されている。 発明の開示 '
〔発明が解決しょうとする課題〕
しかしながら、上記の従来技術には以下の問題点がある。 トーピードカー のような、 攪拌 ·混合に不向きであり、 溶銑収容量に対して開口部が小さい 形状の容器において脱珪処理などを行う場合、大量の酸素を溶銑中に吹き込 むことが望ましい。.しかし、 実開平 6- 6447号公報のように、 浸漬部を力口ラ ィズパイプとしてその周囲を耐火物で被覆する技術においては、供給する酸 素源としては酸化鉄が主体であり、酸素ガス比率、つまり総酸素ガス供給量 (酸化鉄(酸素ガスに換算) +酸素ガス)に対する酸素ガス供給量の割合は、 2 0 - 3 0 %が上限である。 酸素ガス比率を高めた場合(すなわち酸素ガス 流量を増加させる場合や、 酸素ガスのみの吹き込みとする場合) には、 発熱 が激しく単管構造では耐え切れない。酸化反応による発熱を有効利用するた
めには酸素ガス比率は 1 0 0 %が望ましいが、この技術では酸素ガスのみの 吹き込みに対する耐用性が十分でない。
また、 特開昭 58- 221210号公報に開示された方法では、 炭素水素系ガスの 分解吸熱により、 吹き込みランス先端部においては冷却が行われるが、炭化 水素系ガスの分解による吸 効果は極先端部つまり吹き出し部が主であり、 吹き込みランスに被覆した耐火物の冷却に寄与しない。従って、耐火物自体 の耐用性確保が必要であるが、 特開昭 58-221210号公報では耐火物の組成を 具体的に開示していない。
さちに、 実開平 6 - 6447号公報、 特開昭 58- 221210号公報とも、 ガスを吹き 込むことによって吹き込みランスが振動し、この振動によって耐火物に物理 的な割れ ·剥離損傷 (スポーリング) が発生するという点に関しては、 何ら 対策が採られていない。 . ランスの振動に関し、特開昭 54-23019号公報では、吹き込みランス先端に 水平部を設けることによりガス吹き込み時の反力を緩和し、浸漬部の応力を 緩和する方法を開示している力 、ガス吹き込み量が大きい場合には浸漬部だ けでなく吹き込みランス設備全体の振動も顕著になり、抜本的な解決にはな らない。
また、 特開昭 60- 234908号公報では、 吹き込みランスを取卷く方向に設け たローラで構成される上部固定装置と、開閉式挟持型の下部固定装置とで振 動を抑えよう としている。この装置は垂直降下式の吹き込みランスでは効果 が発揮できる力 S、傾斜して浸漬される吹き込みランスには開閉式挟持型の固 定装置は適用が困難であり、 振動を防止できない。 また、 吹き込みランスに 付着する地金ゃスラグなどにより、ローラ部や挟持部分の保守が困難となる という問題も発生する。 さらに予備処理技術自体、下記の課題を抱えている。溶銑の浴面に吹き付 けた気体酸素と、 溶銑の脱炭反応で発生した C O (—酸化炭素) ガスとで 2 次燃焼が起きると、 2次燃焼で発生する熱によって熱捕償を効果的に行なう ことができる力 S、溶銑の浴面のみに気体酸素を供給している特開昭 53-ァ8913
号公報の技術では、 C Oガス発生量が少ないので 2次燃焼の熱が発生しにく く、 熱補償を効果的に行なうことができない。
また、気体'酸素を溶銑の浴面下に供給する特開昭 61- 42763号公報の技術は、 脱珪反応期から脱憐反応期に移行すると、 脱炭反応が激しくなり、脱憐反応 が低下してしまう という問題がある。 本発明は上記事情に鑑みてなされたもので、 その目的とするところは、 下 記の少なく ともいずれかである。
(A)溶銑などの溶融金属中に酸素ガスを吹き込む酸素ガス吹き込みランスに おいて、 耐用性が高く、 従来に比べて多数回の使用が可能であり、 製造 . コス トの削減に寄与する酸素ガス吹き込みランスを提供すること
(B)該吹き込みランスを使用した溶銑の脱珪処理方法を提供すること
(C)溶銑などの溶融金属中に酸素ガス或いは酸素ガスとともに精鍊剤を吹き 込むための精鍊用吹き込みランス設備において、 多量の酸素ガスのみの 吹き込みであっても、 従来に比べて多数回の使用が可能であり、 製造コ ス トの削減に寄与する精鍊用吹き込みランス設備を提供すること
(D)該精鍊用吹き込みランス設備を使用'した溶銑の脱珪処理方法を提供する こと .
(E)脱珪反応の時期において熱補償を効果的に行なうことで、 次工程の転炉 での脱炭精鍊におけるスクラップ配合率の低下や熱余裕の不足等の問題 を解消する溶銑の予備処理方法を提供すること .
〔課題を解决するための手段〕
( 1 )溶融金属中に少なく とも酸素ガスを吹き込むための吹き込みランス であって、 内管及ぴ外管からなる 2重管構造であり、 内管からは酸素ガスが 吹き込まれ、 内管と外管との間隙からは炭化水素系ガスが吹き込まれ、外管 の外周には M g Oを 5〜 3 0質量%含有する A 1 2 O 3 - M g O系不定形 耐火物が被覆されていることを特徴とする精鍊用吹き込みランス。
( 2 ) 上記 ( 1 ) に記載された精鍊用吹き込みランスであって、 該ランス
の先端部において前記外管の外周に前記 A 1 2 O 3 -M g O系不定形耐火 物が被覆されており、該ランスの前記先端部に続く胴部において前記外管の 外周に S i 〇 2を 1 0〜40質量%含有する A 1 2 O 3 - S Ϊ 0、2系不定形 耐火物が被覆されている精鍊用吹き込みランス。
ここで、上記の先端部の不定形耐火物と胴部の不定形耐火物の境界は、溶 銑の湯面以下にあることが好ましい。
(3) 上記 ( 1 ) または (2) に記載された精練用吹き込みランスであつ て、前記溶融金属の浴面に対して傾斜して浸漬される精鍊用吹き込みランス であり、かつ、該吹き込みランスの先端には、該吹き込みランスの外径の 0. 5倍〜 2. 0倍の長さを有する水平部が備えられた精鍊用吹き込みランス。
(4) 上記 ( 1 ) 〜 (3) のいずれかに記載された精鍊用吹き込みランス を溶銑中に浸漬させ、該吹き込みランスの内管から溶銑中に酸素ガスを吹き 込むとともに、内管と外管との間隙から炭化水素系ガスを吹き込んで溶銑中 の珪素を酸化除去することを特徴とする溶銑の脱珪処理方法。
(5) 上記 ( 1 ) 〜 (3) のいずれかに記載された精練用吹き込みランス と、該吹き込みランスを保持する保持部と、該保持部を昇降させる昇降装置 とを備えた、溶融金属中に少なく とも酸素ガスを吹き込むための精鍊用吹き 込みランス設備であって、前記吹き込みランスの振動を抑制する機構として、 前記吹き込みランスの上端側を保持する羽根板と、前記昇降装置に備えられ、 前記羽根板を挟持する羽根板受とを有する精鍊用吹き込みランス設備。
ここで、前記羽根板の形成する平面と溶融金属浴面とのなす角度が吹き込 みランスの溶融金属浴面に対する傾斜角度と同一であることが好ましい。
(6) 上記 (5) に記載の精鍊用吹き込みランス設備を用い、 吹き込みラ ンスを溶銑中に浸漬させ、該吹き込みランスの内管から溶銑中に酸素ガスを 吹き込むとともに、 内管と外管との間隙から炭化水素系ガスを吹き込んで、
溶銑中の珪素を酸化除去するこ'とを特徴とする溶銑の脱珪処理方法。
( 7 ) 容器内に保持されている溶銑に対して脱珪反応、脱燐反応を行なう 溶銑の予備処理において、前記脱珪反応の時期に、 前記溶銑内に固体酸素源 を供給し、 気体酸素を前記溶銑の浴面に吹き付けるとともに、 上記 ( 1 ) ま たは ( 2 ) に記載された精鍊用吹き込みランスより前記溶銑内に気体酸素を 吹き込み供給することを特徴とする溶銑の予備処理方法。
ここで、前記脱燐反応の時期に、前記溶銑内に固体酸素源を供給するとと もに、 気体酸素を前記溶銑の浴面に吹き付けることが好ましい。
また、前記脱珪反応の時期において前記溶銑内に供給される前記固体酸素. 源及ぴ気体酸素の総酸素供給速度を、 0 . 2 3 N m V t Z minを下回る値と することが好ましい。 図面の簡単な説明
図 1は、 本発明に係る酸 ¾ガス吹き込みランスの概略断面図である。
図 2は、本発明に係る酸素ガス吹き込みランスを用いて混銑車に収容され . た溶銑を脱珪処理する状況を示す図である。
図 3は、 本発明に係る別の酸素ガス吹き込みランスの概略断面図である。 図 4は、本発明に係る精鍊用吹き込みラシス設備を用いて混銑車に収容さ れた溶銑を脱珪処理している概略図である'。 . 図 5は、 図 4の X— X ' 矢視による概略断面図である。
図 6は、 図 5の Y— Y ' 矢視による概略図である。
図 7は、本発明で使用するさらに別の吹き込みランスの概略断面図である。 図 8は、 本発明に係る溶銑の予備処理の構造を示す図である。
図 9は、 本発明に係る溶銑の予備処理の手順を示す図である。
図 1 0は、本発明に係る脱珪反応の時期における酸素供給速度 (固体酸素 及び溶銑内に吹き込み供給される気体酸素とを合わせたものの供給速度)と スロッビングの発生との関係を示した図である。
図 1 1は、本発明.に係る溶銑の予備処理を行なう ときの溶銑の成分の濃度 変化を示す図である。
図 1 2は、本発明に係るさらに別の酸素ガス吹き込みランスの概略断面図 である。'
(符号の説明)
1 酸素ガス吹き込みランス
1 A ランス先端部
I B ランス先端水平部
1 C ランス開口部中心
2 内管
3 外管
4 耐火物被覆層
4 A 先端部被覆層
4 B 胴部被覆層
5 混銑車
6 溶銑
6 A 浴面
7 屈曲部
1 1 精鍊用吹き.込みランス設備
1 2 昇降装置. .
