WO2007097378A1 - 鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用いる電極チップ - Google Patents

鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用いる電極チップ Download PDF

Info

Publication number
WO2007097378A1
WO2007097378A1 PCT/JP2007/053228 JP2007053228W WO2007097378A1 WO 2007097378 A1 WO2007097378 A1 WO 2007097378A1 JP 2007053228 W JP2007053228 W JP 2007053228W WO 2007097378 A1 WO2007097378 A1 WO 2007097378A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
steel
aluminum
joint
spot welding
Prior art date
Application number
PCT/JP2007/053228
Other languages
English (en)
French (fr)
Inventor
Wataru Urushihara
Mikako Takeda
Katsushi Matsumoto
Jun Katoh
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006047090A external-priority patent/JP4072558B2/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to EP07714728.8A priority Critical patent/EP1987904B1/en
Priority to US12/280,599 priority patent/US20090011269A1/en
Priority to CN2007800062345A priority patent/CN101405105B/zh
Publication of WO2007097378A1 publication Critical patent/WO2007097378A1/ja
Priority to US13/192,069 priority patent/US8487206B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/10Joining materials by welding overlapping edges with an insertion of plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12347Plural layers discontinuously bonded [e.g., spot-weld, mechanical fastener, etc.]

Definitions

  • the present invention relates to a technique for joining a steel material and an aluminum material by spot welding, which is necessary in an assembly process of a transportation vehicle such as an automobile or a railway vehicle, a machine part, or a building structure. .
  • Spot welding generally joins metal members of the same type.
  • joining of dissimilar metal members such as an iron-based material (hereinafter simply referred to as a steel material) and an aluminum-based material (generally referred to as pure aluminum and aluminum alloy, hereinafter simply referred to as an aluminum material). If it can be applied to the body, it can contribute significantly to light weight etc.
  • Patent Documents 8 to 11 and the like have been proposed as methods for applying a coating such as plating to steel by a different method. These can be directly welded if steel or aluminum material is pre-squeezed, so by forming a film with high versatility and low melting point between steel and aluminum material, It aims to reduce the interfacial reaction layer and form irregularities at the interface, and describes that each obtained higher strength than direct joining of steel and aluminum material.
  • Patent Document 8 Mg is used, in Patent Document 9, a film having a lower melting point than aluminum material, in Patent Document 10, a film having a lower melting point than steel, and in Patent Document 11, the temperature is 300 ° C lower than the melting point of aluminum material. In addition, a film having a melting point lower than the melting point of the aluminum material is formed.
  • Patent Document 9 sufficient shear tensile strength is obtained, but no nugget is formed. Even if the anchor effect by these microscopic bonds alone can ensure the shear tensile strength, the cross tensile strength (peel strength) cannot be maintained, and the application is limited to a special one that only produces shear tension.
  • Patent Document 10 since it is necessary to insert a resistor further, there is a problem that new equipment must be incorporated into the above-described current welding line, and the cost is high.
  • Patent Document 11 it is described as an effect of high strength that a force interface reaction layer having a base metal fracture with cross tensile strength is not formed.
  • the interfacial reaction layer which is an intermetallic compound of steel and aluminum, is fragile.
  • an adhesion layer formed by mutual diffusion is used. Therefore, the bonding strength is low. For this reason, a sufficient cross tensile strength cannot be maintained only by the same microscopic bonding as in Patent Document 9, and the demand for a further high-strength bonded body cannot be met.
  • the present inventors have continued investigations focusing on optimizing the structure of the interface reaction layer of the joint formed by spot welding, and the thickness, area, and structure of the interface reaction layer It was found that by controlling the above, it is possible to produce a dissimilar material bonded body having high bonding strength.
  • Patent Documents 12 to 15 the present inventors disclosed the thickness and melting point of the plating film, and further the nugget diameter. We proposed a technology that can achieve a peel strength of 0.9 kNZspot or more by controlling the interface reaction layer thickness.
  • Patent Document 1 Japanese Published Patent Publication: 6-63763
  • Patent Document 2 Japanese Published Patent Publication: 7-178563
  • Patent Document 3 Japanese Published Patent Publication: 4-251676
  • Patent Document 4 Japanese Published Patent Publication: 7-24581
  • Patent Document 5 Japanese Patent Publication No .: 4-143308
  • Patent Document 6 Japanese Patent Publication No .: 5-228643
  • Patent Document 7 Japanese Patent Publication No .: 9-174249
  • Patent Document 8 Japanese Published Patent Publication: 4-1433083
  • Patent Document 9 Japanese Published Patent Publication: 4-251676
  • Patent Document 10 Japanese Patent Publication No .: 7-24581
  • Patent Document 11 Japanese Patent Publication No .: 7-178565
  • Patent Document 12 Japanese Published Patent Publication: 2005-305504
  • Patent Document 13 Japanese Published Patent Publication: 2005-152958
  • Patent Document 14 Japanese Published Patent Publication: 2005-152959
  • Patent Document 15 Japanese Published Patent Publication: 2006-167801
  • Patent Documents 12 to 15 there is a limit to further increase the bonding strength.
  • dissimilar metal joints between steel and aluminum materials especially when contact corrosion called electric corrosion occurs, and even dissimilar materials joined by spot welding of steel and aluminum are no exceptions. Absent. If such electric corrosion occurs during the use of a dissimilar material joint as an automobile member, the joint strength of the dissimilar material joint also decreases.
  • An object of the present invention is to provide a joined body of a steel material and an aluminum material, which can be formed at low cost with excellent joint strength, and a spot welding method thereof.
  • an object of the present invention is to provide a joined body of a steel material and an aluminum material, which is capable of spot welding with high joint strength even with a zinc-plated steel plate (steel material).
  • the nugget area (diameter) has a strong correlation with the heat input, and the larger the current amount and the longer the time, the larger the nugget area (diameter).
  • the nugget area By controlling the nugget area, a bonded body with high bonding strength is obtained.
  • the nugget area becomes too large, the melted part will reach the anti-bonding surface (surface opposite to the bonding surface) of the material to be joined, creating dust, so it is important to obtain an appropriate nugget area. .
  • the steel material When joining a dissimilar material such as a steel material and an aluminum material with a strong force, the steel material has a higher melting point and higher electric resistance than the aluminum material, and has a lower thermal conductivity. Heat generation on the side increases, and first the surface force in contact with the steel material melts the low melting aluminum material. Next, the surface of the steel material in contact with the aluminum material melts, and as a result, an Al-Fe-based brittle intermetallic compound layer (hereinafter referred to as “interfacial reaction layer”) is formed at the joint interface. Strength cannot be obtained.
  • interfacial reaction layer Al-Fe-based brittle intermetallic compound layer
  • intermetallic compound formed by spot joining of steel and aluminum is roughly divided into two layers. On the steel side, an Al Fe-based compound (intermetallic compound Al Fe defined in Table 10 etc. described later) is formed.
  • Al Fe compound on the aluminum material side (intermetallicization defined in Table 10 etc. described later)
  • this Zn-Fe-based compound layer is brittle, it becomes a starting point of fracture and significantly reduces the bonding strength.
  • the bonding strength is determined by the peripheral part that is not the central part of the joint part. Analyzing in detail, even if the interface reaction layer thickness is about the same in the peripheral part, if the interface reaction layer in the central part is thick enough, the bonding strength decreases, and further, the appearance is damaged due to the generation of dust. Not only that, the thickness distribution of the interfacial reaction layer at the periphery also changed, and it became clear that it was a factor in the dispersion of bonding strength.
  • the heat generation of the steel material and the aluminum material is suppressed, the current density is dispersed, the current density is dispersed, and the bonding is performed at a current as high as possible. It turned out to be important to control the reaction layer within the optimum thickness range over a large area including the center of the joint.
  • the gist of the dissimilar material joined body of the steel material and the aluminum material in the present invention is that the steel material having a thickness t of 0.3 to 3. Omm and the thickness t of 0.5. ⁇ 4.Omm,
  • a joined body formed by spot welding of pure aluminum material or aluminum alloy material (hereinafter referred to as “aluminum material”).
  • the area is 20 X t ° 5 to: LOO X t ° 5 mm 2 and the field
  • the maximum thickness of the interface reaction layer is in a range of 0.5 to 10 / z m.
  • the electrode tip used for spot welding for forming the joined body of the above summary is an electrode tip in which the contact with the material to be joined is performed at two or more points or in a linear or planar shape. Is preferred.
  • the electrode tip has a dome shape at the tip, and a recess having a diameter of 2 mm or more is formed at the center of the tip.
  • the electrode tip on at least one of the pair of electrode chips.
  • spot welding is performed by cooling at least one of the steel material and the aluminum material to 5 ° C or less.
  • the gist of the dissimilar material joint of the steel material and the aluminum material in the present invention is that the steel material having a thickness t of 0.3 to 3. Omm and the thickness t of 0.5. ⁇ 4. Omm
  • ⁇ 19 ⁇ m, Zn or Zn alloy, or A or A1 alloy film and organic resin adhesive film or phosphate film are spot welded in advance, after spot welding
  • the area of the interfacial reaction layer in the weld zone where the thickness is in the range of 0.5 to 5 / zm is assumed to be lO X t ° 5 mm 2 or more.
  • the area of the portion where the thickness of the interface reaction layer is in the range of 0.5 to 5 ⁇ m is 50 X t ° ⁇ 5 mm 2 or more I prefer to be! /
  • the Zn or Zn alloy film is a plating film containing 88% by mass or more of Zn applied to the surface on the steel material side. Is preferred.
  • the average thickness of the phosphate film is preferably 0.1 to 5 / ⁇ ⁇ .
  • the phosphate film preferably contains 0.01 to 10% by mass of Mg.
  • the gist of the spot welding method of a dissimilar material joint between a steel material and an aluminum material in the present invention is that a steel material having a thickness t of 0.3 to 3. Omm, and a thickness t Is 0.5
  • spot welding is performed with a current pattern in which there is no step of passing a higher current than this step.
  • the area of the portion where the thickness of the interface reaction layer is in the range of 0.5 to 5 ⁇ m is 50 X t ° ⁇ 5 mm 2 or more I prefer to be! /
  • the gist of the spot welding method of a dissimilar material joint between a steel material and an aluminum material in the present invention is that a steel material having a thickness t of 0.3 to 3. Omm, and a thickness t Is 0.5
  • spot welding is performed with a current pattern in which there is no step of passing a higher current than this step.
  • the gist of the dissimilar material joined body of steel and aluminum in the present invention is that the plate thickness t is 0.3 to 3. Omm and the average thickness of the zinc plating layer is 3 to 19 m. Spot welded galvanized steel and aluminum material with a thickness t of 0.5 to 4. Omm
  • Each of the Al Fe compound layer has an Al Fe compound layer on the aluminum material side.
  • the total area occupied in the cross-sectional direction of the Zn—Fe-based compound layer contained in each of these two layers is 2 It shall be a ratio of 10% or less of the area in the cross-sectional direction of the portion where the total average thickness of the layers is 0.5 to 10 ⁇ m.
  • the average diameter of the nugget at the bonding interface on the aluminum material side is 7 mm or more, and Zn at the bonding interface in contact with the nugget Total area force in the plane direction of the layer It is preferable that it is 30% or less of the area in the plane direction at the bonding interface on the aluminum material side of the nugget.
  • the minimum remaining plate thickness on the aluminum material side in the dissimilar material joint is 50% or more of the original aluminum material plate thickness.
  • the thickness ratio of the steel material to the aluminum material is preferably t / t force ⁇ or more. Good.
  • the present invention is configured as described above, and at the time of dissimilar joining between a steel material and an aluminum material by spot welding, while obtaining a relatively large nugget area, the interface reaction layer in the optimum thickness range has a large area. It is possible to improve the bonding strength of the dissimilar material joined body. As a result, when forming a dissimilar joint between steel and aluminum by spot welding, there is no need to use another material or add a new separate process as in the prior art. Since an existing spot welder can be used, significant cost reduction can be realized.
  • the joined body according to the present invention can be very usefully applied as various structural members in transport vehicles such as automobiles and railway vehicles, machine parts, and building structures. Therefore, according to the present invention, the use of the dissimilar material joined body of steel material and aluminum material can be greatly expanded.
  • the present inventors control the formation area and thickness distribution of the interface reaction layer in order to obtain high bonding strength. Found that it is important to suppress and control the time for the interfacial reaction layer to form between steel and aluminum. In addition, it has been found that it is important to previously form a suppression layer on the material in order to suppress the interface reaction layer formation time.
  • the present invention is characterized in that a suppression layer capable of suppressing contact corrosion of dissimilar metals that is not just for the suppression control of the interface reaction layer formation time is selected as the suppression layer.
  • a suppression layer capable of suppressing contact corrosion of dissimilar metals that is not just for the suppression control of the interface reaction layer formation time is selected as the suppression layer.
  • a Zn or A1 metal film in a specific range and an organic resin adhesive skin are provided between the joint surfaces of the steel material and the aluminum material to be joined. Two of the film and the film are provided in advance.
  • the Zn or A1 metal film in a specific range in the present invention has a function of obtaining high joint strength by suppressing and controlling the interfacial reaction layer formation time during spot welding where the melting point is close to that of the aluminum material.
  • the suppression layer is a steel material after spot welding.
  • an electrical insulating layer is widely or entirely interposed between the aluminum material and the aluminum material.
  • this suppression layer needs to electrically connect the steel material and the aluminum material at the time of spot welding.
  • the film of the organic resin adhesive has a function of suppressing and controlling the interfacial reaction layer formation time during spot welding as an electrical insulating layer, and further suppressing contact corrosion of dissimilar metals after spot welding.
  • the film of the organic resin adhesive is, for example, a thermosetting resin, and stress (pressure) is applied during spot welding, from the welded part of the steel material and the aluminum material to the surrounding part, If it is easily discharged or removed, the steel material and the aluminum material can be electrically connected.
  • this organic resin adhesive film is interposed between the steel material and the aluminum material extensively or entirely, except for the removed spot welded portion. It becomes a typical insulating layer and suppresses different metal contact corrosion of the dissimilar material joined body.
  • the metal film and the organic resin adhesive film have conditions such as an optimum composition and a film thickness range.
  • there are optimum conditions such as applied pressure and current pattern.
  • the Zn or A1 metal film and the organic film are bonded between the joining surfaces of the steel material and the aluminum material to be joined. It is characterized in that two are provided in advance with the film of the resin adhesive.
  • the time for forming the interface reaction layer between the steel and the aluminum material is suppressed and controlled, and the joint strength of the dissimilar material joined body is improved.
  • the welding strength of the current pattern corresponding to this is guaranteed to improve the joint strength.
  • a suppression layer that can suppress contact corrosion of different metals (electrolytic corrosion) is selected without losing control of the formation area and thickness distribution of the interface reaction layer. It is characterized by that. Suppression of dissimilar metal contact corrosion during use of this dissimilar material joint suppresses a decrease in the joint strength of the dissimilar material joint due to this corrosion, thereby maintaining the joint strength.
  • a specific range of a Zn or Zn alloy film and a phosphate film are provided between the joint surfaces of the steel material and the aluminum material to be joined. One is provided in advance.
  • the Zn or Zn alloy film in a specific range in the present invention forms an interfacial reaction layer that is an intermetallic compound of steel and aluminum even when a phosphate film is present during spot welding.
  • an interfacial reaction layer that is an intermetallic compound of steel and aluminum even when a phosphate film is present during spot welding.
  • the interface reaction layer There are characteristics that do not impede time control, thickness range and distribution control of the interface reaction layer.
  • it has a natural potential that is baser than steel and noble than aluminum, not only reducing the potential difference between steel and aluminum, but also depending on the environment, it may be baser than an aluminum material that forms an acid-coating film. Since it exhibits a sacrificial anticorrosive effect at a natural potential, it has a function to obtain high joint strength even in a corrosive environment.
  • the suppression layer is interposed between the steel material and the aluminum material extensively or entirely so that the steel material and It is necessary to form a corrosion-inhibiting layer that protects the base material by sacrificing anti-corrosive action by blocking the corrosive environmental force such as moisture and oxygen between the lumi-um materials.
  • this suppression layer needs to have a characteristic of electrically conducting the steel material and the aluminum material during spot welding. is there.
  • the phosphate coating is destroyed only at the spot welded portion during spot welding in the presence of a specific range of Zn or Zn alloy coating in the present invention.
  • the aluminum material are electrically connected. Regardless of which side the phosphate coating is present on, it can be spotted at the time of spot welding if it is interposed between the steel and aluminum without using the metal coating of Zn or Zn alloy in the present invention. Even in the welded part only, it becomes difficult to be destroyed and the spot weldability is hindered. It also hinders control of the formation area and thickness distribution of the interface reaction layer of the joined body. For this reason, the high bonding strength of the dissimilar material bonded body cannot be obtained. This is a phenomenon that does not occur at the time of spot welding with the same kind of metals and with a phosphate film interposed, and can be said to be a problem peculiar to a dissimilar material joint between steel and aluminum.
  • the phosphate film has an appropriate thickness and is relatively thin, when a stress (pressing force) is applied during spot welding, the steel material and the aluminum material are bonded through the pin hole of the phosphate film. It can be electrically connected.
  • the steel material and the aluminum material in the presence of a specific range of Zn or Zn alloy film, the phosphate or Even when the film is destroyed and melted into the molten aluminum material, the steel material and the aluminum material can be electrically conducted sufficiently in a wide range.
  • the boiling point of the phosphate (zinc) film is relatively high at about 1075 ° C.
  • the phosphate film breaks in the presence of a specific range of Zn or Zn alloy film in the present invention, and the steel material and aluminum material are electrically connected. It can be connected to the target.
  • this phosphate coating is widely or entirely interposed between the steel material and the aluminum material except for the spot welded portion from which the coating has been removed. Corrosion environmental forces such as moisture and oxygen are blocked from the aluminum material, and a corrosion suppression layer that protects the base material by sacrificial anticorrosive action is formed to suppress contact corrosion of dissimilar metals in the dissimilar material joint.
  • the metal film and the phosphate film have conditions such as an optimum composition and a range of the film thickness.
  • spot welding has optimum conditions such as applied pressure and current pattern.
  • the present invention provides a metal film of Zn or Zn alloy between the joint surfaces of the steel material and the aluminum material to be joined, when joining different materials by spot welding.
  • a phosphate film and two are provided in advance.
  • the bonding strength between a zinc-plated steel sheet (zinc-plated steel material) and an aluminum material without newly using another material or requiring a new process as in the prior art. It also has the effect of being able to join different materials by spot welding.
  • FIG. 1 is a cross-sectional photograph showing a cross-sectional state of the dissimilar material joined body of the present invention.
  • FIG. 2 is a cross-sectional view showing a heterogeneous joined body of the present invention.
  • FIG. 3 is an explanatory view showing an aspect of spot welding for obtaining a heterogeneous joined body.
  • FIG. 4 is a cross-sectional view showing a joint interface of the dissimilar material joined body of the present invention.
  • FIG. 5 is an explanatory diagram showing an enlarged schematic view of the cross-sectional structure (FIG. 6) at the interface of the joint of the dissimilar material joined body of the present invention.
  • FIG. 6 is a drawing-substituting SEM photograph showing the cross-sectional structure of the joint interface of the dissimilar material joined body of the present invention.
  • FIG. 7 is a drawing-substituting TEM photograph showing the cross-sectional structure of the joint interface of the dissimilar material joined body of the present invention.
  • FIG. 8 is an explanatory view showing a thickness distribution of a bonded interface reaction layer of the dissimilar material bonded body of the present invention.
  • FIG. 9 is an explanatory diagram showing a distribution of a constant thickness in the planar direction of the joint interface reaction layer of the dissimilar material joined body of the present invention.
  • FIG. 10 is an explanatory diagram showing a distribution of a constant thickness in the planar direction of a joint interface reaction layer of a bonded material of a comparative example.
  • FIG. 11 is an explanatory view showing an aspect of spot welding for obtaining a dissimilar material joined body.
  • FIG. 12 is a drawing-substituting TEM photograph showing the cross-sectional structure of the joint interface of the dissimilar material bonded body of the comparative example.
  • FIG. 1 shows a cross-sectional photograph of the joined portion of the joined body according to the present invention.
  • 1 is a steel material
  • 2 is an aluminum material
  • 3 is a nugget
  • 4 is an interfacial reaction layer
  • 5 is the center of the joint.
  • the thickness t of the steel used in the present invention is 0.3 to 3. Omm. If the steel sheet thickness t is less than 0.3 mm, the structural member that is an assembly cannot secure the strength and rigidity of the base material required for the structural material. On the other hand, if it exceeds Omm, the structural member is the structural material. This is because, since other joining means are usually employed, there is little need for joining by spot welding.
  • the shape and material of the steel material to be used are not particularly limited. According to the required characteristics of each structural member, a generally used plate material, profile, forging Materials, forged materials, etc. can be selected as appropriate.
  • the thickness t of the aluminum material used in the present invention is in the range of 0.5 to 4. Omm.
  • the thickness t of the aluminum material is less than 0.5 mm, the strength of the base material as a structural material is insufficient.
  • the shape and material (type of alloy) of the aluminum material to be used there is no particular limitation on the shape and material (type of alloy) of the aluminum material to be used, and the plate material that is generally used according to the required characteristics as each structural member.
  • a shape material, a forging material, a forging material, and the like can be appropriately selected.
  • the use of A5000 series, A6000 series, etc., which are widely used as this kind of structural member, which has high strength among aluminum alloys, is optimal.
  • the area of the nugget 3 formed by spot welding shown in FIG. 1 is in the range of 20 X t ° ⁇ 5 to LOO X t ° ⁇ 5 mm 2 defined by the thickness t of the aluminum material 2.
  • nuggets are in the range of 20 X t ° ⁇ 5 to LOO X t ° ⁇ 5 mm 2 defined by the thickness t of the aluminum material 2.
  • the thickness t of the metal member 20 X t ° the area of the formed nugget at the spot welding - 5 mm 2 about to be
  • the present invention is characterized in that the joining of dissimilar metal members has a larger nugget area than the joining of the same kind of metal members. That is, the nugget 3 area force formed by spot welding 20 X t defined by the thickness t of the aluminum material 2
  • the optimum nugget area depends on the thickness t of the aluminum material 2 side, and the influence of the thickness t of the steel material 1 is ignored. As small as possible
  • nugget area is less than 20 X t ° 5 mm 2 , more strictly less than 30 X t ° 5 mm 2 ,
  • the nugget area is too small and the bonding strength is insufficient. On the other hand, the nugget area is 100 x t °
  • the nugget area is in the range of 20 X t ° ⁇ 5 to: LOO X t ° ⁇ 5 mm 2 , preferably 30 X t
  • the nugget area in the present invention can be obtained by measuring the area of the joint interface between the steel material 1 and the aluminum material 2.
  • the method for measuring the area of the bonding interface can be obtained by dividing the bonded body by peeling or cutting at the bonding interface, analyzing the image of the aluminum material 2 side, and measuring the area of the nugget 3. If the nugget shape is approximately circular, cut the joint longitudinally at the joint center 5 (in the thickness direction) and observe the cut surface with an optical microscope.
  • the nugget diameter) D may be measured to determine the area.
  • the nugget diameter D is measured for longitudinal cross sections in two orthogonal directions
  • the area of the ellipse with the diameter and the minor axis is calculated, and this may be used as the nugget area.
  • the interfacial reaction layer 4 shown in FIG. 1 has an optimum thickness of 0.5 to 3 / ⁇ ⁇ , and the area of the portion having this optimum thickness is lO X t 5 mm 2 or more. To do.
  • the area of the interface reaction layer 4 having the optimum thickness is defined as widely as possible in order to improve the bonding strength. Based on the technical idea.
  • the area of the portion where the thickness of the interface reaction layer 4 is 0.5-3 / ⁇ ⁇ is not lO X t 5 mm 2
  • the bonding strength is narrowed and the bonding strength is reduced. Further, in the portion where the thickness of the interface reaction layer 4 is less than 0.5 m, the diffusion of steel aluminum becomes insufficient and the bonding strength is lowered. On the other hand, the portion where the thickness of the interface reaction layer 4 exceeds 3 m becomes brittle and the bonding strength is lowered. Therefore, in order to increase the bonding strength of the entire bonding portion, the area of the portion where the thickness of the interface reaction layer 4 is 0.5 to 3 / ⁇ ⁇ is 10 X t ° ⁇ 5 mm 2 or more, preferably 25 X t ⁇ 5 mm 2 or more is required.
  • the difference in the thickness of the interfacial reaction layer must be within 5 ⁇ m, preferably within 3 ⁇ m.
  • the bonding diameter D means a diameter in a range where the interface reaction layer 4 is formed.
  • electrode tip is also simply referred to as “tip”.
  • tip 5 is the part where the interface reaction layer 4 is thickest, whereas the center 5 is separated from the center 5 by a distance of 1Z4 of the joint diameter D.
  • the reaction layer 4 becomes thinner, the smaller the difference in thickness between the two points, the higher the bonding strength. If the difference in thickness is larger than 5 m, the interface reaction layer 4 at the center 5 becomes excessively thicker than the interface reaction layer 4 in the peripheral part, and in addition to the decrease in bonding strength, appearance due to generation of dust. In addition to the damage, the thickness distribution of the interfacial reaction layer 4 in the peripheral part also changes, causing a variation in strength.
  • the maximum thickness of the interface reaction layer 4 is preferably in the range of 0.5 to 10 ⁇ m, more preferably 1.5 to 5 ⁇ m.
  • the joint center 5 corresponds to the position where the maximum thickness is obtained. If the maximum thickness exceeds 10 m, the strength of the part is low and the overall joint strength is reduced, and the occurrence of dust also adversely affects the thickness distribution of the interface reaction layer 4 in the periphery, It becomes a factor of intensity variation. On the other hand, when the maximum thickness force is less than O., the optimum thickness range of 0.5 to 3 m cannot be obtained.
  • the thickness of the interface reaction layer 4 is obtained by measuring the area of the bonding interface between the steel material 1 and the aluminum material 2, and image analysis and observation with an optical microscope on the aluminum material 2 side. Can be obtained.
  • the contact with the plate, which is the material to be joined is performed at two or more points, or in a linear or planar shape.
  • the maximum pressurizing part with the plate should be two or more points, which is not a single point, as in the past, or by using a chip that is linear or planar, the above-mentioned relatively large optimum
  • the nugget area and the optimum structure of the interface reaction layer can be obtained.
  • the line shape is a continuous line of 3 mm or more
  • the plane shape is a continuous surface of 5 mm 2 or more, and points less than these are points.
  • the diameter of the recess is preferably 2 mm or more. . If it is less than 2 mm, the current concentration at the center cannot be sufficiently suppressed, and the effect of uniformizing the interface reaction layer 4 is small. In addition, although there is no upper limit on the diameter of the recess, 15 to 20 mm is considered to be the maximum when considering the chip size and maintainability.
  • the depth of the recess is 0.5 mm or more even if it is shallow, and if the depth of the recess is deep, the chip becomes longer and cooling efficiency with cooling water decreases, so it is not necessary to make it larger than 3 mm.
  • the tip diameter and tip R of the dome-shaped tip are not specified, but it is desirable that the tip diameter is 7 mm or more and the tip R is 75 mm or more in order to secure the nugget area.
  • a welding current path that passes through the inside of the plate is used by using, as at least one of the pair (two) of electrode tips used for spot welding, a tip having a recess at the tip as described above.
  • current concentration can be suppressed, dust and defects can be prevented, and the thickness of the interface reaction layer 4 can be made uniform.
  • the tip is used only on one side, heat generation can be further suppressed by using the steel material 1 side, but current concentration can be further suppressed by using both tips, and the interface reaction layer 4 More reliable thickness It can be made uniform.
  • Cooling at least one of steel 1 and aluminum 2 to 5 ° C or less also suppresses heat generation of both members, prevents the generation of dust and defects, and makes the interface reaction layer thickness uniform. can do.
  • heat generation can be further suppressed by cooling the steel, but heat generation can be further suppressed by cooling both of them, and the thickness of the interface reaction layer 4 can be made more uniform.
  • the method for cooling the plate may be either a method in which the plate is cooled in advance with a liquid or gaseous refrigerant and then welding, or a method in which the plate is cooled with a gaseous refrigerant while welding.
  • a method in which the plate is cooled in advance it is necessary to remove the frost attached to the plate and perform force welding.
  • the welding conditions for spot welding used in the present invention are not limited by the pressure and current pattern, and are appropriately determined depending on the material and thickness of steel material 1 and aluminum material 2, differences in surface treatment, chip tip shape, etc. You can choose.
  • the nugget area and the structure of the interfacial reaction layer 4 must satisfy the range defined by the present invention. To secure the nugget area, a relatively high pressure and current amount are required. In order to suppress the increase in thickness, welding is performed for a short time when the surface treatment layer is not present on the plate, and when the surface treatment layer is provided, the surface treatment layer at the joint is uniformly discharged, and as short as possible. Welding is required.
  • a steel plate obtained as follows was used. That is, as a chemical component
  • the test steel contains 0.06% C-0. 5% Si-l. 2% Mn in mass% and the balance is substantially Fe except for unavoidable impurities such as P and S. And rolled to a thickness of 1.2 mm to obtain a thin steel plate.
  • continuous annealing after annealing at 500 to: LOOO ° C, oil washing or water washing was performed, and then tempering was performed to obtain a 590 MPa class high strength steel plate.
  • A6022 (6000 series) aluminum alloy plates having a thickness of 1. Omm and 1.6 mm were used.
  • a DC resistance welding tester was used for spot welding. All electrode tips are dome-shaped tips (tip diameter 12mm, tip R150mm) with Cu-Cr alloy strength, with no processing (tip A, comparative example: contact at one point), 5mm width lmm at the tip tip center Deep grooved (Chip B: Abutment at 2 points), with a lmm diameter, 2mm, 5mm, and lmm deep recessed parts at the tip center (chips C, D, E, respectively) : 5 pieces of chips with a linear contact on the circumference).
  • the anode was an aluminum alloy plate
  • the cathode was a steel plate
  • the shape of both of the pair of electrode tips was the same in all welding tests. When chip B was used, the direction of the groove was aligned in a certain direction.
  • Table 1 shows the test conditions (aluminum plate thickness t 2 , plate temperature just before welding, electrode tip type, pressure, and current pattern [welding current, welding time]).
  • the nugget area was determined by slicing the bonded sample after spot welding vertically at the center of the joint, embedding it in the resin, polishing, and observing the cut surface with an optical microscope. It was determined by measuring the diameter at the bonding interface of the toner. The nugget diameters in two directions perpendicular to each other were measured, and the area of the ellipse having the major axis and the minor axis as the major axis was calculated, and this was defined as the nugget area.
  • the thickness of the interface reaction layer for chips A, C, D, and E, three joint samples by spot welding were prepared for each condition, and each sample was cut vertically at the center of the joint. It was determined by SEM observation after embedding in grease and polishing. When the thickness of the interfacial reaction layer was 1 m or more, the field of view was magnified 2000 times, and when the thickness was less than 1 ⁇ m, the field of view was measured 10,000 times. The maximum thickness of the three samples was measured as the maximum thickness of the interface reaction layer.
  • the thickness of the center of the joint and the thickness of the interface reaction layer at two points (middle points) separated from each other by a distance of 1Z4 of the joint diameter from the center of the joint to the left and right are measured. Find the difference in thickness and average the total of 6 points, 2 points each on 3 samples, to obtain the value obtained at the joint center and the point 1Z4 distance away from the joint center. The difference in the thickness of the interfacial reaction layer was taken as the difference.
  • the area of the portion where the thickness of the interface reaction layer is 0.5 to 3 / ⁇ ⁇ is obtained by making the line segment of the portion where 0.5 to 3 / ⁇ ⁇ in each cross section wrap around the center of the joint. The area of the figure drawn was calculated, and this area was obtained by averaging the three samples.
  • the thickness of the center of the joint, and the thickness of the interface reaction layer at two points (intermediate points) that are 1Z4 long in the joint diameter from the center of the joint are 1Z4 long in the joint diameter from the center of the joint.
  • the difference in the thickness of the points, and the largest of these differences is the distance between the joint center and the joint diameter from the joint diameter of 1Z4.
  • the largest difference was when measured with a 90 ° cross section.
  • the area of the portion where the thickness of the interface reaction layer is 0.5 to 3 / ⁇ ⁇ is in the range of 0.5 to 3 / ⁇ ⁇ in each angular direction of 0 to 90 degrees for each angular direction.
  • the cross tension test instead of the shear tensile test was used for the evaluation of the bonding strength. Is the cross tension test having a larger relative difference in bonding strength between the test conditions? This is because it was more suitable for quality determination. The tendency of the shear tensile test is in agreement with the cross-tension test result, and those with a ⁇ or ⁇ ⁇ evaluation in the cross tensile test showed a high shear strength of 2.5 kN or more.
  • Table 2 shows the results of the cross tension test of the dissimilar joints obtained by spot welding under the test conditions shown in Table 1.
  • test Nos. 1-6 compared to test Nos. 1-3, where the plate temperature is higher than 5 ° C
  • test Nos. 4-6 where the plate temperature is lower than 5 ° C
  • the thickness of the interface reaction layer at the point where the optimum thickness range (0.5 to 3 ⁇ m) of the interface reaction layer is increased and the force is at the center of the junction and the point 1Z4 away from the joint diameter The difference between the two is reduced, and the joint strength of the dissimilar joint is increased.
  • Test No. 7 compared to test No. 1 and 2 using a normal dome-shaped tip that does not process the tip, Test No. 7 to which the chip defined in the present invention is applied: In L 1, the area of the optimum thickness range (0.5 to 3 / ⁇ ⁇ ) of the interface reaction layer increases, and the joint It can be seen that the difference in the thickness of the interface reaction layer between the center and the point 1Z4 away from the joint diameter decreases, and the joint strength of the dissimilar material joint increases. In particular, in Test No.
  • the nugget area is Interfacial reaction between the area of the optimum thickness range of the interface reaction layer (0.5-3; ⁇ ⁇ ), the maximum interface reaction layer thickness, the center of the joint and the point 1Z4 away from the joint diameter Bond strength is reduced when one or more of the layer thickness differences are within the specified range.
  • the optimum joining conditions (pressure force, current pattern) of the steel plate or aluminum alloy plate The nugget area and the structure of the interfacial reaction layer need to be appropriately selected so as to satisfy the range defined by the present invention depending on the difference in material, plate thickness, surface treatment, and chip shape.
  • FIG. 2 shows a cross-sectional view of the heterogeneous joined body defined in one embodiment of the present invention.
  • reference numeral 13 denotes a dissimilar material joined body in which a steel material (steel plate) 11 and an aluminum material (aluminum alloy plate) 12 are joined by spot welding.
  • 15 is a nugget having an interface reaction layer 16 in spot welding, and has a nugget diameter indicated by an arrow in the horizontal direction in the figure.
  • 19 is a corona bond portion around the nugget.
  • t is steel sheet thickness
  • t aluminum sheet thickness 12
  • At spot welding
  • 14 is a suppression layer, and a Zn or A1 metal film and an organic resin adhesive film provided in advance between the joint surfaces of the steel material 11 and the aluminum material 12 to be joined. It is a laminated body.
  • the metal film of Zn or A1 and the film of organic resin adhesive are shown in one piece without being separated, but the surface of steel 11 is coated with Zn and the organic film is coated on it.
  • An embodiment in which a fat adhesive is applied to form the suppression layer 14 is shown.
  • Fig. 2 shows a laminated body of a Zn or A1 metal film and an organic resin adhesive film, which is provided in advance before spot welding in the joint portion of the heterogeneous joint after spot welding.
  • the suppression layer 14 is removed, and the steel material 11 and the aluminum material 12 are directly joined.
  • FIG. 2 shows that these suppression layers 14 formed in advance exist in the interface region other than the joint portion of the dissimilar joined body as it is.
  • the steel sheet has a thickness t of 0.3 to 3. Omm.
  • the thickness t of the steel material is less than 0.3 mm, the above-described structural member is used as a structural material. Necessary strength and rigidity cannot be secured and is inappropriate.
  • the acid film with large deformation of the steel material is easily broken by the pressure applied by spot welding, the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed.
  • an appropriate shape and material such as a steel plate, a steel shape member, and a steel pipe, which are generally used for a structural member that does not specifically limit the shape and material of the steel material to be used, or are selected as a structural member application force.
  • a structural member that does not specifically limit the shape and material of the steel material to be used, or are selected as a structural member application force.
  • Tensile strength of low-strength steels less than OOMPa is generally low-alloy steels, and since many acid films are composed of iron oxides, diffusion of Fe and A1 is facilitated, and brittle intermetallic compounds are formed. Cheap.
  • high-tensile steel with a tensile strength of 400 MPa or higher, preferably 500 MPa or higher!
  • the aluminum material used in the present invention is not limited in particular to the type and shape of its alloy, but is generally used for plate materials, profiles, forging materials, forging materials, etc., depending on the required characteristics of each structural member. It is selected appropriately.
  • the strength of the aluminum material is desirably high in order to suppress deformation due to pressurization during spot welding, as in the case of the above steel material.
  • the use power of the A5000 series, A6000 series, etc., which are widely used as this kind of structural member, which has high strength among aluminum alloys, is optimal.
  • the thickness t of these aluminum materials used in the present invention is in the range of 0.5 to 4. Omm.
  • the aluminum material thickness t is less than 0.5mm, the strength as structural material is insufficient.
  • the structural part is the same as the thickness of the steel material described above.
  • the suppression layer a specific range is provided between the joint surfaces of the steel material and the aluminum material to be joined in order to suppress the interfacial reaction layer formation time and suppress the dissimilar metal contact corrosion.
  • Two layers of Zn or A1 metal film and organic resin adhesive film are prepared in advance.
  • a metal film and an organic resin adhesive film are laminated on either the steel surface side or the aluminum material side. Provide (any order of lamination may be used, but it is easier to provide the organic resin adhesive film if the metal film is provided first.
  • a specific range of Zn or A1 metal film will be described below.
  • spot welding is performed in a state in which a metal film of Zn or A1 is provided in advance between the joining surfaces of the steel material and the aluminum material to be joined. Therefore, at least the joining surface of the steel material or aluminum material is used.
  • a metal film of Zn or A1 is provided in advance on the side surface.
  • this Zn or A1 metal film has a melting point close to that of the aluminum material to be joined, as shown in the specific melting point range described later, an interfacial reaction layer that is an intermetallic compound of steel and aluminum is formed during spot welding. Time can be controlled and the thickness range and distribution of the interfacial reaction layer can be controlled.
  • the melting point of the metal film of Zn or A1 is set to a narrow temperature range of 350 to 1000 ° C, preferably 400 to 950 ° C. Furthermore, it is preferable that the temperature range is narrower than the melting point of the aluminum material and not more than 900 ° C.
  • the melting point of aluminum material is about 660 ° C (melting point of pure A1), the melting point of pure Zn is about 420 ° C, and the above melting point is close to the melting point of aluminum material to be joined. This means that C can be allowed to have a certain width.
  • the thickness of the Zn or A1 metal film is 3 to 19 m (average film thickness), more preferably 5 to 15 m.
  • the thickness of the Zn or A1 metal film is determined by cutting a steel or aluminum sample after forming the film, embedding it in a resin, polishing it, and performing SEM observation in the thickness direction of the metal film. In this SEM observation, the thickness of three points is measured with a field of view of 2000 times, and the thickness of the metal film is obtained by averaging these.
  • the thickness of the Zn or Al metal film is too thin or the melting point is too low, the Zn or A1 metal film melts and discharges from the joint at the initial stage of the spot welding, The formation of the interface reaction layer cannot be suppressed.
  • the steel material to be joined and the aluminum material need to be in direct contact with each other at the joint surfaces.
  • the Zn or A1 metal film must also melt and discharge the joint force.
  • the thickness of the Zn or A1 metal film is too thick or the melting point is too high, a large amount of heat input is required to melt and discharge the Zn or A1 metal film from the joint.
  • this heat input is increased, the amount of melting of the aluminum material is increased, and the amount of thinning of the aluminum material is increased due to generation of dust, so that the dissimilar material joined body cannot be used as a structural member.
  • the composition of the alloy used such as pure Zn or pure Al, Zn alloy or A1 alloy, can be appropriately selected from the above melting point range.
  • a method of coating or forming a metal film on at least the surface of the joining surface side of a steel material or an aluminum material commonly known means such as plating and coating can be used as appropriate.
  • the coating or formation on the surface of the steel or aluminum material is at least a force on the surface of the joint surface, and of course, for corrosion prevention, a metal film of Zn or A1 is applied to the surface of the steel or aluminum material that is not the joint surface. Can be covered or formed!
  • the Zn or A1 metal film is coated or formed as a plating on the steel material side because the Zn or A1 plating is widely used.
  • Steel is usually used after being painted, but even if the coating is damaged, Zn and A1 are preferentially corroded, so the steel can be protected.
  • the potential difference between the steel and the aluminum material is reduced, it is possible to suppress dissimilar metal contact corrosion, which is one of the problems with dissimilar joints.
  • Zn or A1 plating the corrosion resistance of the steel material is ensured, and both steel and aluminum can be easily plated.
  • the coating film is preferably pure Zn or pure Al.
  • Zn alloy or A1 alloy In alloys such as Al—Zn, Al—Si, and Zn—Fe, each containing 80 mass% or more of Al, it is preferable that Zn or A1 be the main component.
  • plating films pure zinc or zinc alloy plating films containing at least 88% by mass of Zn are recommended.
  • a Zn plating film containing Zn of 88% by mass or more is applied to the steel surface, the corrosion resistance of the steel material is particularly high, and this Zn plating film is easy to control the melting point in the above 350 to 1000 ° C range. .
  • contact corrosion of dissimilar metals with high corrosion resistance can be suppressed.
  • the viewpoint power to prevent this kind of dissimilar metal contact corrosion The best is the pure zinc plating film.
  • the plating method is not limited in the present invention, but existing wet and dry plating can be used.
  • methods such as electrical plating, melting plating, and alloying after melting are recommended.
  • the film of the organic resin adhesive is an electrically insulating layer, and suppresses and controls the formation time of the interfacial reaction layer at the time of spot welding. It has a function to suppress contact corrosion of dissimilar metals by intervening extensively or entirely with the rubber material.
  • spot bonding is performed after applying or forming a film of an organic resin adhesive between the bonded surfaces of the steel material and the aluminum material (the surface of any bonded surface). Therefore, the film of organic resin adhesive functions as a so-called weld bond during spot welding.
  • the film of organic resin adhesive functions as a so-called weld bond during spot welding.
  • the type and application thickness of the organic resin adhesive are not particularly limited, and are generally used for the production of automobile bodies, such as mastic adhesives, adhesives for weld bonds, adhesives for hemming, and spoils. It can be applied together with its type and coating thickness.
  • Examples of types of organic resin adhesives are an aqueous solution, urea, phenol, PVA, etc. can be applied. If the adhesive is a solution, CR, nitrile rubber, butyl acetate, nitrile cellulose, etc. can be applied. If the adhesive is emulsion-based, butyl acetate, acrylic, EVA, CR, SBR, nitrile rubber, etc. can be applied. If the adhesive is solventless, epoxy, acrylate, polyester, etc. can be applied. In some cases, an organic resin adhesive in the form of a solid or tape may be used.
  • the adhesive is extruded to the outside at the time of spot bonding, so that It is preferable to reduce the remaining amount of adhesive.
  • the adhesive may remain to the extent that does not hinder spot bonding at the joint, for example, to the extent that the adhesive does not form a layer, without completely eliminating the adhesive remaining at the joint. .
  • thermosetting resin adhesive film such as epoxy and acrylic
  • both electrode tip force stress (pressing force) sandwiching the steel material and aluminum material is applied during spot welding. Because of its softness, it has a characteristic that it can be easily discharged or removed from the welded part of steel and aluminum to the surrounding part. If a thermosetting resin adhesive is used, the steel material and the aluminum material can be electrically connected at the time of spot joining due to this characteristic.
  • thermoplastic resin adhesive film even if a thermoplastic resin adhesive film is heated at the time of spot welding, it is so soft that it is easily discharged or removed from the welded portion of the steel material and the aluminum material to the surrounding portion. It becomes.
  • the steel and aluminum materials are scattered from the welded parts to the surrounding parts, even if they are not discharged or removed! By doing so, it is possible to electrically connect the steel material and the aluminum material.
  • the organic resin adhesive film is electrically or electrically interposed between the steel material and the aluminum material, except for the spot welds that have been removed. It becomes an edge layer and suppresses the dissimilar metal contact corrosion of the dissimilar material joined body.
  • the thickness of the applied organic resin adhesive does not substantially affect spot weldability. This is because the thickness of the organic resin adhesive in the weld zone is substantially governed by the contact surface pressure during spot welding, although there are some differences in the composition and type of the organic resin adhesive. Therefore, as described later, control of the contact surface pressure is important.
  • the coating thickness of the organic resin adhesive should be as low as 0.1m or more, so that it does not easily have corrosion-resistant surface pinholes. is there.
  • the final adhesive thickness after spot bonding should be approximately 0.1 to LO m after hardening of the adhesive or after heat curing in order to suppress corrosion.
  • the area where the thickness of the dissimilar material interface reaction layer is 0.5-5 / ⁇ ⁇ is lO X t ° ⁇ 5 mm 2 or more in relation to the thickness t of the aluminum material. Suppose that there is. This optimal
  • the standard definition of the area of the interfacial reaction layer is that the interfacial reaction layer is thin and is (good); In contrast to this, it is controlled within the optimum range, and rather, it is a direction in which it actively exists as a direction of orientation. Then, in order to improve the bonding strength, it is based on the technical idea that an interface reaction layer having an optimum thickness range is formed in a large area, in other words, present in a wide range.
  • the area force of the portion where the thickness of the interface reaction layer is 0.5 to 5 ⁇ m is less severe than lO X t 5 mm 2 in relation to the thickness t of the aluminum material. Less than 50 x t 5 mm 2
  • the interface reaction layer in the optimum thickness range does not become a wide range, but the bonding strength is lowered.
  • the thickness of the interface reaction layer is less than 0.5 m, the steel-aluminum diffusion is insufficient and the joint strength is low.
  • the thicker the interfacial reaction layer the more fragile, and in particular, the portion where the interfacial reaction layer exceeds 5 m becomes brittle and the bonding strength decreases. For this reason, the larger the area of such an interface reaction layer, the lower the bonding strength of the entire bonded portion.
  • the area force of the portion where the thickness of the interface reaction layer is 0.5 to 5 m is related to the thickness t of the aluminum material.
  • the center portion becomes the thickest interface reaction layer, and the thickness of the interface reaction layer decreases as the distance from the center increases. Therefore, the thickness of the interfacial reaction layer at the center may exceed 5 m.
  • the thickness of this interfacial reaction layer can be measured by image analysis or SEM observation of 2000 times the area of the aluminum material side of the interface area where the steel material and aluminum material are joined.
  • FIG. 3 shows an example of spot welding as a prerequisite for obtaining a heterogeneous joint.
  • the basic mode of the spot welding method of the present invention is the same as the mode of normal spot welding.
  • 11 is a steel plate
  • 12 is an aluminum alloy plate
  • 15 is a nugget
  • 17 and 18 are electrodes
  • 13 is a heterogeneous joint.
  • a spot is prepared with a Zn or A1 metal film and an organic resin adhesive film preliminarily provided between the joint surfaces of the steel material and aluminum material to be joined. Weld. [0177] At this time, as described above, the organic resin adhesive is applied to the joining surface side of the steel material-aluminum material, spot bonding is performed, and then the applied organic resin adhesive is cured.
  • the tip diameter of the electrode tip 18 on the aluminum material 12 side is set to 7 mm ⁇ or more, and the pressure applied by the electrode tips 17 and 18 is the relationship between the tip radius of curvature Rmm and the pressure WkN (RXW) 1/3 ZR> 0.05.
  • a larger pressure is desirable because it allows more adhesive to be pushed out.
  • the spot welding capacity limit force is practically up to 1 OkN.
  • the tip diameter is 7mm ⁇ or more, the tip radius of curvature R is large, and the dome type R is used.
  • the steel material side is also desirable to have a 1S spot welding capacity limit force that should have a larger radius of curvature R. In reality, R is up to 250 mm.
  • the electrode shape is not specified, the electrode is desirable in order to increase the current efficiency in the initial energization. Also, although the polarity is not specified, when using a DC spot, it is desirable to use aluminum as the anode and steel as the cathode.
  • the interface reaction layer grows thick, so the area of the interface reaction layer with the optimum thickness is reduced.
  • a force that can produce a close joint structure with the same amount of heat for example, a current pattern of more than 30Xt 5 kA and less than 100Xt ⁇ 5 msec, or 15 Xt ⁇ 5 kA
  • the area cannot be obtained over a wide area.
  • a different current pattern may be added to the process before and after this current condition to form a multi-stage current pattern, but the interface reaction layer grows thicker, so there is a higher current process than this process. It is necessary!
  • a current of lXt ° ' 5 to 10Xt' 5 1 ⁇ is 100 ⁇ 5
  • Table 3 shows the case where the thickness of the aluminum plate is lmm
  • Table 4 shows the case where the thickness of the aluminum plate is 2mm.
  • Tables 3 and 4 assume that the plating conditions and thermosetting adhesive conditions on the joint surface side of the steel sheet are constant, and the joints of dissimilar materials are manufactured by changing various electrode conditions and current conditions in spot welding.
  • the examples in Tables 3 and 4 are common to each example, and the epoxy thermosetting adhesive has a thickness of approximately 0.5 to 1 ⁇ m (the adhesive does not protrude due to the pressure during spot bonding). The coating was uniformly thin with a brush.
  • Table 5 also shows the results of manufacturing a dissimilar material joint with a welded bond material between a steel plate and an aluminum plate, with various plating conditions and thermosetting adhesive conditions on the bonding surface side of the metal plate.
  • the adhesive is applied in Table 5, it is common to apply an epoxy or polyurethane adhesive with a brush so that the thickness is between 0.5 and 1 ⁇ m between the joint surfaces. Evenly thinly applied
  • the steel plate has a thickness of lmm and a composition containing 0.07% by mass C—1.8% by mass of Mn.
  • A6061 aluminum alloy plates with a thickness of 1mm and 2mm are prepared. Both alloy plates were processed into the shape of a cross tensile test piece described in JIS A 3137 and spot welding was performed.
  • thermosetting structural adhesive (Penguin # 1086 manufactured by Sunstar Giken) was used.
  • polyurethane a commercially available polyurethane thermosetting structural adhesive (Penguin Seal 980 manufactured by Sunstar Giken) was used.
  • Ni plating as a comparative example was performed at 10 / zm by applying a current of lOAZdm 2 using a Watt bath.
  • Zn or Zn-electroplating was performed.
  • Zn-10% Ni plating was applied at 10 / zm by flowing lOAZdm 2 in a zinc plating bath containing nickel sulfate and nickel chloride.
  • the film thickness of the plating film was cut by cutting the sample after plating, embedding in a resin, polishing, and SEM observation of the joint interface before spot welding was performed. Three-point thickness was measured in a 2000-fold field of view and obtained by averaging.
  • the tip diameter of the electrode tip on the aluminum material side is 7 mm ⁇ or more, and the pressure applied by the electrode tip is related to the radius of curvature Rmm of the tip and the pressure WkN. (RXW) 1/3 / R> 0.05 to mark and force 15 X t ° 5 to 30 X t. 5 kA current
  • a heat treatment at 30 ° C was performed for 30 minutes to completely cure the adhesive.
  • the thickness of the interface reaction layer is measured by cutting the spot welded sample at the center of the weld. Then, it was embedded in rosin, polished, and observed with SEM. When the thickness of the layer was 1 m or more, it was measured with a field of view of 2 000 times, and when it was less than m, it was measured with a field of view of 10000 times.
  • the interfacial reaction layer herein refers to a compound layer containing both Fe and A1, and refers to a layer in which Fe and A1 are both detected by lwt% or more by EDX. In other words, the layer in which Fe and A1 were not detected in excess of lwt% worked as an adhesive layer or an interfacial reaction layer as a residual adhesive.
  • the bonded bodies bonded under various conditions were subjected to alkaline degreasing, washed with water, and then subjected to a surface conditioning treatment for 30 seconds using a 0.1% aqueous solution of Surffine 5N-10 manufactured by Nippon Vint. After that, zinc ion 1. Og / nickel ion 1. Og / l, manganese ion 0.8 gZl, phosphate ion 15. Og / U nitrate ion 6. Og / U nitrite ion 0.12 gZl, toner value 2.
  • Zinc phosphate treatment was performed for 2 minutes in a bath of 5 pt, total acidity 22 pt, free acidity 0.3 to 0.5 pt, 50 ° C. After that, it was painted with a cationic electrodeposition paint (Power Top V50 Samurai made by Nippon Paint Co., Ltd.) and baked at 170 ° C for 25 minutes to form a 30 m film.
  • a cationic electrodeposition paint Power Top V50 Samurai made by Nippon Paint Co., Ltd.
  • Corrosion test A: salt spray (35 degrees, 5% NaCl) 2hr, B: dry (60 ° C, 20-30% RH) 4hr, C: wet (50 ° C, 95% RH or more) 2hr A 90-cycle test was conducted. After this test, the joint was peeled and observed to evaluate the corrosion resistance (A1 maximum corrosion depth). [0211] Corrosion resistance was measured by measuring the maximum corrosion depth of the aluminum material of the three dissimilar joints, and the average was 0.
  • if less than Olmm, ⁇ if 0.01 to 0.02 mm, ⁇ if 0.02 to 0.1 mm, X if 0.1 mm or more. If the maximum corrosion depth is not less than 0.01-0.02mm ( ⁇ ), it cannot be used for structural materials such as automobiles! /.
  • the bonding strength is high in Comparative Examples A to C such that the electrode tip is out of the suitable spot bonding condition range, the tip diameter of the electrode tip is small, and the pressure is low in relation to the radius of curvature of the tip. Bonding strength is not obtained. Also, the bonding strength is low even in Comparative Examples D to H where the current conditions do not satisfy the scope of the present invention.
  • Comparative examples A to G are spot-joined only in welding process 1 and without welding process 2 except for comparative example H in which welding process 2 is performed. Of these, in Comparative Example A, the tip diameter of the electrode tip is too small. In Comparative Example B and Comparative Example C, the applied pressure is too low in relation to the tip curvature radius.
  • Comparative Example D the welding current in welding process 1 is too low in relation to the thickness of the aluminum material.
