WO2007086309A1 - 固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池 - Google Patents

固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池 Download PDF

Info

Publication number
WO2007086309A1
WO2007086309A1 PCT/JP2007/050732 JP2007050732W WO2007086309A1 WO 2007086309 A1 WO2007086309 A1 WO 2007086309A1 JP 2007050732 W JP2007050732 W JP 2007050732W WO 2007086309 A1 WO2007086309 A1 WO 2007086309A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
polymer
carbon
membrane
unit
Prior art date
Application number
PCT/JP2007/050732
Other languages
English (en)
French (fr)
Inventor
Tomohiro Ono
Shinji Nakai
Masahiro Kawasaki
Takeshi Nakano
Hiroyuki Ogi
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US12/162,375 priority Critical patent/US20100233569A1/en
Priority to AT07707036T priority patent/ATE552619T1/de
Priority to EP07707036A priority patent/EP1978584B1/en
Priority to KR1020087018468A priority patent/KR101408601B1/ko
Priority to JP2007509759A priority patent/JP5118484B2/ja
Publication of WO2007086309A1 publication Critical patent/WO2007086309A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is preferably a polymer electrolyte membrane having high proton conductivity and methanol barrier properties, preferably used in a direct methanol fuel cell, and a membrane-electrode assembly and fuel cell using the polymer electrolyte membrane About.
  • a polymer electrolyte fuel cell is generally configured as follows. First, on both sides of a polymer electrolyte membrane having ion conductivity, a catalyst layer containing carbon powder carrying a white metal catalyst and an ion conductive binder made of a polymer electrolyte is formed. A gas diffusion layer, which is a porous material through which fuel gas and oxidant gas are passed, is formed outside each catalyst layer. Carbon paper, carbon cloth, etc. are used as the gas diffusion layer. A structure in which a catalyst layer and a gas diffusion layer are integrated is called a gas diffusion electrode. A structure in which a pair of gas diffusion electrodes is bonded to an electrolyte membrane so that the catalyst layer faces the electrolyte membrane is a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • a gas flow path for supplying fuel gas or oxidant gas (for example, air) to the electrode surface is formed in the contact portion of the membrane-electrode assembly and the separator or in the separator.
  • Power is generated by supplying a fuel gas such as hydrogen or methanol to one electrode (fuel electrode) and an oxidant gas containing oxygen such as air to the other electrode (oxygen electrode).
  • the fuel is ionized to generate protons and electrons, the protons pass through the electrolyte membrane, and the electrons move through an external electric circuit formed by connecting both electrodes and are sent to the oxygen electrode, where the oxidant and Water is produced by the reaction.
  • the chemical energy of the fuel can be directly converted into electric energy and extracted.
  • a Naf ion 117 (DuPont) with a membrane thickness of about 175 ⁇ m has been used so far. Registered trademark of the company.
  • Perfluorocarbon sulfonic acid polymer electrolyte membranes typified by the following are generally used and are being developed as power sources for portable devices such as mobile phones and laptop computers. These electrolyte membranes have the characteristics of V when the electrical resistance of the membrane is low, but the fuel methanol passes through the electrolyte membrane to one electrode side force and the other electrode side (methanol crossover). It has been pointed out that the generation efficiency is low as soon as this occurs.
  • Patent Document 1 Patent Document 1
  • Patent Document 2 Non-Patent Document 1
  • the engineering plastic polymer electrolyte membrane described in Patent Literature 1 and Patent Literature 2 is unlikely to form an ion channel, thus reducing methanol permeability. Is possible.
  • it has a drawback that the electric resistance of the film tends to be high, and when the amount of ion group introduction is increased and the electric resistance of the film is reduced, it tends to swell.
  • Non-Patent Document 1 a sulfonated polystyrene b polyisobutylene b polystyrene triblock copolymer (sulfonated SiBuS) is also used as a methanol barrier as compared to a perfluorocarbon sulfonic acid polymer electrolyte membrane.
  • SiBuS perfluorocarbon sulfonic acid polymer electrolyte membrane
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-288916
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-331868
  • Non-Patent Document 1 J. Membrane Science 217 (2003) 227
  • An object of the present invention is to provide a polymer electrolyte membrane having high ion conductivity, methanol barrier properties, and good bonding properties with an electrode, and a membrane / electrode assembly and an electrode assembly using the electrolyte membrane. And providing a polymer electrolyte fuel cell.
  • the present inventors have laminated polymer electrolyte membranes, and at least one of the constituent electrolyte membranes has a specific block copolymer force or force.
  • the present inventors have found that an electrolyte laminated film, which is an electrolyte film containing as a main component, can solve the above problems.
  • the present invention comprises a polymer block (A) comprising at least two polymer electrolyte membranes, at least one of which comprises an aromatic bule compound unit as a main repeating unit.
  • a polymer electrolyte fuel cell comprising a flexible polymer block (B) as a constituent component, and the polymer block (A) containing a block copolymer (I) having an ion conductive group
  • the present invention relates to an electrolyte laminated film.
  • At least two of the constituent electrolyte membranes contain the block copolymer (I).
  • the ion exchange capacities are different from each other and there are three or more constituent electrolyte membranes, it is preferable that at least two of them have different ion exchange capacities.
  • at least one of the constituent electrolyte membranes has an ion exchange capacity of 0.7 meqZg or more, and moreover, at least one of the constituent electrolyte membranes has an ion exchange capacity of less than 0.7 meqZg.
  • At least one of the constituent electrolyte membranes contains the block copolymer (I) and has an ion exchange capacity of 0.7 meqZg or more, and at least one of the constituent electrolyte membranes It preferably contains a block copolymer (I) and has an ion exchange capacity of less than 0.7 meqZg.
  • the polymer block (A) and the polymer block (B) in the block copolymer (I) constituting at least one polymer electrolyte membrane are microphase-separated.
  • the polymer block (A) and the polymer block (B) are aggregated, and the polymer block (A) has an ion conductive group, so the polymer blocks (A) An ion channel is formed by the assembly and becomes a passage for protons.
  • the presence of the polymer block (B) makes the block copolymer elastic and flexible as a whole, and formability (assembly and bonding) in the production of membrane electrode assemblies and polymer electrolyte fuel cells. sex , Tightenability, etc.).
  • the flexible polymer block (B) is composed of alkene units and syngeneic units.
  • the present invention also relates to a membrane / electrode assembly and a fuel cell using the above electrolyte laminated film.
  • the electrolyte laminate film, membrane electrode assembly and solid polymer fuel cell of the present invention are economical and have high ionic conductivity and methanol barrier properties which are friendly to the environment, and are particularly direct methanol fuel cells. In addition, it exhibits excellent performance.
  • the electrolyte laminate film of the present invention is also excellent in bondability and moldability.
  • the block copolymer (I) constituting at least one of the constituent electrolyte membranes of the polymer electrolyte membrane for a polymer electrolyte fuel cell of the present invention comprises an aromatic vinyl compound unit as a main repeating unit, and at least one
  • the polymer block (A) having an ion conductive group is one of the constituent components.
  • the polymer block (A) has an aromatic bur compound unit as a main repeating unit.
  • aromatic bur compounds that give this unit include: a) aromatic vinyl compounds in which the carbon is a tertiary carbon, and (aromatic vinyl compounds in which the X carbon is a quaternary carbon. Possible force Excellent resistance to radicals generated during power generation (radical resistance) a Aromatic vinyl compounds in which the carbon is quaternary carbon are more preferable a Aromatic bulu compounds in which the carbon is tertiary carbon Examples include styrene, vinyl naphthalene, vinyl anthracene, burpyrene, bulupyridine, etc.
  • the hydrogen atom bonded to the X carbon atom is an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group or t ert butyl group), halogenated alkyl groups having 1 to 4 carbon atoms (chloromethyl group, 2 chloroethyl group, 3-chloroethyl group, etc.) or phenyl groups, etc. Can be mentioned.
  • the hydrogen atom bonded to the aromatic ring of these aromatic vinyl compounds may be substituted with 1 to 3 substituents, and each of the substituents may be independently an alkyl group having 1 to 4 carbon atoms ( Methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group or tert butyl group), halogenated alkyl group having 1 to 4 carbon atoms (chloromethyl group, 2 chloroethyl group, 3-chloro opening) Ethyl group, etc.).
  • aromatic vinyl compounds in which the carbon is tertiary carbon include styrene, p-methylstyrene, 4-tert-butylstyrene, and the like.
  • aromatic vinyl compounds in which the carbon is quaternary carbon include a-methylstyrene.
  • aromatic bullet compounds can be used alone or in combination of two or more.
  • the form of copolymerization of two or more types may be random copolymerization, block copolymerization, graft copolymerization or tapered copolymerization.
  • the polymer block (A) may contain one or more other monomer units as long as the effects of the present invention are not impaired.
  • examples of such other monomers include conjugation atoms having 4 to 8 carbon atoms (specific examples are the same as those in the description of the polymer block (B) described later), alkenes having 2 to 8 carbon atoms (specific examples are described later).
  • the aromatic bur compound unit in the polymer block (A) preferably accounts for 50% by mass or more of the polymer block (A) in order to form an ion channel. It is even more preferable to occupy 90% by mass or more.
  • the molecular weight of the polymer block (A) is appropriately selected depending on the properties of the electrolyte laminated film, the required performance, other polymer components, and the like.
  • the molecular weight is large, the mechanical properties such as tensile strength of the electrolyte laminated film tend to be high, and when the molecular weight is small, the electric resistance of the electrolyte laminated film tends to be small, and the molecular weight is appropriately selected according to the required performance. This is very important.
  • As the number average molecular weight in terms of polystyrene it is usually preferable to select a force between 100 and 1,000,000, more preferably between 1,000 and 100,000.
  • the block copolymer (I) constituting at least one of the constituent electrolyte membranes of the electrolyte laminated membrane for a polymer electrolyte fuel cell of the present invention comprises a flexible polymer block (in addition to the polymer block (A)) ( B).
  • the polymer block (A) and the polymer block (B) undergo microphase separation, and the polymer block (A) and the polymer block (B) have a property of being aggregated.
  • the block copolymer becomes elastic and flexible as a whole, and the moldability (assembly property, bondability, Tightness etc.) are improved.
  • the flexible polymer block (B) here has a glass transition point or soft point of 50 ° C or lower, preferably 20 ° C or lower, more preferably 10 ° C or lower! /, A loose rubber. It is a polymer block.
  • Monomers that can constitute the repeating unit constituting the flexible polymer block (B) include alkenes having 2 to 8 carbon atoms, cycloalkenes having 5 to 8 carbon atoms, and 7 to 10 carbon atoms. Bulle cycloalkene, conjugated diene having 4 to 8 carbon atoms and conjugated cycloalkadiene having 5 to 8 carbon atoms, carbon 7 to 10 burc cloalkene having one hydrogenated carbon double bond, carbon-carbon double bond One of the hydrogenated conjugated diene having 4 to 8 carbon atoms, one of the carbon-carbon double bonds hydrogenated with 5 to 8 carbon conjugated cycloalkadiene, (meth) acrylic acid ester, butyl ester And butyl ethers, and the like can be used alone or in combination of two or more.
  • the form may be random copolymerization, block copolymerization, graft copolymerization, or tapered copolymerization.
  • the monomer to be used for (co) polymerization has two carbon-carbon double bonds, any of them may be used for polymerization.
  • the ratio of 1, 2 bonds to 1, 4 bonds there are no particular restrictions on the ratio of 1, 2 bonds to 1, 4 bonds as long as the glass transition point or soft point is 50 ° C or less.
  • the repeating unit constituting the polymer block (B) is a butylcycloalkene unit or a conjugated diene.
  • the power generation performance and heat resistance degradation of the membrane / electrode assembly using the polymer electrolyte membrane of the present invention From the standpoint of improving properties, it is preferable that more than 30 mol% of the strong carbon-carbon double bonds are hydrogenated. More preferably, more than 50 mol% of hydrogen is hydrogenated. It is even more preferred that at least% is hydrogenated.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, iodine value measurement method, 1 H-NMR measurement or the like.
  • the polymer block (B) is obtained from the viewpoint of giving the resulting block copolymer an excellent elasticity and, in addition, a good moldability in the production of a membrane-electrode assembly and a polymer electrolyte fuel cell.
  • the alkene unit having 2 to 8 carbon atoms, the conjugation unit having 4 to 8 carbon atoms, and the conjugated diene unit having 4 to 8 carbon atoms in which some or all of the carbon-carbon double bonds are hydrogenated are selected. It is more preferable that the polymer block has at least one kind of repeating unit force. Alkene unit having 2 to 6 carbon atoms, conjugation unit having 4 to 8 carbon atoms, and part or all of carbon-carbon double bond. It is even more preferable that the polymer block has at least one repeating unit force selected from hydrogenated conjugation units having 4 to 8 carbon atoms. In the above, isobutene units are most preferable as alkene units, and 1,3-butadiene units and / or isoprene units are most preferable as conjugation units.
  • the alkene having 2 to 8 carbon atoms is ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene. 2 heptene, 1-octene, 2-octene and the like, and examples of the cycloalkene having 5 to 8 carbon atoms include cyclopentene, cyclohexene, cycloheptene and cyclootaten.
  • Examples of the bullcycloalkene having 7 to 10 carbon atoms include bullcyclopentene, bicyclocyclohexene, bullcycloheptene, and bullcyclootaten, and examples of the conjugate genus having 4 to 8 carbon atoms include 1,3.
  • the polymer block (B) is not limited to the above-mentioned monomers, and if it gives elasticity to the block copolymer, other units may be used within the range without impairing the purpose of the polymer block (B). Including, for example, aromatic bur compounds such as styrene and urnaphthalene; halogen-containing beer compounds such as chlor chloride! /.
  • the copolymerization form of the above monomer with another monomer needs to be random copolymerization.
  • the amount of such other monomer used is preferably less than 50% by mass, more preferably less than 30% by mass, based on the total of the above monomer and other monomer. More preferably, it is less than 10% by mass.
  • the structure of the block copolymer comprising the polymer block (A) and the polymer block (B) as constituent components is not particularly limited.
  • an A—B—A type triblock copolymer, B —A—B type triblock copolymer, A—B—A type triblock copolymer or a mixture of B—A—B type triblock copolymer and A—B type diblock copolymer A — B— A— B type tetrablock copolymer, A— B— A—B— A type pentablock copolymer, B—A—B—A—B type pentablock copolymer, (A— B ) nX type star copolymer (X represents a coupling agent residue), (BA) nX type star copolymer (X represents a coupling agent residue), and the like.
  • These block copolymers can be used alone or in combination of two or more.
  • the mass ratio of the polymer block (A) to the polymer block (B) is preferably 95: 5 to 5:95, more preferably 90:10 to 10:90. More preferably, the ratio is 50:50 to L0: 90.
  • this mass ratio is 95: 5 to 5:95, it is advantageous for the ion channel formed by the polymer block (A) to be cylindrical and continuous by microphase separation. Practically sufficient ion conductivity is exhibited, and excellent water resistance is exhibited with an appropriate proportion of the polymer block (B) that is hydrophobic.
  • the block copolymer (I) constituting at least one of the electrolyte membranes of the electrolyte membrane for a polymer electrolyte fuel cell of the present invention comprises a polymer block (A) and a polymer block (B). Including other different polymer blocks (C).
  • the polymer block (C) is not particularly limited as long as it is a component that undergoes microphase separation from the polymer block (A) and the polymer block (B).
  • the monomer constituting the polymer block (C) is, for example, an aromatic vinyl compound [a hydrogen nuclear atom bonded to an aromatic ring ⁇ 3 to 1 carbon number 1-4 alkyl group (methyl group, ethyl group, n- Propyl, isopropyl, n-butyl, isobutyl, or tert-butyl)), styrene, a-methylstyrene, urnaphthalene, berylanthracene, burpyrene, etc.], having 4 to 8 carbon atoms Conjugation (specific examples are the same as in the description of the polymer block (B) described above), alkenes having 2 to 8 carbon atoms (specific examples are the same as in the description of the polymer block (B) described above), ( (Meth) acrylic acid est
  • the polymer block (C) is microphase-separated from the polymer block (A) and the polymer block (B) and does not substantially contain an ionic group and has a function of acting as a constrained phase.
  • the electrolyte laminated film of the present invention having such a polymer block (C) tends to have excellent dimensional stability, form stability, durability and mechanical properties under wet conditions.
  • Preferred examples of the monomer constituting the polymer block (C) in this case include the aromatic vinyl compounds described above. Further, the above-described function can be provided by making the polymer block (C) crystalline.
  • the aromatic bur compound unit in the polymer block (C) may occupy 50% by mass or more of the polymer block (C). It is more preferable to occupy 70% by mass or more, more preferably 90% by mass or more. Further, from the same viewpoint as described above, units other than the aromatic bur compound unit that can be contained in the polymer block (C) are preferably randomly copolymerized. [0031] As an example of a polymer block (C) that is particularly suitable from the viewpoint of causing the polymer block (C) to undergo microphase separation from the polymer block (A) and the polymer block (B) and to function as a constrained phase.
  • polystyrene block a polystyrene block such as a poly ⁇ -methylol styrene block, a poly ⁇ - (tert-butynole) styrene block; any proportion of styrene, p-methyl styrene and poly P- (tert-butyl) Examples thereof include copolymer blocks composed of two or more types of styrene; crystalline hydrogenated 1,4 polybutadiene; crystalline polyethylene block; crystalline polypropylene block.
  • the block copolymer used in the present invention contains a polymer block (C), A—B—C type triblock copolymer, A—B—C—A type tetrablock copolymer Polymer, A—BA—C type tetrablock copolymer, B—A—B—C type tetrablock copolymer, CB —CA type tetrablock copolymer, A—B—C—B type tetrablock copolymer C—AB—A—C type pentablock copolymer, CB—A—B—C type pentablock copolymer, A—C—B—C—A type pentablock copolymer, A—C— B—A—C type pentab block copolymer, A—B—C—A—B type pentablock copolymer, A—B—C—A—C type pentablock copolymer, A—B— CB—C type pentablock copolymer, A—B— CB
  • the block copolymer (I) constituting at least one of the constituent electrolyte membranes of the electrolyte laminated membrane for a polymer electrolyte fuel cell of the present invention contains a polymer block (C)
  • the block copolymer contains The proportion of the polymer block (C) is preferably 75% by mass or less, more preferably 70% by mass or less, and still more preferably 65% by mass or less.
  • the ion conductive group of the block copolymer (I) constituting at least one of the electrolyte membranes of the electrolyte membrane for the polymer electrolyte fuel cell of the present invention has been introduced.
  • the number average molecular weight is not particularly limited, but the number average molecular weight in terms of polystyrene is usually preferably 10,000 to 2,000,000 force S ⁇ , preferably 15,000 to 1,000,000 force S ⁇ More preferred than 20, 000-500,000 power! / ⁇ .
  • the block copolymer (I) constituting at least one of the constituent electrolyte membranes of the electrolyte laminated membrane for a polymer electrolyte fuel cell of the present invention may have an ion conductive group in the polymer block (A). is necessary.