1 3 保持部
1 3 A 保持部上部
1 9 振動防止冶具
2 0 鉄製羽根板
2 0 A 羽根板補強材
2 1 鉄製羽根板受
2 1 A、 2 1 B 羽根板受 部材
2 2 ガイ ドロール
2 6 上吹きランス 発明を実施するための最良の形態
以下、 本発明を具体的に説明する。 くランスの耐火物〉
本発明者らは混銑車に収容された溶銑に酸素ガス吹き込みランスを浸漬 させ、該ガス吹き込みランスから酸素ガスを溶銑に吹き込んで行う溶銑の脱 珪処理において、 ガス吹き込みランスの長寿命化について研究 .検討を行つ た。
その結果、酸素ガス吹き込みランスの外面が金属のままでは溶銑による溶 損を抑えることができないことが分かった。 また、実開平 6 - 6447号公報のよ うに外表面をカロライズ処理しても、酸素を大量に吹き込む場合は消耗が著 · しいため、 その効果は少ないことが分かった。 即ち、 酸素ガス吹き込みラン スの耐用性を向上させるためには、少なく とも溶銑中に浸漬させる部位の外 表面には、 耐火物の被覆層を形成させる必要のあることが分かった。
また、溶銑への浸漬部が単管構造では、耐火物を被覆したとしても耐用性 に乏しく、 従って、 少なく とも 2重管構造とし、 冷却用の炭化水素系ガスを 内管と外管との間隙に流すことが好ましいことが分かった。 これは、炭化水 素系ガスが分解する際の吸熱反応により、少なく とも酸素ガス吹き込みラン スの先端部は冷却され、 これにより、先端部の溶損が抑制されることが確認 されたからである。 . .
しかしながら、 これらの対策のみでは目的とする耐用性は得られず、 そこ で、使用済みの吹き込みランスを調査し、長寿命化を阻害している原因を調 查した。 調査結果から、 吹き込みランス浸漬部の損耗形態は、 溶銑及ぴスラ グによる溶損と、物理的に破壊するスポーリングの 2種理の損網形態が観察 された。
'さらなる調査の結果、 ランス先端部の溶損に関して、極先端部以外では炭 化水素系ガスの冷却効果はほとんど得られておらず、吹き込みランスに被覆 した耐火物の最も溶損の激しい部位は、先端部ではなく、炭化水素系ガスの 冷却効果が得られない、先端からやや離れた部位であることが分かった。 こ の知見から、酸素ガス吹き込みランスの耐用性を向上させるためには、被覆 する耐火物自体の溶損速度を減少させることが必要であることが分かった。
つまり、溶銑に対する耐溶損性に優れる耐火物とする必要のあることが分か つた。 そこで、耐火物材質の適正化を図るための試験を実施した。試験は混銑車 に収容された溶銑を脱珪処理する際に使用する酸素ガス吹き込みランスで 行った。図 1およぴ図 3に試験で使用した各酸素ガス吹き込みランスの概略 断面図を示し、 図 2に混銑車に収容された溶銑を脱珪処理する状況を示す。 図 1および図 3において、 1は酸素ガス吹き込みランス、 2は内管、 3は 外管、 4は不定形耐火物 (セメント状にして目的の形状に成形可能な耐火物 で例えばキャスタブル (castab le) などが挙げられる) からなる耐火物被覆' 層である。図 1においては耐火物被覆層 4は先端部被覆層 4 Aおよび胴部被 覆層 Bに別れ、 それぞれ異なる耐火物が用いられている。 内管 2の内部を 酸素ガスが流れ、 内管 2と外管 3 との間隙を炭化水素系ガスが流れ、酸素ガ ス及ぴ炭化水素系ガスは、酸素ガス吹き込みランス 1の先端部 1 Aから溶銑 中に吹き込まれるようになっている。 なお 1 Cはランス開口部中心、 7は屈 曲部 (屈曲前後のランス中心線の交点で定義される) である。
また、 図 2において、 5は混銑車、 6は溶銑であり、 混銑車 5に収容され た溶銑 6に、図' 1または図 3に示す酸素ガス吹き込みランス 1の先端部 1 A を浸漬させ、 内管 2 ら酸素ガス (必要に応じさらに精鍊剤) を吹き込み、 内管 2と外管 3 との間隙から炭化水素系ガスを吹き込み、溶銑 6に脱珪処理 を実施している様子を示している。
この溶銑脱珪処理において、耐火物被覆層 4 (あるいは先端部被覆層 4 A およぴ胴部被覆層 4 B ) の組成を変化させ、酸素ガス吹き込みランス 1の耐 用性を調査した。試験では、混銑車 5に収容された約 3 0 0 トンの溶銑 6に 内管 2から 3 0 N m 3 Z m i nの流量で酸素ガスを吹き込み、 また、 内管 2 と外管 3 との間隙から 2 ~ 5 N m 3 / m i nの流量でプロパンガスを吹き 込み、 脱珪処理した。 なお、 N m 3は、 標準状態における体積に換算した体 積を単位 m 3で示すものである。 内管 2及ぴ外管 3はステンレス鋼鋼管を使 用した。 この脱珪処理における試験条件を表 1に示す。
表 1
図 3のランスにおける耐火物被覆層 4としては、 A 1 2 O 3 - S i 〇2系キ ヤスタブル (A 1 2 O 3— 20質量0 /0 S i O 2) と、 A l 2〇 3— Mg O系キ ヤスタプルとで試験した。 A 1 2 O 3— M g O系キャスタプルでは、 Mg O の含有量を 3、 5、 1 0、 2 0、 30、 40、 5 0、 70質量%に変更し、 耐火物被覆層 4の損耗速度に及ぼす M g O含有量の影響を調査した。また図 1のランスにおける先端部被覆層 4 Aとして、 A 1 203— 7質量%Mg O キャスタブル、胴部被覆層 4 Bとして A 1 203— 20質量%S i 02キャス タプルを用い、先端部と胴部の境界は溶銑の湯面位置、屈曲部およびその中 間点 (真中) とした。 なお溶銑の湯面はスラグ表面ではなく、 溶銑そのもの の湯面とする。 試験結果を表 2に示す。
表 2
*)屈曲部と湯面位置との真中
表 2に示すように、 A 1 2 O 3 2 0質量% S i O 2キャスタブルの場合に は、 1チャージ当たりの損耗速度が 2 0 0 mm (以下、 「mmZ c h」 と記 'す) であったが、 M g'Oが 5〜 3 0質量%配合された A 1 2 O 3— M g O系 キャスタブルでは、 損耗速度が 1 5 mm/ c h以下であった。 但し、 A 1 2 03— Mg O系キャスタブルであっても、 M g Oが 5質量。 /。未満の場合には、 損耗速度が速く M g Oの効果が少ないことが分かった。 一方、 A 1 2 O 3 - Mg O系キャスタブルであっても、 M g Oが 3 0質量%を超えた場合には、 耐火物のヤング率が増加するために耐火物被覆層 4の割れが顕著となり、ス ポーリングによる割れが進行して耐用性の向上は期待できないことが分か つた。
これらの結果から、耐火物被覆層 4としては Mg Oを 5〜 3 0質量%含有 する A 1 203— M g O系不定形耐火物が最適であり、 この不定形耐火物を 使用することで、酸素ガス吹き込みランス 1の耐用性が向上することが分か つた。
なお、 最も良好な結果となつ'たのは、 先端部に A 1 2 0 3— M g O不定形 耐火物を用い、胴部に A 1 2 0 3 - S i O 2系不定形耐火物を用いた場合であ り、 全体を A 1 2 0 3— M g O不定形耐火物で被覆した場合より、 さらに損 耗速度が低く良好な結果であった。これは、以下の理由によると考えられる。 上記の適正範囲にある A 1 2 O 3 - M g O系不定形耐火物に比べても基本的 に A 1 2 0 3 - S i O 2系不定形耐火物は耐スポーリング性に優れ、とくに湯 面直上に掛かる熱衝擊に対しては有効である。 このため、 胴部を A 1 2 0 3 一 S i O 2系不定形耐火物とすることで、 さらにランスの耐久性が向上する ものと考えられる。
なお、本発明者らは他に A 1 2 O 3 - C r 2 0 3系、 A I 2 0 3— Z r〇2系、 S i O 2 - Z r 0 2系も単独あるいは組み合わせて試験してみたが、 上記本 発明ほどの改善効果は得られなかった。 本発明はこれらの試験結果に基づくものであり、発明に係る精鍊用酸素ガ ス吹き込みランス 1は、前述した図 1および図 3に示すように、 内管 2及び 外管 3からなる 2重管構造であり、 内管 2からは酸素ガス (および必要に応 じ精鍊剤) が吹き込まれ、 内管 2と外管 3との'間隙からは炭化水素系ガスが 吹き込まれる。外管 3の外周には図 3に示すように全体が M g Oを 5 ~ 3 0 質量%含有する A 1 2 0 3 - M g O系不定形耐火物が被覆されているか、 あ るいは図 1に示すように先端部が A 1 2 0 3 - M g O系不定形耐火物に被覆 され、残りの胴部が A 1 2 0 3 - S i O 2系不定形耐火物で被覆されているこ とを特徴とする。 図 1の場合も、 先端部の A 1 2 O a - M g O系不定形耐火物は M g Oが 5 〜 3 0質量%配合されたものを用いる。 また、 A 1 2 O 3 - S i O 2系不定形 耐火物は S i 0 2を 1 0〜4 0質量。 /0含有する場合に有効である。 耐スポー リング性の観点から、胴部被覆層 4 Bは、少なく とも溶銑の湯面までを被覆 することが好ましい。 先端部被覆層 4 Aは、耐溶損性の観点から充分な範囲
を被覆することが好ましく、例えば図 1に示す形状のランスの場合は、少な ぐとも屈曲部 7までを被覆することが好ましい。 すなわち、 図 1のランスに おいて、先端部被覆層 4 Aと胴部被覆層 ·4 Βとの境界は、 屈曲部と湯面位置 との間に位置させることが好ましい。
なお、先端部被覆層 4 Αと胴部被覆層 4 Bは境界部で連続的に移行するこ とが好ましい。 これは、外管 3の周囲に型を作り不定形耐火物を流し込んで ランスを被覆する際に、 途中で耐火物を変更することで容易に実現できる。 本発明で用いる A 1 2 O 3 - M g O系不定形耐火物、 A 1 2 O 3— S i O 2 系不定形耐火物とも、不純物を 7 %以下程度含有することは問題ない。 また 図 1、 図 3いずれの形態においても、 耐スポーリング性の観点から、 A l 2 O 3 - M g O系不定形耐火物中の M g Oの量は 5〜 1 0質量%が最も好ま しい。. 耐火物層の厚みは 25m m以上程度が好ましい。 本発明に係る精鍊用酸素ガス吹き込みランス 1は、溶融金属中に酸素ガス または酸素ガスとともに精鍊剤を供給して行う精練であるならばどのよう な精鍊であっても適用可能であるが、特に、溶銑の脱珪処理における酸素ガ ス供給手段として適用することが最適である。溶銑の脱珪処理で生成される スラグは S i O 2を主体としており、 本発明において耐火物被覆層 4あるい は先端部被覆層 4 A して使用する、 M g Oを 5〜 3 0質量%含有する A 1 2 O s - M g O系不定形耐火物は、 S i O 2を主体とするスラグに対する耐溶 損性に優れるからである。 ここで、 精鍊剤とは、 酸素源となる酸化鉄や生石 灰、 石灰石などのフラックスのことである。
また、本発明に係るランスは、 とくにトーピードカーにおける脱珪処理な ど、 多量の送酸 (例えば 1 0 N m 3 /min以上、 好ましくは 1 5 N m 3 /min以 上) により処理を進行させる用途に好適である。
本発明に係る精練用酸素ガス吹き込みランス 1を用いて溶銑 6の脱珪処 理を行う場合、 上記の試験と同一方法で、 つまり内管 2から酸素ガスを吹き 込み、内管 2と外管 3との間隙から炭化水素系ガスを吹き込んで脱珪処理を 行うが、 その際に、非浸漬型の上吹きランスによる酸素ガス添加などの他の
酸素ガス供給手段を併用しても構わない。 また、 図 1あるいは図 3に示す精 鍊用酸素ガス吹き込みランス 1では、先端部 1 Aまで内管 2及び外管 3が分 岐しない形状であるが、先端部近傍で内管 2及び外管 3を分岐させ、 T字型 或いは Y字型としてもよい。 T字型の例として、 図 1 2に、 本発明のランス の別の様態を示す。各符号の意味は図 1 と同じであり、垂直に溶銑中に浸漬 される点を除けば用法も図 1に示されたランスと同様である。 なお、 図 1 2 の形態のラ'ンスにおいて溶損を充分抑制するためには、先端部被覆層 4 Aは、 ランス開口部中心 1 Cからランスの先端までの距離 dの 2倍の位置までを 少なく とも被覆することが好ましい。 すなわち、先端部被覆層 4 Aと胴部被 覆層 4 Bとの境界は、ランス先端から 2 dの位置と湯面位置'との間に位置さ せることが好ましい。 Y字型ランスについても同様である。
内管 2及び外管 3はステンレス鋼鋼管である必要はなく、例えば炭素鋼鋼 管であっても問題ない。 また、 内管 2からの酸素ガスの吹き込み流量を低下 させる際に、 窒素ガス、 A rガスといった不活性ガスを酸素ガスに混合させ てもよいし、 富酸素空気などの酸素含有ガスを適宜利用しても良い。 酸素濃 度は必要とされる酸素量より適宜決定すればよい。内管 2からの酸素ガス吹 き込み流量の変更に伴って外管 3からの炭化水素系ガスの吹き込み流量を 低下させる際にも、窒素ガス、 A rガスといった不活性ガスを炭化水素系ガ スに混合させても V、。炭化水素ガスの量の目安としては、 内管 2から供給 される酸素の 5〜 2 0体積%程度とするこ-とが好ましい。炭化水素ガスとし ては、 プロパン(C3H8)、 メタン(CH4)、 ェタン(C2H6)、 ブタン(C4H1C1)等が比較 的低温で熱分解し、 分解吸熱も大きいため製鋼プロセスでは利用しゃすい。
<ランスの形状 >
次に、本発明者らは、 とくに斜めに浸漬するランスの形状の改善について 検討を行った。すなわち、 トーピードカーのように開口部が溶銑容量に対し て小さい場合、ランスを溶湯の湯面に対して斜めに浸漬することが撹拌を行 き渡らせる観点から有利であるが、他方、振動の悪影響は垂直に浸漬する場 合より強く受ける。
そこで、 吹き込みランスの浸漬部のスポーリング対策として、 吹き込みラ
ンスの先端に水平部を設け、該水平部の長さを変更する実験を行った。試験 は、前述した図 1または図 3に示す形状のランスを用レ、、図 7に示すように、 水平部 1 Bの長さ (L) を、 酸素ガス吹き込みランス 1の外径 (D) に対し て 0倍〜 3倍の長さで変化させた。 ここで、 水平部 1 Bの長さ (L) は、 内 管 2の軸心線の長さで表している。なお、図 7において 20は鉄製羽根板(後 述) である。
試験では、混銑車に収容された約 3 00 トンの溶銑に内管 2から 3 0 Nm 3Zm i nの流量で酸素ガスを吹き込み、 また、 内管 2と外管 3との間隙か ら Ζ δ Νπι3 /!!! i nの流量でプロパンガスを吹き込み、 脱珪処理した。 內管 2及び外管 3はステンレス鋼鋼管を使用した。耐火物被覆層 4としては、 表 2の No.10と同じ、 A 1 203— 5質量0 /oM g Oキャスタブルと A 1 2 O 3 - 20質量。 /0 S i O 2キャスタブルとの複合型を使用し、 耐火物被覆層 4の 厚みは 3 5 mmとした。 なお、酸素ガス吹き込みランス 1を浸漬する際の傾 斜角 (ランス (胴部) と溶銑表面とのなす角度) は 6 5° とし、 水平部 1 B の溶銑表面とのなす角度は約 0° とした。 脱珪処理における試験条件は前記表 1 と同様とした。 水平部 1 Bの長さ (L) を変化させたと'きの浸漬部の損耗状況は表 3に示す。
表 3
No. 先端水平部長さ 区分 耗速度 (mm/ch) 最終損耗形態
21 水平部なし 好適範囲外 0~10 安定 (スホ。-リンク')
22 外径 χθ.3倍 好適範囲外 0~9 安定 (スホ '-リンク')
23 外径 χθ.5倍 好適範囲 0~8 安定 (スホ。-リンク')
24 外径 χθ.75倍 好適範囲 0-8 安定 (スホ。-リンク')
25 外径 x1.0倍 好適範囲 0-8 安定 (スホ。-リンゲ)
26 外径 x1.5倍 好適範囲 0~8 安定 (スホ リンク')
27 外径 x2.0倍 好適範囲 0-8 安定 (スホ '-リンク')
28 外径 x2.5倍 好適範囲外 0~10 安定 (非浸漬部割れ)
29 外径 x3.0倍 好適範囲外 0~12 安定 (非浸溃部割れ)
表 3に示すように、 水平部 1 Bの長さ (L) を、 酸素ガス吹き込みランス 1の外径 (D) の 0. 5倍〜 2. 0倍相当の長さとすることで、 損耗速度は 8 mm/c h以下となり、 表 2の結果よりさらに改善された。 なお、 表 2の 実験における水平部 1 Bの長さは外形 Dの 0. 4倍であった。
これに対して、 水平部 1 Bを設置しない場合や水平部 1 Bの長さ (L) が 酸素ガス吹き込みランス 1の外径 (D) の 0. 3倍の場合には、 損耗速度の 最大は 9〜 1 0 mmZ c hとなった すなわち、 この場合には、 水平部 1 B を設けることによる振動抑制の効果が発揮されず(すなわちランスが溶銑か らのカを受けやすく)、 スポーリングまでの寿命には顕著な改善が見られな かった。 一方、 水平部 1 Bの長さ (L) が酸素ガス吹き込みランス 1の外径 (D) の.2. 5倍以上の場合には、 損耗速度の最大が 1 0〜 1 2 mmZ c li とな た。 この場合は、 酸素ガス吹き込みランス 1の非浸漬部の割れがネッ クとなった。
これらの結果から、 水平部 1 Bの長さ (L) は、 酸素ガス吹き込みランス 1の外径 (D) の 0. 5倍〜 2. 0倍相当の長さが最適であり、 このよ うに することで、酸素ガス吹き込みランス 1の耐用性が向上することが分かった。. このように、 水平部.1 Bの長さ (L) を適正値に調整することにより、 酸 素ガス吹き込み時の振動が抑制され、酸素ガス吹き込みランス 1の浸漬部の スポーリング、及ぴ、 酸素ガス吹き込みランス 1の非浸漬部等での亀裂を克 服でき、 安定的な酸素ガス吹き込みが可能となることが分かった。
本発明はこれらの試験結果に基づく ものであり、発明に係る精鍊用吹き込 みランス 1は、外表面に不定形耐火物の被覆層 4 (あるいは 4 Aおよび 4 B) が形成された、溶融金属の浴面に対して傾斜して浸漬される吹き込みランス であって、 先端部には、 吹き込みランス外径の 0. 5倍〜 2. 0倍相当の長 さを有する水平部 1 Bが備えられていることを特徴とする。
なお、 ランスの傾斜角は 4 5〜8 5° とすることが好ましく、 さらに 6 0 ~ 8 5° とすることが好ましい。 また、 水平部は、 溶銑の湯面 (水平面) に 対して一 20〜+ 20° 、好ましくは 0° となるようにすることが好ましい。
<ランス設備 (振動防止機構) ■>
以上述べたように吹き込みランスの寿命を延ばすには、ランスの耐火物や 形状を適正化することが好ましいが、 さらに、 ランスの振動を効率的にかつ 低コス トで抑制することも有効である。
すなわち、脱珪反 j ^の酸素源として酸素ガスのみを使用した場合のように 酸素ガス供給量を増加した場合には、 吹き込みランスの振動が激しくなり、 スポーリングによる損耗が発生しゃすくなる。 また、吹き込みランスの振動 により、吹き込みランスの浸漬部のみならず、非浸漬部における耐火物被覆 層の割れや脱落、 更には、 ランス昇降装置の亀裂発生なども発生することが あり、 これらにより寿命を迎えるケースや設備破壌に至るケースもある。 こ の知見から、 吹き込みランスの耐用性を向上させるためには、 吹き込みラン スの ならず、 吹き込みランスを保持する保持部、 及ぴ該保持部を昇降させ る昇降装置を含めた精鍊用吹き込みランス設備全体の振動を防止すること が有効であり、 望まれる。 そこで、精鍊用吹き込みランス設備全体の振動を防止するための振動防止 対策を検討した。 種々の試作 ·検討をした結果、 吹き込みランスの上端部側 に鉛直方向の振動を防止するための振動防止冶具を設置すればよいことが 分かった。 ·
以下、添付図面を参照して振動防止冶具を備えた本発明に係る精鍊用吹き 込みランス設備の一例を説明する。 図 4は、本発明に係る精鍊用吹き込みラ ンス設備を用いて混銑車に収容された溶銑を脱珪処理している概略図であ り、 図 5は、 図 4の X— X ' 矢視による概略断面図、 図 6は、 図 5の Y— Y ' 矢視による概略図である。
図 4に示すように、本発明に係る精鍊用吹き込みランス設備 1 1は、溶銑 6の浴面に対して傾斜して浸漬される酸素ガス吹き込みランス 1 と、この酸 素ガス吹き込みランス 1を保持する保持部 1 3と、この保持部 1 3を昇降さ せる昇降装置 1 2とで構成されている。即ち、保持部 1 3は保持部上部 1 3 Aで昇降装置 1 2に固定されており、昇降装置 1 2の作動により、酸素ガス 吹き込みランス 1が混銑車 5に収容された溶銑 6に浸漬するようになって
いる。酸素ガス吹き込みランス 1の先端部には水平方向に向いた水平部 1 B が設置され、 また、酸素ガス吹き込みランス 1の外周には不定形耐火物から なる耐火物被覆層 4が形成されている。耐火物被覆層は図 1に示すように複 合構造でも良いし、 また好ましい。 酸素ガス吹き込みランス 1が所定の位置まで浸漬したときの、保持部 1 3 と酸素ガス吹き込みランス 1 との継目の直下位置に相当する部位の昇降装 置 1 2に、振動防止冶具 1 9が設置されており、酸素ガス吹き込みランス 1 の耐火物被覆層 4の形成されていない .1
9部位が振動防止冶具 1 9に支持され ている。
図中の符号 2 2はガイ ドロールである。ガイ ドロール 2 2は必須ではない が、単数または複数個設け、酸素ガス吹き込みランス 1がガイ ドロール 2 2 にも案内されるように構成することは、酸素ガス吹き込みランス 1の交換に おける作業性を向上させる上で有効な一手段である。 振動防止冶具 1 9を、 図 5及ぴ図 6を参照して説明する。酸素ガス吹き込 みランス 1にはその下面側に鉄製羽根板 2 0が取り付けられている。羽根板 の素材は、 鉄製である必要は無い。 すなわち、 必要な強度を備え、 素材コス トおよび加工コス ト^折り合うものであれば何でも良いが、これらの観点か ら鉄製であることが好ましい。 なお、 振動防止冶具は、 その位置から、 スラ グゃ地金の付着による痛みが激しく、 このため、低コス トで更新可能.である ことは重要である。
鉄製羽根板 2 0は何らかの手段で酸素ガス吹き込みランス 1を固定する。 1つの手段は、羽根板を酸素ガス吹き込みランス 1に溶接等の手段で接続 · 固定することである。 他の手段として、符号 2 0 Aに示すような鉄製羽根板 2 0の補強材を設けることが考えられる。すなわち、 2枚の羽根板補強材 2 0 Aおよび鉄製羽根板 2 0とによって構成された凹状部分に、酸素ガス吹き 込みランス 1を位置させて振動しないように拘束する。 この場合、 ランスを 鉄製羽根板 2 0等に接合してもよいが、作業を省略する観点などから、接合 せず単にランスを位置させるだけでもよい。
なお、酸素ガス吹き込みランス 1 と鉄製羽根板 2 0を接合しない場合、 図 5の振動防止冶具では同図の上方へのランスの振動は拘束されない。当該方 向への振動力は比較的弱いので、 このままでもよいが、 同図上方への振動を 拘束するために、 押さえ手段を設けても良い。 該押さえ手段としては、 例え ば、捕強材 2 0 Aに蝶番などで可動に接合され、 ランス設置後に閉じる門状 の押さえ具などが考えられる。 鉄製羽根板 2 0の左右には、 鉛直方向と平行に配置された部材 2 1 Aと、 部材 2 1 Aに取り付けられた一対の部材 2 1 Bとで構成される鉄製羽根板 受 2 1が設置されている。 . 対向する一対の部材 2 1 Bは間隙.を設けてあり、この間隙に鉄製羽根板 2 0が揷入されるようになっている。 つまり、 鉄製羽根板受 2 1は、 左右から 鉄製羽根板 2 0を挟持して案内するようになっている。 この場合、鉄製羽根 板 2 0の形成する平面が、酸素ガス吹き込みランス 1の浸漬方向と平行で且 つ鉄製羽根板 2 0の形成する平面と溶銑浴面とのなす角度が、酸素ガス吹き 込みランス 1 の溶融金属浴面に対する傾斜角度と同一になっていることが 好ましい。 なお、 ランスと羽根板を固定しない場合、 ランス設置前に羽根板 が落下をすることを防止するため、落下防止冶具を備えても良い。落下防止 冶具としては、例えば、羽根板受部材 2 1 Bの図 6における下端の位置にス トッパーを設置することが考えられる。羽根板受の素材も鉄製である必要は 無いが、 羽根板と同様の理由で鉄製が好適である。 このように、鉄製羽根板.2 0が鉄製羽根板受 2 1で案内されることにより、 酸素ガス吹き込みランス 1の鉛直方向の振動が抑制されるようになつてい る。 尚、 振動防止冶具 1 9は、 鉄製羽根板 2 0及び鉄製羽根板受 2 1で構成 されていることに特徴があり、 その他の細部 (例えば構造や、 羽根板と羽根 板受との間の 「遊び」 の設計など) は必要に応じて自由に構成してよい。 この構成の精鍊用吹き込みランス設備 1 1を用いることで、ガス反力によ る酸素ガス吹き込みランス 1の鉛直方向の振動が抑制されて、吹き込みラン ス 1の非浸漬部における耐火物被覆層 4の亀裂、 脱落、 及び、 昇降装置 1 2
における亀裂が解消された。 - 例えば、 図 5およぎ図 6に示された装置を用いて、 表 3の No. .2 5の条件 で試験を行ったところ、損耗速度は 7 m m / c h以下となり、表 3の結果よ り さらに改善された。 このように、振動防止冶具 1 9を設置することにより、酸素ガス吹き込み 時の振動が抑制され、 酸素ガス吹き込みランス 1の浸漬部のスポーリング、 及び、酸素ガス吹き込みランス 1の非浸漬部ゃ昇降装置 1 2での亀裂をさら に抑制でき、 より安定的な酸素ガス吹き込みが可能となることが分かった。 本発明はこのような試験結果に基づくものであり、発明に係る精鍊用吹き 込みランス設備 1 1は、外表面に不定形耐火物の耐火物被覆層 4が形成され た、溶融金属の浴面に対して傾斜して浸漬される酸素ガス吹き込みランス 1 と、 酸素ガス吹き込みランス 1を保持する保持部 1 3と、保持部 1 3を昇降 させる昇降装置 1 2とを備え、溶融金属中に酸素ガスまたは酸素ガスととも に精鍊剤を吹き込むための精鍊用吹き込みランス設備 1 1であって、前記吹 き込みランスの振動を抑制する機構として、酸素ガス吹き込みランス 1の上 端部に、 これを保持す.る羽根板 2 0と、 昇降装置 1 2に備えられ、 (鉄製) 羽根板 2 0を挟持す (鉄製) 羽根板受 -2 .1 とを有することを特徴とする。 ここで羽根板 2 0の形成する平面が酸素ガス吹き込みランス 1の浸漬方向 と平行で且つ羽根板 2 0の形成す'る平面と溶融金属浴面とのなす角度が酸 素ガス吹き込みランス 1 の溶融金属浴面に対する傾斜角度と同一であるこ とが好ましい。 また、羽根板 2 0が羽根板受 2 1に案内されることによって 酸素ガス吹き込みランス 1 のと くに鉛直方向の振動が抑制されることが好' ましい。 本発明に係る精鍊用吹き込みランス設備 1 1は、溶融金属中に酸素ガスま たは酸素ガスとともに精鍊剤を供給して行う精練であるならばどのような 精鍊であっても適用可能であるが、特に、溶銑の脱珪処理における酸素ガス 供給手段として適用することが最適である。 本発明を適用することにより、
脱珪処理において熱余裕の創出'が可能となり、 その結果、鉄スクラップ溶解 のための熱として使用可能となるからである。 ここで、 精鍊剤とは、 酸素源 となる酸化鉄や生石灰などのフラックスのことである。
本発明に係る精鍊用吹き込みランス設備 1 1を用いて溶銑 6の脱珪処理 を行う場合の留意事項は、 本発明の吹き込みランスの場合と同様である。
<溶銑の予備処理方法 >
次に、本発明に係る溶銑の予備処理方法について、 図面を参照しながら説 明する。
図 8は、本発明に係る 1実施形態の予備処理設備を示すものであり、符号. 5は、 高炉 (図示せず) から出銑された溶銑 6を保持している トーピードカ 一 (镡銑車) であり、 この混銑車 5内に移動可能に、 昇降自在な、 上吹きラ ンス 2 6及び精鍊用吹き込みランス設備 1 1が設置されている。
上吹きランス 2 6は、混銑車 5内の溶銑 6の浴面 6 Aに気体酸素を吹き付 け供給する装置である。なお、この上吹きランス 2 6で供給する気体酸素を、 上吹き気体酸素と称する。
精鍊用吹き込みランス設備 1 1は、溶銑 6の内部に気体酸素を吹き込み供 給するとともに、酸化鉄等の固体酸素を溶銑 6の内部に供給する装置である。 なお、 この精鍊用吹き込みランス設備 1 1で供給する気体酸素を、 インジェ クション気体酸素と称する。
混銑車 5は、 溶銑 6の予備処理を行なった後に転炉 (図示せず) まで移動 し、 溶銑 6を転炉に装入するようになっている。 次に、本実施形態の溶銑の予備処理方法について、 図 9およぴ図 1 0を参 照しながら説明する。
図 9に示すように、予備処理の初期に行なわれる脱珪反応期には、精鍊用 吹き込みランス設備 1 1から固体酸素及ぴィンジ: クション気体酸素の供 給を行なう とともに、上吹きランス 2 6により上吹き気体酸素の供給を行な うようにした。 また、 脱珪反応期に引き続いて行なわれる脱燐反応期に、 ィ ンジェクション気体酸素の供給を停止し、固体酸素及ぴ上吹き気体酸素の供
給を引き続き行なうようにした。
ここで、 癸明者は、 脱珪反応期に、 混銑車 5内に供給される固体酸素及び ィンジ クション気体酸素を合わせた酸素の供給速度 (以下、総酸素供給速 度と称する) が増大すると、溶銑 6中の炭素と急激に反応して突沸物が発生 し、 混銑車 5の溶銑口から突沸物が噴出するスロッビング (s lopping) が起 きるおそれがあるので、固体酸素及ぴィンジェクショ ン気体酸素の総酸素供 給速度を検討することにした。 そして、 表 4に示す成分の溶銑 6について、 脱珪期のスロッビングの発生率と総酸素供給速度との関係を調査した。
表 4
その関係を図 1 0に示すが、 総酸素供給速度が 0 . 2 3 N m 3 / t /minを 下回るときにはス口ッビングが発生せず、 総酸素供給速度が 0 . 2 3 N m 3 / t Zminを上回ると、 .スロ ッビングの発生頻度が増加することがわかった。 したがって、 脱珪反応期における総酸素供給速度を、 0 . 2 3 N m 3 / t / minを下回る値に制限するようにした。 次に、本実施形態の溶銑の予備処理方法の作用効果について、 図 8から図 1 1を参照して説明する。 なお、 図 1 1は、 脱珪反応期及ぴ脱憐反応期にお ける溶銑 6中の炭素 (C ) 濃度、 珪素 (S i ) 濃度、 燐 (P ) 濃度の変化を 示している。
脱珪反応期では、図 1 1に示すように溶銑 6中の珪素濃度が大幅に減少し ていく。
そして、溶銑 6の内部に精鍊用吹き込みランス設備 1 1から固体酸素及ぴ インジェクション気体酸素を供給しているので、溶銑 6の脱炭反応により十
分な量の C Oガスが発生する。溶銑 6から十分な量の C Oガスが発生すると、 この C Oガスと溶銑 6の浴面 6 Aに向けて上吹きランス 2 6から供給され る上吹きの気体酸素との 2次燃焼が活発になり、大量の 2次燃焼の熱が発生 する。 したがって、 脱珪反応期には、 大量に 2次燃焼の熱が癸生することに よって熱捕償を効果.的に行なうことができる。
また、 前述したように脱珪反応期における総酸素供給速度を、 0 . 2 3 N m 3 / t /minを下回る値に制限するようにしたので、 混銑車 5の溶銑口か ら突沸物が噴出するスロッビングの発生を防止することができる。
一方、脱珪反応期に引き続いて行なわれる脱燐反応期は、本実施形態では、 ィシジェクション気体酸素の供給を停止し、固体酸素及び上吹き気体酸素の 供給を引き続き行なうようにしている。本実施形態では、溶銑 6中に吹き込 まれる固体酸素は溶銑中 [ C ]との反応より も優先的に溶銑中 [ P ]と反応す るため、図 1 1の線 Cで示すように炭素濃度は比較的緩やかに減少していき、 脱炭反応が抑制される。 これに対して、脱燐反応期の初期から溶銑 6中にィ ンジェクション気体酸素を供給する従来の方法では、気体酸素は溶銑中 [ P ] よりも溶銑中 [ C ]と優先的に反^するため、 図 1 1の線 C 'で示すように炭 . 素濃度が比較的急激に減少する。そのため後工程における脱炭工程において 熱余裕が不足する等の支障が生じる。
このように、本実施形態の脱燐反応期では、脱炭反応よりも比較的優先し て脱燐反応が起こるため、図 1 1の線 Pで示すように燐濃度を確実に低下さ せることができる。 これに対して、脱燐反応期の初期から溶銑 6中にインジ クション気体酸素を供給する従来の方法では、脱炭反応が脱燐反応よりも 比較的優先して起こるため、 図 1 1の線 P 'で示すように溶銑 6中の憐濃度 が低下しない。
したがって、 本実施形態では、 脱珪反応期には、 溶銑 6の内部に固体酸素 及ぴィンジエタション気体酸素の供給を行ない、且つ溶銑 6の浴面 6 Aに向 けて上吹き気体酸素の供給を行なうとともに、脱燐反応期には、 ィンジェク シヨ ン気体酸素の供給を停止し、固体酸素及び上吹き気体酸素の供給を行な うようにしているので、熱補償を効果的に行うことができるとともに、効率 よく不純物の除去を行なうことができる。
なお、 脱珪反応期、 脱燐反応期の見極めは、 混銑車 5の集麈系統で測定さ れる排ガス温度或いはサンプル採集で判定でき、例えば排ガス温度の急上昇 で脱珪反応期の終了を検知することができる。
〔実施例〕
(実施例 1 )
俞述した図 4に示す精鍊用吹き込みランス設備及び、前述した図 1および 図 7に示す吹き込みランスを用いて、混銑車に収容された溶銑の脱珪処理を 実施した (表 5参照)。 なお、 振動防止治具については図 5および図 6に示 すものを用いたが (本発明^ 3、 5、 6 )、 一部の例で使用しなかった (本 発明例 1、 2、 4 )。 ランスの傾斜角は 7 0。Cとした。 なお、 本発明例 7に ついてのみ、 図 1 2に示す T型ランスを用い垂直に浸漬した。
酸素ガス吹き込みランスの耐火物被覆層は、 A 1 2 O 3 " 1 0質量。/。 M g Oキャスタブルで施工するか (本発明例 1 )、 先端から溶銑湯面までを A 1 2 0 3 - 7質量0 /0 M g Oキャスタブル、 溶銑湯面より上方を A 1 2 0 3 - 2 0 質量%S i O 2キャスタプルで施工した (本発明例 2〜 7 )。
脱珪処理においては、 内管から酸素ガスを吹き込みながら、 内管と外管と の間隙からプロパンガスを吹き込んで、合計 3 6〜 5 1チャージの脱珪処理 を実施した。吹き込みランス先端部の水平部の長さ (L ) は外径(D ) の 0 . 3倍〜 1 . 0倍とした。 また、比較のために、耐火物被覆や吹き込みガス等を変化きせて脱珪処理 を実施した (表 6参照)。 なお、 一部の比較例では、 酸素源と して酸素ガス を使用せずに、 窒素ガスを搬送用ガスとして酸化鉄 (鉄鉱石) を內管から吹 き込んだ (比較例 5および 6 )。 酸化鉄中の酸素量は、 化学分析値に基づい て酸化鉄 1 k gが酸素ガス 0 . 1 5 N m 3に相当するとし、 送酸速度が一定 になるように調整した。
表 5およぴ表 6に記載された以外の条件は、本発明例およぴ比較例とで同 一とした。
本発明例おょぴ比較例において、酸素ガス吹き込みランスの寿命及び溶銑 温度について比較評価した。表 5および表 6に試験条件及び試験結果を示す。
表 5
*1) '複合被覆 1: 先端〜湯面: AI203-7質量%MgO、湯面 ~:Ai203- 20質量"/ iSi'02
*2) T型ランス垂直浸漬: 図 12に示すランスを使用し、垂直に浸漬
表 6
*1) 複合被覆 1: 先端〜湯面: AI203-7質量 ¾MgO、湯面〜: AI2O3-20質量 ¾Si02
*2) 複合被覆 2: 先端〜湯面: Al203- 50質量 %MgO、湯面〜: A1203- 20質量 ¾SiOz
*3) T型ランス垂直浸漬: 図 12に示すランスを使用し、垂直に浸漬
本発明例では、 斜め浸漬タイプで 3 0 Nm3/minの酸素を吹き込んだ場 合、条件ランス寿命は 1本のランス当たり平均で 6. 5〜 8. 5チャージ(以 下、 rc liZ本」 と記す) となり (本発明例 1 ~ 5)、 その他の条件でも好成 績であった。 また、 酸素ガスを酸素源として使用することで、 脱珪処理にお いて、溶銑中の珪素 0. 0 1質量%が酸化除去されることにより約 3°Cの溶 銑温度上昇が認められた。
なお、複合被覆とした方がランス寿命は長く (本発明例 1 と本発明例 2と の比較)、 また先端水平部長さを外形の 0. 5〜 2. 0倍の範囲内とするこ とによりランス寿命が改善され (本発明例 2と本発明例 4との比較)、 振動 防止治具を採用することでさらにランス寿命が改善される(本発明例 4と本 発明例 5との比較)。
一方、耐火物被覆層を A 1 203— 20質量。 /oS i 02キャスタブルで施工 した酸素ガス吹き込みランスを用い、その他は本発明例 5と同じ条件で脱珪 処理した場合 (比較例 1 ) では溶損が激しくランス寿命は 1. 0 c 本で あった。垂直浸漬型でも同様に、 A 1 2 O 3 - 20質量。 /oS i O 2キャスタブ ルを耐火物被覆として用いると極度にランス寿命は短くなる(本発明例 7と 比較例 7との比較)。
また、 A 1 203— 20質量%S i 02キャスタプルを耐火物被覆として用 い、酸素源として酸素ガスを使用せずに、 窒素ガスを搬送用ガスとして酸化 鉄 (鉄鉱石) を内管から吹き込み、 また、 内管と外管との間隙からは窒素ガ スを吹き込んだ場合、 ランス寿命はそこそこ良好であるが、使用する酸化鉄 の顕熱に熱が奪われ、 溶銑温度は上昇せず、 逆に低下 (したがって後工程で の熱余裕不足を補償するためのエネルギーが増大する) ことが確認された (比較例 5および比較例 6 )。
なお、 30質量%を超える Mg Oを含有する A 1 203— Mg O系キャス タブルを単独あるいは複合して耐火物被覆として用いた場合、スポーリング のためランス寿命はやはり本発明に比べて著しく低くなる(比較例 2および 比較例 3)。 また、 本発明の A 1 203— Mg O系キャスタプルを用いたとし ても、 内管と外管との間隙から炭化水素ガスを供給しない場合は、 ランス寿 命は著しく低下する (比較例 4)。
(実施例 2)
表 7は、 溶銑の予備処理方法の脱珪反応期を、 本発明と、 本発明と異なる 比較方法 (以下、 比較例) とで比べたものである。 予備処理設備としては図 8に示したものを用い、 ランス設備としては実施例 1の本発明例 5 (表 5) に示したものと同じものを用いた。本発明の脱珪反応期では、溶銑 6の内部 に固体酸素及ぴィンジェクショ ン気体酸素の供給を行ない、且つ溶銑 6の浴 面 6 Aに向けて上吹き気体酸素の供給を行なっている。 また、 比較例 Aは、 脱珪反応期に、固体酸素及びィンジェクション気体酸素の供給を行なってい
る。 また、 比較例 Bは、 脱珪反応期に、 固体酸素及び上吹き気体酸素の供給 を行なっている。 なお、 表 7の熱余裕とは、 脱珪反応期の前後の炭素濃度及 び溶銑温度で得ちれる数値であり、数値が高いほど熱補償が効果的に得られ ることを表している。 比較例 Aは、固体酸素及びィンジェクション気体酸素を供給したことで溶 銑の脱炭反応により十分な量の C Oガスが発生することができる力 、上吹き 気体酸素を供給していないので 2次燃焼が発生しにく く、 比較例 B、本発明 と比較して熱余裕の数値が低い。
また、比較例 Bは、 固体酸素のみを供給したことで溶銑の C Oガス発生量. が少なく、上吹きの気体酸素との 2次燃焼による熱を十分に発生することが できず、 本発明と比較して熱余裕の数値が低い。
これに対して、本発明は、 固体酸素及ぴィンジヱクション気体酸素を供給 したことで溶銑の脱炭反応により十分な量の C〇ガスが発生し、この C〇ガ スと上吹きの気体酸素との 2次燃焼による熱を十分に浴面で発生させ着熱 することができ、 熱余裕の数値が高くなる。
表 7
*)熱余裕- (脱珪反応後の G質量 % -処理前の G質量 5 x100
- (脱珪反応後の溶銑温度 °C -処理前の溶銑温度。 C)
また、 表 8は、 溶銑の予備処理方法の脱珪反応期に引き続き、 脱憐処理を 行なった際の、 本発明法と、 本発明と異なる方法 (以下、 比較例) とで比べ たものである。本発明の脱燐反応期では、溶銑 6中に固体酸素の供給を行い、 且つ溶銑 6の浴面 6 Aに向けて上吹き気体酸素の供給を行なう。 また、比較 例 Cは、脱燐反応期に固体酸素及ぴィンジェクション気体酸素の供給を行な つている例を、 また、 比較例 Dは、 脱燐反応期に固体酸素及びインジェクシ ョン気体酸素の供給を行い、且つ溶銑 6の浴面 6 Aに向けて上吹き気体酸素 の供給を行なっている例を示す。 なお、 表 8の熱余裕とは、 脱燐反応期の前 後の炭素濃度及び溶銑温度から得られる数値であり、表 7と同様に数値が高 いほど熱捕償が効果的に得られることを表している。本発明法においてはィ. ンジェクション気体酸素の供給を停止し、固体酸素供給及ぴ上吹き気体酸素 の供糁を行なうため、 脱炭反応が抑制され脱燐反応が進み、 しかも、 熱余裕 の数値が高くなる。
表 8
*) 熱余裕 = (脱燐期後の c質量 ¾ -処理前の C質量 %)x100
- (脱燐期後の溶銑温度 °C-処理前の溶銑温度。 G)
産業上の利用の可能性
本発明の精鍊用ガス吹き込みランスによれば、酸素ガス吹き込みランスの 損耗速度を従来に比べて大幅に低減することができる。 その結果、精鍊反応 に使用する酸素ガスを、転炉底吹き羽口のような設備を用いることなく、 高
効率で且つ撹拌力を向上可能な方法で長期間にわたって同一の吹き込みラ ンスで添加可能となる。 また、 酸素ガスを吹き込むことにより、 熱余裕の創 出が可能となる。 その結果、鉄スクラップ溶解のための熱として使用可能と なり、 鉄鋼材料製造 B#の C O 2発生量の低減に寄与する。 また酸素ガス吹き 込みランスの寿命が延びることで、 ランス交換作業の頻度軽減、 更に、 常に 浸漬深さを大きく確保できるといった利点がある。
特に、溶銑の脱珪処理で本発明の酸素ガス吹き込みランスを使用すること により、 脱珪反応による発熱を有効利用することが可能となる。 また、本発明の精鍊用ガス吹き込みランス設備によれば、 酸素ガス吹き込 み時の吹き込みランスの振動が抑制され、振動に起因して吹き込みランスに 作用する応力が緩和されて、吹き込みランスの浸漬部におけるスポーリング や、非浸漬部における亀裂がさらに防止され、 吹き込みランスの耐用性を従 来に比べて大幅に向上させることができる。 その結果、 上に述べた効果をさ らに向上させることができる。 さらに、 本発明の溶銑の予備処理方法によると、 脱珪反応の時期に、 溶銑 内に固体酸素を供給し、溶銑内に気体酸素を吹き込み供給することで、溶銑 中の脱炭反応により十分な量の C Oガスが発生する。 そして、溶銑から十分 な量の C Oガスが発生すると、この C Oガスと溶銑の浴面に向けて供給され ている気体酸素と浴面で 2次燃焼が活発になり、大量の 2次燃焼の熱が発生 して溶銑に着熱する。 これにより、溶銑の熱補償を効果的に行なうことがで き、次工程の転炉での脱炭精鍊における溶銑配合率の低下や熱余裕の不足等 の問題を解消することができる。
Claims
1 . 溶融金属中に少なく とも酸素ガスを吹き込むための吹き込みランスで あって、
内管及び外管からなる 2重管構造であり、
内管からは酸素ガスが吹き込まれ、
内管と外管との間隙からは炭化水素系ガスが吹き込まれ、
外管の外周には M g Oを 5〜 3 0質量%含有する A 1 2 O 3— M g O系 不定形耐火物が被覆されている精鍊用吹き込みランス。
2 . 請求項 1に記載の精鍊用吹き込みランスであって、
該ランスの先端部において前記外管の外周に前記 A 1 2 O 3 - M g O系 不定形耐火物が被覆されおり、
該ランスの前記先端部に続く胴部において前記外管の外周に S i o 2を
1 0〜 4 0質量%含有する A 1 2 O a - S i O 2系不定形耐火物が被覆され ている精鍊用吹き込みランス。
3 . 請求項 1または 2に記載の精鍊用吹.き込みランスであって、
溶融金属の浴面に対して傾斜して浸漬され、
先端に外径の 0 . 5倍〜 2 . 0倍の長さを有する水平部が備えられた精鍊 用吹き込みランス。
4 . 請求項 1〜 3のいずれかに記載された精鍊用吹き込みランスと、該吹 き込みランスを保持する保持部と、該保持部を昇降させる昇降装置とを備え た、溶融金属中に少なく とも酸素ガスを吹き込むための精鍊用吹き込みラン ス設備であって、
前記吹き込みランスの振動を抑制する機構として、前記吹き込みランスの 上端側を保持する羽根板と、前記昇降装置に備えられ、前記羽根板を挟持す る羽根板受とを有する精鍊用吹き込みランス設備。
5 . 請求項 1〜 3のいずれかに記載された精鍊用吹き込みランスを溶銑中 に浸漬させ、 ·
該吹き込みランスの内管から溶銑中に酸素ガスを吹き込むとともに内管 と外管との間隙から炭化水素系ガスを吹き込んで、
溶銑中の珪素を酸化除去する、 溶銑の脱珪処理方法。
6 . 請求項 4に記載された精鍊用吹き込みランス設備を用い、
該吹き込みランスを溶銑中に浸漬させ、
該吹き込みランスの内管から溶銑中に酸素ガスを吹き込むとともに内管. と外管との間隙から炭化水素系ガスを吹き込んで、
溶銑中の珪素を酸化除去する、 溶銑の脱珪処理方法。
7 . 搬送容器内に保持されている溶銑に対して脱珪反応、脱燐反応を行な う溶銑の予備処理において、 ■
前記脱珪反応の時期に、 前記溶銑内に固体酸素源を供給し、
気体酸素を前記溶銑の浴面に吹き付けるとともに、
請求項 1または 2に記載された精鍊用吹き込みランスより前記溶銑内に 気体酸素を吹き込み供給する溶銑の予備処理方法。
8 . 前記脱燐反応の時期に、
前記溶銑内に固体酸素源を供給するとともに、
気体酸素を前記溶銑の浴面に吹き付ける、
請求項 7に記載の溶銑の予備処理方法。
9 . 前記脱珪反応の時期において
前記溶銑内に供給される前記固体酸素源及ぴ気体酸素の総酸素供給速度 を、 0 . 2 3 N m3/ t Zniinを下回る値とする請求項 7又は 8に記載の溶銑 の予備処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200780006877XA CN101389774B (zh) | 2006-02-27 | 2007-02-26 | 精炼用吹入氧枪、精炼用吹入氧枪设备、铁水的脱硅处理方法和铁水的预备处理方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006049686 | 2006-02-27 | ||
JP2006-049686 | 2006-02-27 | ||
JP2006053017A JP4923623B2 (ja) | 2006-02-28 | 2006-02-28 | 精錬用吹き込みランス設備及び溶銑の脱珪処理方法 |
JP2006-053017 | 2006-02-28 | ||
JP2006-104245 | 2006-04-05 | ||
JP2006104245A JP5181425B2 (ja) | 2006-04-05 | 2006-04-05 | 溶銑の予備処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007100113A1 true WO2007100113A1 (ja) | 2007-09-07 |
Family
ID=38459207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/054109 WO2007100113A1 (ja) | 2006-02-27 | 2007-02-26 | 精錬用吹き込みランス、精錬用吹き込みランス設備、溶銑の脱珪処理方法及び溶銑の予備処理方法 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101021349B1 (ja) |
CN (1) | CN101389774B (ja) |
TW (1) | TWI319014B (ja) |
WO (1) | WO2007100113A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079260A (ja) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2009079259A (ja) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2009084670A (ja) * | 2007-10-03 | 2009-04-23 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2011144406A (ja) * | 2010-01-13 | 2011-07-28 | Tokyo Yogyo Co Ltd | ガス吹き込みランス |
JP2011144407A (ja) * | 2010-01-13 | 2011-07-28 | Tokyo Yogyo Co Ltd | ガス吹き込みランス |
CN114606359A (zh) * | 2022-03-17 | 2022-06-10 | 重庆钢铁股份有限公司 | 一种氧枪用高温纳米自洁喷涂料试验方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2013014912A (es) * | 2011-06-30 | 2014-02-19 | Outotec Oyj | Lanzas de inyeccion sumergida por la parte superior. |
CN104419798B (zh) * | 2013-09-05 | 2017-02-22 | 鞍钢股份有限公司 | 一种利用cas‑ob精炼炉铁水预脱硅的方法 |
CN108642233B (zh) * | 2018-05-11 | 2019-10-29 | 鞍钢股份有限公司 | 一种提高转炉氧枪寿命的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499115A (ja) * | 1990-08-06 | 1992-03-31 | Kawasaki Steel Corp | 金属浴中ガス吹き込み方法及び装置 |
JPH07223874A (ja) * | 1994-02-10 | 1995-08-22 | Kurosaki Refract Co Ltd | キャスタブル耐火物 |
JPH07242926A (ja) * | 1994-03-04 | 1995-09-19 | Kawasaki Steel Corp | 二重管構造のインジェクションランス |
JPH08209220A (ja) * | 1995-02-03 | 1996-08-13 | Kobe Steel Ltd | スロッピング発生予知装置 |
JPH10140224A (ja) * | 1996-11-11 | 1998-05-26 | Takata Kogyosho:Kk | ランス装置 |
JPH1112637A (ja) * | 1997-06-23 | 1999-01-19 | Kawasaki Steel Corp | 金属精錬炉用ガス吹込みランス及びその使用方法 |
JPH11171656A (ja) * | 1997-12-05 | 1999-06-29 | Toshiba Ceramics Co Ltd | 浸漬ランス用キャスタブル耐火物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068555A1 (fr) * | 2000-03-14 | 2001-09-20 | Krosakiharima Coporation | Refractaire monolithique pour four a pyrolyse a dechets et four a pyrolyse a dechets dans lequel ledit refractaire monolithique est utilise |
-
2007
- 2007-02-26 WO PCT/JP2007/054109 patent/WO2007100113A1/ja active Application Filing
- 2007-02-26 CN CN200780006877XA patent/CN101389774B/zh active Active
- 2007-02-26 KR KR1020087019831A patent/KR101021349B1/ko active IP Right Grant
- 2007-02-27 TW TW096106719A patent/TWI319014B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499115A (ja) * | 1990-08-06 | 1992-03-31 | Kawasaki Steel Corp | 金属浴中ガス吹き込み方法及び装置 |
JPH07223874A (ja) * | 1994-02-10 | 1995-08-22 | Kurosaki Refract Co Ltd | キャスタブル耐火物 |
JPH07242926A (ja) * | 1994-03-04 | 1995-09-19 | Kawasaki Steel Corp | 二重管構造のインジェクションランス |
JPH08209220A (ja) * | 1995-02-03 | 1996-08-13 | Kobe Steel Ltd | スロッピング発生予知装置 |
JPH10140224A (ja) * | 1996-11-11 | 1998-05-26 | Takata Kogyosho:Kk | ランス装置 |
JPH1112637A (ja) * | 1997-06-23 | 1999-01-19 | Kawasaki Steel Corp | 金属精錬炉用ガス吹込みランス及びその使用方法 |
JPH11171656A (ja) * | 1997-12-05 | 1999-06-29 | Toshiba Ceramics Co Ltd | 浸漬ランス用キャスタブル耐火物 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079260A (ja) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2009079259A (ja) * | 2007-09-26 | 2009-04-16 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2009084670A (ja) * | 2007-10-03 | 2009-04-23 | Jfe Steel Kk | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 |
JP2011144406A (ja) * | 2010-01-13 | 2011-07-28 | Tokyo Yogyo Co Ltd | ガス吹き込みランス |
JP2011144407A (ja) * | 2010-01-13 | 2011-07-28 | Tokyo Yogyo Co Ltd | ガス吹き込みランス |
CN114606359A (zh) * | 2022-03-17 | 2022-06-10 | 重庆钢铁股份有限公司 | 一种氧枪用高温纳米自洁喷涂料试验方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101021349B1 (ko) | 2011-03-14 |
TWI319014B (en) | 2010-01-01 |
KR20080089637A (ko) | 2008-10-07 |
CN101389774A (zh) | 2009-03-18 |
TW200738889A (en) | 2007-10-16 |
CN101389774B (zh) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007100113A1 (ja) | 精錬用吹き込みランス、精錬用吹き込みランス設備、溶銑の脱珪処理方法及び溶銑の予備処理方法 | |
JP4715384B2 (ja) | 溶銑の脱燐処理方法及び脱燐処理用上吹きランス | |
JP2012031452A (ja) | 溶銑の脱燐処理方法 | |
JP5109408B2 (ja) | 精錬用酸素ガス吹き込みランス及び溶銑の脱珪処理方法 | |
JP7420322B1 (ja) | 溶鋼の脱窒方法 | |
JP4487812B2 (ja) | 低燐溶銑の製造方法 | |
JP4923623B2 (ja) | 精錬用吹き込みランス設備及び溶銑の脱珪処理方法 | |
JP5915568B2 (ja) | 転炉型精錬炉における溶銑の精錬方法 | |
JP7001148B2 (ja) | 溶銑の脱りん方法 | |
JP4360270B2 (ja) | 溶鋼の精錬方法 | |
JP2009084670A (ja) | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 | |
JP4419594B2 (ja) | 溶銑の精錬方法 | |
JP5194677B2 (ja) | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 | |
JP5292752B2 (ja) | 酸素ガス吹き込みランス及び溶銑の脱珪処理方法 | |
JP5332487B2 (ja) | 溶銑の脱珪処理方法 | |
JP2002012907A (ja) | 金属溶解炉、製錬炉及び精錬炉並びに真空精錬炉の操業方法 | |
JP5223228B2 (ja) | 溶銑の脱珪処理方法 | |
JP6760237B2 (ja) | 溶銑の脱珪処理方法 | |
JP4686873B2 (ja) | 溶銑の脱燐方法 | |
JP2018024911A (ja) | 溶銑予備処理における鍋内付着地金溶解方法 | |
JP4103503B2 (ja) | 溶銑の脱燐方法 | |
JP4541521B2 (ja) | 溶銑脱りん方法 | |
JPH07268430A (ja) | 溶銑予備処理用浸漬単管ランス | |
JP2022117976A (ja) | 溶鉄の精錬方法 | |
JP2003138306A (ja) | プラスチックを用いた溶銑の脱硫方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020087019831 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780006877.X Country of ref document: CN Ref document number: 3501/KOLNP/2008 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07737721 Country of ref document: EP Kind code of ref document: A1 |