  • Comparative Example E the welding time in welding process 1 is too short in relation to the thickness of the aluminum material.
  • Comparative Example F the welding current in welding process 1 is too high in relation to the thickness of the aluminum material.
  • Comparative Example G the welding time in welding process 1 is too long in relation to the thickness of the aluminum material.
  • Comparative Example H there is a welding process 2 in which a significantly higher current flows in the welding process.
  • the tip diameter of the electrode tip on the aluminum material side is set to 7 mm or more, and the pressure applied by the electrode tip is adjusted to the radius of curvature Rmm and the pressing force.
  • RXW radius of curvature 1/3 / R> 0 of the WkN. 05 and so as to to mark Karo, Chikaratsu 15 X t ° ⁇ 5 ⁇ 30
  • the invention examples N, 0, and P which have the above-described welding process 1 and are spot-welded in a current pattern in which there is no welding process in which a higher current flows than the welding process 1,
  • Subsequent welding process 2 has a current of IX t ° ⁇ 5 to: LO X t ° ⁇ 5 kA lOO X t ° ⁇ 5 to: LOOO X t 0
  • Comparative Examples 1, 10, and 14 without the resin adhesive are inferior in corrosion resistance. Further, Comparative Example 2 without plating and Comparative Examples 3, 4, and 5 in which the plating conditions (melting point) are out of range force are inferior to the results of the cross tension test, and the bonding strength is low. Under these conditions, Comparative Example 2 with no plating and adhesive strength S was also inferior in the cross tension test results. In Comparative Example 21, in which the plating thickness was too thick, the result of the cross tension test was inferior to that of pure zinc.
  • Invention Examples 6 to 9, 11 to 13, 15, 18, 19, 20, and 22 having a resin adhesive and having plating conditions (melting point) within the range have optimum thicknesses.
  • the interfacial reaction layer can be controlled, and it has excellent corrosion resistance and high bonding strength.
  • Invention Examples 6 to 7, 11, 18, 19, 20, and 22 with pure zinc plating have the highest bonding strength. From this result, it can be seen that by controlling the plating to the components of the present invention, the melting point and the film thickness, the interface reaction layer having the optimum thickness can be controlled, and high bonding strength and corrosion resistance can be obtained.
  • a weld bond is formed with pure Zn plating and a film thickness of 5 to 15 / ⁇ ⁇ , both the joint strength and the corrosion resistance can be obtained.
  • FIG. 2 shows a cross-sectional view of the heterogeneous joined body defined in one embodiment of the present invention.
  • reference numeral 13 denotes a steel material (steel plate) 11 and an aluminum material (aluminum alloy plate) 12 which are welded by spot welding.
  • This is a joined body of different materials.
  • 15 is a nugget having an interface reaction layer 16 in spot welding, and has a nugget diameter indicated by an arrow in the horizontal direction in the figure.
  • 19 is a corona bond portion around the nugget.
  • t is steel sheet thickness
  • t is aluminum sheet thickness 12
  • At spot welding
  • 14 is a suppression layer (corrosion suppression layer), Zn (meaning pure Zn) provided in advance between the joint surfaces of the steel material 11 and the aluminum material 12 to be joined.
  • Zn meaning pure Zn
  • a laminated body of a Zn alloy metal film and a phosphate film In Fig. 2, the Zn or Zn alloy film and the phosphate film are shown in one piece without being separated from each other. However, a Zn or Zn alloy film is provided on the joining surface of the steel material 11 by plating or the like, and phosphoric acid is formed thereon.
  • An embodiment is shown in which a zinc film is applied to prevent / scratch as a suppression layer 14 (corrosion suppression layer).
  • Fig. 2 shows a suppression layer which is a laminate of a Zn or Zn alloy film and a zinc phosphate film, which is provided in advance before spot welding in the joint portion of the heterogeneous joint after spot welding.
  • (Corrosion suppression layer) 14 is removed, and the steel material 11 and the aluminum material 12 are directly joined, showing a good joined state of the dissimilar joined body.
  • FIG. 2 shows that these suppression layers (corrosion suppression layers) 14 formed in advance exist in the interface region other than the bonded portion of the dissimilar bonded body.
  • the steel sheet has a thickness t of 0.3 to 3. Omm.
  • the thickness t of the steel material is less than 0.3 mm, the above-described structural member is used as a structural material. Necessary strength and rigidity cannot be secured and is inappropriate.
  • the acid film with large deformation of the steel material is easily broken by the pressure applied by spot welding, the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed.
  • the above-mentioned structural member is made of other joining means as the structural material, so that there is little need to join by spot welding. For this reason, it is not necessary to increase the thickness t of the steel material beyond 3. Omm.
  • the shape and material of the steel material to be used are not particularly limited, and are generally used for structural members or selected from structural member applications such as steel plates, steel profiles, and steel pipes. Any suitable shape and material can be used. However, in order to obtain lightweight high-strength structural members (dissimilar materials joints) such as automobile parts, it is preferable to use ordinary high-strength steels (no, iten) whose tensile strength is 400 MPa or more.
  • Tensile strength of low-strength steels less than OOMPa is generally low-alloy steels, and since many acid films are composed of iron oxides, diffusion of Fe and A1 is facilitated, and brittle intermetallic compounds are formed. Cheap.
  • high-tensile steel with a tensile strength of 400 MPa or higher, preferably 500 MPa or higher!
  • the aluminum material used in the present invention is not limited in particular to the type and shape of the alloy, and generally used plate materials, profiles, forging materials, forging materials, etc. are appropriately used according to the required characteristics as structural members. Selected.
  • the strength of the aluminum material is preferably higher in order to suppress deformation due to pressurization during spot welding, as in the case of the steel material.
  • the use power of A5000 series, A6000 series, etc., which is widely used as this kind of structural member, which has high strength among aluminum alloys, is optimal.
  • the thickness t of these aluminum materials used in the present invention is in the range of 0.5 to 4. Omm.
  • the aluminum material thickness t is less than 0.5mm, the strength as structural material is insufficient.
  • the nugget diameter cannot be obtained, and the aluminum material surface can easily be melted and dust is easily formed, so that high bonding strength cannot be obtained.
  • the thickness t of the aluminum material exceeds 4. Omm, the structure is the same as the thickness of the steel material described above.
  • the thickness t of the aluminum material exceeds 4. Omm.
  • a suppression layer (corrosion suppression) is previously formed between the steel and the aluminum material. Layer). This suppression layer must also not impair control of the formation area and thickness distribution of the interfacial reaction layer between steel and aluminum in spot welding.
  • a suppression layer corrosion suppression layer having such a function
  • a metal film of Zn or a Zn alloy, phosphoric acid, between the joint surfaces of the steel material and the aluminum material to be joined Two with a zinc coating are provided in advance.
  • a metal film and a phosphate film are laminated on either the steel material side or the aluminum material side.
  • the order of providing (stacking) may be any, but it is easier to provide the zinc phosphate coating if the metal coating is provided first.
  • a metal film of Zn (pure Zn) or Zn alloy will be described below.
  • Zn pure Zn
  • a metal film of Zn or a Zn alloy is previously provided on the surface.
  • This Zn or Zn alloy film has a melting point close to that of an aluminum material.
  • another existence of the phosphate film is the Zn or Zn alloy film.
  • spot welding in the spot welding, only the spot welded portion is broken, and the steel material and the aluminum material can be electrically conducted at the spot welded portion.
  • the phosphate film is interposed between the steel material and the aluminum material alone, as described above, the joined body Control of the formation area and thickness distribution of the interfacial reaction layer is hindered.
  • the melting point of the Zn or Zn alloy film is in a narrow temperature range of 350 to 1000 ° C, preferably 400 to 950 ° C. Furthermore, it is preferable that the temperature range be narrower than the melting point of the aluminum material and 900 ° C or less.
  • the melting point of pure A1 is about 660 ° C and the melting point of pure Zn is about 420 ° C. The above mentioned melting point is close to the aluminum material to be joined. This means that it is allowed to have a certain width.
  • the thickness of the Zn or Zn alloy film is 3 to 19 m (average film thickness), more preferably 5 to 15 m.
  • the thickness of the Zn or Zn alloy film is determined by cutting a steel or aluminum sample after forming the film, embedding it in a resin, polishing it, and performing SEM observation in the thickness direction of the metal film. In this SEM observation, the thickness of three points is measured with a field of view of 2000 times, and the thickness of the metal film can be obtained by averaging the observation results at about five different places.
  • the Zn or Zn alloy film may be melted and discharged from the joint at the initial stage of joining during spot welding.
  • the formation of the interfacial reaction layer cannot be suppressed.
  • the increase in resistance heating value is reduced, and the phosphate film is destroyed, and the steel and aluminum materials are electrically connected at the spot welds. It can be made conductive.
  • the steel material to be joined and the aluminum material need to be in direct contact with each other at the joint surfaces.
  • the Zn or Zn alloy film needs to melt and discharge the joint force.
  • the thickness of the Zn or Zn alloy film is too thick or the melting point is too high, a large amount of heat input is required to melt and discharge the Zn or Zn alloy film from the joint. .
  • this heat input increases, the amount of aluminum material melted increases, and the amount of thinning of the aluminum material increases due to the generation of dust, so that the dissimilar material joined body cannot be used as a structural member.
  • Zn or Zn alloy film pure Zn, Zn alloy or the like having the above melting point range can be appropriately selected.
  • a method for coating or forming a metal film on at least the surface of the steel material or aluminum material on the joining surface side known means such as plating and coating can be used as appropriate.
  • the coating or formation on the surface of the steel or aluminum material is at least the surface on the joining surface side.
  • the surface of the steel or aluminum material that is not the joining surface is coated with Zn or Zn alloy film. The coating may be formed.
  • the Zn or Zn alloy film is coated or formed as a plating on the steel material side where plating of Zn or Zn alloy is widely used.
  • Steel is usually used with a paint applied, but even if the paint is damaged, the steel or steel can be protected because the Zn or Zn alloy is preferentially corroded.
  • the potential difference between the steel and the aluminum material is reduced, the dissimilar metal contact corrosion, which is one of the problems with dissimilar joints, can also be suppressed.
  • Zn or Zn alloy plating the corrosion resistance of the steel material is secured, and it is possible to easily plate both steel and aluminum.
  • the plating film of Zn or Zn alloy Pure Zn is preferred.
  • the Zn alloy in an alloy such as Al—Zn and Zn—Fe, it is preferable that each Zn contains 80% by mass or more, and that Zn is a main component.
  • pure zinc or zinc alloy plating films containing at least 88% by mass of Zn are recommended.
  • a zinc alloy plating film containing Zn of 88% by mass or more is applied to the steel surface, the corrosion resistance of the steel material becomes particularly high, and the Zn plating film has a melting point in the above 350 to LOOO ° C range. Easy to control. Furthermore, contact corrosion of dissimilar metals with high corrosion resistance can be suppressed. From the standpoint of preventing dissimilar metal contact corrosion, the best is the pure Zn plating film.
  • the plating method is not limited in the present invention, but existing wet and dry plating can be used.
  • methods such as electrical plating, melting plating, and alloying after melting are recommended.
  • the phosphate film is destroyed by electric resistance through pinholes or in the presence of a specific range of Zn or Zn alloy film in the present invention, and the steel material and the aluminum material are electrically connected. It is possible to control the formation area and thickness distribution of the interface reaction layer of the joined body during spot welding. However, it is not necessary to completely remove the phosphate film from the joint in order to electrically connect the steel and aluminum at the spot weld joint. In other words, if the steel material and the aluminum material are electrically connected, the phosphate film may remain at the spot welding joint.
  • the phosphate coating is extensively provided between the steel material and the aluminum material after spot welding except for the spot welded portion. It has a function of blocking the corrosive environment and suppressing contact corrosion of dissimilar metals.
  • This phosphate film is selective in terms of practicality as well as the above-described effects. For example, as long as it is a thin film, not only a phosphate film but also a film other than phosphate film is electrically destroyed between the steel material and the aluminum material through the pinhole or by the electrical resistance. It seems to be possible.
  • the dissimilar material joint by spot welding which is the subject of the present invention, is typically used (manufactured) as a panel or the like in the current automobile body production line, and is also applied to steel or aluminum. Salt treatment is also used in the car body production line of the car as a base treatment for car body painting. There is a track record.
  • the phosphate film has various other characteristics required for the joint of dissimilar materials, such as workability and paintability, even if it is widely or entirely interposed between the steel material and the aluminum material.
  • phosphating has advantages over other coatings that can be performed within the existing facilities, equipment, and conditions, such as the automobile body production line described above, including spot welding.
  • the phosphate film (treatment) can improve the coating properties such as the adhesion of the coating film of the dissimilar material joined body as a base treatment of the coating.
  • spot bonding is performed after the phosphate coating is formed between the bonding surfaces of the steel material and the aluminum material (any bonding surface).
  • the aluminum material has a problem that the phosphatability is lower than that of the steel material, and this problem occurs on the aluminum material side even when the dissimilar material joined body is subjected to the phosphating treatment.
  • the aluminum material side of the dissimilar material joined body is subjected to a phosphate treatment in advance to form a phosphate film, the aluminum material side is coated similarly to the steel material side.
  • the phosphate processability can be improved as a surface treatment of the substrate.
  • the average thickness of the phosphate film to be formed is preferably in the range of 0.1 to 5 / ⁇ ⁇ . Within this range, the action of the phosphate film can be satisfactorily exhibited. If the thickness of the phosphate coating is too thin, less than 0.1 ⁇ m, many macroscopic coating defects will occur, the corrosive environment cannot be sufficiently blocked, and contact with different metals cannot be suppressed. The effect of the film cannot be exhibited. On the other hand, it is not necessary to increase the thickness of the phosphate film beyond 5 m. If the thickness of the phosphate coating is increased more than this, the electrical resistance during spot welding will become excessive, and the generation of dust will become more severe. On the contrary, it decreases. Further, the phosphate film is destroyed, and the steel material and the aluminum material can be electrically conducted at the spot welded portion.
  • the average thickness of the phosphate film was determined by observing a sample obtained by embedding and polishing a sample section taken from a steel material and an aluminum material that were naturally dried after phosphating and forming the film. Three-point thickness was measured by SEM (Scanning Electron Microscope) observation in a field of view of 2000x or 10000x in the plate thickness direction of the phosphate coating cross section, and observation results at about 5 different places with different parts Calculate with the average of.
  • the type of phosphate should be a zinc phosphate coating mainly composed of zinc, such as zinc phosphate, which is most commonly used as a coating (coating) base treatment for zinc plated steel sheets for automobiles. In addition, power such as ease of film formation (treatment) is also preferable.
  • zinc (Zn) Fe, Ni, Mn, Ca, etc. may be included in addition to zinc (Zn) to control the crystallinity and orientation of this zinc phosphate film. Is done.
  • the film structure of zinc phosphate may be phonite, phosphophyllite, or a mixed structure thereof.
  • As the phosphate film in addition to this zinc phosphate, calcium phosphate, iron phosphate, manganese phosphate, etc., which are known phosphating treatments, can be used alone, in combination or in combination. .
  • a known method for forming the phosphate film a known method such as the above-described coating base treatment can be employed. That is, a steel material or an aluminum material is immersed in a phosphoric acid aqueous solution containing a metal such as zinc, calcium, iron, or manganese, or Mg. The immersion conditions such as the concentration, temperature, and immersion time of the phosphoric acid aqueous solution are adjusted so as to be the average thickness of the phosphate film.
  • the phosphate film has the function of blocking the corrosive environment and suppressing the contact corrosion of dissimilar metals, but because of the pinhole, it cannot completely block the corrosive environment such as moisture and oxygen. .
  • the aluminum alloy is formed via the pinhole. Reduce preferential corrosion. But Therefore, the effect of reducing the potential difference of the Zn or Zn alloy film suppresses contact corrosion of dissimilar metals.
  • the effect of the phosphate coating to inhibit the contact with different metals is further enhanced by strengthening the sacrificial anticorrosive action of the phosphate coating itself, such as containing Mg in the phosphate coating.
  • Mg sacrificial anticorrosive action of this phosphate film.
  • it is preferable that 0.01 to 10% by mass of Mg is contained in the phosphate film. If the Mg content in the film is too small, less than 0.01% by mass, the effect of Mg cannot be exhibited. On the other hand, it is difficult to make the Mg content in the film exceed 10% by mass. Therefore, the Mg content when selectively contained in the phosphate coating is in the range of 0.01 to 10% by mass.
  • the Mg content in the phosphate coating was measured on the surface of the sample taken from the steel material and the aluminum material that had been subjected to phosphate treatment and dried naturally. Measure the Mg strength in the phosphate coating with fluorescent X-rays and squeeze the sample into the resin and convert it to mass%. And find the average of the measurement results of about 5 different places
  • the area where the thickness of the dissimilar material interface reaction layer is 0.5-5 / ⁇ ⁇ is lO X t ° ⁇ 5 mm 2 or more in relation to the thickness t of the aluminum material. Suppose that there is. This optimal
  • the area regulation of the thickness of the interfacial reaction layer is such that the interfacial reaction layer is thin and (none,;) is good. It is also a direction to actively exist. Then, in order to improve the bonding strength, it is based on the technical idea that an interface reaction layer having an optimum thickness range is formed in a large area, in other words, present in a wide range.
  • the area force of the portion where the thickness of the interface reaction layer is 0.5 to 5 ⁇ m is less severe than lO x t 5 mm 2 in relation to the thickness t of the aluminum material. Less than 50 x t 5 mm 2
  • the interface reaction layer in the optimum thickness range does not become a wide range, but the bonding strength is lowered.
  • the thickness of the interface reaction layer is less than 0.5 m, the steel-aluminum diffusion is insufficient and the joint strength is low.
  • the thicker the interfacial reaction layer the more fragile, and in particular, the portion where the interfacial reaction layer exceeds 5 m becomes brittle and the bonding strength decreases. For this reason, the larger the area of such an interface reaction layer, the lower the bonding strength of the entire bonded portion. [0260] Therefore, in order to increase the bonding strength of the entire bonded portion, the area force of the portion where the thickness of the interface reaction layer is 0.5 to 5 m is related to the thickness t of the aluminum material. t ° 5 mm 2
  • the center portion becomes the thickest interface reaction layer, and the thickness of the interface reaction layer decreases as the distance from the center increases. Therefore, the thickness of the interfacial reaction layer at the center may exceed 5 m.
  • the thickness of this interfacial reaction layer can be measured by image analysis or SEM observation of 2000 times the area of the aluminum material side of the interface area where the steel material and aluminum material are joined.
  • FIG. 3 shows an example of spot welding as a prerequisite for obtaining a heterogeneous joint.
  • the basic mode of the spot welding method of the present invention is the same as the mode of normal spot welding.
  • 11 is a steel plate
  • 12 is an aluminum alloy plate
  • 13 is a dissimilar joint
  • 15 is a nugget
  • 17 and 18 are electrodes.
  • spot welding is performed in a state in which a Zn or Zn alloy film and a phosphate film are provided in advance between the joint surfaces of the steel material and aluminum material to be joined.
  • the tip diameter of the electrode tip 18 on the aluminum material 12 side is set to 7 mm ⁇ or more, and the pressure applied by the electrode tips 17 and 18 is the relationship between the tip radius of curvature Rmm and the pressure WkN (RXW) 1/3 ZR> 0.05.
  • a larger pressure is desirable because it allows more adhesive to be pushed out.
  • the spot welding capacity limit force is practically up to 1 OkN.
  • the contact surface pressure at point contact is a force approximately proportional to (RX W) 1/3 ZR. If the contact surface pressure applied to the joint is too small, the adhesive remains large and hinders the growth of the interface reaction layer. Contact surface pressure is required to push the adhesive to the outside. When (RXW) 1/3 ZR is 0.05 or less, the phosphate film remains as a layer and the interface reaction layer does not grow. [0266] In addition, by applying such a relatively large pressure, the electrical contact between different materials and between the electrodes is stabilized regardless of the shape of the electrode tip and the like, and the molten metal in the nugget is stabilized.
  • the tip diameter is 7mm ⁇ or more, the tip radius of curvature R is large, and the dome type R is used.
  • the steel material side is also desirable to have a 1S spot welding capacity limit force that should have a larger radius of curvature R. In reality, R is up to 250 mm.
  • the electrode shape is not what is prescribed! /, But it is desirable for the electrode to increase the current efficiency in the initial energization. Also, although the polarity is not specified, when using a DC spot, it is desirable to use aluminum as the anode and steel as the cathode.
  • the relationship between the aluminum material thickness t is 15 X t ° ⁇
  • the area cannot be obtained over a wide area.
  • a different current pattern may be added to the process before and after this current condition to form a multi-stage current pattern, but the interface reaction layer grows thicker, so there is a higher current process than this process. It is necessary!
  • a current of lXt ° ' 5 to 10Xt' 5 1 ⁇ is 100 ⁇ 5
  • a molten pure Zn plating is applied in advance with an average thickness of 10 ⁇ m, and a phosphate film containing 1.0% by mass of Mg is further formed thereon with an average thickness. 2 m.
  • Table 6 shows the case where the thickness of the aluminum plate is lmm
  • Table 7 shows the case where the thickness of the aluminum plate is 2mm.
  • the dissimilar material joints can be manufactured by varying the electrode conditions and current conditions in spot welding, with the plating conditions and phosphate film conditions on the joint surface side of the steel plate being constant.
  • a high-tensile steel plate with a thickness of lmm and a composition containing 0.07% by mass C—1.8% by mass Mn, and A6061 aluminum alloy plate with a thickness of lmm and 2mm are prepared. Both steel plates and aluminum alloy plates were processed into the shape of a cross tensile test piece described in JIS A 3137, and spot welding was performed.
  • the thickness of the plating film was obtained by cutting a sample that had been naturally dried after plating, embedding in a resin, polishing, and performing SEM observation of the plating interface before spot welding. SEM observation was performed by measuring the thickness of three points in a 2000-fold field of view, and calculating the average of the observation results at about five different locations.
  • Phosphate coating is applied to 40 ° C aqueous solutions of Zn ions lg / l, phosphate ions 15 g / l, Ni ions 2 g / l, F ions 0.2 g / Mg ions 0 to 30 gZl, steel or An aluminum material was formed by dipping treatment.
  • the Mg content in the phosphate film was adjusted by the amount of Mg ions in the aqueous solution, and the phosphate film thickness was adjusted by changing the immersion time from 1 to 300 seconds.
  • the average thickness of the phosphate coating was determined by cutting a sample that had been air-dried after phosphating, embedding it in grease, and polishing it. Three-point thickness was measured by SEM observation in a field of view 2000 times the thickness direction of the cross section (interface), and the average of the observation results at about five different locations.
  • the Mg content in the phosphate film was determined by analyzing the polishing sample for measuring the average thickness of the phosphate film by X-ray fluorescence analysis to obtain the Mg strength in the phosphate film. Converted into And the average of the measurement results of about five different places of different parts.
  • the tip diameter of the electrode tip on the aluminum material side is set to 7 mm ⁇ or more, and the pressure applied by the electrode tip is related to the radius of curvature Rmm of the tip and the pressure WkN.
  • RXW Apply 1/3 ZR and apply a force of 15 X t 5 to 30 X t ° 5 kA at 100
  • the thickness of the interface reaction layer is measured by cutting the spot welded sample at the center of the weld.
  • the interfacial reaction layer herein refers to a compound layer containing both Fe and A1, and refers to a layer in which Fe and A1 are both detected by lwt% or more by EDX. In other words, the layer in which Fe and A1 were not detected in excess of lwt% worked as an adhesive layer or an interfacial reaction layer as a residual adhesive.
  • each dissimilar material joint joined under various conditions was painted and then subjected to an evaluation test made of dissimilar metal contact corrosion.
  • Each dissimilar material assembly was subjected to alkali degreasing of the collected test piece, washed with water, and subjected to a surface conditioning treatment for 30 seconds using a 0.1% aqueous solution of Surf Fine 5N-10 manufactured by Nippon Paint. After that, zinc ion 1. Og / nickel ion 1. Og / U mangan ion 0.8 g / phosphate ion 15. Og / nitrate ion 6.
  • Corrosion test A: Salt spray (35 ° C, 5% NaCl) 2hr, B: Dry (60 ° C, 20-30% RH) 4hr, C: Wet (50 ° C, 95% RH or more) 2hr A test was performed for a predetermined number of cycles. Five painted dissimilar joint specimens were 45 cycles, and another five dissimilar joint specimens were 90 cycles.
  • the joint strength of the dissimilar material joint specimen was measured after each of the 45 cycles and 90 cycles combined corrosion test. Five cross tensile tests were performed and averaged.
  • the joint materials of invention examples I to P which are spot-bonded in a suitable range, have very high corrosion resistance. I understand. This is the effect of molten zinc plating and phosphate coating provided between the joint surfaces.
  • Comparative Examples A to H which were spot-bonded out of the preferred range, the bond strength at the time of the original spot welding was low, so the bond strength after the composite corrosion test was also low, .
  • the suitable spot bonding condition range is not satisfied, for example, the tip diameter of the electrode tip is small and the pressure is low due to the radius of curvature of the tip.
  • the current condition does not satisfy the scope of the present invention.
  • Comparative Examples A to G except for Comparative Example H in which welding process 2 is performed, spot welding is performed only in welding process 1 and without welding process 2. Of these, in Comparative Example A, the tip diameter of the electrode tip is too small. In Comparative Example B and Comparative Example C, the applied pressure is too low in relation to the tip curvature radius.
  • the welding current in welding process 1 is too low in relation to the thickness of the aluminum material.
  • the welding time in welding process 1 is too short in relation to the thickness of the aluminum material.
  • the welding current in welding process 1 is too high in relation to the thickness of the aluminum material.
  • the welding time in welding process 1 is too long in relation to the thickness of the aluminum material.
  • the tip end diameter of the electrode tip on the aluminum material side is set to 7 mm or more, and the pressure applied by the electrode tip is adjusted to the radius of curvature Rmm and the pressurizing force.
  • RXW radius of curvature 1/3 / R> 0 of the WkN. 05 and so as to to mark Karo, Chikaratsu 15 X t ° ⁇ 5 ⁇ 30
  • the invention examples N, 0, and P which have the above-described welding process 1 and are spot-welded in a current pattern in which there is no welding process in which a higher current flows than the welding process 1, After the welding process 2, the current of IX t ° ⁇ 5 to 10 X t ° ⁇ 5 kA lOO X t ° ⁇ 5 ⁇ : LOOO X t ⁇
  • 5 mse C preferred flow also might be the conditions, the most bonding strength is high.
  • Invention Example L which is spot-welded with a current pattern in which welding process 2 for passing a current higher than welding process 1 is present, is joined more than Invention Examples N, 0, P above. The strength is low.
  • Comparative Examples 1 and 2 without plating and Comparative Examples 1, 8 and 1 2 without a phosphate coating have an interfacial reaction layer with the optimum thickness during spot welding. Nevertheless, since the corrosion resistance is inferior, the joint strength after the combined corrosion test is low.
  • Comparative Example 7 with an Al-10% Si alloy which is not a Zn or Zn alloy film, has poor corrosion resistance despite the formation of an interface reaction layer with an appropriate thickness. The bonding strength after the food test is low and the deviation is low.
  • Comparative Example 15 in which the plating thickness is too thin and Comparative Example 19 in which the plating thickness is too thick also form an interface reaction layer with an optimal thickness while being pure zinc. Not. Therefore, since the bond strength at the time of the original spot welding is low, the bond strength after the composite corrosion test is also low. Therefore, since the joint strength at the time of the original spot welding is low, the joint strength after the composite corrosion test is also low.
  • Invention Examples 5, 6, 9, and 5 having a thickness of 5 to 15 m with pure zinc plating, an Mg content of the phosphate film of 0.1% by mass or more, and a film thickness of Lm or more. It can be seen that 17, 22, 26, and 27 have very high corrosion resistance, so that the strength of the spot joint after the combined corrosion test is high. From this result, it can be seen that by controlling the plating to the components, melting point and film thickness of the present invention, the interface reaction layer having the optimum thickness can be controlled, and high bonding strength and corrosion resistance can be obtained.
  • FIG. 4 is a cross-sectional view of the dissimilar material joined body (joined part) defined in one embodiment of the present invention.
  • reference numeral 23 is a dissimilar material joint in which a galvanized steel material (galvanized steel plate) 21 and an aluminum material (aluminum alloy plate) 22 are joined by spot welding.
  • 24 is a zinc plating film or an acid plating film on the surface of steel 21.
  • a nugget 25 at the center of the joint has a joint interface (interface reaction layer) 26 in spot welding, and has a nugget diameter indicated by an arrow in the horizontal direction in the figure. Further, the nugget 25 has an area (hereinafter, simply referred to as a nugget area S) that occupies the plane direction (left-right direction in the figure) at the joining interface on the aluminum material side represented by S.
  • t is the thickness of zinc-plated steel 21
  • t is the thickness of aluminum 22
  • At spot welding
  • the minimum remaining plate thickness of the aluminum material after joining is shown. 29 is a corona bond portion around the nugget.
  • Fig. 4 shows a joining state in which the nugget diameter is secured, the generation of dust is suppressed, the minimum remaining thickness of the aluminum material is maintained, and the melting of the steel material is minimized. Therefore, the joined body of the present invention is also in a joined state as shown in this figure.
  • the thickness t of the zinc-plated steel material to be joined should be selected from a range of 0.3 to 3. Omm in accordance with the thickness of the aluminum material side. is required.
  • the melting and discharging of the Zn layer 30 derived from zinc plating at the bonding interface portion (corona bond portion) 29 in contact with the nugget 25 is effectively performed.
  • the unique brittle Zn—Fe-based compound layer generated due to zinc plating is suppressed, and the ratio of the remaining Zn layer 30 is also reduced.
  • region of the steel material 21 and the aluminum material 22 increases, and joining strength increases.
  • the above-described structural members are not suitable because the strength and rigidity necessary for the structural material cannot be ensured.
  • the pressure applied by spot welding easily destroys the acid film with large deformation of the steel material, thus promoting the reaction with aluminum. As a result, an intermetallic compound is easily formed.
  • the thickness exceeds 3. Omm other structural means are employed as the structural material described above, so that it is not necessary to perform joint by spot welding. For this reason, it is not necessary to increase the steel sheet thickness t beyond 3. Omm.
  • the steel material 21 and the aluminum material 22 in FIG. It is preferable that the thickness ratio t / t force is greater than or equal to By increasing the thickness of the steel 21 side
  • the heat input due to resistance heat generation of the steel material increases without increasing the heat input amount under spot welding conditions. Further, the heat input distribution in the radial direction of the nugget is also changed, and as described above, the combined region of the steel material 21 and the aluminum material 22 increases as described above, and this is a preferable condition of the present invention. Thus, the total area S force of the Zn layer 30 at the bonding interface portion in contact with the nugget 25 is guaranteed to be 30% or less of the area S of the nugget 25. As a result
  • the bonding strength can be increased.
  • the thickness ratio of steel 21 and aluminum 22 in Fig. 4 is less than t / ⁇ force ⁇
  • the minimum remaining plate thickness At on the aluminum material side in the dissimilar material joint is 50% or more of the original aluminum material plate thickness t.
  • a zinc-plated steel material having a zinc-plated layer with an average thickness of 3 to 19 m is used as the object of the joined body.
  • a surface that is not zinc-plated may be partially formed on the joining side by spot welding.
  • a steel material having a zinc plating layer thinner than this or having no zinc plating layer is not considered.
  • the zinc galvanized layer of steel material may be either a molten galvanized or an electric galvanized, and may be either a zinc galvanized or an alloy galvanized.
  • the average thickness of the zinc plating layer is 3 to 19 m. If the average thickness of the zinc plating layer is less than 3 / zm, the effect of corrosion prevention of the zinc plating layer itself cannot be exerted, and there is no significant difference from the bare steel material, which is meaningless.
  • the average thickness of the zinc plating layer exceeds 19 m, the formation of the brittle Zn-Fe compound layer and the Zn layer generated from zinc plating cannot be suppressed, and these areas are reduced. Within the scope of the present invention Becomes difficult. As a result, the bonding strength is weakened.
  • an appropriate shape and material such as a steel plate, a steel shape member, and a steel pipe, which are generally used for a structural member that does not specifically limit the shape and material of the steel material to be used, or are selected from structural member applications.
  • a high-strength steel material is required for the structural member, it is preferable to use a high-strength steel material having a tensile strength of OOMPa or higher.
  • low-strength steels low-alloy steels generally have a large amount of acid film, which is almost iron oxide, so that e A1 can be easily diffused and brittle intermetallic compounds are easily formed.
  • the tensile strength is OOMPa or more, preferably 500 MPa or more! /.
  • the components of the steel material are not limited, but in order to obtain the strength of the steel material, high-tensile steel (high tensile) is preferable.
  • high-tensile steel high tensile
  • steels that selectively contain Cr, Mo, Nb, V, Ti, etc. can also be applied to increase the hardenability and precipitation hardening. Cr, Mo, and Nb improve hardenability and improve strength, and V and Ti improve strength by precipitation hardening.
  • a large amount of additive added with these elements lowers the toughness around the weld and tends to cause nugget cracks.
  • a component of steel basically, by mass%, C: 0.05 to 0.5%, Mn: 0.1 to 2.5%, Si: 0.001 to 1. Including 5%, Cr: 0 to l%, Mo: 0 to 0.4%, Nb: 0 to 0.1%, V: 0 to 0.1%, Ti: 0 to 0.1% It is preferable to selectively contain one or two or more kinds as necessary.
  • the balance of these steel materials is preferably composed of Fe and inevitable impurities.
  • the aluminum material used in the present invention is not limited in particular to the type and shape of its alloy, but is generally used for plate materials, profiles, forging materials, forging materials, etc., depending on the required characteristics of each structural member. It is selected appropriately.
  • the strength of the aluminum material is desirably high in order to suppress deformation due to pressurization during spot welding, as in the case of the above steel material.
  • the use power of the A5000 series, A6000 series, etc., which are widely used as this kind of structural member, which has high strength among aluminum alloys, is optimal.
  • the thickness t of these aluminum materials used in the present invention is in the range of 0.5 to 4. Omm.
  • the aluminum material thickness t is less than 0.5mm, the strength as structural material is insufficient.
  • the nugget diameter cannot be obtained, and the aluminum material surface can easily be melted and dust is easily formed, so that high bonding strength cannot be obtained.
  • the thickness t of the aluminum material exceeds 4. Omm, the structure is the same as the thickness of the steel material described above.
  • the thickness t of the aluminum material exceeds 4. Omm.
  • the present invention defines an intermetallic compound (at the joint interface 26 in FIG. 4) in the dissimilar material joint after spot welding.
  • FIGS. 5, 6, and 7 show cross sections of the interfacial compound defined by the present invention at the interface 4 at the center of the nugget of the dissimilar material joint.
  • FIG. 5 is a schematic diagram of a 5000 times SEM photograph of the bonding interface 26 in FIG.
  • Figure 7 is a 5000 times TEM photograph of the same interface 26.
  • 6 and 7 show Invention Example 8 in the embodiment described later.
  • the gist of the compound layer definition in the present invention is that the steel material 21 side is firstly connected to the joint interface 26 of the dissimilar material joint 23 having the preconditions such as the zinc plating layer and the plate thickness.
  • the total average thickness 1 in the nugget depth direction (bonding interface cross-sectional direction, vertical direction in the figure) of the two compound layers at these bonding interfaces is the AlFe-based compound on the steel 21 side.
  • the nugget area in the planar direction in the present invention and the area definition of the compound layer portion having a constant thickness at the bonding interface will be described with reference to FIG.
  • the Al Fe-based compound layer on the steel material 21 side and the Al Fe-based compound layer on the aluminum material 22 side are
  • Average thickness 1 (1 +1) is 0.5 or more: contact of the aluminum material 22 side of the compound layer portion with LO m
  • the total area in the plane direction at the interface is defined as S (mm 2 ).
  • S (mm 2 ) the total area in the plane direction at the interface.
  • the nugget area occupying in the plane direction at the joining interface on the aluminum material 22 side of the nugget 25 is S (mm 2 )
  • the joining interface compound layer portion having this constant thickness The area ratio of the total area S in the plane direction at the bonding interface on the aluminum material 22 side to the nugget area S is obtained.
  • the total area S occupies a ratio of 50% or more of the nugget area S.
  • FIGS. 5 and 7 show the area definition in the cross-sectional direction of the Zn—Fe-based compound layer in the present invention.
  • Figures 5 and 7 show the Al Fe compound by SEM at 5000 times
  • the average thickness 1 of the total of the two layers and the AlFe-based compound layer 1 is 0.5 to: L
  • S (m 2 ) is the total area of the included (generated) Zn—Fe-based compound layer in the cross-sectional direction (vertical direction in the figure).
  • the total average thickness of these two layers is 0.5 to 10 m.
  • the area is 10% or less of the area S + S.
  • the Zn layer is the remaining portion of the zinc plating layer on the steel material surface. For this reason, when the Zn layer remains, as shown in FIG. 4, it exists at the junction interface 26 at the end of the nugget (periphery). This Zn layer is relatively thick at the periphery !, zinc It has the same thickness as the plating layer, and a thinner thickness. When this Zn layer remains at the bonding interface 26 (if it remains), that portion means that the steel material 21 and the aluminum material 22 are not directly bonded. For this reason, in the present invention, the total area S (mm 2 ) in the planar direction of the Zn layer 30 at the bonding interface 26 in contact with the nugget is the flat surface of the nugget.
  • the total area S in the planar direction of the Zn layer 30 is the same as the nugget area S described later.
  • the average thickness 1 in the nugget depth direction at the center of the nugget of the Fe-based compound layer is in the range of 0.5 to 10 ⁇ m.
  • the Al Fe compound is an intermetallic compound Al Fe formed on the aluminum material 22 side.
  • Such Al Fe-based compounds have a wedge (anchor) effect, including the effect of the above shape.
  • the uniform thickness 1 is preferably 0.20 m or more.
  • the upper limit of the average thickness 1 in the direction is preferably 10 m or less.
  • the intermetallic compound Al Fe on the steel material 21 side is used.
  • the average thickness 1 of the Al Fe-based compound layer in the nugget depth direction is also in the range of 0.20 to 5 ⁇ m.
  • This Al Fe-based compound layer is also connected to the edge of the nugget (Fig. 5, 6, 7
  • the bonding strength may be reduced because the Al Fe compound on the aluminum material 22 side mentioned above.
  • the average thickness 1 in the nugget depth direction of the Al Fe-based compound layer described above is 1 and
  • the total average thickness 1 with the average thickness 1 in the nugget depth direction of the Al Fe-based compound layer is 1 nugget depth
  • the total average thickness 1 is 0.5 to: LO / zm.
  • the area S (the aluminum material 22 side of the bonding interface on the side of the aluminum material 22 side) As shown in Fig. 9, the area S) is increased. That is, it is defined as 50% or more of the nugget area S (area S occupied in the plane direction at the bonding interface on the aluminum material 22 side, as shown in FIG. 4).
  • the breaking load is larger.
  • the joining interface has a sufficiently higher breaking load than the aluminum base material, so that the aluminum material side breaks without breaking the interface.
  • the area regulation of the interface reaction layer having the optimum thickness described above is a viewpoint power of the bonding strength, but controls the compound layer on the aluminum material side and the compound layer on the steel material side within the optimum range. For this reason, the direction in which the present invention is directed is different from the conventional common sense that the thinner is better, rather it is the direction in which it actively exists. And optimal for improving bonding strength It is based on the technical idea of forming an interfacial reaction layer in the thickness range in a large area, in other words, in a wide range.
  • the compound or the compound layer is an impurity
  • the Zn—Fe compound which is an intermetallic compound is regulated in order to inhibit the bonding strength. Specifically, they are included in each of these two layers, the Al Fe compound layer and the Al Fe compound layer.
  • each of the Al Fe compound layer and Al Fe compound layer is contained in two layers.
  • Fe-based compounds are also called Fe-Zn-based compounds.
  • the Zn layer is the remaining portion of the zinc plating layer on the steel surface, and when the Zn layer remains at the junction interface 26 at the end of the nugget (periphery) as shown in FIG. Means that the steel material 21 and the aluminum material 22 are not directly joined to each other. Total area S force of this brittle Zn layer Over 30% of the observed nugget area S in the planar direction
  • the bonding interface does not break, and the bonded portion breaks in a plug shape (the aluminum material is inside inside the range where the AlFe-based compound layer exists).
  • Fracture occurs between the AlFe-based compound layer or inside one of the compound layers. Paraphrasing
  • the Al Fe-based compound layer and the Al Fe-based compound layer can be specified by cutting the joint.
  • the surface is identified by conducting semi-quantitative analysis by EDX (Energy Dispersive X-ray spectroscopy) point analysis on HAADF-STEM images (5000 to 10000 times).
  • EDX Electronic Dispersive X-ray spectroscopy
  • intermetallic compounds are distinguished (identified) by measuring the composition of multiple (as many as possible) measurement points on the interface of the joint in the semi-quantitative analysis described above, and determining Fe, Al, Zn (at%). It is done according to the composition in percentage. That is, as shown in Table 10, the composition of “A1 Fe-based compound” is Fe
  • the amount is in the range of 24.0 to 29. Oat%, and the Al amount is in the range of 70.0 to 74.0 &%.
  • composition of the product is such that the Fe content is in the range of 18.0-24. Furthermore, the composition of the Zn-Fe compound is a typical Fe Zn composition, and the Fe amount is 31.0-4
  • the amount of Zn is in the range of 60.0 to 69.0 at% at 0.0 at%.
  • the judgment (identification) criteria for the composition of each interface reaction layer are as follows.
  • Al Fe-based compounds and “A1 Fe-based compounds” have both Fe and A1 determined by EDX point analysis.
  • Zn-Fe-based compounds were also analyzed by EDX point analysis to detect more than 27.7 mass% Fe. And a layer in which 72.3 mass% or less of Zn is detected. Even if Zn was detected, the layer in which Fe was not detected by 27.7 mass% or more was distinguished from the originally existing Zn plating layer or Zn layer 30 and was strong with the interface reaction layer.
  • the composition of the Zn-Fe-based compound is a typical Fe Zn [Fe27. 7-36.3 mass% (Fe31. 0
  • Al Fe, Al Fe, and Fe Zn are recognized as the phase of the interfacial reaction layer.
  • the HAADF-STEM method (High Angle Annular Dark Field-Scanning Transmission Electron Microscope) is a method for obtaining an image signal by collecting elastically scattered electrons scattered on the high angle side with an annular detector.
  • HAADF—STEM images are hardly affected by diffraction contrast, and the contrast is characterized by the fact that the contrast is approximately proportional to the square of the atomic number (Z).
  • the resulting image is a two-dimensional map with composition information as it is. . Since trace elements can be detected with high sensitivity, it is effective for fine structure analysis of the bonding interface.
  • the inside and outside of the portion to be observed can be measured to a thickness that allows TEM observation using a Hitachi focused ion beam processing device (FB-2000A).
  • FB-2000A Hitachi focused ion beam processing device
  • the sample is thinned by FIB processing and used as an observation 'analysis sample.
  • the thickness (length) 1 in the depth direction of the AlFe-based compound in Fig. 4 is the obtained field of view 100 m
  • HAADF Depth direction of grains and needles identified as all Al Fe compounds from STEM images
  • Thickness (length) 1 in the depth direction of the Al Fe-based compound layer in Figure 5 is 5 points from the same image.
  • the total area S in the plane direction in the joining interface on the aluminum material side of the portion where the total average thickness 1 in the direction is 0.5 to: LO m was determined.
  • the nugget area S in the plane direction at the bonding interface on the aluminum material side was also obtained. That is, as shown in Figs. 9 and 10, assuming that these layers are symmetrical in the circumferential direction of the nugget, the area in the plane direction is assumed to be concentric from the radial position in the cross section. Calculated. Further, the total area S in the planar direction of the Zn layer 30 was also calculated in the same manner. That is, as shown in FIG.
  • layer 30 If layer 30 is present, it exists along the circumference (periphery) of the nugget. For this reason, when the presence of the Zn layer 30 is confirmed, it is assumed that the Zn layer 30 is symmetric in the circumferential direction of the nugget, and is assumed to be a concentric circle from the radial position in the cross section. The area was calculated.
  • the total thickness of the two layers of the compound layer in the depth direction of the nugget 1 is from 0.5 to: LO m Total area S in the cross-sectional direction, cross-sectional direction of the Zn-Fe-based compound layer contained in each of the above two layers
  • the total area S in the direction, etc., is measured by the SEM observation of the identified joint interface part, 20
  • SEM observation was performed at a magnification of 00 to 10000 times (2000 times when the average thickness 1 is 1 ⁇ m or more, 2000 times when the average thickness 1 is less than 1 ⁇ m). Specifically, from the center of the nugget radius, measure the cross-sectional area of each reaction layer with a visual field width of 100 m at each position 500 m in the radial direction, and measure the nugget up to the position where the reaction layer exists. The measurement was performed in the radial direction, and the total was obtained.
  • results may be verified by TEM observation at the same magnification of 2000 to 10000 times. For example, a 5000 times SEM photograph of the joint interface shown in FIG. 6 and a 5000 times TEM photograph of the same joint interface shown in FIG. 7, the portion indicated by the dotted line is the joint interface. This joint interface is the TEM photograph. Is easy to distinguish visually.
  • the average diameter t at the joining interface on the aluminum material side of the nugget 25 of the spot welded portion in FIG. 4 is preferably 7 mm or more in order to ensure the joining strength. In other words, it is preferable to select the spot welding conditions so that the average diameter of the nugget 25 is 7 mm or more.
  • the average diameter of the nugget 25 is less than 7 mm, the nugget area force is too high, and the bonding strength is likely to be insufficient.
  • the average diameter of the nugget 25 is preferably 12 mm or less. If the average diameter of the nugget 25 exceeds 12 mm, the strength sufficient to obtain the bonding strength is generated, and the amount of thinning of the aluminum material is immediately large, so the bonding strength decreases.
  • the area of the nugget 25 at the spot welded portion should be approximately 20 X t 5 mm 2 with respect to the thickness t of the metal material. From the viewpoint of workability and economy, it is said to be optimal.
  • the junction between dissimilar metal materials has a larger nugget area than the above-described metal material of the same kind.
  • Measurement of the diameter in the planar direction at the bonding interface on the side of the material 22 can be performed by observation with an optical microscope of 200 times, for example. That is, the nugget on the aluminum material side separated by peeling or cutting at the joint interface is measured by analyzing a plurality of sample images, and the average is obtained. At this time, the observation surface is a cross section centered on the nugget center. When the nugget shape is approximately circular, the joint is cut and observed from the cross section with an optical microscope, formed, and the diameter of the nugget at the aluminum material side interface is measured with multiple samples. The average may be obtained. In that case, measure the nugget diameter in at least two orthogonal directions.
  • the minimum remaining plate thickness At is the original thickness t.
  • the minimum remaining plate thickness At is 90% or more of the original thickness t.
  • the minimum remaining plate thickness At of this aluminum material can be obtained by observing it with an optical microscope 200 times larger than the cross section of the joint, measuring the plate thickness reduction, and taking the difference from the original plate thickness. Monkey.
  • FIG. 11 shows an example of a presupposed spot welding for obtaining a heterogeneous joint.
  • the basic mode of the spot welding method of the present invention is the same as the mode of normal spot welding.
  • 21 is a steel plate
  • 22 is an aluminum alloy plate
  • 23 is a dissimilar joint
  • 25 is a nugget
  • 27 and 28 are electrodes.
  • pressure is 1 X t ° - is less than 5 kN, only the pressure low, such obtain such an effect.
  • the average thickness in the nugget depth direction within the range of ⁇ 0.1 mm can be obtained.
  • the current should be 35 Xt ° ' 5 kA or less. Therefore, using the current 12 Xt ° ⁇ 5 ⁇ 35Xt ° ⁇ 5 kA, preferably in the range of 15Xt ⁇ 5 ⁇ 35Xt ⁇ 5 k A .
  • the energization time is a relatively short time of 320 Xt 5 msec or less in relation to the thickness t of the steel material as a whole.
  • the energization time is 320Xt ° ⁇ 5 msec or less, preferable properly is a 100 Xt ° ⁇ 5 msec ⁇ 280Xt ° ' 5 msec.
  • the compound layer of the present compound layer is more easily obtained.
  • the Al Fe compound layer on the steel material side and the Al Fe compound layer on the aluminum material side at the joint interface of the dissimilar material joint are more easily obtained.
  • the area S force nth area S of the specific thickness portion of these two layers tends to be 50% or more. Furthermore, the area S force of the Zn—Fe-based compound layer contained in each of these two layers is easily suppressed to 10% or less of the compound area S + S in the cross-sectional direction. Also nuggets
  • both the first and second stages are added except that the energization value of the second stage is lower than the energization value of the first stage.
  • the pressure is preferably the same, and the applied pressure, current value, and total energization time are preferably within the above-described preferred ranges. As a result, dissimilar materials can be joined without impairing the efficiency of spot welding.
  • the shape of the electrode tip for spot welding may be any shape as long as the nugget area and the interface reaction layer can be obtained, and the electrode tips on the steel material side and the aluminum material side may be different shapes or different sizes.
  • the tip diameter and tip R of the electrode tip must be 7 mm ⁇ or more and lOOmmR or more in order to achieve both the above-mentioned current density reduction and nugget area increase.
  • the polarity is not specified, but when using DC spot welding, it is desirable to use the aluminum material side as the anode and the steel material side as the cathode.
  • both of the electrode tips having a tip diameter of 7 mm ⁇ or more and a tip R of 120 mmR or more, it is possible to optimally achieve both the reduction in current density and the increase in nugget area.
  • this chip in relation to the steel plate thickness t, 1. 5 X t '5 kN ⁇ 2.
  • the optimum joining condition is a balance between these conditions described above. For example, when the chip diameter increases the chip pressing force and the current density decreases, the current amount increases accordingly, and the interface increases. It is necessary to control the reaction layer to an optimum thickness.
  • Steel material thickness t from 42 to 57 is the thickness per steel material (total thickness of 2 sheets is t, 2)
  • Dissimilar material joints were manufactured under the conditions shown in Tables 11, 13, and 15.
  • the area ratio of each compound was measured by the measurement method described above, and the joint strength and the thickness reduction (minimum remaining plate thickness) of the aluminum material were evaluated.
  • Table 11 Table 12 shows the results of spot welding
  • Table 14 shows the results of spot welding under the conditions in Table 13
  • Table 16 shows the results of spot welding under the conditions in Table 15.
  • test steels containing the chemical components (mass%) shown in Table 9 were melted and rolled to a plate thickness of 0.8 to 1.2 mm to obtain thin steel plates.
  • This thin steel sheet was subjected to continuous annealing, followed by oil washing or water washing after annealing at 500 to LOOO ° C, and then tempering to obtain steel sheets having four types of strength (MPa) shown in Table 9.
  • the applied pressure in both the first and second stages is the same except that the conduction value in the second stage is lower than the conduction value in the first stage.
  • the same pressure was applied, and the applied pressure, current value, and total energization time were within the preferred ranges described above.
  • the electrode tip was a 12mm ⁇ dome shape made of a Cu-Cr alloy.
  • the electrode tip had a curvature of 150mmR, the anode was made of aluminum, and the cathode was made of steel.
  • the nugget diameter, the minimum remaining aluminum plate thickness, and the remaining ratio of the Zn plating layer were measured by cutting the sample after spot welding at the center of the weld, embedding it in resin, polishing, and chemical etching. And observed with a 200 ⁇ optical microscope.
  • the thickness of the interface reaction layer was measured by the above-described measurement method using the same cross-sectional sample as described above.
  • the joint strength is 1.0 to 1.5k
  • N for N
  • for bonding strength of 0.5 to 1.
  • X for bonding strength of less than 0.5 kN.
  • the cross tension test was used for the strength evaluation in this example because the difference between the test conditions was greater in the cross tension test than in the shear tension test. It is. However, the results of the selection of several strengths of the inventive example of the shear tensile test are in agreement with the results of the cross tension test. High shear strength of 5kN or higher.
  • each invention example has a 50% area ratio with respect to the nugget area S of the total area S in the plane direction of the joint interface compound layer portion having a constant thickness. That's it.
  • the ratio of S + S is less than 10%. Furthermore, as a preferable condition, the joint contacting the nugget
  • the nugget average diameter is 7. Omm or more.
  • the bonding strength of the dissimilar material bonded body is higher as the bonding interface compound layer portion having a certain thickness is larger or the Zn-Fe-based compound layer portion is smaller.
  • the nugget average diameter which is a preferable condition, is larger, the smaller the total area S in the planar direction of the Zn layer is, the higher the bonding strength of the dissimilar material joined body is.
  • Too little bonding interface compound layer portion having thickness Too much Zn-Fe compound layer portion For this reason, compared with each corresponding invention example, the joining strength of a dissimilar material joined body is remarkably low.
  • Figures 6 and 7 show the joint interface structure of Invention Example 8, and Figure 6 is a SEM photograph of 5000 times the joint interface. Figure 7 is a 5000X TEM photograph of the same joint interface. As can be seen from Figs. 6 and 7, the joint interface structure of Invention Example 8 has an AlFe compound layer on the steel side and A1 on the aluminum side.
  • each has an Fe-based compound layer.
  • FIG. 12 shows a TEM photograph of the bonded interface structure of Comparative Example 7, which is 5000 times the bonded interface.
  • the joint interface structure of Comparative Example 7 is Al F on the aluminum material side.
  • FIG. 8 shows the relationship between the Al Fe compound layer and the Al Fe compound layer of Invention Example 8 and Comparative Example 7.
  • the distribution of the average thickness of the two layers according to the distance from the center of the nugget is shown.
  • the portion where the total average thickness 1 of these two layers is 0.5 to: L0 m is shown within two dotted lines.
  • Inventive Example 8 indicated by black triangles, except for the nugget center where the average thickness is too thick, the average thickness 1 is 0.5 to 10 up to a distance of 4000 ⁇ m from the nugget center. The part that is ⁇ m is extended.
  • Fig. 9 shows this in plan view at the bonding interface on the aluminum material side. That is, in Invention Example 8, the area ratio of the nugget on the aluminum material side to the area S in the planar direction is 80%, and the nugget (area S) is almost all except for the nugget center and the nugget periphery. ).
  • Comparative Example 7 indicated by a black circle below Invention Example 8, the part having an average thickness 1 of 0.5 to 10 ⁇ m has a distance of 2000 ⁇ m from the center of the nugget. Up to m part.
  • Comparative Example 7 is a plane that occupies the plane direction in the joining interface on the aluminum material side of the nugget.
  • the area ratio to the product S is 36%, and only the center of the nugget and its periphery overlap the nugget (area S).
  • the joint of dissimilar materials capable of increasing the joint strength when joining a steel material and an aluminum material by spot welding and suppressing contact corrosion and the resulting decrease in joint strength, and its A spot welding method can be provided.
  • Such a joined body can be very usefully applied as various structural members in the transportation field such as automobiles and railway vehicles, machine parts, building structures and the like.
  • the present invention greatly expands the application of the dissimilar material joined body of steel and aluminum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Resistance Welding (AREA)

Abstract

 接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との接合体及びそのスポット溶接法を提供することを目的とする。  一実施態様として、板厚t1が0.3~3.0mmである鋼材1と、板厚t2が0.5~4.0mmであるアルミニウム材2とをスポット溶接にて接合し、鋼材とアルミニウム材との接合体を形成する。この接合体は、接合部におけるナゲット面積が20×t2 0.5~100×t2 0.5mm2であり、界面反応層の厚さが0.5~3μmである部分の面積が10×t2 0.5mm2以上であり、かつ接合部中心と接合部中心から接合径DCの1/4の距離だけ離れた点とにおける界面反応層の厚さの差が5μm以内であることを特徴とする。これにより、クラッド材など他の材料を新たに用いることなく、また、新たに別工程を追加することなく、既存のスポット溶接装置にて低コストで形成しうる、接合強度に優れた異材接合体およびそのスポット溶接方法を提供できる。

Description

明 細 書
鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用い る電極チップ
技術分野
[0001] 本発明は、自動車、鉄道車両などの輸送車両、機械部品、建築構造物等の組立ェ 程の際に必要となる、鋼材とアルミニウム材とをスポット溶接にて接合する技術に関す る。
背景技術
[0002] スポット溶接は、一般には同種の金属部材同士を接合する。しかし、例えば鉄系材 料(以下、単に鋼材と言う)とアルミニウム系材料 (純アルミニウムおよびアルミニウム 合金を総称したもので、以下、単にアルミニウム材と言う)という異種の金属部材の接 合 (異材接合体)に適用することができれば、軽量ィ匕等に著しく寄与することができる。
[0003] しかし、鋼材とアルミニウム材とを接合する場合、接合部に脆い金属間化合物が生 成しやす!/ヽために信頼性のある高強度を有する接合部 (接合強度)を得ることは非常 に困難であった。したがって、従来では、これら異材接合体 (異種金属部材接合体) の接合にはボルトやリベット等による接合がなされている力 接合継手の信頼性、気 密性、コスト等の問題がある。
[0004] そこで、従来より、これら異種接合体のスポット溶接法について多くの検討がなされ てきている。例えば、アルミニウム材と鋼材の間に、アルミニウム-鋼クラッド材をインサ ートする方法が提案されている (特許文献 1、 2参照)。また、鋼材側に融点の低い金 属をめっきしたり、インサートしたりする方法が提案されている(特許文献 3、 4、 5参照 )。更に、アルミニウム材と鋼材の間に絶縁体粒子を挟む方法 (特許文献 6参照)や、 部材に予め凹凸を付ける方法 (特許文献 7参照)なども提案されて ヽる。
[0005] しかしながら、これらいずれの方法も、単なるスポット溶接ではなぐ多層でのスポッ ト溶接やめつきや加工など別の工程が必要であり、現状の溶接ラインに新たな設備を 組み入れなければならない問題があり、溶接コストも高くなる。また、これらいずれの 方法も、溶接条件が著しく限定されるなど作業上の問題も多い。 [0006] それらとは別の手法でめっきなどの皮膜を鋼に施す方法として、特許文献 8〜11な どが提案されている。これらには、鋼またはアルミニウム材に予めめつきを施しておけ ば、直接溶接が可能であるため、汎用性が高ぐまた低融点である膜を鋼-アルミ材 料間に形成することにより、界面反応層の低減や界面の凹凸形成をさせることを目的 としており、それぞれ鋼とアルミ材料との直接接合よりも高い強度を得たことが記載さ れている。また、めっきの種類によっては、鋼とアルミニウム材との間で生じる異種金 属接触腐食を抑制することができる。特許文献 8では Mgを、特許文献 9ではアルミ材 より低融点の膜を、特許文献 10では鋼より低融点の膜を、特許文献 11ではアルミ材 の融点より 300°C低い温度以上であってかつアルミ材の融点よりも低い温度が融点と なる膜を形成している。
[0007] し力しながら、特許文献 8では、母材破断とは言え、 80kgfと強度が不十分である。
また特許文献 9では十分なせん断引張強度が得られているが、ナゲットが形成してい ない。これら微視的な結合によるアンカー効果のみでは、せん断引張強度は確保で きても、十字引張強度 (剥離強度)が保持できず、用途はせん断引張しか生じない特 殊なものに限定される。
[0008] 特許文献 10では、更に抵抗体をインサートする必要があるため、上記した現状の 溶接ラインに新たな設備を組み入れなければならない問題があり、コストも高い。特 許文献 11では、十字引張強度にて母材破断が得られている力 界面反応層が形成 しないことが高強度となる作用として記載されている。確かに、鋼とアルミの金属間化 合物である界面反応層は脆弱ではあるが、発明者らの知見では、特許文献 10のよう に界面反応層が全く無くては、相互拡散による密着層が無いため、接合強度として は低くなる。このため、特許文献 9と同じぐ微視的な結合のみでは、十分な十字引張 強度が保持できず、更なる高強度接合体の要望には応えられない。
[0009] また、本発明者らは、スポット溶接により形成される接合部の界面反応層の構造を 最適化することに着目して検討を続けてきており、界面反応層の厚さや面積、構造を 制御することにより、高い接合強度を有する異材接合体の作製が可能であることを見 出した。
[0010] 本発明者らは、特許文献 12〜15にて、めっき皮膜の厚さや融点、さらにナゲット径 、界面反応層厚さを制御することにより、 0. 9kNZspot以上の剥離強度を得ることが できる技術を提案した。
特許文献 1:日本公開特許公報: 6-63763号
特許文献 2 :日本公開特許公報: 7-178563号
特許文献 3 :日本公開特許公報: 4- 251676号
特許文献 4:日本公開特許公報: 7-24581号
特許文献 5 :日本公開特許公報: 4- 143083号
特許文献 6:日本公開特許公報: 5- 228643号
特許文献 7:日本公開特許公報: 9-174249号
特許文献 8:日本公開特許公報: 4- 143083号
特許文献 9:日本公開特許公報: 4- 251676号
特許文献 10:日本公開特許公報: 7-24581号
特許文献 11 :日本公開特許公報: 7-178565号
特許文献 12:日本公開特許公報: 2005- 305504号
特許文献 13:日本公開特許公報: 2005- 152958号
特許文献 14:日本公開特許公報: 2005-152959号
特許文献 15:日本公開特許公報: 2006- 167801号
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、組立品の強度のさらなる増大、スポット点数の省力化の要望に応える ために、より高い接合強度が得られるスポット溶接技術の完成が求められている。
[0012] 特許文献 12〜15にても、更に接合強度を高めるには限界がある。また、鋼とアルミ 二ゥム材との異種金属間では、特に、電食と呼ばれる接触腐食が発生しやすぐ鋼材 とアルミニウム材とをスポット溶接にて接合した異材接合体であっても例外ではない。 自動車部材などとして異材接合体の使用中に、このような電食が生じた場合には、異 材接合体の接合強度も低下する。
[0013] このため、鋼材とアルミニウム材とをスポット溶接にて接合した異材接合体を、自動 車部材などとしての実用化するためには、このような接触腐食を抑制する必要がある 。このような接触腐食を抑制するためには、有機榭脂皮膜などにより、鋼材とアルミ- ゥム材とを絶縁することが有効ではある。しかし、鋼材とアルミニウム材とを有機榭脂 皮膜などにより絶縁した場合には、接触腐食は抑制できるものの、これら両者間の通 電により溶接する、スポット溶接自体が困難となる。このために、スポット溶接時の異 材接合体の接合強度が低下するという問題が逆に生じる。
[0014] したがって、鋼材とアルミニウム材とをスポット溶接にて接合した異材接合体の接合 強度を高めるとともに、接触腐食を抑制できるような有効な手段は、これまでなかなか 提案されてこな力つたのが実情である。
[0015] また、前記自動車車体パネルなどの鋼材側に汎用されて 、る亜鉛めつき鋼板では 、鋼材とアルミニウム材との異材接合体においては、裸の鋼板よりも、スポット溶接性 が悪くなるという問題もある。
[0016] これは、異材接合の接合部に生成する、前記脆い金属間化合物の他に、亜鉛めつ き鋼板 (亜鉛めつき鋼材)とアルミニウム材との異材接合では、亜鉛めつきに由来する 、脆い Zn—Fe系化合物層が必然的に生成するようになる力もである。この Zn— Fe 系化合物層は脆いゆえに、破壊の起点となり接合強度を著しく低下させる。
[0017] 本発明は上記の種々の課題を解決するためになされたものである。スポット溶接に て鋼材とアルミニウム材とを接合するに際して、上記従来技術のように、クラッド材など 他の材料を新たに用いることなぐまた、新たに別工程を追加することなぐ既存のス ポット溶接装置にて低コストで形成しうる、接合強度に優れた鋼材とアルミニウム材と の接合体およびそのスポット溶接方法を提供することを目的とする。
[0018] また、本発明は、鋼材とアルミニウム材とをスポット溶接にて接合する際の接合強度 を高めるとともに接触腐食を抑制できる異材接合体及びそのスポット溶接方法を提供 することを目的とする。
[0019] さらに、本発明は、亜鉛めつき鋼板 (鋼材)であっても、接合強度の高いスポット溶 接をなしうる、鋼材とアルミニウム材との接合体を提供することを目的とする。
課題を解決するための手段
[0020] 本発明者らは、以下に述べるように、上記課題を解決するためさらに検討を進め、 本願発明を完成するに至った。 [0021] 鋼材同士やアルミニウム材同士など、同種の材料同士を、高い接合強度にてスポッ ト溶接するには、一般的に、ナゲットの形成を促進すればよぐナゲット面積が大きい ほど剪断強度および十字引張強度ともに高くなることが知られている。
[0022] また、ナゲット面積 (径)は、入熱量と強い相関関係があり、電流量が高いほど、時 間が長いほど大きくなるため、一般的には、スポット溶接の際の入熱量にてナゲット 面積を制御することによって接合強度の高い接合体を得ている。もちろんナゲット面 積が大きくなりすぎると、被接合材の反接合表面 (接合面とは反対側の表面)まで溶 融部が達してチリができるため、適正なナゲット面積を得ることが重要となる。
[0023] し力しながら、鋼材とアルミニウム材と 、う異材を接合する場合、鋼材はアルミニウム 材と比較して、融点、電気抵抗がともに高ぐ熱伝導率が小さいため、アルミニウム材 側より鋼材側の方の発熱が大きくなり、まず鋼材と接する表面力 低融点のアルミ二 ゥム材が溶融する。次に鋼材のアルミニウム材と接する表面が溶融し、結果として接 合界面にて、 Al—Fe系の脆い金属間化合物層(以下、「界面反応層」という。)が形 成するため、高い接合強度は得られない。
[0024] 鋼材とアルミニウム材とのスポット接合で形成する金属間化合物は大きく 2層に分か れ、鋼材側に Al Fe系化合物(後述する表 10等で定義する金属間化合物 Al Feの
5 2 5 2 意味)、アルミニウム材側に Al Fe系化合物 (後述する表 10等で定義する金属間化
3
合物 Al Feの意味)が形成することが知られている。それらの金属間化合物は大変脆
3
いため、従来より、高い接合強度は得られないとされている。
[0025] これにカ卩えて、亜鉛めつき鋼板(亜鉛めつき鋼材)とアルミニウム材とのスポット接合 では、前記した通り、亜鉛めつきに由来する Zn— Fe系化合物(後述する表 10等で定 義する金属間化合物 Fe Znの意味)層が生成し、上記化合物層中に必然的に含ま
3 7
れるようになる。この Zn— Fe系化合物層は脆いために、破壊の起点となり接合強度 を著しく低下させる。
[0026] また、アルミニウム材の反接合表面まで溶融が達してチリができると、アルミニウム材 の減肉量が増大し、やはり高!、接合強度が得られな 、。
[0027] すなわち、鋼材とアルミニウム材との異材をスポット溶接にて接合する場合、高い接 合強度を得るためには、ある程度のナゲット径を形成する高 ヽ入熱量を加えることは 必要である。しかし、本発明の知見によれば、より高い接合強度を得るためには、ナ ゲット径の制御よりも、むしろ界面反応層の形成面積や厚さ分布を制御することが必 要である。
[0028] すなわち、鋼材とアルミニウム材と ヽぅ異材をスポット溶接にて接合する場合、高 ヽ 接合強度を得るためには、所定のナゲット面積を形成するだけの入熱量を加えること は必要であるが、接合界面にて界面反応層の形成を抑制するために鋼材の溶融を 最小限に抑制し、かつチリの発生を最小量に抑制することが要求される。
[0029] このため、まずスポット溶接条件にっ 、ては、高電流で大き!/、ナゲット面積を得つ つ、鋼材およびアルミニウム材の発熱を抑制し、接合界面での鋼材の溶融をできるだ け一様にかつ少なく抑えることができれば、界面反応層を薄く広く形成することができ 、高い接合強度が得られると考えられる。
[0030] し力しながら、従来のスポット溶接方法で高電流を加えると接合部中心部において 電流密度が高くなり、鋼材の発熱 ·溶融およびアルミニウム材の溶融も大きくなるため 、接合部中心部にて界面反応層が厚く形成する。電極チップの先端 Rを大きくするこ とによって、接合部中心部への電流の集中を軽減して、広い面積にて接合することが 可能であるが、やはり接合部中心部の界面反応層は厚ぐ溶接条件によっては接合 部中心部にてアルミニウム材に欠陥が発生する。
[0031] 従来の検討では、接合強度を決定付けているのは、接合部の中心部ではなぐ周 辺部と考えて、中心部の界面反応層厚さが厚くなることは軽視してきた力 より詳細に 解析すると、周辺部が同程度の界面反応層厚さでも、中心部の界面反応層がある程 度以上厚いと接合強度が低下すること、さらには、チリの発生により外観が損なわれ るのみならず、周辺部の界面反応層の厚さ分布も変化して、接合強度のばらつきの 要因となることが明らかとなった。
[0032] すなわち、接合強度を従来よりさらに向上させるには、鋼材およびアルミニウム材の 発熱を抑制し、電流密度を分散しつつ、できるだけ高電流にて接合し、接合された異 材接合体の界面反応層を接合部中心部も含めて大面積にて最適厚さ範囲に制御 することが重要となることがわ力つた。
[0033] そして上記知見に基づいて、以下の発明を完成した。 [0034] 上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体 の要旨は、板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5〜4. Ommである、
1 2
純アルミニウム材またはアルミニウム合金材(以下、純アルミニウム材またはアルミ-ゥ ム合金材を「アルミニウム材」という。)とをスポット溶接にて接合して形成された接合 体であって、接合部におけるナゲット面積が 20 X t °· 5〜: LOO X t °· 5mm2であり、界
2 2
面反応層の厚さが 0. 5〜3 ;z mである部分の面積が 10 X t 5mm2以上であり、かつ
2
接合部中心と接合部中心から接合径の 1Z4の距離だけ離れた点とにおける界面反 応層の厚さの差が 5 μ m以内であることを特徴とする鋼材とアルミニウム材との接合体 である。
[0035] ここで、前記界面反応層の最大厚さが、 0. 5〜10 /z mの範囲であることが好ましい
[0036] また、上記要旨の接合体を形成するためのスポット溶接に用いられる電極チップは 、被接合材との接触が、 2点以上または線状もしくは面状で行われる電極チップであ ることが好ましい。
[0037] 前記電極チップは、先端部がドーム型に形成されるとともに、前記先端部の中央に 直径 2mm以上の凹部が形成されて 、ることが好まし 、。
[0038] さらに、上記要旨の接合体を形成するためのスポット溶接方法は、一対の電極チッ プのうち少なくとも片方に前記電極チップを用いることが好ましい。
[0039] また、前記スポット溶接方法は、前記鋼材と前記アルミニウム材のうち少なくとも一 方を 5°C以下に冷却してスポット溶接することが好ましい。
[0040] 上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体 の要旨は、板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5〜4. Ommであるァ
1 2
ルミ-ゥム材とをスポット溶接にて接合した異材接合体であって、これら接合される鋼 材とアルミニウム材との互いの接合面間に、融点が 350〜1000°C、平均厚みが 3〜 19 μ mの、 Znまたは Zn合金、あるいは Aほたは A1合金の皮膜と、有機榭脂接着剤 皮膜またはリン酸塩皮膜とが予め設けられた状態でスポット溶接されており、スポット 溶接後の溶接部における界面反応層の厚さが 0. 5〜5 /z mの範囲である部分の面 積が lO X t °· 5mm2以上であることとする。 [0041] ここで、異材接合体の接合強度を高めるためには、前記界面反応層の厚さが 0. 5 〜5 μ mの範囲である部分の面積は 50 X t °· 5mm2以上であることが好まし!/、。
2
[0042] また、同様に、異材接合体の接合強度を高めるためには、前記 Znまたは Zn合金皮 膜が、鋼材側の表面に施された 88質量%以上の Znを含むめっき皮膜であることが 好ましい。
[0043] また、同様に、異材接合体の接合強度を高めるためには、前記リン酸塩皮膜の平 均厚みが 0. 1〜5 /ζ πιであることが好ましい。また、前記リン酸塩皮膜が 0. 01〜10 質量%の Mgを含むことが好まし 、。
[0044] 上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体 のスポット溶接方法の要旨は、板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5
1 2
〜4. Ommであるアルミニウム材との異材接合体のスポット溶接方法であって、これら 接合される鋼材とアルミニウム材との互いの接合面間に、融点が 350〜1000°C、平 均厚みが 3〜19 mの Znまたは A1の金属皮膜と、有機榭脂接着剤の皮膜とを予め 設けた状態でスポット溶接するとともに、このスポット溶接において、アルミニウム材側 の電極チップの先端径を 7mm φ以上として、電極チップによる加圧力を、先端曲率 半径 Rmmと加圧力 WkNとの関係が(RXW) 1/3ZR>0. 05となるように印カロし、か つ 15 X t °' 5〜30 X t 八の電流を100 °· 5〜: LOOO X t °· 5msec流す工程を有
2 2 2 2
するとともに、この工程より高い電流を流す工程が存在しない電流パターンにてスポ ッ卜溶接することである。
[0045] ここで、異材接合体の接合強度を高めるためには、前記界面反応層の厚さが 0. 5 〜5 μ mの範囲である部分の面積は 50 X t °· 5mm2以上であることが好まし!/、。
2
[0046] 上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体 のスポット溶接方法の要旨は、板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5
1 2
〜4. Ommであるアルミニウム材との異材接合体のスポット溶接方法であって、これら 接合される鋼材とアルミニウム材との互いの接合面間に、融点が 350〜1000°C、平 均厚みが 3〜19 /z mの Znまたは Zn合金皮膜と、更にリン酸塩皮膜とが予め設けた 状態でスポット溶接するとともに、このスポット溶接において、アルミニウム材側の電極 チップの先端径を 7mm φ以上として、電極チップによる加圧力を、先端曲率半径 R mmと加圧力 WkNとの関係が(RXW)1/3ZR>0.05となるように印カロし、かつ 15 Xt 5〜30Xt 八の電流を100 °· 5〜: LOOOXt · 5msec流す工程を有する
2 2 2 2
とともに、この工程より高い電流を流す工程が存在しない電流パターンにてスポット溶 接することである。
[0047] また、同様に、異材接合体の接合強度を高めるためには、前記 15Xt °'5〜30Xt
2 2
0 5kAの電流を lOOXt °·5〜: LOOOXt °'5msec流す工程よりも後の工程で、 lXt °'
2 2 2
5〜: LOXt 5kAの電流を lOOXt °·5〜: LOOOXt °· 5msec流す工程を存在させた電
2 2 2
流パターンにてスポット溶接することが好まし 、。
[0048] 上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体 の要旨は、板厚 tが 0.3〜3. Ommで、亜鉛めつき層の平均厚みが 3〜19 mであ る亜鉛めつき鋼材と、板厚 tが 0.5〜4. Ommであるアルミニウム材とをスポット溶接
2
にて接合した異材接合体であって、この異材接合体の接合界面において、鋼材側に
Al Fe系化合物層、アルミニウム材側に Al Fe系化合物層を各々有し、これら 2層の
5 2 3
ナゲット深さ方向の合計の平均厚さが 0.5〜: L0 mである部分の、アルミニウム材側 の接合界面において平面方向に占める合計面積力 ナゲットのアルミニウム材側の 接合界面において平面方向に占める面積の 50%以上の割合を占め、かつ、 SEM による、前記 Al Fe系化合物層と Al Fe系化合物層のナゲット深さ方向のこれら 2層
5 2 3
の合計の平均厚さが 0.5〜: LO/zmである接合界面部分の断面観察において、これ ら 2層中に各々含まれる Zn— Fe系化合物層の断面方向に占める合計面積が、これ ら 2層の合計の平均厚さが 0.5〜10 μ mである部分の断面方向に占める面積の 10 %以下の割合であることとする。
[0049] ここで、より接合強度を高くするために、上記要旨に加えて、前記ナゲットのアルミ- ゥム材側の接合界面における平均径が 7mm以上であり、このナゲットと接する接合 界面における Zn層の平面方向に占める合計面積力 ナゲットのアルミニウム材側の 接合界面にぉ 、て平面方向に占める面積の 30%以下であることが好ま 、。
[0050] また、同様に、異材接合部における前記アルミニウム材側の最小残存板厚が元の アルミニウム材板厚の 50%以上であることが好ましい。
[0051] 更に、同様に、前記鋼材とアルミニウム材との板厚比 t /t力 ^以上であることが好 ましい。
発明の効果
[0052] 本発明は以上のように構成されており、スポット溶接による鋼材とアルミニウム材との 異材接合の際に、比較的大きいナゲット面積を得つつ、最適厚さ範囲の界面反応層 を大面積に形成し、異材接合体の接合強度を向上させることができる。この結果、ス ポット溶接にて鋼材とアルミニウム材との異材接合体を形成するに際して、従来技術 のように、他の材料を新たに用いることなぐまた、新たな別工程を追加する必要がな ぐ既存のスポット溶接機を用いることができるため、大幅なコスト削減を実現できる。
[0053] この結果、本発明に係る接合体は、自動車、鉄道車両などの輸送車両、機械部品 、建築構造物等における各種構造部材として大変有用に適用できる。したがって、本 発明により、鋼材とアルミニウム材との異材接合体の用途を大きく拡大することができ る。
[0054] また、本発明者らは、鋼材とアルミニウム材との異材をスポット溶接にて接合する場 合、界面反応層の形成面積や厚さ分布を制御して、高い接合強度を得るためには、 鋼とアルミニウム材との間に界面反応層が形成する時間を抑制制御することが重要 であることを見出した。また、この界面反応層形成時間を抑制制御のためには、予め 材料に抑制層を形成することが重要であることを見出した。
[0055] 本発明では、この抑制層として、単なる界面反応層形成時間の抑制制御のためだ けではなぐ異種金属接触腐食を抑制できる抑制層を選択したことを特徴とする。そ して、本発明では、このような抑制層として、これら接合される鋼材とアルミニウム材と の互いの接合面間に、特定範囲の Znまたは A1の金属皮膜と、有機榭脂接着剤の皮 膜との二つを予め設けることを特徴とする。
[0056] 界面反応層形成時間の抑制を制御して、高 、接合強度を得るためには、溶融した アルミニウムと接触して、鋼材との中間層となるよう、アルミニウム材と融点が近い金属 皮膜が必要となる。この点、本発明における、特定範囲の Znまたは A1の金属皮膜は 、アルミニウム材と融点が近ぐスポット溶接時における界面反応層形成時間を抑制 制御して高!ヽ接合強度を得る機能を有する。
[0057] また、異種金属接触腐食を抑制するためには、抑制層は、スポット溶接後に、鋼材 とアルミニウム材との間に、広範にあるいは全面的に介在して、電気的な絶縁層とな る必要性がある。しかし一方で、スポット溶接を可能とし、スポット溶接部の高い接合 強度を得るためには、この抑制層は、スポット溶接時には、鋼材とアルミニウム材とを 電気的に導通させる必要がある。この点、有機榭脂接着剤の皮膜は、電気的な絶縁 層として、スポット溶接時には界面反応層形成時間を抑制制御し、更に、スポット溶 接後は異種金属接触腐食を抑制する機能を有する。
[0058] 有機榭脂接着剤の皮膜を、例えば熱硬化性榭脂などとし、スポット溶接時に応力( 加圧力)を加えた場合に、鋼材とアルミニウム材との溶接部分から、周囲の部分に、 排出あるいは除去されやすくすると、鋼材とアルミニウム材とを電気的に導通させるこ とがでさる。
[0059] そして、スポット溶接後は、この有機榭脂接着剤皮膜は、除去されたスポット溶接部 のみを除いて、鋼材とアルミニウム材との間に、広範にあるいは全面的に介在して、 電気的な絶縁層となり、異材接合体の異種金属接触腐食を抑制する。
[0060] もちろん、各抑制層がこのような機能を発揮するためには、後述する通り、金属皮膜 と有機榭脂接着剤の皮膜とには、最適の組成や、皮膜厚みの範囲などの条件があり 、スポット溶接には、加圧力や電流パターンなどの最適条件がある。
[0061] ここで、通常、鋼材同士などの同種金属同士の溶接において、鋼材間に接着剤を 介在させた上で、鋼材同士を溶接するウエルドボンド方式は公知である。しかし、鋼 材とアルミニウム材とのスポット溶接による異材接合の場合、高!、接合強度を得るた めには、前記した通り、同種金属同士の溶接に比して、高い入熱量を加える必要が ある。この点、鋼材とアルミニウム材とのスポット溶接による異材接合に対して、接着 剤を介在させることは、界面反応層形成制御に弊害をもたらすことが当然予測される 。また、スポット溶接自体を阻害することも予測される。
[0062] 実際に、裸の(表面処理されて!、な 、)鋼材とアルミニウム材とのスポット溶接による 異材接合の場合には、接着剤を介在させた場合には、スポット溶接自体や界面反応 層形成制御が困難となって、高い接合強度を得ることができない。
[0063] これに対して、接合される鋼材とアルミニウム材との互いの接合面間に、抑制層とし てもうひとつ、 Znまたは A1の金属皮膜を予め設けた場合には、有機榭脂接着剤の皮 膜があっても、スポット溶接自体や界面反応層形成制御が困難とならずに、有機榭 脂接着剤の皮膜の上機能を発揮させる。
[0064] これは、 Znまたは A1の金属皮膜の存在 (介在)によって、スポット溶接時の抵抗発 熱量が増し、鋼材とアルミニウム材との界面温度、特に鋼材の温度力 アルミニウム の溶融温度を越えて著しく高くなるためと推考される。また、スポット溶接時の抵抗発 熱量が増すと、アルミニウムの鋼との界面での拡散速度が著しく速くなり、鋼側にアル ミニゥムが拡散して、良好な接合状態が!/ヽち早く確保されると推考される。
[0065] 以上のように、本発明は、スポット溶接による異材接合の際に、接合される鋼材とァ ルミ-ゥム材との互いの接合面間に、 Znまたは A1の金属皮膜と、有機榭脂接着剤の 皮膜との二つを予め設けることを特徴とする。
[0066] これによつて、従来の常識に反して、鋼とアルミニウム材との間の界面反応層が形 成する時間を抑制制御し、異材接合体の接合強度を向上させる。また、スポット溶接 条件については、これに見合った電流パターンの溶接として、接合強度の向上を保 証する。
[0067] また、本発明では、この界面反応層の形成面積や厚さ分布の制御を損なわな 、だ けではなぐ異種金属接触腐食 (電食)を抑制できる抑制層 (腐食抑制層)を選択した ことを特徴とする。この異材接合体の使用中の異種金属接触腐食の抑制は、この腐 食による異材接合体の接合強度の低下を抑制して、接合強度を維持することにつな がる。そして、本発明では、このような抑制層として、これら接合される鋼材とアルミ- ゥム材との互いの接合面間に、特定範囲の Znまたは Zn合金皮膜と、リン酸塩皮膜と の二つを予め設けることを特徴とする。
[0068] 界面反応層の形成面積や厚さ分布の制御を損なわず、異種金属接触腐食 (電食) を抑制するには、各々の特性を有する二つの皮膜が必要となる。即ち、前者のため には溶融したアルミニウムと接触して、鋼材との中間層となるよう、アルミニウム材と融 点が近い金属皮膜が必要である。後者のためには、鋼よりも卑でかつアルミニウムよ りも貴である自然電位を有し、鋼—アルミニウム材の電位差を軽減する皮膜あるいは アルミニウム材よりも卑である自然電位を有し、犠牲防食効果を発揮する皮膜が必要 である。 [0069] この点、本発明における特定範囲の Znまたは Zn合金皮膜は、スポット溶接時に、リ ン酸塩皮膜が存在しても、鋼とアルミの金属間化合物である界面反応層が形成され る時間制御や、界面反応層の厚さ範囲と分布制御を阻害させない特性がある。また 、鋼よりも卑でかつアルミニウムよりも貴である自然電位を有し、鋼—アルミニウムの電 位差を軽減するのみならず、環境によっては酸ィ匕皮膜を形成するアルミニウム材より も卑の自然電位となって犠牲防食効果を発揮するため、腐食環境下でも高い接合強 度を得る機能を有する。
[0070] 一方、異種金属接触腐食をより効果的に抑制するためには、抑制層は、スポット溶 接後に、鋼材とアルミニウム材との間に広範にあるいは全面的に介在して、鋼材とァ ルミ-ゥム材との間を水分や酸素などの腐食環境力 遮断したり、犠牲防食作用によ り、基材を保護する腐食抑制層を形成する必要性がある。しかし一方で、スポット溶 接を可能とし、スポット溶接部の高い接合強度を得るためには、この抑制層は、スポッ ト溶接時には、鋼材とアルミニウム材とを電気的に導通させる特性を有する必要があ る。
[0071] この点、リン酸塩皮膜は、本発明における特定範囲の Znまたは Zn合金皮膜との共 存下において、スポット溶接時には、スポット溶接部部分のみにおいて破壊され、こ のスポット溶接部で鋼材とアルミニウム材とを電気的に導通させる。リン酸塩皮膜自体 は、いずれの側に存在させるにせよ、本発明における Znまたは Zn合金の金属皮膜 無しに、単独で、鋼材とアルミニウム材との間に介在させると、スポット溶接時に、スポ ット溶接部部分のみにおいてさえ破壊されにくくなり、スポット溶接性を阻害する。ま た、接合体の界面反応層の形成面積や厚さ分布制御を阻害する。このため、異材接 合体の高い接合強度が得られない。これは同種の金属同士で、かつリン酸塩皮膜を 介在させた際のスポット溶接時には生じな 、現象であり、鋼材とアルミニウム材との異 材接合体特有の問題であると言える。
[0072] リン酸塩皮膜が適正な厚みであり、比較的薄い場合には、スポット溶接時に応力( 加圧力)を加えた場合に、リン酸塩皮膜のピンホールを通じて、鋼材とアルミニウム材 とを電気的に導通させることができる。また、本発明における特定範囲の Znまたは Zn 合金皮膜との共存下において、スポット溶接時の応力や電気抵抗によって、リン酸塩 皮膜が破壊されて、溶融したアルミニウム材中に溶け出すことによつても、広範囲に、 鋼材とアルミニウム材とを電気的に十分導通させることができる。
[0073] 因みに、リン酸塩 (亜鉛)皮膜の沸点は約 1075°Cと比較的高温である。しかし、ス ポット溶接時には、この沸点以下の温度でも、本発明における特定範囲の Znまたは Zn合金皮膜との共存下において、上記リン酸塩皮膜の破壊が生じて、鋼材とアルミ ユウム材とを電気的〖こ導通させることができる。
[0074] そして、スポット溶接後は、このリン酸塩皮膜は、皮膜が除去されたスポット溶接部を 除いて、鋼材とアルミニウム材との間に、広範にあるいは全面的に介在して、鋼材と アルミニウム材との間を水分や酸素などの腐食環境力 遮断したり、犠牲防食作用に より基材を保護する腐食抑制層を形成し、異材接合体の異種金属接触腐食を抑制 する。
[0075] ただ、リン酸塩皮膜には、前記したピンホールが存在するために、完全には、水分 や酸素などの腐食要因を遮断できない。そのため、後述するアルミニウムよりも卑で ある自然電位を有する Mg添加などで、皮膜成分組成を制御して、犠牲防食作用を 強めることで、異種金属接触腐食を抑制する機能をより発揮できる。
[0076] 勿論、各抑制層がこのような機能を発揮するためには、後述する通り、金属皮膜とリ ン酸塩皮膜とには、最適の組成や、皮膜厚みの範囲などの条件があり、また、スポッ ト溶接には、加圧力や電流パターンなどの最適条件がある。
[0077] 以上のように、本発明は、スポット溶接による異材接合の際に、接合される鋼材とァ ルミ-ゥム材との互いの接合面間に、 Znまたは Zn合金の金属皮膜と、リン酸塩皮膜 との二つを予め設けることを特徴とする。
[0078] これによつて、鋼とアルミニウム材との間の界面反応層の形成面積や厚さ分布の制 御を損なわずに、更に、異材接合体の使用中の異種金属接触腐食を抑制し、高い 接合強度を維持できる。言い換えると、異種金属接触腐食による接合強度の低下を 抑制する。
[0079] この結果、鋼材とアルミニウム材との異種接合体にお!、て、前記従来技術のような、 他の材料を新たに用いることなぐまた、新たな別工程を必要とすることなぐ接合強 度の高い、スポット溶接による異材接合体を得る効果を有する。そして、スポット溶接 後には、異種金属接触腐食を抑制した異材接合体を得る効果を有する。
[0080] また、本発明者らは、特に、亜鉛めつき鋼材とアルミニウム材とのスポット溶接による 異材接合強度に及ぼす界面反応層の厚さを詳細に調査した結果、界面反応層の挙 動は、従来の薄い程良いとする知見とは、大きく異なることを知見した。即ち、界面反 応層を構成する、鋼材側の Al Fe系化合物層とアルミニウム材側の Al Fe系化合物
5 2 3
層との、厚みや面積の関係を最適範囲に制御すれば、例え界面反応層がこれら二 層の金属間化合物力も構成されていたとしても、接合強度が実用的なレベルまで高 まることを知見した。
[0081] また、亜鉛めつき鋼材とアルミニウム材とのスポット溶接による異材接合では、一方 では、亜鉛めつきに由来して生成する、特有の脆い Zn— Fe系化合物層は、これを抑 制し、接合強度を高める。
[0082] これらによって、亜鉛めつき鋼板(亜鉛めつき鋼材)であっても、アルミニウム材との 異材接合性あるいはスポット溶接性が向上する。このため、多数連続打点のスポット 溶接の際にも、異材接合体の、十分な継手強度あるいは接合強度が得られる。また 、打点毎の電極の鋼材とアルミニウム材との接触状態が安定し、電極寿命が著しく向 上し、多数連続打点の効率の良!ヽスポット溶接が保証される。
[0083] また、前記従来技術のような、他の材料を新たに用いることなぐまた、新たな工程 を必要とすることなぐ亜鉛めつき鋼板 (亜鉛めつき鋼材)とアルミニウム材との、接合 強度の高! ヽ、スポット溶接による異材接合をなしうる効果も有する。
図面の簡単な説明
[0084] [図 1]本発明の異材接合体の断面の状態を示す断面写真である。
[図 2]本発明の異種接合体を示す断面図である。
[図 3]異種接合体を得るためのスポット溶接の態様を示す説明図である。
圆 4]本発明異材接合体の接合部界面を示す断面図である。
[図 5]本発明異材接合体の接合部界面の断面組織 (図 6)を拡大模式化した説明図 である。
[図 6]本発明異材接合体の接合部界面の断面組織を示す図面代用 SEM写真である [図 7]本発明異材接合体の接合部界面の断面組織を示す図面代用 TEM写真であ る。
[図 8]本発明異材接合体の接合部界面反応層の厚み分布を示す説明図である。
[図 9]本発明異材接合体の接合部界面反応層の平面方向の一定厚みの分布を示す 説明図である。
[図 10]比較例異材接合体の接合部界面反応層の平面方向の一定厚みの分布を示 す説明図である。
[図 11]異材接合体を得るためのスポット溶接の態様を示す説明図である。
[図 12]比較例異材接合体の接合部界面の断面組織を示す図面代用 TEM写真であ る。
符号の説明
1:鋼材
2:アルミニウム材
3:ナゲット
4:界面反応層
5:接合部中心
D :ナゲット径
N
D :接合径
C
11:鋼板
12:アルミニウム合金板
13:異種接合体
14:抑制層
15:ナゲット
16:界面反応層
17、 18:電極
21:鋼板
22:アルミニウム合金板
23:異材接合体 24 :酸化皮膜
25 :ナゲット
26 :界面反応層
27、 28 :電極
発明を実施するための最良の形態
[0086] 以下に、本発明の実施態様の各要件の限定理由とその作用について説明する。
[0087] また、以下では実施例を挙げて本発明をより具体的に説明するが、本発明はもとよ り、下記実施例によって制限を受けるものではない。前記、後記の趣旨に適合し得る 範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発 明の技術的範囲に包含される。
[0088] [1]
(接合体の構成)
本発明の一実施態様に係る接合体の構成を説明するために、図 1に本発明に係る 接合体の接合部の断面写真を示す。同図において、 1は鋼材、 2はアルミニウム材、 3はナゲット、 4は界面反応層、 5は接合部中心をそれぞれ示す。
[0089] (鋼材)
本発明に用いる鋼材の板厚 tは 0. 3〜3. Ommとする。鋼材の板厚 tが 0. 3mm 未満の場合、組立品である構造部材ゃ構造材料として必要な母材強度や剛性を確 保できず、他方 3. Ommを超える場合は、構造部材ゃ構造材料としては、通常他の 接合手段が採用されるため、スポット溶接にて接合する必要性が少な 、からである。
[0090] なお、本発明にお 、ては、使用する鋼材の形状や材質は特に限定されるものでは なぐ各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造材 、铸造材などが適宜選択できる。
[0091] (アルミニウム材)
本発明で使用するアルミニウム材の板厚 tは 0. 5〜4. Ommの範囲とする。アルミ
2
二ゥム材の板厚 tが 0. 5mm未満の場合、構造材料としての母材強度が不足するの
2
に加え、所定の大きさのナゲット面積が得られず、し力もアルミニウム材の反接合表 面まで溶融が達しやすくチリができやすいため、高い接合強度が得られない。他方、 アルミニウム材の板厚 tが 4. Ommを超える場合は、上記鋼材の板厚の場合と同様
2
に、構造部材ゃ構造材料としては他の接合手段が採用されるため、スポット溶接にて 接合する必要性が少な 、からである。
[0092] なお、本発明にお ヽては、使用するアルミニウム材の形状や材質 (合金の種類)を 特に限定するものではなぐ各構造用部材としての要求特性に応じて、汎用されてい る板材、形材、鍛造材、铸造材などが適宜選択できる。また、アルミニウム材の強度 は、スポット溶接時の加圧による変形を抑えるために高い方が望ましい。この点、アル ミニゥム合金の中でも強度が高ぐこの種構造用部材として汎用されている、 A5000 系、 A6000系などの使用が最適である。
[0093] (ナゲット面積)
図 1に示すスポット溶接にて形成されたナゲット 3の面積は、アルミニウム材 2の板厚 tで規定された、 20 X t °· 5〜: LOO X t °· 5mm2の範囲とする。言い換えると、ナゲット
2 2 2
面積が 20 X t °· 5〜: LOO X t °· 5mm2の範囲となるようにスポット溶接条件を選定する
2 2
ことが必要である。
[0094] 従来から、同種の金属部材をスポット溶接する際には、金属部材の厚み tに対して、 スポット溶接にて形成されたナゲットの面積を 20 X t°- 5mm2程度とすることが接合強 度の面からも作業性および経済性の面からみても最適であるとされている。
[0095] これに対し、本発明では、異種金属部材同士の接合について、上記同種の金属部 材同士の接合よりも大きなナゲット面積とすることを特徴とする。すなわち、スポット溶 接にて形成されたナゲット 3の面積力 アルミニウム材 2の板厚 tで規定された 20 X t
2 2
°· 5〜: LOO X t °· 5mm2の範囲となるようにスポット接合することで、異材接合体であつ
2
ても十分な接合強度が得られ、さらに作業性、経済性にも優れる。
[0096] 本発明のような異種金属部材同士の接合の場合、最適なナゲット面積は、アルミ- ゥム材 2側の板厚 tに依存しており、鋼材 1の板厚 tの影響は無視できるほど小さい
2 1
ことが特徴である。
[0097] ここで、ナゲット面積が 20 X t °· 5mm2未満、より厳しくは 30 X t °· 5mm2未満では、
2 2
ナゲット面積が小さ過ぎ、接合強度が不十分となる。他方、ナゲット面積が 100 x t °·
2
5mm2を超えると、接合強度を得るのには十分である力 きわめて高い電流量が必要 となるため、現行のスポット溶接装置を用いることができず、特別な装置が必要となる
。したがって、ナゲット面積は 20 X t °· 5〜: LOO X t °· 5mm2の範囲、好ましくは 30 X t
2 2 2
°· 5〜: LOO X t °· 5mm2の範囲とする。
2
[0098] 本発明におけるナゲット面積は、鋼材 1とアルミニウム材 2との接合界面の面積を測 定すること〖こよって得られる。接合界面の面積の測定方法は、接合体を接合界面に て剥離または切断により分断し、アルミニウム材 2側を画像解析して、ナゲット 3の面 積を計測することによって求めることができる。ナゲットの形状が略円形状の場合は、 接合部を接合部中心 5にて縦に (板厚方向に)切断して切断面を光学顕微鏡にて観 察し、ナゲット 3の接合界面での径 (ナゲット径) Dを測定して面積を求めてもよい。こ
N
の場合、例えば直交する 2方向の縦断面についてナゲット径 Dを測定し、これらを長
N
径および短径とする楕円の面積を計算し、これをナゲット面積とするとよい。
[0099] (界面反応層の厚さ)
図 1に示す界面反応層 4は、その最適厚さを 0. 5〜3 /ζ πιとし、この最適厚さを有す る部分の面積が lO X t °· 5mm2以上であることとする。
2
[0100] このように、最適厚さを有する界面反応層 4の面積を規定するのは、上述したように 、接合強度向上のために、最適厚さを有する界面反応層 4をできるだけ広く形成する という技術思想に基づく。
[0101] つまり、界面反応層 4の厚さが 0. 5〜3 /ζ πιである部分の面積が lO X t 5mm2
2 満、より厳しくは、 25 X t ' 5mm2未満では、最適厚さを有する界面反応層 4の形成さ
2
れる範囲が狭ぐ接合強度が低下する。また、界面反応層 4の厚さが 0. 5 m未満の 部分は、鋼アルミニウムの拡散が不十分となり、接合強度が低くなる。他方、界面反 応層 4の厚さが 3 mを超える部分は脆弱となり、接合強度が低くなる。よって、接合 部全体としての接合強度を高めるためには、界面反応層 4の厚さが 0. 5〜3 /ζ πιであ る部分の面積が 10 X t °· 5mm2以上、好ましくは 25 X t · 5mm2以上必要である。
2 2
[0102] さらに、接合部中心 5と接合部中心 5から接合径 Dの 1Z4の距離だけ離れた点と
C
における界面反応層の厚さの差が 5 μ m以内、望ましくは 3 μ m以内であることを必 要とする。ここでの接合径 Dとは、界面反応層 4が形成されている範囲の径をいう。
C
通常のドーム型電極チップ(以下、「電極チップ」を単に「チップ」ともいう。)を用いた 接合では、接合部中心 (以下、単に「中心」ともいう。) 5は最も界面反応層 4が厚くな る部位であるのに対し、中心 5から接合径 Dの 1Z4の距離だけ離れた点では界面
C
反応層 4が薄くなるが、両地点での厚さの差が小さいほど、接合強度が高くなる。上 記厚さの差が 5 mより大きいと、中心 5での界面反応層 4が周辺部の界面反応層 4 より過度に厚くなり、接合強度が低下することに加えて、チリの発生により外観が損な われるのみならず、周辺部の界面反応層 4の厚さ分布も変化して、強度ばらつきの要 因となる。
[0103] さらに、界面反応層 4の最大厚さは、 0. 5〜10 μ m、さらには 1. 5〜5 μ mの範囲と するのが望ましい。通常のドーム型チップを用いた接合では、接合部中心 5が上記最 大厚さとなる位置に相当する。上記最大厚さが 10 mを超えると、その部位の強度 が低ぐ全体の接合強度が低下するばかりか、チリの発生により、周辺部の界面反応 層 4の厚さ分布にも悪影響を及ぼし、強度ばらつきの要因となる。他方、上記最大厚 さ力 O. 未満の場合は、上記 0. 5〜3 mの最適厚さ範囲が得られない。
[0104] この界面反応層 4の厚さも、上記ナゲット面積と同様、鋼材 1とアルミニウム材 2との 接合界面の面積を測定することによって得られ、アルミニウム材 2側の画像解析や光 学顕微鏡観察によって求めることができる。
[0105] 以下に、スポット溶接の要件を説明する。
[0106] (電極チップ)
スポット溶接に用いる電極チップについては、被接合材である板との接触が、 2点 以上または線状もしくは面状で行われるものであることが望ましい。すなわち、板との 極大加圧部が、従来のように 1点のみでなぐ 2点以上のものとするか、あるいは線状 もしくは面状となるようなチップを用いることにより、上記比較的大きな最適ナゲット面 積および上記界面反応層の最適構造を得ることができる。ここで、線状とは 3mm以 上の連続線となるものを、面状とは 5mm2以上の連続面となるものをそれぞれ 、 、、 これらに満たないものは点とする。
[0107] チップの極大加圧部を確認するには、市販の加圧紙を板とチップの間に挟み、 0. lkNの加圧力にて挟むことによって、加圧紙に残る跡を確認すればよい。通常のド ーム型チップでは、接触した 1点のみ跡が残る。 [0108] 上記望ま 、電極チップの一例としては、ドーム型チップの先端部の中央 (チップ の軸上)に直径 2mm以上の凹部が形成されている電極チップが推奨される。スポット 溶接の際の連続打点によりチップ先端部は消耗するため、研磨紙、研削器等にてチ ップ先端部を定期的にメンテナンスすることが必要であるが、その際、先端部の形状 が軸対称でないチップでは、メンテナンスがしにくい。チップの軸上(すなわち、軸と 同心)に凹部を設けることにより、チップの加工が容易であるだけでなぐ研磨紙や研 削器を円周方向に回転させることで容易にメンテナンスを行うことができる。また、チッ プ先端部が完全に平面であるフラット型チップでは、板に対して面状に当接するため 、電流密度を低下させることができる力 このように板に対して面状に当接する場合、 チップの粗度が電流経路に及ぼす影響が大きぐチップのメンテナンス頻度を高くす る必要が生じる。したがって、チップのメンテナンス性と界面反応層 4の均一化効果を ともに満たすためには、ドーム型チップの先端部に凹部を設けたものの方が良ぐ凹 部の径は 2mm以上とするのが望ましい。 2mm未満では、中心部への電流集中を十 分に抑制できず、界面反応層 4の均一化効果が小さい。また、凹部の径の上限は設 けないが、チップのサイズとメンテナンス性を考えると、 15から 20mmが最大と考えら れる。凹部の深さは浅くとも 0. 5mm以上とするのが望ましぐまた凹部の深さが深い とチップが長くなり、冷却水での冷却効率が低下するため、 3mmより大きくする必要 はない。また、ドーム型チップの先端径、先端 Rは特に規定しないが、ナゲット面積を 確保するために、先端径が 7mm以上で、かつ先端 Rが 75mm以上であることが望ま しい。
[0109] なお、このようなチップを用いる場合、片当たりをしないよう、予め感圧紙で確認し、 メンテナンスを行うことが必要である。
[0110] そして、スポット溶接に用いる一対(2個)の電極チップのうち少なくとも片方に、上 記のような先端部に凹部を設けたチップを用いることで、板内を通過する溶接電流経 路を複数とすることによって電流の集中を抑制し、チリや欠陥の発生を防止するととも に、界面反応層 4の厚さを均一にすることができる。チップを片方のみに用いる場合 は、鋼材 1側に用いる方が発熱をより抑制することができるが、チップを両方ともに用 いる方がさらに電流の集中を抑制することができ、界面反応層 4の厚さをより確実に 均一化できる。
[0111] (溶接温度)
また、鋼材 1およびアルミニウム材 2の少なくとも一方を 5°C以下に冷却することによ つても、両部材の発熱を抑制し、チリや欠陥の発生を防止し、界面反応層厚さを均一 にすることができる。いずれか一方のみ冷却する場合は、鋼を冷却する方が発熱をよ り抑制することができるが、両方を冷却する方がさらに発熱を抑制でき、界面反応層 4 の厚さをより確実に均一化ができる。この発熱抑制効果を十分に発揮させるには溶 接温度 (板温度)を 5°C以下とするのが望ま 、。溶接温度は低ければ低 、ほど発熱 を抑制することができるため下限は設けないが、作業性を考慮すると 5°C以上が適 している。
[0112] 板の冷却方法としては、予め板を液体または気体冷媒によって冷やした後に溶接 する方法、溶接しながら板を気体冷媒によって冷やす方法のいずれでもよい。なお、 予め板を冷却する場合は、板に付着した霜等を除去して力 溶接することが必要で ある。
[0113] なお、上記先端部形状を工夫したチップの使用と上記板の冷却の両手段を適用す ることで、電流の集中が抑制できるとともに、より確実に板の発熱を防止できるように なり、チリや欠陥の発生をさらに抑制し、界面反応層 4の厚さをより均一にすることが できる。
[0114] (接合条件)
本発明で用いるスポット溶接の接合条件は、加圧力や電流パターンを特に限定す るものではなぐ鋼材 1やアルミニウム材 2の材質や板厚、表面処理の違い、またチッ プ先端部形状等によって適宜選択できる。ただし、ナゲット面積および界面反応層 4 の構造は本発明の規定する範囲を満足させる必要があり、ナゲット面積の確保には、 比較的高い加圧力と電流量が必要であり、界面反応層 4の厚み増加の抑制には、板 に表面処理層が存在しない場合は短時間の溶接が、表面処理層を有する場合は接 合部の表面処理層を一様に排出した上で、できるだけ短時間の溶接が求められる。
[0115] [実施例]
鋼材としては、以下のようにして得られた鋼板を用いた。すなわち、化学成分として 、質量%で 0. 06%C-0. 5%Si- l. 2%Mnを含有し、 P、 Sなどの不可避的不純 物を除き、残部が実質的に Feである供試鋼を溶製し、 1. 2mmの板厚となるまで圧 延を行い、薄鋼板を得た。そして、連続焼鈍においては、 500〜: LOOO°Cの焼鈍後、 油洗または水洗を行い、その後焼き戻しにより 590MPa級の高張力鋼板を得た。
[0116] また、アルミニウム材としては、板厚 1. Ommと 1. 6mmの 2種類の市販の A6022 ( 6000系)アルミニウム合金板を用いた。
[0117] これら鋼板 (鋼材)とアルミニウム合金板 (アルミニウム材)とを JIS A 3137記載の 十字引張試験片形状に加工した上でスポット溶接を行い、異種接合体を作成した。 予め鋼板とアルミニウム合金板を水や氷水で冷却し、接合直前に各試験温度になる ように調整してから溶接を行った。すべての溶接試験にぉ ヽて鋼板の温度とアルミ- ゥム合金板の温度は同じとした。また、板の表面に付着した液体や霜は溶接直前に 拭き取った。
[0118] スポット溶接には、直流抵抗溶接試験機を用いた。電極チップは全て Cu— Cr合金 力もなるドーム型チップ (先端径 12mm、先端 R150mm)を用い、加工のないもの( チップ A、比較例: 1点で当接)、チップ先端部中心に 5mm幅 lmm深さの溝加工を したもの(チップ B : 2点で当接)、チップ先端部中心にそれぞれ直径 lmm、 2mm, 5 mmで lmm深さの凹部を加工したもの(それぞれチップ C、 D、 E :円周で線状に当 接)の 5形状のチップを用いた。陽極をアルミニウム合金板、陰極を鋼板とし、すべて の溶接試験において一対の電極チップの両方の形状は同一とした。チップ Bを用い る場合は、加工溝の方向を一定方向に揃えた。
[0119] [表 1]
Figure imgf000026_0001
表 1に試験条件 (アルミニウム板厚 t2、溶接直前の板温度、電極チップの種類、カ卩 圧力、および電流パターン [溶接電流、溶接時間])を示す。 [0121] ナゲット面積は、スポット溶接後の接合体サンプルを、接合部の中心にて縦に切断 して樹脂に埋め込み、研磨後、切断面を光学顕微鏡にて観察し、形成しているナゲ ットの接合界面における径を測定することにより求めた。直交した 2方向のナゲット径 を測定し、これらを長径および短径とする楕円の面積を算出し、これをナゲット面積と した。
[0122] 界面反応層の厚さは、チップ A, C, Dおよび Eについては、スポット溶接による接合 体サンプルを 1条件につき 3個作製し、それぞれ接合部の中心にて縦に切断し、榭 脂に埋め込み、研磨後、 SEM観察により求めた。界面反応層の厚さが 1 m以上の 場合は 2000倍の視野にて、 1 μ m未満の場合は 10000倍の視野にて計測を行った 。そして、 3個のサンプルについての測定での最大厚さを、界面反応層の最大厚さと した。また、それぞれ接合部中心の厚さ、および接合部中心からそれぞれ左右に接 合径の 1Z4の距離だけ離れた 2点(中間点)の界面反応層の厚さを測定し、中心と 中間点の厚さの差を求め、 3個のサンプルにっき各 2点の合計 6点の値を平均して得 た値を、接合部中心と接合部中心から接合径の 1Z4の距離だけ離れた点とにおけ る界面反応層の厚さの差とした。界面反応層の厚さが 0. 5〜3 /ζ πιである部分の面 積は、各断面における 0. 5〜3 /ζ πιである部分の線分を、接合部中心の周りに一周 させて描かれる図形の面積を計算し、この面積を 3個のサンプルにつ 、て平均して 求めた。
[0123] また、チップ Βについては、凹部の形状が円状ではなく上記の方法では測定できな いため、スポット溶接による接合体サンプルを 1条件につき 6個作製し、チップが板に 当接する 2点間を結ぶ直線に対して、それぞれ 0度、 15度、 30度、 45度、 60度、 75 度、 90度傾く方向に沿って接合部の中心にて縦に切断し、榭脂に埋め込み、研磨 後、 SEM観察を行った。層の厚さが 1 m以上の場合は 2000倍の視野にて、: L m 未満の場合は 10000倍の視野にて計測した。そして、 6個のサンプルの各角度方向 の測定のうちの最大厚さを、界面反応層の最大厚さとした。また、各サンプルについ て、接合部中心の厚さ、接合部中心からそれぞれ左右に接合径の 1Z4の長さ離れ た 2点(中間点)の界面反応層の厚さを測定し、中心と中間点の厚さの差を求め、こ れらの差の中で最大のものを、接合部中心と接合部中心から接合径の 1Z4の距離 だけ離れた点とにおける界面反応層の厚さの差とした。なお、チップ Bでは 90度傾い た断面で測定したときが最大差異となった。また、界面反応層の厚さが 0. 5〜3 /ζ πι である部分の面積は、 0〜90度の各角度方向における 0. 5〜3 /ζ πιとなる範囲を各 角度方向ごとにプロットし、各角度方向間は各プロットを直線にて結ぶことによって、 0〜90度の範囲の 0. 5〜3 mである部分の面積を算出した。中心を対象軸として、 90度の範囲の面積を 2つ求めることができるので、求めた 90度の範囲の 0. 5〜3 μ mである部分の面積 2つを加算し、さらにそれを 2倍することにより、全体の 0. 5〜3 μ mである部分の面積を算出した。
[0124] 接合強度の評価としては、異材接合体の十字引張試験を実施した。十字引張試験 は、接合強度が 1. 5kN以上または破断形態がアルミ母材破断であれば◎、接合強 度が 1. 0〜1. 5kNであれば〇、接合強度が 0. 5〜1. OkNであれば△、接合強度 が 0. 5kN未満であれば Xとした。
[0125] なお、本実施例において接合強度の評価に、剪断引張試験でなく十字引張試験を 採用したのは、十字引張試験の方が試験条件間での接合強度の相対的な差異が大 きかったので、良否の判定により適していたためである。剪断引張試験の傾向は十 字引張試験結果と合致しており、十字引張試験にて〇、◎の評価を得たものは、い ずれも 2. 5kN以上の高い剪断強度が得られた。
[0126] [表 2]
Figure imgf000029_0001
[0127] 表 1に示す各試験条件にてスポット溶接により得られた異材接合体の十字引張試 験結果を表 2に示す。
[0128] 試験 No. 1〜6を比較すると、板の温度が 5°Cより高い試験 No. 1〜3に比べて、板 の温度が 5°C以下と低い試験 No.4〜6では、界面反応層の最適厚さ範囲(0. 5〜3 μ m)である部分の面積が大きくなり、し力も接合部中心と接合径の 1Z4の長さ離れ た点とにおける界面反応層の厚さの差が小さくなり、異種接合体の接合強度が高くな ることがゎカゝる。
[0129] また、試験 No. 1、 2と試験 No. 7〜: L 1を比較すると、先端部に加工を施さない通 常のドーム型チップを用いた試験 No. 1、 2に比べて、本発明にて規定したチップを 適用した試験 No. 7〜: L 1では、界面反応層の最適厚さ範囲(0. 5〜3 /ζ πι)である部 分の面積が大きくなり、接合部中心と接合径の 1Z4の距離だけ離れた点とにおける 界面反応層の厚さの差が小さくなり、異材接合体の接合強度が高くなることがわかる 。特に、ドーム型チップの先端部中央に直径 2mm以上の凹部が形成された電極チ ップを用いた、試験 No. 9〜: L 1では、界面反応層の最適厚さ範囲(0. 5〜3 /ζ πι)で ある部分の面積、および接合部中心と接合径の 1Z4の距離だけ離れた点とにおけ る界面反応層の厚さの差をより望ましい範囲に制御できているため、異材接合体の 接合強度が極めて高い。さらに板の温度を 5°C以下に低くした試験 No. 12、 13では 、界面反応層の最適厚さ範囲 (0. 5〜3 ;ζ ΐη)である部分の面積、および接合部中心 と接合径の 1Z4の距離だけ離れた点とにおける界面反応層の厚さの差を、一層より 望まし 、範囲に制御できて 、ることがわ力る。
[0130] したがって、上記実施例の結果から、本発明で規定する各要件の臨界的な意義が 明らかである。
[0131] し力しながら、本発明で好適なものとして規定するチップを用い 5°C以下の低温の 部材を用いても、接合条件が適していない試験 No. 14〜16では、ナゲット面積ゃ界 面反応層の最適厚さ範囲 (0. 5〜3 ;ζ ΐη)である部分の面積、最大界面反応層厚さ、 接合部中心と接合径の 1Z4の長さ離れた点とにおける界面反応層の厚さの差のう ち 1つ以上が規定範囲になぐ接合強度が低くなる。
[0132] すなわち、最適接合条件 (加圧力、電流パターン)を鋼板やアルミニウム合金板の 材質や板厚、表面処理の違い、またチップ形状によって、ナゲット面積、界面反応層 の構造について本発明の規定する範囲を満足するように適宜選択する必要がある。
[0133] [2]
(異種接合体)
図 2に本発明の一実施態様で規定する異種接合体を断面図で示す。図 2において 、 13が鋼材 (鋼板) 11とアルミニウム材 (アルミニウム合金板) 12とをスポット溶接にて接 合した異材接合体である。 15はスポット溶接における界面反応層 16を有するナゲッ トで、図中に水平方向に矢印で示すナゲット径を有する。 19はナゲット周囲のコロナ ボンド部である。 tは鋼材の板厚、 tはアルミニウム材 12の板厚、 Atはスポット溶接
1 2
による接合後のアルミニウム材の最小残存板厚を示す。
[0134] ここにおいて、 14は抑制層で、これら接合される鋼材 11とアルミニウム材 12との互 いの接合面間に予め設けられた、 Znまたは A1の金属皮膜と有機榭脂接着剤の皮膜 との積層体である。図 2では Znまたは A1の金属皮膜と有機榭脂接着剤の皮膜とを各 々区分けせずに一体に示しているが、鋼材 11の接合側表面に Znめっきを施し、そ の上に有機榭脂接着剤を塗布して、抑制層 14として ヽる態様を示す。
[0135] そして、図 2は、スポット溶接後の異種接合体の接合部では、スポット溶接前に予め 設けられて ヽた、 Znまたは A1の金属皮膜と有機榭脂接着剤の皮膜との積層体であ る抑制層 14が除去され、鋼材 11とアルミニウム材 12とが直接接合している、異種接 合体の良好な接合状態を示している。更に、図 2では、異種接合体の接合部以外の 界面領域には、予め形成した、これら抑制層 14が、そのまま存在していることを示し ている。
[0136] (鋼材の板厚)
本発明では、鋼材の板厚 tが 0. 3〜3. Ommである接合体であることが必要である o鋼材の板厚 tが 0. 3mm未満の場合、前記した構造部材ゃ構造材料として必要な 強度や剛性を確保できず不適正である。また、それにカ卩えて、スポット溶接による加 圧によって、鋼材の変形が大きぐ酸ィ匕皮膜が容易に破壊されるため、アルミニウムと の反応が促進される。その結果、金属間化合物が形成しやすくなる。
[0137] 一方、 3. Ommを越える場合は、前記した構造部材ゃ構造材料としては、他の接合 手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、 鋼材の板厚 tを 3. Ommを超えて厚くする必要性はない。
[0138] (鋼材)
本発明においては、使用する鋼材の形状や材料を特に限定するものではなぐ構 造部材に汎用される、あるいは構造部材用途力 選択される、鋼板、鋼形材、鋼管な どの適宜の形状、材料が使用可能である。ただ、自動車部材などの軽量な高強度構 造部材 (異材接合体)を得るためには、鋼材の引張強度が 400MPa以上である通常 の高張力鋼 (ノ、ィテン)であることが好ま 、。
[0139] 引張強度力 OOMPa未満の低強度鋼では一般に低合金鋼が多ぐ酸ィ匕皮膜が鉄 酸ィ匕物からなるため、 Feと A1の拡散が容易となり、脆い金属間化合物が形成しやす い。このためにも引張強度が 400MPa以上、望ましくは 500MPa以上の高張力鋼( ハイテン)であることが好まし!/、。
[0140] (アルミニウム材)
本発明で用いるアルミニウム材は、その合金の種類や形状を特に限定するもので はなぐ各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造 材、铸造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼 材の場合と同様に、スポット溶接時の加圧による変形を抑えるために高い方が望まし い。この点、アルミニウム合金の中でも強度が高ぐこの種構造用部材として汎用され て!ヽる、 A5000系、 A6000系などの使用力最適である。
[0141] ただ、本発明で使用するこれらアルミニウム材の板厚 tは 0. 5〜4. Ommの範囲と
2
する。アルミニウム材の板厚 tが 0. 5mm未満の場合、構造材料としての強度が不足
2
して不適切である。また、ナゲット径が得られず、アルミニウム材料表面まで溶融が達 しゃすくチリができやすいため、高い接合強度が得られない。一方、アルミニウム材 の板厚 tが 4. Ommを越える場合は、前記した鋼材の板厚の場合と同様に、構造部
2
材ゃ構造材料としては他の接合手段が採用されるため、スポット溶接を行って接合 する必要性が少ない。このため、アルミニウム材の板厚 tを 4. Ommを超えて厚くする
2
必要性はない。
[0142] (抑制層) 本発明では、より高い接合強度を得るために、スポット溶接における、鋼とアルミ- ゥム材との間の界面反応層の形成面積や厚さ分布を制御する。そのために、本発明 では、鋼とアルミニウム材との間に界面反応層が形成する時間を抑制制御する。そし て、この界面反応層形成時間を抑制制御のために、鋼とアルミニウム材との間に (材 料に)予め抑制層を形成する。
[0143] 本発明では、この抑制層として、界面反応層形成時間の抑制制御と異種金属接触 腐食の抑制のために、これら接合される鋼材とアルミニウム材との互いの接合面間に 、特定範囲の Znまたは A1の金属皮膜と、有機榭脂接着剤の皮膜との二つを予め設 ける。このために、後述する通り、鋼材側あるいはアルミニウム材側のいずれかの接 合面側に、金属皮膜と有機榭脂接着剤の皮膜とを積層して設ける。設ける (積層する 顧序はいずれでもよいが、金属皮膜を先に設けた方が、有機榭脂接着剤の皮膜を 設けやすい。
[0144] (Znまたは A1の金属皮膜)
抑制層のひとつとして、先ず特定範囲の Znまたは A1の金属皮膜について、以下に 説明する。本発明では、接合される鋼材とアルミニウム材との互いの接合面間に、 Zn または A1の金属皮膜を予め設けられた状態でスポット溶接するため、鋼材またはァ ルミ二ゥム材の少なくとも接合面側の表面に、 Znまたは A1の金属皮膜を予め設ける。 この Znまたは A1の金属皮膜は、後述する特定融点範囲の通り、接合するアルミ-ゥ ム材と融点が近いために、スポット溶接時に、鋼とアルミの金属間化合物である界面 反応層が形成する時間を制御し、界面反応層の厚さ範囲と分布を制御することがで きる。
[0145] 裸の、あるいは Znまたは A1の金属皮膜が無 、ような、鋼材とアルミニウム材とを用 いた、従来のスポット溶接では、スポット溶接時の抵抗発熱量が比較的少ない。この ため、鋼材とアルミニウム材との界面温度、特に鋼材の温度が、アルミニウムの溶融 温度を越えて著しく高くなることが無いために、高い接合強度を得ることができなかつ た。これに、ウエルドボンド方式として、接合界面に有機榭脂接着剤層を介在させた 場合には、余計、スポット溶接自体や界面反応層形成制御が困難となって、高い接 合強度を得ることができな 、。 [0146] これに対して、接合される鋼材とアルミニウム材との互いの接合面間に、抑制層とし て、 Znまたは A1の金属皮膜を予め設けた場合には、接合面間に有機榭脂接着剤の 皮膜が介在して!/ヽても、スポット溶接自体や界面反応層形成制御が困難とならずに、 有機榭脂接着剤の皮膜の上機能を発揮させる。
[0147] これは、前記した通り、 Znまたは A1の金属皮膜の存在 (介在)によって、スポット溶 接時の抵抗発熱量が増し、鋼材とアルミニウム材との界面温度、特に鋼材の温度が、 アルミニウムの溶融温度を越えて著しく高くなるためである。この抵抗発熱量の増加 によって、有機榭脂接着剤の皮膜が、鋼材とアルミニウム材との溶接部分から、周囲 の部分に、排出あるいは除去されやすくなつて、鋼材とアルミニウム材とを電気的に 導通させることができる。
[0148] また、前記した通り、 Znまたは A1の金属皮膜の存在 (介在)によって、スポット溶接 時の抵抗発熱量が増すと、アルミニウムの鋼との界面での拡散速度が著しく速くなり 、鋼側にアルミニウムが拡散して、良好な接合状態がいち早く確保される。また、亜鉛 めっき鋼板の場合には、融点の差により亜鉛めつき層が先行して溶融する力 その結 果、界面における熱分布を均一化する効果もあると推考される。これら Znまたは A1の 金属皮膜の複合効果により、有機榭脂接着剤の皮膜が介在しても、従来の常識に反 して、スポット溶接性が向上するものと推考される。
[0149] これらの効果を発揮するために、 Znまたは A1の金属皮膜の融点は 350〜1000°C 、好ましくは 400〜950°Cの狭い温度範囲とする。また、更には、アルミニウム材の融 点以上 900°C以下のより狭 、温度範囲とすることが好ま 、。アルミニウム材の融点 は 660°C程度 (純 A1の融点)、純 Znの融点は 420°C程度であり、前記した、接合する アルミニウム材と融点が近いとは、例えば、純 A1の融点 660°Cに対して、上記ある程 度の幅を持つことを許容する、という意味である。
[0150] また、 Znまたは A1の金属皮膜の厚みは、 3〜19 mの膜厚 (平均膜厚)、更に好ま しくは 5〜 15 mの狭い膜厚範囲とする。 Znまたは A1の金属皮膜の厚みは、これら 皮膜形成後の鋼材あるいはアルミニウム材の試料を切断し、榭脂に埋め込み、研磨 をし、金属皮膜の板厚方向の SEM観察を行う。この SEM観察は 2000倍の視野に て 3点厚さを測定し、金属皮膜の厚みは、これらを平均化して求める。 [0151] Znまたは Alの金属皮膜の厚みが薄すぎる、あるいは、その融点が低すぎる場合は 、 Znまたは A1の金属皮膜が、スポット溶接時の接合初期に、接合部から溶融排出し てしまい、界面反応層の形成を抑制できない。
[0152] 一方、異材接合体の接合強度を上げるためには、接合される鋼材とアルミニウム材 とが、互いの接合面同士で直接接触する必要があり、スポット溶接時には、接合部に 予め介在して 、る Znまたは A1の金属皮膜が、接合部力も溶融排出する必要がある。 これに対して、 Znまたは A1の金属皮膜の厚みが厚すぎる、あるいは融点が高すぎる 場合は、接合部からの Znまたは A1の金属皮膜の溶融排出のために、大きな入熱量 が必要となる。この入熱量が大きくなると、アルミニウム材の溶融量が増加し、チリの 発生によりアルミニウム材の減肉量が大きくなるため、異材接合体を構造部材として 使用できなくなる。
[0153] Znまたは A1の金属皮膜は、上記融点範囲から、純 Znまたは純 Al、 Zn合金または A1合金などの、使用合金組成が適宜選択できる。また、鋼材またはアルミニウム材の 少なくとも接合面側の表面への金属皮膜の被覆あるいは形成方法も、めっき、塗布 などの汎用される公知の手段が適宜使用できる。なお、この鋼材またはアルミニウム 材表面への被覆あるいは形成は、少なくとも接合面側の表面とする力 勿論、防食な どのために、接合面でない鋼材またはアルミニウム材表面側に、 Znまたは A1の金属 皮膜を被覆もしくは形成してもよ!、。
[0154] ただ、実用性や効率を考慮すると、 Znまたは A1の金属皮膜は、 Znまたは A1のめつ きが汎用されて 、る鋼材側にめっきとして被覆あるいは形成することが好まし 、。鋼 材は通常、塗装を施して使用されるが、塗装に傷が入っても Znや A1が優先腐食され るために、鋼材を保護することができる。さらに、鋼とアルミ材との電位差を小さくする ことから、異種接合体での課題の一つである異種金属接触腐食をも抑制することが できる。 Znまたは A1めっきとした場合には、鋼材の耐食性を確保し、また鋼にもアル ミにも容易にめっきが可能である。
[0155] めっきを前提として、上記界面反応層形成抑制機能を発揮し、有機榭脂接着剤皮 膜が介在しても溶接を可能ならしめる機能を発揮するためには、 Znまたは A1のめつ き皮膜は、純 Zn、純 Alが好ましい。また、 Zn合金あるいは A1合金とするにしても、 Zn や Alを各々 80質量%以上含む、 Al—Zn、 Al—Si、 Zn—Feなどの合金において、 各々 Znや A1を主成分とすることが好まし ヽ。 Znまたは A1のめつき皮膜を合金化する 場合には、添加合金元素やその含有量によって、上記融点範囲から外れないよう、 また耐食性が劣らな 、ようにする。
[0156] これらのめっき皮膜の内でも、特に 88質量%以上の Znを含む、純 Zn、あるいは Zn 合金めつき皮膜が推奨される。 88質量%以上の Znを含む Znめっき皮膜が鋼材表面 に施されると、特に鋼材の耐食性が高くなり、また、この Znめっき皮膜は、融点を上記 350〜1000°Cの範囲に制御しやすい。更に、耐食性も高ぐ異種金属接触腐食も 抑制することができる。この異種金属接触腐食防止の観点力 最も良いのは純 Znめ つき皮膜である。
[0157] めっき方法については、本発明では制限するものではないが、既存の湿式、乾式 めっきを用いることが可能である。特に亜鉛めつきにおいては、電気めつきや溶融め つき、溶融めつき後合金化処理を行う方法などが推奨される。
[0158] (有機樹脂接着剤の皮膜)
次に、もうひとつの抑制層としての、有機榭脂接着剤の皮膜について、以下に説明 する。
[0159] 前記した通り、有機榭脂接着剤の皮膜は、電気的な絶縁層として、スポット溶接時 には、界面反応層形成時間を抑制制御し、更に、スポット溶接後は、鋼材とアルミ- ゥム材との間に、広範にあるいは全面的に介在して、異種金属接触腐食を抑制する 機能を有する。
[0160] 本発明では、鋼材とアルミニウム材の互 、の接合面間( 、ずれかの接合面表面)に 、有機榭脂接着剤の皮膜を塗布ないし形成後に、スポット接合を実施する。したがつ て、有機榭脂接着剤の皮膜は、スポット溶接時には、いわゆるウエルドボンドとして機 能する。即ち、鋼-アルミニウム材の界面の接触抵抗を大きくし、界面の発熱量を広 範囲に均一に高めることによって、広範囲に界面反応層を形成することができ、界面 反応層の厚さを制御しやくする。
[0161] 有機榭脂接着剤の種類や塗布厚さは、特に制限されず、通常、自動車の車体製 作に汎用される、マスチック接着剤、ゥエルボンド用接着剤、ヘミング用接着剤、スポ ットウエルド用シーリング剤など力 その種類や塗布厚さとともに適用できる。
[0162] 有機榭脂接着剤の種類を例示する。接着剤が水溶液系であれば、ユリア系、フエノ ール系、 PVAなどが適用できる。接着剤が溶液系であれば、 CR系、二トリルゴム系、 酢酸ビュル、二トリセルロースなどが適用できる。接着剤がェマルジヨン系であれば、 酢酸ビュル、アクリル、 EVA系、 CR系、 SBR系、二トリルゴム系、などが適用できる。 接着剤が無溶剤系であれば、エポキシ、アタリレート、ポリエステル、などが適用でき る。また、場合によっては、固型やテープなどの形状の有機榭脂接着剤を用いてもよ い。
[0163] ウエルドボンドにおいては、鋼材とアルミニウム材とを電気的に導通させて、スポット 接合を可能とし、接合強度を高めるために、スポット接合時に接着剤を外部に押し出 して、接合部における接着剤の残存量を少なくする方が好ましい。ただし、接合部に おける接着剤の残存を完全に無くさずとも、接合部においてスポット接合を阻害しな い程度に、例えば、接着剤が層をなさない程度に、接着剤が残留してもよい。
[0164] この点、エポキシ、アクリルなどの熱硬化性榭脂接着剤皮膜であれば、スポット溶接 時に、鋼材とアルミニウム材とを挟持する両電極チップ力 応力(加圧力)を加えた場 合に、軟質ゆえに、鋼材とアルミニウム材との溶接部分から、周囲の部分に、排出あ るいは除去されやすい特性がある。熱硬化性榭脂接着剤を用いれば、この特性によ つて、スポット接合時に、鋼材とアルミニウム材とを電気的に導通させることができる。
[0165] また、熱可塑性榭脂接着剤皮膜であっても、スポット溶接時に加熱されれば、軟質 ゆえに、鋼材とアルミニウム材との溶接部分から、その周囲の部分に、排出あるいは 除去されやすい特性となる。更に、このように、加熱や加圧によっても、鋼材とアルミ ユウム材との溶接部分から、周囲の部分に、排出あるいは除去されないとしても、スポ ット溶接時の発熱によって飛散ある!ヽは焼失すれば、鋼材とアルミニウム材とを電気 的〖こ導通させることができる。
[0166] スポット溶接後は、有機榭脂接着剤皮膜は、除去されたスポット溶接部のみを除い て、鋼材とアルミニウム材との間に、広範にあるいは全面的に介在して、電気的な絶 縁層となり、異材接合体の異種金属接触腐食を抑制する。
[0167] なお、塗布する有機樹脂接着剤厚みは、スポット溶接性には実質的に影響しない。 それは、溶接部の有機榭脂接着剤厚みは、有機榭脂接着剤の組成や種類にもより 若干の違いはあるが、スポット溶接時の接触面圧に実質的に支配されるためである。 したがって、後述のように、接触面圧の制御が重要である。塗布する有機榭脂接着 剤厚みは、耐食性の面力 ピンホールが存在しにくい、 0. 1 m以上であればよぐ 接合時の圧力によって接着剤がはみ出ない程度に薄く塗布することが必要である。 また、スポット接合後の最終的な接着剤厚みは、腐食抑制のために、接着剤の硬化 後あるいは熱硬化後の目安で 0. 1〜: LO m程度の厚みがあればよい。
[0168] これに対して、接合される鋼材とアルミニウム材との互いの接合面間に、抑制層とし てもうひとつ、 Znまたは A1の金属皮膜を予め設けた場合には、有機榭脂接着剤の皮 膜があっても、スポット溶接自体や界面反応層形成制御が困難とならずに、有機榭 脂接着剤の皮膜の上機能を発揮させる。
[0169] これは、 Znまたは A1の金属皮膜の存在 (介在)によって、スポット溶接時の抵抗発 熱量が増し、鋼材とアルミニウム材との界面温度、特に鋼材の温度力 アルミニウム の溶融温度を越えて著しく高くなるためと推考される。この抵抗発熱量の増加によつ て、有機榭脂接着剤の皮膜が、鋼材とアルミニウム材との溶接部分から、周囲の部分 に、排出あるいは除去されやすくなつて、鋼材とアルミニウム材とを電気的に導通させ ることがでさる。
[0170] また、 Znまたは A1の金属皮膜の存在 (介在)によって、スポット溶接時の抵抗発熱 量が増すと、アルミニウムの鋼との界面での拡散速度が著しく速くなり、鋼側にアルミ -ゥムが拡散して、良好な接合状態がいち早く確保されると推考される。また、亜鉛 めっき鋼板の場合には、融点の差により亜鉛めつき層が先行して溶融する力 その結 果、界面における熱分布を均一化する効果もあると推考される。これら Znまたは A1の 金属皮膜の複合効果により、有機榭脂接着剤の皮膜が介在しても、従来の常識に反 して、スポット溶接性が向上するものと推考される。
[0171] (界面反応層)
本発明では、異材接合体界面反応層の厚さが 0. 5〜5 /ζ πιである部分の面積が、 アルミニウム材の板厚 tとの関係で、 lO X t °· 5mm2以上であることとする。この最適
2 2
厚さの界面反応層の面積規定は、界面反応層が薄 、(無 、;)程良 、と 、う従来の常識 とは異なり、最適範囲に制御するものであり、指向する方向としてはむしろ積極的に 存在させる方向でもある。そして、接合強度向上のために、最適厚さ範囲の界面反 応層を大面積形成する、言い換えると広範囲に存在させるという技術思想に基づく。
[0172] したがって、この界面反応層の厚さが 0. 5〜5 μ mである部分の面積力 アルミ-ゥ ム材の板厚 tとの関係で、 lO X t 5mm2未満、より厳しくは、 50 X t 5mm2未満で
2 2 2
は、最適厚さ範囲の界面反応層が広範囲とならず、却って接合強度が低下する。界 面反応層の厚さが 0. 5 m未満の部分では、鋼-アルミの拡散が不十分となり、接合 強度が低くなる。逆に界面反応層の厚さが厚いほど脆弱となり、特に界面反応層の 厚さが 5 mを超える部分では脆弱となり、接合強度が低くなる。このため、このような 界面反応層の面積が大きくなるほど、接合部全体としての接合強度が低くなる。
[0173] よって、接合部全体としての接合強度を高めるためには、界面反応層の厚さが 0. 5 〜5 mである部分の面積力 アルミニウム材の板厚 tとの関係で、 lO X t °· 5mm2
2 2 以上、好ましくは 50 X t ' 5mm2以上必要である。
2
[0174] なお、電極チップに一般的に用いられるドーム型のチップを用いた場合、中心部が 最も厚い界面反応層となり、中心から離れるほど界面反応層の厚さが低減する。した がって、この中心部の界面反応層の厚さは 5 mを超えても構わない。この界面反応 層の厚さは、鋼材-アルミニウム材が接合している界面の面積の、アルミニウム材側の 、 2000倍の画像解析や SEM観察によって測定できる。
[0175] (スポット溶接)
異種接合体を得るためのスポット溶接方法の各要件を以下に説明する。図 3に異 種接合体を得るための、前提となるスポット溶接の一態様を例示する。本発明スポット 溶接方法の基本的な態様は、通常のスポット溶接の態様と同じである。図 3において 、 11は鋼板、 12はアルミニウム合金板、 15はナゲット、 17と 18は電極、 13は異種接 合体である。
[0176] 本発明スポット溶接方法では、前記した板厚 tの鋼材と板厚 tのアルミニウム材との
1 2
異材接合体をスポット溶接により得るに際して、これら接合される鋼材とアルミニウム 材との互いの接合面間に、 Znまたは A1の金属皮膜と有機榭脂接着剤の皮膜とを予 め設けた状態でスポット溶接する。 [0177] この際、前記したように、鋼材-アルミニウム材の接合面側に、有機榭脂接着剤を塗 布して、スポット接合を行い、その後、塗布した有機榭脂接着剤を硬化させることが、 界面反応層の厚さ制御と異種金属接触腐食の抑制の両観点力 は望ましい。
[0178] (加圧力)
このようなスポット溶接において、アルミニウム材 12側の電極チップ 18の先端径を 7 mm φ以上として、電極チップ 17、 18による加圧力を、先端曲率半径 Rmmと加圧力 WkNとの関係が(RXW) 1/3ZR>0. 05となるよう〖こ印カロする。この加圧力も大きい 方がより接着剤を押し出せるため望ましいが、スポット溶接の能力限界力 すると、現 実的には 1 OkNまでである。
[0179] 点接触での接触面圧は (RXW)1/3ZRにほぼ比例する力、接合部にカゝかる接触面 圧が過小では接着剤の残存が大きぐ界面反応層の成長を妨げるため、接着剤を外 部に押し出すだけの接触面圧が必要となる。(R X W)1/3ZRが 0. 05以下では、接着 剤が層として残存し、界面反応層が成長しない。
[0180] また、このような比較的大きな加圧力を印加することで、電極チップなどの形状によ らず、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金属 をナゲット周辺の未溶融部で支え、上記比較的大きなナゲット必要面積と、上記最適 界面反応層の必要面積を得ることができる。また、チリの発生を抑制することができる 。加圧力が小さすぎると、このような効果を得られない。
[0181] (電極チップ)
前記した最適範囲厚さの界面反応層を広範囲に形成するためには、特にアルミ二 ゥム材側にっ 、ては先端径は 7mm φ以上で先端曲率半径 Rの大き 、ドーム型など の R型形状のチップとする。また、鋼材側も同様に曲率半径 Rの大きい方が望ましい 1S スポット溶接の能力限界力もすると、現実的には Rは 250mmまでである。
[0182] また、電極形状については規定するものではないが、電極が、通電初期の電流効 率を上げるために望ましい。また、極性についても規定するものではないが、直流ス ポットを用いる場合は、アルミニウムを陽極とし、鋼を陰極とする方が望ましい。
[0183] (電流)
スポット溶接時の電流については、比較的大きなナゲット面積と、上記最適界面反 応層の必要面積を得るためには、前記アルミニウム材の板厚 tとの関係で、 15 Xt °·
2 2
5〜30Xt 5kAの電流を lOOXt 0 5〜: LOOOXt °· 5msec流す工程を有し、このェ
2 2 2
程より高 ヽ電流の工程が存在しな!、電流パターンであることが必要である。
[0184] このような電流パターンとすることで、予め本発明の抑制層を形成した際に、大きな 入熱量が得られ、前記した通り、鋼とアルミニウム材との接合面における界面反応層 を制御して、高い接合強度を得ることが可能となる。また、異種材料間と、電極と材料 間との電気的接触を安定ィ匕し、ナゲット内の溶融金属をナゲット周辺の未溶融部で 支え、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得 ることができる。また、チリの発生を抑制することができる。
[0185] 電流パターンの上記工程において、 15 Xt '5kA未満、または 100 Xt 5msec未
2 2 満では、表面処理層及びアルミニウム材の溶融が広範囲に行われず、最適範囲厚さ の界面反応層の面積が小さい。一方、 30 Xt 5kA Xt °·5
2 を超える、あるいは 1000
2 msecを超えては、界面反応層が厚く成長するため、最適範囲厚さの界面反応層の 面積が小さくなる。
[0186] この電流範囲の工程は複数あっても良いが、それらの合計時間が上記 100 Xt °· 5
2
〜1000Xt 5msecの範囲であることが重要である。なお、同種金属接合では、入
2
熱量が同一であれば近い接合構造が得られる力 鋼とアルミニウム材との接合では、 例えば 30Xt 5kA超えで 100Xt · 5msec未満の電流パターンや、 15 Xt · 5kA
2 2 2 未満で 1000 Xt °· 5msec超えの電流パターンでは、最適範囲厚さの界面反応層の
2
面積が広範囲に得られない。この電流条件の前後の工程に、別の電流パターンを加 えて、複数段階の電流パターンとしても良いが、界面反応層が厚く成長してしまうた め、この工程より高 、電流の工程が存在しな!、ことが必要である。
[0187] 更に、望ましい電流パターンとして、 lXt °'5〜10Xt '51^の電流を100 · 5
2 2 2
〜1000Xt °· 5msec流す工程をカ卩えて、ナゲットの割れを抑制することが好ましい。
2
[0188] [実施例]
鋼材として市販の 590MPa級の高張力鋼板と、アルミニウム材として市販の A606 1(6000系)アルミニウム合金板とを重ね合わせた上で、スポット溶接を行い、異材接 合体を製作し、接合強度、耐食性を評価した。
[ε挲] [6810] ZZ£S0/L00Zd /lDd OP 8L£L60/L00Z OAV 〔アルミニウム材の板厚 t 2: 1 mm
Figure imgf000043_0001
ZZ£S0/L00Zd /lDd ZV 8.C.60/.00Z OAV
Figure imgf000045_0001
[0191] (スポット溶接条件を変えたウエルドボンド材)
接合面側に溶融純 Znめっきを平均厚み 10 μ mで施した上記鋼板と上記アルミ- ゥム板とを、接合面間にエポキシ系熱硬化型接着剤を塗布した上で重ね合わせたゥ エルドボンド材として、スポット溶接し、異材接合体を製作した結果を表 3、 4に示す。
[0192] 表 3はアルミニウム板の板厚が lmm、表 4はアルミニウム板の板厚が 2mmの場合を 示す。表 3、 4では、鋼板の接合面側のめっき条件や熱硬化型接着剤条件は一定と し、スポット溶接における、電極条件や電流条件を種々変えて異材接合体を製作し ている。また、表 3、 4の例は、各例とも共通して、エポキシ系熱硬化型接着剤を、厚 みが 0. 5〜1 μ m程度 (スポット接合時の圧力によって接着剤がはみ出ない程度)に なるよう、刷毛にて均一に薄く塗布した。
[0193] [表 5]
Figure imgf000047_0001
っき条件や熱硬化型接着剤条件を変えたウエルドボンド材)
また、スポット溶接における電極条件や電流条件は一定とし、鋼板やアルミニウム合 金板の接合面側のめっき条件や熱硬化型接着剤条件を種々変えた、鋼板とアルミ- ゥム板とのウエルドボンド材で異材接合体を製作した結果も表 5に示す。表 5で接着 剤を塗布した場合の各例は、共通して、エポキシ系あるいはポリウレタン系の接着剤 を、接合面間に、厚みが 0. 5〜1 μ m程度になるよう、刷毛にて均一に薄く塗布した
[0195] (使用素材)
素材として、鋼板は板厚 lmmで 0. 07質量%C— 1. 8質量%Mnを含む組成のも の、 A6061アルミニウム合金板は板厚 lmmと 2mmのものを各々準備し、これら鋼板 、アルミニウム合金板とも、 JIS A 3137記載の十字引張試験片形状に加工し、スポ ット溶接を行った。
[0196] (接着剤)
エポキシ系は、市販のエポキシ系熱硬化型構造用接着剤 (サンスター技研製ペン ギン # 1086)を使用した。ポリウレタン系は、市販のポリウレタン系熱硬化型構造用接 着剤 (サンスター技研製ペンギンシール 980)を使用した。
[0197] (めっき)
鋼材にめっきを施す場合は、共通して、 10%硫酸にて 5分の酸洗'活性ィ匕する前 処理を行った後、各種めつきを行った。 Zn電気めつきでは、硫酸亜鉛 400gZl、硫 酸アルミニウム 30gZl、塩化ナトリウム 15gZl、ホウ酸 30gZlに硫酸をカ卩えて ρΗを 3 とした浴にて 20AZdm2の電流を流すことにより、純 Znめっきを 10 m施した。これ を Zn— 10%Ni合金めつきとする場合には、純 Znめっきの亜鉛めつき浴に、硫酸-ッ ケル、塩化ニッケルを添カ卩した浴にて lOAZdm2の電流を流すことにより、 Zn—10 %Niめっきを 10 μ m施した。
[0198] 溶融めつきは鋼材のみに行い、各種溶融金属を用いて A1めっき、 A1— 9質量%Si めっき、 Znめっき、 Zn— Feめっき(Fe量 5、 10、 12、 16%)をそれぞれ 10 m施し た。溶融 Znめっきでは、温度、引き上げ温度を変化させることにより、膜厚を 1、 3、 1 0、 15、 19、 20 /z mに調整した。
[0199] また、比較例 (表 5の比較例 3)としての Niめっきは、ワット浴を用いて lOAZdm2の 電流を流すことにより、 10 /z m施した。 [0200] アルミニウム材にめっきを施す場合は、 10%硝酸にて 30秒酸洗し、水酸化ナトリウ ム 500gZl、酸ィ匕亜鉛 100g/l、塩化第二鉄 lg/l、ロッセル塩 lOg/1の処理液中 にて 30秒亜鉛置換処理を行った後、 Zn、あるいは Zn—電気めつきを行った。また、 その亜鉛めつき浴に硫酸ニッケル、塩ィ匕ニッケルを添カ卩した浴にて lOAZdm2の電 流を流すことにより、 Zn— 10%Niめっきを 10 /z m施した。
[0201] (膜厚測定)
めっき皮膜の膜厚は、めっき後のサンプルを切断し、榭脂に埋め込み、研磨をし、 スポット溶接前の状態の接合界面の SEM観察を行った。 2000倍の視野にて 3点厚 さを測定し、平均して求めた。
[0202] (スポット溶接)
スポット溶接は、直流抵抗溶接試験機を用い、 Cu— Cr合金力もなるドーム型の電 極を用い、陽極をアルミニウム、陰極を鋼として接合した。表 3、 4では、表 3、 4に示 す電極チップ条件 [先端径、先端曲率半径 R、加圧力 Wと (RXW) 1/3ZR]、電流パ ターン [溶接工程 1と 2の溶接電流、溶接時間]にて溶接を行い、異材接合体の十字 引張試験体を作製した。
[0203] この際、表 3、 4の各発明例は、アルミニウム材側の電極チップの先端径を 7mm φ 以上として、電極チップによる加圧力を、先端曲率半径 Rmmと加圧力 WkNとの関係 が(RXW) 1/3/R>0. 05となるように印カロし、力つ 15 X t ° 5〜30 X t。 5kAの電流
2 2
を lOO X t °· 5〜: LOOO X t °· 5msec流す工程を有する電流パターンにてスポット溶接
2 2
した。
[0204] また、表 5では、各例とも共通して、表 3の Nで示す発明例のスポット溶接条件を一 定にして、溶接を行い、十字引張試験体を作製した。
[0205] これら各条件について、接合強度評価用に 5体、接合界面評価用に 3体、腐食試 験用に 3体作製した。本試験では、電極チップは鋼側、アルミニウム材側で同一形状 のものを用いた。このうち、界面評価用のサンプルについては、スポット溶接後、 180
°Cで 30分の熱処理を行 ヽ、接着剤を完全に硬化した。
[0206] (界面反応層の厚さ測定)
界面反応層の厚さ測定は、スポット溶接後のサンプルを、溶接部の中央にて切断し 、榭脂に埋め込み、研磨をし、 SEM観察を行った。層の厚さが 1 m以上の場合は 2 000倍の視野にて、: m未満の場合は 10000倍の視野にて計測した。また、ここで の界面反応層とは、 Feと A1を両方含む化合物層を指し、 EDXにより、 Feと A1がとも に lwt%以上検出される層をいう。すなわち、 Feと A1がともに lwt%以上検出されな い層はめつき層や残留接着剤として界面反応層としな力つた。
[0207] なお、本試験では、中心部が最も界面反応層が厚ぐ端部 (周縁部)ほど界面反応 層が薄くなつていたため、 10 mを超える厚さの界面反応層の径、 0. 以上の 厚さの界面反応層の径を求め、面積に換算した。測定は、 3体の接合体について行 い、直交した 2方向のナゲット径を測定し、平均化した。
[0208] (接合強度評価)
強度の評価には、スポット接合の強度を測定するために、接着剤硬化前の状態で、 各条件について 5体の十字引張試験を実施し、平均化した。接合強度が 1. 5kN以 上または破断形態がアルミ母材破断であれば◎、接合強度が 1. 0〜1. 5kNであれ ば〇、接合強度が 0. 5〜1. OkNであれば△、接合強度が 0. 5kN未満であれば X とした。ここで、接合強度が 1. 0〜1. 5kN(〇)以上なければ、自動車などの構造材 用として使用できない。
[0209] (異種金属接触腐食製評価)
また、各種条件で接合した接合体について、アルカリ脱脂を行い、水洗後、日本べ イント社製のサーフファイン 5N— 10の 0. 1 %水溶液を用いて 30秒表面調整処理を 行った。その後、亜鉛イオン 1. Og/ ニッケルイオン 1. Og/l、マンガンイオン 0. 8 gZl、リン酸イオン 15. Og/U硝酸イオン 6. Og/U亜硝酸イオン 0. 12gZl、トーナ 一値 2. 5pt、全酸度 22pt、遊離酸度 0. 3〜0. 5pt、 50°Cの浴にて、 2分リン酸亜鉛 処理を行った。その後、カチオン電着塗料(日本ペイント社製パワートップ V50ダレ 一)により塗装し、 170°C25分焼き付けし、 30 mの皮膜を形成した。
[0210] その後、複合腐食試験を行!、異種金属接触腐食防止性の評価を行った。腐食試 験は、 A:塩水噴霧(35度、 5%NaCl) 2hr、 B:乾燥(60°C、 20— 30%RH) 4hr、 C: 湿潤(50°C、 95%RH以上) 2hrを 1サイクルとする試験を 90サイクル行なった。この 試験後に、接合部を剥離させて観察し、耐食性 (A1の最大腐食深さ)を評価した。 [0211] 耐食性は 3体の異材接合体のアルミニウム材の最大腐食深さを測定し、平均で 0.
Olmm未満であれば◎、 0. 01〜0. 02mmであれば〇、 0. 02〜0. 1mmであれば △、 0. 1mm以上であれば Xとした。最大腐食深さが 0. 01-0. 02mm(〇)未満で なければ、自動車などの構造材用として使用できな!/、。
[0212] (表 3、 4の結果)
表 3、 4から分力ゝる通り、好適な範囲でスポット接合された発明例 I〜Pの異材接合体 は、非常に高い耐食性が得られていることが分かる。これは接合面間に設けられた溶 融亜鉛めつきと熱硬化型接着剤の効果である。但し、好適な範囲を外れてスポット接 合された比較例 A〜Hでも、発明例と同じぐ接合面間に亜鉛めつきと熱硬化型接着 剤が設けられており、同様に耐食性は高い。
[0213] 一方、接合強度に関しては、好適なスポット接合条件範囲を外れ、電極チップの先 端径が小さい、先端曲率半径との関係で加圧力が低い、などの比較例 A〜Cでは、 高い接合強度が得られていない。また、電流条件も本発明の範囲を満たさない比較 例 D〜Hでも接合強度が低 、。
[0214] 比較例 A〜Gは、溶接工程 2をしている比較例 Hを除き、溶接工程 1のみで、溶接 工程 2をせずにスポット接合している。このうち、比較例 Aは電極チップの先端径が小 さすぎる。比較例 B、比較例 Cは、先端曲率半径との関係で加圧力が低すぎる。
[0215] また、比較例 Dは溶接工程 1の溶接電流がアルミニウム材の板厚との関係で低すぎ る。比較例 Eは溶接工程 1の溶接時間がアルミニウム材の板厚との関係で短かすぎる 。比較例 Fは溶接工程 1の溶接電流がアルミニウム材の板厚との関係で高すぎる。比 較例 Gは溶接工程 1の溶接時間がアルミニウム材の板厚との関係で長すぎる。比較 例 Hは溶接工程はりも著しく高い電流を流す溶接工程 2が存在する。
[0216] 即ち、発明例 I〜Pは、スポット溶接にぉ 、て、アルミニウム材側の電極チップの先 端径を 7mm φ以上として、電極チップによる加圧力を、先端曲率半径 Rmmと加圧 力 WkNとの関係が(RXW) 1/3/R>0. 05となるように印カロし、力つ 15 X t °· 5〜30
2
X t 八の電流を100 °' 5〜1000 X t °· 5msec流す、好ましい溶接工程 1にて
2 2 2
スポット溶接している。また、発明例 I、 Kはこの溶接工程 1のみで、溶接工程 2をせず にスポット接合している。このため、各発明例は最適厚さの界面反応層を制御できて おり、接合強度が高い。
[0217] これら発明例のうち、上記溶接工程 1を有するとともに、この溶接工程 1より高い電 流を流す溶接工程が存在しない電流パターンにてスポット溶接している発明例 N、0 、 Pは、後の溶接工程 2が I X t °· 5〜: LO X t °· 5kAの電流を lOO X t °· 5〜: LOOO X t 0
2 2 2 2
5mSec流す好ましい条件であることもあり、最も接合強度が高い。これに対して、この 溶接工程 1より高い電流を流す溶接工程 2が存在する電流パターンにてスポット溶接 している発明例 L、 Mは、上記発明例 N、 0、 Pよりも接合強度が低い。
[0218] (表 5の結果)
表 5より分力る通り、榭脂接着剤が無い比較例 1、 10、 14は、耐食性が劣る。また、 めっきが無い比較例 2、めっき条件 (融点)が範囲力も外れる比較例 3、 4、 5は、十字 引張試験結果に劣り、接合強度が低い。なお、この条件では、めっきが無く、接着剤 力 Sある比較例 2も、却って十字引張試験結果も劣る結果であった。めっき厚みが厚す ぎる比較例 21も、純亜鉛めつきでありながら、かえって十字引張試験結果が劣る結 果であった。
[0219] これに対して、榭脂接着剤を有し、めっき条件 (融点)が範囲内である発明例 6〜9、 11〜13、 15、 18、 19、 20、 22は、最適厚さの界面反応層を制御できており、耐食 性が優れ、接合強度が高い。この内、純亜鉛めつきを施した発明例 6〜7、 11、 18、 19、 20、 22は、最も接合強度が高い。この結果から、めっきを本発明の成分、融点、 膜厚に制御することによって、最適厚さの界面反応層を制御でき、高い接合強度と 耐食性が得られることが分かる。また、特に、純 Znめっきにて膜厚が 5〜15 /ζ πιでゥ ェルドボンドとした場合、非常に高 、接合強度と耐食性が両立して得られることが分 かる。
[0220] 以上の実施例の結果から、異材接合体の接合強度を高めるとともに接触腐食を抑 制できる本発明で規定する各要件の臨界的な意義が分かる。
[0221] [3]
(異種接合体)
図 2に本発明の一実施態様で規定する異種接合体を断面図で示す。図 2において 、 13が鋼材 (鋼板) 11とアルミニウム材 (アルミニウム合金板) 12とをスポット溶接にて接 合した異材接合体である。 15はスポット溶接における界面反応層 16を有するナゲッ トで、図中に水平方向に矢印で示すナゲット径を有する。 19はナゲット周囲のコロナ ボンド部である。 tは鋼材の板厚、 tはアルミニウム材 12の板厚、 Atはスポット溶接
1 2
による接合後のアルミニウム材の最小残存板厚を示す。
[0222] ここにおいて、 14は抑制層 (腐食抑制層)で、これら接合される鋼材 11とアルミ-ゥ ム材 12との互いの接合面間に予め設けられた、 Zn (純 Znの意味)または Zn合金の金 属皮膜とリン酸塩皮膜との積層体である。図 2では Znまたは Zn合金皮膜とリン酸塩 皮膜とを各々区分けせずに一体に示しているが、鋼材 11の接合側表面にめっきなど によって Znまたは Zn合金皮膜を設け、その上にリン酸亜鉛皮膜を施して、抑制層 14 (腐食抑制層)として!/ヽる態様を示す。
[0223] そして、図 2は、スポット溶接後の異種接合体の接合部では、スポット溶接前に予め 設けられて 、た、 Znまたは Zn合金皮膜とリン酸亜鉛皮膜との積層体である抑制層( 腐食抑制層) 14が除去され、鋼材 11とアルミニウム材 12とが直接接合している、異種 接合体の良好な接合状態を示している。更に、図 2では、異種接合体の接合部以外 の界面領域には、予め形成した、これら抑制層(腐食抑制層) 14が、そのまま存在し て 、ることを示している。
[0224] (鋼材の板厚)
本発明では、鋼材の板厚 tが 0. 3〜3. Ommである接合体であることが必要である o鋼材の板厚 tが 0. 3mm未満の場合、前記した構造部材ゃ構造材料として必要な 強度や剛性を確保できず不適正である。また、それにカ卩えて、スポット溶接による加 圧によって、鋼材の変形が大きぐ酸ィ匕皮膜が容易に破壊されるため、アルミニウムと の反応が促進される。その結果、金属間化合物が形成しやすくなる。
[0225] 一方、 3. Ommを越える場合は、前記した構造部材ゃ構造材料としては、他の接合 手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、 鋼材の板厚 tを 3. Ommを超えて厚くする必要性はない。
[0226] (鋼材)
本発明においては、使用する鋼材の形状や材料を特に限定するものではなぐ構 造部材に汎用される、あるいは構造部材用途から選択される、鋼板、鋼形材、鋼管な どの適宜の形状、材料が使用可能である。ただ、自動車部材などの軽量な高強度構 造部材 (異材接合体)を得るためには、鋼材の引張強度が 400MPa以上である通常 の高張力鋼 (ノ、ィテン)であることが好ま 、。
[0227] 引張強度力 OOMPa未満の低強度鋼では一般に低合金鋼が多ぐ酸ィ匕皮膜が鉄 酸ィ匕物からなるため、 Feと A1の拡散が容易となり、脆い金属間化合物が形成しやす い。このためにも引張強度が 400MPa以上、望ましくは 500MPa以上の高張力鋼( ハイテン)であることが好まし!/、。
[0228] (アルミニウム材)
本発明で用いるアルミニウム材は、その合金の種類や形状を特に限定するものでは なぐ各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造材 、铸造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼材 の場合と同様に、スポット溶接時の加圧による変形を抑えるために高い方が望ましい 。この点、アルミニウム合金の中でも強度が高ぐこの種構造用部材として汎用されて ヽる、 A5000系、 A6000系などの使用力最適である。
[0229] ただ、本発明で使用するこれらアルミニウム材の板厚 tは 0. 5〜4. Ommの範囲と
2
する。アルミニウム材の板厚 tが 0. 5mm未満の場合、構造材料としての強度が不足
2
して不適切であるのにカ卩え、ナゲット径が得られず、アルミニウム材料表面まで溶融 が達しやすくチリができやすいため、高い接合強度が得られない。一方、アルミ-ゥ ム材の板厚 tが 4. Ommを越える場合は、前記した鋼材の板厚の場合と同様に、構
2
造部材ゃ構造材料としては他の接合手段が採用されるため、スポット溶接を行って 接合する必要性が少ない。このため、アルミニウム材の板厚 tを 4. Ommを超えて厚
2
くする必要性はない。
[0230] (抑制層)
本発明では、より高い接合強度を得るために、異種金属接触腐食を抑制し、接合 強度の低下を防止するために、鋼とアルミニウム材との間に (材料に)予め抑制層 (腐 食抑制層)を形成する。この抑制層は、また、スポット溶接における、鋼とアルミニウム 材との間の界面反応層の形成面積や厚さ分布の制御を損なわないことが必要である [0231] 本発明では、このような機能を有する抑制層 (腐食抑制層)として、これら接合される 鋼材とアルミニウム材との互いの接合面間に、 Znまたは Zn合金の金属皮膜と、リン酸 亜鉛皮膜との二つを予め設ける。このために、後述する通り、鋼材側あるいはアルミ ユウム材側のいずれかの接合面側に、金属皮膜とリン酸塩皮膜とを積層して設ける。 設ける (積層する)順序はいずれでもよいが、金属皮膜を先に設けた方が、リン酸亜鉛 皮膜を設けやすい。
[0232] (Znまたは Zn合金皮膜)
抑制層 (腐食抑制層)のひとつとして、まず Zn (純 Zn)または Zn合金の金属皮膜につ いて、以下に説明する。本発明では、接合される鋼材とアルミニウム材との互いの接 合面間に、 Znまたは Zn合金の金属皮膜を予め設けられた状態でスポット溶接するた め、鋼材またはアルミニウム材の少なくとも接合面側の表面に、 Znまたは Zn合金の 金属皮膜を予め設ける。この Znまたは Zn合金皮膜は、アルミニウム材と融点が近ぐ スポット溶接時に、リン酸塩皮膜が存在しても、鋼とアルミの金属間化合物である界面 反応層が形成される時間制御や、界面反応層の厚さ範囲と分布制御を阻害させな い特性がある。
[0233] 裸の、あるいは Znまたは Zn合金皮膜が無 、ような、鋼材とアルミニウム材とを用い た、従来のスポット溶接では、接合界面にリン酸塩の皮膜が存在すると、スポット溶接 自体や界面反応層形成制御が困難となり、高い接合強度を得ることができな力つた。
[0234] これに対して、接合される鋼材とアルミニウム材との互いの接合面間に、抑制層とし て Znまたは Zn合金皮膜を予め設けた場合には、接合面間に抑制層としてもうひとつ 、リン酸塩皮膜が介在していても、スポット溶接自体や界面反応層形成制御が困難と ならずに、リン酸塩皮膜の上記機能を発揮させる。これは、 Znまたは Zn合金皮膜の 存在 (介在)によって、スポット溶接時の抵抗発熱量が増し、鋼材とアルミニウム材と の界面温度、特に鋼材の温度が、アルミニウムの溶融温度を越えて著しく高くなるた めと推考される。この抵抗発熱量の増加によって、リン酸塩皮膜が破壊されて、溶融 したアルミニウム材に溶出されやすくなつて、鋼材とアルミニウム材とを電気的に導通 させることがでさる。
[0235] 言 、換えると、もうひとつの存在であるリン酸塩皮膜は、この Znまたは Zn合金皮膜 との共存下において、スポット溶接時には、スポット溶接部部分のみにおいて破壊さ れ、このスポット溶接部で鋼材とアルミニウム材とを電気的に導通させることができる。 いずれの側に存在させるにせよ、本発明における特定範囲の Znまたは Zn合金皮膜 無しに、単独で、リン酸塩皮膜を鋼材とアルミニウム材との間に介在させると、前記し た通り、接合体の界面反応層の形成面積や厚さ分布制御が阻害される。
[0236] また、前記した通り、 Znまたは Zn合金皮膜の存在 (介在)によって、スポット溶接時 の抵抗発熱量が増すと、アルミニウムの鋼との界面での拡散速度が著しく速くなり、 鋼側にアルミニウムが拡散して、良好な接合状態がいち早く確保される。また、亜鉛 めっき鋼板の場合には、融点の差により亜鉛めつき層が先行して溶融する力 その結 果、界面における熱分布を均一化する効果もあると推考される。これら Znまたは Zn 合金皮膜の複合効果により、リン酸塩皮膜が介在しても、スポット溶接性が損なわれ ないものと推考される。
[0237] これらの効果を発揮するために、 Znまたは Zn合金属皮膜の融点は 350〜1000°C 、好ましくは 400〜950°Cの狭い温度範囲とする。また、更には、アルミニウム材の融 点以上 900°C以下のより狭い温度範囲とすることが好ましい。純 A1の融点は 660°C 程度、純 Znの融点は 420°C程度であり、前記した、接合するアルミニウム材と融点が 近いとは、例えば、純 A1の融点 660°Cに対して、上記ある程度の幅を持つことを許容 する、という意味である。
[0238] また、 Znまたは Zn合金皮膜の厚みは、 3〜19 mの膜厚 (平均膜厚)、更に好まし くは 5〜 15 mの膜厚範囲とする。これら Znまたは Zn合金皮膜の厚みは、これら皮 膜形成後の鋼材あるいはアルミニウム材の試料を切断し、榭脂に埋め込み、研磨を し、金属皮膜の板厚方向の SEM観察を行う。この SEM観察は 2000倍の視野にて 3 点厚さを測定し、金属皮膜の厚みは、部位の違う 5力所程度の観察結果の平均で求 める。
[0239] Znまたは Zn合金皮膜の厚みが薄すぎる、ある 、は、その融点が低すぎる場合は、 Znまたは Zn合金皮膜が、スポット溶接時の接合初期に、接合部から溶融排出してし まい、界面反応層の形成を抑制できない。また、抵抗発熱量の増加が少なくなり、リ ン酸塩皮膜を破壊しに《なり、スポット溶接部で鋼材とアルミニウム材とを電気的に 導通させることができに《なる。
[0240] 一方、異材接合体の接合強度を上げるためには、接合される鋼材とアルミニウム材 とが、互いの接合面同士で直接接触する必要があり、スポット溶接時には、接合部に 予め介在している Znまたは Zn合金皮膜が、接合部力 溶融排出する必要がある。こ れに対して、 Znまたは Zn合金皮膜の厚みが厚すぎる、あるいは融点が高すぎる場 合は、接合部からの Znまたは Zn合金皮膜の溶融排出のために、大きな入熱量が必 要となる。この入熱量が大きくなると、アルミニウム材の溶融量が増加し、チリの発生 によりアルミニウム材の減肉量が大きくなるため、異材接合体を構造部材として使用 できなくなる。
[0241] Znまたは Zn合金皮膜は、上記融点範囲の純 Zn、 Zn合金などが適宜選択できる。
また、鋼材またはアルミニウム材の少なくとも接合面側の表面への金属皮膜の被覆あ るいは形成方法も、めっき、塗布などの汎用される公知の手段が適宜使用できる。な お、この鋼材またはアルミニウム材表面への被覆あるいは形成は、少なくとも接合面 側の表面とするが、勿論、防食などのために、接合面でない鋼材またはアルミニウム 材表面側に、 Znまたは Zn合金皮膜を被覆ある 、は形成してもよ ヽ。
[0242] ただ、実用性や効率を考慮すると、 Znまたは Zn合金皮膜は、 Znまたは Zn合金の めっきが汎用されている鋼材側にめっきとして被覆あるいは形成することが好ましい。 鋼材は通常、塗装を施して使用されるが、塗装に傷が入っても Znまたは Zn合金が優 先腐食されるために、鋼材を保護することができる。さらに、鋼とアルミ材との電位差 を小さくすることから、異種接合体での課題の一つである異種金属接触腐食をも抑制 することができる。 Znまたは Zn合金めつきとした場合には、鋼材の耐食性を確保し、 また鋼にもアルミにも容易にめっきが可能である。
[0243] めっきを前提として、上記界面反応層形成抑制機能を発揮し、リン酸塩皮膜が介在 しても溶接を可能ならしめる機能を発揮するためには、 Znまたは Zn合金のめっき皮 膜は、純 Znが好ましい。また、 Zn合金とするにしても、 Al— Zn、 Zn— Feなどの合金 において、各々 Znを各々 80質量%以上含む、 Znを主成分とすることが好ましい。 Z nまたは Zn合金のめっき皮膜を合金化する場合には、添加合金元素やその含有量 によって、上記融点範囲から外れないよう、また耐食性が劣らないようにする。 [0244] これらのめっき皮膜の内でも、特に 88質量%以上の Znを含む、純 Zn、あるいは Zn 合金めつき皮膜が推奨される。 88質量%以上の Znを含む Zn合金めつき皮膜が鋼材 表面に施されると、特に鋼材の耐食性が高くなり、また、この Znめっき皮膜は、融点 を上記 350〜: LOOO°Cの範囲に制御しやすい。更に、耐食性も高ぐ異種金属接触 腐食も抑制することができる。この異種金属接触腐食防止の観点から最も良いのは 純 Znめっき皮膜である。
[0245] めっき方法については、本発明では制限するものではないが、既存の湿式、乾式 めっきを用いることが可能である。特に亜鉛めつきにおいては、電気めつきや溶融め つき、溶融めつき後合金化処理を行う方法などが推奨される。
[0246] (リン酸塩皮膜)
次に、もうひとつの抑制層としての、リン酸塩皮膜について、以下に説明する。前記 した通り、リン酸塩皮膜は、ピンホールを通じて、あるいは、本発明における特定範囲 の Znまたは Zn合金皮膜との共存下において、電気抵抗により皮膜破壊されて、鋼 材とアルミニウム材とを電気的に導通させ、スポット溶接時に、接合体の界面反応層 の形成面積や厚さ分布を制御できる。但し、スポット溶接の接合部において、鋼材と アルミニウム材とを電気的に導通させるためには、接合部からリン酸塩皮膜を完全に 無くす必要はない。言い換えると、鋼材とアルミニウム材とが電気的に導通すれば、 スポット溶接の接合部にお 、て、リン酸塩皮膜が残留して 、ても良 、。
[0247] また、リン酸塩皮膜は、更に、前記した通り、スポット溶接後は、皮膜破壊されたスポ ット溶接部の部分のみを除いて、鋼材とアルミニウム材との間に、広範にあるいは全 面的に介在して、腐食環境を遮断し、異種金属接触腐食を抑制する機能を有する。
[0248] このリン酸塩皮膜は、上記作用効果だけでなぐ実用性の点からも選択意義がある 。例えば、薄膜でさえあれば、リン酸塩皮膜に限らず、リン酸塩以外の皮膜でも、その ピンホールを通じて、あるいは、電気抵抗により皮膜破壊されて、鋼材とアルミニウム 材とを電気的に導通させることができそうである。しかし、本発明が対象とするスポット 溶接による異材接合体は、パネルなどとして、代表的には現行の自動車の車体製造 ラインで使用(製造)され、また、鋼材かアルミニウム材に施されるリン酸塩処理も、こ の自動車の車体塗装の下地処理として、前記自動車の車体製造ラインで使用されて いる実績がある。この点、リン酸塩皮膜は、鋼材とアルミニウム材との間に、広範にあ るいは全面的に介在しても、加工性や塗装性などの、異材接合体に要求される他の 諸特性を阻害しない、他の皮膜には無い利点がある。更に、リン酸塩処理は、スポッ ト溶接も含めて、前記した自動車の車体製造ラインなど、現行の設備や装置、条件内 で実施できる、他の皮膜には無い利点がある。更に、リン酸塩皮膜 (処理)は、上記塗 装の下地処理として、異材接合体の塗膜密着性など塗装性を向上させることができ る。
[0249] (リン酸塩皮膜を形成する側)
本発明では、鋼材とアルミニウム材の互いの接合面間(いずれかの接合面表面)に 、リン酸塩皮膜を形成後に、スポット接合を実施する。異材接合体の接合強度を高め るためには、鋼材側表面にリン酸塩皮膜を形成し、更に鋼材側表面に設けた前記 Zn または Zn合金皮膜の表面にリン酸塩皮膜を形成することが好ましい。
[0250] ただ、アルミニウム材は、鋼材に比してリン酸塩処理性が低いという問題があり、異 材接合体をリン酸塩処理した場合にも、アルミニウム材側にこの問題が生じる。しかし 、本発明のように、異材接合体の少なくともアルミニウム材側に、予めリン酸塩処理を 施して、リン酸塩皮膜を形成しておけば、アルミニウム材側も、鋼材側と同様に、塗装 の下地処理としてリン酸塩処理性を向上できる利点もある。この際、異材接合体のァ ルミ-ゥム材側だけでなぐ鋼材側にも予めリン酸塩処理を施して、リン酸塩皮膜を形 成しておけば、自動車の車体製造ラインでの、塗装の下地処理としてリン酸塩処理を 省略できる利点もある。
[0251] (リン酸塩皮膜の厚み)
形成するリン酸塩皮膜の平均厚みは、好ましくは 0. 1〜5 /ζ πιの範囲とする。この範 囲で、上記リン酸塩皮膜の作用を良好に発揮できる。リン酸塩皮膜の厚みが 0. 1 μ m未満と薄すぎると、マクロな皮膜欠陥が多く発生し、腐食環境を十分に遮断できず 、異種金属接触腐食を抑制できないなど、前記したリン酸塩皮膜の効果が発揮でき なくなる。一方、リン酸塩皮膜の厚みを 5 mを超えて厚くする必要はない。これ以上 リン酸塩皮膜の厚みを厚くすると、スポット溶接時の電気抵抗が過大となって、チリの 発生が激しくなり、特に、アルミニウム材接合部の板厚減少が大きくなり、接合強度が 却って低下する。また、リン酸塩皮膜を破壊しに《なり、スポット溶接部で鋼材とアル ミニゥム材とを電気的に導通させることができに《なる。
[0252] リン酸塩皮膜の平均厚さは、リン酸塩処理して皮膜形成後に、自然乾燥させた鋼材 とアルミニウム材カゝら採取した試料断面を榭脂に埋め込み、研磨した試料を、そのリ ン酸塩皮膜断面の板厚方向の 2000倍、または 10000倍の視野にて、 SEM (走査型 電子顕微鏡)観察により、 3点厚さを測定し、部位の違う 5力所程度の観察結果の平 均で求める。
[0253] (リン酸塩の種類)
リン酸塩の種類は、自動車用亜鉛めつき鋼板などの塗装 (塗膜)下地処理として、最 も汎用されている、リン酸亜鉛など、亜鉛を主成分とするリン酸亜鉛皮膜であることが 、皮膜形成 (処理)のしやすさなど力も好ましい。このリン酸亜鉛皮膜の結晶性や配向 性などを制御するために、亜鉛 (Zn)以外に、 Fe、 Ni、 Mn、 Caなどを含有させても良 ぐその目的により Niを添加することが推奨される。なお、リン酸亜鉛の皮膜構造は、 ホノイトでもホスホフイライトでも、これらの混合構造でも良い。リン酸塩皮膜としては、 このリン酸亜鉛以外にも、公知のリン酸塩処理である、リン酸カルシウム、リン酸鉄、リ ン酸マンガンなどが、これら単独、あるいは混合、複合して用いることができる。
[0254] (リン酸塩皮膜の形成方法)
リン酸塩皮膜の形成方法としては、前記した塗装下地処理のような公知の方法が採 用できる。即ち、亜鉛、カルシウム、鉄、マンガンなどの塩となる金属や、 Mgなどを添 カロしたリン酸水溶液に、鋼材あるいはアルミニウム材を浸漬処理する。リン酸水溶液 の濃度や温度、浸漬時間などの浸漬条件は、前記したリン酸塩皮膜の平均厚みとな るように調整する。
[0255] (リン酸塩皮膜の犠牲防食作用)
リン酸塩皮膜は、前記した通り、腐食環境を遮断し、異種金属接触腐食を抑制する 機能を有するが、ピンホールが存在するために、完全には、水分や酸素などの腐食 環境を遮断できない。これに対して、接合される鋼材とアルミニウム材との互いの接 合面間に、抑制層としてもうひとつ、 Znまたは Zn合金皮膜を予め設けた場合には、 上記ピンホールを介してアルミニウム合金が優先的に腐食するのを軽減する。したが つて、 Znまたは Zn合金皮膜のこのような電位差を小さくする効果によって、異種金属 接触腐食が抑制される。
[0256] リン酸塩皮膜の異種金属接触腐食抑制効果は、リン酸塩皮膜中に Mgを含むなど の、リン酸塩皮膜自体の犠牲防食作用を強めることによって、一層高くなる。このリン 酸塩皮膜の犠牲防食作用を強めるためには、リン酸塩皮膜中に 0. 01〜10質量% の Mgを含むことが好ましい。皮膜中の Mg含有量が 0. 01質量%未満と少なすぎる 場合には、 Mgの効果が発揮できない。一方、皮膜中の Mg含有量を 10質量%を超 えて含有させるのは困難である。したがって、リン酸塩皮膜中に選択的に含む場合の Mg含有量は 0. 01〜10質量%の範囲とする。
[0257] リン酸塩皮膜中の Mg含有量は、前記リン酸塩皮膜の厚み測定と同様に、リン酸塩 処理して皮膜形成後に、自然乾燥させた鋼材とアルミニウム材から採取した試料断 面を榭脂に埋め込み、研磨した試料を、蛍光 X線にてリン酸塩皮膜中の Mg強度を 求め、質量%に換算する。そして、部位の違う 5力所程度の測定結果の平均で求める
[0258] (界面反応層)
本発明では、異材接合体界面反応層の厚さが 0. 5〜5 /ζ πιである部分の面積が、 アルミニウム材の板厚 tとの関係で、 lO X t °· 5mm2以上であることとする。この最適
2 2
厚さの界面反応層の面積規定は、界面反応層が薄 、(無 、;)程良 、と 、う従来の常識 とは異なり、最適範囲に制御するものであり、指向する方向としてはむしろ積極的に 存在させる方向でもある。そして、接合強度向上のために、最適厚さ範囲の界面反 応層を大面積形成する、言い換えると広範囲に存在させるという技術思想に基づく。
[0259] したがって、この界面反応層の厚さが 0. 5〜5 μ mである部分の面積力 アルミ-ゥ ム材の板厚 tとの関係で、 lO X t 5mm2未満、より厳しくは、 50 X t 5mm2未満で
2 2 2
は、最適厚さ範囲の界面反応層が広範囲とならず、却って接合強度が低下する。界 面反応層の厚さが 0. 5 m未満の部分では、鋼-アルミの拡散が不十分となり、接合 強度が低くなる。逆に界面反応層の厚さが厚いほど脆弱となり、特に界面反応層の 厚さが 5 mを超える部分では脆弱となり、接合強度が低くなる。このため、このような 界面反応層の面積が大きくなるほど、接合部全体としての接合強度が低くなる。 [0260] よって、接合部全体としての接合強度を高めるためには、界面反応層の厚さが 0. 5 〜5 mである部分の面積力 アルミニウム材の板厚 tとの関係で、 lO X t °· 5mm2
2 2 以上、好ましくは 50 X t 5mm2以上必要である。
2
[0261] なお、電極チップに一般的に用いられるドーム型のチップを用いた場合、中心部が 最も厚い界面反応層となり、中心から離れるほど界面反応層の厚さが低減する。した がって、この中心部の界面反応層の厚さは 5 mを超えても構わない。この界面反応 層の厚さは、鋼材-アルミニウム材が接合している界面の面積の、アルミニウム材側の 、 2000倍の画像解析や SEM観察によって測定できる。
[0262] (スポット溶接)
異種接合体を得るためのスポット溶接方法の各要件を以下に説明する。図 3に異 種接合体を得るための、前提となるスポット溶接の一態様を例示する。本発明スポット 溶接方法の基本的な態様は、通常のスポット溶接の態様と同じである。図 3において 、 11は鋼板、 12はアルミニウム合金板、 13は異種接合体、 15はナゲット、 17と 18は 電極である。
[0263] 本発明スポット溶接方法では、前記した板厚 tの鋼材と板厚 tのアルミニウム材との
1 2
異材接合体をスポット溶接により得るに際して、これら接合される鋼材とアルミニウム 材との互いの接合面間に、 Znまたは Zn合金皮膜とリン酸塩皮膜とを予め設けた状態 でスポット溶接する。
[0264] (加圧力)
このようなスポット溶接において、アルミニウム材 12側の電極チップ 18の先端径を 7 mm φ以上として、電極チップ 17、 18による加圧力を、先端曲率半径 Rmmと加圧力 WkNとの関係が(RXW) 1/3ZR>0. 05となるよう〖こ印カロする。この加圧力も大きい 方がより接着剤を押し出せるため望ましいが、スポット溶接の能力限界力 すると、現 実的には 1 OkNまでである。
[0265] 点接触での接触面圧は (RX W) 1/3ZRにほぼ比例する力 接合部にかかる接触 面圧が過小では接着剤の残存が大きぐ界面反応層の成長を妨げるため、接着剤を 外部に押し出すだけの接触面圧が必要となる。(RXW) 1/3ZRが 0. 05以下では、リ ン酸塩皮膜が層として残存し、界面反応層が成長しない。 [0266] また、このような比較的大きな加圧力を印加することで、電極チップなどの形状によ らず、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金属 をナゲット周辺の未溶融部で支え、上記比較的大きなナゲット必要面積と、上記最適 界面反応層の必要面積を得ることができる。また、チリの発生を抑制することができる 。加圧力が小さすぎると、このような効果を得られない。
[0267] (電極チップ)
前記した最適範囲厚さの界面反応層を広範囲に形成するためには、特にアルミ二 ゥム材側にっ 、ては先端径は 7mm φ以上で先端曲率半径 Rの大き 、ドーム型など の R型形状のチップとする。また、鋼材側も同様に曲率半径 Rの大きい方が望ましい 1S スポット溶接の能力限界力もすると、現実的には Rは 250mmまでである。
[0268] また、電極形状にっ 、ては規定するものではな!/、が、電極が、通電初期の電流効 率を上げるために望ましい。また、極性についても規定するものではないが、直流ス ポットを用いる場合は、アルミニウムを陽極とし、鋼を陰極とする方が望ましい。
[0269] (電流)
スポット溶接時の電流については、比較的大きなナゲット面積と、上記最適界面反 応層の必要面積を得るためには、前記アルミニウム材の板厚 tとの関係で、 15 X t °·
2 2
5〜30 X t 5kAの電流を lOO X t 0 5〜: LOOO X t °· 5msec流す工程を有し、このェ
2 2 2
程より高 ヽ電流の工程が存在しな!、電流パターンであることが必要である。
[0270] このような電流パターンとすることで、予め本発明の抑制層を形成した際に、大きな 入熱量が得られ、前記した通り、鋼とアルミニウム材との接合面における界面反応層 を制御して、高い接合強度を得ることが可能となる。また、異種材料間と、電極と材料 間との電気的接触を安定ィ匕し、ナゲット内の溶融金属をナゲット周辺の未溶融部で 支え、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得 ることができる。また、チリの発生を抑制することができる。
[0271] 電流パターンの上記工程において、 15 X t 5kA未満、または 100 X t 5msec未
2 2 満では、表面処理層及びアルミニウム材の溶融が広範囲に行われず、最適範囲厚さ の界面反応層の面積が小さい。一方、 30 X t 5kAを超える、あるいは 1000 X t °· 5
2 2 msecを超えては、界面反応層が厚く成長するため、最適範囲厚さの界面反応層の 面積が小さくなる。
[0272] この電流範囲の工程は複数あっても良いが、それらの合計時間が上記 100 Xt °· 5
2
〜1000Xt 5msecの範囲であることが重要である。なお、同種金属接合では、入
2
熱量が同一であれば近い接合構造が得られる力 鋼とアルミニウム材との接合では、 例えば 30Xt 0 5kA超えで lOOXt · 5msec未満の電流パターンや、 15 Xt · 5kA
2 2 2 未満で 1000 Xt °· 5msec超えの電流パターンでは、最適範囲厚さの界面反応層の
2
面積が広範囲に得られない。この電流条件の前後の工程に、別の電流パターンを加 えて、複数段階の電流パターンとしても良いが、界面反応層が厚く成長してしまうた め、この工程より高 、電流の工程が存在しな!、ことが必要である。
[0273] 更に、望ましい電流パターンとして、 lXt °'5〜10Xt '51^の電流を100 · 5
2 2 2
〜1000Xt °· 5msec流す工程をカ卩えて、ナゲットの割れを抑制することが好ましい。
2
[0274] [実施例]
[表 6]
(アルミニウム材の板厚 t 2: 1 mm
Figure imgf000065_0001
İIJ75 (アルミニウム材の板厚 t 2: 2mm )
Figure imgf000067_0001
[0276] 鋼材として市販の 590MPa級の高張力鋼板と、アルミニウム材として市販の A606 1(6000系)アルミニウム合金板とを重ね合わせた上で、スポット溶接を行い、異材接 合体を製作し、接合強度、耐食性を評価した。結果を表 6、 7に示す。
[0277] 上記高張力鋼板の接合面側には予め、溶融純 Znめっきを平均厚み 10 μ mで施し 、更に、その上に Mgを 1. 0質量%含有させたリン酸塩皮膜を平均厚み 2 mで施し た。
[0278] 表 6はアルミニウム板の板厚が lmm、表 7はアルミニウム板の板厚が 2mmの場合を 示す。表 6、 7では、鋼板の接合面側のめっき条件やリン酸塩皮膜条件は一定とし、 スポット溶接における、電極条件や電流条件を種々変えて異材接合体を製作して ヽ る。
[0279] [表 8]
Figure imgf000069_0001
また、スポット溶接における電極条件や電流条件は一定とし、鋼板やアルミニウム合 金板の接合面側のめっき条件やリン酸塩皮膜条件を種々変えた、鋼板とアルミニゥ ム板との異材接合体を製作した結果も表 8に示す。 [0281] (使用素材)
素材として、高張力鋼板は板厚 lmmで 0. 07質量%C— 1. 8質量%Mnを含む組 成のもの、 A6061アルミニウム合金板は板厚 lmmと 2mmのものを各々準備し、これ ら鋼板、アルミニウム合金板とも、 JIS A 3137記載の十字引張試験片形状に加工 し、スポット溶接を行った。
[0282] (Znまたは Zn合金皮膜:めっき皮膜)
鋼材に電気めつきを施す場合は、共通して、 10%硫酸にて 5分の酸洗'活性ィ匕す る前処理を行った後、各種電気めつきを行った。 Zn電気めつきでは、硫酸亜鉛 400g Zl、硫酸アルミニウム 30gZl、塩ィ匕ナトリウム 15gZl、ホウ酸 30gZlに硫酸をカ卩えて pHを 3とした浴にて 20AZdm2の電流を流すことにより、純 Znめっきを 10 μ m施した 。これを Zn— 10質量0 /0Ni合金めつきとする場合には、純 Znめっきの亜鉛めつき浴に 、硫酸ニッケル、塩ィ匕ニッケルを添カ卩した浴にて lOAZdm2の電流を流すことにより、 ∑11—10質量%?^めっきを10 111施した。また、比較例としての純 Niめっきは、ワット 浴を用いて lOAZdm2の電流を流すことにより、 10 m施した。
[0283] 溶融めつきは鋼材のみに行い、各種溶融金属を用いて Znめっき、 Zn— Feめっき( Fe量 5、 10、 12、 16の各質量%)をそれぞれ 10 m施した。溶融 Znめっきでは、温 度、引き上げ温度を変化させることにより、膜厚を 1、 3、 10、 15、 19、 20 mに調整 した。比較例として溶融 Al— 10%Si合金めつきも鋼材に施した。
[0284] アルミニウム材にめっきを施す場合は、 10%硝酸にて 30秒酸洗し、水酸化ナトリウ ム 500gZl、酸ィ匕亜鉛 100g/l、塩化第二鉄 lg/l、ロッセル塩 lOg/1の処理液中 にて 30秒亜鉛置換処理あるいは電気めつきを行った。また、その亜鉛めつき浴に硫 酸ニッケル、塩化ニッケルを添カ卩した浴にて lOAZdm2の電流を流すことにより、 Zn - 10%Niめっきを 10 μ m施した。
[0285] めっき皮膜の膜厚は、前記した通り、めっき後自然乾燥させたサンプルを切断し、 榭脂に埋め込み、研磨をし、スポット溶接前のめっき界面の SEM観察を行った。 SE M観察は 2000倍の視野にて 3点厚さを測定し、部位の違う 5力所程度の観察結果の 平均で求めた。
[0286] (リン酸塩皮膜) リン酸塩皮膜は、 Znイオン lg/l、リン酸イオン 15g/l、 Niイオン 2g/l、 Fイオン 0. 2g/ Mgイオン 0〜30gZl、の各濃度の 40°Cの水溶液に、鋼材あるいはアルミ- ゥム材を浸漬処理して形成した。リン酸塩皮膜中の Mg含有量は、前記水溶液中の Mgイオン量で調整し、リン酸塩皮膜厚みは浸漬時間を 1〜300秒の間で変えて調 整した。
[0287] リン酸塩皮膜の平均厚さは、前記した通り、リン酸塩処理後自然乾燥させたサンプ ルを切断し、榭脂に埋め込み、研磨した試料を、スポット溶接前のリン酸塩皮膜断面 (界面)の板厚方向の 2000倍の視野にて、 SEM観察により、 3点厚さを測定し、部位 の違う 5力所程度の観察結果の平均で求めた。
[0288] リン酸塩皮膜中の Mg含有量は、上記リン酸塩皮膜の平均厚さ測定用の研磨試料 を、蛍光 X線分析して、リン酸塩皮膜中の Mg強度を求め、質量%に換算した。そして 、部位の違う 5力所程度の測定結果の平均で求めた。
[0289] (スポット溶接)
スポット溶接は、直流抵抗溶接試験機を用い、 Cu— Cr合金力もなるドーム型の電 極を用い、陽極をアルミニウム、陰極を鋼として接合した。表 6、 7では、表 6、 7に示 す電極チップ条件 [先端径、先端曲率半径 R、加圧力 Wと (RXW) 1/3ZR]、電流パ ターン [溶接工程 1と 2の溶接電流、溶接時間]にて溶接を行い、異材接合体の十字 引張試験体を作製した。
[0290] この際、表 6、 7の各発明例は、アルミニウム材側の電極チップの先端径を 7mm φ 以上として、電極チップによる加圧力を、先端曲率半径 Rmmと加圧力 WkNとの関係 が(RXW) 1/3ZRとなるように印加し、力つ 15 X t 5〜30 X t °· 5kAの電流を 100
2 2
X t 0 5〜: LOOO X t · 5msec流す工程を有する電流パターンにてスポット溶接した。
2 2
本試験では、電極チップは鋼側、アルミニウム材側で同一形状のものを用いた。
[0291] また、表 8では、各例とも共通して、表 6の Nで示す発明例のスポット溶接条件を一 定にして、溶接を行い、十字引張試験体を作製した。
[0292] これら各条件について、接合強度評価用に 10体、接合界面評価用に 3体作製した
[0293] (界面反応層の厚さ測定) 界面反応層の厚さ測定は、スポット溶接後のサンプルを、溶接部の中央にて切断し
、榭脂に埋め込み、研磨をし、 SEM観察を行った。層の厚さが 1 m以上の場合は 2 000倍の視野にて、: m未満の場合は 10000倍の視野にて計測した。また、ここで の界面反応層とは、 Feと A1を両方含む化合物層を指し、 EDXにより、 Feと A1がとも に lwt%以上検出される層をいう。すなわち、 Feと A1がともに lwt%以上検出されな い層はめつき層や残留接着剤として界面反応層としな力つた。
[0294] なお、本試験では、中心部が最も界面反応層が厚ぐ端部 (周縁部)ほど界面反応 層が薄くなつていたため、 10 mを超える厚さの界面反応層の径、 0. 以上の 厚さの界面反応層の径を求め、面積に換算した。測定は、 3体の接合体について行 い、直交した 2方向のナゲット径を測定し、平均化した。
[0295] (異種金属接触腐食製評価)
また、各種条件で接合した各異材接合体について、塗装した上で、異種金属接触 腐食製評価試験を行った。各異材接合体は、採取した試験片のアルカリ脱脂を行い 、水洗後、 日本ペイント社製のサーフファイン 5N— 10の 0. 1 %水溶液を用いて 30秒 表面調整処理を行った。その後、亜鉛イオン 1. Og/ ニッケルイオン 1. Og/Uマ ンガンイオン 0. 8g/ リン酸イオン 15. Og/ 硝酸イオン 6. Og/ 亜硝酸イオン 0 . 12gZl、トーナー値 2. 5pt、全酸度 22pt、遊離酸度 0. 3〜0. 5pt、 50°Cの浴にて 、 2分リン酸亜鉛処理を行った。その後、カチオン電着塗料(日本ペイント社製パワー トップ V50グレー)により塗装し、 170°C25分焼き付けし、 30 mの塗装皮膜を形成 した。
[0296] その後、これら塗装異材接合体試験片の複合腐食試験を行! \異種金属接触腐 食防止性の評価を行った。腐食試験は、 A:塩水噴霧(35°C、 5%NaCl) 2hr、 B:乾 燥(60°C、 20— 30%RH) 4hr、 C:湿潤(50°C、 95%RH以上) 2hrを 1サイクルとす る試験を所定サイクル数行なった。 5体の塗装異材接合体試験片は 45サイクルとし、 もう 5体の塗装異材接合体試験片は 90サイクルとした。
[0297] (接合強度評価)
塗装異材接合体試験片の接合強度の評価は、上記複合腐食試験後のスポット接 合の強度を測定するために、上記 45サイクルと 90サイクルとの複合腐食試験後の各 5体の十字引張試験を各々実施し、平均化した。
[0298] 十字引張試験の結果、接合強度が 1. 5kN以上または破断形態がアルミ母材破断 であれば◎、接合強度が 0. 8〜1. OkNであれば〇、接合強度が 0. 5〜0. 8kNで あれば△、接合強度が 0. 5kN未満であれば Xとした。ここで、上記腐食試験後の接 合強度が 0. 8kN(〇)以上でなければ、自動車などの構造材用としては使用できない
[0299] (表 6、 7の結果)
表 6、 7から分力ゝる通り、好適な範囲でスポット接合された発明例 I〜Pの異材接合体 は、耐食性が非常に高ぐ上記複合腐食試験後のスポット接合の強度が高いことが 分かる。これは接合面間に設けられた溶融亜鉛めつきとリン酸塩皮膜の効果である。
[0300] これに対して、好適な範囲を外れてスポット接合された比較例 A〜Hでは、元々の スポット溶接時の接合強度が低 、ために、上記複合腐食試験後の接合強度も低 、。 比較例 A〜Cでは電極チップの先端径が小さい、先端曲率半径との関係で加圧力が 低いなど、好適なスポット接合条件範囲を外れている。また、比較例 D〜Hは、電流 条件も本発明の範囲を満たさな 、。
[0301] 比較例 A〜Gは、溶接工程 2をしている比較例 Hを除き、溶接工程 1のみで、溶接 工程 2をせずにスポット接合している。このうち、比較例 Aは電極チップの先端径が小 さすぎる。比較例 B、比較例 Cは、先端曲率半径との関係で加圧力が低すぎる。
[0302] また、比較例 Dは溶接工程 1の溶接電流がアルミニウム材の板厚との関係で低すぎ る。比較例 Eは溶接工程 1の溶接時間がアルミニウム材の板厚との関係で短かすぎる 。比較例 Fは溶接工程 1の溶接電流がアルミニウム材の板厚との関係で高すぎる。比 較例 Gは溶接工程 1の溶接時間がアルミニウム材の板厚との関係で長すぎる。比較 例 Hは溶接工程はりも著しく高い電流を流す溶接工程 2が存在する。
[0303] 即ち、発明例 I〜Pは、スポット溶接にぉ 、て、アルミニウム材側の電極チップの先 端径を 7mm φ以上として、電極チップによる加圧力を、先端曲率半径 Rmmと加圧 力 WkNとの関係が(RXW) 1/3/R>0. 05となるように印カロし、力つ 15 X t °· 5〜30
2
X t 八の電流を100 °· 5〜: LOOO X t °· 5msec流す、好ましい溶接工程 1にて
2 2 2
スポット溶接している。また、発明例 I、 Kはこの溶接工程 1のみで、溶接工程 2をせず にスポット接合している。このため、各発明例は最適厚さの界面反応層を制御できて おり、接合強度が高い。
[0304] これら発明例のうち、上記溶接工程 1を有するとともに、この溶接工程 1より高い電 流を流す溶接工程が存在しない電流パターンにてスポット溶接している発明例 N、0 、 Pは、後の溶接工程 2が I X t °· 5〜10 X t °· 5kAの電流を lOO X t °· 5〜: LOOO X t ·
2 2 2 2
5mseC流す好ま 、条件であることもあり、最も接合強度が高 、。
[0305] これに対して、この溶接工程 1より高い電流を流す溶接工程 2が存在する電流パタ ーンにてスポット溶接している発明例 Lは、上記発明例 N、 0、 Pよりも接合強度が低 い。
[0306] (表 8の結果)
表 8より分力る通り、めっきが無い比較例 1、 2、リン酸塩皮膜が無い比較例 1、 8、 1 2は、スポット溶接時に最適厚さの界面反応層が形成されているにもかかわらず、耐 食性が劣るため、上記複合腐食試験後の接合強度が低くなつている。
[0307] 金属皮膜条件 (種類と融点)が範囲から外れる比較例 3、 4、 14は、最適厚さの界面 反応層がほとんど形成されていない。したがって、元々のスポット溶接時の接合強度 が低いために、上記複合腐食試験後の接合強度も低い。
[0308] Znまたは Zn合金皮膜では無い、 Al— 10%Si合金めつきの比較例 7は、適当な厚 さの界面反応層が形成されているにもかかわらず、耐食性が劣るため、上記複合腐 食試験後の接合強度が 、ずれも低くなつて 、る。
[0309] 一方、 Znまたは Zn合金皮膜であっても、めっき厚みが薄すぎる比較例 15、厚すぎ る比較例 19も、純亜鉛めつきでありながら、最適厚さの界面反応層が形成されていな い。したがって、元々のスポット溶接時の接合強度が低いために、上記複合腐食試 験後の接合強度も低い。したがって、元々のスポット溶接時の接合強度が低いため に、上記複合腐食試験後の接合強度も低い。
[0310] また、または Zn合金皮膜であっても、リン酸塩皮膜が薄すぎる比較例 20では、スポ ット溶接時に最適厚さの界面反応層が形成されているにもかかわらず、耐食性が劣 るため、上記複合腐食試験後の接合強度が低くなつている。逆に、リン酸塩皮膜が厚 すぎる比較例 23にも、最適厚さの界面反応層が形成されていない。したがって、元 々のスポット溶接時の接合強度が低!、ために、上記複合腐食試験後の接合強度も 低い。
[0311] これに対して、リン酸塩皮膜を有し、めっき条件 (融点、成分)が範囲内である発明 例 5、 6、 9〜11、 13、 16〜18、 21、 22、 24〜27は、最適厚さの界面反応層を制御 できているのに加え、耐食性が非常に高いため、上記複合腐食試験後のスポット接 合の強度が高いことが分かる。これは接合面間に設けられた溶融亜鉛めつきとリン酸 塩皮膜の効果である。
[0312] この内、純亜鉛めつきを施した発明例の内、 5、 6、 9、 17、 21、 24〜27は、最適厚 さの界面反応層の面積を 50 X t °· 5mm2以上と大変広 、面積に制御できて 、ること
2
がわかる。さらに、純亜鉛めつきの膜厚が 5〜 15 mで、かつリン酸塩皮膜の Mg含 有量が 0. 1質量%以上、膜厚が: L m以上である発明例 5、 6、 9、 17、 22、 26、 27 は、耐食性も非常に高いため、上記複合腐食試験後のスポット接合の強度が高いこ とが分かる。この結果から、めっきを本発明の成分、融点、膜厚に制御することによつ て、最適厚さの界面反応層を制御でき、高い接合強度と耐食性が得られることが分 かる。
[0313] 以上の実施例の結果から、異材接合体の接合強度を高めるとともに接触腐食とそ れによる接合強度の低下とを抑制できる本発明で規定する各要件の臨界的な意義 が分かる。
[0314] [4]
(異材接合体)
図 4に本発明の一実施態様で規定する異材接合体 (接合部)を断面図で示す。図 4 にお 、て、 23が亜鉛めつき鋼材 (亜鉛めつき鋼板) 21とアルミニウム材 (アルミニウム合 金板) 22とをスポット溶接にて接合した異材接合体である。 24は鋼材 21表面の亜鉛 めっき皮膜あるいは酸ィ匕皮膜である。
[0315] 接合部中央の 25は、スポット溶接における接合界面 (界面反応層) 26を有するナゲ ットで、図中に水平方向に矢印で示すナゲット径を有する。また、このナゲット 25は、 Sで表されるアルミニウム材側の接合界面において平面方向 (図の左右方向)に占め る面積 (以下、単にナゲット面積 Sという)を有する。 [0316] tは亜鉛めつき鋼材 21の板厚、 tはアルミニウム材 22の板厚、 Atはスポット溶接に
1 2
よる接合後のアルミニウム材の最小残存板厚を示す。 29はナゲット周囲のコロナボン ド部である。
[0317] なお、この図 4は、ナゲット径を確保しつつ、チリの発生を抑制してアルミニウム材の 最小残存板厚を保持し、さらに鋼材の溶融を最小限に抑えた接合状態を示しており 、本発明の接合体もこの図のような接合状態となる。
[0318] 以下に、本発明の各要件の限定理由と、その作用について説明する。
[0319] (亜鉛めつき鋼材の板厚)
本発明では、接合する亜鉛めつき鋼材の板厚 tは、 0. 3〜3. Ommの範囲から、ァ ルミ-ゥム材側の板厚に応じて、比較的厚い板厚を選択することが必要である。単一 の鋼材の板厚を厚くするか、あるいは鋼材同士を直接重ね合わるなどして、鋼材 21 側の板厚を厚くすることによって、スポット溶接条件における電流値或いは通電時間 を増さずとも、鋼材の抵抗発熱による入熱が増大する。更に、ナゲットの半径方向の 入熱分布も変わり、これらの複合効果によって、アルミニウム材 22の残存板厚 A tの 減少を防ぎながら、ナゲット端部の側の温度増大も起こりやすくなる。このため、ナゲ ット 25と接する接合界面部 (コロナボンド部) 29の、亜鉛めつき由来の Zn層 30の溶融 排出が効果的に行なわれる。この結果、亜鉛めつきに由来して生成する特有の脆い Zn— Fe系化合物層が抑制され、また、残存 Zn層 30の割合も低下する。このため、 鋼材 21とアルミニウム材 22との直接接合領域が増大し、接合強度が高まる。
[0320] また、鋼材の板厚 tが 0. 3mm未満の場合、前記した構造部材ゃ構造材料として 必要な強度や剛性を確保できず不適正である。また、それに加えて、スポット溶接に よる加圧によって、鋼材の変形が大きぐ酸ィ匕皮膜が容易に破壊されるため、アルミ ニゥムとの反応が促進される。その結果、金属間化合物が形成しやすくなる。一方、 3 . Ommを越える場合は、前記した構造部材ゃ構造材料としては、他の接合手段が採 用されるため、スポット溶接を行って接合する必要性が少ない。このため、鋼材の板 厚 tを 3. Ommを超えて厚くする必要性はない。
[0321] (鋼材とアルミニウム材との板厚比)
ここで、より接合強度を高くするために、図 4における、鋼材 21とアルミニウム材 22と の板厚比 t /t力^以上であることが好ましい。鋼材 21側の板厚を厚くすることによつ
1 2
て、スポット溶接条件における入熱量を増さずとも、鋼材の抵抗発熱による入熱が増 大する。更に、ナゲットの半径方向の入熱分布も変わり、前記した通り、これらの複合 効果によって、鋼材 21とアルミニウム材 22との直接接合領域が増大し、これによつて 、本発明の好ましい条件である、ナゲット 25と接する接合界面部における、 Zn層 30 の合計面積 S力 ナゲット 25の面積 Sの 30%以下であることが保証される。この結果
4
、接合強度を高めることができる。
[0322] これに対して、図 4における、鋼材 21とアルミニウム材 22との板厚比 t /\力^未満
1 2 の場合、残存 Zn層 30の割合を低下させ、鋼材 21とアルミニウム材 22との直接接合 領域を増大させるためには、スポット溶接条件における入熱量を増す必要がある。こ れによって、残存 Zn層 30の割合を低下させることができても、アルミニウム材残存板 厚 Atの減少を防ぐことはできない。この結果、アルミニウム材残存板厚 Atが顕著に 減少して、それに伴って、接合強度が低下する。
[0323] この点、異材接合部におけるアルミニウム材側の最小残存板厚 Atが、元のアルミ ユウム材板厚 tの 50%以上であることが好まし 、。
2
[0324] (亜鉛めつき鋼材)
本発明では、亜鉛めつき層の平均厚みが 3〜19 mである、両面、あるいは片面の 亜鉛めつき鋼材を接合体の対象とする。なお、片面の亜鉛めつき鋼材の場合に、ス ポット溶接による接合側に亜鉛めつきされていない面が部分的にきてもよい。本発明 では、亜鉛めつき層厚みがこれより薄い、あるいは亜鉛めつき層が無い鋼材は対象と はしない。
[0325] (亜鉛めつき層)
鋼材の亜鉛めつき層自体は、溶融めつき、電気めつきを問わず、また、亜鉛めつき でも、鉄との合金めつきでも良い。ただ、亜鉛めつき層の平均厚みは 3〜19 mとす る。亜鉛めつき層の平均厚みが 3 /z m未満では、亜鉛めつき層自体の防食などの効 果が発揮できず、裸の鋼材と大差なくなり、意味が無い。また、亜鉛めつき層の平均 厚みが 19 mを越えた場合には、亜鉛めつきに由来して生成する脆い Zn—Fe系化 合物層や Zn層の生成を抑制できず、これら面積を本発明規定範囲内におさえること が難しくなる。この結果、接合強度が弱くなる。
[0326] (鋼材の引張強度)
本発明においては、使用する鋼材の形状や材料を特に限定するものではなぐ構 造部材に汎用される、あるいは構造部材用途から選択される、鋼板、鋼形材、鋼管な どの適宜の形状、材料が使用可能である。ただ、構造部材用に、高強度な鋼材が要 求される場合には、鋼材の引張強度力 OOMPa以上である高張力鋼材を用いること が好ましい。
[0327] 低強度鋼では一般に低合金鋼が多ぐ酸ィ匕皮膜がほぼ鉄酸ィ匕物であるため、 e A1の拡散が容易となり、脆い金属間化合物が形成しやすい。このためにも引張強度 力 OOMPa以上、望ましくは 500MPa以上であることが好まし!/、。
[0328] 本発明では、鋼材の成分を限定するものではないが、上記鋼材の強度を得るため には高張力鋼 (ハイテン)であることが好ましい。また、鋼の成分的には、焼き入れ性 を高め、析出硬化させるために、 Cの他に、 Cr、 Mo、 Nb、 V、 Tiなどを選択的に含有 する鋼も適用できる。 Cr、 Mo、 Nbは焼き入れ性を高めて強度を向上させ、 V、 Tiは 析出硬化によって強度を向上させる。しかしながら、これら元素の多量の添カ卩は、溶 接部周辺の靭性を低下させ、ナゲット割れが生じやすくなる。
[0329] このため、鋼の成分として、基本的には、質量%で、 C : 0. 05〜0. 5%、 Mn: 0. 1 〜2. 5%、 Si: 0. 001〜1. 5%を含み、更に、 Cr: 0〜l%、 Mo : 0〜0. 4%、 Nb : 0 〜0. 1%、V: 0〜0. l%、Ti: 0〜0. 1%の一種または二種以上を、必要により選択 的に含有させることが好ましい。そして、これら鋼材の残部組成は、 Feおよび不可避 的不純物からなることが好まし 、。
[0330] (アルミニウム材)
本発明で用いるアルミニウム材は、その合金の種類や形状を特に限定するもので はなぐ各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造 材、铸造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼 材の場合と同様に、スポット溶接時の加圧による変形を抑えるために高い方が望まし い。この点、アルミニウム合金の中でも強度が高ぐこの種構造用部材として汎用され て!ヽる、 A5000系、 A6000系などの使用力最適である。 [0331] ただ、本発明で使用するこれらアルミニウム材の板厚 tは 0. 5〜4. Ommの範囲と
2
する。アルミニウム材の板厚 tが 0. 5mm未満の場合、構造材料としての強度が不足
2
して不適切であるのにカ卩え、ナゲット径が得られず、アルミニウム材料表面まで溶融 が達しやすくチリができやすいため、高い接合強度が得られない。一方、アルミ-ゥ ム材の板厚 tが 4. Ommを越える場合は、前記した鋼材の板厚の場合と同様に、構
2
造部材ゃ構造材料としては他の接合手段が採用されるため、スポット溶接を行って 接合する必要性が少ない。このため、アルミニウム材の板厚 tを 4. Ommを超えて厚
2
くする必要性はない。
[0332] (界面反応層における化合物)
以上の鋼材とアルミニウム材との異材接合体を前提とした上で、本発明では、スポッ ト溶接後の異材接合体における (図 4の接合界面 26における)金属間化合物を規定 する。
[0333] 本発明で規定する金属間化合物を、異材接合体接合部のナゲット中心における接 合界面 4の断面を、各々図 5、 6、 7に示す。図 5は、図 6の接合界面 26の 5000倍の SEM写真を模式化した図である。なお、図 7は同じ接合界面 26の 5000倍の TEM 写真である。図 6、 7は後述する実施例における発明例 8である。
[0334] これらの図に各々示すように、接合界面 26では、鋼材側に層状の Al Fe系化合物
5 2 層、アルミニウム材側にはくさび状 (あるいは棒状または針状)の Al Fe系化合物層を
3
各々有する。
[0335] (本発明の化合物層規定)
図 4、 5に基づいて説明すると、本発明における化合物層規定の要旨は、前記した 亜鉛めつき層や板厚などの前提条件を有する異材接合体 23の接合界面 26に、まず 、鋼材 21側に Al Fe系化合物層、アルミニウム材 22側に Al Fe系化合物層を各々
5 2 3
有する(生成させる)。
[0336] (化合物層の厚さ)
図 5において、これら接合界面における 2層の化合物の層のナゲット深さ方向(接 合界面断面方向、図の上下方向)の合計の平均厚さ 1は、鋼材 21側の Al Fe系化合
5 2 物層の各測定ポイントにおけるナゲット深さ方向の平均厚さ 1と、アルミニウム材 22側 の Al Fe系化合物層の各測定ポイントにおけるナゲット深さ方向の平均厚さ 1との合
3 1 計である。
[0337] (化合物層部分の面積規定-平面方向)
ここで、まず、図 4を用いて、本発明における平面方向のナゲット面積と、接合界面 において一定厚みを有する化合物層部分の面積規定の説明を行なう。図 4に示すよ うに、鋼材 21側の Al Fe系化合物層とアルミニウム材 22側の Al Fe系化合物層との
5 2 3
平均厚さ 1(1 +1 )が0. 5〜: LO mである化合物層部分の、アルミニウム材 22側の接
1 2
合界面において平面方向に占める合計面積を S (mm2)と規定する。後述する図 9、 10に示すように、ナゲット 25のアルミニウム材 22側の接合界面において平面方向に 占めるナゲット面積を S (mm2)とすると、この一定厚みを有する接合界面化合物層部 分の、アルミニウム材 22側の接合界面において平面方向に占める合計面積 Sの、 ナゲット面積 Sに対する、面積割合が求められる。本発明では、この合計面積 Sが、 ナゲット面積 Sの 50%以上の割合を占めるものと規定する。
[0338] (化合物層部分の面積規定-断面方向)
更に、図 5、 7を用いて、本発明における、特に Zn— Fe系化合物層の断面方向の 面積規定の説明を行なう。図 5、 7は、 5000倍の SEMによる、前記 Al Fe系化合物
5 2 層と Al Fe系化合物層の合計の平均厚さ 1が 0. 5〜: L0 mである接合界面部分の断
3
面観察結果を部分的に示して ヽる。
[0339] ここにおいて、これら前記 Al Fe系化合物層と Al Fe系化合物層の 2層中に各々
5 2 3
含まれる (生成した)、 Zn—Fe系化合物層の断面方向 (図の上下方向)に占める合計 面積を S ( m2)とする。また、これら 2層の合計の平均厚さが 0. 5〜10 mである化
3
合物層部分の断面方向に占める面積を S ( m2)とする。本発明では、この Zn—Fe
2
系化合物層の合計面積 Sの、これら 3層の化合物層の特定厚さ部分の断面方向に
3
占める面積 S +Sの 10%以下の割合であることと規定する。
2 3
[0340] (Zn層)
次に、 Zn層につき説明すると、 Zn層は、鋼材表面における亜鉛めつき層の残存分 である。このため、 Zn層が残存する場合には、図 4に示すように、ナゲット端部 (周縁 部)の接合界面 26に存在する。この Zn層はその周縁部に存在する比較的厚!、亜鉛 めっき層と同等の厚み力、それよりも薄い厚みとなっている。この Zn層が接合界面 26 に残存すると (残存していると)、その部分は、鋼材 21とアルミニウム材 22とが直接接 合していないことを意味する。このため、本発明では、ナゲットと接する接合界面 26 における Zn層 30の平面方向に占める合計面積 S (mm2)が、前記したナゲットの平
4
面方向に占める面積 S(mm2)の 30%以下であることと規定する。この Zn層 30の平面 方向に占める合計面積 Sは、後述するナゲット面積 Sなどと同様に、アルミニウム材 2
4
2側の接合界面において平面方向に占める面積である。
[0341] (Al Fe系化合物層)
3
本発明では、接合強度を高めるためには、図 5における、アルミニウム材 22側の A1
3
Fe系化合物層のナゲット中心部における、ナゲット深さ方向の平均厚さ 1を 0. 5〜1 0 μ mの範囲とすることが好ましい。
[0342] Al Fe系化合物は、アルミニウム材 22側に形成される金属間化合物 Al Feで、図 5
3 3
、 6、 7の通り、くさび状の形状に形成される。中央部 (ナゲット中心部)では、個々の化 合物粒のサイズほたはくさび状、針状ィ匕合物粒の長さ)が大きぐナゲットの端部 (図 5 、 6、 7の左右方向)に向力うにつれ、徐々に厚み (粒、針のサイズと分布)が減少する。
[0343] このような Al Fe系化合物は、上記形状による効果も含めて、くさび (アンカー)効果
3
があり、アルミニウム材 22と Al Fe系化合物層との密着性を向上させ、接合強度を高
5 2
める。この効果は、 Al Fe系化合物層が薄過ぎては発揮されない。特に 1が 0. 20 μ
3 1
m未満では、上記くさび効果が不十分で、 Al Fe系化合物層との密着性が悪ぐ層
5 2
間の破断が生じやすいし、平滑な界面で破断する可能性がある。このため、アルミ- ゥム材 22側の Al Fe系化合物層のナゲット中心部における、ナゲット深さ方向の平
3
均厚さ 1を 0. 20 m以上とすることが好ましい。
[0344] 一方、 Al Fe系化合物層が成長しすぎて、層を厚く形成し過ぎると、カゝえって、個々
3
の化合物粒が破壊の起点となる。特に、 1が 10 mを超えた場合には、この傾向が 顕著となる。このため、 Al Fe系化合物層のナゲット中心部における、ナゲット深さ方
3
向の平均厚さ 1の上限は 10 m以下とすることが好ましい。
[0345] (Al Fe系化合物層)
5 2
本発明では、接合強度を更に高めるために、鋼材 21側の金属間化合物 Al Feで ある、 Al Fe系化合物層の、ナゲット深さ方向の平均厚さ 1も 0. 20〜5 μ mの範囲
5 2 2
であることが好ましい。この Al Fe系化合物層も、ナゲットの端部 (図 5、 6、 7の左右
5 2
方向)に向力 につれ、徐々に厚み (粒、針のサイズと分布)が減少する。この Al Fe
5 2 系化合物層の平均厚さ 1 この
2力 範囲より薄過ぎても、また厚過ぎても接合強度を低 下させる可能性があり、その理由は、上記したアルミニウム材 22側の Al Fe系化合物
3
層の場合と同様である。
[0346] (両化合物層の面積)
図 4において、以上説明した、 Al Fe系化合物層のナゲット深さ方向の平均厚さ 1と
3 1
、 Al Fe系化合物層のナゲット深さ方向の平均厚さ 1との合計平均厚さ 1がナゲット深
5 2 2
さ方向のこれら 2層の合計の平均厚さである。
[0347] 本発明では、接合強度を高めるために、この合計平均厚さ 1が 0. 5〜: LO /z mである 部分の前記面積 S (アルミニウム材 22側の接合界面にぉ 、て平面方向に占める面 積 S )を、図 9に示す通り、大きくする。即ち、ナゲット面積 S (アルミニウム材 22側の接 合界面において平面方向に占める面積 S、図 4に記載)の 50%以上であると規定す る。
[0348] 即ち、 Al Fe系化合物層と Al Fe系化合物層との特定厚み部分の接合部界面に
3 5 2
おける平面方向の面積 Sは、大きい方が接合強度が高くなる。この面積 Sが図 10に 示す通り小さぐナゲット面積 Sの 50%未満では、同一強度である場合、ナゲット面積 Sが大きいほど、接合部の破断荷重 (接合強度)は低下する可能性が高い。一方、ナ ゲット面積 Sが小さい場合には、接合部は同じくより低い荷重にて破断しやすくなる。
[0349] 上記 Al Fe系化合物層と Al Fe系化合物層との面積 Sが図 9に示す通り大きい場
3 5 2 1
合、接合力の高い接合部 (接合界面)面積が十分に大きいため、より大きな破断荷重 となる。その結果、接合界面がアルミ基材よりも十分に破断荷重が高いため、界面破 断せずアルミニウム材側が破断するようになる。
[0350] 上記した最適厚さの界面反応層の面積規定は、接合強度の観点力 ではあるが、 アルミニウム材側の化合物層と鋼材側の化合物層とを最適範囲に制御するものであ る。このため、本発明が指向する方向としては、薄い程良いという従来の常識とは異 なり、むしろ積極的に存在させる方向である。そして、接合強度向上のために、最適 厚さ範囲の界面反応層を大面積形成する、言い換えると広範囲に存在させるという 技術思想に基づく。
[0351] (Zn— Fe系化合物)
また、本発明では、一方で、化合物あるいは化合物層としては不純物であり、接合 強度を阻害するために、金属間化合物である Zn—Fe系化合物を規制する。具体的 には、これら Al Fe系化合物層と Al Fe系化合物層との 2層中に各々含まれる (生成
3 5 2
する) Zn—Fe系化合物を規制する。
[0352] 図 5に示したように、 Al Fe系化合物層と Al Fe系化合物層の 2層中に各々含まれ
5 2 3
る (生成した)、 Zn—Fe系化合物層の断面方向(図の上下方向)に占める合計面積 S
3 とする。また、これら 2層の合計の平均厚さが 0. 5〜: LO mである化合物層部分の断 面方向に占める面積を Sとする。本発明では、この Zn—Fe系化合物層の合計面積
2
Sの、前記 2層の化合物層の特定厚さ部分の断面方向に占める面積 Sの 10%以下
3 2
の割合であることと規定する。
[0353] 脆い Zn— Fe系化合物層の合計の面積 S力 前記した面積 Sとこの Sとの合計、 S
3 2 3
+ Sの 10%を越えた場合には、接合部の接合強度が著しく低下する。なお、 Zn—
2 3
Fe系化合物は Fe— Zn系化合物とも言う。
[0354] (Zn層の面積)
更に、本発明では、好ましい条件として、前記した通り、ナゲットと接する接合界面 2 6における Zn層 30の平面方向に占める合計面積 S 1S 前記したナゲットの平面方向
4
に占める面積 Sの 30%以下であることと規定する。
[0355] Zn層は、前記した通り、鋼材表面における亜鉛めつき層の残存分であり、 Zn層が 図 4に示すように、ナゲット端部 (周縁部)の接合界面 26に残存する場合には、その部 分では、鋼材 21とアルミニウム材 22とが直接接合していないことを意味する。この脆 い Zn層の合計面積 S力 上記観察される平面方向のナゲット面積 Sの 30%を越え
4
た場合には、接合部の接合強度が著しく低下する可能性が高!、。
[0356] ナゲットと接する接合界面 26における Zn層 30の平面方向に占める合計面積 Sの
4 測定は、 Zn層 30の存在する各部位における断面方向の 200倍の光学顕微鏡での 観察結果から、図 4と図 9とに示すように、 Zn層 30が、ナゲットと接する接合界面 26 にナゲットの円周方向に対称的に存在すると仮定して測定できる。
[0357] (接合強度と破断形態)
本発明の場合に、接合強度が高い場合、接合界面は破断せず、接合部がプラグ 状に破断 (Al Fe系化合物層が存在する範囲より外側にて、アルミニウム材が内部に
3
て板厚方向に破断)する。言い換えると、このような接合部の破断形態は、本発明の 接合強度の高さを表して!ヽる。
[0358] 一方、従来のように接合強度が低い場合、接合界面で破断し、 Al Fe系化合物層
5 2
と Al Fe系化合物層との間あるいはどちらかの化合物層内部にて破断する。言い換
3
えると、このような接合部の破断形態は、接合強度の低さを表している。
[0359] (金属間化合物の特定方法)
本発明における、 Al Fe系化合物層や Al Fe系化合物層の特定は、接合部の断
3 5 2
面を HAADF— STEM像(5000倍〜 10000倍)にて EDX(Energy Dispersive X- ra y spectroscopy)点分析による半定量分析を実施して同定される。言い換えると、以下 に説明する HAADF— STEM法を用いて、接合部界面を測定しない限り、本発明で 規定する金属間化合物の識別や、金属間化合物層の厚さや面積の正確な測定は難 しいとも言える。
[0360] これら金属間化合物同士の区別 (識別)は、上記半定量分析において、接合部界面 の複数の (できるだけ多くの)測定点の組成を測定し、 Fe、 Al、 Zn (at%)を百分率とし た際の組成により行なう。即ち、表 10に示す通り、「A1 Fe系化合物」の組成は、 Fe
5 2
量が 24. 0〜29. Oat%、 Al量が 70. 0〜74. 0& %の範囲とする。「A1 Fe系化合
3
物」の組成は、 Fe量が 18. 0〜24. Oat%、 A1量が 74. 5〜81. Oat%の範囲とする 。更に、 Zn—Fe系化合物の組成は、代表的な Fe Znの組成とし、 Fe量が 31. 0〜4
3 7
0. 0at%で、 Zn量力 60. 0〜69. 0at%の範囲とする。
[0361] ここで、上記各界面反応層の組成の判断 (識別)基準は以下の通りである。即ち、「 Al Fe系化合物」や「A1 Fe系化合物」は、 EDX点分析によって、 Feと A1とがともに
5 2 3
10質量%以上検出される層とした。言い換えると、 Feと A1とがともに 10質量%未満 である層は、本発明で特定する界面反応層とはしなかった。
[0362] また、 Zn—Fe系化合物は、同じく EDX点分析によって、 Feが 27. 7質量%以上検 出され、かつ Znが 72. 3質量%以下検出される層とした。 Znが検出されても、 Feが 2 7. 7質量%以上検出されない層は、元々存在する Znめっき層、あるいは Zn層 30と 判別し、界面反応層とはしな力つた。
[0363] Zn—Fe系化合物の組成は、代表的な Fe Zn [Fe27. 7〜36. 3質量%(Fe31. 0
3 7
〜40. Oat%)]のみの組成とし、 Znめっき層に含まれる、その他の相とは区別した。 その他のネ目とは、 ζネ目 [FeZnl3 :Fe5. 8〜6. 2質量0 /0 (Fe6. Ί〜Ί . 2at%)]、 δ 1 相 [FeZn: Fe7. 3〜: L I. 3質量0 /0 (Fe8. 5〜13. Oat%)]、 Γ 目 [Fe Zn : Fel6.
7 5 21
2〜20. 8質量0 /0(Fel8. 5〜23. 5at%)]、 Γ相 [Fe Zn : Fe21. 2〜27. 7質量0 /0(
3 10
Fe24. 0〜31. Oat%)]である (Znメツキ層の組成に関する出展:社団法人日本鉄鋼 協会編集、第 138、 139回西山記念講座「表面処理技術の進歩と今後の動向」 p.l5 (平成 3年 5月 1日発行)参照)。
[0364] また、界面反応層の相として、 Al Fe、 Al Fe、 Fe Znが認められているが、組成
5 2 3 3 7
は必ずしも化学両論組成で構成されておらず、ある程度の組成幅を持っている。そ れに関しては、 TEMによる電子線回折による結晶構造力 相を同定し、それぞれの 相に関して EDXにて Fe、 Al、 Si、 Mn、 Zn元素の測定を行った。その結果、実際に は、 Al Fe、 Al Fe相に関しては化学両論組成よりも Feの割合が少ない側、 Fe Zn
5 2 3 3 7 相に関しては化学両論組成よりも Feの割合が多い側に相の組成がずれていることが 判明した。これらの結果を基に、 Fe、 Al、 Znの割合が表 10に示す範囲を満たすもの をそれぞれの反応層の相と判定した。
[0365] なお、上記 HAADF— STEM法(High Angle Annular Dark Field-Scanning Trans mission Electron Microscope)は、高角側に散乱された弾性散乱電子を円環状検出 器で集めて像信号を得る手法である。 HAADF— STEM像は回折コントラストの影 響をほとんど受けず、コントラストは原子番号 (Z)のほぼ 2乗に比例するという特徴があ り、得られた像がそのまま組成情報をもつ 2次元マップとなる。微量元素も感度良く検 出できるため、接合界面の微細構造解析に有効である。
[0366] より具体的には、接合体のナゲット中央部にて切断し、断面が観察できるよう榭脂 に埋め込んで鏡面研磨を行ったものを、 SEMにて界面反応層の各化合物層の平均 厚さを概略測定する。その後、ナゲット中心部及び Al Fe系化合物と目される層の 存在境界より内側の部分、 Al Fe系化合物と目される層の存在境界の内外の部分、
3
各化合物と目される層の深さ方向長さが上限を上回ると目される箇所の内外の部分 を日立製作所製集束イオンビ-ム加工装置 (FB— 2000A)を用いて TEM観察可能 な厚さまで FIB加工を施すことにより試料を薄くし、観察 '分析用試料として供する。
[0367] そして、 HAADF検出器を備え^ JEOL製電界放射型透過電子顕微鏡 (JEM— 20 10F)を用い、カロ速電圧 200kVにて、視野 100 mの範囲(5000倍〜 10000倍)で 観察し、各粒、異相について全て EDX点分析を行い、 Al Fe系化合物層や、 Al Fe
3 5 2 系化合物層の同定を行う。
[0368] 図 4における Al Fe系化合物の深さ方向の厚さ(長さ) 1は、得られた視野 100 m
3 1
の HAADF— STEM像より、全ての Al Fe系化合物と同定された粒 ·針の深さ方向
3
の長さを測定し、平均化した。
[0369] 図 5における Al Fe系化合物層の深さ方向の厚さ (長さ) 1は、同像より、厚さを 5点
5 2 2
測定し、平均した。以上の測定を、観察 '分析用試料全てについて実施した。
[0370] (金属間化合物平面方向面積の測定方法)
これらの測定により、 Al Fe系化合物層や Al Fe系化合物層の 2層のナゲット深さ
3 5 2
方向の合計の平均厚さ 1が 0. 5〜: LO mである部分の、アルミニウム材側の接合界 面において平面方向に占める合計面積 Sを求めた。また、アルミニウム材側の接合 界面において平面方向に占めるナゲット面積 Sも同様に求めた。即ち、図 9、 10に示 すように、これらの層がナゲット円周方向に対称であると仮定して、断面での半径方 向の存在位置から、同心円と仮定して平面方向の面積を計算した。更に、 Zn層 30の 平面方向の合計面積 Sも同様な計算方法とした。即ち、前記図 4に示すように、 Zn
4
層 30が存在する場合には、ナゲットの円周 (周縁)に沿って存在する。このため、 Zn 層 30の存在を確認した場合には、 Zn層 30がナゲット円周方向に対称であると仮定 して、断面での半径方向の存在位置から、同心円と仮定して平面方向の面積を計算 した。
[0371] (金属間化合物断面方向面積の測定方法)
このようにして EDX点分析で同定、測定された、 Al Fe系化合物層や Al Fe系化
3 5 2 合物層の 2層のナゲット深さ方向の合計の平均厚さ 1が 0. 5〜: LO mである部分の 断面方向の合計面積 S、上記 2層中に各々含まれる Zn— Fe系化合物層の断面方
2
向の合計面積 S、などの測定は、同定された接合界面の部位を前記 SEM観察、 20
3
00倍〜 10000倍 (平均厚さ 1が 1 μ m以上の場合は 2000倍、平均厚さ 1が 1 μ m未満 の場合は 2000倍)の倍率での SEM観察を行い求めた。具体的には、ナゲット半径 中心部より、半径方向に 500 mの各位置において、視野の幅 100 mで各反応層 の断面方向の面積を測定し、その計測を反応層が存在する位置までナゲット半径方 向に行い、それらを合計して求めた。
[0372] なお、これらの結果を、同じぐ 2000倍〜 10000倍の倍率での TEM観察を行い検 証しても良い。例えば、図 6に示す接合界面の 5000倍の SEM写真、図 7に示す同 じ接合界面の 5000倍の TEM写真で、点線で示す部分が接合界面であるが、この 接合界面は TEM写真の方が目視的には判別しやすい。
[0373] (ナゲットの大きさ)
図 4におけるスポット溶接部のナゲット 25のアルミニウム材側の接合界面における 平均径 tは、接合強度を確保するために、 7mm以上であることが好ましい。言い換え ると、ナゲット 25の平均径が 7mm以上となるようにスポット溶接条件を選定することが 好ましい。
[0374] ナゲット 25の平均径が 7mm未満では、ナゲット面積力 、さ過ぎ、接合強度が不十 分となる可能性が高い。一方、ナゲット 25の平均径は好ましくは 12mm以下とする。 ナゲット 25の平均径が 12mmを越えると、接合強度を得るのには十分である力 チリ が発生しやすぐアルミニウム材の減肉量が多いため、逆に接合強度が低下する。
[0375] 従来から、同種の金属材料をスポット溶接する際には、金属材料の厚み tに対して、 スポット溶接部におけるナゲット 25の面積を 20 X t 5mm2程度とすることが強度的に も作業性からみても、経済性からみても最適であるとされて 、る。
[0376] しかし、本発明では、異種金属材料同士の接合について、これよりも、上記同種の 金属材料よりも大きなナゲット面積とする。スポット溶接部におけるナゲット 3の平均径 力^ mm以上となるようにスポット接合することで、十分な接合強度が得られ、さらに作 業性、経済性ともに優れる。
[0377] (ナゲット面積の測定) 本発明におけるナゲット 25のアルミニウム材 22側の接合界面において平面方向に 占める面積 Sや、ナゲット 25の断面方向に占める面積 S、ナゲット平均径 (アルミ-ゥ
5
ム材 22側の接合界面において平面方向に占める径)の測定は、例えば 200倍の光 学顕微鏡での観察により測定可能である。即ち、接合界面にて剥離もしくは切断によ り分断したアルミニウム材側のナゲットを複数のサンプル画像解析して測定し、その 平均を求める。この際、観察面は、ナゲット中心を中心とする断面にて行なう。ナゲッ ト形状が略円形状の場合は、接合部を切断して断面より光学顕微鏡にて観察し、形 成して 、るナゲットのアルミニウム材側接合界面における径を、複数のサンプルにて 測定し、その平均を求めても良い。その場合、少なくとも直交した 2方向のナゲット径 を測定する。
[0378] (アルミニウム材の減肉量)
接合強度を確保する意味で、スポット溶接による接合後のアルミニウム材の減肉量 できるだけ小さくすることが望ましい。この目安として、最小残存板厚 Atが元厚 t
2の 5
0%以上であることが望ましい。より望ましくは最小残存板厚 Atが元厚 tの 90%以上
2
であることが良い。このアルミニウム材の最小残存板厚 Atは、接合断面より 200倍の 光学顕微鏡にて観察し、板厚減肉長さを測定して、元の板厚との差を取って求めるこ とがでさる。
[0379] (スポット溶接)
図 11に異種接合体を得るための、前提となるスポット溶接の一態様を例示する。本 発明スポット溶接方法の基本的な態様は、通常のスポット溶接の態様と同じである。 図 11において、 21は鋼板、 22はアルミニウム合金板、 23は異種接合体、 25はナゲ ット、 27と 28は電極である。
[0380] 以下に、本発明異材接合体を得るためのスポット溶接の各条件を説明する。
(加圧力)
スポット溶接時の加圧力については、上記比較的大きなナゲット必要面積と、上記 最適界面反応層の必要面積を得るために、また、前記本発明で規定する最適範囲 内とするためには、比較的高い加圧力を印加することが必要である。
[0381] 具体的には、接合部全体の板厚 t (図 4の t +t )との関係で、 l X t°- 5kN〜2. 5 X t° •5kNの比較的高い加圧力の範囲力 選択する。但し、この比較的高い加圧力の範 囲内でも、素材や他の溶接条件によって上記化合物の出来方は異なり、必ず前記本 発明で規定する最適範囲内となるは限らない。このため、素材や他の溶接条件に応 じて、前記比較的高い加圧力の範囲から、前記本発明で規定する最適範囲内となる 最適加圧力を選択することが必要である。
[0382] 一方、上記範囲の比較的大きな加圧力を印加することで、電極チップなどの形状 によらず、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金 属をナゲット周辺の未溶融部で支え、上記比較的大きなナゲット必要面積と、上記最 適界面反応層の必要面積を得ることができる。また、チリの発生を抑制することができ る。
[0383] 加圧力が 1 X t°- 5kN未満では、加圧力が低過ぎ、このような効果を得られな 、。特 に、 Rが先端にあるチップでは、接触面積が低下し、ナゲット面積の低下、電流密度 の増加(=界面反応層の増大)につながるため、接合強度が低下する。また、 Al Fe
3 系化合物層の平均厚さ 1 Al Fe
1、 5 2系化合物層の平均厚さ 1
2、そして、これら 2層の合 計の平均厚さ 1などが得られな 、可能性が高い、。
[0384] 一方、加圧力を増加するとナゲット面積力 、さくなる傾向にあり、加圧力が 2. 5 X t° •5kNを超えた場合、所望のナゲット面積を得ようとすると、下記最適電流を超える電 流が必要となり、チリの発生や界面反応層の成長をもたらすため、接合強度が低くな る。また、アルミニウム材の変形が大きぐ接合跡が大きな凹部となるため、外観上望 ましくない。
[0385] (電流)
上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得るた めには、スポット溶接時の電流の制御を行ない、比較的高い電流を短時間流すこと が必要である。
[0386] 具体的には、前記接合部の鋼材全体の板厚 t (図 4の t、但し 2枚以上鋼材が積層 されている場合にはその鋼材全体の板厚)との関係で、 12 X t ' 5〜35 X t 5kAの 比較的高い電流を、 320 X t °· 5msec以下の短時間流すことが必要である。但し、こ の比較的高い電流や時間の範囲内でも、素材や他の溶接条件によって上記化合物 の出来方は異なり、必ず前記本発明で規定する最適範囲内となるは限らない。この ため、素材や他の溶接条件に応じて、前記比較的高い電流や時間の範囲から、前 記本発明で規定する最適範囲内となる最適電流や時間を選択することが必要である
[0387] また、このような比較的高 、電流を短時間流すことで、異種材料間、電極と材料間 の電気的接触を安定ィ匕し、ナゲット内の溶融金属をナゲット周辺の未溶融部で支え、 上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得ること ができる。また、チリの発生を抑制することができる。
[0388] 12Xt °· 5kA未満、厳しくは 15 X t °' 5kA未満の低電流の場合、ナゲットが形成、 成長するのに十分な入熱量が得られない。このため、上記比較的大きなナゲット必要 面積と、上記最適界面反応層の必要面積を得ることができない。また、 Al Fe系化合
3 物と Al Fe Si Mn系化合物との層の平均厚さ 1、 Al Fe系化合物層のナゲット中
19 4 2 1 5 2
心 ±0. 1mmの範囲内におけるナゲット深さ方向の平均厚さ 1、などが得られない可
2
能性が高い。
[0389] 一方、 35Xt 5kAを超える高い電流の場合には、余分な設備がかかり、作業'コ スト面で不利となる。このため、これらの点からは電流を 35 Xt °'5kA以下とする。し たがって、使用電流は 12 Xt °· 5〜35Xt °· 5kA、好ましくは 15Xt · 5〜35Xt · 5k Aの範囲とする。
[0390] (通電時間)
通電時間は、前記鋼材全体の板厚 tとの関係で、 320 Xt 5msec以下の比較的 短時間とする。通電時間が 320Xt °· 5msecを超える長時間の場合、ナゲット径は確 保できるが、チリの発生や界面反応層の成長をもたらすため、接合強度が低くなる。 上記のように、界面反応層を制御するには、通電時間が 320Xt °· 5msec以下、好ま しくは 100 Xt °· 5msec〜280Xt °' 5msecとする。但し、前記した通り、素材や他の 溶接条件に応じて、前記電流との関係で、前記本発明で規定する化合物制御が最 適範囲内となる最適時間を選択することが必要である。
[0391] (2段通電)
接合界面の反応層を、本発明で規定する化合物層のようにするためには、通常の 1段の通電では無ぐ 2段通電あるいは 2段階スポット溶接で行なうことが好ましい。こ のように、スポット溶接の通電を 2段階とし、特に 2段目の通電値を 1段目の通電値よ りも低くすることによって、鋼材表面の亜鉛めつき層を飛ばして (除去して)、鋼材とァ ルミ-ゥム材とを直接接合しやすくなる。
[0392] また、本発明化合物層規定の化合物層がより得やすくなる。即ち、異材接合体の接 合界面に、鋼材側に Al Fe系化合物層、アルミニウム材側に Al Fe系化合物層が各
5 2 3
々生成しやすい。また、これら 2層の特定厚さ部分の面積 S力 ナゲット面積 Sの 50 %以上となりやすい。更に、これら 2層中に各々含まれる Zn—Fe系化合物層の面積 S力 断面方向の化合物面積 S +Sの 10%以下に抑制されやすい。また、ナゲット
3 2 3
と接する接合界面部における Zn層の合計面積 Sも、ナゲット面積の 30%以下に抑
4
制されやすい。
[0393] スポット溶接の通電を、この 2段階とする場合にも、前記した、 2段目の通電値を 1段 目の通電値よりも低くする以外は、 1段目と 2段目とも加圧力は同じとし、かつ加圧力 、電流値、合計通電時間は、前記した好ましい範囲内とすることが好ましい。これによ つて、スポット溶接の効率を阻害しな ヽで異材接合することができる。
[0394] (電極形状)
スポット溶接の電極チップの形状は、上記ナゲット面積と界面反応層を得られるの であれば、何れの形状でも良いし、鋼材側、アルミニウム材側の電極チップが異なる 形状でも異なるサイズでも構わない。但し、鋼材側、アルミニウム材側の両側共に、図 5に示すような、先端が Rとなった「ドーム型」の電極チップが望ましい。このようなドー ム型の場合、電極チップの先端径、先端 Rは、上記電流密度低下とナゲット面積増 加を両立するためには、 7mm φ以上で、 lOOmmR以上である必要がある。また、極 性についても規定するものではないが、直流スポット溶接を用いる場合は、アルミニゥ ム材側を陽極とし、鋼材側を陰極とする方が望まし 、。
[0395] なお、特に先端径が 7mm φ以上で、かつ先端 Rが 120mmR以上の電極チップを 双方に用いることで、上記電流密度低下とナゲット面積増加を最適に両立させること ができる。このチップを用いた場合、前記鋼材板厚 tとの関係で、 1. 5 X t ' 5kN〜2 . 5 X t 0 5kNのカロ圧力を印カロし、力つ 15 X t 0 5〜35 X t · 5kAの電流を 3に O X t · &msec以下流すことが好ま 、。
[0396] 最適接合条件は、以上説明したこれら各条件のバランスにあり、例えばチップ径ゃ チップ 加圧力の増加して、電流密度を低下した場合は、それに伴って電流量を 増加して、界面反応層を最適厚さに制御する必要がある。
[0397] [実施例]
ほ 9]
Figure imgf000092_0001
[0398] [表 10]
8
Figure imgf000093_0001
(98 OMP a級高張力 G A鋼板)
Figure imgf000094_0001
12]
(98 OMP a級高張力 GA鋼板)
Figure imgf000095_0001
*+字引張試験結果で Xは接合しなかったことを意味する (以下の表も同じ) 。3]
3228
(78 OMP a級高張力 G A鋼板)
Figure imgf000096_0001
* 32〜 39の鋼材板厚 t , 0. 9 mmは鋼材 1枚当たリの板厚( 2枚の合計板厚は 1. 8 mm)] (78 OMP a級高張力 GA鋼板)
Figure imgf000097_0001
] (270-98 OMP a級 GA鍋板: 亜鉛めつき膜厚 10 // m )
Figure imgf000098_0001
*42~57の鋼材板厚 t,は各々鋼材 1枚当たりの板厚(2枚の合計板厚は t , 2)
16] (270~980MP a級 GA鋼板: 亜鉛めつき膜厚 1 0 flm)
Figure imgf000099_0001
異材接合体を表 11、 13、 15に示す各条件にて製作した。これら製作した各接合体 にっき、各化合物の面積割合を前記した測定方法にて測定し、接合強度、アルミ二 ゥム材の減肉量 (最小残存板厚)を評価した。これらのまとめとして、表 11の条件での スポット溶接による接合結果を表 12に、表 13の条件でのスポット溶接による接合結 果を表 14に、表 15の条件でのスポット溶接による接合結果を表 16に、各々示す。
[0406] (鋼材条件)
表 9に示す化学成分 (質量%)を含有する 4種類の供試鋼を溶製し、 0. 8〜1. 2m mの板厚となるまで圧延を行い、薄鋼板を得た。この薄鋼板を、連続焼鈍によって 50 0〜: LOOO°Cの焼鈍後、油洗または水洗を行い、その後焼き戻しにより表 9に示す 4種 類の各強度 (MPa)の鋼板を得た。
[0407] (アルミニウム材条件)
また、アルミニウム材については、全て共通して、板厚 1. Ommの市販の A6022ァ ルミ-ゥム合金板 (A1— 0. 6質量%— 1. 0質量0 /0Si— 0. 08質量%Mn— 0. 17質 量% 6)を用いた。
[0408] (スポット溶接条件)
これら鋼板 (鋼材)とアルミニウム合金板 (アルミニウム材)とを JIS A 3137記載の十 字引張試験片形状に加工した上で、表 10に示す条件でスポット溶接を行い、異材接 合体を作成した。
[0409] スポット溶接には、直流抵抗溶接試験機を用い、予め加圧力、溶接電流、時間など 条件と、前記本発明で規定する化合物の平均厚みや面積の制御との相関関係を調 查した。その上で、アルミニウム材の板厚 tに合わせて、加圧力、溶接電流、時間を
2
各々設定し、各表で示す条件にて、一点の溶接を行った。
[0410] 加圧力、溶接電流、通電時間は、用いた下記電極チップとの関係で、前記段落 03
95に記載した各好ましい範囲内で、変化させた。
[0411] そして、スポット溶接の通電を 2段階とする場合には、 2段目の通電値を 1段目の通 電値よりも低くする以外は、 1段目と 2段目とも加圧力は同じとし、かつ加圧力、電流 値、合計通電時間は、前記した好ましい範囲内とした。
[0412] 電極チップは全て Cu— Cr合金からなる 12mm φのドーム型で、電極先端の曲率 を 150mmRとし、陽極をアルミニウム材、陰極を鋼材とした。
[0413] ナゲット径、アルミニウム最小残存板厚、 Znめっき層残存割合の測定は、スポット溶 接後のサンプルを溶接部の中央にて切断し、榭脂に埋め込み、研磨、化学エツチン グを施し、 200倍の光学顕微鏡での観察を行った。
[0414] 界面反応層の厚さ測定は、上記と同様の断面サンプルを用いて、前記した測定方 法にて各々行った。
[0415] (接合強度の評価)
各接合体の接合強度の評価としては、異材接合体の十字引張試験を実施した。十 字引張試験は、 A6022材同士の接合強度 = 1. OkNを基準にして、接合強度が 1.
5kN以上または破断形態がアルミ母材破断であれば◎、接合強度が 1. 0〜1. 5k
Nであれば〇、接合強度が 0. 5〜1. OkNであれば△、接合強度が 0. 5kN未満で あれば Xとした。
[0416] なお、本実施例にて強度の評価に、十字引張試験を用いたのは、この十字引張試 験の方が、剪断引張試験よりも、試験条件間での差異が大き力つたためである。但し 、剪断引張試験も発明例力 幾つ力選択して行なってみた結果では、この十字引張 試験結果と合致しており、十字引張試験にて〇、◎の評価を得たものは、いずれも 2 . 5kN以上の高い剪断強度であった。
[0417] 表 12、 14、 16のスポット溶接による接合結果において、各発明例は、一定厚みを 有する接合界面化合物層部分の平面方向に占める合計面積 Sのナゲット面積 Sに 対する面積割合が 50%以上である。また、一定厚みを有する接合界面化合物層部 分の断面方向に占める面積 Sに対する、 Zn—Fe系化合物層と他の 2層の合計面積
2
S +Sの割合が 10%以下である。更に、好ましい条件として、ナゲットと接する接合
2 3
界面における Zn層の平面方向に占める合計面積 S 1S ナゲット面積 Sの 30%以下
4
であり、ナゲット平均径が 7. Omm以上である。
[0418] この結果、各発明例は、表 12、 14、 16に示す通り、異材接合体の高い接合強度が 得られている。そして、発明例の中でも、一定厚みを有する接合界面化合物層部分 がより多いか、 Zn—Fe系化合物層部分がより少ない例ほど、異材接合体の接合強 度が高い。また、好ましい条件である、ナゲット平均径が大きいほど、 Zn層の平面方 向に占める合計面積 Sが少ないほど、異材接合体の接合強度が高い。
4
[0419] 一方、表 12、 14、 16のスポット溶接による接合結果において、各比較例は、平面 方向に占める合計面積 Sのナゲット面積 Sに対する面積割合が 50%未満力、一定 厚みを有する接合界面化合物層部分の断面方向に占める面積 Sに対する、 Zn-F
2
e系化合物層と他の 2層の合計面積 S +Sの割合が 10%を越えている。即ち、一定
2 3
厚みを有する接合界面化合物層部分が少な過ぎる力 Zn— Fe系化合物層部分が 多過ぎる。このため、各対応する発明例に比して、異材接合体の接合強度が著しく 低い。
[0420] ここで、表 12における発明例 8と比較例 7との接合界面糸且織の具体的な比較を行う 。図 6、 7が発明例 8の接合界面組織であり、図 6は接合界面の 5000倍の SEM写真 である。図 7は同じ接合界面の 5000倍の TEM写真である。図 6、 7から分かる通り、 発明例 8の接合界面組織には、鋼材側に Al Fe系化合物層、アルミニウム材側に A1
5 2
Fe系化合物層を各々有して 、ることが分かる。
3
[0421] 一方、図 12に、比較例 7の接合界面組織であり、接合界面の 5000倍の TEM写真 を示す。図 12から分力る通り、比較例 7の接合界面組織は、アルミニウム材側に Al F
3 e系化合物層を各々有しているものの、鋼材側には、 Al Fe系化合物層が存在しな
5 2
いことが分かる。
[0422] 図 8に、これら発明例 8と比較例 7との、 Al Fe系化合物層と Al Fe系化合物層との
3 5 2
2層の合計の平均厚さの、ナゲット中心部からの距離による分布を示す。図 8におい て、これら 2層の合計の平均厚さ 1が 0. 5〜: L0 mである部分は二つの点線の範囲 内で示される。
[0423] 黒三角で示す発明例 8は、平均厚さが厚過ぎるナゲット中心部を除いて、ナゲット 中心部からの距離が 4000 μ mの部分まで、その平均厚さ 1が 0. 5〜10 μ mである部 分が延在している。これを、アルミニウム材側の接合界面において平面的に示すと、 図 9のようになる。即ち、発明例 8は、ナゲットのアルミニウム材側の接合界面におい て平面方向に占める面積 Sに対する面積割合が 80%であり、ナゲット中心部とナゲッ ト周縁部だけを除いて、ほとんどナゲット (面積 S)に近似 (重複)している。
[0424] これに対して、発明例 8の下方の黒丸で示す比較例 7は、その平均厚さ 1が 0. 5〜1 0 μ mである部分は、ナゲット中心部からの距離が 2000 μ mの部分までである。これ を、アルミニウム材側の接合界面において平面的に示すと、図 10のようになる。即ち 、比較例 7は、ナゲットのアルミニウム材側の接合界面において平面方向に占める面 積 Sに対する面積割合が 36%であり、ナゲット中心部とその周辺部だけがナゲット (面 積 S)と重複して 、るのみである。
[0425] したがって、以上の実施例から、異材接合体の高!ヽ接合強度を得るための、本発 明における接合界面での界面反応層の厚さ、構造規定の臨界的な意義が裏付けら れる。
産業上の利用可能性
[0426] 本発明によれば、スポット溶接にて鋼材とアルミニウム材との異材接合体を形成す るに際して、従来技術のように、他の材料を新たに用いることなぐまた、新たな別ェ 程を追加する必要がなぐ既存のスポット溶接機を用いることができるため、大幅なコ スト削減を実現できる。
[0427] また、本発明によれば、鋼材とアルミニウム材とをスポット溶接にて接合する際の接 合強度を高めるとともに、接触腐食とそれによる接合強度の低下とを抑制できる異材 接合体及びそのスポット溶接法を提供できる。
[0428] また、本発明によれば、クラッド材などの他材料を入れることなぐまた別工程を入れ ることなく、更に、鋼材側やアルミニウム材側、あるいはスポット溶接側条件を大きく変 えることなぐ接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との異材 接合体を提供できる。
このような接合体は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物 等における各種構造部材として大変有用に適用できる。
したがって、本発明は鋼材とアルミニウムとの異材接合体の用途を大きく拡大するも のである。

Claims

請求の範囲
[1] 板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5〜4. Ommである、純アルミ-
1 2
ゥム材またはアルミニウム合金材 (以下、純アルミニウム材またはアルミニウム合金材 を「アルミニウム材」という。 )とをスポット溶接にて接合して形成された接合体であって
、接合部におけるナゲット面積が 20 X t °· 5〜: LOO X t °· 5mm2であり、界面反応層の
2 2
厚さが 0. 5〜3 /ζ πιである部分の面積が 10 X t 5mm2以上であり、かつ接合部中心
2
と接合部中心から接合径の 1Z4の距離だけ離れた点とにおける界面反応層の厚さ の差が 5 μ m以内であることを特徴とする鋼材とアルミニウム材との接合体。
[2] 前記界面反応層の最大厚さが、 0. 5〜: L0 mの範囲である請求項 1に記載の鋼 材とアルミニウム材との接合体。
[3] 請求項 1または 2に記載の接合体を形成するためのスポット溶接に用いられる電極 チップであって、被接合材との接触が、 2点以上または線状もしくは面状で行われる 電極チップ。
[4] 請求項 1または 2に記載の接合体を形成するためのスポット溶接に用いられる電極 チップであって、先端部がドーム型に形成されるとともに、前記先端部の中央に直径 2mm以上の凹部が形成されている請求項 3に記載の電極チップ。
[5] 請求項 1または 2に記載の接合体を形成するためのスポット溶接方法であって、一 対の電極チップのうち少なくとも片方に請求項 3または 4に記載の電極チップを用い ることを特徴とする鋼材とアルミニウム材とのスポット溶接方法。
[6] 請求項 1または 2に記載の接合体を形成するためのスポット溶接方法であって、前 記鋼材と前記アルミニウム材のうち少なくとも一方を 5°C以下に冷却してスポット溶接 することを特徴とする鋼材とアルミニウム材とのスポット溶接方法。
[7] 板厚 tが 0. 3〜3. Ommである鋼材と、板厚 tが 0. 5〜4. 0mmであるアルミニウム
1 2
材とをスポット溶接にて接合した異材接合体であって、これら接合される鋼材とアルミ 二ゥム材との互いの接合面間に、融点力 S350〜1000°C、平均厚みが 3〜19 /ζ πιの Ζηまたは Ζη合金あるいは Αほたは A1合金の皮膜と、有機榭脂接着剤皮膜またはリ ン酸塩皮膜とが予め設けられた状態でスポット溶接されており、スポット溶接後の溶 接部における界面反応層の厚さが 0. 5〜5 /ζ πιの範囲である部分の面積が 10 X t °· 5mm2以上であることを特徴とする鋼材とアルミニウム材との異材接合体。
[8] 前記界面反応層の厚さが 0.5〜5 μ mの範囲である部分の面積が 50 Xt °' 5mm2
2 以上である請求項 7に記載の鋼材とアルミニウム材との異材接合体。
[9] 前記 Zn皮膜が、鋼材側の表面に施された 88質量%以上の Znを含むめっき皮膜で ある請求項 7または 8に記載の鋼材とアルミニウム材との異材接合体。
[10] 板厚 tが 0.3〜3. Ommである鋼材と、板厚 tが 0.5〜4. Ommであるアルミニウム
1 2
材との異材接合体のスポット溶接方法であって、これら接合される鋼材とアルミニウム 材との互いの接合面間に、融点力 S350〜1000°C、平均厚みが 3〜19 μ mの Znまた は Alの金属又は合金皮膜と、有機榭脂接着剤皮膜またはリン酸塩皮膜とを予め設け た状態でスポット溶接するとともに、このスポット溶接において、アルミニウム材側の電 極チップの先端径を 7mm φ以上として、電極チップによる加圧力を、先端曲率半径 Rmmと加圧力 WkNとの関係が(RXW)1/3/R>0.05となるように印カロし、力つ 15 Xt 5〜30Xt 八の電流を100 °· 5〜: LOOOXt · 5msec流す工程を有する
2 2 2 2
とともに、この工程より高い電流を流す工程が存在しない電流パターンにてスポット溶 接することを特徴とする異材接合体のスポット溶接方法。
[11] 前記 15Xt °'5〜30Xt 5kAの電流を lOOXt 0 5〜: LOOOXt 5msec流す工程
2 2 2 2
よりも後の工程で、 lXt ° 5〜10Xt 0 51^の電流を100 0 5〜: LOOOXt °· 5mse
2 2 2 2 c流す工程を存在させた電流パターンにてスポット溶接する請求項 10に記載の異材 接合体のスポット溶接方法。
[12] 板厚 tが 0.3〜3.0mmで、亜鉛めつき層の平均厚みが 3〜19 μ mである亜鉛め つき鋼材と、板厚 tが 0.5〜4.0mmであるアルミニウム材とをスポット溶接にて接合
2
した異材接合体であって、
この異材接合体の接合界面において、
鋼材側に Al Fe系化合物層、アルミニウム材側に Al Fe系化合物層を各々有し、
5 2 3
これら 2層のナゲット深さ方向の合計の平均厚さが 0.5〜: L0 mである部分の、ァ ルミ-ゥム材側の接合界面において平面方向に占める合計面積力 ナゲットのアルミ ユウム材側の接合界面にぉ 、て平面方向に占める面積の 50%以上の割合を占め、 かつ、 SEMによる、前記 Al Fe系化合物層と Al Fe系化合物層のナゲット深さ方向のこ
5 2 3
れら 2層の合計の平均厚さが 0. 5〜: LO mである接合界面部分の断面観察におい て、
これら 2層中に各々含まれる Zn— Fe系化合物層の断面方向に占める合計面積が 、これら 2層の合計の平均厚さが 0. 5〜: LO mである部分の断面方向に占める面積 と Zn—Fe系化合物層の断面方向に占める合計面積との合計の 10%以下の割合で あることを特徴とする鋼材とアルミニウム材との異材接合体。
[13] 前記ナゲットのアルミニウム材側の接合界面における平均径が 7mm以上であり、こ のナゲットと接する接合界面における Zn層の平面方向に占める合計面積が、ナゲッ トのアルミニウム材側の接合界面にぉ 、て平面方向に占める面積の 30%以下である 請求項 12に記載の鋼材とアルミニウム材との異材接合体。
[14] 異材接合部における前記アルミニウム材側の最小残存板厚が元のアルミニウム材 板厚の 50%以上である前記請求項 12または 13に記載の鋼材とアルミニウム材との 異材接合体。
[15] 前記鋼材とアルミニウム材との板厚比 t Zt力^以上である請求項 12〜14のいず
1 2
れカ 1項に記載の鋼材とアルミニウム材との異材接合体。
PCT/JP2007/053228 2006-02-03 2007-02-21 鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用いる電極チップ WO2007097378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07714728.8A EP1987904B1 (en) 2006-02-23 2007-02-21 Joint product between steel product and aluminum material
US12/280,599 US20090011269A1 (en) 2006-02-03 2007-02-21 Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product
CN2007800062345A CN101405105B (zh) 2006-02-23 2007-02-21 钢材和铝合金的接合体及点焊方法
US13/192,069 US8487206B2 (en) 2006-02-23 2011-07-27 Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-047090 2006-02-23
JP2006047090A JP4072558B2 (ja) 2006-02-23 2006-02-23 鋼材とアルミニウム材との接合体、およびそのスポット溶接方法
JP2006-056751 2006-03-02
JP2006056751 2006-03-02
JP2006234054 2006-08-30
JP2006-234054 2006-08-30
JP2006313139 2006-11-20
JP2006-313139 2006-11-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/280,599 A-371-Of-International US20090011269A1 (en) 2006-02-03 2007-02-21 Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product
US13/192,069 Division US8487206B2 (en) 2006-02-23 2011-07-27 Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product

Publications (1)

Publication Number Publication Date
WO2007097378A1 true WO2007097378A1 (ja) 2007-08-30

Family

ID=38437416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053228 WO2007097378A1 (ja) 2006-02-03 2007-02-21 鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用いる電極チップ

Country Status (5)

Country Link
US (2) US20090011269A1 (ja)
EP (2) EP1987904B1 (ja)
KR (1) KR101032839B1 (ja)
CN (1) CN102114574B (ja)
WO (1) WO2007097378A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150904A1 (ja) * 2008-06-13 2009-12-17 株式会社神戸製鋼所 異材接合用鋼材、異材接合体および異材接合方法
EP2252719A1 (de) * 2008-02-07 2010-11-24 Leonid Levinski Karosseriebauteile in metall-hybridbauweise und deren herstellungsverfahren
EP2516741B1 (fr) 2009-12-23 2014-08-06 Arjo Wiggins Fine Papers Limited Feuille imprimable ultra lisse et recyclable et son procédé de fabrication

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908059B2 (ja) * 2006-05-22 2012-04-04 カヤバ工業株式会社 ストラット型ショックアブソーバ
JP2008105087A (ja) * 2006-10-27 2008-05-08 Honda Motor Co Ltd 鉄部材とアルミニウム部材の接合方法及び鉄−アルミニウム接合体
KR101375510B1 (ko) * 2008-09-24 2014-03-18 제이에프이 스틸 가부시키가이샤 녹 방지 강판 및 그 제조 방법
JP2011140067A (ja) * 2009-12-10 2011-07-21 Kobe Steel Ltd 鋼板とアルミニウム板との接合構造体の製造方法およびこの製造方法により製造された鋼板とアルミニウム板との接合構造体
US8628875B2 (en) * 2010-04-16 2014-01-14 Samsung Sdi Co., Ltd. Battery module with multi-level connector
JP5572046B2 (ja) * 2010-09-13 2014-08-13 株式会社神戸製鋼所 異材接合方法
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手
WO2013096669A2 (en) * 2011-12-21 2013-06-27 Alcoa Inc. Apparatus and methods for joining dissimilar materials
US9501572B2 (en) * 2012-06-29 2016-11-22 Google Inc. Content placement criteria expansion
DE102013218275A1 (de) * 2012-09-17 2014-03-20 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Widerstandspunktschweissen von Aluminium an Aluminium und Stahl an Stahl
JP5814906B2 (ja) * 2012-12-10 2015-11-17 本田技研工業株式会社 抵抗溶接方法及び抵抗溶接装置
UA113884C2 (xx) 2013-05-13 2017-03-27 ЗБІРКА З АЛЮМІНІЄВИМ ЕЛЕМЕНТОМ ТА СТАЛЕВИМ ЕЛЕМЕНТОМ, ЯКИЙ МАЄ ПОКРИТТЯ З ZnAlMg СПЛАВУ
US9987705B2 (en) * 2013-06-07 2018-06-05 GM Global Technology Operations LLC Resistance spot welding of steel to pre-coated aluminum
WO2015011510A1 (en) 2013-07-25 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Spot welded joint using high strength and high forming and its production method
US9999938B2 (en) 2013-08-23 2018-06-19 GM Global Technology Operations LLC Multi-step direct welding of an aluminum-based workpiece to a steel workpiece
US10052710B2 (en) 2013-08-23 2018-08-21 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces using electrode weld face cover
US9839971B2 (en) * 2013-09-20 2017-12-12 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces with hot welding electrode at aluminum workpiece
US10058949B2 (en) 2013-10-04 2018-08-28 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces using insertable cover
DE102014114335B4 (de) 2013-10-04 2023-05-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Aluminiumlegierung-an-stahl-schweissverfahren
US10166627B2 (en) * 2013-10-04 2019-01-01 GM Global Technology Operations LLC Aluminum alloy to steel welding process
JP6252747B2 (ja) * 2013-11-22 2017-12-27 ポップリベット・ファスナー株式会社 接合装置及び接合方法
DE102013020082A1 (de) 2013-11-29 2015-06-03 Böllhoff Verbindungstechnik GmbH Schweißhilfsfügeteil, Matrize zum Setzen des Schweißhilfsfügeteils, ein Verbindungsverfahren für das Schweißhilfsfügeteil sowie Herstellungsverfahren für das Schweißhilfsfügeteil und die Matrize
JP2017506583A (ja) * 2014-02-11 2017-03-09 マグナ インターナショナル インコーポレイテッド 異種材料の接合方法
US10010966B2 (en) 2014-02-14 2018-07-03 GM Global Technology Operations LLC Electrode for resistance spot welding of dissimilar metals
JP6381944B2 (ja) * 2014-04-01 2018-08-29 東洋鋼鈑株式会社 金属積層材の製造方法
US20150352658A1 (en) * 2014-06-10 2015-12-10 GM Global Technology Operations LLC Intruding feature in aluminum alloy workpiece to improve al-steel spot welding
US9999939B2 (en) 2014-12-05 2018-06-19 GM Global Technology Operations LLC Resistance spot welding steel and aluminum workpieces with electrode insert
US10376984B2 (en) 2015-03-30 2019-08-13 GM Global Technology Operations LLC Conical shaped current flow to facilitate dissimilar metal spot welding
US10252369B2 (en) 2015-07-07 2019-04-09 GM Global Technology Operations LLC Cooling to control thermal stress and solidification for welding of dissimilar materials
JP6204953B2 (ja) * 2015-09-18 2017-09-27 矢崎総業株式会社 端子付き電線及びそれを用いたワイヤーハーネス
US10245675B2 (en) 2015-10-14 2019-04-02 GM Global Technology Operations LLC Multi-stage resistance spot welding method for workpiece stack-up having adjacent steel and aluminum workpieces
US10675702B2 (en) 2016-02-16 2020-06-09 GM Global Technology Operations LLC Joining of light metal alloy workpieces to steel workpieces using resistance spot welding and adhesive
US10766095B2 (en) 2016-03-01 2020-09-08 GM Global Technology Operations LLC Mating electrodes for resistance spot welding of aluminum workpieces to steel workpieces
US10500679B2 (en) 2016-03-30 2019-12-10 GM Global Technology Operations LLC Resistance welding electrode and method of resistance welding
US10981244B2 (en) 2016-03-30 2021-04-20 GM Global Technology Operations LLC Resistance welding electrode
US10675703B2 (en) 2016-04-08 2020-06-09 GM Global Technology Operations LLC Al-steel weld joint
US10751830B2 (en) 2016-04-08 2020-08-25 GM Global Technology Operations LLC Welding electrode for use in a resistance spot welding workpiece stack-ups that include an aluminum workpiece and a steel workpiece
US10625367B2 (en) 2016-04-08 2020-04-21 GM Global Technology Operations LLC Method of resistance spot welding aluminum to steel
US10857619B2 (en) 2016-04-14 2020-12-08 GM Global Technology Operations LLC Control of intermetallic compound growth in aluminum to steel resistance welding
US10682724B2 (en) 2016-04-19 2020-06-16 GM Global Technology Operations LLC Resistance spot welding of aluminum-to-aluminum, aluminum-to-steel, and steel-to-steel in a specified sequence and using a cover
US10675704B2 (en) 2016-04-22 2020-06-09 GM Global Technology Operations LLC Alternately direct resistance spot welding of Al-to-Al, al-to-steel, and steel-to-steel with welding electrode having oxide-disrupting structural features
US10421148B2 (en) 2016-04-25 2019-09-24 GM Global Technology Operations LLC External heat assisted welding of dissimilar metal workpieces
US10563662B2 (en) 2016-11-04 2020-02-18 General Electric Company Metal surface preparation
JP6996547B2 (ja) 2017-02-22 2022-01-17 日本製鉄株式会社 Migろう付け方法、重ね継手部材の製造方法、および重ね継手部材
EP3587614B8 (en) 2017-02-22 2021-01-20 Nippon Steel Corporation Laser brazing method and production method for lap joint member
US10532421B2 (en) 2017-08-29 2020-01-14 Honda Motor Co., Ltd. UAM resistance spot weld joint transition for multimaterial automotive structures
US10870166B2 (en) 2018-02-01 2020-12-22 Honda Motor Co., Ltd. UAM transition for fusion welding of dissimilar metal parts
US10857618B2 (en) 2018-02-28 2020-12-08 GM Global Technology Operations LLC Improving mechanical performance of Al-steel weld joints by limiting steel sheet deformation
US11065710B2 (en) 2018-03-14 2021-07-20 GM Global Technology Operations LLC Resistance spot welding workpiece stack-ups having a steel workpiece and an aluminum workpiece with a steel plate
US11831030B2 (en) 2018-05-22 2023-11-28 Pacesetter, Inc. Method of forming a brazed joint having molybdenum material
KR20200044230A (ko) 2018-10-18 2020-04-29 한국생산기술연구원 예비 통전을 이용한 이종소재의 스폿 용접방법
DE102018126914A1 (de) 2018-10-29 2020-04-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen wenigstens einer definierten Verbindungsschicht zwischen zwei Bauteilen aus unterschiedlichen Metallen
CN110253108B (zh) * 2019-07-12 2022-05-10 中船桂江造船有限公司 一种b级钢+316l异种钢的焊接方法
CN110253107A (zh) * 2019-07-12 2019-09-20 中船桂江造船有限公司 一种917钢板+Macr异种钢焊接方法
CN110253109B (zh) * 2019-07-12 2022-11-15 中船桂江造船有限公司 一种CCSB钢+1Cr18NI9TI异种钢的焊接方法
WO2021039971A1 (ja) * 2019-08-29 2021-03-04 日本製鉄株式会社 ホットスタンプ成形体
US11548091B2 (en) * 2019-10-10 2023-01-10 GM Global Technology Operations LLC Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
US11465390B2 (en) 2020-03-02 2022-10-11 Honda Motor Co., Ltd. Post-process interface development for metal-matrix composites
CN117363918B (zh) * 2023-10-13 2024-03-19 榆林学院 环形结构镁铝基复合材料的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152948A (ja) * 1974-05-30 1975-12-09
JPH0250832B2 (ja) * 1984-01-13 1990-11-05 Matsushita Electric Works Ltd
JPH0446684A (ja) * 1990-06-13 1992-02-17 Toyota Motor Corp スポット抵抗溶接用電極
JPH0655277A (ja) * 1991-10-18 1994-03-01 Nisshin Steel Co Ltd 鋼材とアルミニウム系材料の接合方法
JPH11342477A (ja) * 1998-06-01 1999-12-14 Mitsubishi Electric Corp スポット溶接方法
JP2003145278A (ja) * 2001-11-13 2003-05-20 Kobe Steel Ltd 異種接合体及び抵抗スポット溶接方法
JP2004114108A (ja) * 2002-09-26 2004-04-15 Mazda Motor Corp 金属部材の接合方法及び装置
WO2005030424A1 (ja) * 2003-09-29 2005-04-07 Nisshin Steel Co., Ltd. 鋼/アルミニウムの接合構造体
JP2005152959A (ja) * 2003-11-26 2005-06-16 Kobe Steel Ltd 鋼材とアルミニウム材との異材接合体
WO2005102586A1 (ja) * 2004-04-21 2005-11-03 Kabushiki Kaisha Kobe Seiko Sho 鋼材とアルミニウム材との異材接合体とその接合方法
JP2005319481A (ja) * 2004-05-10 2005-11-17 Nisshin Steel Co Ltd 鋼/アルミニウム接合構造体の製造方法
JP2006289452A (ja) * 2005-04-12 2006-10-26 Kobe Steel Ltd 鋼材とアルミニウム材との異材接合体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177977A (ja) 1987-01-20 1988-07-22 Mitsubishi Electric Corp スポツト溶接方法
JPS6462285A (en) 1987-08-31 1989-03-08 Nippon Steel Corp Galvanized steel sheet excellent in spot weldability and its welding method
JPH0250832A (ja) 1988-08-12 1990-02-20 Matsushita Electric Works Ltd 積層板
JP2754898B2 (ja) 1990-10-05 1998-05-20 日立電線株式会社 Al―Fe系異種金属のスポット溶接法
JPH04251676A (ja) 1991-01-28 1992-09-08 Nisshin Steel Co Ltd 鋼材とアルミニウム系材料との抵抗溶接方法
JPH05228643A (ja) 1992-02-17 1993-09-07 Sumitomo Metal Ind Ltd 異種金属の抵抗溶接方法
JPH0663763A (ja) 1992-08-11 1994-03-08 Nippon Steel Corp 異種金属接合方法及び接合用材料
JPH0724581A (ja) 1993-02-03 1995-01-27 Sumitomo Metal Ind Ltd アルミニウムと鋼の抵抗溶接方法
CN2159281Y (zh) * 1993-02-09 1994-03-23 徐恺 悬挂式组合点焊机
JP2861819B2 (ja) 1993-11-11 1999-02-24 住友金属工業株式会社 異種金属の抵抗溶接方法
JPH07178563A (ja) 1993-12-24 1995-07-18 Nippon Steel Corp 圧接を併用したスポット溶接による接合方法および接合構造体
JP2954476B2 (ja) 1994-01-28 1999-09-27 新日本製鐵株式会社 鉄系金属材料とアルミニウム系金属材料との接合方法
JPH09174249A (ja) 1995-12-26 1997-07-08 Akane:Kk 異種材料の接合方法
US6543670B2 (en) * 2001-08-29 2003-04-08 The Boeing Company Interface preparation for weld joints
JP2005067029A (ja) 2003-08-25 2005-03-17 Pilot Ink Co Ltd クリップ取付構造
JP4469165B2 (ja) 2003-11-26 2010-05-26 株式会社神戸製鋼所 鋼材とアルミニウム材との異材接合体とその接合方法
JP4139375B2 (ja) * 2003-12-10 2008-08-27 本田技研工業株式会社 抵抗溶接用電極及び抵抗溶接方法
JP4690087B2 (ja) 2004-11-22 2011-06-01 株式会社神戸製鋼所 鋼材とアルミニウム材との異材接合体とその接合方法
JP4519508B2 (ja) * 2004-04-21 2010-08-04 株式会社神戸製鋼所 鋼材とアルミニウム材との異材接合体
JP4502873B2 (ja) 2004-04-28 2010-07-14 株式会社神戸製鋼所 アルミ系材と鉄系材の抵抗スポット溶接方法
US20060081563A1 (en) * 2004-10-19 2006-04-20 Honda Motor Co., Ltd. Resistance welding electrodes, resistance welding methods and welded structures
JP4555160B2 (ja) * 2005-06-01 2010-09-29 株式会社神戸製鋼所 アルミニウム材との異材溶接接合用鋼板および異材接合体
JP5014834B2 (ja) * 2007-02-27 2012-08-29 住友軽金属工業株式会社 アルミニウム材と鋼材のmig溶接方法
JP2009061500A (ja) * 2007-08-10 2009-03-26 Nissan Motor Co Ltd 異種金属接合部材及び異種金属接合方法
EP2298949B1 (en) * 2008-06-13 2015-09-02 Kabushiki Kaisha Kobe Seiko Sho Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152948A (ja) * 1974-05-30 1975-12-09
JPH0250832B2 (ja) * 1984-01-13 1990-11-05 Matsushita Electric Works Ltd
JPH0446684A (ja) * 1990-06-13 1992-02-17 Toyota Motor Corp スポット抵抗溶接用電極
JPH0655277A (ja) * 1991-10-18 1994-03-01 Nisshin Steel Co Ltd 鋼材とアルミニウム系材料の接合方法
JPH11342477A (ja) * 1998-06-01 1999-12-14 Mitsubishi Electric Corp スポット溶接方法
JP2003145278A (ja) * 2001-11-13 2003-05-20 Kobe Steel Ltd 異種接合体及び抵抗スポット溶接方法
JP2004114108A (ja) * 2002-09-26 2004-04-15 Mazda Motor Corp 金属部材の接合方法及び装置
WO2005030424A1 (ja) * 2003-09-29 2005-04-07 Nisshin Steel Co., Ltd. 鋼/アルミニウムの接合構造体
JP2005152959A (ja) * 2003-11-26 2005-06-16 Kobe Steel Ltd 鋼材とアルミニウム材との異材接合体
WO2005102586A1 (ja) * 2004-04-21 2005-11-03 Kabushiki Kaisha Kobe Seiko Sho 鋼材とアルミニウム材との異材接合体とその接合方法
JP2005319481A (ja) * 2004-05-10 2005-11-17 Nisshin Steel Co Ltd 鋼/アルミニウム接合構造体の製造方法
JP2006289452A (ja) * 2005-04-12 2006-10-26 Kobe Steel Ltd 鋼材とアルミニウム材との異材接合体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252719A1 (de) * 2008-02-07 2010-11-24 Leonid Levinski Karosseriebauteile in metall-hybridbauweise und deren herstellungsverfahren
US8956469B2 (en) 2008-02-07 2015-02-17 Thermission Ag Vehicle body components with a metal hybrid construction and production methods for such vehicle body components
EP2252719B1 (de) * 2008-02-07 2020-07-15 Thermission AG Karosseriebauteile in metall-hybridbauweise und deren herstellungsverfahren
WO2009150904A1 (ja) * 2008-06-13 2009-12-17 株式会社神戸製鋼所 異材接合用鋼材、異材接合体および異材接合方法
US8221899B2 (en) 2008-06-13 2012-07-17 Kobe Steel, Ltd. Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
US8337998B2 (en) 2008-06-13 2012-12-25 Kobe Steel, Ltd. Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
CN102888555B (zh) * 2008-06-13 2014-09-17 株式会社神户制钢所 异种材料接合用钢材、异种材料接合体及异种材料接合方法
EP2816134A1 (en) * 2008-06-13 2014-12-24 Kabushiki Kaisha Kobe Seiko Sho Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
EP2516741B1 (fr) 2009-12-23 2014-08-06 Arjo Wiggins Fine Papers Limited Feuille imprimable ultra lisse et recyclable et son procédé de fabrication

Also Published As

Publication number Publication date
EP2340910B1 (en) 2015-04-08
US20090011269A1 (en) 2009-01-08
EP1987904B1 (en) 2015-08-12
CN102114574B (zh) 2013-01-09
EP1987904A4 (en) 2010-11-03
KR20080089501A (ko) 2008-10-06
US20120021240A1 (en) 2012-01-26
US8487206B2 (en) 2013-07-16
EP1987904A1 (en) 2008-11-05
CN102114574A (zh) 2011-07-06
EP2340910A2 (en) 2011-07-06
KR101032839B1 (ko) 2011-05-06
EP2340910A3 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2007097378A1 (ja) 鋼材とアルミニウム材との接合体、そのスポット溶接方法及びそれに用いる電極チップ
KR100790638B1 (ko) 강재와 알루미늄재의 이재 접합체 및 그의 접합 방법
CN101405105B (zh) 钢材和铝合金的接合体及点焊方法
JP4519508B2 (ja) 鋼材とアルミニウム材との異材接合体
JP4971821B2 (ja) 鋼材とアルミニウム材との異材接合方法
JP7124992B1 (ja) 溶接継手及び自動車部品
JP4445425B2 (ja) 鋼材とアルミニウム材との異材接合体
JP5138957B2 (ja) 鋼材とアルミニウム材との異材接合体
JP4690087B2 (ja) 鋼材とアルミニウム材との異材接合体とその接合方法
JPH0655277A (ja) 鋼材とアルミニウム系材料の接合方法
JP5134261B2 (ja) 鋼材とアルミニウム材との異材接合体
JP5134269B2 (ja) 鋼材とアルミニウム材との異材接合体とそのスポット溶接方法
JP7003806B2 (ja) 接合構造体およびその製造方法
JP7003805B2 (ja) 接合構造体およびその製造方法
JP7047543B2 (ja) 接合構造体およびその製造方法
JP7276640B1 (ja) プロジェクション溶接継手およびプロジェクション溶接方法
WO2023139923A1 (ja) プロジェクション溶接継手およびプロジェクション溶接方法
JP2005152959A (ja) 鋼材とアルミニウム材との異材接合体
JPH0617285A (ja) 亜鉛系合金めっきアルミニウム板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007714728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780006234.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087020545

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12280599

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE