WO2007099954A1 - 直接液体型燃料電池用隔膜、及びその製造方法 - Google Patents
直接液体型燃料電池用隔膜、及びその製造方法 Download PDFInfo
- Publication number
- WO2007099954A1 WO2007099954A1 PCT/JP2007/053639 JP2007053639W WO2007099954A1 WO 2007099954 A1 WO2007099954 A1 WO 2007099954A1 JP 2007053639 W JP2007053639 W JP 2007053639W WO 2007099954 A1 WO2007099954 A1 WO 2007099954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- fuel cell
- diaphragm
- liquid fuel
- membrane
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2231—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
- C08J5/2237—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
- C08J9/42—Impregnation with macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1072—Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a diaphragm for a direct liquid fuel cell and a method for producing the same.
- the diaphragm has a specific functional group at a predetermined position of the aromatic ring and has low permeability of liquid fuel such as methanol.
- Ion exchange membranes are widely used as polymer membrane fuel cells, redox flow cells, cell membranes such as zinc-bromine cells, and dialysis membranes.
- the polymer electrolyte fuel cell uses an ion exchange membrane as an electrolyte membrane. This fuel cell is one of the clean and highly efficient power generation systems that extract the chemical energy when they react by supplying fuel and oxidant continuously. Since polymer electrolyte fuel cells can be expected to operate at low temperatures and to be miniaturized, their importance has been increasing in recent years for automobiles, homes, and portables.
- a solid polymer fuel cell generally has a structure in which a gas diffusion electrode carrying a catalyst is bonded to both surfaces of a diaphragm made of a solid polymer that acts as an electrolyte.
- liquid gas such as hydrogen gas or methanol is supplied to the chamber (fuel chamber) on the side where one gas diffusion electrode exists, and the other gas diffusion electrode is supplied.
- Oxygen-containing gases such as oxygen and air, which are oxidants, are supplied to the chambers on the side where the gas exists. In this state, by connecting an external load circuit between the gas diffusion electrodes, it acts as a fuel cell and power is supplied to the external load circuit.
- Fig. 1 shows the basic structure of a direct liquid fuel cell.
- la and lb are battery partition walls.
- the battery partition walls la and lb sandwich the solid polymer electrolyte membrane 6 used as a diaphragm, It is formed on both sides of the child electrolyte membrane 6 respectively.
- 2 is a fuel flow hole formed in the inner wall of one battery partition wall la
- 3 is an oxidant gas flow hole formed in the inner wall of the other battery partition wall lb.
- 4 is a fuel chamber side diffusion electrode
- 5 is an oxidant chamber side gas diffusion electrode.
- a cation exchange membrane is usually used for the solid polymer electrolyte membrane 6.
- the cation exchange membrane is required to have low electrical resistance, high physical strength, and low liquid fuel properties used as fuel.
- the permeability of the liquid fuel to the cation exchange membrane is high, the liquid fuel supplied to the fuel chamber moves to the acid chamber, and as a result, the battery output decreases.
- a cation exchange membrane used as a fuel cell membrane for example, a pore portion of a porous membrane made of polyolefin or fluorine resin is filled with cation exchange resin. It has been.
- This cation exchange membrane is polymerized by filling a polymerizable composition comprising a polymerizable monomer having a functional group capable of introducing a cation exchange group into a void portion of the porous membrane and a crosslinkable polymerizable monomer, Next, it is produced by a method of introducing a cation exchange group into a functional group capable of introducing the cation exchange group possessed by the obtained resin (for example, Patent Document 2). According to this method, the fuel cell membrane is manufactured at a relatively low cost, and the resulting membrane has low electrical resistance, low hydrogen gas permeability, and low swelling and deformation with respect to the solvent.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2001-135328
- Patent Document 2 Japanese Patent Laid-Open No. 11-310649
- these cation exchange membranes are used directly as a diaphragm for a liquid fuel cell.
- the permeation through the liquid fuel cationic exchange membrane such as alcohol cannot be completely suppressed.
- the liquid fuel moves from the fuel chamber side to the oxidant chamber side, and the cell performance is degraded.
- the hydrophilic cation exchange group is introduced by increasing the content of the crosslinking polymerizable monomer in the polymerizable composition filled in the voids of the porous membrane.
- the inventors have studied to reduce the amount relatively. According to this method, the hydrophobicity of the resulting thione exchange membrane is increased, and the degree of crosslinking of the membrane is also increased. As a result, a dense ion exchange membrane was obtained, which was effective to some extent with respect to the suppression of liquid fuel permeation.
- the electric resistance of the cation exchange membrane increases and the battery output decreases. A diaphragm for a fuel cell that is practically satisfactory in this respect has been obtained.
- the cation exchange membrane is used as a monomer component in the polymerizable composition filled in the voids of the porous membrane.
- Polymerizability having no functional group capable of introducing a cation exchange group such as acrylonitrile, acrolein, methyl vinyl ketone, in addition to a polymerizable monomer having a functional group capable of introducing a group or a crosslinkable polymerizable monomer It has also been shown to include a monomer as a third copolymer component. However, any of the polymerizable monomers described as the third copolymerization component is a highly hydrophilic monomer.
- the cation exchange membrane obtained by copolymerizing these third copolymer components has high hydrophilicity. Therefore, it was confirmed that the hydrophilicity was high and the permeation suppression effect of liquid fuel such as alcohol was not improved. That is, the cation exchange membrane in which the third copolymer component is copolymerized is insufficient in terms of the permeation suppressing effect of liquid fuel such as alcohol when used as a fuel cell membrane.
- the present invention shows a stable high battery output with low permeability of liquid fuel such as alcohol, especially low permeability of methanol and low electrical resistance, and deformation such as swelling It is an object of the present invention to provide a fuel cell membrane comprising a cation exchange membrane, and a method for producing the same.
- the present inventors have at least one alkyl group having 2 or more carbon atoms and at least one hydrogen as the main components of the polymerizable composition filled in the voids of the porous membrane.
- an aromatic polymerizable monomer in which an atom is bonded to an aromatic ring it is more specific than when using an aromatic polymerizable monomer having a methyl group at the ortho or meta position. It has been found that the permeability of liquid fuel, especially methanol, can be reduced.
- the present inventors have used a cation exchange resin having an alkoxy group bonded to an aromatic ring to which a cation exchange group is bonded as a diaphragm for a fuel cell. It has been found that the permeability of liquid fuel can be reduced specifically without increasing the electrical resistance of the cation exchange membrane compared to the membrane.
- the present inventors have found that when a cation exchange resin having a hydroxyl group bonded to an aromatic ring to which a cation exchange group is bonded is used as a diaphragm for a fuel cell, the hydroxyl group is bonded! It was found that the electrical resistance of the cation exchange membrane can be greatly reduced compared to the exchange membrane, and the permeability of the liquid fuel is comparable to that of the conventional diaphragm.
- the present inventors have used a cation exchange resin in which a halogen element is bonded to an aromatic ring to which a cation exchange group is bonded as a diaphragm for a fuel cell, compared with a cation exchange membrane in which no halogen element is bonded.
- a cation exchange resin in which a halogen element is bonded to an aromatic ring to which a cation exchange group is bonded as a diaphragm for a fuel cell, compared with a cation exchange membrane in which no halogen element is bonded.
- [0020] [1] a) At least one polymerizable group, at least one hydrogen atom, and a methyl group, an alkyl group having 2 or more carbon atoms, a halogen atom, and an alkoxy group. When one substituent is bonded to the aromatic ring and one or more methyl groups are bonded to the aromatic ring, at least one of the methyl groups is para-positioned to the polymerizable group.
- a polymerization composition containing at least a polymer is cured by polymerization, and then a cation exchange group is introduced into an aromatic ring derived from the aromatic polymerizable monomer, and a membrane for a direct liquid fuel cell is produced. Method.
- At least one polymerizable group at least one hydrogen atom, and a methyl group, an alkyl group having 2 or more carbon atoms, a halogen atom, and an alkoxy group.
- at least one of the methyl groups is in the para position with respect to the polymerizable group.
- the polymerizable composition containing at least a porous film is brought into contact with the porous composition to fill the voids of the porous film, and then the polymerizable composition is polymerized and cured, and then the aromatic system.
- a polymer composition containing at least a polymer is cured by polymerization to obtain a resin film, and then the alkoxy group or acyloxy group in the resin film is hydrolyzed to derive the alkoxy group or acyloxy group into a hydroxyl group. Then, a method for producing a diaphragm for a direct liquid fuel cell, wherein a cation exchange group is introduced into an aromatic ring derived from the aromatic polymerizable monomer in the resin membrane.
- Aromatic polymerizable monomer comprising one polymerizable group, at least one alkoxy group or acyloxy group, and at least one hydrogen atom bonded to an aromatic ring ,
- the polymerizable composition containing at least a porous film is brought into contact with the porous film to fill the voids of the porous film, the polymerizable composition is polymerized and cured to obtain a cured resin. Then, the alkoxy group or acyloxy group in the resin cured product is hydrolyzed to induce the alkoxy group or the acyloxy group to a hydroxyl group, and then the aromatic polymerizable monomer in the resin cured product.
- a method for producing a diaphragm for a direct liquid fuel cell comprising introducing a cation exchange group into an aromatic ring derived from a monomer.
- a diaphragm for a direct liquid fuel cell comprising an ion exchange resin in which an aromatic ring having a cation exchange group and an alkoxy group is bonded to a methylene main chain having a crosslinked structure.
- a diaphragm for a direct liquid fuel cell characterized in that it is an ion exchange resin bonded with an aromatic ring having a group.
- the crosslinked structure is formed by connecting methylene main chains with a jetylbenzene skeleton [7] or [7]
- Alkoxy group force The direct liquid fuel cell according to [7] or [8], which is bonded to the aromatic ring at a position relative to the carbon atom of the aromatic ring bonded to the methylene main chain. diaphragm.
- a direct liquid type characterized by comprising an ion exchange resin in which an aromatic ring having at least one cation exchange group and at least one hydroxyl group is bonded to a methylene main chain having a crosslinked structure.
- Fuel cell diaphragm characterized by comprising an ion exchange resin in which an aromatic ring having at least one cation exchange group and at least one hydroxyl group is bonded to a methylene main chain having a crosslinked structure.
- the porous membrane and the ion exchange resin filled in the voids of the porous membrane have a force, and the ion exchange resin has at least one force on the methylene main chain having a crosslinked structure.
- a diaphragm for a direct liquid fuel cell characterized by being an ion exchange resin that binds an aromatic ring having a thione exchange group and at least one hydroxyl group.
- a diaphragm for a direct liquid fuel cell comprising an ion exchange resin in which an aromatic ring having a cation exchange group and a halogen atom is bonded to a methylene main chain having a crosslinked structure.
- the porous membrane and the ion exchange resin filled in the voids of the porous membrane serve as a force, and the ion exchange resin has a cation exchange group and a halogen atom in the methylene main chain having a crosslinked structure.
- a diaphragm for a direct liquid fuel cell characterized in that the membrane is an ion exchange resin bonded with an aromatic ring.
- a polymerizable monomer for introducing a cation exchange group into a polymerizable composition for forming a cation exchange resin a polymerizable group is added.
- the cation exchange resin constituting the obtained diaphragm is moderately increased in hydrophobicity and reduces the permeability of liquid fuel.
- a monomer having a methyl group at the para position relative to the polymerizable group can be used, so a monomer having a methyl group at the ortho position or the meta position. Compared with the use of, the permeation suppression effect of liquid fuel is high.
- This cation exchange membrane has a highly enhanced hydrophobic property while maintaining a certain ion exchange capacity and appropriate crosslinking for suppressing deformation such as swelling of the membrane.
- the cation exchange membrane obtained by this method can be used as a diaphragm for direct liquid fuel cells.
- the permeability of liquid fuel, particularly methanol is greatly reduced without excessively increasing the electrical resistance of the membrane.
- this diaphragm is a direct liquid fuel cell diaphragm that has been difficult to achieve in the past and has both high liquid fuel impermeability and high proton conductivity.
- the polymerizable composition for forming a cation exchange resin has 2 carbon atoms as a polymerizable monomer for introducing a cation exchange group. Since the polymerizable monomer having at least one alkyl group described above is blended, the cation exchange resin constituting the obtained diaphragm is moderately increased in hydrophobicity and effectively reduces the permeability of liquid fuel.
- This cation exchange membrane has a highly enhanced hydrophobic property while maintaining a certain ion exchange capacity and appropriate crosslinking for suppressing deformation such as swelling of the membrane.
- the cation exchange membrane obtained by the present method greatly reduces the permeability of liquid fuel, particularly methanol, without excessively increasing the electrical resistance of the membrane when used directly as a diaphragm for a liquid fuel cell.
- the diaphragm according to the present invention is a direct liquid fuel cell diaphragm that has been difficult to achieve in the past and has both high V, liquid fuel impermeability and high proton conductivity.
- the polymerizable composition for forming a cation exchange resin has an alkoxy group as a polymerizable monomer for introducing a cation exchange group.
- the diaphragm obtained using this polymerizable monomer is moderately hydrophobic and reduces the permeability of the liquid fuel. Furthermore, the reason is unclear, but when using a polymerizable monomer having an alkoxy group at the para position relative to the polymerizable group, a monomer having an alkoxy group at the ortho position or the meta position is used. Compared to the case, the permeation suppression effect of liquid fuel is high.
- an alkoxy group or an acyloxy group is used as a polymerizable monomer for introducing a cation exchange group into a polymerizable composition for forming a cation exchange resin.
- These polymerizable monomers are highly lipophilic and easily dissolve in other lipophilic components. For this reason, the polymerizable composition is uniformly dissolved. It is not necessary to add a solvent for the operation.
- the diaphragm obtained by polymerizing this polymerizable composition has a high-density cross-linked structure that is not found in a low-density gel-like material produced in the presence of a solvent.
- the permeability of liquid fuel such as methanol in the obtained diaphragm is kept low.
- an alkoxy group or an acyloxy group is added at the ortho position or the meta position. The permeation suppression effect of the liquid fuel is higher compared to the case of using the monomer having it.
- the polymerizable composition for forming a cation exchange resin has a halogen atom as a polymerizable monomer for introducing a cation exchange group.
- the diaphragm obtained using this polymerizable monomer is moderately hydrophobic and reduces the permeability of the liquid fuel. Further, the reason is unclear, but when using a polymerizable monomer having a halogen atom at the para position relative to the polymerizable group, a monomer having a halogen atom at the ortho position or the meta position is used. Compared to the case, the permeation suppression effect of liquid fuel is high.
- the direct liquid fuel cell manufactured using the diaphragm obtained by each manufacturing method of the present invention is high because the internal resistance of the cell is low and the crossover of liquid fuel such as methanol is suppressed. Battery output is obtained.
- FIG. 1 is a conceptual diagram showing the basic structure of a polymer electrolyte fuel cell.
- the first diaphragm for a direct liquid fuel cell of the present invention (hereinafter sometimes abbreviated as “first diaphragm”) is a diaphragm to which a methyl group is bonded.
- this first method for producing a diaphragm after filling a predetermined polymerizable composition into a void formed in a porous film, the filled polymerizable composition is polymerized and cured, and then The first diaphragm is produced by introducing force thione exchange groups into the resin obtained by polymerization and curing.
- the polymerizable composition that is the starting material for producing the first diaphragm is required to have a) a monocyclic aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator. Ingredients.
- the monocyclic aromatic polymerizable monomer is represented by the following chemical formula (1), in which one polymerizable group, at least one methyl group, and at least one hydrogen atom are bonded to a benzene ring. It is a compound.
- R 1 represents an alkyl group having 1 to 5 carbon atoms, a halogen atom, a nitro group, a cyan group, or the like.
- the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an nbutyl group, an isobutyl group, a terbutyl group, and a pentyl group. Of these alkyl groups, a methyl group is preferred.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these halogen atoms Of these, the chlorine atom is preferred because of its availability.
- n is an integer of 1 to 4.
- N is preferably 3 or 4, particularly preferably n is 4 in that the permeation suppressing effect of liquid fuel is high and the electric resistance of the obtained diaphragm is low.
- a polymerizable monomer having n of 4 is also preferred because it is easily available.
- R 1 is an alkyl group
- n is preferably 3.
- V is a polymerizable group.
- a hydrocarbon group having 2 to 5 carbon atoms having an unsaturated bond is preferable. Examples include a bur group, a propenyl group, and a butylene group.
- the bull group is particularly preferable from the viewpoint of easy availability.
- the monocyclic aromatic polymerizable monomer represented by the chemical formula (1) has at least one force of the methyl group bonded to the benzene ring in the para position with respect to the polymerizable group V. It is combined.
- a monocyclic aromatic polymerizable monomer in which the polymerizable group V and the methyl group bonded to the benzene ring are in a para-position to each other.
- the present diaphragm can be obtained with high permeation suppression of liquid fuel and low electrical resistance of the obtained diaphragm.
- Polymeric group V and methyl group do not have a para-position relationship
- both permeation suppression of liquid fuel and electrical resistance of the diaphragm are good No diaphragm can be obtained.
- Monocyclic aromatic polymerizable monomers include P-methylstyrene, 2,4-dimethylstyrene, 1,2,4-trimethylstyrene, 1,3,4-trimethylstyrene, 2- Examples include ethyl-4-methylstyrene, 2-propyl-4-methylstyrene, 2-butyl-4-methylstyrene, 2-chloro-4-methylstyrene, P-methyl- ⁇ -methylstyrene, and the like.
- ⁇ -methylstyrene is particularly preferable in that the permeation suppressing power of the liquid fuel to the obtained diaphragm is high and the electric resistance is low.
- the content of the monocyclic aromatic polymerizable monomer in the polymerizable composition is not particularly limited, but the total amount of polymerizable monomers contained in the polymerizable composition. 10-99 mass In particular, it is preferably 30 to 98% by mass. When the content of the monocyclic aromatic polymerizable monomer is within this range, the resulting cation exchange resin exhibits the effect of improving the impermeability of the liquid fuel more remarkably.
- crosslinkable polymerizable monomer to be blended in the polymerizable composition monomers used in the production of conventionally known ion exchange membranes can be used without limitation.
- the crosslinkable polymerizable monomer into the polymerizable composition the resulting cation exchange resin becomes a crosslinkable type.
- Cross-linked ion exchange resins are essentially solvent insoluble. For this reason, the solubility in water and alcohol is minimal, and the swelling is minimized, and a large amount of cation exchange groups can be introduced into the cocoon. As a result, the diaphragm has an extremely low electrical resistance.
- crosslinkable polymerizable monomer examples include m-, p-, o divinyl benzene, divinyl sulfone, butadiene, black-opened plane, isoprene, trivinylbenzenes, dibulanaphthalene, and diarylamine. And divinyl compounds such as triallylamine and dibulylpyridines.
- the content of the crosslinkable polymerizable monomer in the polymerizable composition is not particularly limited.
- V is 1 to 1 of the total amount of polymerizable monomers contained in the polymerizable composition. It is preferably 40% by mass, particularly preferably 2 to 30% by mass.
- the polymerizable composition contains a polymerization initiator.
- the polymerization initiator is not particularly limited as long as it is a compound that initiates the polymerization of the monocyclic aromatic polymerizable monomer and the crosslinkable polymerizable monomer.
- an organic peroxide is preferred.
- otatanyl peroxide lauroyl peroxide, t-butyl peroxide 2-ethylhexanoate, benzoyl peroxide, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-hexoxyloxy
- radical polymerization initiators such as benzoate and di-t-butyl peroxide.
- the content of the polymerization initiator is appropriately selected according to a conventional method depending on the composition of the polymerizable monomer to be used and the kind of the polymerization initiator. Usually, 0.1 to 20 parts by mass is blended with respect to 100 parts by mass of the total of the polymerizable monomer components (including the content of other polymerizable monomers described later). 0.5 to 10 parts by mass is more preferable.
- the polymerizable composition includes a) a monocyclic aromatic polymerizable monomer in which one of the methyl groups is bonded to the polymerizable group in the para position.
- other aromatic polymerizable monomer capable of introducing a cation exchange group may be contained.
- examples of such other aromatic polymerizable monomers include styrene, butyl xylene, ⁇ -methyl styrene, vinyl naphthalene, a-halogenated styrenes, and acenaphthylenes. The content is 89% of the total amount of polymerizable monomers contained in the polymerizable composition.
- it is preferably 68% by mass or less.
- the polymerizable composition includes a physical property such as mechanical strength and a reactivity such as polymerizability within the limits not contrary to the object of the present invention.
- a small amount of other components may be blended as necessary.
- Such optional components include, for example, other polymerizable monomers such as acrylonitrile, acrolein, methyl vinyl ketone, dibutyl phthalate, dioctyl phthalate, dimethyl isophthalate, dibutyl adipate, trityl citrate, acetyl butyl Examples thereof include plasticizers such as citrate and dibutyl sebacate.
- the content thereof is 20% by mass or less, particularly 10% by mass of the total amount of all polymerizable monomer components.
- the amount of the plasticizer used is preferably 50 parts by mass or less with respect to 100 parts by mass of the total polymerizable monomer components.
- the polymerizable composition is brought into contact with a porous membrane. Thereby, the polymerizable composition is filled in the voids of the porous film. Thereafter, the polymerizable composition filled in the gap is polymerized and cured.
- the fuel cell membrane composed of the cation exchange membrane produced using the porous membrane as a base material does not cause an increase in electrical resistance because the porous membrane functions as a reinforcing portion.
- the physical strength can be increased.
- the porous membrane used as the substrate is a porous membrane having voids due to pores or the like inside, and the front and back of the membrane communicate with each other through at least part of the voids via the voids. Any known porous membrane can be used without limitation.
- the average pore diameter of the voids of the porous membrane is preferably 0.01 to 2 ⁇ m, and particularly preferably 0.015 to 0.4 ⁇ m.
- the filling amount of the cation exchange resin decreases.
- the pore diameter exceeds 2 m, the alcohol permeability increases.
- the porosity (also referred to as porosity) of the porous membrane is preferably 20 to 95% force S, more preferably 30 to 90%.
- the air permeability (JIS P-8117) is preferably 1500 seconds or less, more preferably 1000 seconds or less.
- the thickness is preferably 5 to 150 ⁇ m, more preferably 10 to 120 ⁇ m, and more preferably 10 to 70 ⁇ m.
- the surface smoothness is preferably 10 m or less, more preferably 5 m or less in terms of roughness index. By making the smoothness in this range, high impermeability to alcohol of the obtained fuel cell membrane is achieved.
- the form of the porous film is not particularly limited, and any form such as a porous film, a woven fabric, a non-woven fabric, paper, and an inorganic film is used.
- the material for the porous membrane include thermoplastic resin, thermosetting resin, inorganic material, and mixtures thereof. However, it is preferably a thermoplastic resin from the viewpoint of not only easy production but also high adhesion strength with a cation exchange resin described later.
- the thermoplastic resin includes ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl 1-butene, 4-methyl 1-pentene, 5-methyl 1-heptene, and the like.
- -Polyolefin resins such as homopolymers or copolymers of olefin; salts such as poly (vinyl chloride), salt / hybryl acetate / butyl acetate / salt / hybridene / copolymer / salt / buyl single-year-old refin copolymer Poly-bulb resin; polytetrafluoroethylene, polychloroethylene, poly (vinylidene fluoride), tetrafluoroethylene Fluorocarbon resins such as hexafluoropropylene copolymer, tetrafluoroethylene perfluoroalkyl alkyl ether ether, tetrafluoroethylene ethylene copolymer; nylon 6, nylon 66
- polyolefin resins are particularly preferred because of their excellent mechanical strength, chemical stability, chemical resistance, and good affinity with hydrocarbon ion exchange resins.
- polyethylene or polypropylene resin is particularly preferable.
- Polyethylene resin is most preferable.
- the porous membrane can also be obtained by the method described in, for example, JP-A-9-216964 and JP-A-2002-338721. Alternatively, it can also be obtained as a commercial product (for example, Asahi Kasei “No, Ipore”, Ube Industries “Eupor”, Tonen Tapils “Setera”, Nitto Denko “ Frhepol”, Mitsui Chemicals “Hillette”, etc.).
- the contact between the polymerizable composition and the porous membrane is not particularly limited as long as the polymerizable composition is brought into contact with the porous membrane by a method capable of entering the voids.