  • ions in the present invention when referring to ionic conductivity include protons.
  • the ion conductive group is not particularly limited as long as the membrane / electrode assembly produced using the electrolyte laminate film can exhibit sufficient ionic conductivity. SO M or PO HM (wherein, M is a hydrogen atom, an ammonium ion or
  • a sulfonic acid group, a phosphonic acid group or a salt thereof represented by (which represents an alkali metal ion) is preferably used.
  • the ion conductive group a carboxyl group or a salt thereof can also be used.
  • the reason for introducing the ion conductive group into the polymer block (A) is to facilitate the introduction of the ion conductive group and the formation of the ion channel.
  • a polymer block having an ion-conducting group introduced therein Force a-Aromatic vinyl compound unit in which a hydrogen atom bonded to a carbon atom is substituted with an alkyl group having 1 to 4 carbon atoms,
  • the polarity of the polymer block (A) is larger than that of an aromatic vinyl compound unit in which the a-carbon is a tertiary carbon, for example, a styrene unit. Since the hydrophobicity in the ion channel formed by the polymer block (A) is improved by microphase separation, methanol crossover tends to be suppressed.
  • an aromatic vinyl compound unit in which a hydrogen atom bonded to an aromatic ring of these aromatic vinyl compounds is substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, such as p-methylstyrene.
  • the aromatic ring is substituted!
  • the polymer block (A) has a smaller polarity compared to the case of using V, aromatic vinyl compound unit as the main repeating unit, and the polymer block (A) is formed by microphase separation. Since the hydrophobicity in the channel is improved, methanol crossover tends to be suppressed.
  • the block (A) may be crosslinked within a range not impairing the effects of the present invention.
  • cross-linking By introducing cross-linking, the dimensional stability and shape stability of the membrane increase, and methanol crossover tends to be suppressed.
  • means for crosslinking include a thermal crosslinking method.
  • thermal crosslinking method thermal crosslinking is possible by copolymerizing a monomer having a thermal crosslinking site in the polymer block (A).
  • suitable monomers include p-methylstyrene.
  • the production method of the block copolymer (I) constituting at least one of the electrolyte membranes is mainly classified into the following two methods. It is. That is, (1) a method in which a block copolymer having no ion conductive group is first produced and then the ion conductive group is bonded, and (2) a block is formed using a monomer having an ion conductive group. This is a method for producing a copolymer.
  • the production method of the polymer block (A) or (B) may be radical polymerization method, ion polymerization method, cationic polymerization method.
  • a method such as a polymerization method or a coordination polymerization method is appropriately selected.
  • a radical polymerization method, a cation polymerization method, or a cationic polymerization method is preferably selected.
  • a method for producing a block copolymer comprising a polymer block (A) made of polystyrene and a polymer block (B) made of conjugated diene as a component, a polymer block made of polystyrene ( A) and a polymer block (B) containing isobutene
  • a block copolymer comprising a polymer block ( ⁇ ⁇ ⁇ ⁇ ) composed of poly ( ⁇ -methylstyrene) force and a polymer block ( ⁇ ) composed of conjugated gen, and a poly ( ⁇ -Methylstyrene)
  • the production method of a block copolymer comprising a polymer block ( ⁇ ) having a force and a polymer block ( ⁇ ) also having an isobutene is described below.
  • a carbon is tertiary
  • the styrene unit that is an aromatic vinyl compound unit that is carbon and the styrene derivative unit in which the aromatic ring is substituted with an alkyl group are used as the main repeating unit of the polymer block (A)
  • Styrene or a styrene derivative is polymerized under a temperature condition of 20 to 100 ° C. using a cation polymerization initiator in a cyclohexane solvent, and then conjugated gen is polymerized, and then phenyl benzoate.
  • A—B—A type block copolymer by adding a coupling agent such as
  • a carbon is quaternary
  • the oc-methylstyrene unit which is a typical example of an aromatic bur compound unit that is carbon, is used as the main repeating unit of the polymer block (A)
  • a carbon is tertiary carbon
  • the styrene unit which is an aromatic vinyl compound unit
  • Etc. may be adopted.
  • a-methylstyrene unit which is an aromatic vinyl compound unit whose carbon is a quaternary carbon, is used as the main repeating unit of the polymer block (A)
  • A-methylstyrene was polymerized in the presence of Lewis acid using a monofunctional halogenated initiator at 78 ° C in a halogenated Z hydrocarbon mixed solvent, and then Lewis acid was further added. Then, after isobutene is polymerized, a coupling reaction is performed with a coupling agent such as 2,2bis- [4- (1-Fuel-Future) Fuel] propane. How to get coalescing (Polym. Bull., (2000), 45, 121—128)
  • Sulfonation can be performed by a known sulfonation method. Such methods include preparing an organic solvent solution or suspension of the block copolymer, adding a sulfonating agent and mixing it, or adding a gaseous sulfonating agent directly to the block copolymer. Etc. are exemplified.
  • the sulfonating agent to be used sulfuric acid, a mixture system of sulfuric acid and aliphatic acid anhydride, a chlorosulfonic acid, a mixture system of chlorosulfonic acid and trimethylsilyl chloride, sulfur trioxide, trioxysulfur trioxide, Examples thereof include mixtures with triethyl phosphate, and aromatic organic sulfonic acids such as 2, 4, 6 trimethylbenzene sulfonic acid.
  • the organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, and cyclic aliphatic hydrocarbons such as cyclohexane. Depending on the situation, it may be used by appropriately selecting from a plurality of combinations.
  • a method for introducing a phosphonic acid group into the obtained block copolymer (I) will be described.
  • Phosphony can be produced by a known phosphonic method. Specifically, for example, block copolymerization An organic solvent solution or suspension is prepared, and the copolymer is reacted with chloromethyl ether or the like in the presence of anhydrous aluminum chloride to introduce a halomethyl group into the aromatic ring. Examples thereof include a method in which anhydrous salt-aluminum is added and reacted, and further a hydrolysis reaction is performed to introduce a phosphonic acid group.
  • phosphorus trichloride and anhydrous salt-aluminum are added to the copolymer and reacted, and after introducing a phosphinic acid group into the aromatic ring, the phosphinic acid group is acidified with nitric acid to form a phosphonic acid group.
  • the method of doing etc. can be illustrated.
  • the second production method of the block copolymer (I) constituting at least one of the electrolyte membranes of the electrolyte laminated membrane for a polymer electrolyte fuel cell of the present invention comprises a small amount having an ion conductive group. This is a method for producing a block copolymer using at least one monomer.
  • a monomer in which an ion conductive group is bonded to an aromatic bull compound is preferable.
  • o-, m- or p-styrene sulfonic acid, a-alkyl mono-o-, m- or p-styrene norephonic acid are particularly preferred because of industrial versatility, ease of polymerization, and the like.
  • the monomer containing an ion conductive group a monomer in which an ion conductive group is bonded to a conjugated diene compound can also be used.
  • Specific examples include 1,3-butadiene-1-sulphonic acid, 1,3-butadiene-1-sulphonic acid, isoprene-1-sulphonic acid, isoprene-2-sulphonic acid, 1,3-butadiene-1-sulphonic acid, 1,3 Butadiene-2-phosphonic acid, Isoprene-1-1-phosphonic acid, Isoprene-2-phosphonic acid and the like.
  • Monomers containing an ion-conducting group also include butyl sulfonic acid, a alkyl-vinyl sulfonic acid, buralkyl sulfonic acid, a-alkyl-bulualkyl sulphonic acid, vinylinophosphonic acid, a-anolequinolenic acid.
  • Vinorephosphonoic acid, Vininorenorequinolejo Sphonic acid, a-alkyl monobutyl alkyl phosphonic acid, and the like can also be used. Of these, bursulfonic acid and burphosphonic acid are preferred.
  • a (meth) acrylic monomer having an ion conductive group bonded can also be used.
  • Specific examples include methacrylic acid, acrylic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, and the like.
  • the ion conductive group may be introduced in the form of a salt neutralized with an appropriate metal ion (for example, alkali metal ion) or a counter ion (for example, ammonium ion).
  • an appropriate metal ion for example, alkali metal ion
  • a counter ion for example, ammonium ion
  • the desired ion-conducting group can be obtained.
  • a block copolymer having a sulfonic acid group in a salt form can be obtained by ion exchange by an appropriate method.
  • the polymer electrolyte laminate film of the present invention comprises a film containing at least one other ion-conducting group-containing polymer in addition to the film containing the block copolymer (I) as a constituent electrolyte film. You may have.
  • Examples of other strong ion-conducting group-containing polymers include ionomers such as polystyrene sulfonic acid, poly (trifluorostyrene) sulfonic acid, polyvinylphosphonic acid, polybulucarboxylic acid, and polybulusulfonic acid; polytetrafluoro Polyethylene, tetrafluoroethylene Z ethylene copolymer, tetrafluoroethylene Z perfluoro (alkyl butyl ether) copolymer, tetrafluoroethylene Z hexafluoropropylene copolymer, polyvinylidene fluoride, etc.
  • ionomers such as polystyrene sulfonic acid, poly (trifluorostyrene) sulfonic acid, polyvinylphosphonic acid, polybulucarboxylic acid, and polybulusulfonic acid
  • polytetrafluoro Polyethylene tetrafluoroethylene Z
  • Perfluorocarbon polymer with at least one of sulfonic acid group, phosphonic acid group and carboxyl group introduced polysulfone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyphenylene sulfide , Polyparahuelen Engineering plastics such as polyarylene polymers, polyaryl ketones, polyether ketones, polybensoxazoles, polybenthiazoles, polyimides, etc. with at least one of sulfonic acid groups, phosphonic acid groups and carboxyl groups introduced. Can be mentioned.
  • Polysulfone, polyethersulfone and polyetherketone as used herein are generic names for polymers having a sulfone bond, an ether bond or a ketone bond in their molecular chains.
  • Polyetherketoneketone, polyetheretherketone, Ether ether ketone ketone, poly Includes ether ketone sulfone.
  • the other ion-conducting group-containing polymer may be an ion-exchange resin containing at least one of sardine, sulfonic acid group, phosphonic acid group and carboxyl group.
  • Each polymer electrolyte membrane constituting the polymer electrolyte laminate membrane of the present invention is added to the block copolymer (I) or other ion-conducting group-containing polymer, and the effects of the present invention as necessary.
  • a softener may be contained as long as the above is not impaired.
  • softeners include petroleum-based softeners such as noffine, naphthenic or aroma-based process oils, paraffin, vegetable oil-based softeners, plasticizers, etc., each of which is used alone or in combination of two or more. Can be used.
  • Each polymer electrolyte membrane constituting the polymer electrolyte laminate film of the present invention may further include various additives, for example, a phenol-based stabilizer, as long as the effects of the present invention are not impaired.
  • a phenol-based stabilizer for example, Xio stabilizers, phosphorus stabilizers, light stabilizers, antistatic agents, mold release agents, flame retardants, foaming agents, pigments, dyes, whitening agents, carbon fibers, etc., each alone or in combination of two or more. You may contain.
  • stabilizers include 2, 6 di-tert-butyl p-cresol, pentaerythritol rutetrakis [3- (3,5-di-tert-butyl 4-hydroxyphenol) propionate], 1 , 3, 5 Trimethyl 2, 4, 6 Tris (3, 5 di-t-butyl — 4-hydroxybenzyl) benzene, Octadecyl 3- (3, 5-di-tert-butyl 4-hydroxyphenol) propionate, triethylene Glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 2, 4 bis (n-octylthio) -6- (4-hydroxy-3,5 di-tert-butyla-lino ) 1, 3, 5 triazine, 2, 2, —thiodiethylene bis [3— (3,5 di-tert-butinoleyl 4-hydroxyphenol) propionate], N, N, hexamethylene bis ( 3,5-di-tert-butyl
  • an inorganic filler can be further added as needed within a range not impairing the effects of the present invention.
  • specific examples of such inorganic fillers include talc, calcium carbonate, silica, glass fiber, my strength, kaolin, titanium oxide, montmorillonite, and alumina.
  • the content of the block copolymer or other ion conductive group-containing polymer in each polymer electrolyte membrane constituting the polymer electrolyte laminate film of the present invention is 50 mass from the viewpoint of ion conductivity. Preferably, it is 70% by mass or more, and more preferably 90% by mass or more.
  • At least two of the polymer electrolyte membranes constituting the polymer electrolyte laminate membrane of the present invention contain the block copolymer (I) to further reduce the electrical resistance at the interface of the laminate membrane.
  • At least two of the polymer electrolyte membranes constituting the polymer electrolyte laminate membrane of the present invention have different ion exchange capacities, so that the electrolyte laminate membrane has both high ion conductivity and methanol barrier properties. It is preferable for the purpose. That is, when the constituent electrolyte membranes are strong, they have different ion exchange capacities, and when the constituent electrolyte membranes are three or more, at least two of them may have different ion exchange capacities. preferable.
  • the ion exchange capacity is large, and the ion exchange capacity of the electrolyte membrane is It is preferable that the amount is 0.7 meqZg or more. More preferred is 0.80 meqZg or more.
  • the upper limit of the ion exchange capacity if the ion exchange capacity becomes too large, hydrophilicity tends to increase and water resistance tends to be insufficient.
  • the ion exchange capacity is small and the ion exchange capacity of the other electrolyte membrane is 0.770 meqZg.
  • the amount is preferably less than 0.65 meqZg, and more preferably less than 0.65 meqZg.
  • the lower limit of the ion exchange capacity is preferably 0.3 meqZg or more because the ion conductivity tends to deteriorate if the ion exchange capacity becomes too small.
  • the ion exchange capacity is large!
  • the difference between the ion exchange capacity of the electrolyte membrane and the ion exchange capacity of the electrolyte membrane is small, and the difference between the ion exchange capacity of the other electrolyte membrane is preferably 0.03 meq Zg or more, more preferably 0.05 meq Zg or more. More preferably, it is not less than 0. lmeqZg.
  • the ion exchange capacity is preferably 0.70 meqZg. Above, more preferably 0.80 meqZg or more and 3. Omeq / g or less, preferably in the case of an electrolyte membrane having a small ion exchange capacity, the ion exchange capacity is preferably 0 It is preferable to sulfonate or phosphonate so that it is less than 70 meq / g, more preferably 0.65 meq / g and 0.3 meq / g or more.
  • the ion exchange capacity of a sulfonated or phosphonylated copolymer or an electrolyte membrane containing the same, the sulfonation rate or phosphonation rate of the copolymer is determined by acid value titration, infrared spectroscopic measurement, nuclear magnetic resonance It can be calculated using analytical means such as spectrum (NMR spectrum) measurement.
  • At least two of the polymer electrolyte membranes constituting the polymer electrolyte laminate membrane of the present invention contain the block copolymer (I), and the block copolymer (I) -containing electrolyte membrane At least one ion exchange capacity of 0.770 meq / g or more and at least one of the block copolymer (I) -containing electrolyte membranes has an ion exchange capacity of less than 0.70 meqZg Preferable from the viewpoint of suppression!
  • the polymer electrolyte laminate film of the present invention preferably has a film thickness of about 5 to 500 m from the viewpoint of performance, membrane strength, handling properties, etc. required as an electrolyte membrane for fuel cells. .
  • the film thickness is less than 5 ⁇ m, the mechanical strength of the film and the barrier properties of fuels such as hydrogen, oxygen, and methanol tend to be insufficient.
  • the film thickness exceeds 500 m, the electric resistance of the film increases and sufficient proton conductivity does not appear, so the power generation characteristics of the battery tend to be low.
  • the film thickness is more preferably 10 to 300 m.
  • the ratio of the total thickness of all the electrolyte membranes containing the block copolymer (I) to the thickness of the polymer electrolyte laminate membrane of the present invention exhibits the features of the present invention more effectively. From the viewpoint, 1% or more is preferably 3% or more, and more preferably 5% or more.
  • the layer configuration of the polymer electrolyte laminate film of the present invention is not particularly limited, but the ion exchange capacity of the outermost polymer electrolyte layer is higher than that of the inside, so that the electrical connection between the membrane and the electrode is improved. From the viewpoint of improving battery characteristics.
  • Preferable examples include a polymer electrolyte laminate film having a structure in which an outer layer having a high ion exchange capacity is provided on both sides of an inner layer having a low ion exchange capacity.
  • any method for preparing the polymer electrolyte laminate film of the present invention any method can be adopted as long as it is a usual method for such preparation.
  • the above block copolymer or other ion conductive group-containing polymer, or the above block copolymer or other The block copolymer or other ion-conducting group-containing polymer is dissolved or suspended by mixing the ion-conducting group-containing polymer and the additive as described above with an appropriate solvent, and PET, glass, or the like. Or by applying a coater or applicator, etc., and removing the solvent under appropriate conditions.
  • a film forming method using a known method such as extrusion molding can be used.
  • the block copolymer or other ion-conducting group containing the second layer is contained.
  • the block copolymer or other ion-conducting group-containing polymer is mixed with an appropriate solvent by mixing the polymer or the block copolymer or other ion-conducting group-containing polymer with the above-mentioned additive. Dissolve or suspend it and apply it on the first layer. It can be made from dried rice cake. In the case of forming a laminated film composed of three or more layers, the third and subsequent layers may be applied and dried in the same manner as the above method.
  • a polymer electrolyte laminate film can be prepared by pressure-bonding the same or different electrolyte films obtained as described above by hot roll molding or the like.
  • Examples thereof include aliphatic hydrocarbons, ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutyl alcohol, or mixed solvents thereof.
  • ethers such as tetrahydrofuran
  • alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutyl alcohol, or mixed solvents thereof.
  • the solvent can be completely removed under conditions for removing the solvent below the temperature at which ion conductive groups such as sulfonic acid groups in the block copolymer or other ion conductive group-containing polymer are removed. Any condition can be selected. In order to express desired physical properties, a plurality of temperatures may be arbitrarily combined, or a combination of ventilation and vacuum may be arbitrarily combined. Specifically, after preliminary drying for several hours under a vacuum condition of room temperature to 60 ° C, the solvent is used under a vacuum condition of 100 ° C or higher, preferably 100 to 120 ° C under a drying condition of about 12 hours. Examples thereof include a method for removing the solvent and a method for removing the solvent under a drying condition of several minutes to several hours under aeration at 60 to 140 ° C, but are not limited thereto.
  • a known method with no particular limitation can be applied to the production of the membrane electrode assembly.
  • a catalyst paste containing an ion conductive binder is applied onto the gas diffusion layer by a printing method or a spray method.
  • a method of forming a joined body of a catalyst layer and a gas diffusion layer by drying, and then joining the two layers of the joined body inside with hot pressing or the like on both sides of the polymer electrolyte laminate film Or the above catalyst paste using a printing method or spray There is a method in which one method is applied to both sides of the polymer electrolyte laminated film and dried to form catalyst layers, and a gas diffusion layer is pressure-bonded to each catalyst layer by hot pressing or the like.
  • a solution or suspension containing an ion conductive binder is applied to both surfaces of the polymer electrolyte laminate film and / or to the catalyst layer surfaces of the two pairs of gas diffusion electrodes, and the electrolyte laminate film and the catalyst layer surface. Are bonded together by thermocompression bonding.
  • the solution or suspension may be applied to either one of the electrolyte laminated film and the catalyst layer, or to both.
  • the catalyst paste is applied to a base film made of polytetrafluoroethylene (PTFE) and dried to form a catalyst layer, and then two pairs of base films on the base film are formed.
  • PTFE polytetrafluoroethylene
  • the catalyst layer was transferred to both sides of the polymer electrolyte laminate film by thermocompression bonding, and the substrate film was peeled off to obtain a conjugate of the electrolyte laminate film and the catalyst layer, and the gas diffusion layer was hot-pressed on each catalyst layer.
  • Examples of the ion-conductive binder constituting the membrane-electrode assembly include "Nafi onj (registered trademark, manufactured by DuPont)" and "Gor e — selects (registered trademark, manufactured by Gore)". It is also an ion conductive binder made of existing perfluorosulfonic acid polymer, a sulfonated polyethersulfone sulfone and a polyetherketone ion conductive binder, and a polybenzimidazole impregnated with phosphoric acid and sulfuric acid.
  • An ion conductive binder or the like can be used, or an ion conductive binder may be produced from the electrolyte constituting the polymer electrolyte laminate film of the present invention.
  • the adhesion between the electrolyte laminate film and the gas diffusion electrode In order to further improve the conductivity, an ion conductive binder having a structure similar to that of the polymer electrolyte forming the layer in contact with the gas diffusion electrode should be used. But preferably,.
  • the constituent material of the catalyst layer of the membrane electrode assembly is not particularly limited as the conductive material Z catalyst carrier, for example, a carbon material.
  • the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, and graphite. These may be used alone or in combination of two or more.
  • the catalyst metal may be any metal that promotes the oxidation reaction of fuel such as hydrogen and methanol and the reduction reaction of oxygen.
  • fuel such as hydrogen and methanol and the reduction reaction of oxygen.
  • platinum, gold, silver, palladium, iridium Examples include rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten, manganese, palladium, and alloys thereof, such as platinum-ruthenium alloy.
  • the particle size of the metal used as a catalyst is usually 10 to 300 angstroms. If these catalysts are supported on a conductive material Z catalyst carrier such as carbon, the amount of catalyst used is small and it is advantageous in terms of cost.
  • the catalyst layer may contain a water repellent as necessary. Examples of the water repellent include various thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene copolymer, and polyetheretherketone.
  • the gas diffusion layer of the membrane-electrode assembly is made of a material having conductivity and gas permeability, and a porous material made of carbon fiber such as carbon paper or carbon cloth is used as a strong material. Can be mentioned.
  • the strong material may be subjected to a water repellency treatment.
  • the membrane-electrode assembly of the present invention includes a pure hydrogen type using hydrogen as a fuel gas, a methanol reforming type using hydrogen obtained by reforming methanol, and hydrogen obtained by reforming natural gas. It can be used as a membrane electrode assembly for solid polymer fuel cells such as the natural gas reforming type used, the gasoline reforming type using hydrogen obtained by reforming gasoline, and the direct methanol type using methanol directly. is there.
  • a fuel cell using the polymer electrolyte laminate film of the present invention has economical and environmentally friendly high ionic conductivity and methanol barrier properties, and is particularly suitable for direct methanol fuel cells. , Expresses excellent power generation performance.
  • mSBmS Poly ⁇ -methylstyrene mono-b-polybutadiene-b-poly (X-methylstyrene-type triblock copolymer (hereinafter abbreviated as mSBmS) was synthesized in the same manner as previously reported (WO 02Z40611).
  • the number average molecular weight (GPC measurement, polystyrene conversion) of mSBmS is 48150
  • the 1,4 bond content determined from H-NMR measurement is 60%
  • the content of a-methylstyrene unit is 41.3 mass 0 /.
  • Polystyrene (polymer block (A)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert butylstyrene) (polymer block (C)) Charge 479 ml of dehydrated cyclohexane and 3.3 ml of sec butyllithium (1.3 M cyclohexane solution), and then add 47. lml of 4-tert-butylstyrene, 12.9 ml of styrene and 60.6 ml of isoprene. Poly (4 tert butyl styrene) by adding and coupling 19.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 65700, the 1,4 bond content determined from H-NMR measurement is 94.0%, and the content of styrene units is 13.4 mass 0 / 0, the content of 4 tert-butylstyrene unit was 5% by mass 43..
  • tBSSEPStBS poly (4 tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene)
  • Polystyrene (polymer block (A)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert butylstyrene) (polymer block (C)) 480 ml of dehydrated cyclohexane and 4.8 ml of sec-butyllithium (1.3M cyclohexane solution), and then 43.9 ml of 4 tert-butylstyrene, 18.6 ml of styrene and 56.4 ml of isoprene And polymerize at 30 ° C.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 47800, the 1,4 bond content determined from 1H-NMR measurement is 94.1%, and the content of styrene units is 18.1 mass 0 The content of / 0 , 4 tert-butylstyrene unit was 41.3% by mass.
  • tBSSEPStBS poly (4 tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene)
  • Polystyrene (polymer block (A)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert butylstyrene) (polymer block (C))
  • polystyrene (polymer block (A)
  • hydrogenated polyisoprene (polymer block (B))
  • poly (4-tert butylstyrene) (polymer block (C))
  • Polyisoprene b polystyrene b—poly (4 tert-butylstyrene) (hereinafter abbreviated as tBSSIStBS) was synthesized.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained tBSSIStBS is 48100, the 1,4 bond content determined from 1 H-NMR measurement is 94.1%, and the content of styrene units is 10.8 mass. %, 4 tert-butylstyrene unit content was 43.0% by mass.
  • tBSSEPStBS poly (4-tert-butylstyrene) -b-polystyrene b hydrogenated polyisoprene b-polystyrene b-poly (4 tert-butylstyrene)
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBmS.
  • the sulfonated rate of the benzene ring of the ⁇ -methylstyrene unit of the sulfonated mSEBmS obtained was 39. Omol% from 1 H-NMR analysis, and the ion exchange of the sulfonated mSEBmS was directly 23 meq / gT: 7 hot.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBm S.
  • the resulting sulfonated mSEBmS of the ⁇ -methylstyrene unit benzene ring The sulfonation rate was 19.3 mol% from 1 H-NMR analysis, and the ion exchange capacity of the sulfonated mSEBmS was 0.64 meqZg.
  • the polymer solution was poured into 2 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBm S.
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit of the obtained sulfonated mSEBmS was 49.8 mol% from 1- NMR analysis, and the ion exchange capacity of the sulfonated mSEBmS was 1.08 meqZg.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBmS.
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit of the obtained sulfonated mSEBmS was 36. Omol% from 1 H-NMR analysis, and the ion exchange capacity of the sulfonated mSEBmS was 0.83 meqZg.
  • Synthesis of sulfonated mSEBmS 90 g of the block copolymer (mSEBmS) obtained in Reference Example 3 was vacuum-dried in a glass reaction vessel equipped with a stirrer for 1 hour, purged with nitrogen, and then 816 ml of methylene chloride was added to 35 ° C. And stirred for 2 hours to dissolve. After dissolution, a sulfonation reagent obtained by reacting 9.40 ml of acetic anhydride and 4.20 ml of sulfuric acid at 0 ° C. in 18.9 ml of methylene chloride was gradually added dropwise over 5 minutes.
  • the polymer solution was poured into 2 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfone mSEBmS.
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit of the obtained sulfonated mSEBmS was 22.5 mol% from 1 H-NMR analysis, and the ion exchange capacity of the sulfonated mSEBmS was 0.49 meq Zg.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEP StBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation proportion of the benzene rings in the styrene units 91. Omol% from 1 H- NMR analysis, and its ion exchange capacity 1. 05M eq, mediation in g 7 this o
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEPStBS.
  • the 4-tert-butylstyrene unit of the resulting sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the precipitated solid was washed with distilled water at 90 ° C for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEP StBS.
  • the 4-tert-butylstyrene unit of the obtained sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit is 100 mol% from 1 H-NMR analysis, and the ion exchange capacity is 1.52 me qZ g.
  • the polymer solution was poured into 1 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEPStBS.
  • the 4-tert-butylstyrene unit of the resulting sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit is 30 Hmol% from 1 H—NMR analysis, and the ion exchange capacity is 0.50 meq / g.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEPStBS.
  • the 4-tert-butylstyrene unit of the resulting sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation rate of the benzene ring in the styrene unit was 100 mol% from 1 H-NMR analysis, and the ion exchange capacity was 1. OOmeq / g.
  • the polymer solution was poured into 1 L of distilled water while stirring to coagulate and precipitate the polymer.
  • the precipitated solid was washed with distilled water at 90 ° C. for 30 minutes, and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum dried to obtain sulfone tBSSEPStBS.
  • the 4-tert-butylstyrene unit of the resulting sulfone tBSSEPStBS was not sulfonated, and only the styrene unit was sulfonated.
  • the sulfonation proportion of the benzene rings in the styrene units 48. Omol% from 1 H- NMR analysis, and its ion exchange capacity mediation at 0. 48meq / g 7 This o
  • An electrode for a polymer electrolyte fuel cell was produced by the following procedure.
  • Pt—Ru alloy catalyst The lifting of carbon, 5 wt 0/0 methanol solution of Nafion, the mass ratio of the Pt-Ru alloy and Nafion of 2: was added and mixed so that 1 to prepare a uniformly dispersed paste. This paste was applied to a transfer sheet and dried for 24 hours to produce an anode side catalyst sheet.
  • a 5% by weight Nafion solution in a mixed solvent of lower alcohol and water was added to and mixed with Pt catalyst-supported carbon so that the mass ratio of Pt catalyst and Nafion was 2: 1.
  • a paste was then dispersed, and a catalyst sheet on the force sword side was prepared in the same manner as on the anode side.
  • the fuel cell electrolyte laminate prepared in (1) is sandwiched between the above two types of catalyst sheets so that the membrane and the catalyst surface are in direct force, and the outside is sandwiched between two heat-resistant films and 2
  • the membrane and the catalyst sheet were joined by hot pressing (150 ° C, lOOkg / cm 2 , lOmin).
  • the stainless steel plate and the heat resistant film were removed, and finally the transfer sheet was peeled off to produce a membrane-electrode assembly.
  • the membrane-electrode assembly produced was sandwiched between two sheets of carbon paper, the outside was sandwiched between two conductive separators that also served as the gas supply flow path, and the outside was sandwiched between two current collector plates. And an evaluation cell for a polymer electrolyte fuel cell was fabricated by sandwiching the two clamp plates.
  • a 12% by weight toluene Z isobutyl alcohol (mass ratio 8Z2) solution of the sulfonated mSEBmS (ion exchange capacity 1.08meqZg) obtained in Production Example 3 was prepared, and the PET film [Toyobo Co., Ltd.
  • a film (A) having a thickness of 28 m was obtained by coating on “Toyobo Ester Film K1504”] with a thickness of about 450 ⁇ m, sufficiently drying at room temperature, and then vacuum drying.
  • Tsu in toluene Z isobutylene chill alcohol (mass ratio 8Z2) of 13 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 3 was prepared and coated in a thickness of about 350 m on the laminated film (B) Then, after sufficiently drying at room temperature, vacuum drying was performed to obtain a laminated film (C) having a thickness of 51 ⁇ m.
  • Tsu in toluene Z isobutylene chill alcohol (mass ratio 8Z2) of 13 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 3 was prepared and coated in a thickness of about 200 m on the laminated film (B) Then, after sufficiently drying at room temperature, vacuum drying was performed to obtain a laminated film (C) having a thickness of 51 ⁇ m.
  • Tsu, in, hexane Z isopropyl alcohol (mass ratio 85Z15) cycloheptane 12 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 4 was prepared and in Thickness of about 350 m on the film (A) The coated film was sufficiently dried at room temperature, and then vacuum-dried to obtain a laminated film (B) having a thickness of 51 ⁇ m.
  • Tsu, in, hexane Z isopropyl alcohol (mass ratio 85Z15) cycloheptane 12 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 4 was prepared and a mold releasing treated PET fill beam [(Ltd.) manufactured by Toyobo Co.
  • the film was coated on “Toyobo Ester Film K1504” with a thickness of about 100 m, sufficiently dried at room temperature, and then vacuum-dried to obtain a film (m) having a thickness of 5 ⁇ m.
  • the obtained film (A) and film (B) were thermocompression-bonded using a roll set at a temperature of 150 ° C., thereby producing a laminated film (C).
  • the film (B) side in the laminated film (C) and the film (A) A laminated film (D) having a thickness of 51 m was obtained by thermocompression bonding in the same manner as described above.
  • Tsu, in toluene / Isobuchi alcohol (mass ratio 8Z2) of 12 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 7 was prepared and coated in a thickness of about 75 mu m on the film (A)
  • the laminate film (B) having a thickness of 18 m was obtained by drying at 80 ° C. for 3 minutes using a hot air dryer.
  • Tsu, in toluene Z isobutylene chill alcohol (mass ratio 8Z2) of 16 mass 0/0 of the sulfonated mSEBmS obtained in Preparation Example 6 was prepared and a thickness of approximately 125 mu m on the laminate film (B) This was coated and dried in a hot air dryer at 80 ° C. for 3 minutes to obtain a laminated film (C) having a thickness of 31 ⁇ m.
  • Tsu, in toluene / isobutyl alcohol (mass ratio 8Z2) of Suruhoni spoon 22 mass tBSSEPStBS 0/0 obtained in Production Example 9 was prepared and co a thickness of about 100 m on the film (A) over And dried in a hot air dryer at 80 ° C. for 3 minutes to obtain a laminated film (B) having a thickness of 26 m.
  • Tsu, in toluene Z I Seo-butyl alcohol (mass ratio 8Z2) of 25 mass 0/0 of Suruhoni spoon tBSSEPStBS obtained in Preparation Example 11 was prepared and approximately 75 mu m in thickness on the film (A) This was coated and dried in a hot air dryer at 80 ° C for 3 minutes to obtain a laminated film (B) having a thickness of 25 m.
  • Tsu in toluene / isobutyl alcohol (mass ratio 8Z2) of 25 mass 0/0 of Suruhoni spoon tBSSEPStBS obtained in Preparation Example 10 was prepared and in Thickness of about 75 mu m on the laminate film (B) This was coated and dried in a hot air dryer at 80 ° C. for 3 minutes to obtain a laminated film (C) having a thickness of 35 m.
  • Hexane Z isopropyl alcohol to cyclo 22 mass 0/0 obtained in Production Example 2 were sulfonated MSEBmS (ion exchange capacity 0. 64meq / g) (mass ratio 65Z35) solution was prepared and releasability treated PET film [Toyobo Co., Ltd. “Toyobo Ester Film K1504”] Coat with a thickness of about 450 m, dry thoroughly at room temperature, and then vacuum-dry.
  • DuPont Nafionl 7 As a perfluorocarbon sulfonic acid polymer electrolyte, DuPont Nafionl 7 was selected. The film thickness is about 175 ⁇ m and the ion exchange capacity is
  • a single cell for a polymer electrolyte fuel cell was produced in the same manner as in Example 1 (2) except that the above film was used instead of the fuel cell electrolyte membrane.
  • a 5% by weight toluene Z isobutyl alcohol (mass ratio 8Z2) solution was prepared and coated on a PET film [Toyobo Ester Film K1504] manufactured by Toyobo Co., Ltd. with a thickness of about 300 ⁇ m, and hot air After drying at 80 ° C for 3 minutes in a dryer, a 30 / zm thick film (
  • a film (A) having a thickness of 30 m was obtained in the same manner as in Comparative Example 7, except that a 5% by mass toluene Z isobutyl alcohol (mass ratio 8Z2) solution was used.
  • a 25% by weight toluene Z isobutyl alcohol (mass ratio 8Z2) solution was prepared and coated on a PET film [Toyobo Co., Ltd. “Toyobo Ester Film K1504”] with a thickness of about 200 ⁇ m. After drying for 3 minutes at 80 ° C in a hot air dryer, a 30m thick film
  • a 30% by weight toluene Z isobutyl alcohol (mass ratio 8Z2) solution was prepared and coated on a PET film [Toyobo Co., Ltd. “Toyobo Ester Film K1504”] with a thickness of about 150 ⁇ m. After drying for 3 minutes at 80 ° C in a hot air dryer, a 30m thick film
  • a film (A) having a thickness of 30 / zm was obtained in the same manner as in Comparative Example 10.
  • a film (A) having a thickness of 30 / zm was obtained in the same manner as in Comparative Example 10.
  • a film (A) having a thickness of 30 / zm was obtained in the same manner as in Comparative Example 10.
  • the sample was weighed (a (g)) in a glass container that could be sealed, and an excessive amount of saturated aqueous sodium chloride solution was added thereto and stirred overnight.
  • the sodium chloride hydrogen generated in the system was titrated (b (ml)) with a 0.01 N NaOH standard aqueous solution (fever f) using phenolphthalein solution as an indicator.
  • the ion exchange capacity was calculated using the following equation.
  • Ion exchange capacity (0. 01 X b X f) / a
  • a lcm x 4 cm sample was sandwiched between a pair of platinum electrodes and mounted in an open cell.
  • the measurement cell was installed in a thermo-hygrostat adjusted to a temperature of 60 ° C and a relative humidity of 90%, or in water at a temperature of 40 ° C, and the electrical resistance of the membrane was measured by the AC impedance method.
  • the methanol permeation rate is as follows: the electrolyte membrane is sandwiched between H-type cells, 55 ml of 3 M (mol Z liter) aqueous methanol solution is injected into one side of the cell, and 55 ml of pure water is injected into the other cell, and stirred at 25 ° C. However, the amount of methanol diffusing into the pure water through the electrolyte membrane was calculated using gas chromatography (the area of the electrolyte membrane was 4.5 cm 2 )
  • Example 6 The output performance of the single cell for a polymer electrolyte fuel cell prepared in Comparative Example 6 was evaluated. A 5M-MeOH aqueous solution was used as the fuel, and air was used as the oxidant. Tested at a cell temperature of 60 ° C under conditions of MeOH: 0.36 mlZmin, air: 250 mlZmin
  • Table 1 shows the results of measuring the electrical resistance of the membrane and the methanol permeation rate of the 3M-MeOH aqueous solution for the membranes prepared in Examples 1 to 7 and Comparative Examples 1 to 5 and the naphthoion membrane of Comparative Example 6.
  • Table 2 shows the results of measuring the methanol permeation rate of 3M-MeOH aqueous solution.
  • Example 2 Comparison between Example 2 and Example 7 revealed that a reduction in the electrical resistance of the film and a low methanol permeability can be achieved regardless of the difference in the method of forming the laminated film.
  • the membranes of Examples 1 to 7 have a membrane electrical resistance of 60% or less and methanol permeability of 50% compared to the naphthion membrane, which is a representative example of the electrolyte membrane for a fuel cell described in Comparative Example 6. % Or less.
  • Example 1 (2) and Comparative Example 6 As the power generation characteristics of the solid polymer fuel cell single cells obtained in Example 1 (2) and Comparative Example 6, the change in output voltage with respect to the current density and the change in output density with respect to the current density were performed. It was measured. The results are shown in FIGS.
  • the open-circuit voltage of the single cell fabricated in Example 1 (2) was 0.68 V, and the maximum output density was 36 mWZcm 2 .
  • the open voltage of the single cell made from Nafion 117 in Comparative Example 6 was 0.55 V, and the maximum output density was 23 mWZcm 2 .
  • the single cell for a polymer electrolyte fuel cell produced in (2) of Example 1 of the present invention is a single cell for a polymer electrolyte fuel cell produced from a conventionally used naphthion 117 membrane. It has become clear that it has the above power generation characteristics.
  • FIG. 1 is a graph showing current density vs. output voltage and current density vs. output density of a single cell for a polymer electrolyte fuel cell ((2) of Example 1).
  • FIG. 2 is a graph showing current density / output voltage and current density / output density of a single cell for a polymer electrolyte fuel cell (Comparative Example 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 少なくとも2つの高分子電解質膜を積層してなり、そのうち少なくとも1つの電解質膜が芳香族ビニル系化合物単位を主たる繰返し単位とする重合体ブロック(A)及びフレキシブルな重合体ブロック(B)を構成成分とし、かつ、重合体ブロック(A)にイオン伝導性基を有するブロック共重合体(I)を含有することを特徴とする固体高分子型燃料電池用電解質積層膜、並びに膜-電極接合体及び固体高分子型燃料電池。本積層膜は経済的で、環境に優しく、高いイオン伝導度とメタノールバリア性を兼ね備えている。該目的から、構成電解質膜の少なくとも2つがブロック共重合体(I)を含有すること、及び/又は、構成電解質膜の少なくとも1つが0.7meq/g以上のイオン交換容量を有し、構成電解質膜の少なくとも1つが0.7meq/g未満のイオン交換容量を有することが好ましい。  

Description

明 細 書
固体高分子型燃料電池用電解質積層膜、膜一電極接合体及び燃料電 池
技術分野
[0001] 本発明は、好ましくは直接型メタノール燃料電池に用いられる高いプロトン伝導度と メタノールバリア性を兼ね備えた高分子電解質膜、並びに該高分子電解質膜を使用 した膜—電極接合体及び燃料電池に関する。
背景技術
[0002] 固体高分子型燃料電池は、一般に次のように構成される。まず、イオン伝導性を有 する高分子電解質膜の両側に、白金属の金属触媒を担持したカーボン粉末と高分 子電解質からなるイオン伝導性バインダーとを含む触媒層がそれぞれ形成される。 各触媒層の外側には、燃料ガス及び酸化剤ガスをそれぞれ通気する多孔性材料で あるガス拡散層がそれぞれ形成される。ガス拡散層としてはカーボンペーパー、カー ボンクロスなどが用いられる。触媒層とガス拡散層を一体化したものはガス拡散電極 と呼ばれ、また一対のガス拡散電極をそれぞれ触媒層が電解質膜と向かい合うよう に電解質膜に接合した構造体は膜 電極接合体(MEA; Membrane Electrode Asse mbly)と呼ばれている。この膜—電極接合体の両側には、導電性と気密性を備えたセ パレータが配置される。電極面に燃料ガス又は酸化剤ガス (例えば空気)を供給する ガス流路が膜一電極接合体とセパレータの接触部分又はセパレータ内に形成されて いる。一方の電極 (燃料極)に水素やメタノールなどの燃料ガスを供給し、他方の電 極 (酸素極)に空気などの酸素を含有する酸化剤ガスを供給して発電する。すなわち 、燃料極では燃料がイオン化されてプロトンと電子が生じ、プロトンは電解質膜を通り 、電子は両電極をつなぐことによって形成される外部電気回路を移動して酸素極へ 送られ、酸化剤と反応することで水が生成する。このようにして、燃料の化学エネルギ 一を電気エネルギーに直接変換して取り出すことができる。
[0003] メタノールを改質せずに直接燃料電池の陽極に供給する直接型メタノール燃料電 池では、これまで電解質膜に膜厚が約 175 μ mのナフイオン (Naf ion) 117 (デュポ ン社の登録商標。以下同様)に代表されるパーフルォロカーボンスルホン酸系高分 子電解質膜が一般的に用いられており、携帯電話やノート型パソコンなどの携帯機 器電源としての開発が進められている。これらの電解質膜は、膜の電気抵抗が低いと V、う特徴を有するが、燃料であるメタノールが一方の電極側力 他方の電極側へ電 解質膜を透過してしまう現象 (メタノールクロスオーバー)が生じやすぐそのため、発 電効率が低くなることが指摘されて 、る。
[0004] そこで、メタノールの透過性の小さい非パーフルォロカーボンスルホン酸系の高分 子電解質膜が検討されている (特許文献 1、特許文献 2、非特許文献 1)。
特許文献 1、特許文献 2に記載されている、エンジニアリングプラスチック系高分子 電解質膜は、パーフルォロカーボンスルホン酸系高分子電解質膜と異なり、イオンチ ヤンネルを形成しにくいため、メタノール透過性を低減することが可能である。しかし ながら、膜の電気抵抗が高い傾向にあるという欠点を有しており、イオン基導入量を 高くして膜の電気抵抗を小さくすると膨潤しゃすくなる傾向にある。また、電極との接 合不良がおきやすいという欠点も知られている。したがって、エンジニアプラスチック 系高分子電解質膜は直接型メタノール燃料電池に使用する電解質膜として十分な 性能を発現できて!、な!、のが現状である。
[0005] 非特許文献 1に記載されて 、るスルホンィ匕したポリスチレン b ポリイソブチレン b ポリスチレントリブロック共重合体(スルホン化 SiBuS)もパーフルォロカーボン スルホン酸系高分子電解質膜に比べてメタノールバリア性が高 、ことが記載されて!ヽ るが、直接型メタノール燃料電池用として満足できる性能を有する電解質膜は未だ 得られて 、な 、のが現状である。
特許文献 1:特開 2003— 288916号公報
特許文献 2:特開 2003 - 331868号公報
非特許文献 1 :J. Membrane Science 217(2003)227
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、高 ヽィオン伝導度、メタノールバリア性及び電極との良好な接合 性を兼ね備えた高分子電解質膜、並びに該電解質膜を用いた膜 電極接合体及 び固体高分子型燃料電池を提供することにある。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、高分子電解質膜を 積層してなり、少なくとも 1つの構成電解質膜が特定のブロック共重合体力 なる力も しくはこれを主成分として含有する電解質膜である電解質積層膜が上記課題を解決 し得るものであることを見出し、本発明を完成した。
[0008] すなわち、本発明は、少なくとも 2つの高分子電解質膜を積層してなり、そのうち少 なくとも 1つの電解質膜が芳香族ビュル系化合物単位を主たる繰返し単位とする重 合体ブロック(A)及びフレキシブルな重合体ブロック(B)を構成成分とし、かつ、重合 体ブロック (A)にイオン伝導性基を有するブロック共重合体 (I)を含有することを特徴 とする固体高分子型燃料電池用電解質積層膜に関する。
[0009] 本発明の目的の観点から、構成電解質膜の少なくとも 2つがブロック共重合体 (I)を 含有することが好ましぐまたそれとは独立に構成電解質膜が 2つである場合には、 互いに異なるイオン交換容量を有し、構成電解質膜が 3つ以上である場合には、そ のうち少なくとも 2つが互いに異なるイオン交換容量を有することが好ましい。また、そ れらとは独立に、構成電解質膜の少なくとも 1つが 0. 7meqZg以上のイオン交換容 量を有し、さら〖こ、構成電解質膜の少なくとも 1つが 0. 7meqZg未満のイオン交換容 量を有することが好ましぐ特に、構成電解質膜の少なくとも 1つがブロック共重合体( I)を含有し、かつ、 0. 7meqZg以上のイオン交換容量を有し、さらに、構成電解質 膜の少なくとも 1つがブロック共重合体 (I)を含有し、かつ、 0. 7meqZg未満のィォ ン交換容量を有することが好まし 、。
[0010] 本発明の電解質積層膜において、少なくとも 1つの高分子電解質膜を構成するプロ ック共重合体 (I)中の重合体ブロック (A)と重合体ブロック (B)とはミクロ相分離を起こ し、重合体ブロック (A)同士と重合体ブロック (B)同士とがそれぞれ集合する性質が あり、重合体ブロック (A)はイオン伝導性基を有するので重合体ブロック (A)同士の 集合によりイオンチャンネルが形成され、プロトンの通り道となる。また、重合体ブロッ ク (B)の存在により、ブロック共重合体が全体として弾力性を帯びかつ柔軟になり、膜 電極接合体や固体高分子型燃料電池の作製に当たって成形性 (組立性、接合性 、締付性など)が改善される。フレキシブルな重合体ブロック (B)はアルケン単位や共 役ジェン単位など力 構成される。
本発明はまた、上記電解質積層膜を用いた膜 電極接合体及び燃料電池に関す る。
発明の効果
[0011] 本発明の電解質積層膜、膜 電極接合体及び固体高分子型燃料電池は経済的 で、環境に優しぐ高いイオン伝導度とメタノールバリア性を兼ね備えており、特に直 接型メタノール燃料電池にお 、て優れた性能を発揮する。本発明の電解質積層膜 は、また、接合性及び成形性に優れる。
発明を実施するための最良の形態
[0012] 以下、本発明について詳細に説明する。
本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)は、芳香族ビニル系化合物単位を主たる繰返し単 位とし、かつ少なくとも 1つのイオン伝導性基を有する重合体ブロック (A)を構成成分 の 1つとする。
[0013] 重合体ブロック (A)は芳香族ビュル系化合物単位を主たる繰返し単位とする。この 単位を与える芳香族ビュル系化合物としては、 a 炭素が 3級炭素である芳香族ビ ニル系化合物及び (X 炭素が 4級炭素である芳香族ビニル系化合物が挙げられ、 V、ずれも使用可能である力 発電中に発生するラジカルに対する耐性 (耐ラジカル性 )に優れる a 炭素が 4級炭素である芳香族ビニル系化合物がより好ましい。 a 炭 素が 3級炭素である芳香族ビュル系化合物としては、スチレン、ビニルナフタレン、ビ 二ルアントラセン、ビュルピレン、ビュルピリジン等が挙げられる。 a—炭素が 4級炭 素である芳香族ビニル系化合物としては、 a 炭素が 3級炭素である芳香族ビュル 系化合物の (X 炭素原子に結合した水素原子が炭素数 1〜4のアルキル基 (メチル 基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基もしくは t ert ブチル基)、炭素数 1〜4のハロゲン化アルキル基(クロロメチル基、 2 クロロェ チル基、 3—クロ口ェチル基等)又はフエニル基などで置換された芳香族ビニル系化 合物が挙げられる。 [0014] これらの芳香族ビニル系化合物の芳香環に結合した水素原子は 1〜3個の置換基 で置換されていてもよぐ置換基としては各独立に炭素数 1〜4のアルキル基 (メチル 基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基もしくは t ert ブチル基)、炭素数 1〜4のハロゲン化アルキル基(クロロメチル基、 2 クロロェ チル基、 3—クロ口ェチル基等)などが挙げられる。
[0015] a 炭素が 3級炭素である芳香族ビニル系化合物の好適な具体例としてはスチレ ン、 p—メチルスチレン、 4—tert—ブチルスチレン等が挙げられる。 a 炭素が 4級 炭素である芳香族ビニル系化合物の好適な具体例としては aーメチルスチレン等が 挙げられる。
これら芳香族ビュル系化合物は各単独で用いても 2種以上組み合わせて用いても ょ 、。 2種以上を共重合させる場合の形態はランダム共重合でもブロック共重合でも グラフト共重合でもテーパード共重合でもよ 、。
[0016] 重合体ブロック (A)は、本発明の効果を損わない範囲内で 1種もしくは複数の他の 単量体単位を含んでいてもよい。かかる他の単量体としては、例えば炭素数 4〜8の 共役ジェン (具体例は後述の重合体ブロック (B)の説明におけると同様)、炭素数 2 〜8のアルケン (具体例は後述の重合体ブロック (B)の説明におけると同様)、(メタ) アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル 酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリ ン酸ビュル等)、ビュルエーテル(メチルビ-ルエーテル、イソブチルビ-ルエーテル 等)等が挙げられる。芳香族ビニル系化合物と上記他の単量体との共重合形態はラ ンダム共重合である必要がある。
[0017] 重合体ブロック (A)中の芳香族ビュル系化合物単位は、イオンチャンネルを形成さ せるために、重合体ブロック (A)の 50質量%以上を占めることが好ましぐ 70質量% 以上を占めることがより好ましぐ 90質量%以上を占めることがより一層好ましい。
[0018] 重合体ブロック (A)の分子量は、電解質積層膜の性状、要求性能、他の重合体成 分等によって適宜選択される。分子量が大きい場合、電解質積層膜の引張強度等の 力学特性が高くなる傾向にあり、分子量が小さい場合、電解質積層膜の電気抵抗が 小さくなる傾向にあり、必要性能に応じて分子量を適宜選択することが重要である。 ポリスチレン換算の数平均分子量として、通常、 100〜1, 000, 000の間力 選択さ れるのが好ましぐ 1, 000-100, 000の間力 選択されるのがより好ましい。
[0019] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)は、重合体ブロック (A)以外にフレキシブルな重 合体ブロック (B)を有する。重合体ブロック (A)と重合体ブロック (B)とはミクロ相分離 を起こし、重合体ブロック (A)同士と重合体ブロック (B)同士とがそれぞれ集合する 性質があり、重合体ブロック (A)はイオン伝導性基を有するので重合体ブロック (A) 同士の集合によりイオンチャンネルが形成され、プロトンの通り道となる。かかる重合 体ブロック (B)を有することによってブロック共重合体が全体として弾力性を帯びかつ 柔軟になり、膜 電極接合体や固体高分子型燃料電池の作製に当たって成形性( 組立性、接合性、締付性など)等が改善される。ここでいうフレキシブルな重合体プロ ック (B)はガラス転移点あるいは軟ィ匕点が 50°C以下、好ましくは 20°C以下、より好ま しくは 10°C以下の!/、わゆるゴム状重合体ブロックである。
[0020] フレキシブルな重合体ブロック (B)を構成する繰返し単位を構成することができる単 量体としては炭素数 2〜8のアルケン、炭素数 5〜8のシクロアルケン、炭素数 7〜10 のビュルシクロアルケン、炭素数 4〜8の共役ジェン及び炭素数 5〜8の共役シクロア ルカジエン、炭素 炭素二重結合の 1つが水素添加された炭素数 7〜10のビュルシ クロアルケン、炭素—炭素二重結合の 1つが水素添加された炭素数 4〜8の共役ジ ェン、炭素-炭素二重結合の 1つが水素添加された炭素数 5〜8の共役シクロアル カジエン、(メタ)アクリル酸エステル、ビュルエステル類、ビュルエーテル類等が挙げ られ、これらは単独で又は 2種以上組み合わせて用いることができる。 2種以上を重 合 (共重合)させる場合の形態はランダム共重合でもブロック共重合でもグラフト共重 合でもテーパード共重合でもよい。また、(共)重合に供する単量体が炭素 炭素二 重結合を 2つ有する場合にはそのいずれが重合に用いられてもよぐ共役ジェンの 場合には 1, 2 結合であっても 1, 4 結合であってもよぐまたガラス転移点あるい は軟ィ匕点が 50°C以下であれば、 1, 2 結合と 1, 4 結合との割合にも特に制限は ない。
[0021] 重合体ブロック(B)を構成する繰返し単位が、ビュルシクロアルケン単位や共役ジ ェン単位や共役シクロアルカジエン単位である場合のように炭素 炭素二重結合を 有している場合には、本発明の高分子電解質膜を用いた膜 電極接合体の発電性 能、耐熱劣化性の向上などの観点から、力かる炭素 炭素二重結合はその 30モル %以上が水素添加されているのが好ましぐ 50モル%以上が水素添加されているの 力 り好ましぐ 80モル%以上が水素添加されているのがより一層好ましい。炭素— 炭素二重結合の水素添加率は、一般に用いられている方法、例えば、ヨウ素価測定 法、 H—NMR測定等によって算出することができる。
[0022] 重合体ブロック (B)は、得られるブロック共重合体に、弾力性ひ!、ては膜-電極接 合体や固体高分子型燃料電池の作製に当たって良好な成形性を与える観点から、 炭素数 2〜8のアルケン単位、炭素数 5〜8のシクロアルケン単位、炭素数 7〜 10の ビュルシクロアルケン単位、炭素数 4〜8の共役ジェン単位、炭素数 5〜8の共役シク 口アルカジエン単位、炭素 炭素二重結合の一部もしくは全部が水素添加された炭 素数 7〜: L0のビニルシクロアルケン単位、炭素 炭素二重結合の一部もしくは全部 が水素添加された炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結合の一 部もしくは全部が水素添加された炭素数 5〜8の共役シクロアルカジエン単位力ゝら選 ばれる少なくとも 1種の繰返し単位力 なる重合体ブロックであることが好ましぐ炭素 数 2〜8のアルケン単位、炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結 合の一部もしくは全部が水素添加された炭素数 4〜8の共役ジェン単位カゝら選ばれ る少なくとも 1種の繰返し単位力もなる重合体ブロックであることがより好ましぐ炭素 数 2〜6のアルケン単位、炭素数 4〜8の共役ジェン単位、及び炭素 炭素二重結 合の一部もしくは全部が水素添加された炭素数 4〜8の共役ジェン単位カゝら選ばれ る少なくとも 1種の繰返し単位力もなる重合体ブロックであることがより一層好ましい。 上記で、アルケン単位として最も好ましいのはイソブテン単位であり、共役ジェン単位 として最も好まし 、のは 1 , 3 ブタジエン単位及び/又はイソプレン単位である。
[0023] 上記で炭素数 2〜8のアルケンとしてはエチレン、プロピレン、 1ーブテン、 2 ブテ ン、イソブテン、 1—ペンテン、 2—ペンテン、 1—へキセン、 2—へキセン、 1—ヘプテ ン、 2 ヘプテン、 1—オタテン、 2—オタテン等が挙げられ、炭素数 5〜8のシクロア ルケンとしてはシクロペンテン、シクロへキセン、シクロヘプテン及びシクロオタテンが 挙げられ、炭素数 7〜10のビュルシクロアルケンとしてはビュルシクロペンテン、ビ- ルシクロへキセン、ビュルシクロヘプテン、ビュルシクロオタテンなどが挙げられ、炭 素数 4〜8の共役ジェンとしては 1, 3—ブタジエン、 1, 3—ペンタジェン、イソプレン 、 1, 3—へキサジェン、 2, 4一へキサジェン、 2, 3—ジメチルー 1, 3—ブタジエン、 2 ーェチノレー 1, 3—ブタジエン、 1, 3—へブタジエン、 1, 4一へブタジエン、 3, 5—へ ブタジエン等が挙げられ、炭素数 5〜8の共役シクロアルカジエンとしてはシクロペン タジェン、 1, 3—シクロへキサジェン等が挙げられる。
[0024] また、重合体ブロック (B)は、上記単量体以外に、ブロック共重合体に弾力性を与 えると 、う重合体ブロック(B)の目的を損なわな 、範囲で他の単量体、例えばスチレ ン、ビュルナフタレン等の芳香族ビュル系化合物;塩化ビュル等のハロゲン含有ビ- ル化合物等を含んで!/、てもよ!ヽ。この場合上記単量体と他の単量体との共重合形態 はランダム共重合であることが必要である。かかる他の単量体の使用量は、上記単量 体と他の単量体との合計に対して、 50質量%未満であるのが好ましぐ 30質量%未 満であるのがより好ましぐ 10質量%未満であるのがより一層好ましい。
[0025] 重合体ブロック (A)と重合体ブロック (B)とを構成成分とするブロック共重合体の構 造は特に限定されないが、例として A—B— A型トリブロック共重合体、 B—A—B型ト リブロック共重合体、 A—B— A型トリブロック共重合体あるいは B—A—B型トリブロッ ク共重合体と A— B型ジブロック共重合体との混合物、 A— B— A— B型テトラブロック 共重合体、 A— B— A—B— A型ペンタブロック共重合体、 B—A—B—A—B型ペン タブロック共重合体、(A— B) nX型星形共重合体 (Xはカップリング剤残基を表す)、 (B-A) nX型星形共重合体 (Xはカップリング剤残基を表す)等が挙げられる。これ らのブロック共重合体は、各単独で用いても 2種以上組み合わせて用いてもょ 、。
[0026] 重合体ブロック(A)と重合体ブロック(B)との質量比は 95: 5〜5: 95であるのが好 ましぐ 90 : 10〜10 : 90であるのがより好ましぐ 50 : 50〜: L0 : 90であるのがより一層 好ましい。この質量比が 95 : 5〜5: 95である場合には、ミクロ相分離により重合体ブ ロック (A)の形成するイオンチャンネルがシリンダー状な 、し連続相となるのに有利 であって、実用上十分なイオン伝導性が発現し、また疎水性である重合体ブロック (B )の割合が適切となって優れた耐水性が発現する。 [0027] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)は、重合体ブロック (A)や重合体ブロック (B)と異 なる他の重合体ブロック(C)を含んで 、てもよ 、。
[0028] 重合体ブロック(C)は、重合体ブロック (A)及び重合体ブロック(B)とミクロ相分離 する成分であれば特に限定されな 、。重合体ブロック (C)を構成する単量体としては 、例えば芳香族ビニル系化合物 [芳香環に結合した水素原子力^〜 3個の炭素数 1 〜4アルキル基 (メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル基 、イソブチル基もしくは tert—ブチル基)で置換されていてもよいスチレン、 aーメチ ルスチレン、ビュルナフタレン、ビ-ルアントラセン、ビュルピレン等]、炭素数 4〜8の 共役ジェン (具体例は既述の重合体ブロック (B)の説明におけると同様)、炭素数 2 〜8のアルケン (具体例は既述の重合体ブロック (B)の説明におけると同様)、(メタ) アクリル酸エステル((メタ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル 酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリ ン酸ビュル等)、ビュルエーテル(メチルビ-ルエーテル、イソブチルビ-ルエーテル 等)等が挙げられる。重合体ブロック (C)を構成する単量体は 1種であっても複数で あってもよい。
[0029] 重合体ブロック(C)に、重合体ブロック (A)及び重合体ブロック(B)とミクロ相分離し、 実質的にイオン基を含有せず、拘束相として働く機能を持たせる場合には、かかる重 合体ブロック (C)を有する本発明の電解質積層膜は、寸法安定性、形態安定性、耐 久性、湿潤下での力学特性が優れる傾向にある。この場合の重合体ブロック (C)を 構成する単量体の好まし 、例としては、上記した芳香族ビニル系化合物が挙げられ る。また、重合体ブロック(C)を結晶性にすることによつても上記した機能を持たせる ことができる。
[0030] 上記した機能を芳香族ビニル系化合物単位に依存する場合、重合体ブロック (C) 中の芳香族ビュル系化合物単位は、重合体ブロック (C)の 50質量%以上を占めるこ と力 子ましく、 70質量%以上を占めることがより好ましぐ 90質量%以上を占めること 力 り一層好ましい。また、上記と同じ観点から、重合体ブロック (C)中に含まれ得る 芳香族ビュル系化合物単位以外の単位はランダム共重合して 、ることが好ま 、。 [0031] 重合体ブロック(C)を重合体ブロック (A)及び重合体ブロック(B)とミクロ相分離さ せ、かつ拘束相として機能させる観点から特に好適な重合体ブロック (C)の例として は、ポリスチレンブロック、ポリ ρ—メチノレスチレンブロック、ポリ ρ—(tert—ブチノレ)ス チレンブロック等のポリスチレン系ブロック;任意の相互割合の、スチレン、 p メチル スチレン及びポリ P—(tert—ブチル)スチレンの 2種以上からなる共重合体ブロック; 結晶性水添 1, 4 ポリブタジエン;結晶性ポリエチレンブロック;結晶性ポリプロピレ ンブロック等が挙げられる。
[0032] 本発明で用いるブロック共重合体が重合体ブロック(C)を含む場合の形態としては 、 A—B— C型トリブロック共重合体、 A—B—C—A型テトラブロック共重合体、 A—B A— C型テトラブロック共重合体、 B— A— B— C型テトラブロック共重合体、 C B —C A型テトラブロック共重合体、 A—B—C— B型テトラブロック共重合体、 C—A B— A— C型ペンタブロック共重合体、 C B— A— B— C型ペンタブロック共重合 体、 A—C— B— C—A型ペンタブロック共重合体、 A—C— B—A—C型ペンタブ口 ック共重合体、 A—B— C—A—B型ペンタブロック共重合体、 A—B— C—A—C型 ペンタブロック共重合体、 A— B— C B— C型ペンタブロック共重合体、 A— B— A -B- C型ペンタブロック共重合体、 A— B— A— C B型ペンタブロック共重合体、 B—A—B—A—C型ペンタブロック共重合体、 B—A—B—C—A型ペンタブロック 共重合体、 B—A—B—C— B型ペンタブロック共重合体、 C—A—C— B— C型ペン タブロック共重合体等が挙げられる。
[0033] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)が重合体ブロック (C)を含む場合、ブロック共重合 体に占める重合体ブロック(C)の割合は 75質量%以下であるのが好ましぐ 70質量 %以下であるのがより好ましぐ 65質量%以下であるのがより一層好ましい。
[0034] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)のイオン伝導性基が導入されて!ヽな 、状態での 数平均分子量は特に制限されないが、ポリスチレン換算の数平均分子量として、通 常、 10, 000〜2, 000, 000力 S好まし <、 15, 000〜1, 000, 000力 Sより好まし <、 20 , 000〜500, 000力より一層好まし!/ヽ。 [0035] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)は重合体ブロック (A)にイオン伝導性基を有する ことが必要である。本発明でイオン伝導性に言及する場合のイオンとしてはプロトンな どが挙げられる。イオン伝導性基としては、該電解質積層膜を用いて作製される膜 電極接合体が十分なイオン伝導度を発現できるような基であれば特に限定されない 力 中でも SO M又は PO HM (式中、 Mは水素原子、アンモ -ゥムイオン又は
3 3
アルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基又はそれらの塩が 好適に用いられる。イオン伝導性基としては、また、カルボキシル基又はその塩も用 いることができる。イオン伝導性基の導入位置を重合体ブロック (A)にするのは、ィォ ン伝導性基の導入が容易なため及びイオンチャンネル形成を容易にするためである
[0036] イオン伝導性基の重合体ブロック (A)中への導入位置にっ 、ては特に制限はなく 、主たる構成成分である芳香族ビニル系化合物単位に導入しても既述の他の単量 体単位に導入してもよ!/ヽが、イオンチャンネル形成を容易にする観点やメタノールク ロスオーバーの抑制の観点力 芳香族ビニル系化合物単位の芳香族環に導入する のが好ましい。
[0037] また、イオン伝導性基が導入された重合体ブロック (A)力 a—炭素原子に結合し た水素原子が炭素数 1〜4のアルキル基で置換された芳香族ビニル系化合物単位、 例えば α メチルスチレン単位力も構成されている場合は、 a—炭素が 3級炭素で ある芳香族ビニル系化合物単位、例えばスチレン単位によって構成されて ヽる場合 に比べ、重合体ブロック (A)の極性が小さくなり、ミクロ相分離により重合体ブロック( A)の形成するイオンチャンネル内の疎水性が向上するため、メタノールクロスオーバ 一を抑制しやす 、傾向にある。
[0038] また、これらの芳香族ビニル系化合物の芳香環に結合した水素原子が 1〜3個の 炭素数 1〜4のアルキル基で置換された芳香族ビニル系化合物単位、例えば p—メ チルスチレン単位等を主たる繰返し単位として 、る場合も、芳香環が置換されて!、な V、芳香族ビニル系化合物単位を主たる繰返し単位として 、る場合に比べ、重合体ブ ロック (A)の極性が小さくなり、ミクロ相分離により重合体ブロック (A)の形成するィォ ンチャンネル内の疎水性が向上するため、メタノールクロスオーバーを抑制しやすい 傾向にある。
上記置換スチレンよりも極性のさらに小さい他の単量体を共重合した場合には、メ タノールクロスオーバーをさらに抑制しやす!/、傾向にある。
[0039] また、本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なく とも 1つを構成するブロック共重合体 (I)の構成成分であるイオン伝導性基を有する 重合体ブロック (A)は、本発明の効果を損わない範囲内で架橋させてもよい。架橋を 導入することにより、膜の寸法安定性や形態安定性が増し、更にメタノールクロスォ 一バーも抑制できる傾向にある。架橋させる手段としては、熱架橋法等が挙げられる 。熱架橋法としては、熱架橋部位を有するモノマーを重合体ブロック (A)中に共重合 させることにより熱架橋が可能となる。好適なモノマーとしては、 p—メチルスチレン等 が例示できる。
[0040] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)の製造法に関しては主に次の 2つの方法に大別さ れる。すなわち、(1)まずイオン伝導性基を有さないブロック共重合体を製造した後、 イオン伝導性基を結合させる方法、(2)イオン伝導性基を有する単量体を用いてプロ ック共重合体を製造する方法である。
[0041] まず第 1の製造法について述べる。
重合体ブロック (A)又は(B)を構成する単量体の種類、分子量等によって、重合体 ブロック (A)又は(B)の製造法は、ラジカル重合法、ァ-オン重合法、カチオン重合 法、配位重合法等カゝら適宜選択されるが、工業的な容易さから、ラジカル重合法、ァ ユオン重合法あるいはカチオン重合が好ましく選択される。特に、分子量、分子量分 布、重合体の構造、フレキシブルな成分力もなる重合体ブロック (B)又は (A)との結 合の容易さ等力 いわゆるリビング重合法が好ましぐ具体的にはリビングラジカル重 合法あるいはリビングァ-オン重合法、リビングカチオン重合法が好ま U、。
[0042] 製造法の具体例として、ポリスチレン力 なる重合体ブロック (A)及び共役ジェンか らなる重合体ブロック (B)を成分とするブロック共重合体の製造法、ポリスチレンから なる重合体ブロック (A)及びイソブテンカ なる重合体ブロック(B)を成分とするブロ ック共重合体の製造法、ポリ( α—メチルスチレン)力 なる重合体ブロック (Α)及び 共役ジェンからなる重合体ブロック(Β)を成分とするブロック共重合体の製造法、及 びポリ( α—メチルスチレン)力もなる重合体ブロック (Α)及びイソブテンカもなる重合 体ブロック (Β)を成分とするブロック共重合体の製造法につ!ヽて述べる。この場合、 工業的容易さ、分子量、分子量分布、重合体ブロック (Α)と重合体ブロック (Β)との 結合の容易さ等力 リビングァ-オン重合法、リビングカチオン重合法で製造するの が好ましぐ次のような具体的な合成例が示される。
[0043] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)をァ-オン重合法によって製造するに当たって、 a 炭素が 3級炭素である芳香族ビニル系化合物単位であるスチレン単位、及び芳 香環をアルキル基で置換されたスチレン誘導体単位を重合体ブロック (A)の主たる 繰り返し単位とする場合には、
( 1)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 20〜: LOO°Cの温度条件 下でスチレン又はスチレン誘導体を重合し、その後共役ジェンを重合させた後、スチ レン又はスチレン誘導体を逐次重合させ A— B— A型ブロック共重合体を得る方法、
(2)シクロへキサン溶媒中でァ-オン重合開始剤を用いて、 20〜100°Cの温度条件 下でスチレン又はスチレン誘導体を重合し、その後共役ジェンを重合させた後、安息 香酸フエニル等のカップリング剤を添加して A—B— A型ブロック共重合体を得る方 法
等の公知の方法を採用し得る。
[0044] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)をァ-オン重合法によって製造するに当たって、 a 炭素が 4級炭素である芳香族ビュル系化合物単位の代表例である ocーメチルス チレン単位を重合体ブロック (A)の主たる繰り返し単位とする場合には、
(3)テトラヒドロフラン溶媒中でジァ-オン系開始剤を用いて共役ジェン重合後に、 78°Cの温度条件下で aーメチルスチレンを逐次重合させ A— B— A型ブロック共 重合体を得る方法(Macromolecules, ( 1969) , 2 (5) , 453—458)、
(4) a—メチルスチレンをァ-オン系開始剤を用いてバルタ重合を行った後に、共役 ジェンを逐次重合させ、その後テトラクロロシラン等のカップリング剤によりカップリン グ反応を行 \ (A-B) nX型ブロック共重合体を得る方法 (Kautsch. Gummi, Kunstst. , (1984) , 37 (5) , 377— 379 ; Ρο
lym. Bull. , (1984) , 12, 71— 77)、
[0045] (5)非極性溶媒中有機リチウム化合物を開始剤として用い、 0. 1〜10質量%の濃度 の極性化合物の存在下、 30°C〜30°Cの温度にて、 5〜50質量%の濃度の α—メ チルスチレンを重合させ、得られるリビングポリマーに共役ジェンを重合させた後、安 息香酸フエニル等のカップリング剤を添加して、 Α—Β— Α型ブロック共重合体を得る 方法、
(6)非極性溶媒中有機リチウム化合物を開始剤として用い、 0. 1〜10質量%の濃度 の極性化合物の存在下、 30°C〜30°Cの温度にて、 5〜50質量%の濃度の α—メ チルスチレンを重合させ、得られるリビングポリマーに共役ジェンを重合させ、得られ る aーメチルスチレン重合体ブロックと共役ジェン重合体ブロックからなるブロック共 重合体のリビングポリマーに重合体ブロック (C)を構成する単量体を重合させて A— B— C型ブロック共重合体を得る方法
等の方法を採用し得る。
[0046] ポリ( α—メチルスチレン)力もなる重合体ブロック (Α)、及び共役ジェンィ匕合物から なる重合体ブロック (Β)を構成成分とするブロック共重合体を製造する場合、上記ブ ロック共重合体の具体的製造方法中、(5)及び (6)の方法が好ましぐ(5)の方法が より好まし 、。
[0047] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)をカチオン重合によって製造するに当たって、 a 炭素が 3級炭素である芳香族ビニル系化合物単位であるスチレン単位を重合体ブ ロック (A)の主たる繰返し単位とする場合には、
(7)ハロゲン系 Z炭化水素系混合溶媒中、—78°Cで、 2官能性ハロゲンィ匕開始剤を 用いて、ルイス酸の存在下、イソブテンをカチオン重合させた後、スチレンを重合させ て A—B— A型ブロック共重合体を得る方法 (WO 98Z14518号)
等の方法を採用し得る。 [0048] a 炭素が 4級炭素である芳香族ビニル系化合物単位である aーメチルスチレン 単位を重合体ブロック (A)の主たる繰り返し単位とする場合には
(8)ハロゲン系 Z炭化水素系混合溶媒中、 78°Cで、 2官能性ハロゲンィ匕開始剤を 用いて、ルイス酸の存在下、イソブテンをカチオン重合させた後、ジフエ-ルエチレン を付加させ、さらにルイス酸を後添加後、 ex—メチルスチレンを重合させて A—B— A 型ブロック共重合体を得る方法(Macromolecules, ( 1995) , 28, 4893—4898)
(9)ハロゲン系 Z炭化水素系混合溶媒中、 78°Cで、 1官能性ハロゲンィ匕開始剤を 用いて、ルイス酸の存在下、 aーメチルスチレンを重合させた後、さらにルイス酸を後 添加し、イソブテンを重合させた後、 2、 2 ビス— [4— ( 1—フエ-ルェテュル)フエ -ル]プロパン等のカップリング剤によりカップリング反応を行い、 A—B— A型ブロッ ク共重合体を得る方法(Polym. Bull. , (2000) , 45, 121— 128)
等の方法を採用し得る。
[0049] 次に、得られたブロック共重合体 (I)にイオン伝導性基を結合させる方法にっ ヽて 述べ。。
まず、得られたブロック共重合体 (I)にスルホン酸基を導入する方法について述べ る。スルホン化は、公知のスルホン化の方法で行える。このような方法としては、ブロッ ク共重合体の有機溶媒溶液や縣濁液を調製し、スルホン化剤を添加し混合する方法 やブロック共重合体に直接ガス状のスルホン化剤を添加する方法等が例示される。
[0050] 使用するスルホン化剤としては、硫酸、硫酸と脂肪族酸無水物との混合物系、クロ ロスルホン酸、クロロスルホン酸と塩化トリメチルシリルとの混合物系、三酸化硫黄、三 酸ィ匕硫黄とトリェチルホスフェートとの混合物系、さらに 2, 4, 6 トリメチルベンゼン スルホン酸に代表される芳香族有機スルホン酸等が例示される。また、使用する有機 溶媒としては、塩化メチレン等のハロゲンィ匕炭化水素類、へキサン等の直鎖式脂肪 族炭化水素類、シクロへキサン等の環式脂肪族炭化水素類等が例示でき、必要に 応じて複数の組合せから、適宜選択して使用してもよい。
[0051] 得られたブロック共重合体 (I)にホスホン酸基を導入する方法にっ 、て述べる。ホス ホンィ匕は、公知のホスホンィ匕の方法で行える。具体的には、例えば、ブロック共重合 体の有機溶媒溶液や懸濁液を調製し、無水塩化アルミニウムの存在下、該共重合体 をクロロメチルエーテル等と反応させ、芳香環にハロメチル基を導入後、これに三塩 ィ匕リンと無水塩ィ匕アルミニウムを加えて反応させ、さらに加水分解反応を行ってホス ホン酸基を導入する方法などが挙げられる。あるいは、該共重合体に三塩化リンと無 水塩ィ匕アルミニウムを加えて反応させ、芳香環にホスフィン酸基を導入後、硝酸によ りホスフィン酸基を酸ィ匕してホスホン酸基とする方法等が例示できる。
[0052] 本発明の固体高分子型燃料電池用電解質積層膜の構成電解質膜の少なくとも 1 つを構成するブロック共重合体 (I)の、第 2の製造法は、イオン伝導性基を有する少 なくとも 1つの単量体を用いてブロック共重合体を製造する方法である。
イオン伝導性基を有する単量体としては、芳香族系ビュル化合物にイオン伝導性 基が結合した単量体が好ましい。具体的には、スチレンスルホン酸、 a アルキル スチレンスノレホン酸、ビニノレナフタレンスノレホン酸、 a—ァノレキノレ一ビニノレナフタレン スルホン酸、ビ-ルアントラセンスルホン酸、 a アルキルーピ-ルアントラセンスル ホン酸、ビニノレビレンスノレホン酸、 ーァノレキノレービニノレピレンスノレホン酸、スチレン ホスホン酸、 a—ァノレキノレ一スチレンホスホン酸、ビニノレナフタレンホスホン酸、 a - アルキル一ビュルナフタレンホスホン酸、ビニルアントラセンホスホン酸、 a—アルキ ノレービ二ノレアントラセンホスホン酸、ビニノレビレンホスホン酸、 aーァノレキノレービ二ノレ ピレンホスホン酸等が挙げられる。これらの中では、工業的汎用性、重合の容易さ等 から、 o—、 m—又は p—スチレンスルホン酸、 a—アルキル一 o—、 m—又は p—スチ レンスノレホン酸が特に好まし 、。
[0053] イオン伝導性基を含有する単量体としては、共役ジェン化合物にイオン伝導性基 が結合した単量体も用いることができる。具体的には、 1, 3 ブタジエン一 1—スルホ ン酸、 1, 3 ブタジエン一 2—スルホン酸、イソプレン一 1—スルホン酸、イソプレン一 2—スルホン酸、 1, 3 ブタジエン一 1—ホスホン酸、 1, 3 ブタジエン一 2 ホスホ ン酸、イソプレン一 1—ホスホン酸、イソプレン一 2—ホスホン酸等が挙げられる。
[0054] イオン伝導性基を含有する単量体としてはまた、ビュルスルホン酸、 a アルキル —ビニルスルホン酸、ビュルアルキルスルホン酸、 a—アルキル—ビュルアルキルス ノレホン酸、ビニノレホスホン酸、 a—ァノレキノレ一ビ-ノレホスホン酸、ビニノレアノレキノレホ スホン酸、 a—アルキル一ビュルアルキルホスホン酸等も用いることができる。これら の中では、ビュルスルホン酸、ビュルホスホン酸が好ましい。
イオン伝導性を含有する単量体としては、さらに、イオン伝導性基が結合した (メタ) アクリル系単量体も用いることができる。具体的には、メタクリル酸、アクリル酸、 2—ァ クリルアミド― 2—メチル— 1—プロパンスルホン酸等が挙げられる。
[0055] イオン伝導性基は、適当な金属イオン (例えばアルカリ金属イオン)あるいは対ィォ ン(例えばアンモ-ゥムイオン)で中和されて 、る塩の形で導入されて 、てもよ 、。例 えば、 o—、 m—又は p—スチレンスルホン酸ナトリウム、あるいは α—メチルー o—、 m—又は ρ—スチレンスルホン酸ナトリウムを用いて重合体を製造することで、所望の イオン伝導性基を導入できる。又は、適当な方法でイオン交換することにより、スルホ ン酸基を塩型にしたブロック共重合体を得ることができる。
[0056] 本発明の高分子電解質積層膜は、構成電解質膜として、ブロック共重合体 (I)を含 有する膜以外に、他のイオン伝導性基含有高分子の少なくとも 1種を含有する膜を 有していてもよい。力かる他のイオン伝導性基含有高分子の例としては、ポリスチレン スルホン酸、ポリ(トリフルォロスチレン)スルホン酸、ポリビニルホスホン酸、ポリビュル カルボン酸及びポリビュルスルホン酸等のアイオノマー;ポリテトラフルォロエチレン、 テトラフルォロエチレン Zエチレン共重合体、テトラフルォロエチレン Zパーフルォロ (アルキルビュルエーテル)共重合体、テトラフルォロエチレン Zへキサフルォロプロ ピレン共重合体、ポリフッ化ビ-リデン等のパーフルォロカーボンポリマーに、スルホ ン酸基、ホスホン酸基及びカルボキシル基の少なくとも 1種を導入したもの;ポリスル ホン、ポリエーテルスルホン、ポリフエ-レンォキシド、ポリフエ-レンスルフイド、ポリフ ェニレンスノレフィドスノレホン、ポリパラフエ-レン、ポリアリーレン系ポリマー、ポリアリー ルケトン、ポリエーテルケトン、ポリべンズォキサゾール、ポリべンズチアゾール、ポリイ ミド等のエンジニアリングプラスチックに、スルホン酸基、ホスホン酸基及びカルボキシ ル基の少なくとも 1種を導入したものなどを挙げることができる。なお、ここでいうポリス ルホン、ポリエーテルスルホン及びポリエーテルケトンは、その分子鎖にスルホン結 合、エーテル結合もしくはケトン結合を有しているポリマーの総称であり、ポリエーテ ルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリ エーテルケトンスルホンなどを含む。他のイオン伝導性基含有高分子は、さら〖こ、ス ルホン酸基、ホスホン酸基及びカルボキシル基の少なくとも 1種を含むイオン交換榭 脂であってもよい。
[0057] 本発明の高分子電解質積層膜を構成する各高分子電解質膜は、ブロック共重合 体 (I)又は他のイオン伝導性基含有高分子に加え、必要に応じて、本発明の効果を 損なわない範囲で、軟化剤を含有していてもよい。軟化剤としては、ノ《ラフィン系、ナ フテン系もしくはァロマ系のプロセスオイル等の石油系軟化剤、パラフィン、植物油系 軟化剤、可塑剤等があり、これらは各単独で又は 2種以上組み合わせて用いることが できる。
[0058] 本発明の高分子電解質積層膜を構成する各高分子電解質膜は、さらに、必要に 応じて、本発明の効果を損なわない範囲で、各種添加剤、例えば、フエノール系安 定剤、ィォゥ系安定剤、リン系安定剤、光安定剤、帯電防止剤、離型剤、難燃剤、発 泡剤、顔料、染料、増白剤、カーボン繊維等を各単独で又は 2種以上組み合わせて 含有していてもよい。安定剤の具体例としては、 2, 6 ジ一 t—ブチル p クレゾ一 ル、ペンタエリスチリルーテトラキス [3— (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ -ル)プロピオネート]、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ— t—ブチル —4—ヒドロキシベンジル)ベンゼン、ォクタデシルー 3— (3, 5—ジ一 t—ブチル 4 ーヒドロキシフエ-ル)プロピオネート、トリエチレングリコール ビス [3—(3—t—ブ チルー 5—メチルー 4ーヒドロキシフエ-ル)プロピオネート]、 2, 4 ビス一(n—オタ チルチオ)ー6—(4ーヒドロキシ—3, 5 ジ—tーブチルァ-リノ) 1, 3, 5 トリアジ ン、 2, 2, —チォ一ジエチレンビス [3— (3, 5 ジ一 t—ブチノレ一 4 ヒドロキシフエ- ル)プロピオネート]、 N, N,一へキサメチレンビス(3, 5—ジ一 t—ブチル 4—ヒドロ キシ一ヒドロジナマミド)、 3, 5—ジ一 t—ブチル 4—ヒドロキシ一ベンジルホスホネ 一トージェチルエステル、トリス—(3, 5—ジ— t—ブチル—4—ヒドロキシベンジル) —イソシァヌレート、 3, 9 ビス {2— [3— (3—t—ブチル 4 ヒドロキシ一 5—メチ ルフエ-ル)プロピオ-ルォキシ ] 1, 1 ジメチルェチル} 2, 4, 8, 10—テトラオ キサスピロ [5, 5]ゥンデカン等のフエノール系安定剤;ペンタエリスリチルテトラキス( 3—ラウリルチオプロピオネート)、ジステアリル 3, 3,一チォジプロピオネート、ジラゥリ ル 3, 3,一チォジプロピオネート、ジミリスチル 3, 3,一チォジプロピオネート等のィォ ゥ系安定剤;トリスノユルフェ-ルホスフアイト、トリス(2, 4—ジ一 t—ブチルフエ-ル) ホスファイト、ジアステリルペンタエリスリトールジホスフアイト、ビス(2, 6—ジ一 t—ブ チル— 4—メチルフエ-ル)ペンタエリスリトールジホスファイト等のリン系安定剤等が 挙げられる。これら安定剤は各単独で用いても、 2種以上組み合わせても用いてもよ い。
[0059] 本発明の高分子電解質積層膜を構成する各高分子電解質膜は、さらに、必要に 応じて、本発明の効果を損なわない範囲で、無機充填剤を添加することができる。か 力る無機充填剤の具体例としては、タルク、炭酸カルシウム、シリカ、ガラス繊維、マイ 力、カオリン、酸化チタン、モンモリロナイト、アルミナ等が挙げられる。
[0060] 本発明の高分子電解質積層膜を構成する各高分子電解質膜における上記ブロッ ク共重合体又は他のイオン伝導性基含有高分子の含有量は、イオン伝導性の観点 から、 50質量%以上であることが好ましぐ 70質量%以上であることがより好ましぐ 9 0質量%以上であることがより一層好ましい。
[0061] 本発明の高分子電解質積層膜を構成する高分子電解質膜の少なくとも 2つがプロ ック共重合体 (I)を含有するものであることが、積層膜界面の電気抵抗をより小さくす る観点から、好ましい。
[0062] 本発明の高分子電解質積層膜を構成する高分子電解質膜の少なくとも 2つは互い に異なるイオン交換容量を有することが、電解質積層膜として高 ヽィオン伝導度とメ タノールバリア性を兼ね備えるものとするために好ましい。すなわち、構成電解質膜 力 つである場合には、互いに異なるイオン交換容量を有し、構成電解質膜が 3っ以 上である場合には、そのうち少なくとも 2つが互いに異なるイオン交換容量を有するこ とが好ましい。
[0063] 直接メタノール型燃料電池用の高分子電解質積層膜として使用するのに十分なィ オン伝導性を発現するためには、イオン交換容量の大き!、方の電解質膜のイオン交 換容量は 0. 70meqZg以上となるような量であることが好ましぐ 0.80meqZg以上 であることがより好ましい。イオン交換容量の上限については、イオン交換容量が大き くなりすぎると親水性が高まり耐水性が不十分になる傾向となるので、 3. Omeq/g 以下であるのが好ましい。また、直接メタノール型燃料電池用の高分子電解質積層 膜として使用するのに十分なメタノールバリア性を発現するためには、イオン交換容 量の小さ 、方の電解質膜のイオン交換容量は 0. 70meqZg未満となるような量であ ることが好ましぐ 0.65meqZg以下であることがより好ましい。イオン交換容量の下 限については、イオン交換容量が小さくなりすぎるとイオン伝導性が悪くなる傾向が あるので、 0. 3meqZg以上であるのが好ましい。
[0064] また、直接メタノール型燃料電池用の高分子電解質積層膜として使用するのに十 分なイオン伝導性とメタノールバリア性を兼ね備えるものとするためには、イオン交換 容量の大き!、方の電解質膜のイオン交換容量とイオン交換容量の小さ!、方の電解 質膜のイオン交換容量との差が 0. 03meqZg以上であることが好ましぐ 0. 05meq Zg以上であることがより好ましぐ 0. lmeqZg以上であることがより一層好ましい。
[0065] なお、上記観点から、ブロック共重合体 (I)におけるスルホン化又はホスホン化の程 度としては、イオン交換容量の大きい電解質膜の場合には、そのイオン交換容量が 好ましくは 0. 70meqZg以上、より好ましくは 0.80meqZg以上で 3. Omeq/g以下 となるようにスルホンィ匕又はホスホンィ匕することが好ましぐイオン交換容量の小さい 電解質膜の場合には、そのイオン交換容量が好ましくは 0. 70meq/g未満、より好 ましくは 0.65meq/g以下で 0. 3meq/g以上となるようにスルホン化又はホスホン 化することが好まし ヽ。スルホンィ匕またはホスホンィ匕された共重合体もしくはそれを含 有する電解質膜のイオン交換容量、該共重合体のスルホン化率又はホスホン化率は 、酸価滴定法、赤外分光スペクトル測定、核磁気共鳴スペクトル ( NMRスぺタト ル)測定等の分析手段を用いて算出することができる。
[0066] 本発明の高分子電解質積層膜を構成する高分子電解質膜の少なくとも 2つがプロ ック共重合体 (I)を含有するものであって、ブロック共重合体 (I)含有電解質膜の少な くとも 1つが 0. 70meq/g以上のイオン交換容量を有し、ブロック共重合体 (I)含有 電解質膜の少なくとも 1つが 0. 70meqZg未満のイオン交換容量を有することが、 メタノールクロスオーバーの抑制の観点から、好まし!/、。
[0067] 本発明の高分子電解質積層膜は、燃料電池用電解質膜として必要な性能、膜強 度、ハンドリング性等の観点から、その膜厚が 5〜500 m程度であることが好ましい 。膜厚が 5 μ m未満である場合には、膜の機械的強度や水素、酸素、メタノールなど の燃料の遮断性が不充分となる傾向がある。逆に、膜厚が 500 mを超えて厚い場 合には、膜の電気抵抗が大きくなり、充分なプロトン伝導性が発現しないため、電池 の発電特性が低くなる傾向がある。該膜厚はより好ましくは 10〜300 mである。
[0068] 本発明の高分子電解質積層膜の厚さに対するブロック共重合体 (I)を含有するす ベての電解質膜の合計厚さの割合は、本発明の特徴をより効果的に発揮する観点 から、 1%以上であるのが好ましぐ 3%以上であるのがより好ましぐ 5%以上である のがより一層好ましい。
[0069] 本発明の高分子電解質積層膜の層構成としては特に制限はないが、最外層の高 分子電解質層のイオン交換容量が内部より高いことが、膜と電極の電気的接合性を 高め、電池特性を向上させる観点から好ましい。好ましい例としては、イオン交換容 量の低い内層の両面に、イオン交換容量の高い外層を有する構造の高分子電解質 積層膜を挙げることができる。
[0070] 本発明の高分子電解質積層膜の調製方法については、かかる調製のための通常 の方法であればいずれの方法も採用できる。例えば、本発明の高分子電解質積層 膜を構成する高分子電解質膜の 1つを作製するには、上記ブロック共重合体もしくは 他のイオン伝導性基含有高分子、又は上記ブロック共重合体もしくは他のイオン伝 導性基含有高分子及び上記したような添加剤を適当な溶媒と混合して該ブロック共 重合体もしくは他のイオン伝導性基含有高分子を溶解もしくは懸濁せしめ、 PET、ガ ラス等の板状体にキャストするか又はコーターやアプリケーター等を用いて塗布し、 適切な条件で溶媒を除去することによって、所望の厚みを有する電解質膜を得る方 法や、熱プレス成形、ロール成形、押し出し成形等の公知の方法を用いて製膜する 方法などを用いることができる。
得られた第 1層目の電解質膜層の上に、第 2層として、同じもしくは異なる電解質膜 を形成させるには、第 2層を形成する上記ブロック共重合体もしくは他のイオン伝導 性基含有高分子、又は上記ブロック共重合体もしくは他のイオン伝導性基含有高分 子及び上記したような添加剤を適当な溶媒と混合して該ブロック共重合体もしくは他 のイオン伝導性基含有高分子を溶解もしくは懸濁せしめ、第 1層目の上に塗布して 乾燥すること〖こより作成することができる。 3層以上からなる積層膜を作成する場合に は、上記方法と同様に第 3層目以降を塗布し、乾燥すればよい。
また、上記のようにして得られた、同じもしくは異なる電解質膜同士を熱ロール成形 等で圧着させることにより高分子電解質積層膜を作成することもできる。
[0071] このとき使用する溶媒は、上記ブロック共重合体もしくは他のイオン伝導性基含有 高分子の構造を破壊することなぐキャストもしくは塗布が可能な程度の粘度の溶液 を調製することが可能なものであれば特に制限されない。具体的には、塩化メチレン 等のハロゲンィ匕炭化水素類、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、 へキサン、ヘプタン等の直鎖式脂肪族炭化水素類、シクロへキサン等の環式脂肪族 炭化水素類、テトラヒドロフラン等のエーテル類、メタノール、エタノール、プロパノー ル、イソプロパノール、ブタノール、イソブチルアルコール等のアルコール類、あるい はこれらの混合溶媒等を例示できる。上記ブロック共重合体もしくは他のイオン伝導 性基含有高分子の構成、分子量、イオン交換容量等に応じて、上記に例示した溶媒 の中から、 1種又は 2種以上の組合せを適宜選択し、使用することができる。
[0072] また、溶媒除去の条件は、上記ブロック共重合体もしくは他のイオン伝導性基含有 高分子中のスルホン酸基等のイオン伝導性基が脱落する温度以下で、溶媒を完全 に除去できる条件であれば任意に選択することが可能である。所望の物性を発現さ せるため、複数の温度を任意に組み合わせたり、通風気下と真空下等を任意に組み 合わせてもよい。具体的には、室温〜 60°C程度の真空条件下で、数時間予備乾燥 した後、 100°C以上の真空条件下、好ましくは 100〜120°Cで 12時間程度の乾燥条 件で溶媒を除去する方法や、 60〜140°Cの通気下で数分〜数時間程度の乾燥条 件で溶媒を除去する方法等を例示できるが、これらに限定されるものではない。
[0073] 次に、本発明の高分子電解質積層膜を用いた膜 電極接合体について述べる。
膜 電極接合体の製造については特に制限はなぐ公知の方法を適用することがで き、例えば、イオン伝導性バインダーを含む触媒ペーストを印刷法やスプレー法によ り、ガス拡散層上に塗布し乾燥することで触媒層とガス拡散層との接合体を形成させ 、ついで 2対の接合体それぞれの触媒層を内側にして、高分子電解質積層膜の両 側にホットプレスなどによりと接合させる方法や、上記触媒ペーストを印刷法やスプレ 一法により高分子電解質積層膜の両側に塗布し、乾燥して触媒層を形成させ、それ ぞれの触媒層に、ホットプレスなどによりガス拡散層を圧着させる方法がある。さらに 別の製造法として、イオン伝導性バインダーを含む溶液又は懸濁液を、高分子電解 質積層膜の両面及び,又は 2対のガス拡散電極の触媒層面に塗布し、電解質積層 膜と触媒層面とを張り合わせ、熱圧着などにより接合させる方法がある。この場合、該 溶液又は懸濁液は電解質積層膜及び触媒層面の ヽずれか一方に塗付してもょ 、し 、両方に塗付してもよい。さらに他の製造法として、まず、上記触媒ペーストをポリテト ラフルォロエチレン (PTFE)製などの基材フィルムに塗布し、乾燥して触媒層を形成 させ、ついで、 2対のこの基材フィルム上の触媒層を高分子電解質積層膜の両側に 加熱圧着により転写し、基材フィルムを剥離することで電解質積層膜と触媒層との接 合体を得、それぞれの触媒層にホットプレスによりガス拡散層を圧着する方法がある 。これらの方法においては、イオン伝導性基を Naなどの金属との塩にした状態で行 Vヽ、接合後の酸処理によってプロトン型に戻す処理を行ってもょ ヽ。
[0074] 上記膜—電極接合体を構成するイオン伝導性バインダーとしては、例えば、「Nafi onj (登録商標、デュポン社製)や「Gore— selects (登録商標、ゴァ社製)などの既 存のパーフルォロスルホン酸系ポリマーからなるイオン伝導性バインダー、スルホン 化ポリエーテルスルホンゃスルホンィ匕ポリエーテルケトン力もなるイオン伝導性バイン ダー、リン酸や硫酸を含浸したポリべンズイミダゾールカもなるイオン伝導性バインダ 一等を用いることができる。また、本発明の高分子電解質積層膜を構成する電解質 からイオン伝導性バインダーを作製してもよい。なお、電解質積層膜とガス拡散電極 との密着性を一層高めるためには、ガス拡散電極と接触する層を形成する高分子電 解質と類似の構造を有するイオン伝導性バインダーを用いることが好まし 、。
[0075] 上記膜 電極接合体の触媒層の構成材料について、導電材 Z触媒担体としては 特に制限はなぐ例えば炭素材料が挙げられる。炭素材料としては、例えば、ファー ネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、 黒鉛などが挙げられ、これら単独であるいは 2種以上混合して使用される。触媒金属 としては、水素やメタノールなどの燃料の酸化反応及び酸素の還元反応を促進する 金属であればいずれのものでもよぐ例えば、白金、金、銀、パラジウム、イリジウム、 ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、パラジ ゥム等、あるいはそれらの合金、例えば白金一ルテニウム合金が挙げられる。中でも 白金や白金合金が多くの場合用いられる。触媒となる金属の粒径は、通常は、 10〜 300オングストロームである。これら触媒はカーボン等の導電材 Z触媒担体に担持さ せた方が触媒使用量は少なくコスト的に有利である。また、触媒層には、必要に応じ て撥水剤が含まれていてもよい。撥水剤としては例えばポリテトラフルォロエチレン、 ポリフッ化ビ-リデン、スチレン-ブタジエン共重合体、ポリエーテルエーテルケトン等 の各種熱可塑性榭脂が挙げられる。
[0076] 上記膜—電極接合体のガス拡散層は、導電性及びガス透過性を備えた材料から 構成され、力かる材料として例えばカーボンペーパーやカーボンクロス等の炭素繊 維よりなる多孔性材料が挙げられる。また、力かる材料には、撥水性を向上させるた めに、撥水化処理を施してもよい。
[0077] 上記のような方法で得られた膜 電極接合体を、極室分離と電極へのガス供給流 路の役割を兼ねた導電性のセパレータ材の間に挿入することにより、固体高分子型 燃料電池が得られる。本発明の膜—電極接合体は、燃料ガスとして水素を使用した 純水素型、メタノールを改質して得られる水素を使用したメタノール改質型、天然ガ スを改質して得られる水素を使用した天然ガス改質型、ガソリンを改質して得られる 水素を使用したガソリン改質型、メタノールを直接使用する直接メタノール型等の固 体高分子型燃料電池用膜 電極接合体として使用可能である。
[0078] 本発明の高分子電解質積層膜を用いた燃料電池は、経済的で、環境に優しぐ高 いイオン伝導度とメタノールバリア性を兼ね備えており、特に直接型メタノール燃料電 池にお 1、て優れた発電性能を発現する。
実施例
[0079] 以下、参考例、製造例、実施例及び比較例並びに固体高分子型燃料電池用プロト ン伝導性電解質膜としての性能試験 (イオン交換容量、膜の電気抵抗、メタノール透 過速度、燃料電池用単セルの出力性能評価)及びその結果を示して本発明をさらに 具体的に説明するが、本発明はこれらにより限定されるものではない。
[0080] 参者例 1 ポリ α—メチルスチレンブロック(重合体ブロック(Α) )と水添ポリブタジエンブロック( 重合体ブロック (Β) )とからなるブロック共重合体の製造
既報の方法 (WO 02Z40611号)と同様の方法で、ポリ α—メチルスチレン一 b— ポリブタジエン—b—ポリ (Xーメチルスチレン型トリブロック共重合体(以下 mSBmSと 略記する)を合成した。得られた mSBmSの数平均分子量 (GPC測定、ポリスチレン 換算)は 48150であり、 H—NMR測定から求めた 1, 4 結合量は 60%、 a—メチ ルスチレン単位の含有量は 41. 3質量0 /。であった。また、ポリブタジエンブロック中に は、 aーメチルスチレンが実質的に共重合されていないこと力 H— NMR^ぺクト ル測定による組成分析により判明した。
合成した mSBmSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐圧 容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気下 において 80°Cで 5時間水素添加反応を行い、ポリ aーメチルスチレン b 水添ポリ ブタジエン— b ポリ a—メチルスチレン型トリブロック共重合体(以下 mSEBmSと略 記する)を得た。得られた HmSEBmSの水素添カ卩率を1 H— NMR ^ベクトル測定に より算出したところ、 98. 9%であった。
[0081] 参者例 2
ポリ aーメチルスチレンブロック(重合体ブロック(A) )と水添ポリブタジエンブロック( 重合体ブロック (B) )とからなるブロック共重合体の製造
参考例 1と同様の方法で、数平均分子量 80590、 1, 4 結合量 58. 9%、 aーメ チルスチレン単位の含有量 28. 7質量0 /0の mSBmSを合成した。このポリブタジエン ブロック中には、 ひ メチルスチレンが実質的に共重合されていな力つた。ついで得 られた mSBmSを用いて水素添加反応を 80°Cで 5時間行ったことを除 、て参考例 1 と同様にして水素添カ卩率 99. 7%の mSEBmSを得た。
[0082] 参考例 3
ポリ aーメチルスチレンブロック(重合体ブロック(A) )と水添ポリブタジエンブロック( 重合体ブロック (B) )とからなるブロック共重合体の製造
参考例 1と同様の方法で、数平均分子量 85000、 1, 4 結合量 56. 1%、 aーメ チルスチレン単位の含有量 28. 0質量0 /0の mSBmSを合成した。このポリブタジエン ブロック中には、 ひ メチルスチレンが実質的に共重合されていな力つた。ついで得 られた mSBmSを用いて水素添加反応を 80°Cで 5時間行ったことを除 、て参考例 1 と同様にして水素添カ卩率 99. 8%の mSEBmSを得た。
[0083] 参考例 4
ポリスチレン (重合体ブロック (A) )、水添ポリイソプレン (重合体ブロック(B) )及びポリ (4— tert ブチルスチレン)(重合体ブロック(C) )力 なるブロック共重合体の製造 lOOOmLナスフラスコに、脱水シクロへキサン 479ml及び sec ブチルリチウム(1. 3 M シクロへキサン溶液) 3. 3mlを仕込んだ後、 4—tert—ブチルスチレン 47. lml 、スチレン 12. 9ml及びイソプレン 60. 6mlを逐次添カ卩し、 30°Cで重合させ、ついで 安息香酸フエ-ルの 3質量%シクロへキサン溶液 19. lmlを添カ卩してカップリングさ せることにより、ポリ(4 tert ブチルスチレン) b—ポリスチレン b—ポリイソプレ ン b—ポリスチレン b—ポリ(4 tert—ブチルスチレン)(以下、 tBSSIStBSと略 記する)を合成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン 換算)は 65700であり、 H—NMR測定から求めた 1, 4 結合量は 94. 0%、スチレ ン単位の含有量は 13. 4質量0 /0、 4 tert—ブチルスチレン単位の含有量は 43. 5 質量%であった。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(以下、 tBSSEPStBSと略記する)を得た。得られた tBSSEPStBS の水素添カ卩率を1 H— NMR ^ベクトル測定により算出したところ、 99. 9%であった。
[0084] 参考例 5
ポリスチレン (重合体ブロック (A) )、水添ポリイソプレン (重合体ブロック(B) )及びポリ (4— tert ブチルスチレン)(重合体ブロック(C) )力 なるブロック共重合体の製造 lOOOmLナスフラスコに、脱水シクロへキサン 480ml及び sec -ブチルリチウム( 1. 3M シクロへキサン溶液) 4. 8mlを仕込んだ後、 4 tert—ブチルスチレン 43. 9m 1、スチレン 18. 6ml及びイソプレン 56. 4mlを逐次添カ卩し、 30°Cで重合させ、ついで 安息香酸フエ-ルの 3質量%シクロへキサン溶液 24. 8mlを添カ卩してカップリングさ せることにより、ポリ(4 tert ブチルスチレン) b—ポリスチレン b—ポリイソプレ ン b—ポリスチレン b—ポリ(4 tert—ブチルスチレン)(以下、 tBSSIStBSと略 記する)を合成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン 換算)は 47800であり、 1H—NMR測定から求めた 1, 4 結合量は 94. 1%、スチ レン単位の含有量は 18. 1質量0 /0、 4 tert—ブチルスチレン単位の含有量は 41. 3質量%であった。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4 tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(以下、 tBSSEPStBSと略記する)を得た。得られた tBSSEPStBS の水素添力卩率を 1H— NMRスペクトル測定により算出したところ、 99. 9%であった。 参者例 6
ポリスチレン (重合体ブロック (A) )、水添ポリイソプレン (重合体ブロック(B) )及びポリ (4— tert ブチルスチレン)(重合体ブロック(C) )力 なるブロック共重合体の製造 lOOOmLナスフラスコに、脱水シクロへキサン 567ml及び sec ブチルリチウム(1. 3M シクロへキサン溶液) 6. 1mlを仕込んだ後、 4 tert—ブチルスチレン 66. 3m 1、スチレン 16. 5ml及びイソプレン 94. 2mlを逐次添カ卩し、 30°Cで重合させ、ついで 安息香酸フエニルの 3質量%シクロへキサン溶液 33. 3mlを添カ卩してカップリングさ せることにより、ポリ(4 tert ブチルスチレン) b—ポリスチレン b—ポリイソプレ ン b—ポリスチレン b—ポリ(4 tert—ブチルスチレン)(以下、 tBSSIStBSと略 記する)を合成した。得られた tBSSIStBSの数平均分子量(GPC測定、ポリスチレン 換算)は 48100であり、1 H—NMR測定から求めた 1, 4 結合量は 94. 1%、スチレ ン単位の含有量は 10. 8質量%、 4 tert—ブチルスチレン単位の含有量は 43. 0 質量%であった。
合成した tBSSIStBSのシクロへキサン溶液を調製し、十分に窒素置換を行った耐 圧容器に仕込んだ後、 NiZAl系の Ziegler系水素添加触媒を用いて、水素雰囲気 下において 50°Cで 12時間水素添加反応を行い、ポリ(4—tert—ブチルスチレン) —b—ポリスチレン b 水添ポリイソプレン b—ポリスチレン b—ポリ(4 tert ブチルスチレン)(以下、 tBSSEPStBSと略記する)を得た。得られた tBSSEPStBS の水素添カ卩率を1 H— NMR ^ベクトル測定により算出したところ、 99. 9%であった。
[0086] 製造例 1
スルホン化 mSEBmSの合成
参考例 1で得られたブロック共重合体 (mSEBmS) 50gを、攪拌機付きのガラス製 反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 624mlを 加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 25. 3ml中、 0°C にて無水酢酸 14. 5mlと硫酸 6. 5mlとを反応させて得られたスルホン化試薬を、 5分 力けて徐々に滴下した。 35°Cにて 10時間攪拌後、 2Lの蒸留水の中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBmSを 得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環のスル ホン化率は1 H—NMR分析から 39. Omol%、該スルホン化 mSEBmSのイオン交換 容直 23meq/ gT:、あつ 7こ。
[0087] 製诰例 2
スルホン化 mSEBmSの合成
参考例 1で得られたブロック共重合体 (mSEBmS) 50gを、攪拌機付きのガラス製 反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 499mlを 加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 12. 8ml中、 0°C にて無水酢酸 6. 40mlと硫酸 2. 86mlとを反応させて得られたスルホン化試薬を、 5 分かけて徐々に滴下した。 35°Cにて 7時間攪拌後、 2Lの蒸留水の中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBm Sを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環の スルホン化率は1 H—NMR分析から 19. 3mol%、該スルホン化 mSEBmSのイオン 交換容量は 0. 64meqZgであった
[0088] 製造例 3
スルホン化 mSEBmSの合成
参考例 2で得られたブロック共重合体 (mSEBmS) 355gを、攪拌機付きのガラス製 反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 3000ml を加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 155ml中、 0°C にて無水酢酸 77. 5mlと硫酸 34. 7mlとを反応させて得られたスルホン化試薬を、 5 分かけて徐々に滴下した。 35°Cにて 7時間攪拌後、 2Lの蒸留水の中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBm Sを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環の スルホン化率は1 Η— NMR分析から 49. 8mol%、該スルホン化 mSEBmSのイオン 交換容量は 1. 08meqZgであった。
[0089] 製诰例 4
スルホン化 mSEBmSの合成
参考例 2で得られたブロック共重合体 (mSEBmS) 90gを攪拌機付きのガラス製反 応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 816mlを加 え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 19. 7ml中、 0°Cに て無水酢酸 9. 83mlと硫酸 4. 39mlとを反応させて得られたスルホン化試薬を、 5分 力けて徐々に滴下した。 35°Cにて 4時間攪拌後、 2Lの蒸留水の中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBmSを 得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環のスル ホン化率は1 H—NMR分析から 22. Omol%、該スルホン化 mSEBmSのイオン交換 容量は 0. 50meqZgであった。 [0090] 製造例 5
スルホン化 mSEBmSの合成
参考例 2で得られたブロック共重合体 (mSEBmS) 90gを攪拌機付きのガラス製反 応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 816mlを加 え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 33. 7ml中、 0°Cに て無水酢酸 16. 8mlと硫酸 7. 53mlとを反応させて得られたスルホン化試薬を、 5分 力けて徐々に滴下した。 35°Cにて 4時間攪拌後、 2Lの蒸留水の中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBmSを 得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環のスル ホン化率は1 H—NMR分析から 36. Omol%、該スルホン化 mSEBmSのイオン交換 容量は 0. 83meqZgであった。
[0091] 製诰例 6
スルホン化 mSEBmSの合成
参考例 3で得られたブロック共重合体 (mSEBmS) 355gを、攪拌機付きのガラス製 反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 3000ml を加え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 147ml中、 0°C にて無水酢酸 73. 4mlと硫酸 33. Omlとを反応させて得られたスルホン化試薬を、 5 分かけて徐々に滴下した。 35°Cにて 7時間攪拌後、 2Lの蒸留水の中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBm Sを得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環の スルホン化率は1 H—NMR分析から 50. 5mol%、該スルホン化 mSEBmSのイオン 交換容量は 1. 06meqZgであった。
[0092] 製造例 7
スルホン化 mSEBmSの合成 参考例 3で得られたブロック共重合体 (mSEBmS) 90gを攪拌機付きのガラス製反 応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 816mlを加 え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 18. 9ml中、 0°Cに て無水酢酸 9. 40mlと硫酸 4. 20mlとを反応させて得られたスルホン化試薬を、 5分 力けて徐々に滴下した。 35°Cにて 4時間攪拌後、 2Lの蒸留水の中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 mSEBmSを 得た。得られたスルホン化 mSEBmSの α—メチルスチレン単位のベンゼン環のスル ホン化率は1 H—NMR分析から 22. 5mol%、該スルホン化 mSEBmSのイオン交換 容量は 0. 49meqZgであった。
[0093] 製诰例 8
スルホンィ匕 tBSSEPStBSの合成
参考例 4で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 25°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 49. 5ml中、 0°Cにて無水酢酸 24. 8mlと硫酸 10. 7mlとを反応させて得られたスルホン化試薬を 5分かけて徐々に滴下した。 25°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEP StBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位 はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼ ン環のスルホン化率は1 H— NMR分析から 91. Omol%、イオン交換容量は 1. 05m eq, gであつ 7こ o
[0094] 製造例 9
スルホンィ匕 tBSSEPStBSの合成
参考例 4で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 16. 9ml中、 0°Cにて無水酢酸 8. 4mlと硫酸 3. 7mlとを反応させて得られたスルホン化試薬を 5 分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEPStB Sを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位はス ルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼン環 のスルホン化率は1 H— NMR分析から 46. Omol%、イオン交換容量は 0. 56meq/ gであつ 7こ o
[0095] 製诰例 10
スルホンィ匕 tBSSEPStBSの合成
参考例 5で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 25°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 67. Oml中、 0°Cにて無水酢酸 33. 5mlと硫酸 14. 5mlとを反応させて得られたスルホン化試薬を 5分かけて徐々に滴下した。 25°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌しなが ら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水 で 30分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化 がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEP StBSを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位 はスルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼ ン環のスルホン化率は1 H—NMR分析から 100mol%、イオン交換容量は 1. 52me qZ gでめつ 7こ。
[0096] 製造例 11
スルホンィ匕 tBSSEPStBSの合成
参考例 5で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 13. 4ml中、 0°Cにて無水酢酸 6. 7mlと硫酸 2. 9mlとを反応させて得られたスルホン化試薬を 5 分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEPStB Sを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位はス ルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼン環 のスルホン化率は1 H— NMR分析から 30. Omol%、イオン交換容量は 0. 50meq/ gであつ 7こ o
[0097] 製诰例 12
スルホンィ匕 tBSSEPStBSの合成
参考例 6で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 25°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 39. 6ml中、 0°Cにて無水酢酸 19. 8mlと硫酸 8. 6mlとを反応させて得られたスルホン化試薬を 5 分かけて徐々に滴下した。 25°Cにて 72時間攪拌後、 1Lの蒸留水中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEPStB Sを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位はス ルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼン環 のスルホン化率は1 H— NMR分析から 100mol%、イオン交換容量は 1. OOmeq/g であった。
[0098] 製造例 13
スルホンィ匕 tBSSEPStBSの合成
参考例 6で得られたブロック共重合体 (tBSSEPStBS) 50gを、攪拌機付きのガラ ス製反応容器中にて 1時間真空乾燥し、ついで窒素置換した後、塩化メチレン 500 mlをカ卩え、 35°Cにて 2時間攪拌して溶解させた。溶解後、塩化メチレン 13. 4ml中、 0°Cにて無水酢酸 6. 7mlと硫酸 2. 9mlとを反応させて得られたスルホン化試薬を 5 分かけて徐々に滴下した。 35°Cにて 4時間攪拌後、 1Lの蒸留水中に攪拌しながら 重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を 90°Cの蒸留水で 3 0分間洗浄し、ついでろ過した。この洗浄及びろ過の操作を洗浄水の pHに変化がな くなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホンィ匕 tBSSEPStB Sを得た。得られたスルホンィ匕 tBSSEPStBSの 4— tert—ブチルスチレン単位はス ルホン化されず、スチレン単位のみスルホン化された。スチレン単位中のベンゼン環 のスルホン化率は1 H— NMR分析から 48. Omol%、イオン交換容量は 0. 48meq/ gであつ 7こ o
[0099] 実施例 1
( 1)燃料電池用高分子電解質積層膜の作製
製造例 1で得られたスルホン化 mSEBmS (イオン交換容量 1. 23meqZg)の 18質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」]上に約 125 μ mの 厚みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 11 mの膜 (A )を得た。
ついで、製造例 2で得られたスルホン化 mSEBmS (イオン交換容量 0. 64meq/g )の 22質量0 /0のシクロへキサン Zイソプロピルアルコール(質量比 65Z35)溶液を調 製し、膜 (A)上に約 250 /z mの厚みでコートし、室温で十分乾燥した後、真空乾燥さ せることで、厚さ 40 μ mの積層膜 (Β)を得た。
ついで、製造例 1で得られたスルホン化 mSEBmS (イオン交換容量 1. 23meq/g )の 18質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、積層 膜 (B)上に約 150 /z mの厚みでコートし、室温で十分乾燥した後、真空乾燥させるこ とで、厚さ 53 μ mの積層膜 (C)を得た。
[0100] (2)固体高分子型燃料電池用単セルの作製
固体高分子型燃料電池用の電極を以下の手順で作製した。 Pt— Ru合金触媒担 持カーボンに、 Nafionの 5質量0 /0メタノール溶液を、 Pt—Ru合金と Nafionとの質量 比が 2 : 1になるように添加混合し、均一に分散されたペーストを調製した。このペース トを転写シートに塗布し、 24時間乾燥させて、アノード側の触媒シートを作製した。ま た、 Pt触媒担持カーボンに、低級アルコールと水との混合溶媒中への Nafionの 5質 量%溶液を、 Pt触媒と Nafionとの質量比が 2 : 1になるように添加混合し、均一に分 散されたペーストを調製し、アノード側と同様の方法にて力ソード側の触媒シートを作 製した。(1)で作製した燃料電池用電解質積層膜を、上記 2種類の触媒シートでそ れぞれ膜と触媒面とが向力 、合うように挟み、その外側を 2枚の耐熱性フィルム及び 2枚のステンレス板で順に挟み、ホットプレス(150°C、 lOOkg/cm2, lOmin)により 膜と触媒シートとを接合させた。ステンレス板及び耐熱性フィルムを外し、最後に転写 シートを剥離させて膜—電極接合体を作製した。ついで作製した膜—電極接合体を 、 2枚のカーボンペーパーで挟み、その外側を 2枚のガス供給流路の役割を兼ねた 導電性のセパレータで挟み、さらにその外側を 2枚の集電板及び 2枚の締付板で挟 み固体高分子型燃料電池用の評価セルを作製した。
施例 2
燃料電池用電解質積層膜の作製
製造例 3で得られたスルホン化 mSEBmS (イオン交換容量 1. 08meqZg)の 12質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 450 μ mの 厚みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 28 mの膜 (A )を得た。
ついで、製造例 4で得られたスルホン化 mSEBmS (イオン交換容量 0. 50meq/g )の 10質量0 /0のシクロへキサン Zイソプロピルアルコール(質量比 85Z15)溶液を調 製し、膜 (A)上に約 125 mの厚みでコートし、室温で十分乾燥した後、真空乾燥さ せることで、厚さ 32 mの積層膜 (B)を得た。
ついで、製造例 3で得られたスルホン化 mSEBmS (イオン交換容量 1. 08meq/g )の 12質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、積層 膜 (B)上に約 450 /z mの厚みでコートし、室温で十分乾燥した後、真空乾燥させるこ とで、厚さ 51 mの積層膜 (C)を得た。
[0102] 実施例 3
燃料電池用電解質積層膜の作製
製造例 4で得られたスルホン化 mSEBmSの 10質量0 /0のシクロへキサン Zイソプロ ピルアルコール (質量比 85Z 15)溶液を膜 (A)上に約 150 mの厚みでコートした 以外は、実施例 2と同様の条件にて厚さ 54. 5 mの積層膜 (C)を得た。
[0103] 実施例 4
燃料電池用電解質積層膜の作製
製造例 3で得られたスルホン化 mSEBmSの 13質量0 /0のトルエン Zイソブチルアル コール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上〖こ約 300 μ mの厚みでコートし、室温で十分乾燥 した後、真空乾燥させることで、厚さ 22 /z mの膜 (A)を得た。
っ 、で、製造例 4で得られたスルホン化 mSEBmSの 10質量0 /0のシクロへキサン Z イソプロピルアルコール (質量比 85Z15)溶液を調製し、膜 (A)上に約 250 mの厚 みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 32 mの積層膜 (B)を得た。
っ 、で、製造例 3で得られたスルホン化 mSEBmSの 13質量0 /0のトルエン Zイソブ チルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 350 mの厚みで コートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 51 μ mの積層膜 (C) を得た。
[0104] 実施例 5
燃料電池用電解質積層膜の作製
製造例 3で得られたスルホン化 mSEBmSの 13質量0 /0のトルエン Zイソブチルアル コール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紛エステルフィルム K 1504」]上に約 150 μ mの厚みでコートし、室温で十分乾燥 した後、真空乾燥させることで、厚さ 10 mの膜 (A)を得た。
っ 、で、製造例 4で得られたスルホン化 mSEBmSの 15質量0 /0のシクロへキサン Z イソプロピルアルコール (質量比 85Z15)溶液を調製し、膜 (A)上に約 350 mの厚 みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 38 mの積層膜 (B)を得た。
っ 、で、製造例 3で得られたスルホン化 mSEBmSの 13質量0 /0のトルエン Zイソブ チルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 200 mの厚みで コートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 51 μ mの積層膜 (C) を得た。
[0105] 実施例 6
燃料電池用電解質膜の作製
製造例 3で得られたスルホン化 mSEBmSの 14質量0 /0のトルエン Zイソブチルアル コール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K1504」]上〖こ約 450 μ mの厚みでコートし、室温で十分乾燥 した後、真空乾燥させることで、厚さ の膜 (A)を得た。
っ 、で、製造例 4で得られたスルホン化 mSEBmSの 12質量0 /0のシクロへキサン Z イソプロピルアルコール (質量比 85Z15)溶液を調製し、膜 (A)上に約 350 mの厚 みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 51 μ mの積層膜 (B)を得た。
[0106] 施例 7
燃料電池用電解質膜の作製
製造例 3で得られたスルホン化 mSEBmSの 14質量0 /0のトルエン Zイソブチルアル コール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K 1504」]上〖こ約 300 μ mの厚みでコートし、室温で十分乾燥 した後、真空乾燥させることで、厚さ 22 /z mの膜 (A)を 2枚得た。
っ 、で、製造例 4で得られたスルホン化 mSEBmSの 12質量0 /0のシクロへキサン Z イソプロピルアルコール (質量比 85Z15)溶液を調製し、離形処理済み PETフィル ム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 100 mの厚みでコー トし、室温で十分乾燥した後、真空乾燥させることで、厚さ 5 μ mの膜 (Β)を得た。 得られた膜 (A)と膜 (B)を、 150°Cに温度設定したロールを用いて、熱圧着させる ことにより、積層膜 (C)を作成した。次いで、積層膜 (C)中の膜 (B)側と、膜 (A)を、 上記と同様の方法により熱圧着させることにより、厚さ 51 mの積層膜 (D)を得た。
[0107] 実施例 8
燃料電池用電解質膜の作製
製造例 6で得られたスルホン化 mSEBmSの 16質量0 /0のトルエン Zイソブチルアル コール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東 洋紡エステルフィルム K1504」]上〖こ約 125 μ mの厚みでコートし、熱風乾燥機にて 、 80°C、 3分間乾燥した後、厚さ 12 mの膜 (A)を得た。
っ 、で、製造例 7で得られたスルホン化 mSEBmSの 12質量0 /0のトルエン/イソブチ ルアルコール (質量比 8Z2)溶液を調製し、膜 (A)上に約 75 μ mの厚みでコートし、 熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 18 mの積層膜 (B)を得た。 っ 、で、製造例 6で得られたスルホン化 mSEBmSの 16質量0 /0のトルエン Zイソブ チルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 125 μ mの厚みで コートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 31 μ mの積層膜 (C )を得た。
[0108] 実飾 19
燃料電池用電解質膜の作製
製造例 8で得られたスルホンィ匕 tBSSEPStBSの 22質量0 /0のトルエン Zイソブチル アルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡 製「東洋紡エステルフィルム K1504」]上に約 75 mの厚みでコートし、熱風乾燥機 にて、 80°C、 3分間乾燥した後、厚さ 11 mの膜 (A)を得た。
っ 、で、製造例 9で得られたスルホンィ匕 tBSSEPStBSの 22質量0 /0のトルエン/イソ ブチルアルコール (質量比 8Z2)溶液を調製し、膜 (A)上に約 100 mの厚みでコ ートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 26 mの積層膜 (B) を得た。
っ 、で、製造例 8で得られたスルホンィ匕 tBSSEPStBSの 10質量0 /0のトルエン Zィ ソブチルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 75 μ mの厚み でコートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 31 μ mの積層膜( C)を得た。 [0109] 実施例 10
燃料電池用電解質膜の作製
製造例 10で得られたスルホンィ匕 tBSSEPStBSの 25質量0 /0のトルエン Zイソブチ ルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋 紡製「東洋紡エステルフィルム K1504」]上に約 mの厚みでコートし、熱風乾燥 機にて、 80°C、 3分間乾燥した後、厚さ 12 mの膜 (A)を得た。
っ、で、製造例 11で得られたスルホンィ匕 tBSSEPStBSの 25質量0 /0のトルエン Zィ ソブチルアルコール (質量比 8Z2)溶液を調製し、膜 (A)上に約 75 μ mの厚みでコ ートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 25 mの積層膜 (B) を得た。
っ 、で、製造例 10で得られたスルホンィ匕 tBSSEPStBSの 25質量0 /0のトルエン/ イソブチルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 75 μ mの厚 みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 35 mの積層 膜 (C)を得た。
[0110] 実施例 11
燃料電池用電解質膜の作製
製造例 12で得られたスルホンィ匕 tBSSEPStBSの 20質量0 /0のトルエン Zイソブチ ルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋 紡製「東洋紡エステルフィルム K1504」]上に約 mの厚みでコートし、熱風乾燥 機にて、 80°C、 3分間乾燥した後、厚さ 10 mの膜 (A)を得た。
ついで、製造例 13で得られたスルホンィ匕 tBSSEPStBSの 18質量%のトルエン Zィ ソブチルアルコール (質量比 8Z2)溶液を調製し、膜 (A)上に約 75 μ mの厚みでコ ートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 20 mの積層膜 (B) を得た。
っ 、で、製造例 12で得られたスルホンィ匕 tBSSEPStBSの 20質量0 /0のトルエン/ イソブチルアルコール (質量比 8Z2)溶液を調製し、積層膜 (B)上に約 75 μ mの厚 みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥させることで、厚さ 30 mの積層 膜 (C)を得た。 [0111] 比較例 1
燃料電池用電解質膜の作製
製造例 1で得られたスルホン化 mSEBmS (イオン交換容量 1. 23meqZg)の 18質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 550 mの 厚みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ の膜 (A
)を得た。
[0112] 比較例 2
燃料電池用電解質膜の作製
製造例 2で得られたスルホン化 mSEBmS (イオン交換容量 0. 64meq/g)の 22質 量0 /0のシクロへキサン Zイソプロピルアルコール(質量比 65Z35)溶液を調製し、離 形処理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ] 上に 約 450 mの厚みでコートし、室温で十分乾燥した後、真空乾燥させることで、厚さ 5
0 mの膜 (A)を得た。
[0113] 比較例 3
燃料電池用電解質膜の作製
製造例 3で得られたスルホン化 mSEBmS (イオン交換容量 1. 08meqZg)の 16質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を用いた以外は、比較 例 1と同様の方法にて、厚さ 50 mの膜 (A)を得た。
[0114] 比較例 4
燃料電池用電解質膜の作製
製造例 4で得られたスルホン化 mSEBmS (イオン交換容量 0. 50meqZg)の 16質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を用いた以外は、比較 例 1と同様の方法にて、厚さ 50 mの膜 (A)を得た。
[0115] 比較例 5
燃料電池用電解質膜の作製
製造例 5で得られたスルホン化 mSEBmS (イオン交換容量 0. 83meqZg)の 16質 量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を用いた以外は、比較 例 1と同様の方法にて、厚さ 50 mの膜 (A)を得た。
[0116] 比較例 6
固体高分子型燃料電池用単セルの作製
パーフルォロカーボンスルホン酸系高分子電解質として、 DuPont社ナフイオンフィ ルム(Nafionl l7)を選択した。該フィルムの厚みは約 175 μ m、イオン交換容量は
0. 91meqZgであった。上記フィルムを燃料電池用電解質膜に代えて用いる以外 は実施例 1 (2)と同様の方法にて固体高分子型燃料電池用単セルを作製した。
[0117] 比較例 7
燃料電池用電解質膜の作製
製造例 6で得られたスルホン化 mSEBmS (イオン交換容量 1. 06meqZg)の 16.
5質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処理 済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 300 μ mの厚みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥した後、厚さ 30 /z mの膜(
A)を得た。
[0118] 比較例 8
燃料電池用電解質膜の作製
製造例 7で得られたスルホン化 mSEBmS (イオン交換容量 0. 49meqZg)の 17.
5質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を用いた以外は、比 較例 7と同様の方法にて、厚さ 30 mの膜 (A)を得た。
[0119] 比較例 9
燃料電池用電解質膜の作製
製造例 8で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 1. 05meq/g)の
25質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処 理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 200 μ mの厚みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥した後、厚さ 30 mの膜
(A)を得た。
[0120] 比較例 10
燃料電池用電解質膜の作製 製造例 9で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 0. 56meq/g)の
30質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形処 理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 150 μ mの厚みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥した後、厚さ 30 mの膜
(A)を得た。
[0121] 比較例 11
燃料電池用電解質膜の作製
製造例 10で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 1. 52meq/g) の 28質量%のトルエン Zイソブチルアルコール(質量比 8Z2)溶液を用いた以外は
、比較例 10と同様の方法にて、厚さ 30 /z mの膜 (A)を得た。
[0122] 比較例 12
燃料電池用電解質膜の作製
製造例 11で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 0. 50meq/g) の 35質量%のトルエン Zイソブチルアルコール (質量比 8Z2)溶液を調製し、離形 処理済み PETフィルム [ (株)東洋紡製「東洋紡エステルフィルム K1504」 ]上に約 12
5 mの厚みでコートし、熱風乾燥機にて、 80°C、 3分間乾燥した後、厚さ 30 mの 膜 (A)を得た。
[0123] 比較例 13
燃料電池用電解質膜の作製
製造例 12で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 1. 00meq/g) の 29質量%のトルエン Zイソブチルアルコール(質量比 8Z2)溶液を用いた以外は
、比較例 10と同様の方法にて、厚さ 30 /z mの膜 (A)を得た。
[0124] 比較例 14
燃料電池用電解質膜の作製
製造例 13で得られたスルホンィ匕 tBSSEPStBS (イオン交換容量 0. 47meq/g) の 29質量%のトルエン Zイソブチルアルコール(質量比 8Z2)溶液を用いた以外は
、比較例 10と同様の方法にて、厚さ 30 /z mの膜 (A)を得た。
[0125] 実施例及び比 例の高分子雷解皙膜の 本高分子型燃料雷湘,用プロトン伝導件 雷解皙膜 しての件能試験
以下の 1)〜5)の試験にぉ 、て試料としては各実施例又は比較例で得られたスル ホンィ匕ブロック共重合体を含む膜又はナフイオン膜を使用した。
[0126] 1)イオン交換容量の測定
試料を密閉できるガラス容器中に秤量 (a (g) )し、そこに過剰量の塩ィ匕ナトリウム飽 和水溶液を添加して一晩攪拌した。系内に発生した塩ィ匕水素を、フ ノールフタレイ ン液を指示薬とし、 0. 01NのNaOH標準水溶液(カ価f)にて滴定(b (ml) )した。ィ オン交換容量は、次式により求めた。
イオン交換容量 = (0. 01 X b X f) /a
[0127] 2)膜の電気抵抗の測定
lcm X 4cmの試料を一対の白金電極で挟み、開放系セルに装着した。測定セル を、温度 60°C、相対湿度 90%に調節した恒温恒湿器内、又は温度 40°Cの水中に 設置し、交流インピーダンス法により膜の電気抵抗を測定した。
[0128] 3)メタノール透過速度
メタノール透過速度は、電解質膜を H型セルに挟み込み、セルの片側に 55mlの 3 M (モル Zリットル)のメタノール水溶液を、他方のセルに 55mlの純水を注入し、 25 °Cで攪拌しながら、電解質膜を通って純水中に拡散してくるメタノール量をガスクロマ トグラフィーを用いて測定することで算出した (電解質膜の面積は、 4. 5cm2)
[0129] 4)燃料電池用単セルの出力性能評価
実施例 比較例 6で作成した固体高分子型燃料電池用単セルについて、出力性 能を評価した。燃料には 5M— MeOH水溶液を用い、酸化剤には空気を用いた。 M eOH : 0. 36mlZmin、空気: 250mlZminの条件下、セル温度 60°Cにて試験した
[0130] 高分子雷解皙膜の岡体高分子型燃料雷池用プロトン伝導件雷解皙膜 しての件能
,験の
実施例 1〜7及び比較例 1〜5で作製した膜並びに比較例 6のナフイオン膜につい て、膜の電気抵抗及び 3M— MeOH水溶液のメタノール透過速度を測定した結果を 表 1に、実施例 8〜11及び比較例 7〜14で作製した膜について、膜の電気抵抗及 び 3M— MeOH水溶液のメタノール透過速度を測定した結果を表 2に示す。
[0131]
Figure imgf000045_0001
[0132]
表 2
Figure imgf000046_0001
実施例 2, 3及び 4と比較例 3, 4及び 5との比較から、膜の電気抵抗の低減化が可 能なスルホン化率の高!、ポリマーと、メタノール透過抑制に優れるスルホン化率の低 いポリマー力もなる膜を積層させることにより、それぞれのポリマーからなる単独膜 (比 較例 3, 4)、及びイオン交換容量の同程度のポリマー力 なる単独膜 (比較例 5)より 、膜の電気抵抗の低減化と低メタノール透過性を両立できることが明らかとなった。同 様に、実施例 1と比較例 1及び 2との比較力もも積層することにより、膜の電気抵抗の 低減化と低メタノール透過性を両立できることが明確となった。
同様に、実施例 8と比較例 7, 8との比較、実施例 9と比較例 9, 10との比較、実施 例 10と比較例 11, 12との比較、及び実施例 11と比較例 13, 14との比較から、膜の 電気抵抗の低減ィ匕が可能なスルホンィ匕率の高 、ポリマーと、メタノール透過抑制に 優れるスルホン化率の低いポリマー力 なる膜を積層させることにより、それぞれのポ リマーからなる単独膜 (比較例 7〜14)より、膜の電気抵抗の低減化と低メタノール透 過性を両立できることが明らかとなった。
また、実施例 2と実施例 7との比較から、積層膜の作成方法の相違によらず、膜の 電気抵抗の低減化と低メタノール透過性を両立できることが明確となった。 また、実施例 1〜7の膜は、比較例 6に記載した燃料電池用の電解質膜の代表例 であるナフイオン膜に比べ、膜の電気抵抗が 60%以下であり、メタノール透過性が 5 0%以下であった。
[0134] 実施例 1の(2)及び比較例 6で得られた固体高分子型燃料電池用単セルの発電特 性として、電流密度に対する出力電圧の変化及び電流密度に対する出力密度の変 化を測定した。結果を図 1及び 2に示した。実施例 1の(2)で作製した単セルの開放 電圧は 0. 68V、最高出力密度は 36mWZcm2であった。一方、比較例 6で Nafion 117から作成した単セルの開放電圧は 0. 55V、最高出力密度は 23mWZcm2であ つた。このことから、本発明の実施例 1の(2)で作製した固体高分子型燃料電池用単 セルは、従来使用されているナフイオン 117膜から作製された固体高分子型燃料電 池用単セル以上の発電特性を有することが明らかとなつた。
また、実施例 1の(2)で得られた固体高分子型燃料電池用単セルを発電試験後の 解体したところ、その膜—電極接合体には剥離等全く見られず、該膜は接合性にも 優れていることが明ら力となった。
図面の簡単な説明
[0135] [図 1]固体高分子型燃料電池用単セルの電流密度一出力電圧及び電流密度一出 力密度を示す図である(実施例 1の(2) )。
[図 2]固体高分子型燃料電池用単セルの電流密度一出力電圧及び電流密度一出 力密度を示す図である(比較例 6)。

Claims

請求の範囲
[1] 少なくとも 2つの高分子電解質膜を積層してなり、そのうち少なくとも 1つの電解質膜 が芳香族ビュル系化合物単位を主たる繰返し単位とする重合体ブロック (A)及びフ レキシブルな重合体ブロック(B)を構成成分とし、かつ、重合体ブロック(A)にイオン 伝導性基を有するブロック共重合体 (I)を含有することを特徴とする固体高分子型燃 料電池用電解質積層膜。
[2] 構成電解質膜の少なくとも 2つがブロック共重合体 (I)を含有する請求項 1記載の電 解質積層膜。
[3] 構成電解質膜が 2つである場合には、互いに異なるイオン交換容量を有し、構成電 解質膜が 3つ以上である場合には、そのうち少なくとも 2つが互いに異なるイオン交換 容量を有する請求項 1又は 2記載の電解質積層膜。
[4] 構成電解質膜の少なくとも 1つが 0. 7meqZg以上のイオン交換容量を有し、さらに、 構成電解質膜の少なくとも 1つが 0. 7meqZg未満のイオン交換容量を有する請求 項 1〜3のいずれか 1項に記載の電解質積層膜。
[5] 構成電解質膜の少なくとも 1つがブロック共重合体 (I)を含有し、かつ、 0. 7meq/g 以上のイオン交換容量を有し、さらに、構成電解質膜の少なくとも 1つがブロック共重 合体 (I)を含有し、かつ、 0. 7meqZg未満のイオン交換容量を有する請求項 1〜4 のいずれか 1項に記載の電解質積層膜。
[6] 重合体ブロック (A)に占める芳香族ビニル系化合物単位の割合が 50質量%以上で ある請求項 1〜5のいずれ力 1項に記載の電解質積層膜。
[7] 重合体ブロック (A)と重合体ブロック(B)との質量比が 95: 5〜5: 95である請求項 1 〜6の 、ずれか 1項に記載の電解質積層膜。
[8] フレキシブルな重合体ブロック(B)が炭素数 2〜8のアルケン単位、炭素数 5〜8のシ クロアルケン単位、炭素数 7〜 10のビュルシクロアルケン単位、炭素数 4〜8の共役 ジェン単位及び炭素数 5〜8の共役シクロアルカジエン単位、並びに炭素 炭素二 重結合の一部もしくは全部が水素添加された炭素数 7〜: L0のビュルシクロアルケン 単位、炭素数 4〜8の共役ジェン単位及び炭素数 5〜8の共役シクロアルカジエン単 位よりなる群力 選ばれる少なくとも 1種の繰返し単位力 なる重合体ブロックである 請求項 1〜7のいずれか 1項に記載の電解質積層膜。
[9] フレキシブルな重合体ブロック(B)が炭素数 2〜8のアルケン単位、炭素数 4〜8の共 役ジェン単位、及び炭素 炭素二重結合の一部もしくは全部が水素添加された炭 素数 4〜8の共役ジェン単位力 選ばれる少なくとも 1種の繰返し単位力 なる重合 体ブロックである請求項 8記載の電解質積層膜。
[10] イオン伝導性基が SO M又は PO HM (式中、 Mは水素原子、アンモ-ゥムィォ
3 3
ン又はアルカリ金属イオンを表す)で表される基である請求項 1〜9のいずれか 1項に 記載の電解質積層膜。
[11] 芳香族ビニル系化合物単位が ex 炭素が 4級炭素である芳香族ビニル系化合物単 位である請求項 1〜10のいずれか 1項に記載の電解質積層膜。
[12] a 炭素が 4級炭素である芳香族ビニル系化合物単位が、 oc 炭素原子に結合し た水素原子が炭素数 1〜4のアルキル基、炭素数 1〜4のハロゲン化アルキル基又は フエニル基で置換された芳香族ビュル系化合物単位である請求項 11記載の電解質 積層膜。
[13] a 炭素が 4級炭素である芳香族ビ-ルイ匕合物単位が (Xーメチルスチレン単位であ り、フレキシブルな重合体ブロック(B)が炭素数 4〜8の共役ジェン単位及び炭素 炭素二重結合の一部もしくは全部が水素添加された炭素数 4〜8の共役ジェン単位 力も選ばれる少なくとも 1種の繰返し単位である請求項 11又は 12記載の電解質積層 膜。
[14] 請求項 1〜13のいずれか 1項に記載の電解質積層膜を使用した膜 電極接合体。
[15] 請求項 14記載の膜 電極接合体を使用した固体高分子型燃料電池。
PCT/JP2007/050732 2006-01-26 2007-01-18 固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池 WO2007086309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/162,375 US20100233569A1 (en) 2006-01-26 2007-01-18 Electrolyte multilayer membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell
AT07707036T ATE552619T1 (de) 2006-01-26 2007-01-18 Elektrolyt-mehrschichtmembran für eine festpolymer-brennstoffzelle, membranelektrodenbaugruppe und brennstoffzelle
EP07707036A EP1978584B1 (en) 2006-01-26 2007-01-18 Electrolyte multilayer membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell
KR1020087018468A KR101408601B1 (ko) 2006-01-26 2007-01-18 고체 중합체 연료 전지용 다층 전해질막, 막-전극 접합체및 연료전
JP2007509759A JP5118484B2 (ja) 2006-01-26 2007-01-18 固体高分子型燃料電池用電解質積層膜、膜−電極接合体及び燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006018040 2006-01-26
JP2006-018040 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007086309A1 true WO2007086309A1 (ja) 2007-08-02

Family

ID=38309103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050732 WO2007086309A1 (ja) 2006-01-26 2007-01-18 固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池

Country Status (8)

Country Link
US (1) US20100233569A1 (ja)
EP (1) EP1978584B1 (ja)
JP (1) JP5118484B2 (ja)
KR (1) KR101408601B1 (ja)
CN (1) CN101375447A (ja)
AT (1) ATE552619T1 (ja)
TW (1) TWI451618B (ja)
WO (1) WO2007086309A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102987A (ja) * 2008-10-24 2010-05-06 Kaneka Corp 高分子電解質膜、およびその利用
EP2196999A1 (en) * 2007-09-25 2010-06-16 Sumitomo Chemical Company, Limited Polyelectrolyte composition and fuel cell
WO2010067743A1 (ja) * 2008-12-12 2010-06-17 株式会社クラレ 電解質積層膜、膜-電極接合体及び燃料電池
EP2202832A1 (en) * 2007-08-09 2010-06-30 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
EP2242137A1 (en) * 2008-02-06 2010-10-20 Kuraray Co., Ltd. Membrane-electrode assembly and solid polymer electrolyte fuel cell
JP2011103176A (ja) * 2009-11-10 2011-05-26 Kuraray Co Ltd 電解質積層膜、膜−電極接合体及び固体高分子型燃料電池
JP2011204468A (ja) * 2010-03-25 2011-10-13 Kuraray Co Ltd 膜−電極接合体及び固体高分子型燃料電池
JP2018106957A (ja) * 2016-12-27 2018-07-05 旭硝子株式会社 固体高分子電解質膜の製造方法、膜電極接合体の製造方法および固体高分子形燃料電池の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI326691B (en) * 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
TWI398452B (zh) * 2009-03-03 2013-06-11 Ind Tech Res Inst 兩性離子高分子及燃料電池
US8445631B2 (en) 2009-10-13 2013-05-21 Kraton Polymers U.S. Llc Metal-neutralized sulfonated block copolymers, process for making them and their use
US8263713B2 (en) 2009-10-13 2012-09-11 Kraton Polymers U.S. Llc Amine neutralized sulfonated block copolymers and method for making same
EP2594997B1 (en) * 2010-07-13 2017-08-23 Canon Kabushiki Kaisha Conductive member for electronic photograph, process cartridge, and electronic photograph device
US9429366B2 (en) 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
US9394414B2 (en) 2010-09-29 2016-07-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
EP2630167B1 (en) 2010-10-18 2018-05-30 Kraton Polymers U.S. LLC Method for producing a sulfonated block copolymer composition
US9861941B2 (en) 2011-07-12 2018-01-09 Kraton Polymers U.S. Llc Modified sulfonated block copolymers and the preparation thereof
US9136065B2 (en) 2012-07-18 2015-09-15 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US9548511B2 (en) * 2012-07-18 2017-01-17 Nthdegree Technologies Worldwide Inc. Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
EP2889940A4 (en) * 2012-08-23 2016-04-06 Kuraray Co polyelectrolyte
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
TWI618291B (zh) 2013-07-17 2018-03-11 印製能源技術有限公司 能量儲存裝置及其製造方法與用於其之電極的墨水
KR101723681B1 (ko) * 2015-10-16 2017-04-05 충남대학교산학협력단 설폰화 페닐 관능화된 폴리스티렌-공액 디엔 공중합체 이온교환수지의 합성방법 및 이로부터 제조된 이온교환수지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2004273287A (ja) * 2003-03-10 2004-09-30 Toray Ind Inc 電解質膜およびそれを用いた燃料電池
JP2004303541A (ja) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd 高分子積層膜、その製造方法およびその用途
JP2005216613A (ja) * 2004-01-28 2005-08-11 Jsr Corp 複合膜およびその製造方法
JP2005246800A (ja) * 2004-03-04 2005-09-15 Jsr Corp プロトン伝導性複合膜およびその製造方法
JP2006054080A (ja) * 2004-08-10 2006-02-23 Hitachi Chem Co Ltd 炭化水素系ポリマーを含有する電解質層を用いた多層電解質膜、これを用いた膜−電極接合体、この製造方法及びこれを用いた燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258732A1 (en) * 1996-07-08 2010-12-08 Sony Corporation Method of manufacture polyelectrolyte
US5981097A (en) * 1996-12-23 1999-11-09 E.I. Du Pont De Nemours And Company Multiple layer membranes for fuel cells employing direct feed fuels
US7323265B2 (en) * 2002-07-05 2008-01-29 Gas Technology Institute High stability membrane for proton exchange membrane fuel cells
JP3922444B2 (ja) * 2002-08-29 2007-05-30 株式会社クラレ ポリオレフィン系樹脂組成物およびその用途
KR100621491B1 (ko) * 2002-12-02 2006-09-19 산요덴키가부시키가이샤 고체 고분자 전해질막, 상기 막을 이용한 고체 고분자형연료 전지 및 그 제조 방법
WO2006068279A1 (ja) * 2004-12-20 2006-06-29 Kuraray Co., Ltd. イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2007336790A (ja) * 2006-06-19 2007-12-27 Kuraray Co Ltd 高分子電気化学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2004273287A (ja) * 2003-03-10 2004-09-30 Toray Ind Inc 電解質膜およびそれを用いた燃料電池
JP2004303541A (ja) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd 高分子積層膜、その製造方法およびその用途
JP2005216613A (ja) * 2004-01-28 2005-08-11 Jsr Corp 複合膜およびその製造方法
JP2005246800A (ja) * 2004-03-04 2005-09-15 Jsr Corp プロトン伝導性複合膜およびその製造方法
JP2006054080A (ja) * 2004-08-10 2006-02-23 Hitachi Chem Co Ltd 炭化水素系ポリマーを含有する電解質層を用いた多層電解質膜、これを用いた膜−電極接合体、この製造方法及びこれを用いた燃料電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321458B2 (ja) * 2007-08-09 2013-10-23 信越化学工業株式会社 固体高分子電解質膜及びその製造方法、燃料電池用膜・電極接合体、並びに燃料電池
EP2202832A1 (en) * 2007-08-09 2010-06-30 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
EP2202832A4 (en) * 2007-08-09 2010-10-13 Shinetsu Chemical Co SOLID POLYMERIC ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL, AND FUEL CELL
EP2196999A4 (en) * 2007-09-25 2011-12-28 Sumitomo Chemical Co POLYELECTROLYTE COMPOSITION AND FUEL CELL
EP2196999A1 (en) * 2007-09-25 2010-06-16 Sumitomo Chemical Company, Limited Polyelectrolyte composition and fuel cell
US8273500B2 (en) 2007-09-25 2012-09-25 Sumitomo Chemical Company, Limited Polymer electrolyte composition and fuel cell
US8263286B2 (en) 2008-02-06 2012-09-11 Kuraray Co., Ltd. Membrane-electrode assembly and polymer electrolyte fuel cell
CN101939870A (zh) * 2008-02-06 2011-01-05 株式会社可乐丽 膜-电极组件和聚合物电解质燃料电池
EP2242137A4 (en) * 2008-02-06 2012-01-25 Kuraray Co ELECTRODE MEMBRANE-ELECTRODE ASSEMBLY AND SOLID POLYMER ELECTROLYTE FUEL CELL
EP2242137A1 (en) * 2008-02-06 2010-10-20 Kuraray Co., Ltd. Membrane-electrode assembly and solid polymer electrolyte fuel cell
CN101939870B (zh) * 2008-02-06 2013-11-13 株式会社可乐丽 膜-电极组件和聚合物电解质燃料电池
JP2010102987A (ja) * 2008-10-24 2010-05-06 Kaneka Corp 高分子電解質膜、およびその利用
JPWO2010067743A1 (ja) * 2008-12-12 2012-05-17 株式会社クラレ 電解質積層膜、膜−電極接合体及び燃料電池
WO2010067743A1 (ja) * 2008-12-12 2010-06-17 株式会社クラレ 電解質積層膜、膜-電極接合体及び燃料電池
JP2011103176A (ja) * 2009-11-10 2011-05-26 Kuraray Co Ltd 電解質積層膜、膜−電極接合体及び固体高分子型燃料電池
JP2011204468A (ja) * 2010-03-25 2011-10-13 Kuraray Co Ltd 膜−電極接合体及び固体高分子型燃料電池
JP2018106957A (ja) * 2016-12-27 2018-07-05 旭硝子株式会社 固体高分子電解質膜の製造方法、膜電極接合体の製造方法および固体高分子形燃料電池の製造方法

Also Published As

Publication number Publication date
US20100233569A1 (en) 2010-09-16
KR101408601B1 (ko) 2014-06-17
EP1978584A1 (en) 2008-10-08
TWI451618B (zh) 2014-09-01
TW200735447A (en) 2007-09-16
EP1978584A4 (en) 2010-09-08
EP1978584B1 (en) 2012-04-04
KR20080087017A (ko) 2008-09-29
JP5118484B2 (ja) 2013-01-16
CN101375447A (zh) 2009-02-25
JPWO2007086309A1 (ja) 2009-06-18
ATE552619T1 (de) 2012-04-15

Similar Documents

Publication Publication Date Title
JP5118484B2 (ja) 固体高分子型燃料電池用電解質積層膜、膜−電極接合体及び燃料電池
JP5191139B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5276442B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
TWI451623B (zh) 高分子電解質膜、膜-電極接合體及固體高分子型燃料電池
US8137860B2 (en) Polymer electrolyte membrane for solid polymer fuel cell, membrane-electrode assembly and fuel cell
JP2006210326A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2006068279A1 (ja) イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP5629692B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5188025B2 (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2007258003A (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2010232121A (ja) 電解質複合膜、膜−電極接合体、および固体高分子型燃料電池
JP2006202737A (ja) イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2008004312A (ja) イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2010135130A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JPWO2010067743A1 (ja) 電解質積層膜、膜−電極接合体及び燃料電池
JP5706906B2 (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子型燃料電池
JP5629761B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体、および固体高分子型燃料電池
JP2007042573A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2011103176A (ja) 電解質積層膜、膜−電極接合体及び固体高分子型燃料電池
JP2010067526A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2008153175A (ja) 固体高分子型燃料電池用膜−電極接合体の製造方法
JP2010061914A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007509759

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780003486.2

Country of ref document: CN

Ref document number: 1020087018468

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707036

Country of ref document: EP