- Examples thereof include a method in which the polymerizable composition is applied to or sprayed on the porous film, or a method in which the porous film is immersed in the polymerizable composition.
- the immersion time depends on the type of the porous membrane and the composition of the polymerizable composition. It is.
- the polymerizable composition filled in the voids of the porous membrane is then polymerized.
- the polymerization method is not particularly limited, and a publicly known method may be adopted as appropriate depending on the composition of the polymerizable monomer used and the type of the polymerization initiator.
- a polymerization method by heating is generally used. This method is preferable to other methods because it is easy to operate and can be polymerized relatively uniformly.
- the porous film filled with the polymerizable composition is covered with a film such as polyester and then polymerized. .
- the polymerization temperature is not particularly limited, and a known temperature condition may be appropriately selected, but is generally 50 to 150 ° C, preferably 60 to 120 ° C. Polymerization time is 1
- a cation exchange group is then introduced into the membrane-shaped polymer produced by filling the voids of the porous membrane filled with the polymer power of the polymerizable composition as described above.
- the cation exchange group is introduced into the benzene ring of the resin filled in the voids of the porous membrane.
- This benzene ring is derived from the benzene ring of the monocyclic aromatic polymerizable monomer blended in the polymerizable composition.
- a conventionally known cation exchange group is employed without any particular limitation.
- Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
- a sulfonic acid group that is a strongly acidic group is particularly preferred in that the electric resistance of the obtained diaphragm is lowered.
- a method for introducing a sulfonic acid group into a benzene ring for example, a method of reacting a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, sulfur dioxide, chlorosulfonic acid or the like with the produced membrane polymer.
- a sulfonating agent such as concentrated sulfuric acid, fuming sulfuric acid, sulfur dioxide, chlorosulfonic acid or the like
- a film-like polymer having an alkyl halide group is reacted with phosphorus trichloride in the presence of anhydrous aluminum chloride, and then in an alkaline aqueous solution. And the like.
- halogenation is carried out by contact with a halogen gas in the presence of a catalyst such as halogen iron, and further reaction with alkyllithium followed by reaction with carbon dioxide. And the like.
- the cation exchange membrane obtained by filling the void portion of the porous membrane with the cation exchange resin is washed and cut as necessary, and used as a diaphragm for a direct liquid fuel cell according to a conventional method. Used.
- the diaphragm for a direct liquid fuel cell produced by the first method for producing a diaphragm is a cation.
- the exchange capacity has a high value of usually 0.1 to 3 mmol Zg, and a special value of 0.1 to 2 mmol Zg as measured by a conventional method. Therefore, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low.
- the diaphragm of the present invention has a moisture content of usually 5 to 90%, more preferably 10 to 80%, and increased electrical resistance due to drying. That is, the proton conductivity is hardly lowered. Furthermore, it is insoluble in the fuel liquid.
- the electrical resistance typically, 3molZL- 'below cm 2, more 0. 25 ⁇ ' 0. 45 ⁇ represents an electrical resistance in sulfuric acid aqueous solution is very small cm 2 or less.
- the permeability of methanol in the diaphragm when it is in contact with 100% methanol at 25 ° C is usually 1000 gZm 2 'hr or less, especially 10-700 gZm 2 'hr range.
- the fuel cell membrane obtained by the first production method has such a low electrical resistance and a low fuel liquid permeability. Therefore, when used directly as a liquid fuel cell membrane, It is possible to effectively prevent the fuel liquid supplied to the fuel chamber from passing through the diaphragm and diffusing to the opposite chamber, and a high output battery can be obtained.
- the direct liquid fuel cell adopting this diaphragm is generally applicable to the direct liquid fuel cell having the above-mentioned basic structure shown in FIG. 1 and other known structures. it can.
- the fuel liquid As the fuel liquid, methanol is the most common, and the effect of the present invention is most prominent. In addition, ethanol, ethylene glycol, dimethyl ether, hydrazine and the like are also excellent. The effect is demonstrated. Furthermore, the fuel is not limited to liquid, and gaseous hydrogen gas or the like can be used.
- the second diaphragm for a direct liquid fuel cell of the present invention (hereinafter sometimes abbreviated as “second diaphragm”) is a diaphragm to which an alkyl group having 2 or more carbon atoms is bonded.
- a predetermined polymerizable composition is filled in a void formed in a porous film, and then the filled polymerizable composition is polymerized and cured. Then, by introducing a force thione exchange group into the resin obtained by polymerization and curing, a second diaphragm is produced.
- the difference between the method for producing the second diaphragm and the (1) method for producing the first direct liquid fuel cell diaphragm is that the polymerizable composition as a starting material is different. Beyond Since the rest is the same as (1) the first method for producing a diaphragm for a direct liquid fuel cell, only the polymerizable composition will be described below, and the other description will be omitted.
- the polymerizable composition which is a starting material for producing this diaphragm, contains a) an aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator as essential components.
- An aromatic polymerizable monomer is a compound in which one polymerizable group, at least one alkyl group having 2 or more carbon atoms, and at least one hydrogen atom are bonded to an aromatic ring. .
- the aromatic ring examples include a monocyclic aromatic ring having a benzene skeleton and a polycyclic aromatic ring having a skeleton obtained by condensing a plurality of monocyclic aromatic rings such as naphthalene and anthracene.
- the monocyclic aromatic ring is particularly preferred because it is easily available, and further, the permeation suppression effect of the liquid fuel of the obtained diaphragm is high and the electric resistance can be kept moderately low. Is preferred.
- the alkyl group bonded to the aromatic ring preferably has 215 carbon atoms, and the hydrogen atom of the alkyl group may be substituted with a halogen atom.
- the alkyl group having 215 carbon atoms is preferable because it can exhibit a higher liquid fuel permeation suppressing effect than when a methyl group having 1 carbon atom is used.
- alkyl group examples include ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n butyl group, n xyl group, n-pentyl group, n- Examples include an octyl group, an n-nor group, an n-decyl group, a stearyl group, and a group in which these hydrogen atoms are substituted with a halogen atom.
- an alkyl group having 215 carbon atoms is more preferable in that the permeation suppressing effect of liquid fuel is high and the electric resistance of the obtained diaphragm is kept within the normal preferable use range.
- a straight chain alkyl group is preferable to a branched alkyl group in that the permeation suppressing effect of the liquid fuel is particularly high.
- the halogen atom fluorine atom, chlorine atom, bromine atom And iodine atom. Of these halogen atoms, a chlorine atom is preferable in view of availability.
- any aromatic ring having any number of rings one polymerizable group and at least one hydrogen atom must be bonded. As will be described later, this hydrogen atom is exchanged with a cation exchange group.
- the polymerizable group is preferably a hydrocarbon group having 2 to 5 carbon atoms having an unsaturated bond. Examples thereof include a beryl group, a propenyl group, and a butylene group.
- the bull group is particularly preferable from the viewpoint of availability.
- the aromatic polymerizable monomer it is preferable that at least one of the alkyl groups bonded to the aromatic ring is bonded in a para position to the polymerizable group.
- Monocyclic aromatic polymerizable monomers include p-ethylstyrene, P- (n-propyl) styrene, p- (isopropyl) styrene, p- (n-butynole) styrene, p- ( iso Butynole) Styrene, p- (tert-butyl) styrene, p- (n-heptyl) styrene, p- (n-hexyl) styrene, p- (n-pentyl) styrene, p- (n-octylstyrene) , P- (n-nonyl) styrene, 2, 4 jetyl styrene, 3, 4 jetyl styrene, 2, 3, 4 triethyl styrene, 2 ethyl 4-methyl st
- p-ethylstyrene, P- (n-propyl) styrene, p-one (n-- Butinole) styrene, ⁇ — (tert-butinole) styrene, p— (n—heptynole) styrene, ⁇ — (n—hexyl) styrene, ⁇ — (n-pentyl) styrene, ⁇ — (n-octylstyrene) Is particularly preferred.
- the content of the aromatic polymerizable monomer in the polymerizable composition is particularly limited. However, 10 to 99 mol% of the total amount of polymerizable monomers contained in the polymerizable composition is preferable, and 40 to 98 mol% is more preferable. By controlling the content of the aromatic polymerizable monomer within this range, the resulting cation exchange resin becomes more remarkably impermeable to liquid fuel.
- the membrane for direct liquid fuel cells produced by the second method for producing a diaphragm has a high cation exchange capacity of usually 0.1 to 3 mmolZg, especially 0.1 to 2 mmolZg as measured by a conventional method. Has a value. Therefore, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low. Other features are the same as in the first method of manufacturing the diaphragm.
- the third diaphragm for a direct liquid fuel cell of the present invention (hereinafter sometimes abbreviated as the third diaphragm) has an alkoxy group bonded in the diaphragm.
- diaphragms There are two types of diaphragms: a single diaphragm and a complex diaphragm.
- the single-type direct liquid fuel cell membrane is composed of a force thione exchange resin membrane schematically represented by the following chemical formula (2).
- A represents an aromatic ring and is bonded to a methylene main chain represented by a straight line.
- Aromatic rings include monocyclic and polycyclic condensed plural aromatic rings. Specifically Examples include benzene ring, naphthalene ring, anthracene ring and the like.
- R is alkyl, and its carbon number is preferably 1-5, more preferably 1-3, and particularly preferably 1.
- m represents the number of alkoxy groups bonded to the aromatic ring A. m is 1 or more, 1 to 4 is preferred, and 1 to 2 is more preferred.
- alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, iso-propioxy group, n-butoxy group, iso-butoxy group, tert-butoxy group, pentoxy group and the like.
- E represents a cation exchange group.
- the cation exchange group conventionally known ones can be used without particular limitation. Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. A sulfonic acid group which is a strongly acidic group is particularly preferable in that the electric resistance of the obtained diaphragm is lowered.
- n represents the number of cation exchange groups bonded to the aromatic ring. n is an integer of 1 or more. n is preferably 1 to 2.
- the cation exchange resin represented by the chemical formula (1) has a cross-linked structure that bonds methylene main chains to each other.
- the cross-linked chain is schematically shown by a straight line in the vertical direction connecting the methylene main chains shown by the upper and lower straight lines extending in the horizontal direction.
- any chain can be used as long as the methylene main chain without particular limitation is mutually crosslinked.
- the cross-linking chain is preferably selected in consideration of the impermeability of liquid fuel to the diaphragm and a decrease in electrical resistance.
- a crosslinked chain having a structure derived from a crosslinking agent that is widely used as a crosslinking agent during polymerization is employed.
- a cross-linked chain derived from divinylbenzene is exemplified.
- the molar ratio of the jetylbenzen skeleton unit as a crosslinking chain to the methoxysulfobenzene unit is preferably 1:99 to 40:60 2:98 ⁇ 30: 70 is more preferred.
- the molar ratio of sulfonic acid groups to methoxy groups is 1: 1.
- the presence of the alkoxy group contained in the cation exchange resin can be confirmed by infrared spectroscopy.
- ether structure - can confirm the presence by the absorption peak of the C- 0- is a C- characteristic absorption 1030 cm _1 and 1245cm _1.
- the amount of alkoxy group present can be quantified by adding an appropriate internal standard substance to the resin.
- a single third diaphragm for a direct liquid fuel cell is formed by depositing a cationic exchange resin represented by the above chemical formula (2) to a thickness of 10 to L00 m.
- the composite type third membrane for a direct liquid fuel cell is formed by using a porous membrane as a base material and filling the voids of the porous membrane with the cation exchange resin represented by the above chemical formula (2).
- a membrane for a fuel cell comprising a cation exchange membrane produced using a porous membrane as a base material can increase the physical strength without causing an increase in electrical resistance or the like because the porous membrane functions as a reinforcing portion. it can.
- the porous membrane used as the substrate is a porous membrane having voids due to pores or the like inside thereof, and the front and back of the membrane are communicated through at least a part of the voids through the voids.
- Any known porous membrane can be used without limitation.
- the porous membrane described in (Porous membrane) of (1) First production method of a direct liquid fuel cell membrane can be used as it is. Therefore, description of the porous membrane is omitted.
- the amount of cation exchange resin filled in the porous membrane is preferably 10 to 90 parts by mass and more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the porous membrane.
- the membrane for a composite type direct liquid fuel cell has a high cation exchange capacity of usually 0.1 to 3 mmolZg, particularly 0.3 to 2.5 mmolZg, as measured by a conventional method. Therefore, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low.
- the composite type diaphragm has a moisture content of usually 5 to 90%, more preferably 10 to 80%, and an increase in electrical resistance due to drying. Proton conductivity is hardly lowered.
- the membrane resistance value measured by the method described in the examples below is very small, 0.40 Q-C m 2 or less, and further 0.25 ⁇ 'cm 2 or less. .
- the permeability of the fuel liquid is extremely small.
- the methanol permeability according to the method described in the Examples below is usually 1000 gZm 2 'hr or less, and further in the range of 10 to 700 gZm 2 ' hr.
- this composite type diaphragm has a great advantage in that the permeability of the liquid fuel can be kept low even in a region where the membrane resistance is low, which would increase the permeability of the liquid fuel with the conventional diaphragm.
- the low methanol permeability of 250 gZm 2 'hr or less is maintained in the region where the membrane resistance is increased to 300 g / m 2 ' hr or more, which is usually less than 0.3 ⁇ -cm 2. It is possible to do.
- the composite type fuel cell membrane has such a low electrical resistance and a low fuel liquid permeability. Therefore, when it is used directly as a membrane for a liquid type fuel cell, the fuel supplied to the fuel chamber It is possible to effectively prevent the liquid from passing through the diaphragm and diffusing into the opposite chamber, and as a result, a high output battery can be obtained.
- a predetermined polymer composition is prepared, polymerized and cured into a film having a predetermined thickness, and then polymerized and cured.
- a single-type direct liquid fuel cell membrane can be obtained by introducing a cation exchange group into the obtained rosin membrane.
- the polymerizable composition which is a starting material for producing a single-type diaphragm, comprises a) an aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator as essential components. To do.
- the aromatic polymerizable monomer is a compound represented by the following chemical formula (4) in which one polymerizable group, at least one alkoxy group, and at least one hydrogen atom are bonded to an aromatic ring.
- V is a polymerizable group.
- a hydrocarbon group having 2 to 5 carbon atoms having an unsaturated bond is preferable. Examples thereof include a vinyl group, a propenyl group, and a butylene group.
- the bull group is particularly preferable from the viewpoint of availability.
- A is an aromatic ring.
- Aromatic rings include monocyclic and polycyclic condensed multiple aromatic rings. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and derivatives thereof.
- R represents an alkyl group having 1 to 5 carbon atoms.
- Alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, ter-butyl, Examples include a pentyl group.
- a methyl group is more preferable, in which an alkyl group having 1 to 2 carbon atoms is more preferable.
- p is an integer of 1 to 4.
- P is preferably 1 or 2, particularly preferably 1, in that the permeation suppressing effect of liquid fuel is high and the electric resistance of the obtained diaphragm is low.
- q represents the number of hydrogen atoms bonded to an aromatic ring! /.
- the aromatic polymerizable monomer represented by the chemical formula (3) at least one hydrogen atom is bonded to the aromatic ring. As will be described later, this hydrogen atom is exchanged for a cation exchange group.
- the alkoxy groups bonded to the aromatic ring is in the para position with respect to the polymerizable group V. It is preferable that they are bonded.
- the alkoxy group is bonded to the para position, the liquid fuel permeation preventing ability of the obtained diaphragm is improved, and the electric resistance is further reduced.
- Monocyclic aromatic polymerizable monomers include P-methoxystyrene, 2,4-dimethoxystyrene, p-ethoxystyrene, 2,4-jetoxystyrene, p-propoxystyrene, 2, 4 -Dipropoxystyrene, p-butoxystyrene, 2,4 dibutoxystyrene, p-tert-butoxystyrene, 2,4ditert-butoxystyrene, p-pentoxystyrene, 2,4-dipentoxystyrene, etc. Is done.
- bicyclic aromatic polymerizable monomer examples include 1-methoxy-5-vinylnaphthalene, 2-methoxy-6-burnaphthalene and the like.
- tricyclic aromatic polymerizable monomers examples include 1-methoxy-10 vinylanthracene, 8
- Examples include —methoxy-1-vinyl anthracene, 1-methoxy-1-vinyl anthracene, and the like.
- P-methoxystyrene is particularly preferable in that the permeation suppressing power of the liquid fuel to the obtained diaphragm is high and the electric resistance is low.
- the content of the aromatic polymerizable monomer in the polymerizable composition is not particularly limited, but is 10 to 10% of the total amount of polymerizable monomers contained in the polymerizable composition. 99 mol% is preferred 20-98 mol% is more preferred.
- the resulting cation exchange resin has good liquid fuel impermeability. Become more prominent.
- the prepared polymerizable composition is polymerized while being kept in the form of a film having a predetermined thickness.
- the polymerization method is the same as the method described in (1) First method for producing a diaphragm for a direct liquid fuel cell.
- the cation exchange group is introduced into the aromatic ring of the resin membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- the method for introducing a cation exchange group is the same as the method for introducing a cation exchange group described in (1) Production method of first diaphragm for direct liquid fuel cell.
- the predetermined polymerizable composition is filled into the void formed in the porous membrane, and then the filled polymerizable composition is used.
- This diaphragm is produced by introducing a force thione exchange group into the resin obtained by polymerization and curing and then polymerization and curing.
- the polymerizable composition which is a starting material for producing this diaphragm, is the same as the polymerizable composition used in the production of the single-type direct liquid fuel cell diaphragm. Therefore, the description is omitted.
- the polymerizable composition is brought into contact with the porous membrane. Thereby, the polymerizable composition is filled in the voids of the porous film. Thereafter, the polymerizable composition filled in the voids is polymerized and cured.
- a fuel cell membrane comprising a cation exchange membrane produced using a porous membrane as a base material does not cause an increase in electrical resistance because the porous membrane functions as a reinforcing portion. Strength can be increased.
- the porous membrane used as the substrate is the same as the porous membrane described in the first diaphragm for a direct liquid fuel cell.
- the contact method described in the first direct liquid fuel cell membrane can be used as it is.
- the polymerizable composition filled in the voids of the porous membrane by the contact between the polymerizable composition and the porous membrane is then polymerized.
- the polymerization method is the same as the polymerization method already described for the first direct type diaphragm.
- a cation exchange group is then introduced into the membrane-shaped polymer produced by filling the voids of the porous membrane filled with the polymer power of the polymerizable composition as described above.
- the cation exchange group is introduced into the aromatic ring of the resin filled in the voids of the porous membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- the fourth diaphragm for a direct liquid fuel cell of the present invention (hereinafter sometimes abbreviated as the fourth diaphragm) is a diaphragm bonded with a hydroxyl group.
- the fourth direct liquid fuel cell membrane has two forms, a single type and a composite type, as described below.
- the single-type direct liquid fuel cell membrane is composed of a force thione exchange resin membrane schematically represented by the following chemical formula (5).
- A represents an aromatic ring and is bonded to a methylene main chain represented by a straight line.
- Aromatic rings include monocyclic and polycyclic condensed plural aromatic rings. Specifically, a benzene ring, a naphthalene ring, an anthracene ring, etc. are illustrated.
- t represents the number of hydroxyl groups bonded to the aromatic ring A. t is 1 or more, preferably 1 to 4, and more preferably 1 to 2.
- E represents a cation exchange group.
- the cation exchange group conventionally known ones can be used without particular limitation. Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. A sulfonic acid group which is a strongly acidic group is particularly preferable in that the electric resistance of the obtained diaphragm is lowered.
- n represents the number of cation exchange groups E bonded to the aromatic ring. n is an integer of 1 or more. n is preferably 1 to 2.
- W represents the number of hydrogen atoms bonded to the unsubstituted aromatic ring minus one.
- the cation exchange resin represented by the chemical formula (5) has a cross-linked structure that bonds methylene main chains to each other.
- methylene represented by the upper and lower straight lines extending in the horizontal direction.
- a cross-linked chain is schematically shown by a straight line connecting the main chains to each other in the vertical direction.
- the cross-linking chain can be composed of any chain as long as the methylene main chains without particular limitation cross-link each other. It is preferable to select in consideration of the non-permeability of liquid fuel to the diaphragm and a decrease in electrical resistance.
- a cross-linked chain having a structure derived from a cross-linking agent widely used as a cross-linking agent in polymerization is employed.
- a crosslinked chain derived from dibutylbenzene can be exemplified.
- the molar ratio between the skeleton unit of jetylbenzene as a cross-linked chain and the styrene hydroxide hydroxyl unit is preferably 1:99 to 40:60.
- MAGUKU 2: 98-30: 70 is more preferred.
- the molar ratio of sulfonic acid groups to hydroxyl groups is 1: 1.
- a single-type direct liquid fuel cell membrane is formed by forming a cation exchange resin represented by the chemical formula (4) on a resin film having a thickness of 20 to L00 ⁇ m.
- the composite type direct liquid fuel cell membrane according to the present invention has a porous membrane as a base material, and the pores of the porous membrane are filled with the cation exchange resin represented by the above chemical formula (4). Become.
- a membrane for a fuel cell comprising a cation exchange membrane based on a porous membrane can increase the physical strength without causing an increase in electrical resistance because the porous membrane functions as a reinforcing portion.
- the porous film used as the substrate has voids due to pores and the like inside.
- the front and back surfaces of the base material are communicated with each other through at least a part of the void portion through the void portion.
- the porous membrane described in (1) (Porous membrane) in the first method for producing a diaphragm for a direct liquid fuel cell can be used as it is. Therefore, explanation of the porous membrane is omitted.
- the cation exchange capacity of the direct-type and composite-type direct liquid fuel cell membranes of the present invention is usually a high value of 0.1 to 3 mmolZg, particularly 0.1 to 2 mmolZg, as measured by a conventional method. As a result, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low.
- These diaphragms have a water content of usually 5 to 90%, more preferably 10 to 80%, as a result of using a polymerizable composition having the composition described later, and an increase in electrical resistance due to drying, that is, protons. Low conductivity is unlikely to occur.
- these diaphragms are insoluble in the fuel liquid, 3MolZL- air resistance conductive in sulfuric acid solution 0. 45 Omega 'cm 2 or less, more 0. 25 Omega' and very cm 2 or less small.
- the permeability of the fuel liquid is very small.
- the methanol permeability in the diaphragm is usually 1000 g / m 2 'hr or less, especially 10-7. The range is 00g / m 2 ⁇ hr.
- the third fuel cell membrane has such a low electrical resistance and a low fuel liquid permeability. Therefore, when it is used directly as a membrane for a liquid fuel cell, the fuel supplied to the fuel chamber is used. It is possible to effectively prevent the liquid material from permeating the diaphragm and diffusing into the opposite chamber, and a high output battery can be obtained.
- a predetermined polymerizable composition is prepared and polymerized and cured into a film having a predetermined thickness.
- a cation exchange group is introduced to form a single type direct liquid fuel cell membrane (hereinafter abbreviated as a single type membrane in some cases). ) Power is gained.
- the polymerizable composition which is a starting material for producing a single-type diaphragm, comprises a) an aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator as essential components. To do.
- An aromatic polymerizable monomer is a compound in which one polymerizable group, at least one alkoxy group or acyloxy group, and at least one hydrogen atom are bonded to an aromatic ring.
- a compound represented by the chemical formula (7) is used.
- V is a polymerizable group.
- a hydrocarbon group having 2 to 5 carbon atoms having an unsaturated bond is preferable. Examples thereof include a vinyl group, a propenyl group, and a butylene group.
- the bull group is particularly preferable from the viewpoint of availability.
- A is an aromatic ring.
- Aromatic rings include monocyclic and polycyclic condensed multiple aromatic rings. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and derivatives thereof.
- L represents an alkoxy group having 1 to 5 carbon atoms or an acyloxy group.
- the alkoxy group includes a methoxy group, an ethoxy group, an n-propoxy group, and an iso-propoxy group.
- a methoxy group is more preferable, in which an alkoxy group having 1 to 2 carbon atoms is more preferable.
- the acyloxy group is a functional group represented by the following chemical formula (8).
- R 1 is an alkyl group having 1 to 5 carbon atoms.
- acyloxy group examples include an acetoxy group, an ethyloxy group, an n-propyloxy group, an n-butyroxy group, an isobutoxy group, a terbutoxy group, a butoxy group, a pentyloxy group, and the like. Of these, an acetoxy group having 1 to 2 carbon atoms is more preferred, and an acetoxy group is particularly preferred.
- r is an integer of 1 to 4.
- P is preferably 1 or 2, particularly preferably 1, in that the permeation suppressing effect of liquid fuel is high and the electric resistance of the obtained diaphragm is low.
- s represents the number of hydrogen atoms bonded to the aromatic ring.
- the aromatic polymerizable monomer represented by the chemical formula (7) at least one hydrogen atom is bonded to the aromatic ring. As will be described later, this hydrogen atom is exchanged for a cation exchange group.
- the sum of r and s is the number of hydrogen atoms that can be bonded to an unsubstituted aromatic ring.
- the aromatic polymerizable monomer represented by the chemical formula (7) at least one of the alkoxy group or the acyloxy group bonded to the aromatic ring is bonded to the polymerizable group V. It is preferred to be linked to the para position.
- the alkoxy group or the acyloxy group is bonded to the para position, the liquid fuel permeation preventing ability of the obtained diaphragm is improved, and the electric resistance is further lowered.
- Monocyclic aromatic polymerizable monomers having an alkoxy group include P-methoxystyrene, 2,4-dimethoxystyrene, p-etoxystyrene, 2,4-diethoxyethylene, and 2 ethyl. Examples include 4-methylstyrene.
- Examples of monocyclic aromatic polymerizable monomers having an acyloxy group include p-acetyloxystyrene, 2,4-diacetyloxystyrene, p-ethyloxystyrene, 2,4-jetyloxystyrene, and 2-ethyloxy-4-alkylene. Examples include cetoxystyrene.
- bicyclic aromatic polymerizable monomers having an alkoxy group examples include 1-methoxy-5-bi-naphthalene, 1-ethoxy-5-vinylnaphthalene, 2-methoxy-6-vinylnaphthalene, 2-ethoxy-6-burnaphthalene, etc. Is done.
- bicyclic aromatic polymerizable monomers having an acyloxy group examples include 1-acetoxy-5-vininolenaphthalene, 1-ethyloxy-5-vinylenonaphthalene, 2-acetoxy-6-vinylnaphthalene, 2-ethyloxy-6-urnaphthalene, and the like. Illustrated.
- Examples of the tricyclic aromatic polymerizable monomer having an alkoxy group include 1-methoxy-5-bianthracene, 1-ethoxy-15-bianthracene, 2-methoxy-6-butylanthracene, 2 ethoxy-6. Examples include buranthracene.
- Examples of tricyclic aromatic polymerizable monomers having an acyloxy group include 1-acetoxy 5-vinylanthracene, 1-ethyloxy-5-vinylanthracene, 2-acetoxy-6-bianthracene, 2-ethyloxy6-bianthracene
- Polycyclic aromatic polymerizable monomers having 3 or more rings can also be used, such as 1-methoxy-7-butyltetracene, 1-ethoxy-7-vinyltetracene, 2-methoxy-8-vinyltetracene, 2-ethoxy-1-8-tetratetracene, 1 Examples include acetyloxy-7-buletetracene, 1-ethyloxy7-bulutetracene, 2-acetoxy-8-buletetracene, 2-ethyloxy-8-butyltetracene, and the like.
- P-methoxystyrene and P-acetoxystyrene are particularly preferable in that the permeation suppressing power of the liquid fuel to the obtained diaphragm is high and the electric resistance is low.
- the content of the aromatic polymerizable monomer in the polymerizable composition is not particularly limited, but is 10 to 99 mol% of the total amount of polymerizable monomers contained in the polymerizable composition.
- the preferred range is 30 to 98 mol%, and the more preferred range is 50 to 95 mol%.
- the prepared polymerizable composition is polymerized to produce a resin film having a predetermined thickness.
- the polymerization method is the same as the method described in (1) First method for producing a diaphragm for a direct liquid fuel cell.
- the resin film obtained by the above polymerization operation is subjected to a hydrolysis treatment.
- a hydrolysis treatment an alkoxy group or an acyloxy group is derived into a hydroxyl group.
- a method for deriving an alkoxy group into a hydroxyl group a method in which an alkoxy group is hydrolyzed with a halogenated hydrogen such as bromoacid or hydrogen iodide according to a conventional method is preferred.
- the resin film is treated with a odorous acid solution of ketone or alcohol.
- the hydrogen halide concentration is preferably 0.1 to 5 molZL, and the treatment temperature is preferably 20 to 90 ° C.
- the treatment time is preferably 5 to 48 hours.
- Examples of a method for deriving an acyloxy group to a hydroxyl group include a usual ester hydrolysis method.
- the resin membrane is formed by using alkaline metals such as alkali metals such as sodium hydroxide and calcium hydroxide, alkaline earth metal hydroxides, or acidic substances such as hydrochloric acid and sulfuric acid.
- alkaline metals such as alkali metals such as sodium hydroxide and calcium hydroxide, alkaline earth metal hydroxides, or acidic substances such as hydrochloric acid and sulfuric acid.
- treat with a mixed solution of water and alcohol or water and ketones treat with a mixed solution of water and alcohol or water and ketones.
- concentration of the acidic substance or alkaline substance during the hydrolysis treatment for example, when sodium hydroxide is used, the treatment temperature of 0.1 to 5 molZL is preferably 20 to 80 ° C.
- the treatment time is preferably 5 to 24 hours.
- Such hydrolysis treatment conditions are well known in the art.
- a cation exchange group is introduced into the resin membrane derived from a hydroxyl group as described above.
- the cation exchange group is introduced into the aromatic ring of the resin membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- the method for introducing a cation exchange group and the cation exchange group to be introduced are the same as those described in the above (4) First method for producing a diaphragm for a direct liquid fuel cell.
- the single-type direct liquid fuel cell membrane is a membrane having a thickness of 10 to 50 m in which the cation exchange resin represented by the chemical formula (1) is formed into a membrane.
- This diaphragm has an ion exchange capacity of 1.0 to 2.7 meqZg.
- a predetermined polymerizable composition is filled in a void formed in a porous membrane, and then the filled polymerizable composition is used. Polymerize and cure. Next, after a hydroxyl group is derived from the alkoxy group or acyloxy group of the cured resin resin obtained by polymerization and curing, a cation exchange group is introduced to produce a composite type diaphragm.
- a fuel cell membrane comprising a cation exchange membrane produced using a porous membrane as a base material has a physical strength without causing an increase in electrical resistance and the like because the porous membrane serves as a reinforcing portion. Can be increased.
- the polymerizable composition which is a starting material for producing this diaphragm, is the same as the polymerizable composition used in the production of the single-type direct liquid fuel cell diaphragm. Therefore, the description is omitted.
- the polymerizable composition is brought into contact with the porous membrane. Thereby, the polymerizable composition is filled in the voids of the porous film.
- porous membrane As the porous membrane, the porous membrane described in the composite type direct liquid fuel cell membrane can be used as it is.
- the contact method described in the first direct liquid fuel cell membrane can be used as it is.
- the polymerizable composition filled in the voids of the porous membrane by the contact between the polymerizable composition and the porous membrane is then polymerized.
- the polymerization method is the same as that already described. [0230] Induction to hydroxylate
- the alkoxy group or acyloxy group of the cured resin resin is hydrolyzed to derive a hydroxyl group.
- the method for deriving a hydroxyl group is the above-described method for producing a diaphragm for a single type direct liquid fuel cell.
- a cation exchange group is introduced into the cured resin body filled in the voids of the porous membrane and introduced with hydroxyl groups as described above.
- the cation exchange group is introduced into the aromatic ring of the resin-cured cured product filled in the voids of the porous membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- cation exchange group to be introduced into the aromatic ring conventionally known cation exchange groups are employed without particular limitation. Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
- the cation exchange membrane obtained by forming a cation exchange resin in the form of a membrane and the cation exchange membrane in which the porous membrane is filled with a cation exchange resin are washed as necessary. Cutting is performed, and it is used as a diaphragm for direct liquid fuel cells according to a standard method.
- the fifth direct liquid fuel cell diaphragm (hereinafter sometimes abbreviated as the fifth diaphragm) of the present invention, halogen atoms are bonded to the diaphragm.
- the fifth direct liquid fuel cell membrane has two forms, a single type and a composite type, as described below.
- a single-type direct liquid fuel cell membrane has a force represented by the following chemical formula (9). It consists of a thione exchanged resin membrane.
- A represents an aromatic ring and is bonded to a methylene main chain represented by a straight line.
- Aromatic rings include monocyclic and polycyclic condensed plural aromatic rings. Specifically, a benzene ring, a naphthalene ring, an anthracene ring, etc. are illustrated.
- X represents a halogen atom
- m represents the number of halogen atoms bonded to the aromatic ring A. m is 1 or more, 1 to 4 is preferred, and 1 to 2 is more preferred.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- a chlorine atom more preferably a fluorine atom or a chlorine atom, is particularly preferred.
- E represents a cation exchange group.
- the cation exchange group conventionally known ones can be used without particular limitation. Specific examples include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. A sulfonic acid group which is a strongly acidic group is particularly preferable in that the electric resistance of the obtained diaphragm is lowered.
- n represents the number of cation exchange groups bonded to the aromatic ring. n is an integer of 1 or more. n is preferably 1 to 2.
- m + n ⁇ W.
- the cation exchange resin represented by the chemical formula (9) has a cross-linked structure that bonds methylene main chains to each other.
- the cross-linked chain is schematically shown by a vertical straight line connecting the methylene main chains shown by the upper and lower straight lines extending in the horizontal direction.
- the cross-linking chain is not particularly limited as long as it can cross-link the methylene main chain without limitation.
- the cross-linking chain is preferably selected in consideration of the impermeability of liquid fuel to the diaphragm and a decrease in electrical resistance.
- a crosslinked chain having a structure derived from a crosslinking agent that is widely used as a crosslinking agent during polymerization is employed.
- a cross-linked chain derived from divinylbenzene is exemplified.
- the molar ratio of the ketylbenzene skeleton unit as the crosslinking chain to the chlorosulfobenzene unit is preferably 1:99 to 40:60 2:98 to 30: 70 kaori likes.
- the molar ratio of sulfonic acid groups to black mouth groups is 1: 1.
- halogen atoms contained in the cation exchange resin can be confirmed by infrared spectroscopy. Specifically, for example, when a chlorine atom is used as a halogen atom, its presence can be confirmed by an absorption peak at 1090 cm_1 , which is the characteristic absorption of aromatic C-C1. wear. In the case of using the fluorine atom as the halogen atom, it is possible to confirm the presence by the absorption peak of 1210cm _1 is the characteristic absorption of an aromatic CF. The abundance of halogen atoms can be quantified by adding an appropriate internal standard substance to the resin.
- the single-type fifth direct liquid fuel cell membrane is formed by depositing a catalyst exchange resin represented by the above chemical formula (10) in a thickness of 10 to L00 m.
- the composite type fifth diaphragm for a direct liquid fuel cell is formed by using a porous membrane as a base material and filling the voids of the porous membrane with the cation exchange resin represented by the chemical formula (9).
- a membrane for a fuel cell comprising a cation exchange membrane produced using a porous membrane as a base material can increase the physical strength without causing an increase in electrical resistance because the porous membrane functions as a reinforcing portion. it can.
- the porous membrane used as the substrate is a porous membrane having voids due to pores or the like inside thereof, and the front and back of the membrane are communicated through at least a part of the voids through the voids.
- Any known porous membrane can be used without limitation.
- the porous membrane described in (Porous membrane) of (1) First production method of a direct liquid fuel cell membrane can be used as it is. Therefore, description of the porous membrane is omitted.
- the amount of cation exchange resin filled in the porous membrane is preferably 10 to 90 parts by mass and more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the porous membrane.
- the composite type direct liquid fuel cell membrane has a high cation exchange capacity of usually 0.1 to 3 mmolZg, particularly 0.3 to 2.5 mmolZg, as measured by a conventional method. Therefore, it has high battery output, fuel liquid permeability, and membrane electric resistance is sufficiently low.
- the composite type diaphragm has a moisture content of usually 5 to 90%, more preferably 10 to 80%, and an increase in electrical resistance due to drying. Proton conductivity is hardly lowered.
- the membrane resistance value measured by the method described in the examples below is very small, 0.40 Q-C m 2 or less, and further 0.25 ⁇ 'cm 2 or less.
- Very low fuel liquid permeability The methanol permeability according to the method described in Examples below is usually 1000 gZm 2 'hr or less, and more preferably in the range of 10 to 700 gZm 2 ' hr.
- the composite type fuel cell membrane has such a low electric resistance and low fuel liquid permeability, the fuel supplied to the fuel chamber when used directly as a membrane for a liquid type fuel cell. It is possible to effectively prevent the liquid from passing through the diaphragm and diffusing into the opposite chamber, and as a result, a high output battery can be obtained.
- a predetermined polymer composition is prepared, polymerized and cured into a film having a predetermined thickness, and then polymerized and cured.
- a single-type direct liquid fuel cell membrane can be obtained by introducing a cation exchange group into the obtained rosin membrane.
- the polymerizable composition which is a starting material for producing a single-type diaphragm, comprises a) an aromatic polymerizable monomer, b) a crosslinkable polymerizable monomer, and c) a polymerization initiator as essential components. To do.
- the aromatic polymerizable monomer is a compound represented by the following chemical formula (11) in which one polymerizable group, at least one halogen group, and at least one hydrogen atom are bonded to an aromatic ring. is there.
- V represents a polymerizable group.
- a polymerizable group an unsaturated bond
- a hydrocarbon group having 2 to 5 carbon atoms having the following formula is preferred. Examples include a bur group, a propenyl group, and a butylene group.
- the bull group is particularly preferable from the viewpoint of availability.
- A is an aromatic ring.
- Aromatic rings include monocyclic and polycyclic condensed multiple aromatic rings. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and derivatives thereof.
- X represents a halogen atom.
- halogen atom fluorine atom, chlorine atom, bromine atom
- halogen atoms a fluorine atom and a chlorine atom, which are more preferable, are particularly preferable.
- p is an integer of 1 to 4.
- P is preferably 1 or 2, particularly preferably 1, in that the permeation suppressing effect of liquid fuel is high and the electric resistance of the obtained diaphragm is low.
- s represents the number of hydrogen atoms bonded to the aromatic ring.
- the aromatic polymerizable monomer represented by the chemical formula (11) at least one hydrogen atom is bonded to the aromatic ring. As will be described later, this hydrogen atom is exchanged for a cation exchange group.
- the aromatic polymerizable monomer represented by the chemical formula (11) at least one of the halogen atoms bonded to the aromatic ring is bonded to the polymerizable group V in the para position. It is preferable. When the halogen group is bonded to the para position, the liquid fuel permeation preventing ability of the obtained diaphragm is improved, and the electric resistance is further lowered.
- Monocyclic aromatic polymerizable monomers include P-chlorostyrene, 2,4-dichlorostyrene
- Examples of the bicyclic aromatic polymerizable monomer include 1 chloro-5-bur naphthalene, 2 chloro 6-bur naphthalene and the like.
- tricyclic aromatic polymerizable monomers examples include 1-black mouth 10 bur anthracene, 8-chloro mouth 10 beryl anthracene, 1-black mouth 5 beryl anthracene and the like.
- P-chlorostyrene is particularly preferable in that the permeation suppressing power of liquid fuel to the obtained diaphragm is high and the electric resistance is low.
- the content of the aromatic polymerizable monomer in the polymerizable composition is not particularly limited, but is 10 to 10% of the total amount of polymerizable monomers contained in the polymerizable composition. 99 mol% is preferred 20-98 mol% is more preferred. By controlling the content of the aromatic polymerizable monomer within this range, the resulting cation exchange resin becomes more impermeable to liquid fuel.
- the polymerizable composition prepared above is polymerized while maintaining a film with a predetermined thickness.
- the polymerization method is the same as the method described in (1) First method for producing a diaphragm for a direct liquid fuel cell.
- the cation exchange group is introduced into the aromatic ring of the resin membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- the method for introducing a cation exchange group is the same as the method for introducing a cation exchange group described in (1) Production method of first diaphragm for direct liquid fuel cell.
- the predetermined polymerizable composition is filled into the void formed in the porous membrane, and then the filled polymerizable composition is used.
- This diaphragm is produced by introducing a force thione exchange group into the resin obtained by polymerization and curing and then polymerization and curing.
- the polymerizable composition which is a starting material for producing this diaphragm, is the same as the polymerizable composition used in the production of the single-type direct liquid fuel cell diaphragm. Therefore, the description is omitted.
- the polymerizable composition is brought into contact with the porous membrane. Thereby, the polymerizable composition is filled in the voids of the porous film. Then void The polymerizable composition filled in the part is polymerized and cured.
- the fuel cell membrane comprising a cation exchange membrane produced using a porous membrane as a base material in this way is physically without causing an increase in electrical resistance because the porous membrane functions as a reinforcing portion. Strength can be increased.
- the porous membrane used as the substrate is the same as the porous membrane described in the first diaphragm for a direct liquid fuel cell.
- the contact method described in the first direct liquid fuel cell membrane can be used as it is.
- the polymerizable composition filled in the voids of the porous membrane by the contact between the polymerizable composition and the porous membrane is then polymerized.
- the polymerization method is the same as the polymerization method already described for the first direct type diaphragm.
- a cation exchange group is then introduced into the membrane-shaped polymer produced by filling the voids of the porous membrane filled with the polymer power of the polymerizable composition as described above.
- the cation exchange group is introduced into the aromatic ring of the resin filled in the voids of the porous membrane.
- This aromatic ring is derived from the aromatic ring of the aromatic polymerizable monomer blended in the polymerizable composition.
- the direct liquid fuel cell employing the diaphragm of the present invention is generally one having the basic structure shown in Fig. 1, but is also applicable to direct liquid fuel cells having other known structures. can do.
- a fuel liquid methanol is the most common, and the power that is most effective in the effect of the present invention.
- ethanol, ethylene glycol, dimethyl ether, hydrazine and the like have the same excellent effect.
- the fuel is not limited to liquid, and gaseous hydrogen gas or the like can be used.
- Example [0290] Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to these Examples.
- the cation exchange membrane was immersed in an lmol / L-HC1 aqueous solution for 10 hours or more to obtain a hydrogen ion type, and then the cation exchange membrane was immersed in an ImolZL-NaCl aqueous solution to replace the hydrogen ion type with a sodium ion type.
- the liberated hydrogen ions were quantified with a potentiometric titrator (COMTITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous sodium hydroxide solution (Amol).
- the same cation exchange membrane was immersed in an ImolZL-HCl aqueous solution for 4 hours or more, and then the membrane was taken out and thoroughly washed with ion-exchanged water. Thereafter, moisture on the surface was wiped off with a tissue paper, and the mass (Wg) of the film when wet was measured. The membrane was further dried under reduced pressure at 60 ° C. for 5 hours, and its mass was measured (Dg). Based on the above measured values, the cation exchange capacity and water content were determined by the following equations.
- Moisture content 100 X (W-D) / D [%]
- the film thickness of the film wet with pure water was measured at 10 points, and the average value of the measured values was adopted as the film thickness.
- aqueous solution with a methanol concentration of 30% by mass was supplied to one chamber of a fuel cell (diaphragm area 5 cm 2 ) with a diaphragm in the center using a liquid chromatograph pump, and argon gas was supplied to the chamber on the opposite side of the diaphragm at 300 mlZmin. Supplied with.
- the measurement was performed in a constant temperature bath at 25 ° C.
- Argon gas that also flows out of the chamber on the opposite side of the diaphragm is introduced into the gas collection container, and the methanol concentration in the argon gas collected in the gas collection container is measured by gas chromatography to determine the amount of methanol that has permeated through the diaphragm. It was.
- the catalyst was applied to carbon paper with a thickness of 100 ⁇ m and a porosity of 80% that had been made water-repellent with polytetrafluoroethylene so that the catalyst had a concentration of 2 mgZcm 2 and dried under reduced pressure at 80 ° C for 4 hours.
- a gas diffusion electrode was obtained.
- the applied catalyst is a carbon black carrying 50% by mass of an alloy catalyst of platinum and ruthenium (ruthenium 5 Omol%), and 5% perfluorocarbonsulfonic acid dissolved in alcohol and water (DuPont, trade name Nafion). It was prepared by mixing with the product.
- the above gas diffusion electrodes were set on both surfaces of the fuel cell diaphragm to be measured, and hot-pressed at 100 ° C under a pressure of 5 MPa for 100 seconds, and then allowed to stand at room temperature for 2 minutes.
- the fuel cell temperature was set to 25 ° C
- a 20 wt% aqueous methanol solution to the fuel chamber side
- the oxygen of the atmospheric pressure to the oxidizing agent chamber side performs power generation test was supplied at 200mlZmi n.
- Current density 0AZcm 2 Current density 0AZcm 2
- the cell terminal voltage at 0. lAZcm 2 was measured.
- Examples 2 and 3 According to the composition table shown in Table 1, various monomers were mixed to obtain a monomer composition. 400 g of the obtained monomer composition was placed in a 500 ml glass container, and a porous membrane (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %).
- a porous membrane made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %).
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100 m polyester film as a release material, and then under a pressure of 0.3 MPa of nitrogen.
- Polymerization was carried out at 80 ° C for 5 hours.
- the obtained membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 40 ° C for 60 minutes to sulfonate the benzene ring, and for fuel cells. A diaphragm was obtained.
- composition table shown in Table 1 various monomers were mixed to obtain a monomer composition.
- 400 g of the obtained monomer composition was placed in a 500 ml glass container, and the porous membranes (A and B, 20 cm ⁇ 20 cm) shown in Table 1 were immersed therein.
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100-m polyester film as a release material, and then subjected to a pressure of 0.3 MPa under nitrogen pressure. Polymerization was carried out at 5 ° C for 5 hours. Further, the same operation as in Example 1 was performed to obtain a fuel cell membrane.
- Example 2 The same operation as in Example 1 was carried out except that the monomer composition and the porous membrane shown in Table 1 were used to obtain a fuel cell membrane.
- A Polyethylene with a weight average molecular weight of 250,000, film thickness 25 ⁇ , average pore size 0.03 m, porosity 37%
- the p-(tert-butyl) styrene 90.5 mole 0/0, di Bulle benzene 9. consisting of 5 mole 0/0 polymerizable monomer composition, and 5 parts by mass with respect to total monomer 100 parts by weight
- Polymerization initiator t butyl peroxyscheyl hexanoate was added, and a porous film (made of polyethylene with a weight average molecular weight of 250,000, film thickness 25 ⁇ m, average pore size 0.03 ⁇ m, porosity) 37%) was soaked for 5 minutes.
- the porous film was taken out from the polymerizable composition, and after covering both sides of the porous film with a 100 ⁇ m polyester film as a release material, under a pressure of 0.3 MPa of nitrogen,
- Polymerization was carried out at 80 ° C for 5 hours.
- the obtained membranous substance was immersed in a 1: 1 (mass ratio) mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 50 ° C for 60 minutes to chlorosulfonate the benzene ring. Further, it was immersed in a 0.5 mol ZL aqueous sodium hydroxide solution for 15 hours to hydrolyze chlorosulfonic acid groups to sulfonic acid groups to obtain a fuel cell membrane of the present invention.
- the fuel cell membrane of the present invention was obtained in the same manner as in Example 4.
- Table 4 shows the results of evaluating the characteristics of the obtained fuel cell membrane.
- A Made of polyethylene with a weight average molecular weight of 250,000, film thickness 25 / xm, average pore diameter 0 03 m, porosity 37%
- B Made of polyethylene with a weight average molecular weight 200,000, film thickness 20 ⁇ m, average pore diameter 0 03 m, Porosity 4 1%
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100-m polyester film as a release material, and then subjected to a pressure of 0.3 MPa under nitrogen pressure. Polymerization was carried out by heating at ° C for 5 hours.
- the obtained membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 40 ° C for 60 minutes to sulfonate the benzene ring, and used for fuel cells.
- a diaphragm was obtained.
- Example 8 The same operation as in Example 8 was performed except that the monomer composition shown in Table 5 was used to obtain a fuel cell membrane.
- composition table shown in Table 7 various monomers were mixed to obtain a monomer composition.
- 400 g of the obtained monomer composition was placed in a 500 ml glass container, and a porous membrane (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %).
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100 m polyester film as a release material, and then pressurized under 0.3 MPa of nitrogen.
- Polymerization was carried out at 80 ° C for 5 hours.
- the obtained film-like product was immersed in a solution of 2 mol / L-odorous acid aqueous solution and 100 ml of methanol in a 500 ml glass container and reacted at 50 ° C for 24 hours in a sealed state to remove the methoxy group. Converted to a hydroxyl group.
- the membrane was air-dried at room temperature and then immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more at 40 ° C for 60 minutes to sulfonate the benzene ring.
- a diaphragm for a fuel cell was obtained.
- composition table shown in Table 1 various monomers were mixed to obtain a monomer composition.
- 400 g of the obtained monomer composition was placed in a 500 ml glass container, and a porous membrane (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %).
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100 m polyester film as a release material, and then under a pressure of 0.3 MPa of nitrogen,
- Polymerization was carried out at 80 ° C for 5 hours.
- the obtained film-like material was immersed in a solution of 3 mol ZL-sodium hydroxide aqueous solution and methanol 100 ml each in a 500 ml glass container, and reacted at 50 ° C for 24 hours in a sealed state. Was converted to a hydroxyl group.
- composition table shown in Table 7 various monomers were mixed to obtain a monomer composition.
- 400 g of the obtained monomer composition was placed in a 500 ml glass container, and a porous membrane (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %) was soaked.
- a porous membrane made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 ⁇ m, an average pore diameter of 0.03 ⁇ m, a porosity of 37 %) was soaked.
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100-m polyester film as a release material, and then subjected to nitrogen pressure of 0.3 MPa. Polymerization was carried out by heating at ° C for 5 hours.
- porous membranes were taken out of the monomer composition, coated on both sides of the porous membrane using a 100-m polyester film as a release material, and then subjected to nitrogen pressure of 0.3 MPa. Polymerization was carried out by heating at ° C for 5 hours.
- the obtained membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of 90% or more for 60 minutes at 40 ° C to sulfonate the benzene ring and use it for fuel cells.
- a diaphragm was obtained.
- Example 18 The same operation as in Example 18 was performed except that the monomer composition shown in Table 9 was used, to obtain a fuel cell membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Energy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本発明により、
a) 1個の重合性基と;少なくとも1個の水素原子と;及び前記重合性基に対してパラ位に結合してなるメチル基、炭素数が2以上のアルキル基、ハロゲン原子、アシロキシ基及びアルコキシ基からなる群より選ばれる少なくとも1個の置換基とが芳香環に結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、
c)重合開始剤、
を少なくとも含む重合性組成物を重合硬化させ、又は上記重合性組成物を多孔質膜に含浸させた後重合硬化させ、次いで前記芳香族系重合性単量体に由来する芳香環にカチオン交換基を導入する直接液体型燃料電池用隔膜の製造方法が開示される。
Description
明 細 書
直接液体型燃料電池用隔膜、及びその製造方法
技術分野
[0001] 本発明は、直接液体型燃料電池用隔膜、及びその製造方法に関する。該隔膜は、 芳香環の所定位置に特定の官能基を有し、メタノール等の液体燃料の透過性が少 ない。
背景技術
[0002] イオン交換膜は、固体高分子型燃料電池、レドックス 'フロー電池、亜鉛—臭素電 池等の電池用隔膜、透析用隔膜等として汎用的に使用されている。固体高分子型 燃料電池はイオン交換膜を電解質隔膜として用いる。この燃料電池は燃料と酸化剤 とを連続的に供給することにより、これらが反応した時の化学エネルギーを電力として 取り出すクリーンで高効率な発電システムの一つである。固体高分子型燃料電池は 低温作動や小型化を期待できることから、近年自動車用途、家庭用途、携帯用途と してその重要性を増して 、る。
[0003] 固体高分子型燃料電池は、一般的に電解質として作用する固体高分子からなる隔 膜の両面に、触媒が坦持されたガス拡散電極がそれぞれ接合された構造を有する。 固体高分子型燃料電池を用いて発電をする場合は、一方のガス拡散電極が存在す る側の室 (燃料室)に水素ガスあるいはメタノール等の液体燃料を供給し、他方のガ ス拡散電極が存在する側の室に酸化剤である酸素や空気等の酸素含有ガスをそれ ぞれ供給する。この状態で、両ガス拡散電極間に外部負荷回路を接続することにより 、燃料電池として作用し、外部負荷回路に電力が供給される。
[0004] 固体高分子型燃料電池の中でも、直接メタノール等を燃料として用いる直接液体 型燃料電池は、燃料が取り扱いやすい液体であること、燃料が安価であることが評価 されている。従って、固体高分子型燃料電池は、特に携帯機器用の比較的小出力 規模の電源として、期待されている。
[0005] 直接液体型燃料電池の基本構造を図 1に示す。図中、 la、 lbは電池隔壁である。
電池隔壁 la、 lbは、隔膜として用いる固体高分子電解質膜 6を挟んで、該固体高分
子電解質膜 6の両側にそれぞれ形成されている。 2は、一方の電池隔壁 laの内壁に 形成された燃料流通孔、 3は他方の電池隔壁 lbの内壁に形成された酸化剤ガス流 通孔である。 4は燃料室側拡散電極、 5は酸化剤室側ガス拡散電極である。
[0006] この直接液体型燃料電池において、燃料室 7にアルコール等の液体燃料が供給さ れると、燃料室側拡散電極 4においてプロトン (水素イオン)と電子が生成する。生成 したプロトンは固体高分子電解質膜 6内を通過し、他方の酸化剤室 8に到達し、ここ で酸素ガス又は空気中の酸素と反応して水が生成される。この時、燃料室側拡散電 極 4で生成される電子は、不図示の外部負荷回路を通じて酸化剤室側ガス拡散電極 5へと送られる。この際に、外部負荷に電気エネルギーが与えられる。
[0007] 上記構造の直接液体型燃料電池において、上記固体高分子電解質膜 6には、通 常、カチオン交換膜が使用される。該カチオン交換膜は、電気抵抗が小さぐ物理的 な強度が強ぐ更に燃料として使用される液体燃料の透過性が低い特性が要求され る。カチオン交換膜に対する液体燃料の透過性が高い場合には、燃料室に供給す る液体燃料が酸ィ匕室側に移動し、その結果電池出力が低下する。
[0008] 従来、燃料電池用隔膜として使用されるカチオン交換膜としては、例えば、ポリオレ フィン系やフッ素系榭脂製の多孔質膜の空隙部に、カチオン交換榭脂を充填したも のが知られている。このカチオン交換膜は、多孔質膜の空隙部にカチオン交換基を 導入可能な官能基を有する重合性単量体および架橋性重合性単量体からなる重合 性組成物を充填して重合し、次いで得られる榭脂の有する、該カチオン交換基を導 入可能な官能基にカチオン交換基を導入する方法により製造される (例えば、特許 文献 2)。この方法によれば、燃料電池用隔膜は比較的安価に製造され、得られ る隔膜は電気抵抗が小さぐ水素ガスの透過性も小さぐ溶媒に対する膨潤、変形も 少ない。
特許文献 1 :特開 2001— 135328号公報
特許文献 2:特開平 11— 310649号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、これらのカチオン交換膜を直接液体型燃料電池用隔膜として用いる
場合は、アルコール等の液体燃料カ^チオン交換膜内を透過することを完全に抑制 することができない。その結果、燃料室側カゝら酸化剤室側へ液体燃料の移動が生じ 、電池性能が低下している。
[0010] この問題を改善するために、多孔質膜の空隙部に充填する重合性組成物中の架 橋性重合性単量体の含有量を高めることにより、親水性のカチオン交換基の導入量 を相対的に低下させることを本発明者らは検討した。この方法によれば、得られる力 チオン交換膜の疎水性が高められ、且つ膜の架橋度も高められる。その結果、緻密 なイオン交換膜が得られ、液体燃料の透過抑制に関してある程度有効であった。し かし一方で、カチオン交換膜の電気抵抗が増大して電池出力が低下する問題が起 きた。この点で実用上満足できる燃料電池用隔膜は得られて 、な!/、。
[0011] なお、前記従来技術として引用する燃料電池用のカチオン交換膜の製造方法にお いては、多孔質膜の空隙部に充填する重合性組成物中の単量体成分として、前記 カチオン交換基を導入可能な官能基を有する重合性単量体や架橋性重合性単量 体の他に、アクリロニトリル、ァクロレイン、メチルビ-ルケトン等の、カチオン交換基を 導入可能な官能基を有しない重合性単量体を第三共重合成分として含有させること も示されている。しかし、これらの第三共重合成分として記載されている重合性単量 体は、いずれも親水性の強い単量体である。従って、これら第三共重合成分を共重 合させて得られるカチオン交換膜は親水性が高 、。このため親水性の高!、アルコー ル等の液体燃料の透過抑制効果は向上していないことが認められた。即ち、この第 三共重合成分が共重合されているカチオン交換膜は燃料電池用隔膜として使用す る場合、アルコール等の液体燃料の透過抑制効果の点で不十分である。
[0012] 以上の背景にあって、本発明は、アルコール等の液体燃料の透過性、特にメタノー ル透過性が低ぐ隔膜の電気抵抗が低ぐ安定した高い電池出力を示し、膨潤等の 変形の起き難い、カチオン交換膜からなる燃料電池用隔膜、及びその製造方法を提 供することを目的とする。
課題を解決するための手段
[0013] 本発明者等は、上記課題に鑑み鋭意研究を行ってきた。その結果、多孔質膜の空 隙部に充填される重合性組成物の主成分として、重合性基に対してパラ位にメチル
基を有する芳香族系重合性単量体を用いると、オルト位やメタ位にメチル基を有する 芳香族系重合性単量体を用いる場合と比較して、膜抵抗を増大させること無ぐ特異 的に液体燃料の透過性を低減できることを見出した。
[0014] 更に、本発明者等は、多孔質膜の空隙部に充填される重合性組成物の主成分とし て、少なくとも 1個の炭素数が 2以上のアルキル基、及び少なくとも 1個の水素原子が 芳香環に結合してなる芳香族系重合性単量体を用いると、オルト位やメタ位にメチル 基を有する芳香族系重合性単量体を用いる場合と比較して、特異的に液体燃料、特 にメタノールの透過性を低減できることを見出した。
[0015] 更に本発明者等は、カチオン交換基が結合する芳香環にアルコキシ基が結合した カチオン交換榭脂を燃料電池用隔膜として用いると、アルコキシ基が結合して 、な!/ヽ カチオン交換膜と比較して、カチオン交換膜の電気抵抗を増大させること無ぐ特異 的に液体燃料の透過性を低減できることを見出した。
[0016] また更に、本発明者等は、カチオン交換基が結合する芳香環に水酸基が結合した カチオン交換榭脂を燃料電池用隔膜として用いると、水酸基が結合して!/、な 、カチ オン交換膜と比較して、カチオン交換膜の電気抵抗を大幅に低減させることができ、 更に液体燃料の透過性は従来の隔膜と比較し遜色のないことを見出した。
[0017] 更に本発明者等は、カチオン交換基が結合する芳香環にハロゲン元素が結合した カチオン交換榭脂を燃料電池用隔膜として用いると、ハロゲン元素が結合していな ぃカチオン交換膜と比較して、カチオン交換膜の電気抵抗を増大させること無ぐ特 異的に液体燃料の透過性を低減できることを見出した。
[0018] 本発明は上記各検討の結果、完成させるに至ったものである。
[0019] 従って、本発明は、以下に記載するものである。
[0020] 〔1〕 a) 1個の重合性基、少なくとも 1個の水素原子、及びメチル基、炭素数が 2 以上のアルキル基、ハロゲン原子、及びアルコキシ基力 なる群より選ばれる少なくと も 1個の置換基が芳香環に結合してなり、且つ上記メチル基が 1個又は 2個以上芳香 環に結合している場合はメチル基の少なくとも 1個は前記重合性基に対してパラ位に 結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を重合硬化させ、次 ヽで前記芳香族系重合性単量 体に由来する芳香環にカチオン交換基を導入することを特徴とする直接液体型燃料 電池用隔膜の製造方法。
[0021] 〔2〕 a) 1個の重合性基、少なくとも 1個の水素原子、及びメチル基、炭素数が 2 以上のアルキル基、ハロゲン原子、及びアルコキシ基力 なる群より選ばれる少なくと も 1個の置換基が芳香環に結合してなり、且つ上記メチル基が 1個又は 2以上芳香環 に結合している場合はメチル基の少なくとも 1個は前記重合性基に対してパラ位に結 合してなる単環式芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物と多孔質膜とを接触させて前記重合性組成物を多孔 質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させ、次いで 前記芳香族系重合性単量体に由来する芳香環にカチオン交換基を導入することを 特徴とする直接液体型燃料電池用隔膜の製造方法。
[0022] 〔3〕 a) 1個の重合性基、少なくとも 1個のアルコキシ基又はァシロキシ基、及び少 なくとも 1個の水素原子が芳香環に結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を重合硬化させて榭脂膜を得、次 ヽで前記榭脂膜中 のアルコキシ基又はァシロキシ基を加水分解することにより前記アルコキシ基又はァ シロキシ基を水酸基に誘導した後、榭脂膜中の前記芳香族系重合性単量体に由来 する芳香環にカチオン交換基を導入することを特徴とする直接液体型燃料電池用隔 膜の製造方法。
[0023] 〔4〕 a) 1個の重合性基、少なくとも 1個のアルコキシ基又はァシロキシ基、及び少 なくとも 1個の水素原子が芳香環に結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物と多孔質膜とを接触させて前記重合性組成物を多孔 質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させて榭脂硬 化体とし、次 、で前記榭脂硬化体中のアルコキシ基又はァシロキシ基を加水分解す ることにより前記アルコキシ基又はァシロキシ基を水酸基に誘導し、その後前記榭脂 硬化体中の芳香族系重合性単量体に由来する芳香環にカチオン交換基を導入する ことを特徴とする直接液体型燃料電池用隔膜の製造方法。
[0024] [5] 芳香族系重合性単量体が、単環式芳香族重合性単量体である〔1〕乃至〔4〕 の何れかに記載の直接液体型燃料電池用隔膜の製造方法。
[0025] 〔6〕 単環式芳香族重合性単量体が、スチレン骨格を有する〔5〕に記載の直接液 体型燃料電池用隔膜の製造方法。
[0026] 〔7〕 架橋構造を有するメチレン主鎖に、カチオン交換基及びアルコキシ基を有す る芳香環を結合したイオン交換樹脂からなることを特徴とする直接液体型燃料電池 用隔膜。
[0027] 〔8〕 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換榭脂とか らなり、前記イオン交換樹脂が架橋構造を有するメチレン主鎖にカチオン交換基及 びアルコキシ基を有する芳香環を結合したイオン交換榭脂であることを特徴とする直 接液体型燃料電池用隔膜。
[0028] 〔9〕 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる〔7〕又は〔
8〕に記載の直接液体型燃料電池用隔膜。
[0029] 〔10〕 アルコキシ基が、炭素数 1〜5のアルコキシ基である〔7〕又は〔8〕に記載の 直接液体型燃料電池用隔膜。
[0030] 〔11〕 アルコキシ基力 メチレン主鎖に結合する芳香環の炭素原子に対してパラ 位に芳香環に結合して 、る〔7〕又は〔8〕に記載の直接液体型燃料電池用隔膜。
[0031] 〔12〕 架橋構造を有するメチレン主鎖に、少なくとも 1個のカチオン交換基及び少 なくとも 1個の水酸基を有する芳香環を結合するイオン交換樹脂からなることを特徴と する直接液体型燃料電池用隔膜。
[0032] 〔13〕 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換樹脂と 力 なり、前記イオン交換樹脂が架橋構造を有するメチレン主鎖に少なくとも 1個の力
チオン交換基及び少なくとも 1個の水酸基を有する芳香環を結合するイオン交換榭 脂であることを特徴とする直接液体型燃料電池用隔膜。
[0033] 〔14〕 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる〔12〕又 は〔13〕に記載の直接液体型燃料電池用隔膜。
[0034] [15] 架橋構造を有するメチレン主鎖に、カチオン交換基及びハロゲン原子を有 する芳香環を結合したイオン交換樹脂からなることを特徴とする直接液体型燃料電 池用隔膜。
[0035] 〔16〕 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換樹脂と 力 なり、前記イオン交換樹脂が架橋構造を有するメチレン主鎖にカチオン交換基 及びハロゲン原子を有する芳香環を結合したイオン交換榭脂であることを特徴とする 直接液体型燃料電池用隔膜。
[0036] 〔17〕 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる〔15〕又 は〔16〕に記載の直接液体型燃料電池用隔膜。
[0037] 〔18〕 ハロゲン原子が、塩素原子である〔15〕又は〔16〕に記載の直接液体型燃料 電池用隔膜。
[0038] 〔19〕 ハロゲン原子が、メチレン主鎖に結合する芳香環の炭素原子に対してパラ 位に芳香環に結合している〔15〕又は〔16〕に記載の直接液体型燃料電池用隔膜。 発明の効果
[0039] 第 1の本発明の隔膜の製造方法によれば、カチオン交換榭脂を形成させる重合性 組成物中に、カチオン交換基を導入するための重合性単量体として、重合性基に対 してパラ位にメチル基を有する重合性単量体を使用しているので、得られる隔膜を構 成するカチオン交換榭脂は、適度に疎水性が高まり、液体燃料の透過性を低減させ る。更に、その理由は不明であるが、重合性基に対してパラ位にメチル基を有する重 合性単量体を使用して ヽるので、オルト位やメタ位にメチル基を有する単量体を用い る場合と比較し、液体燃料の透過抑制効果が高い。
[0040] このカチオン交換膜は、一定のイオン交換容量と膜の膨潤等の変形を抑制するた めの適度な架橋を維持しつつ、膜の疎水性状が大きく高められている。その結果、 本方法により得られるカチオン交換膜は、直接液体型燃料電池用隔膜として使用し
た場合、膜の電気抵抗を過度に高めることなぐ液体燃料、特に、メタノールの透過 性を大きく低減させる。すなわち、この隔膜は、従来達成困難であった、高い液体燃 料の非透過性と高いプロトン伝導性を両立した直接液体型燃料電池隔膜である。
[0041] 第 2の本発明の隔膜の製造方法によれば、カチオン交換榭脂を形成させる重合性 組成物中に、カチオン交換基を導入するための重合性単量体として、炭素数が 2以 上のアルキル基を少なくとも 1個有する重合性単量体を配合しているので、得られる 隔膜を構成するカチオン交換榭脂は、適度に疎水性が高まり、液体燃料の透過性を 有効に低減させる。
[0042] このカチオン交換膜は、一定のイオン交換容量と膜の膨潤等の変形を抑制するた めの適度な架橋を維持しつつ、膜の疎水性状が大きく高められている。その結果、 本方法により得られるカチオン交換膜は、直接液体型燃料電池用隔膜として使用し た場合、膜の電気抵抗を過度に高めることなぐ液体燃料、特に、メタノールの透過 性を大きく低減させる。すなわち、本発明に係る隔膜は、従来達成困難であった、高 V、液体燃料の非透過性と高 、プロトン伝導性を両立した直接液体型燃料電池隔膜 である。
[0043] 第 3の本発明の隔膜の製造方法によれば、カチオン交換榭脂を形成させる重合性 組成物中に、カチオン交換基を導入するための重合性単量体として、アルコキシ基 を有する重合性単量体を使用して 、る。この重合性単量体を使用して得られる隔膜 は、適度に疎水性が高まり、液体燃料の透過性を低減させる。更に、その理由は不 明であるが、重合性基に対してパラ位にアルコキシ基を有する重合性単量体を使用 する場合は、オルト位やメタ位にアルコキシ基を有する単量体を用いる場合と比較し 、液体燃料の透過抑制効果が高い。
[0044] 第 4の本発明の隔膜の製造方法によれば、カチオン交換榭脂を形成させる重合性 組成物中に、カチオン交換基を導入するための重合性単量体として、アルコキシ基 又はァシロキシ基を有する重合性単量体を使用して!/、る。この重合性組成物を重合 して榭脂を得た後、この樹脂に結合して ヽるアルコキシ基又はァシロキシ基を加水分 解してこれらを水酸基に誘導している。これらの重合性単量体は親油性が高ぐ容易 に他の親油性の成分と溶解し合う。このため、重合性組成物を均一に溶解させるた
めの溶剤を混入させる必要がない。従って、この重合性組成物を重合させて得られる 隔膜は、溶媒が存在する場合に生成する密度の低いゲル状物では無ぐ密度の高 い架橋構造を有する。その結果、得られる隔膜のメタノール等の液体燃料の透過性 は低く保たれる。更に、その理由は不明であるが、重合性基に対してパラ位にアルコ キシ基又はァシロキシ基を有する重合性単量体を使用する場合は、オルト位やメタ 位にアルコキシ基又はァシロキシ基を有する単量体を用いる場合と比較し、液体燃 料の透過抑制効果が高くなる。
[0045] 第 5の本発明の隔膜の製造方法によれば、カチオン交換榭脂を形成させる重合性 組成物中に、カチオン交換基を導入するための重合性単量体として、ハロゲン原子 を有する重合性単量体を使用して 、る。この重合性単量体を使用して得られる隔膜 は、適度に疎水性が高まり、液体燃料の透過性を低減させる。更に、その理由は不 明であるが、重合性基に対してパラ位にハロゲン原子を有する重合性単量体を使用 する場合は、オルト位やメタ位にハロゲン原子を有する単量体を用いる場合と比較し 、液体燃料の透過抑制効果が高い。
[0046] 上記本発明の各製造方法により得られる隔膜を使用して製造する直接液体型燃料 電池は、電池の内部抵抗が低ぐ且つメタノール等の液体燃料のクロスオーバーが 抑制されるため、高い電池出力が得られる。
図面の簡単な説明
[0047] [図 1]図 1は、固体高分子形燃料電池の基本構造を示す概念図である。
符号の説明
1 電池隔壁
2 燃料流通孔
3 酸化剤ガス流通孔
4 燃料室側拡散電極
5 酸化剤室側ガス拡散電極
6 固体高分子電解質膜 (カチオン交換膜)
7 燃料室
8 酸化剤室
発明を実施するための最良の形態
[0049] (1)第 1の直接液体型燃料雷池用隔膜の製诰方法
本発明の第 1の直接液体型燃料電池用隔膜 (以下第 1の隔膜と略記する場合があ る。 )は、メチル基が結合している隔膜である。
[0050] この第 1の隔膜の製造方法においては、所定の重合性組成物を多孔質膜に形成さ れた空隙部に充填させた後、前記充填した重合性組成物を重合硬化させ、次いで 重合硬化させて得られる榭脂に力チオン交換基を導入することにより、第 1の隔膜を 製造する。
[0051] (重合性組成物)
第 1の隔膜を製造する際の出発原料である重合性組成物は、 a)単環式芳香族系 重合性単量体、 b)架橋性重合性単量体、 c)重合開始剤を必須成分とする。
[0052] a)単環式芳香族系重合性単量体
単環式芳香族系重合性単量体は、 1個の重合性基、少なくとも 1個のメチル基、及 び少なくとも 1個の水素原子がベンゼン環に結合した、下記化学式(1)で示される化 合物である。
[0053] [化 1]
上記化学式(1)において、 R1は炭素数 1〜5のアルキル基、ハロゲン原子、ニトロ基 、シァノ基等を示す。アルキル基としては、メチル基、ェチル基、 n—プロピル基、 iso プロピル基、 n ブチル基、 iso ブチル基、 ter ブチル基、ペンチル基等が例示 される。これらのアルキル基の中でもメチル基が好ましい。ハロゲン原子としては、フ ッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらのハロゲン原子の
中でも塩素原子が入手の容易さの点で好ま 、。
[0055] nは 1〜4の整数である。液体燃料の透過抑制効果が高ぐ且つ得られる隔膜の電 気抵抗が低くなる点で、 nは 3又は 4が好ましぐ特に nは 4が好ましい。また、 nが 4の 重合性単量体は入手が容易である点でも好まし 、単量体である。 R1がアルキル基で ある場合においては、 nは 3が好ましい。
[0056] Vは重合性基である。重合性基としては、不飽和結合を有する炭素数 2〜5の炭化 水素基が好ましい。ビュル基、プロぺニル基、ブチレン基等が例示される。入手の容 易さの点で、ビュル基が特に好ましい。
[0057] 上記化学式 (1)で示される単環式芳香族系重合性単量体は、水素原子が芳香族 環に少なくとも 1個結合されている。後述するように、この水素原子がカチオン交換基 と交換される。
[0058] 上記化学式(1)で示される単環式芳香族系重合性単量体は、ベンゼン環に結合さ れている前記メチル基の少なくとも 1個力 重合性基 Vに対してパラ位に結合されて いる。
[0059] 後述する実施例、比較例のデータから明らかなように、ベンゼン環に結合されてい る重合性基 Vとメチル基とが互いにパラ位の関係にある単環式芳香族系重合性単量 体を出発原料として使用することにより、液体燃料の透過抑制が高ぐ且つ得られる 隔膜の電気抵抗が低い本隔膜が得られる。重合性基 Vと、メチル基とがパラ位の関 係を持たな ヽ単環式芳香族系重合性単量体を用いる場合は、液体燃料の透過抑制 、隔膜の電気抵抗の何れもが良好な隔膜は得られない。
[0060] 単環式芳香族系重合性単量体としては、 P-メチルスチレン、 2 , 4-ジメチルスチレ ン、 1, 2, 4-トリメチルスチレン、 1, 3, 4-トリメチルスチレン、 2-ェチル -4-メチルスチ レン、 2-プロピル- 4-メチルスチレン、 2-ブチル -4-メチルスチレン、 2-クロ口- 4-メチ ルスチレン、 P-メチル - α -メチルスチレン、等が例示される。
[0061] これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高ぐ且つ電気 抵抗が低くなる点で、 Ρ-メチルスチレンが特に好ま 、。
[0062] 重合性組成物中の上記単環式芳香族系重合性単量体の含有量は、特に制限され るものではないが、重合性組成物中に含まれる重合性単量体合計量の 10〜99質量
%であるのが好ましぐ特に、 30〜98質量%であるのが好ましい。単環式芳香族系 重合性単量体の含有量がこの範囲に含有されることにより、得られるカチオン交換榭 脂は、液体燃料の非透過性の向上効果がより顕著に発揮される。
[0063] b)架橋性重合性単量体
重合性組成物に配合する架橋性重合性単量体としては、従来公知のイオン交換膜 の製造において用いられる単量体が制限無く使用できる。架橋性重合性単量体を重 合性組成物に配合することにより、得られるカチオン交換榭脂は架橋型になる。架橋 型のイオン交換榭脂は本質的に溶媒不溶性である。このため、水やアルコールに対 する溶解性は無ぐ膨潤も最小限になり、榭脂にカチオン交換基を多量に導入できる 。その結果、本隔膜は電気抵抗が極めて小さくなる。
[0064] 架橋性重合性単量体としては、具体的には、例えば m—、 p—、 o ジビニルベン ゼン、ジビニルスルホン、ブタジエン、クロ口プレン、イソプレン、トリビニルベンゼン類 、ジビュルナフタリン、ジァリルァミン、トリアリルァミン、ジビュルピリジン類などのジビ ニル化合物が挙げられる。
[0065] 重合性組成物中の架橋性重合性単量体の含有量は、特に制限されるものではな Vヽが、重合性組成物中に含まれる重合性単量体合計量の 1〜40質量%であるのが 好ましい、特に、 2〜30質量%であるのが好ましい。架橋性重合性単量体の含有量 力 の範囲に制御されることにより、得られるカチオン交換榭脂は、液体燃料の透過 性が低ぐ膨潤等の防止効果に一層に優れ、電気抵抗も特に低いものになる。
[0066] c)重合開始剤
上記重合性組成物には、重合開始剤が含有される。重合開始剤としては、上記単 環式芳香族系重合性単量体、架橋性重合性単量体の重合を開始させる化合物であ れば特に限定されない。
[0067] 重合開始剤としては、有機過酸化物が好ま ヽ。例えば、オタタノィルパーォキシド 、ラウロイルパーォキシド、 t ブチルパーォキシ 2—ェチルへキサノエート、ベンゾ ィルパーォキシド、 t ブチルパーォキシイソブチレート、 t ブチルパーォキシラウレ ート、 t一へキシルバーォキシベンゾエート、ジー t ブチルパーォキシド等のラジカ ル重合開始剤が挙げられる。
[0068] 重合開始剤の含有量は、使用する重合性単量体の組成ゃ該重合開始剤の種類に 応じて常法に準じて適宜採択される。通常は、前記重合性単量体成分合計 (後述す るその他の重合性単量体を使用する場合は、その含有量も含む) 100質量部に対し て、 0. 1〜20質量部配合されることが好ましぐ 0. 5〜10質量部がより好ましい。
[0069] なお、重合性組成物には、前記 a)メチル基のうちの 1個が重合性基に対してパラ位 に結合している単環式芳香族系重合性単量体とは別に、カチオン交換基を導入し得 る他の芳香族系重合性単量体を含有させても良い。こうした他の芳香族系重合性単 量体としては、例えば、スチレン、ビュルキシレン、 α—メチルスチレン、ビニルナフタ レン、 a—ハロゲン化スチレン類、ァセナフチレン類等が挙げられる。その含有量は 、重合性組成物中に含まれる重合性単量体合計量の 89
質量%以下であるのが好ましぐ特に、 68質量%以下であるのが好ましい。
[0070] さらに、重合性組成物には、上記各必須成分の他に、機械的強度等の物性や重合 性等の反応性を調節するために、本発明の目的に反しない限度内で、必要に応じて その他の成分が少量配合されていてもよい。このような任意の成分としては、例えば、 アクリロニトリル、ァクロレイン、メチルビ-ルケトン等の他の重合性単量体や、ジブチ ルフタレート、ジォクチルフタレート、ジメチルイソフタレート、ジブチルアジペート、トリ ェチルシトレート、ァセチルトリブチルシトレート、ジブチルセバケート等の可塑剤類が 挙げられる。
[0071] その他の成分としての重合性単量体を重合性組成物中に含有させる場合、その含 有量は、全重合性単量体成分合計量の 20質量%以下、特に、 10質量%以下とする ことが好ま ヽ。可塑剤類の使用量は上記全重合性単量体成分合計 100質量部に 対して 50質量部以下が好まし 、。
[0072] (多孔質膜)
第 1の隔膜の製造方法においては、上記重合性組成物は、多孔質膜と接触させら れる。これにより、重合性組成物は多孔質膜の有する空隙部に充填される。その後、 空隙部に充填された重合性組成物は重合硬化される。
[0073] このように多孔質膜を基材として製造されるカチオン交換膜からなる燃料電池用隔 膜は、該多孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物
理的強度を高めることができる。
[0074] 基材として用いる上記多孔質膜としては、その内部に細孔等による空隙部を有する 多孔質膜であって、空隙部を介して、少なくとも空隙部の一部により膜の表裏が連通 されているものであれば公知の多孔質膜が制限なく使用できる。
[0075] 多孔質膜の空隙部の平均孔径は、 0. 01〜2 μ mが好ましぐ 0. 015-0. 4 μ mが 特に好ましい。細孔が 0. 01 m未満の場合は、カチオン交換樹脂の充填量が低下 する。細孔径が 2 mを超える場合はアルコールの透過性が大きくなる。
[0076] 多孔質膜の空隙率 (気孔率とも呼ばれる)は、 20〜95%力 S好ましく、 30〜90%が より好まし 、。
[0077] 透気度 (JIS P— 8117)は 1500秒以下が好ましぐ 1000秒以下がより好ましい。
この範囲の透気度とすることにより、得られる燃料電池用隔膜の電気抵抗が低くなり、 し力も高 、物理的強度が保たれる。
[0078] 厚みは 5〜150 μ mが好ましぐ 10〜120 μ mがより好ましぐ 10〜70 μ mが特に 好ましい。
[0079] 表面平滑性は、粗さ指数で表して 10 m以下、さらには 5 m以下が好ましい。こ の範囲の平滑性とすることにより、得られる燃料電池用隔膜のアルコールに対する高 い非透過性が達成される。
[0080] 当該多孔質膜の形態は特に限定されず、多孔質フィルム、織布、不織布、紙、無機 膜等の任意の形態のものが使用される。多孔質膜の材質としては、熱可塑性榭脂、 熱硬化性榭脂、無機物、それらの混合物が例示される。しかし、その製造が容易であ るばかりでなぐ後述するカチオン交換樹脂との密着強度が高いという観点から、熱 可塑性榭脂であることが好まし 、。
[0081] 当該熱可塑性榭脂としては、エチレン、プロピレン、 1 ブテン、 1 ペンテン、 1― へキセン、 3—メチル 1—ブテン、 4—メチル 1—ペンテン、 5—メチル 1—ヘプ テン等の aーォレフインの単独重合体または共重合体等のポリオレフイン榭脂;ポリ 塩化ビュル、塩ィヒビュル 酢酸ビュル共重合体、塩ィヒビ二ルー塩ィヒビユリデン共重 合体、塩ィ匕ビュル一才レフイン共重合体等の塩ィ匕ビュル系榭脂;ポリテトラフルォロ エチレン、ポリクロ口トリフルォロエチレン、ポリフッ化ビ-リデン、テトラフルォロェチレ
ン へキサフルォロプロピレン共重合体、テトラフロォロエチレン ペルフロォ口アル キルビュルエーテル共重合体、テトラフルォロエチレン エチレン共重合体等のフッ 素系榭脂;ナイロン 6、ナイロン 66等のポリアミド榭脂、ポリイミド榭脂等が例示される。
[0082] これらのなかでも特に、機械的強度、化学的安定性、耐薬品性に優れ、炭化水素 系イオン交換樹脂との親和性が良いことから、ポリオレフイン樹脂が好ましい。
[0083] ポリオレフイン榭脂としては、ポリエチレン又はポリプロピレン榭脂が特に好ましぐ ポリエチレン榭脂が最も好まし 、。
[0084] 上記多孔質膜は、例えば特開平 9— 216964号公報、特開 2002— 338721号公 報等に記載の方法によって得ることもできる。あるいは、市販品(例えば、旭化成「ノ、 ィポア」、宇部興産「ユーポア」、東燃タピルス「セテラ」、 日東電工「エタセポール」、 三井化学「ハイレット」等)として入手することも可能である。
[0085] (重合性組成物と多孔質膜との接触)
重合性組成物と多孔質膜との接触は、重合性組成物が多孔質膜の有する空隙部 に浸入できる方法で接触されるのであれば特に限定されない。例えば、重合性組成 物を多孔質膜に塗布し、またはスプレーし、あるいは、多孔質膜を重合性組成物中 に浸漬する方法などが例示される。多孔質膜が重合性組成物に浸漬されて接触させ られる場合、その浸漬時間は多孔質膜の種類や重合性組成物の組成により相違す る力 一般的には 0. 1秒〜十数分である。
[0086] (重合)
多孔質膜の空隙部に充填された重合性組成物は、次いで重合させられる。重合方 法は特に限定されず、用いた重合性単量体の組成及び重合開始剤の種類に応じて 適宜公知の方法を採用すればょ 、。重合開始剤として前記したような有機過酸ィ匕物 を用いる場合は、加熱による重合方法 (熱重合)が一般的である。この方法は、操作 が容易で、また比較的均一に重合させることができるので、他の方法よりも好ましい。 重合に際しては、酸素による重合阻害を防止し、また表面の平滑性を得るため、重合 性組成物が充填されて ヽる多孔質膜をポリエステル等のフィルムで覆った後、重合さ せることが好ましい。フィルムで多孔質膜を覆うことにより、過剰の重合性組成物が多 孔質膜から排除され、薄く均一な燃料電池隔膜が製造される。
[0087] 熱重合させる場合、重合温度は特に制限されず、公知の温度条件を適宜選択す ればよいが、一般的には 50〜150°C、好ましくは 60〜120°Cである。重合時間は、 1
0分〜 10時間が好ましい。
[0088] (カチオン交換基の導入)
上記のようにして製造された、多孔質膜の空隙部に重合性組成物の重合体力 な る榭脂が充填されてなる膜状高分子体には、次いでカチオン交換基が導入される。
[0089] カチオン交換基は、多孔質膜の空隙部に充填されてなる上記樹脂のベンゼン環に 導入される。なお、このベンゼン環は、重合性組成物中に配合されている単環式芳 香族系重合性単量体のベンゼン環に由来して 、る。
[0090] ベンゼン環に導入されるカチオン交換基としては、従来公知のものが特に制限無く 採用される。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ る。得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特に好 ましい。
[0091] ベンゼン環にスルホン酸基を導入する方法としては、例えば、濃硫酸、発煙硫酸、 二酸化硫黄、クロロスルホン酸などのスルホン化剤を、前記製造した膜状高分子体に 反応させる方法が挙げられる。
[0092] ベンゼン環にホスホン基を導入させる方法としては、ハロゲン化アルキル基を有す る膜状高分子体に無水塩化アルミニウムの存在下、三塩化リンを反応させた後、続 いてアルカリ性水溶液中で加水分解反応する方法等が挙げられる。
[0093] ベンゼン環にカルボン酸基を導入させる方法としては、ハロゲンィヒ鉄などの触媒の 存在下、ハロゲンガスと接触させることによりハロゲンィ匕し、更にアルキルリチウムと反 応させた後、二酸化炭素と反応させる方法等が挙げられる。
[0094] これらのカチオン交換基を導入する方法自体は、公知の方法である。
[0095] (直接液体型燃料電池用隔膜)
このようにして得られる、多孔質膜の空隙部にカチオン交換樹脂が充填されてなる カチオン交換膜は、必要に応じて洗浄、裁断などが行われ、定法に従って直接液体 型燃料電池用の隔膜として用いられる。
[0096] 第 1の隔膜の製造方法により製造される直接液体型燃料電池用隔膜は、カチオン
交換容量が、定法による測定で、通常 0. l〜3mmolZg、特〖こ 0. l〜2mmolZgの 高い値を有している。そのため、高い電池出力を有し、燃料液体透過性、膜の電気 抵抗も充分に低いものになっている。また、本発明の隔膜は、前記組成の重合性組 成物を使用する結果、含水率が、通常 5〜90%、より好適には 10〜80%であり、乾 燥による電気抵抗の増カロ、即ちプロトンの伝導性の低下が生じ難いものになっている 。さらに、燃料液体に対して不溶性である。電気抵抗は通常、 3molZL—硫酸水溶 液中における電気抵抗値で表して 0. 45 Ω 'cm2以下、更には 0. 25 Ω 'cm2以下で あり非常に小さい値である。し力も、燃料液体の透過性が極めて小さぐ例えば、 25 °Cにおいて 100%のメタノールと接触している場合の隔膜中のメタノールの透過率は 、通常 1000gZm2 'hr以下、特に 10〜700gZm2 'hrの範囲である。
[0097] 第 1の製造方法により得られる燃料電池用隔膜は、このように電気抵抗が低ぐ つ燃料液体の透過率も小さ ヽため、直接液体型燃料電池用隔膜として使用する場 合に、燃料室に供給する燃料液体が該隔膜を透過して反対の室に拡散することを有 効に防止でき、高い出力の電池が得られる。この隔膜が採用される直接液体型燃料 電池としては、前記した図 1の基本構造を有するものが一般的である力 その他の公 知の構造を有する直接液体型燃料電池にも勿論適用することができる。
[0098] 燃料液体としては、メタノールが最も一般的であり、本発明の効果が最も顕著に発 揮されるものであるが、その他、エタノール、エチレングリコール、ジメチルエーテル、 ヒドラジン等においても同様の優れた効果が発揮される。また更に、燃料は液体に限 られず、気体の水素ガス等を用いることもできる。
(2)第 2の直接液体型燃料雷湘,用隔膜の製诰方法
本発明の第 2の直接液体型燃料電池用隔膜 (以下第 2の隔膜と略記する場合があ る。 )は、炭素数が 2以上のアルキル基が結合した隔膜である。
[0099] この第 2の隔膜の製造方法にぉ 、ては、所定の重合性組成物を多孔質膜に形成さ れた空隙部に充填させた後、前記充填した重合性組成物を重合硬化させ、次いで 重合硬化させて得られる榭脂に力チオン交換基を導入することにより、第 2の隔膜が 製造される。第 2の隔膜の製造方法と、前記(1)第 1の直接液体型燃料電池用隔膜 の製造方法との相違点は、出発原料である重合性組成物が異なる点にある。それ以
外は、(1)第 1の直接液体型燃料電池用隔膜の製造方法と同様であるので、以下重 合性組成物のみを説明し、その他の説明を省略する。
[0100] (重合性組成物)
本隔膜を製造する際の出発原料である重合性組成物は、 a)芳香族系重合性単量 体、 b)架橋性重合性単量体、 c)重合開始剤を必須成分とする。
[0101] 必須成分の b)架橋性重合性単量体、及び c)重合開始剤は、前記(1)第 1の直接 液体型燃料電池用隔膜の製造方法で詳述したものと同様であるのでその説明を省 略し、以下に a)芳香族系重合性単量体につき説明する。
[0102] a)芳香族系重合性単量体
芳香族系重合性単量体は、 1個の重合性基、少なくとも 1個の炭素数が 2以上のァ ルキル基、及び少なくとも 1個の水素原子が芳香環に結合したィ匕合物である。
[0103] 芳香環としては、ベンゼン骨格を有する単環式芳香環、ナフタレン、アントラセン等 の複数の単環式芳香環が縮合した骨格を有する多環式芳香環が挙げられる。これら の中でも、入手が容易で、さらに、得られる隔膜の液体燃料の透過抑制効果が高ぐ 且つ電気抵抗を適度に低く保つことができる点で単環式芳香環が好ましぐ特にべ ンゼン環が好ましい。
[0104] この芳香環に結合しているアルキル基は、炭素数が 2 15個のものが好ましぐァ ルキル基の水素原子はハロゲン原子で置換されていても良い。炭素数が 2 15個の アルキル基は、炭素数が 1個のメチル基を用いた場合よりも、更に高い液体燃料の透 過抑制効果が発揮されるものになり好ましい。アルキル基としては、ェチル基、 n—プ 口ピル基、 iso—プロピル基、 n—ブチル基、 iso—ブチル基、 tert—ブチル基、 n プチル基、 n キシル基、 n—ペンチル基、 n—ォクチル基、 n—ノ-ル基、 n—デカ -ル基、ステアリル基、およびこれらの水素原子をハロゲン原子で置換した基等が例 示される。これらのアルキル基の中でも液体燃料の透過抑制効果が高ぐ且つ得ら れる隔膜の電気抵抗が通常の好ましい使用範囲に保たれる点で、炭素数が 2 15 個のアルキル基が好ましぐさらには炭素数が 2 10個のアルキル基が特に好ましい 。また、液体燃料の透過抑制効果が特に高い点で、分岐したアルキル基に比べて直 鎖アルキル基が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子
、ヨウ素原子が挙げられる。これらのハロゲン原子の中でも塩素原子が入手の容易さ の点で好ましい。
[0105] 芳香環に結合するアルキル基の最大個数は芳香環の有する環の数により異なる。
何れの数の環を有する芳香環であっても、 1個の重合性基、及び少なくとも 1個の水 素原子が結合されている必要がある。後述するように、この水素原子がカチオン交換 基と交換される。
[0106] 重合性基としては、不飽和結合を有する炭素数 2〜5の炭化水素基が好ま 、。ビ -ル基、プロぺニル基、ブチレン基等が例示される。入手の容易さの点で、ビュル基 が特に好ましい。
[0107] 上記芳香族系重合性単量体は、芳香環に結合されている前記アルキル基の少なく とも 1個が、重合性基に対してパラ位に結合されて 、ることが好ま 、。
[0108] なお、芳香環には、上記炭素数が 2以上のアルキル基、重合性基、および水素原 子がそれぞれ特定する数の範囲内で結合していれば、さらに残りの結合部位に、本 発明の効果を阻害しな 、他の置換基が結合して 、ても良 、。このような他の置換基と しては、例えば、ハロゲン、シァノ基、ニトロ基等が挙げられる。
[0109] 単環式芳香族系重合性単量体としては、 p ェチルスチレン、 P- (n—プロピル)ス チレン、 p— (iso プロピル)スチレン、 p— (n—ブチノレ)スチレン、 p— (iso ブチノレ) スチレン、 p— (tert—ブチル)スチレン、 p— (n—ヘプチル)スチレン、 p— (n—へキ シル)スチレン、 p— (n—ペンチル)スチレン、 p— (n—ォクチルスチレン)、 p— (n- ノニル)スチレン、 2, 4 ジェチルスチレン、 3, 4 ジェチルスチレン、 2、 3、 4 トリ ェチルスチレン、 2 ェチル 4—メチルスチレン、 p ェチルー a—メチルスチレン 、 p クロロェチルスチレン等が例示される。
[0110] これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高ぐ且つ電気 抵抗が適当な範囲になる点で、 p ェチルスチレン、 P- (n—プロピル)スチレン、 p 一(n—ブチノレ)スチレン、 ρ— (tert—ブチノレ)スチレン、 p— (n—へプチノレ)スチレン 、 ρ— (n—へキシル)スチレン、 ρ— (n—ペンチル)スチレン、 ρ— (n—ォクチルスチレ ン)が特に好ましい。
[0111] 重合性組成物中の上記芳香族系重合性単量体の含有量は、特に制限されるもの
ではないが、重合性組成物中に含まれる重合性単量体合計量の 10〜99モル%が 好ましぐ 40〜98モル%がより好ましい。芳香族系重合性単量体の含有量をこの範 囲に制御することにより、得られるカチオン交換榭脂は、液体燃料の非透過性がより 顕著になる。
[0112] 第 2の隔膜の製造方法により製造される直接液体型燃料電池用隔膜は、カチオン 交換容量が、定法による測定で、通常 0. l〜3mmolZg、特〖こ 0. l〜2mmolZgの 高い値を有している。そのため、高い電池出力を有し、燃料液体透過性、膜の電気 抵抗も充分に低いものになっている。その他の特徴は、第 1の隔膜の製造方法と同 様である。
[0113] (3)笫 3の直榇液体型燃料雷池用隔蹬、 及びその製诰方法
本発明の第 3の直接液体型燃料電池用隔膜 (以下第 3の隔膜と略記する場合があ る。)は、隔膜内にアルコキシ基を結合している。この隔膜には、単一型の隔膜と複合 型の隔膜との 2種類がある。
[0114] (単一型の直接液体型燃料電池用隔膜)
単一型の直接液体型燃料電池用隔膜は、下記化学式 (2)で模式的に示される力 チオン交換榭脂膜からなる。
[0115] [化 2]
化学式(2)中、 Aは芳香環を示し、直線で示されるメチレン主鎖に結合している。芳 香環としては、単環式及び複数の芳香環が縮合した多環式のものがある。具体的に
は、ベンゼン環、ナフタレン環、アントラセン環等が例示される。
[0117] Rはアルキルで、その炭素数は 1〜5が好ましぐ 1〜3がより好ましぐ 1が特に好ま しい。
[0118] mは、芳香環 Aに結合しているアルコキシ基の数を示す。 mは 1以上であり、 1〜4が 好ましぐ 1〜2がより好ましい。
[0119] アルコキシ基としては、メトキシ基、エトキシ基、 n—プロピオキシ基、 iso—プロピオ キシ基、 n—ブトキシ基、 iso—ブトキシ基、 tert—ブトキシ基、ペントキシ基等が例示 できる。
[0120] Eはカチオン交換基を示す。カチオン交換基としては、従来公知のものを特に制限 無く採用できる。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げ られる。得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特 に好ましい。 nは、芳香環に結合しているカチオン交換基の数を表す。 nは 1以上の 整数である。 nは 1〜2が好ましい。
[0121] m+n< =Wである。ここで、 Wは置換基を持たない芳香環に結合する水素原子数 —1の数を示す。即ち、芳香環がベンゼン環の場合は、 W=6— 1 = 5で、ナフタレン 環の場合は W= 8— 1 = 7で、アントラセン環の場合は W= 8 - 1 = 7である。
[0122] 前記化学式 (1)で示されるカチオン交換榭脂は、メチレン主鎖同士を結合する架橋 構造を有する。化学式 (1)においては、水平方向にのびる上下の直線で示すメチレン 主鎖同士を連結する垂直方向の直線で架橋鎖を模式的に示している。
[0123] 架橋鎖は、特に制限が無ぐメチレン主鎖を相互に架橋するものであれば任意のも のが使用できる。架橋鎖は、隔膜に対する液体燃料の非透過性、電気抵抗の低下を 勘案して選択することが好ましい。一般的には、重合の際の架橋剤として汎用されて いる架橋剤に由来する構造の架橋鎖が採用される。好ましい架橋鎖としては、ジビニ ルベンゼン由来の架橋鎖が例示される。
[0124] 第 1の直接液体型燃料電池用隔膜として、特に好ましいカチオン交換樹脂の化学 構造を化学式 (3)に記載する。
[0125] [化 3]
[0126] この化学式 (3)に示すカチオン交換榭脂において、架橋鎖としてのジェチルベンゼ ン骨格単位と、メトキシスルホ -ルベンゼン単位とのモル比は 1: 99〜40: 60が好ま しぐ 2 : 98〜30 : 70がより好ましい。スルホン酸基とメトキシ基とのモル比は 1 : 1であ る。
[0127] カチオン交換榭脂中に含まれるアルコキシ基の存在は赤外分光法により確認する ことができる。具体的にはエーテル構造- C- 0- C-の特性吸収である 1030cm_1およ び 1245cm_1の吸収ピークによりその存在を確認することができる。適当な内部標準 物質を榭脂中に添加することによってアルコキシ基の存在量を定量することができる
[0128] 単一型の第 3の直接液体型燃料電池用隔膜は、上記化学式 (2)で示されるカチォ ン交換榭脂を厚さ 10〜: L00 mに成膜してなる。
[0129] (複合型の直接液体型燃料電池用隔膜)
複合型の第 3の直接液体型燃料電池用隔膜は、多孔質膜を基材とし、この多孔質 膜の有する空隙に上記化学式 (2)で示されるカチオン交換榭脂を充填してなる。
[0130] 多孔質膜を基材として製造するカチオン交換膜からなる燃料電池用隔膜は、該多 孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物理的強度を 高めることができる。
[0131] \,m
基材として用いる多孔質膜としては、その内部に細孔等による空隙部を有する多孔 質膜であって、空隙部を介して、少なくとも空隙部の一部により膜の表裏が連通され ているものであれば公知の多孔質膜が制限なく使用できる。この様な多孔質膜として は、(1)第 1の直接液体型燃料電池用隔膜の製造方法の (多孔質膜)で述べた多孔 質膜がそのまま使用できる。従って、多孔質膜の説明は省略する。
[0132] 多孔質膜中に充填されるカチオン交換榭脂量としては、多孔質膜 100質量部に対 し、 10〜90質量部が好ましぐ 20〜70質量部がより好ましい。
[0133] 上記複合型の直接液体型燃料電池用隔膜は、カチオン交換容量が、定法による 測定で、通常 0. l〜3mmolZg、特に 0. 3〜2. 5mmolZgの高い値を有している。 そのため、高い電池出力を有し、燃料液体透過性、膜の電気抵抗も充分に低いもの になっている。また、複合型の隔膜は、前記組成の重合性組成物を使用する結果、 含水率が、通常 5〜90%、より好適には 10〜80%であり、乾燥による電気抵抗の増 カロ、即ちプロトンの伝導性の低下が生じ難いものである。さらに、燃料液体に対して 不溶性であり、後述の実施例に示す方法によって測定する膜抵抗値は、 0. 40 Q - C m2以下、更には 0. 25 Ω 'cm2以下と非常に小さい。燃料液体の透過性は極めて小 さぐ後述の実施例記載の方法によるメタノールの透過率は、通常 1000gZm2'hr 以下、さらには 10〜700gZm2'hrの範囲である。特に、この複合型の隔膜は、従来 の隔膜では液体燃料の透過率が大きくなつてしまう膜抵抗が小さい領域においても、 該液体燃料の透過率を低く保つことができる点に大きな利点がある。具体的には、メ タノール透過率が通常 300g/m2'hr以上に増大してしまう膜抵抗が 0. ΙΟ Ω -cm2 以下の領域において、 250gZm2'hr以下の低いメタノール透過率を保持することが 可能である。
[0134] 複合型の燃料電池用隔膜は、このように電気抵抗が低ぐかつ燃料液体の透過率 も小さいため、直接液体型燃料電池用隔膜として使用する場合に、燃料室に供給す る燃料液体が該隔膜を透過して反対の室に拡散することを有効に防止でき、その結 果高い出力の電池が得られる。
[0135] 以下、第 3の直接液体型燃料電池用隔膜の製造方法について詳述する。
[0136] (単一型の直接液体型燃料電池用隔膜の製造方法)
本発明の単一型の直接液体型燃料電池用隔膜の製造方法においては、所定の重 合性組成物を調製してこれを所定厚さの膜状に重合硬化させ、次 ヽで重合硬化させ て得られる榭脂膜にカチオン交換基を導入することにより、単一型の直接液体型燃 料電池用隔膜が得られる。
[0137] 重合性組成物
単一型の隔膜を製造する際の出発原料である重合性組成物は、 a)芳香族系重合 性単量体、 b)架橋性重合性単量体、 c)重合開始剤を必須成分とする。
[0138] 必須成分の b)架橋性重合性単量体、及び c)重合開始剤は、前記(1)第 1の直接 液体型燃料電池用隔膜の製造方法で詳述したものと同様であるのでその説明を省 略し、以下に a)芳香族系重合性単量体につき説明する。
[0139] a)芳香族系重合性単量体
芳香族系重合性単量体は、 1個の重合性基、少なくとも 1個のアルコキシ基、及び 少なくとも 1個の水素原子が芳香環に結合した、下記化学式 (4)で示される化合物で ある。
[0140] [化 4]
[0141] 上記化学式 (4)にお 、て、 Vは重合性基である。重合性基としては、不飽和結合を 有する炭素数 2〜5の炭化水素基が好ましい。ビニル基、プロぺニル基、ブチレン基 等が例示される。入手の容易さの点で、ビュル基が特に好ましい。
[0142] Aは、芳香環である。芳香環としては、単環式及び複数の芳香環が縮合した多環 式のものがある。具体的には、ベンゼン環、ナフタレン環、アントラセン環及びこれら の誘導体等が例示される。
[0143] Rは炭素数 1〜5のアルキル基を示す。アルキル基としては、メチル基、ェチル基、 n—プロピル基、 iso—プロピル基、 n—ブチル基、 iso—ブチル基、 ter—ブチル基、
ペンチル基等が例示される。これらのアルキル基の中でも炭素数が 1〜2のアルキル 基がより好ましぐメチル基が特に好ましい。
[0144] pは 1〜4の整数である。液体燃料の透過抑制効果が高ぐ且つ得られる隔膜の電 気抵抗が低くなる点で、 pは 1又は 2が好ましぐ特に 1が好ましい。
[0145] qは芳香環に結合して!/、る水素原子の数を表す。上記化学式(3)で示される芳香 族系重合性単量体は、水素原子が芳香環に少なくとも 1個結合されている。後述す るように、この水素原子がカチオン交換基と交換される。
[0146] pと qとの和は無置換の芳香環に結合できる水素原子の数 1である。
[0147] 上記化学式 (4)で示される芳香族系重合性単量体は、芳香環に結合されて!ヽる前 記アルコキシ基の少なくとも 1個が、重合性基 Vに対してパラ位に結合されていること が好ましい。アルコキシ基がパラ位に結合することにより、得られる隔膜の液体燃料 透過防止能力が向上し、電気抵抗がより低くなる。
[0148] 単環式芳香族系重合性単量体としては、 P-メトキシスチレン、 2 , 4-ジメトキシスチ レン、 p ェトキシスチレン、 2, 4ージェトキシスチレン、 p プロポキシスチレン、 2, 4 ージプロポキシスチレン、 p ブトキシスチレン、 2, 4 ジブトキシスチレン、 p— tert- ブトキシスチレン、 2, 4 ジ tert-ブトキシシスチレン、 p—ペントキシスチレン、 2, 4— ジペントキシスチレン等が例示される。
[0149] 2環式芳香族系重合性単量体としては、 1ーメトキシー 5 ビニルナフタレン、 2—メ トキシー 6—ビュルナフタレン等が例示される。
[0150] 3環式芳香族系重合性単量体としては、 1—メトキシ— 10 ビニルアントラセン、 8
—メトキシ一 10 ビニルアントラセン、 1—メトキシ一 5 ビニルアントラセン等が例示 される。
[0151] これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高ぐ且つ電気 抵抗が低くなる点で、 P-メトキシスチレンが特に好ま 、。
[0152] 重合性組成物中の上記芳香族系重合性単量体の含有量は、特に制限されるもの ではないが、重合性組成物中に含まれる重合性単量体合計量の 10〜99モル%が 好ましぐ 20〜98モル%がより好ましい。芳香族系重合性単量体の含有量がこの範 囲に制御されることにより、得られるカチオン交換榭脂は、液体燃料の非透過性がよ
り顕著になる。
[0153] 重合
上記調製された重合性組成物は、所定の厚さの膜状に保ちながら重合させられる 。重合方法は、(1)第 1の直接液体型燃料電池用隔膜の製造方法において記載した 方法と同様である。
[0154] カチオン交換某の導入
上記のようにして製造された、重合性組成物の重合体力もなる榭脂膜は、次いで力 チオン交換基が導入される。
[0155] カチオン交換基は、上記榭脂膜の芳香環に導入される。なお、この芳香環は、重合 性組成物中に配合されて ヽる芳香族系重合性単量体の芳香環に由来して ヽる。
[0156] カチオン交換基の導入方法は、前記(1)第 1の直接液体型燃料電池用隔膜の製 造方法において記載したカチオン交換基の導入方法と同様である。
[0157] (複合型の直接液体型燃料電池用隔膜の製造方法)
複合型の直接液体型燃料電池用隔膜の製造方法にお!、ては、所定の重合性組成 物を多孔質膜に形成された空隙部に充填させた後、前記充填した重合性組成物を 重合硬化させ、次いで重合硬化させて得られる榭脂に力チオン交換基を導入するこ とにより、本隔膜を製造する。
[0158] 重合件組成物
本隔膜を製造する際の出発原料である重合性組成物は、前記単一型の直接液体 型燃料電池用隔膜の製造に用いた重合性組成物と同一である。従って、その説明 は省略する。
[0159] \,m
本発明の製造方法においては、上記重合性組成物は、多孔質膜と接触させられる 。これにより、重合性組成物は多孔質膜の有する空隙部に充填される。その後、空隙 部に充填された重合性組成物は重合硬化される。
[0160] このように多孔質膜を基材として製造されるカチオン交換膜からなる燃料電池用隔 膜は、該多孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物 理的強度を高めることができる。
[0161] 基材として用いる上記多孔質膜としては、前記第 1の直接液体型燃料電池用隔膜 で述べた多孔質膜と同一である。
[0162] 重合件組成物 多孔皙膜 の接触
重合性組成物と多孔質膜との接触方法につ!、ても、前記第 1の直接液体型燃料電 池用隔膜で述べた接触方法がそのまま利用できる。
[0163] 重合
上記重合性組成物と多孔質膜との接触により、多孔質膜の空隙部に充填された重 合性組成物は、次いで重合させられる。重合方法についても、既に第 1の直接型の 隔膜において述べた重合方法と同様である。
[0164] カチオン交椽某の導入
上記のようにして製造された、多孔質膜の空隙部に重合性組成物の重合体力 な る榭脂が充填されてなる膜状高分子体には、次いでカチオン交換基が導入される。
[0165] カチオン交換基は、多孔質膜の空隙部に充填されてなる上記樹脂の芳香環に導 入される。なお、この芳香環は、重合性組成物中に配合されている芳香族系重合性 単量体の芳香環に由来して 、る。
[0166] 芳香環に導入されるカチオン交換基及びその導入方法は、既に詳述したので、そ の記述を省略する。
[0167] (4)笫 4の直榇液体型燃料雷池用隔蹬、及びその製诰方法
本発明の第 4の直接液体型燃料電池用隔膜 (以下第 4の隔膜と略記する場合があ る。)は、水酸基を結合している隔膜である。第 4の直接液体型燃料電池用隔膜は、 以下に記載するように単一型と複合型との 2つの形態がある。
[0168] (単一型の直接液体型燃料電池用隔膜)
単一型の直接液体型燃料電池用隔膜は、下記化学式 (5)で模式的に示される力 チオン交換榭脂膜からなる。
[0170] 化学式(5)中、 Aは芳香環を示し、直線で示されるメチレン主鎖に結合している。芳 香環としては、単環式及び複数の芳香環が縮合した多環式のものがある。具体的に は、ベンゼン環、ナフタレン環、アントラセン環等が例示される。
[0171] tは、芳香環 Aに結合している水酸基の数を示す。 tは 1以上であり、 1〜4が好ましく 、 1〜2がより好ましい。
[0172] tが 5以上の場合は、液体燃料の透過性が大きくなる。水酸基は、メチレン主鎖に結 合して 、る芳香環の炭素原子に対してパラ位に結合して 、るものが液体燃料の透過 抑制の点で特に好ましい。
[0173] Eはカチオン交換基を示す。カチオン交換基としては、従来公知のものを特に制限 無く採用できる。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げ られる。得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特 に好ましい。 nは、芳香環に結合しているカチオン交換基 Eの数を表す。 nは 1以上の 整数である。 nは 1〜2が好ましい。
[0174] t+n< =Wである。ここで、 Wは無置換基の芳香環に結合する水素原子数— 1の 数を示す。例えば、芳香環がベンゼン環の場合は、 W=6— l = 5で、ナフタレン環 の場合は W= 8— 1 = 7で、アントラセン環の場合は W= 8 - 1 = 7である。
[0175] 前記化学式 (5)で示されるカチオン交換榭脂は、メチレン主鎖同士を結合する架橋 構造を有する。化学式 (5)においては、水平方向にのびる上下の直線で示すメチレン
主鎖同士を連結する、垂直方向の直線で架橋鎖を模式的に示している。
[0176] 架橋鎖は、特に制限が無ぐメチレン主鎖を相互に架橋するものであれば任意のも ので構成できる。隔膜に対する液体燃料の非透過性、電気抵抗の低下を勘案して選 択することが好ましい。一般的には、重合の際の架橋剤として汎用されている架橋剤 に由来する構造の架橋鎖が採用される。好ましい架橋鎖としては、ジビュルベンゼン 由来の架橋鎖が例示できる。
[0177] 単一型の直接液体型燃料電池用隔膜として、特に好ましいカチオン交換樹脂の化 学構造を化学式 (6)に記載する。
[0178] [化 6]
[0179] この化学式 (6)に示すカチオン交換榭脂中の、架橋鎖としてのジェチルベンゼン骨 格単位と、スルホ-ル水酸化スチレン単位とのモル比は 1: 99〜40: 60が好ましぐ 2: 98〜30: 70がより好ま 、。スルホン酸基と水酸基とのモル比は 1: 1である。
[0180] 単一型の直接液体型燃料電池用隔膜は、上記化学式 (4)で示されるカチオン交換 榭脂を厚さ 20〜: L00 μ mの榭脂膜に成膜してなる。
[0181] (複合型の直接液体型燃料電池用隔膜)
本発明における複合型の直接液体型燃料電池用隔膜は、多孔質膜を基材とし、こ の多孔質膜の有する空隙に上記化学式 (4)で示されるカチオン交換榭脂を充填して
なる。
[0182] 多孔質膜を基材とするカチオン交換膜からなる燃料電池用隔膜は、該多孔質膜が 補強部分として働くため電気抵抗の増加などを起すことなく物理的強度を高めること ができる。
[0183] 多孔皙膜
基材として用いる多孔質膜は、その内部に細孔等による空隙部を有する。多孔質 膜は、前記空隙部を介して、少なくとも空隙部の一部により基材の表裏が連通されて いる。多孔質基材としては、(1)第 1の直接液体型燃料電池用隔膜の製造方法の( 多孔質膜)で述べた多孔質膜がそのまま使用できる。従って、多孔質膜の説明は省 略する。
[0184] 本発明の直接型及び複合型の直接液体型燃料電池用隔膜のカチオン交換容量 は、定法による測定で、通常 0. l〜3mmolZg、特に 0. l〜2mmolZgの高い値で ある。その結果、高い電池出力を有し、燃料液体透過性、膜の電気抵抗も充分に低 いものになっている。これらの隔膜は、後述する組成の重合性組成物を使用する結 果、含水率が、通常 5〜90%、より好適には 10〜80%であり、乾燥による電気抵抗 の増加、即ちプロトンの伝導性の低下が生じ難い。
[0185] これらの隔膜は、燃料液体に対して不溶性であり、 3molZL—硫酸水溶液中の電 気抵抗値が 0. 45 Ω 'cm2以下、更には 0. 25 Ω 'cm2以下と非常に小さい。更に、燃 料液体の透過性が極めて小さぐ例えば、 25°Cにおいて 100%のメタノールと接触し ている場合、隔膜中のメタノールの透過率は通常 1000g/m2'hr以下、特に 10〜7 00g/m2 · hrの範囲である。
[0186] 第 3の燃料電池用隔膜は、このように電気抵抗が低ぐかつ燃料液体の透過率も小 さいため、直接液体型燃料電池用隔膜として使用する場合に、燃料室に供給する燃 料液体が該隔膜を透過して反対の室に拡散することを有効に防止でき、高い出力の 電池が得られる。
[0187] 以下、単一型及び複合型の直接液体型燃料電池用隔膜の製造方法に付詳述す る。
[0188] (単一型の直接液体型燃料電池用隔膜の製造方法)
単一型の直接液体型燃料電池用隔膜の製造方法にお!ヽては、所定の重合性組成 物を調製してこれを所定厚さの膜状に重合硬化させ、次!ヽで重合硬化させて得られ る榭脂膜に水酸基を誘導した後、カチオン交換基を導入することにより、単一型の直 接液体型燃料電池用隔膜 (以下単一型の隔膜と略記する場合がある。 )力得られる。
[0189] 重合性組成物
単一型の隔膜を製造する際の出発原料である重合性組成物は、 a)芳香族系重合 性単量体、 b)架橋性重合性単量体、 c)重合開始剤を必須成分とする。
[0190] 必須成分の b)架橋性重合性単量体、及び c)重合開始剤は、前記(1)第 1の直接 液体型燃料電池用隔膜の製造方法で詳述したものと同様であるのでその説明を省 略し、以下に a)芳香族系重合性単量体につき説明する。
[0191] a)芳香族系重合性単量体
芳香族系重合性単量体は、 1個の重合性基、少なくとも 1個のアルコキシ基又はァ シロキシ基、及び少なくとも 1個の水素原子が芳香環に結合したィヒ合物であり、通常 下記化学式 (7)で示される化合物が使用される。
[0192] [化 7]
V
A― H, ( 7 )
[0193] 上記化学式(7)にお 、て、 Vは重合性基である。重合性基としては、不飽和結合を 有する炭素数 2〜5の炭化水素基が好ましい。ビニル基、プロぺニル基、ブチレン基 等が例示される。入手の容易さの点で、ビュル基が特に好ましい。
[0194] Aは、芳香環である。芳香環としては、単環式及び複数の芳香環が縮合した多環 式のものがある。具体的には、ベンゼン環、ナフタレン環、アントラセン環及びこれら の誘導体等が例示される。
[0195] Lは炭素数 1〜5のアルコキシ基又はァシロキシ基を示す。
[0196] アルコキシ基としては、メトキシ基、エトキシ基、 n—プロポキシ基、 iso—プロポキシ
基、 n ブトキシ基、 iso ブトキシ基、 ter ブトキシ基、ペントキシ基等が例示される 。これらのアルコキシ基の中でも、炭素数が 1〜2のアルコキシ基がより好ましぐメトキ シ基が特に好ましい。
[0197] ァシロキシ基は、下記化学式 (8)で示される官能基である。
[0198] [化 8]
R1— CO― 0—— ( 8 )
[0199] ここで、 R1は炭素数が 1〜5のアルキル基である。
[0200] ァシロキシ基の具体例としては、ァセトキシ基、ェチロキシ基、 n—プロピロキシ基、 n ーブチロキシ基、 iso ブチロキシ基、 ter ブトキシ基、ブチロキシ基、ペンチロキシ 基、等を例示でき、これらのァシロキシ基の中でも、炭素数が 1〜2のァシロキシ基が より好ましぐァセトキシ基が特に好ましい。
[0201] rは 1〜4の整数である。液体燃料の透過抑制効果が高ぐ且つ得られる隔膜の電 気抵抗が低くなる点で、 pは 1又は 2が好ましぐ特に 1が好ましい。
[0202] sは芳香環に結合して 、る水素原子の数を表す。上記化学式(7)で示される芳香 族系重合性単量体は、水素原子が芳香環に少なくとも 1個結合されている。後述す るように、この水素原子がカチオン交換基と交換される。
[0203] rと sとの和は無置換の芳香環に結合できる水素原子の数 1である。
[0204] 上記化学式 (7)で示される芳香族系重合性単量体は、芳香環に結合されて!ヽる前 記アルコキシ基又はァシロキシ基の少なくとも 1個が、重合性基 Vに対してパラ位に 結合されて 、ることが好ま 、。アルコキシ基又はァシロキシ基がパラ位に結合する ことにより、得られる隔膜の液体燃料透過防止能力が向上し、電気抵抗がより低くな る。
[0205] アルコキシ基を有する単環式芳香族系重合性単量体としては、 P-メトキシスチレン 、 2 , 4-ジメトキシスチレン、 p ェトキシスチレン、 2, 4ージエトキシチレン、 2 ェチ ルー 4ーメチルスチレン等が例示される。
[0206] ァシロキシ基を有する単環式芳香族系重合性単量体としては、 p ァセトキシスチ レン、 2, 4 ジァセトキシスチレン、 p ェチロキシスチレン、 2, 4 ジェチロキシスチ レン、 2 ェチロキシ 4 ァセトキシスチレン等が例示される。
[0207] アルコキシ基を有する 2環式芳香族系重合性単量体としては、 1ーメトキシー 5 ビ 二ルナフタレン、 1 エトキシー5 ビニルナフタレン、 2—メトキシー 6 ビニルナフタ レン、 2 エトキシー6 ビュルナフタレン等が例示される。
[0208] ァシロキシ基を有する 2環式芳香族系重合性単量体としては、 1ーァセトキシー 5— ビニノレナフタレン、 1ーェチロキシー5 ビニノレナフタレン、 2 ァセトキシー 6 ビニ ルナフタレン、 2 ェチロキシ 6 ビュルナフタレン等が例示される。
[0209] アルコキシ基を有する 3環式芳香族系重合性単量体としては、 1ーメトキシー 5 ビ -ルアントラセン、 1—エトキシ一 5 ビ-ルアントラセン、 2—メトキシ一 6 ビュルァ ントラセン、 2 エトキシ 6 ビュルアントラセン等が例示される。
[0210] ァシロキシ基を有する 3環式芳香族系重合性単量体としては、 1ーァセトキシー 5— ビニルアントラセン、 1ーェチロキシー5 ビニルアントラセン、 2 ァセトキシー 6 ビ -ルアントラセン、 2 -ェチロキシ 6 ビ-ルアントラセン
等が例示される。
[0211] 3環式以上の多環式芳香族系重合性単量体も使用でき、 1ーメトキシー 7 ビュル テトラセン、 1 エトキシー7 ビニルテトラセン、 2—メトキシー 8 ビニルテトラセン、 2 エトキシ一 8 ビュルテトラセン、 1ーァセトキシ一 7 ビュルテトラセン、 1—ェチ ロキシ 7 ビュルテトラセン、 2 ァセトキシー 8 ビュルテトラセン、 2 ェチロキシ — 8—ビュルテトラセン等が例示される。
[0212] これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高ぐ且つ電気 抵抗が低くなる点で、 P-メトキシスチレン、 P-ァセトォキシスチレンが特に好ましい。
[0213] 重合性組成物中の上記芳香族系重合性単量体の含有量は、特に制限されないが 、重合性組成物中に含まれる重合性単量体合計量の 10〜99モル%が好ましぐ 30 〜98モル%がより好ましぐ 50〜95モル%が特に好ましい。芳香族系重合性単量 体の含有量がこの範囲に制御されることにより、得られるカチオン交換榭脂は、液体 燃料の非透過性がより顕著になる。
[0214] 重合
上記調製された重合性組成物は、重合させられて所定の厚さの榭脂膜が製造され る。
重合方法は、(1)第 1の直接液体型燃料電池用隔膜の製造方法において記載した 方法と同様である。
[0215] 水酸某への誘導
上記重合操作により得られる榭脂膜を、次いで加水分解処理に付す。この加水分 解処理により、アルコキシ基又はァシロキシ基は水酸基に、誘導される。
[0216] アルコキシ基を水酸基に誘導する方法としては、定法に従って臭酸やヨウ化水素等 のハロゲンィ匕水素でアルコキシ基を加水分解する方法が好ましい。具体的には、榭 脂膜をケトンやアルコールの臭酸溶液で処理する。ハロゲン化水素濃度は 0. 1〜5 molZLが好ましぐ処理温度は 20〜90°Cが好ましい。処理時間は 5〜48時間が 好ましい。
[0217] ァシロキシ基を水酸基に誘導する方法としては、通常のエステルの加水分解方法 が挙げられる。具体的には、榭脂膜を水酸ィ匕ナトリウムや水酸ィ匕カルシウムなどのァ ルカリ金属、アルカリ土類金属の水酸ィ匕物のアルカリ性物質、あるいは塩酸、硫酸な どの酸性物質の水溶液もしくは水とアルコール類や水とケトン類などの混合溶液で処 理する。加水分解処理を行う際の酸性物質やアルカリ性物質の濃度としては、たとえ ば水酸ィ匕ナトリウムを用いる場合、 0. 1〜 5molZLが好ましぐ処理温度は 20〜80 °Cが好ましい。処理時間は 5〜24時間が好ましい。この様な加水分解処理条件は、 当業界において周知である。
[0218] カチオン交換某の導入
上記のようにして水酸基に誘導された榭脂膜に、次 、でカチオン交換基を導入す る。
[0219] カチオン交換基は、上記榭脂膜の芳香環に導入する。なお、この芳香環は、重合 性組成物中に配合されて ヽる芳香族系重合性単量体の芳香環に由来して ヽる。
[0220] カチオン交換基の導入方法及び導入するカチオン交換基は、前記 (4)第 1の直接 液体型燃料電池用隔膜の製造方法において記載したものと同様である。
[0221] 単一型の直接液体型燃料電池用隔膜は、上記化学式 (1)で示されるカチオン交換 榭脂を膜状にした、厚さ 10〜50 mの隔膜である。
[0222] この隔膜は、 1. 0〜 2. 7meqZgのイオン交換容量を有する。
[0223] (複合型の直接液体型燃料電池用隔膜の製造方法)
複合型の第 4の直接液体型燃料電池用隔膜の製造方法においては、所定の重合 性組成物を多孔質膜に形成された空隙部に充填させた後、前記充填した重合性組 成物を重合硬化させる。次 、で重合硬化させて得られる榭脂硬化体のアルコキシ基 又はァシロキシ基を水酸基を誘導した後、カチオン交換基を導入することにより、複 合型の隔膜を製造する。
[0224] このように多孔質膜を基材として製造するカチオン交換膜からなる燃料電池用隔膜 は、該多孔質膜が補強部分として働くため、電気抵抗の増加などを起すことなく物理 的強度を高めることができる。
[0225] 重合件組成物
本隔膜を製造する際の出発原料である重合性組成物は、前記単一型の直接液体 型燃料電池用隔膜の製造に用いた重合性組成物と同一である。従って、その説明 は省略する。
[0226] ^\m
本発明の製造方法においては、上記重合性組成物と、多孔質膜とを接触させる。こ れにより、重合性組成物は多孔質膜の有する空隙部に充填される。
[0227] 上記多孔質膜としては、前記複合型の直接液体型燃料電池用隔膜で述べた多孔 質膜がそのまま利用できる。
[0228] 重合件組成物 多孔皙膜 の接触
重合性組成物と多孔質膜との接触方法につ!、ても、前記第 1の直接液体型燃料電 池用隔膜で述べた接触方法がそのまま利用できる。
[0229] 重合
上記重合性組成物と多孔質膜との接触により、多孔質膜の空隙部に充填された重 合性組成物は、次いで重合させられる。重合方法についても、既に述べた重合方法 と同様である。
[0230] 水酸某への誘導
重合性組成物を重合させて榭脂硬化体とした後、該榭脂硬化体のアルコキシ基又 はァシロキシ基を加水分解して、これらを水酸基に誘導する。
[0231] 水酸基への誘導方法は、前記(単一型の直接液体型燃料電池用隔膜の製造方法
)において記述する方法と同一であるので、その説明を省略する。
[0232] カチオン交換某の導入
上記のようにして製造された、多孔質膜の空隙部に充填され、水酸基が導入された 榭脂硬化体には、次 、でカチオン交換基が導入される。
[0233] カチオン交換基は、多孔質膜の空隙部に充填されてなる上記榭脂硬化体の芳香 環に導入される。なお、この芳香環は、重合性組成物中に配合されている芳香族系 重合性単量体の芳香環に由来して 、る。
[0234] 芳香環に導入されるカチオン交換基としては、従来公知のものが特に制限無く採 用される。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられる。 得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特に好まし い。
[0235] 芳香環にこれらカチオン交換基を導入する方法としては、既に詳述したので、その 記述を省略する。
[0236] (直接液体型燃料電池用隔膜)
このようにして得られる、カチオン交換榭脂を膜状に形成したカチオン交換膜、及 び多孔質膜の空隙部にカチオン交換樹脂が充填されてなるカチオン交換膜は、必 要に応じて洗浄、裁断などが行われ、定法に従って直接液体型燃料電池用の隔膜と して用いられる。
[0237] (5)第 5の直接液体型燃料雷池用隔膜、 ¾びその製诰方法
本発明の第 5の直接液体型燃料電池用隔膜 (以下第 5の隔膜と略記する場合があ る。)は、ハロゲン原子が隔膜に結合している。第 5の直接液体型燃料電池用隔膜は 、以下に記載するように単一型と複合型との 2つの形態がある。
(単一型の直接液体型燃料電池用隔膜)
単一型の直接液体型燃料電池用隔膜は、下記化学式 (9)で模式的に示される力
チオン交換榭脂膜からなる。
[0238] [化 9]
[0239] 化学式(9)中、 Aは芳香環を示し、直線で示されるメチレン主鎖に結合している。芳 香環としては、単環式及び複数の芳香環が縮合した多環式のものがある。具体的に は、ベンゼン環、ナフタレン環、アントラセン環等が例示される。
[0240] Xはハロゲン原子で、 mは、芳香環 Aに結合して 、るハロゲン原子の数を示す。 mは 1以上であり、 1〜4が好ましぐ 1〜2がより好ましい。
[0241] ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、よう素原子等が例示でき る。これらのハロゲン原子の中でもフッ素原子、塩素原子がより好ましぐ塩素原子が 特に好ましい。
[0242] Eはカチオン交換基を示す。カチオン交換基としては、従来公知のものを特に制限 無く採用できる。具体的には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げ られる。得られる隔膜の電気抵抗が低くなる点で強酸性基であるスルホン酸基が特 に好ましい。 nは、芳香環に結合しているカチオン交換基の数を表す。 nは 1以上の 整数である。 nは 1〜2が好ましい。
[0243] m+n< = Wである。ここで、 Wは置換基を持たな 、芳香環に結合する水素原子数 —1の数を示す。即ち、芳香環がベンゼン環の場合は、 W=6— 1 = 5で、ナフタレン 環の場合は W= 8— 1 = 7で、アントラセン環の場合は W= 8 - 1 = 7である。
[0244] 前記化学式 (9)で示されるカチオン交換榭脂は、メチレン主鎖同士を結合する架橋 構造を有する。化学式 (9)においては、水平方向にのびる上下の直線で示すメチレン 主鎖同士を連結する垂直方向の直線で架橋鎖を模式的に示している。
[0245] 架橋鎖は、特に制限が無ぐメチレン主鎖を相互に架橋するものであれば任意のも のが使用できる。架橋鎖は、隔膜に対する液体燃料の非透過性、電気抵抗の低下を 勘案して選択することが好ましい。一般的には、重合の際の架橋剤として汎用されて いる架橋剤に由来する構造の架橋鎖が採用される。好ましい架橋鎖としては、ジビニ ルベンゼン由来の架橋鎖が例示される。
[0246] 第 1の直接液体型燃料電池用隔膜として、特に好ましいカチオン交換樹脂の化学 構造を化学式 (10)に記載する。
[0247] [化 10]
[0248] この化学式 (10)に示すカチオン交換榭脂において、架橋鎖としてのジェチルベン ゼン骨格単位と、クロロスルホ -ルベンゼン単位とのモル比は 1: 99〜40: 60が好ま しぐ 2 : 98〜30 : 70カょり好ましぃ。スルホン酸基とクロ口基とのモル比は 1 : 1である
[0249] カチオン交換榭脂中に含まれるハロゲン原子の存在は赤外分光法により確認する ことができる。具体的には例えばハロゲン原子として塩素原子を用いた場合、芳香族 C- C1の特性吸収である 1090cm_1の吸収ピークによりその存在を確認することがで
きる。また、ハロゲン原子としてフッ素原子を用いた場合、芳香族 C-Fの特性吸収で ある 1210cm_1の吸収ピークによりその存在を確認することができる。適当な内部標 準物質を榭脂中に添加することによってハロゲン原子の存在量を定量することができ る。
[0250] 単一型の第 5の直接液体型燃料電池用隔膜は、上記化学式 (10)で示されるカチォ ン交換榭脂を厚さ 10〜: L00 mに成膜してなる。
[0251] (複合型の直接液体型燃料電池用隔膜)
複合型の第 5の直接液体型燃料電池用隔膜は、多孔質膜を基材とし、この多孔質 膜の有する空隙に上記化学式 (9)で示されるカチオン交換榭脂を充填してなる。
[0252] 多孔質膜を基材として製造するカチオン交換膜からなる燃料電池用隔膜は、該多 孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物理的強度を 高めることができる。
[0253] ^\m
基材として用いる多孔質膜としては、その内部に細孔等による空隙部を有する多孔 質膜であって、空隙部を介して、少なくとも空隙部の一部により膜の表裏が連通され ているものであれば公知の多孔質膜が制限なく使用できる。この様な多孔質膜として は、(1)第 1の直接液体型燃料電池用隔膜の製造方法の (多孔質膜)で述べた多孔 質膜がそのまま使用できる。従って、多孔質膜の説明は省略する。
[0254] 多孔質膜中に充填されるカチオン交換榭脂量としては、多孔質膜 100質量部に対 し、 10〜90質量部が好ましぐ 20〜70質量部がより好ましい。
[0255] 上記複合型の直接液体型燃料電池用隔膜は、カチオン交換容量が、定法による 測定で、通常 0. l〜3mmolZg、特に 0. 3〜2. 5mmolZgの高い値を有している。 そのため、高い電池出力を有し、燃料液体透過性、膜の電気抵抗も充分に低いもの になっている。また、複合型の隔膜は、前記組成の重合性組成物を使用する結果、 含水率が、通常 5〜90%、より好適には 10〜80%であり、乾燥による電気抵抗の増 カロ、即ちプロトンの伝導性の低下が生じ難いものである。さらに、燃料液体に対して 不溶性であり、後述の実施例に示す方法によって測定する膜抵抗値は、 0. 40 Q - C m2以下、更には 0. 25 Ω 'cm2以下と非常に小さい。燃料液体の透過性は極めて小
さぐ後述の実施例記載の方法によるメタノールの透過率は、通常 1000gZm2'hr 以下、さらには 10〜700gZm2'hrの範囲である。
[0256] 複合型の燃料電池用隔膜は、このように電気抵抗が低ぐかつ燃料液体の透過率 も小さいため、直接液体型燃料電池用隔膜として使用する場合に、燃料室に供給す る燃料液体が該隔膜を透過して反対の室に拡散することを有効に防止でき、その結 果高い出力の電池が得られる。
[0257] 以下、第 5の直接液体型燃料電池用隔膜の製造方法について詳述する。
[0258] (単一型の直接液体型燃料電池用隔膜の製造方法)
本発明の単一型の直接液体型燃料電池用隔膜の製造方法においては、所定の重 合性組成物を調製してこれを所定厚さの膜状に重合硬化させ、次 ヽで重合硬化させ て得られる榭脂膜にカチオン交換基を導入することにより、単一型の直接液体型燃 料電池用隔膜が得られる。
[0259] 重合件組成物
単一型の隔膜を製造する際の出発原料である重合性組成物は、 a)芳香族系重合 性単量体、 b)架橋性重合性単量体、 c)重合開始剤を必須成分とする。
[0260] 必須成分の b)架橋性重合性単量体、及び c)重合開始剤は、前記(1)第 1の直接 液体型燃料電池用隔膜の製造方法で詳述したものと同様であるのでその説明を省 略し、以下に a)芳香族系重合性単量体につき説明する。
[0261] a)芳香族系重合性単量体
芳香族系重合性単量体は、 1個の重合性基、少なくとも 1個のハロゲン基、及び少 なくとも 1個の水素原子が芳香環に結合した、下記化学式(11)で示される化合物で ある。
[0262] [化 11]
V
Xp— A—— Hs ( 11 )
[0263] 上記化学式(11)において、 Vは重合性基である。重合性基としては、不飽和結合
を有する炭素数 2〜5の炭化水素基が好ましい。ビュル基、プロぺニル基、ブチレン 基等が例示される。入手の容易さの点で、ビュル基が特に好ましい。
[0264] Aは、芳香環である。芳香環としては、単環式及び複数の芳香環が縮合した多環 式のものがある。具体的には、ベンゼン環、ナフタレン環、アントラセン環及びこれら の誘導体等が例示される。
[0265] Xはハロゲン原子を示す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子
、よう素原子等が例示できる。これらのハロゲン原子の中でもフッ素原子、塩素原子 力 り好ましぐ塩素原子が特に好ましい。
[0266] pは 1〜4の整数である。液体燃料の透過抑制効果が高ぐ且つ得られる隔膜の電 気抵抗が低くなる点で、 pは 1又は 2が好ましぐ特に 1が好ましい。
[0267] sは芳香環に結合している水素原子の数を表す。上記化学式(11)で示される芳香 族系重合性単量体は、水素原子が芳香環に少なくとも 1個結合されている。後述す るように、この水素原子がカチオン交換基と交換される。
[0268] pと qとの和は無置換の芳香環に結合できる水素原子の数 1である。
[0269] 上記化学式(11)で示される芳香族系重合性単量体は、芳香環に結合されている 前記ハロゲン原子の少なくとも 1個が、重合性基 Vに対してパラ位に結合されているこ とが好ましい。ハロゲン基がパラ位に結合することにより、得られる隔膜の液体燃料透 過防止能力が向上し、電気抵抗がより低くなる。
[0270] 単環式芳香族系重合性単量体としては、 P-クロロスチレン、 2 , 4-ジクロロスチレン
、 p フノレオロスチレン、 2, 4 ジフノレオロスチレン、 p ブロモスチレン、 2, 4 ジブ 口モスチレン、 p ョードスチレン、 2, 4 ジョードスチレン等が例示される。
[0271] 2環式芳香族系重合性単量体としては、 1 クロロー 5 ビュルナフタレン、 2 クロ ロー 6—ビュルナフタレン等が例示される。
[0272] 3環式芳香族系重合性単量体としては、 1—クロ口 10 ビュルアントラセン、 8- クロ口一 10 ビ-ルアントラセン、 1—クロ口一 5 ビ-ルアントラセン等が例示される
[0273] これらの内でも、得られる隔膜に対する液体燃料の透過抑制力が高ぐ且つ電気 抵抗が低くなる点で、 P-クロロスチレンが特に好ま 、。
[0274] 重合性組成物中の上記芳香族系重合性単量体の含有量は、特に制限されるもの ではないが、重合性組成物中に含まれる重合性単量体合計量の 10〜99モル%が 好ましぐ 20〜98モル%がより好ましい。芳香族系重合性単量体の含有量がこの範 囲に制御されることにより、得られるカチオン交換榭脂は、液体燃料の非透過性がよ り顕著になる。
[0275] 重合
上記調製された重合性組成物は、所定の厚さの膜状に保ちながら重合させられる
。重合方法は、(1)第 1の直接液体型燃料電池用隔膜の製造方法において記載した 方法と同様である。
[0276] カチオン交椽某の導入
上記のようにして製造された、重合性組成物の重合体力もなる榭脂膜は、次いで力 チオン交換基が導入される。
[0277] カチオン交換基は、上記榭脂膜の芳香環に導入される。なお、この芳香環は、重合 性組成物中に配合されて ヽる芳香族系重合性単量体の芳香環に由来して ヽる。
[0278] カチオン交換基の導入方法は、前記(1)第 1の直接液体型燃料電池用隔膜の製 造方法において記載したカチオン交換基の導入方法と同様である。
[0279] (複合型の直接液体型燃料電池用隔膜の製造方法)
複合型の直接液体型燃料電池用隔膜の製造方法にお!、ては、所定の重合性組成 物を多孔質膜に形成された空隙部に充填させた後、前記充填した重合性組成物を 重合硬化させ、次いで重合硬化させて得られる榭脂に力チオン交換基を導入するこ とにより、本隔膜を製造する。
[0280] 重合性組成物
本隔膜を製造する際の出発原料である重合性組成物は、前記単一型の直接液体 型燃料電池用隔膜の製造に用いた重合性組成物と同一である。従って、その説明 は省略する。
[0281] 多孔皙膜
本発明の製造方法においては、上記重合性組成物は、多孔質膜と接触させられる 。これにより、重合性組成物は多孔質膜の有する空隙部に充填される。その後、空隙
部に充填された重合性組成物は重合硬化される。
[0282] このように多孔質膜を基材として製造されるカチオン交換膜からなる燃料電池用隔 膜は、該多孔質膜が補強部分として働くため電気抵抗の増加などを起すことなく物 理的強度を高めることができる。
[0283] 基材として用いる上記多孔質膜としては、前記第 1の直接液体型燃料電池用隔膜 で述べた多孔質膜と同一である。
[0284] 重合件組成物 多孔皙膜 の接触
重合性組成物と多孔質膜との接触方法につ!、ても、前記第 1の直接液体型燃料電 池用隔膜で述べた接触方法がそのまま利用できる。
[0285] 重合
上記重合性組成物と多孔質膜との接触により、多孔質膜の空隙部に充填された重 合性組成物は、次いで重合させられる。重合方法についても、既に第 1の直接型の 隔膜において述べた重合方法と同様である。
[0286] カチオン交椽某の導入
上記のようにして製造された、多孔質膜の空隙部に重合性組成物の重合体力 な る榭脂が充填されてなる膜状高分子体には、次いでカチオン交換基が導入される。
[0287] カチオン交換基は、多孔質膜の空隙部に充填されてなる上記樹脂の芳香環に導 入される。なお、この芳香環は、重合性組成物中に配合されている芳香族系重合性 単量体の芳香環に由来して 、る。
[0288] 芳香環に導入されるカチオン交換基及びその導入方法は、既に詳述したので、そ の記述を省略する。
[0289] 本発明隔膜が採用される直接液体型燃料電池としては、前記した図 1の基本構造 を有するものが一般的であるが、その他の公知の構造を有する直接液体型燃料電池 にも適用することができる。燃料の液体としては、メタノールが最も一般的であり、本 発明の効果が最も顕著に発揮されるものである力 その他、エタノール、エチレンダリ コール、ジメチルエーテル、ヒドラジン等においても同様の優れた効果が発揮される。 また更に、燃料は液体に限られず、気体の水素ガス等を用いることもできる。
実施例
[0290] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
[0291] なお、実施例、比較例においては、隔膜 (カチオン交換膜)のカチオン交換容量、 含水率、膜抵抗、メタノール透過率、燃料電池出力電圧を測定して燃料電池用隔膜 の特性を評価した。これらの測定方法を以下に説明する。
[0292] 1)カチオン交換容量および含水率
カチオン交換膜を lmol/L— HC1水溶液に 10時間以上浸漬し、水素イオン型とし た後、このカチオン交換膜を ImolZL— NaCl水溶液に浸漬して水素イオン型をナト リウムイオン型に置換させた。遊離した水素イオンを水酸ィ匕ナトリウム水溶液を用いて 電位差滴定装置 (COMTITE - 900、平沼産業株式会社製)で定量した (Amol)。
[0293] 次に、同じカチオン交換膜を ImolZL—HCl水溶液に 4時間以上浸漬した後、膜 を取り出し、イオン交換水で十分水洗した。その後ティッシュペーパーで表面の水分 を拭き取り、湿潤時の膜の質量 (Wg)を測定した。さらに膜を 60°Cで 5時間減圧乾燥 させた後、その質量を測定した (Dg)。上記測定値に基づいて、カチオン交換容量お よび含水率を次式により求めた。
[0294] カチオン交換容量 =AX 1000ZD[mmolZg—乾燥質量]
含水率 = 100 X (W-D) /D[%]
[0295] 2)膜厚
マイクロメーターを用い、純水により湿潤した状態の膜について膜厚を 10点測定し 、測定値の平均値を膜厚として採用した。
[0296] 3)膜抵抗
線幅 0. 3mmの白金線 5本を互いに離して平行に配置した絶縁基板を用い、前記 白金線に純水に湿潤した 2. Ocm幅の短冊状サンプル隔膜を押し当てた。 40°C、 90 %RHの恒温恒湿槽中に試料を保持し、白金線間に 1kHzの交流を印加したときの 交流インピーダンスを測定した。白金線間距離を 0. 5〜2. Ocmに変化させたときの それぞれの交流インピーダンスを測定した。
[0297] 白金線と隔膜との間には接触による抵抗が生じるが、白金線間距離と抵抗の勾配 力も隔膜の比抵抗を算出することでこの影響を除外した。白金線間距離と抵抗測定
値との間には良い直線関係が得られた。抵抗勾配と膜厚力ゝら下式により膜抵抗を算 出した。
[0298] R= 2. 0 X L2 X S
R :膜抵抗 [ Ω -cm2]
L :膜厚 [cm]
S :抵抗極間勾配 [ Q Zcm]
[0299] 4)メタノール透過率
隔膜を中央に取付けた燃料電池セル(隔膜面積 5cm2)の一方の室に、メタノール 濃度 30が質量%の水溶液を液体クロマトグラフ用ポンプで供給し、隔膜の反対側の 室にアルゴンガスを 300mlZminで供給した。測定は 25°Cの恒温槽内で行った。隔 膜の反対側の室力も流出するアルゴンガスをガス捕集容器に導き、ガス捕集容器で 捕集したアルゴンガス中のメタノール濃度をガスクロマトグラフィーで測定し、隔膜を 透過したメタノール量を求めた。
[0300] 5)燃料電池出力電圧
ポリテトラフルォロエチレンで撥水化処理した厚さ 100 μ m、空孔率 80%のカーボ ンペーパー上に、触媒が 2mgZcm2となるように塗布し、 80°Cで 4時間減圧乾燥して ガス拡散電極を得た。塗布した触媒は、白金とルテニウムとの合金触媒 (ルテニウム 5 Omol%)を 50質量%担持したカーボンブラックと、アルコールと水とにパーフルォロ カーボンスルホン酸を 5%溶解 (デュポン社製、商品名ナフイオン)したものとを混合し て調製した。
[0301] 次に、測定する燃料電池隔膜の両面に上記のガス拡散電極をセットし、 100°C、圧 力 5MPaの加圧下で 100秒間熱プレスした後、室温で 2分間放置した。これを図 1に 示す構造の燃料電池セルに組み込んだ。燃料電池セル温度を 25°Cに設定し、燃料 室側に 20質量%のメタノール水溶液を、酸化剤室側に大気圧の酸素を 200mlZmi n.で供給して発電試験を行ない、電流密度 0AZcm2、 0. lAZcm2におけるセル の端子電圧を測定した。
[0302] 第 1の隔膜
実施例 2、 3
表 1に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得 られた単量体組成物 400gを 500mlのガラス容器に入れ、これに多孔質膜 (重量平 均分子量 25万のポリエチレン製、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%) を浸潰した。
[0303] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、
80°Cで 5時間加熱重合した。
[0304] 得られた膜状物を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の混合物 中に 40°Cで 60分間浸漬してベンゼン環をスルホンィ匕し、燃料電池用隔膜を得た。
[0305] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 2に示す。
[0306] 実施例 4
表 1に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得 られた単量体組成物 400gを 500mlのガラス容器に入れ、これに表 1に示した多孔質 膜 (A、 B各 20cm X 20cm)を浸漬した。
[0307] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、 80°Cで 5時間加熱重合した。更に、実施例 1と同じ操作を行い、燃料電池用隔膜を 得た。
[0308] これらの燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール 透過率、燃料電池出力電圧を測定した。結果を表 2に示す。
[0309] 比較例 1、 2、 3
表 1に示した単量体組成物と多孔質膜を用いた以外は実施例 1と同じ操作を行い、 燃料電池用隔膜を得た。
[0310] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 2に示す。
[0311] 比較例 4
パーフルォロカーボンスルホン酸膜 (市販品 A)を用い、カチオン交換容量、含水
表 1
1)多孔質膜
A:重量平均分子量 25万のボリエチレン製、 膜厚 25 μτη、 平均孔径 0. 03 m、 空隙率 37%
B:重量平均分子量 20万のポリエチレン製、 膜厚 16 m、 平均孔径 0. 03 tm、 空隙率 41 %
2) 4-MSt 4ーメチルスチレン
3) 3-MSt 3—メチルスチレン
4) 2-MSt 2—メチルスチレン
6) 2,4-MSt 2, 4一ジメチルスチレン
7) DVB ジビニルベンゼン
8) PO t一ブチルパーォキシェチルへキサノエ一卜
¾03121
表 2
^0313
[0314] 第 2の隔膜
実施例 4
p—(tert—ブチル)スチレン 90. 5モル0 /0、ジビュルベンゼン 9. 5モル0 /0からなる 重合性単量体組成物に、全単量体 100質量部に対し 5質量部となるように重合開始 剤 t ブチルパーォキシェチルへキサノエートを加え、これに多孔質フィルム(重量平 均分子量 25万のポリエチレン製、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%) を 5分間浸潰した。
[0315] 次いで、この多孔質フィルムを重合性組成物中から取り出し、 100 μ mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、
80°Cで 5時間加熱重合した。
[0316] 得られた膜状物を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1 (質量比) の混合物中に 50°Cで 60分間浸漬してベンゼン環をクロロスルホン化し、さらに 0. 5 molZLの水酸化ナトリウム水溶液に 15時間浸漬してクロロスルホン酸基をスルホン 酸基へ加水分解して本発明の燃料電池隔膜を得た。
[0317] この燃料電池隔膜のカチオン交換容量、含水率、電気抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 4に示す。
[0318] 実施例 5〜7
表 3に示す重合性組成物と多孔質膜を用い、実施例 4と同様にして本発明の燃料 電池隔膜を得た。得られた燃料電池隔膜の特性を評価した結果を表 4に示す。
[0319] 比較例 5
p— (tert ブチル)スチレンの代わりにアルキル基を有さな!/、重合性単量体として スチレンを用い、重合性組成物中の架橋性単量体の配合量を 9. 5モル%に揃えて 実施例 4と同様に燃料電池隔膜を得た。得られた燃料電池隔膜の特性を評価した結 果を表 4に示す。
[0320] [表 3]
表 3
1) 多孔質膜
A:重量平均分子量 25万のポリエチレン製、 膜厚 25 /xm、 平均孔径 0 03 m, 空隙率 37% B :重量平均分子量 20万のポリエチレン製、 膜厚 20 < m、 平均孔径 0 03 m、 空隙率 4 1 %
2) 重合性単量体成分合計 1 00質量部に対する重合開始剤量
3) t -B S t p— ( t e r tーブチル) スチレン
4) OS t p- (n—ォクチル) スチレン
5) S t スチレン
6) DVB ジビニルベンゼン
7) PO t一ブチルパーォキシェチルへキサノエ、
表 4
[0322] 第 3の隔膜
実施例 8〜11
表 5に示した組成表に従って各種単量体等を混合し、更に単量体総質量の 5質量 パーセントの t ブチルパーォキシェチルへキサノエ一トを熱重合開始剤としてそれ ぞれに添加することにより、単量体組成物を得た。得られた単量体組成物 400gを 50 Omlのガラス容器に入れ、これに多孔質膜 (重量平均分子量 25万のポリエチレン製 、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%)を浸漬した。
[0323] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、 80°Cで 5時間加熱重合した。
[0324] 得られた膜状物を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の混合物 中に 40°Cで 60分間浸漬してベンゼン環をスルホンィ匕し、燃料電池用隔膜を得た。
[0325] スルホンィ匕を実施した後、赤外分光測定を実施し、エーテル構造の特性吸収であ る 1030cm_1および 1245cm_1における吸収により、メトキシ基の存在を夫々におい て確認した。
[0326] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 6に示した。
[0327] 比較例 6, 7
表 5に示した単量体組成物を用いた以外は実施例 8と同じ操作を行 ヽ、燃料電池 用隔膜を得た。
[0328] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 6に示した。
[0329] [表 5]
表 5
1) MOST p—メトキシスチレン
2) St スチレン
3) DVB ジビニルベンゼン 6]
表 7に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得 られた単量体組成物 400gを 500mlのガラス容器に入れ、これに多孔質膜 (重量平 均分子量 25万のポリエチレン製、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%) を浸潰した。
[0332] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、
80°Cで 5時間加熱重合した。
[0333] 得られた膜状物を 500mlのガラス容器中 2mol/L—臭酸水溶液とメタノール 100 mlずつを混合した溶液に浸漬し、密閉状態で 50°Cで 24時間反応させ、メトキシ基を ヒドロキシル基に変換した。
[0334] 反応後の膜を室温で風乾した後、 98%濃硫酸と純度 90%以上のクロロスルホン酸 の 1: 1の混合物中に 40°Cで 60分間浸漬してベンゼン環をスルホン化し、燃料電池 用隔膜を得た。
[0335] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 8に示す。
[0336] 実施例 15、 16、 17
表 1に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得 られた単量体組成物 400gを 500mlのガラス容器に入れ、これに多孔質膜 (重量平 均分子量 25万のポリエチレン製、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%) を浸潰した。
[0337] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、
80°Cで 5時間加熱重合した。
[0338] 得られた膜状物を 500mlのガラス容器中 3molZL -水酸ィ匕ナトリウム水溶液とメタ ノール 100mlずつを混合した溶液に浸漬し、密閉状態で 50°Cで 24時間反応させ、 ァセトキシ基をヒドロキシル基に変換した。
[0339] 反応後の膜を室温で風乾した後、 98%濃硫酸と純度 90%以上のクロロスルホン酸 の 1: 1の混合物中に 40°Cで 60分間浸漬してベンゼン環をスルホン化し、燃料電池
用隔膜を得た。
[0340] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 8に示す。
[0341] 比較例 8、 9、 10
表 7に示した組成表に従って、各種単量体等を混合して単量体組成物を得た。得ら れた単量体組成物 400gを 500mlのガラス容器に入れ、これに多孔質膜 (重量平均 分子量 25万のポリエチレン製、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%)を 浸漬した。
[0342] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、 80°Cで 5時間加熱重合した。
[0343] 得られた膜状物を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の混合 物中に 40°Cで 60分間浸漬してベンゼン環をスルホンィ匕し、燃料電池用隔膜を得た
[0344] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 8に示す。
[0345] [表 7]
表 7
1) MOST : p —メ卜キシスチレン
2) ACSt : p—ァセトキシスチレン
3) St :スチレン
4) DVB : ジビニルベンゼン 8]
実施例 18〜21
表 9に示した組成表に従って各種単量体等を混合し、更に単量体総質量の 5質量 パーセントの t ブチルパーォキシェチルへキサノエ一トを熱重合開始剤としてそれ ぞれに添加することにより、単量体組成物を得た。得られた単量体組成物 400gを 50 Omlのガラス容器に入れ、これに多孔質膜 (重量平均分子量 25万のポリエチレン製 、膜厚 25 μ m、平均孔径 0. 03 μ m、空隙率 37%)を浸漬した。
[0348] 続 、て、これらの多孔質膜を単量体組成物中から取り出し、 100 mのポリエステ ルフィルムを剥離材として多孔質膜の両側を被覆した後、 0. 3MPaの窒素加圧下、 80°Cで 5時間加熱重合した。
[0349] 得られた膜状物を 98%濃硫酸と純度 90%以上のクロロスルホン酸の 1: 1の混合物 中に 40°Cで 60分間浸漬してベンゼン環をスルホンィ匕し、燃料電池用隔膜を得た。
[0350] スルホンィ匕を実施した後、赤外分光測定を実施し、芳香族 C-C1構造の特性吸収で ある 1090cm_1における吸収により、クロ口基の存在を夫々において確認した。同様 に、 1210cm_1における吸収により、フルォロ基の存在を確認した。
[0351] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 10に示した。
[0352] 比較例 12, 13
表 9に示した単量体組成物を用いた以外は実施例 18と同じ操作を行 ヽ、燃料電池 用隔膜を得た。
[0353] この燃料電池用隔膜のカチオン交換容量、含水率、膜抵抗、膜厚、メタノール透過 率、燃料電池出力電圧を測定した。結果を表 10に示した。
[0354] [表 9]
表 9
1) MOST 4—クロロスチレン
2) ACSt 4—フルォロスチレン
3) St スチレン
4) DVB ジビニルベンゼン 0]
表 1 0
Claims
[1] a) 1個の重合性基、少なくとも 1個の水素原子、及びメチル基、炭素数が 2以上のァ ルキル基、ハロゲン原子、及びアルコキシ基力 なる群より選ばれる少なくとも 1個の 置換基が芳香環に結合してなり、且つ上記メチル基が 1個又は 2個以上芳香環に結 合している場合はメチル基の少なくとも 1個は前記重合性基に対してパラ位に結合し てなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を重合硬化させ、次 ヽで前記芳香族系重合性単量 体に由来する芳香環にカチオン交換基を導入することを特徴とする直接液体型燃料 電池用隔膜の製造方法。
[2] a) 1個の重合性基、少なくとも 1個の水素原子、及びメチル基、炭素数が 2以上のァ ルキル基、ハロゲン原子、及びアルコキシ基力 なる群より選ばれる少なくとも 1個の 置換基が芳香環に結合してなり、且つ上記メチル基が 1個又は 2以上芳香環に結合 している場合はメチル基の少なくとも 1個は前記重合性基に対してパラ位に結合して なる単環式芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物と多孔質膜とを接触させて前記重合性組成物を多孔 質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させ、次いで 前記芳香族系重合性単量体に由来する芳香環にカチオン交換基を導入することを 特徴とする直接液体型燃料電池用隔膜の製造方法。
[3] a) 1個の重合性基、少なくとも 1個のアルコキシ基又はァシロキシ基、及び少なくとも 1個の水素原子が芳香環に結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物を重合硬化させて榭脂膜を得、次 ヽで前記榭脂膜中 のアルコキシ基又はァシロキシ基を加水分解することにより前記アルコキシ基又はァ
シロキシ基を水酸基に誘導した後、榭脂膜中の前記芳香族系重合性単量体に由来 する芳香環にカチオン交換基を導入することを特徴とする直接液体型燃料電池用隔 膜の製造方法。
[4] a) 1個の重合性基、少なくとも 1個のアルコキシ基又はァシロキシ基、及び少なくとも 1個の水素原子が芳香環に結合してなる芳香族系重合性単量体、
b)架橋性重合性単量体、及び
c)重合開始剤、
を少なくとも含む重合性組成物と多孔質膜とを接触させて前記重合性組成物を多孔 質膜の有する空隙部に充填させた後、前記重合性組成物を重合硬化させて榭脂硬 化体とし、次 、で前記榭脂硬化体中のアルコキシ基又はァシロキシ基を加水分解す ることにより前記アルコキシ基又はァシロキシ基を水酸基に誘導し、その後前記榭脂 硬化体中の芳香族系重合性単量体に由来する芳香環にカチオン交換基を導入する ことを特徴とする直接液体型燃料電池用隔膜の製造方法。
[5] 芳香族系重合性単量体が、単環式芳香族重合性単量体である請求の範囲第 1項乃 至第 4項の何れかに記載の直接液体型燃料電池用隔膜の製造方法。
[6] 単環式芳香族重合性単量体が、スチレン骨格を有する請求の範囲第 5項に記載の 直接液体型燃料電池用隔膜の製造方法。
[7] 架橋構造を有するメチレン主鎖に、カチオン交換基及びアルコキシ基を有する芳香 環を結合したイオン交換樹脂からなることを特徴とする直接液体型燃料電池用隔膜
[8] 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換榭脂とからなり、 前記イオン交換樹脂が架橋構造を有するメチレン主鎖にカチオン交換基及びアルコ キシ基を有する芳香環を結合したイオン交換榭脂であることを特徴とする直接液体 型燃料電池用隔膜。
[9] 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる請求の範囲第 7 項又は第 8項に記載の直接液体型燃料電池用隔膜。
[10] アルコキシ基が、炭素数 1〜5のアルコキシ基である請求の範囲第 7項又は第 8項に 記載の直接液体型燃料電池用隔膜。
[11] アルコキシ基が、メチレン主鎖に結合する芳香環の炭素原子に対してパラ位に芳香 環に結合している請求の範囲第 7項又は第 8項に記載の直接液体型燃料電池用隔 膜。
[12] 架橋構造を有するメチレン主鎖に、少なくとも 1個のカチオン交換基及び少なくとも 1 個の水酸基を有する芳香環を結合するイオン交換樹脂からなることを特徴とする直 接液体型燃料電池用隔膜。
[13] 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換榭脂とからなり、 前記イオン交換樹脂が架橋構造を有するメチレン主鎖に少なくとも 1個のカチオン交 換基及び少なくとも 1個の水酸基を有する芳香環を結合するイオン交換榭脂であるこ とを特徴とする直接液体型燃料電池用隔膜。
[14] 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる請求の範囲第 12 項又は第 13項に記載の直接液体型燃料電池用隔膜。
[15] 架橋構造を有するメチレン主鎖に、カチオン交換基及びハロゲン原子を有する芳香 環を結合したイオン交換樹脂からなることを特徴とする直接液体型燃料電池用隔膜
[16] 多孔質膜と、前記多孔質膜の有する空隙部に充填されたイオン交換榭脂とからなり、 前記イオン交換樹脂が架橋構造を有するメチレン主鎖にカチオン交換基及びハロゲ ン原子を有する芳香環を結合したイオン交換榭脂であることを特徴とする直接液体 型燃料電池用隔膜。
[17] 架橋構造が、ジェチルベンゼン骨格でメチレン主鎖を連結してなる請求の範囲第 15 項又は第 16項に記載の直接液体型燃料電池用隔膜。
[18] ハロゲン原子が、塩素原子である請求の範囲第 15項又は第 16項に記載の直接液 体型燃料電池用隔膜。
[19] ハロゲン原子が、メチレン主鎖に結合する芳香環の炭素原子に対してパラ位に芳香 環に結合して 、る請求の範囲第 15項又は第 16項に記載の直接液体型燃料電池用 隔膜。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07737441A EP1990854A4 (en) | 2006-02-28 | 2007-02-27 | DISCONNECTED MEMBRANE FOR A DIRECT LIQUID FUEL CELL AND METHOD OF MANUFACTURING THEREOF |
KR1020087015904A KR101367597B1 (ko) | 2006-02-28 | 2007-02-27 | 직접 액체형 연료 전지용 격막 및 그의 제조 방법 |
US12/224,427 US8232325B2 (en) | 2006-02-28 | 2007-02-27 | Separation membrane for direct liquid fuel cell and method for producing same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-052227 | 2006-02-28 | ||
JP2006052227A JP4993923B2 (ja) | 2006-02-28 | 2006-02-28 | 直接液体型燃料電池用隔膜の製造方法 |
JP2006165503A JP5010857B2 (ja) | 2006-06-15 | 2006-06-15 | 直接液体型燃料電池用隔膜の製造方法 |
JP2006-165503 | 2006-06-15 | ||
JP2006354062A JP5048321B2 (ja) | 2006-12-28 | 2006-12-28 | 直接液体型燃料電池用隔膜及びその製造方法 |
JP2006-354062 | 2006-12-28 | ||
JP2007024660A JP5090007B2 (ja) | 2007-02-02 | 2007-02-02 | 直接液体型燃料電池用隔膜及びその製造方法 |
JP2007-024660 | 2007-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007099954A1 true WO2007099954A1 (ja) | 2007-09-07 |
Family
ID=38459059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/053639 WO2007099954A1 (ja) | 2006-02-28 | 2007-02-27 | 直接液体型燃料電池用隔膜、及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8232325B2 (ja) |
EP (2) | EP2506357B1 (ja) |
KR (1) | KR101367597B1 (ja) |
WO (1) | WO2007099954A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110250525A1 (en) | 2007-08-23 | 2011-10-13 | Tokuyama Corporation | Separation membrane for direct liquid fuel cell and method for producing the same |
US9123923B2 (en) * | 2010-12-10 | 2015-09-01 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Use of porous membrane and composite membrane thereof in redox flow energy storage battery |
KR101890747B1 (ko) * | 2011-11-03 | 2018-10-01 | 삼성전자주식회사 | 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지 |
EP2784861B1 (en) | 2011-11-22 | 2021-03-17 | Sumitomo Electric Industries, Ltd. | Diaphragm for redox flow batteries |
JP6976057B2 (ja) * | 2013-11-20 | 2021-12-01 | コーニング インコーポレイテッド | 耐スクラッチアルミノホウケイ酸ガラス |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05262993A (ja) * | 1992-03-19 | 1993-10-12 | Sumitomo Metal Ind Ltd | 高分子導電体とその製造方法 |
JPH09216964A (ja) | 1996-02-09 | 1997-08-19 | Nitto Denko Corp | 多孔質フィルムおよびそれを用いた電池用セパレータ並びに電池 |
JPH11310649A (ja) | 1998-04-28 | 1999-11-09 | Tokuyama Corp | 陽イオン交換膜およびその用途 |
JP2000090945A (ja) * | 1998-09-11 | 2000-03-31 | Aisin Seiki Co Ltd | 固体高分子電解質膜及びその製造方法及び固体高分子電解質型燃料電池 |
JP2000119420A (ja) * | 1998-10-19 | 2000-04-25 | Nissan Motor Co Ltd | イオン交換膜およびその製造方法 |
JP2001135328A (ja) | 1999-11-01 | 2001-05-18 | Tokuyama Corp | 固体高分子電解質型燃料電池用隔膜 |
JP2002102717A (ja) * | 2000-07-24 | 2002-04-09 | Asahi Glass Co Ltd | 不均質陰イオン交換体及び不均質陰イオン交換膜 |
JP2002114854A (ja) * | 2000-07-24 | 2002-04-16 | Asahi Glass Co Ltd | 陰イオン交換膜、その製造方法、および溶液処理装置 |
JP2002175838A (ja) * | 2000-12-08 | 2002-06-21 | Nissan Motor Co Ltd | イオン伝導体およびその製造方法並びにイオン伝導体を用いたポリマー電解質電池 |
JP2002338721A (ja) | 2001-05-16 | 2002-11-27 | Asahi Kasei Corp | ポリオレフィン樹脂多孔質フィルム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020020877A (ko) * | 2000-02-16 | 2002-03-16 | 아키히코 다니오카 | 고분자 전해질, 고분자 전해질 막 및 연료 전지 |
CA2353378C (en) * | 2000-07-24 | 2008-09-23 | Asahi Glass Company, Limited | Anion exchange membrane, process for its production and solution treating apparatus |
US6632848B2 (en) * | 2000-07-24 | 2003-10-14 | Asahi Glass Company, Limited | Heterogeneous anion exchanger |
US6689501B2 (en) * | 2001-05-25 | 2004-02-10 | Ballard Power Systems Inc. | Composite ion exchange membrane for use in a fuel cell |
JP4791822B2 (ja) * | 2005-12-28 | 2011-10-12 | 株式会社東芝 | 電解質膜、その製造方法、膜電極複合体及びそれを用いた燃料電池 |
-
2007
- 2007-02-27 US US12/224,427 patent/US8232325B2/en not_active Expired - Fee Related
- 2007-02-27 KR KR1020087015904A patent/KR101367597B1/ko not_active IP Right Cessation
- 2007-02-27 WO PCT/JP2007/053639 patent/WO2007099954A1/ja active Application Filing
- 2007-02-27 EP EP12169372.5A patent/EP2506357B1/en not_active Not-in-force
- 2007-02-27 EP EP07737441A patent/EP1990854A4/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05262993A (ja) * | 1992-03-19 | 1993-10-12 | Sumitomo Metal Ind Ltd | 高分子導電体とその製造方法 |
JPH09216964A (ja) | 1996-02-09 | 1997-08-19 | Nitto Denko Corp | 多孔質フィルムおよびそれを用いた電池用セパレータ並びに電池 |
JPH11310649A (ja) | 1998-04-28 | 1999-11-09 | Tokuyama Corp | 陽イオン交換膜およびその用途 |
JP2000090945A (ja) * | 1998-09-11 | 2000-03-31 | Aisin Seiki Co Ltd | 固体高分子電解質膜及びその製造方法及び固体高分子電解質型燃料電池 |
JP2000119420A (ja) * | 1998-10-19 | 2000-04-25 | Nissan Motor Co Ltd | イオン交換膜およびその製造方法 |
JP2001135328A (ja) | 1999-11-01 | 2001-05-18 | Tokuyama Corp | 固体高分子電解質型燃料電池用隔膜 |
JP2002102717A (ja) * | 2000-07-24 | 2002-04-09 | Asahi Glass Co Ltd | 不均質陰イオン交換体及び不均質陰イオン交換膜 |
JP2002114854A (ja) * | 2000-07-24 | 2002-04-16 | Asahi Glass Co Ltd | 陰イオン交換膜、その製造方法、および溶液処理装置 |
JP2002175838A (ja) * | 2000-12-08 | 2002-06-21 | Nissan Motor Co Ltd | イオン伝導体およびその製造方法並びにイオン伝導体を用いたポリマー電解質電池 |
JP2002338721A (ja) | 2001-05-16 | 2002-11-27 | Asahi Kasei Corp | ポリオレフィン樹脂多孔質フィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP1990854A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR101367597B1 (ko) | 2014-02-25 |
US8232325B2 (en) | 2012-07-31 |
KR20080096501A (ko) | 2008-10-30 |
EP1990854A4 (en) | 2010-07-14 |
US20100003574A1 (en) | 2010-01-07 |
EP2506357B1 (en) | 2015-06-17 |
EP1990854A1 (en) | 2008-11-12 |
EP2506357A1 (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101217947B1 (ko) | 연료 전지용 격막 및 그의 제조 방법 | |
EP2053679B1 (en) | Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same | |
JP2004217921A (ja) | イオン交換膜及びその製造方法 | |
JP4719796B2 (ja) | 直接液体型燃料電池用隔膜 | |
WO2007099954A1 (ja) | 直接液体型燃料電池用隔膜、及びその製造方法 | |
EP2017913B1 (en) | Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell | |
KR101461699B1 (ko) | 직접 액체형 연료 전지용 격막 및 그의 제조방법 | |
JP4993923B2 (ja) | 直接液体型燃料電池用隔膜の製造方法 | |
JP5159135B2 (ja) | 直接液体型燃料電池用隔膜及びその製造方法 | |
JP5090007B2 (ja) | 直接液体型燃料電池用隔膜及びその製造方法 | |
JP5048321B2 (ja) | 直接液体型燃料電池用隔膜及びその製造方法 | |
JP5010857B2 (ja) | 直接液体型燃料電池用隔膜の製造方法 | |
JP4906366B2 (ja) | 直接液体型燃料電池用隔膜の製造方法 | |
JP4849892B2 (ja) | 直接液体型燃料電池用隔膜の製造方法 | |
JP2009104810A (ja) | 電解質膜、膜電極接合体、燃料電池、及び電解質膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020087015904 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12224427 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007737441 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |