WO2007083681A1 - カーボンナノ材料の可溶化方法 - Google Patents

カーボンナノ材料の可溶化方法 Download PDF

Info

Publication number
WO2007083681A1
WO2007083681A1 PCT/JP2007/050649 JP2007050649W WO2007083681A1 WO 2007083681 A1 WO2007083681 A1 WO 2007083681A1 JP 2007050649 W JP2007050649 W JP 2007050649W WO 2007083681 A1 WO2007083681 A1 WO 2007083681A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
discharge
solvent
pulse
streamer discharge
Prior art date
Application number
PCT/JP2007/050649
Other languages
English (en)
French (fr)
Inventor
Junya Suehiro
Kiminobu Imasaka
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Priority to JP2007554932A priority Critical patent/JP4752073B2/ja
Priority to US12/086,302 priority patent/US8048275B2/en
Publication of WO2007083681A1 publication Critical patent/WO2007083681A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Definitions

  • the present invention relates to a method for dissolving a carbon nanomaterial such as carbon nanotube (hereinafter referred to as CNT) or fullerene in a hydrophilic solvent such as water or alcohol.
  • CNT carbon nanotube
  • hydrophilic solvent such as water or alcohol.
  • CNTs are attracting attention because they have excellent characteristics. In other words, CNTs are excellent in electrical characteristics, mechanical strength, etc., and there is great expectation as a filler constituting composite materials from organic semiconductors, etc., and applications to electronic devices and electrochemistry will be limited in the future. It is not expected.
  • CNT has a size (diameter) of several nanometers, it is a means of transporting medical components such as probes and other medical components such as anti-cancer drugs and anti-viruses into the living body. As a cosmetic ingredient, expectations are growing. The same applies to fullerenes such as C60 and C70, carbon nanohorns, and carbon nanocapsules.
  • the CNTs, fullerenes, and carbon nanocapsules mentioned here contain carbon clusters that are partially substituted with hetero atoms or encapsulated with hetero atoms in addition to pure carbon clusters.
  • CNTs, carbon nanohorns, fullerenes and the like have the property that they are hardly soluble in hydrophilic solvents such as water and organic solvents (alcohol, acetic acid, etc.), despite these excellent properties. ing. Even in CNTs, single-walled carbon nanotubes (SWCNT) are much more sparingly soluble than multi-walled carbon nanotubes (MWCNT). The same applies to single-walled carbon nanophones (SWCNH). And this property hinders the expansion of its use, contrary to the great expectations for carbon nanomaterials.
  • hydrophilic solvents such as water and organic solvents (alcohol, acetic acid, etc.
  • a hydrophilic solvent such as water is highly hydrophilic and easily dissolves a highly hydrophilic polar solute, but carbon nanomaterials such as CNT and fullerene are nonpolar (hydrophobic). It is difficult to dissolve. For this reason, chemical treatment such as acid treatment has been applied to the surface of CNT and fullerene. Applied to the surface to form a carboxy group on the surface, and a physical adsorption method in which a solubilizing agent such as a surfactant is physically adsorbed on the surfaces of CNTs and fullerenes. (For example, Patent Documents 1 and 2).
  • the hydrophilic solvent is a solvent having a hydrophilic group and a high dielectric constant.
  • Non- Patent Document 1 a high-voltage pulsed arc discharge method in water as an efficient method for producing carbon nanoparticles.
  • the present inventors have found that carbon nanoparticles produced by the production method of Non-Patent Document 1 are produced in a state of being uniformly dispersed in water.
  • Non-Patent Document 1 the production method reported in Non-Patent Document 1 is an epoch-making method that achieves the production of carbon nanoparticles and soluble properties at once by pulsed arc discharge in water. Dispersion that occurs at this time is incidental to the production of carbon nanoparticles, and is a general soluble solvent that dissolves carbon nanomaterials produced by any production method in a hydrophilic solvent. It wasn't the way.
  • the high-voltage pulse arc discharge method used here is basically compatible with the treatment in gas because it uses thermal plasma, requires high energy, and the device is also simple. It was difficult.
  • solubilization means that the solvent is dissolved in a hydrophilic solvent! /, And a hydrophobic property is partially imparted with a hydrophilic property. It means that this solute is dispersed inside. Therefore, “solubilization” as used in this specification does not mean a state of no turbidity corresponding to emulsion (emulsification), but dissolves and disperses difficultly soluble solutes (forms turbidity as normal). Is equivalent to a combination of
  • Non-Patent Document 1 A low-temperature plasma (non-equilibrium plasma) such as oxygen or nitrogen gas is used, and the multilayer CNT is plasma-treated in the air.
  • a dispersion method has been proposed in which the content of acidic functional groups with respect to carbon on the surface is set to 2% or more and is dispersed in a liquid using ultrasonic waves or the like (for example, Patent Document 3). Since this method uses low-temperature plasma, the discharge device is a high-voltage pulsed arc discharge method. It will be easier than.
  • the conventional plasma treatment for modifying the surface of the CNT utilizes discharge in a gas atmosphere, but the discharge occurs not only in the gas atmosphere but also in water. This is as reported by the present inventors in the carbon nanoparticle production method of Non-Patent Document 1.
  • radicals such as OH radicals, H radicals, O radicals, H 2 O, and ozone O are generated when pulse streamer discharge is performed in water (for example,
  • Non-patent literature 2 3
  • the discharge plasma force emits strong ultraviolet rays corresponding to about 30% of its energy, and the vicinity along the discharge channel is activated, and the generated HO is decomposed into OH radicals by the ultraviolet rays.
  • Non-Patent Documents 2 and 3 form radicals in water and treat the microorganisms and harmful chemicals in water by their activated action.
  • One of the physical properties of a material in a hydrophilic solvent that is, the problem of changing a sparingly soluble property to a soluble property, and a solution to the problem (solubility for dissolving carbon nanomaterials in a hydrophilic solvent) It is unrelated to (method).
  • there is a wastewater treatment device that uses an underwater streamer discharge for the water purification as described above for example, Patent Document 4).
  • Non-patent document 4 when gas publishing is performed when performing pulse streamer discharge in water, not only a physical effect but also a direct chemical effect is generated to generate radicals.
  • Non-Patent Document 4 when the gas publishing gas is oxygen, a considerable amount of OH radicals are generated, and in the case of argon, there are many H radicals and O radicals. The amount of H radicals produced is small.
  • Non-Patent Document 4 as well as Non-Patent Documents 2 and 3, does not suggest a soluble solution method for dissolving carbon nanomaterials in a hydrophilic solvent. In other words, what contribution can be made using streamer discharge in a solvent to dissolve carbon nanomaterials is currently unknown.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-12310
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-104771
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-300715
  • Patent Document 4 JP 2001-252665 A
  • Patent Document 3 H. Akiyama, “Streamer discharge in liquid and their applications,”, IEE ETrans.Electr.Insl., 39 ⁇ , 2000, p. 646—p. 652
  • carbon nanomaterials such as CNT, carbon nanohorn, and fullerene have the property of being insoluble in hydrophilic solvents. For this reason, chemical bonding methods and physical adsorption methods using surfactants are performed. However, the chemical bonding method damages the structure of the carbon nanomaterial, leading to structural deterioration of the carbon nanomaterial, and the physical adsorption method requires delicate processing such as controlling the concentration of the solubilizing agent. There are many, it is difficult to control the process stably.
  • the inventors of the present invention have developed a carbon nanotube produced by high-voltage pulse arc discharge in water. It was discovered that nanoparticles dispersed uniformly in water, but this dispersion occurred in the process of carbon nanoparticle production. Carbon nanomaterials produced by other production methods were dissolved in a hydrophilic solvent. In addition, the dispersibility of the particles obtained by this high-voltage pulsed arc discharge can be further improved, and it is suitable for general long-term storage of existing carbon nanomaterials produced by various other methods. It was difficult to say that this was an optimal dispersion method.
  • the dispersion method of Patent Document 3 is a plasma treatment in the air to control the ratio of acidic functional groups, and then the dispersion is dispersed in the liquid. Therefore, the treatment is complicated, requires time, and is expensive. It was difficult to control.
  • the underwater pulse streamer discharge reported in Non-Patent Document 3 and Patent Document 4 uses OH radicals to treat microorganisms and harmful chemicals in water. What is the solubility method for carbon nanomaterials? Unrelated.
  • Non-Patent Document 4 discloses that when performing gas publishing when performing pulse streamer discharge in water, radicals are generated not only by physical action but also by direct chemical action. To do. However, this is only for treating microorganisms and harmful chemical substances by the activity of radicals, and does not suggest the problem and method of the solubility of poorly soluble carbon nanomaterials. In short, the problem of solving only one property, that is, the hardly soluble property, into a soluble property without changing the structure of the carbon nanomaterial (without causing structural deterioration) is described in Patent Literature. It is not disclosed in 1-4 and Non-Patent Documents 1-4.
  • carbon nanomaterials are expected to be applied in many fields such as electronic devices and electrochemistry, and are also included in the fields of medicines and medical ingredients in the medical and pharmaceutical fields, as well as in daily products such as cosmetics. There is great expectation as a means of transporting components into the living body.
  • the carbon nanomaterial solubility technology is an indispensable technology for these technologies, and the development of a technology for easily and uniformly solubilizing the carbon nanomaterial in a hydrophilic solvent is desired.
  • the present invention can easily and uniformly dissolve a carbon nanomaterial in a hydrophilic solvent without causing structural deterioration, can stably maintain dispersibility over a long period of time, and can be solubilized. Carbon nanomaterials that can be processed at low cost and can be easily controlled An object of the present invention is to provide a solubilization method.
  • the method for soluble carbon nanomaterials of the present invention involves mixing carbon nanomaterials in a hydrophilic solvent and repeatedly performing streamer discharge in the hydrophilic solvent to bond OH groups to the surface of the carbon nanomaterial.
  • the main purpose is to generate radicals derived from a solvent that can be dissolved in the solvent, to make the carbon nanomaterial hydrophilic with the radicals so that it can be dissolved in the solvent, and to be stably dispersed in the hydrophilic solvent.
  • the carbon nanomaterial can be easily and uniformly dissolved in a hydrophilic solvent without causing structural deterioration, and is stable over a long period of time.
  • dispersibility can be maintained, and soluble solubilization can be performed at low cost, and processing can be easily controlled.
  • the first embodiment of the present invention is a solvent in which a carbon nanomaterial is mixed in a hydrophilic solvent, and a streamer discharge is repeatedly performed in the hydrophilic solvent to bond an OH group to the surface of the carbon nanomaterial.
  • a carbon nanomaterial characterized in that a radical derived therefrom is generated in the solvent, and the carbon nanomaterial is hydrophilized with the radical to be soluble in the solvent and stably dispersed in the hydrophilic solvent.
  • This method can easily and uniformly dissolve carbon nanomaterials in a hydrophilic solvent without structural deterioration, and can maintain dispersibility over a long period of time. ⁇ Processing can be performed at low cost, and processing control can be facilitated.
  • a second form of the present invention is a form dependent on the first form, wherein the streamer discharge is a pulse streamer discharge.
  • An extremely simple apparatus can be used for the treatment, the carbon nanomaterial can be easily dissolved in a hydrophilic solvent, and the dispersibility can be stably maintained over a long period of time.
  • a third form of the present invention is a form subordinate to the first or second form, wherein the streamer discharge mainly generates H radicals and O radicals in the hydrophilic solvent, and is in the hydrophilic solvent.
  • the streamer discharge mainly generates H radicals and O radicals in the hydrophilic solvent, and is in the hydrophilic solvent.
  • the carbon nanomaterial can be easily, uniformly and easily dissolved in a hydrophilic solvent without deteriorating the structure of the carbon nanomaterial, and the dispersibility can be stably maintained over a long period of time.
  • a fourth form of the present invention is a form dependent on the first or second form, wherein the streamer discharge mainly generates OH radicals in the hydrophilic solvent, and the carbon nano-particles in the hydrophilic solvent.
  • This is a carbon nanomaterial solubilization method characterized by forming OH groups in the material.
  • the carbon nanomaterial can be easily, uniformly and easily dissolved in a hydrophilic solvent without causing structural deterioration. Dispersibility can be stably maintained over a period of time.
  • a fifth form of the present invention is a form subordinate to the first or second form, wherein a shock wave and / or an ultrasonic wave is a hydrophilic property during the discharge as a spontaneous or other physical force by the discharge.
  • This is a method for dissolving carbon nanomaterials, which is characterized by being able to cover carbon nanomaterials in a solvent, and allows carbon nanomaterials to be easily and quickly dissolved in hydrophilic solvents by the synergistic action of radicals and physical forces. be able to.
  • a sixth aspect of the present invention is a form dependent on the first or second aspect, wherein the carbon nanomaterial is any one of multi-walled carbon nanotubes, single-walled carbon nanotubes, fullerenes, and carbon nanocapsules.
  • This is a method for soluble carbon nanomaterials, which can be used for various applications by dissolving various carbon nanomaterials.
  • a seventh form of the present invention is a form dependent on the first or second form, wherein a streamer discharge is applied between electrodes at a predetermined frequency with a pulse voltage of a pulse width of 10 ns or more and 1 ⁇ s or less.
  • This is a method for dissolving a carbon nanomaterial, characterized in that it generates radicals in a hydrophilic solvent, and the hydrophilic property is ensured by making the carbon nanomaterial hydrophilic without causing structural deterioration. It can be dissolved easily and uniformly, dispersibility can be maintained over a long period of time, soluble soot treatment can be performed at low cost, and control of the treatment can be facilitated.
  • carbon nanomaterials are mixed in a hydrophilic solvent, and streamer discharge is repeatedly performed while publishing a gas in the hydrophilic solvent, thereby binding a base to the surface of the carbon nanomaterial.
  • a radical derived from a solvent that can be generated is generated in the solvent, and the carbon nanomaterial is hydrophilized with the radical so that it can be dissolved in the solvent. It is a soluble method for carbon nanomaterials characterized by being stably dispersed in a medium, and it is easy to make single-walled carbon nanotubes or single-walled carbon because streamer discharge is performed while publishing gas in suspension.
  • a hardly soluble carbon nanomaterial such as a nanohorn can be dissolved in a hydrophilic solvent, and the dispersibility of the carbon nanomaterial can be stably maintained over a long period of time.
  • a ninth form of the present invention is a form subordinate to the eighth form, wherein the gas is any one of oxygen, ozone, or an inert gas.
  • This method can effectively dissolve poorly soluble carbon nanomaterials such as SWCNT and SWCNH in hydrophilic solvents, and the dispersibility of carbon nanomaterials can be maintained stably over a long period of time. be able to.
  • a carbon nanomaterial is mixed in a hydrophilic solvent in which hydrogen peroxide or ozone is dissolved, and a streamer discharge is repeatedly performed in the hydrophilic solvent to form a carbon nanomaterial on the surface.
  • a radical derived from a solvent capable of bonding OH groups is generated in the solvent, and the carbon nanomaterial is made hydrophilic by the radical so that it can be dissolved in the solvent, and at the same time, stably dispersed in the hydrophilic solvent.
  • This is a method for soluble carbon nanomaterials, and it is possible to easily dissolve poorly soluble carbon nanomaterials such as single-walled carbon nanotubes and single-walled carbon nanohorns in hydrophilic solvents.
  • the dispersibility of the carbon nanomaterial can be stably maintained over a long period of time.
  • Example 1 the method for dissolving the carbon nanomaterial in Example 1 of the present invention will be described.
  • CNTs, carbon nanohorns, fullerenes, carbon nanocapsules, and the like are targeted, and the force of carbon nanomaterials may include micron-sized materials. Therefore, carbon nanomaterials including such cases are called.
  • Example 1 as an example of the carbon nanomaterial, a multilayer carbon nano material is used.
  • MWCNT soluble tubes
  • SWCNT single-walled carbon nanotubes
  • Example 23 will explain in detail the solubility method for further promoting the solubility property of SWCNT and single-walled carbon nanohorn (SWCNH).
  • Fig. 1 is an explanatory diagram of a soluble cake device according to Embodiment 1 of the present invention
  • Fig. 2 is a light emission image photograph of pulse discharge according to the present invention
  • Fig. 3 is an output of pulse stream discharge according to Embodiment 1 of the present invention
  • Fig. 4 (a) is a photograph of the suspension before the pulse stream discharge process in Example 1 of the present invention
  • Fig. 4 (b) is the burst discharge process in Example 1 of the present invention
  • Fig. 5 (a) is a photograph of the subsequent suspension
  • Fig. 5 (a) is an explanatory diagram of the transmittance before and after the pulse stream discharge process and the ultrasonic dispersion process in Example 1 of the present invention.
  • Figure 6 (a) is an SEM photograph of the multi-walled nanotube before the pulse discharge process in Example 1 of the present invention
  • Figure 6 (b) is Example 1 of the present invention.
  • SEM photo of multi-walled carbon nanotubes after pulse stream discharge treatment in Fig. 7 shows Example 1 of the present invention.
  • Multi-layer force before and after pulse treatment Discharging treatment explanatory diagram of FTIR measurement results for single-bonn nanotubes
  • Fig. 8 is an emission spectrum measurement diagram of pulsed discharge force in Example 1 of the present invention
  • Fig. 9 (a) is Example 1 of the present invention.
  • FIG. 9 (b) is an enlarged explanatory view of the multi-walled carbon nanotube in FIG. 9 (a)
  • FIG. 10 is a pulse-stripe discharge process in Example 1 of the present invention. It is a Raman spectroscopic measurement figure of a subsequent multi-walled nanotube.
  • 1 is a hydrophilic solvent such as water, ethanol, methanol, etc., carbon nanomaterials such as CNT, fullerene, carbon nanocapsule, etc., and in Example 1, multi-walled carbon nanotubes ( The following is a suspension mixed with MWCNT), and 2 is a discharge vessel such as a discharge tube that can contain the suspension 1 and discharge inside. If the suspension 1 is not stirred before the pulse stream discharge treatment, the MWCNT settles in a short time and forms two layers.
  • Example 1 High purity of MWCNT mixed in Suspension 1 is desirable
  • 25 mg of MWCNT with a purity of 95% was suspended in lOOmL of ion-exchanged water, and thus 250 ⁇ g / mL
  • the suspension 1 was measured, and about 10 mL of the suspension 1 was accommodated in the discharge vessel 2, and the needle-to-plate electrode described below was immersed in the suspension 1 and measured.
  • Any method for increasing the purity of MWCNT may be used as long as it does not interfere with the subsequent discharge treatment.
  • [0036] 3 is a needle electrode for causing pulse streamer discharge constituting the needle-to-plate electrode, and 4 is a flat plate electrode arranged facing the needle electrode 3.
  • the tip of the needle electrode 3 is a fine spherical body. In Example 1, it is made of tungsten and has a radius of curvature of about 0.3 mm.
  • the flat plate electrode 4 is a stainless steel disc having a diameter of 10 mm, and the needle electrode 3 and the flat plate electrode 4 are provided with a gap length of 10 mm as a gap length g.
  • the gap length g is preferably about 5 mm to 50 mm. That is, if the gap length g is too short, the process proceeds to arc discharge, and if it is too long, the stream discharge does not occur.
  • a suitable one from 5 mm to 50 mm may be selected in consideration of the influence of the voltage and pulse width.
  • a pulse streamer discharge is generated between the needle electrode 3 and the plate electrode 4.
  • pulse streamer discharge is performed by a combination of the needle electrode 3 and the flat plate electrode 4 opposed to the needle electrode 3.
  • it is sufficient to form a high electric field region in water.
  • it is also preferable to use fine wires or wire electrodes.
  • 5 is a DC power supply unit capable of varying the voltage
  • 6 is a pulse generating unit
  • 7 is a gap switch having a spark gap.
  • the DC power supply 5 is grounded at one end and connected to the pulse generator 6 at the other end to apply a negative voltage.
  • the polarity of the voltage may be positive! / !, but the conditions (voltage amplitude, pulse width, etc.) that cause stable generation of the Nord Streamer discharge may change depending on the polarity of the voltage. In this respect, in order to generate radicals, it is better to apply a negative voltage.
  • the pulse generator 6 for the pulse streamer discharge preferably uses a Bloom line type pulse generation circuit, and this circuit has a stage having characteristics of capacitance C and inductance L per unit length in the line direction. It is expressed as an equivalent circuit distributed in multiple stages.
  • the pulse generation unit 6 of Example 1 performs pulse streamer discharge by this Bloom line type pulse generation circuit.
  • the force pulse generation unit 6 can bond OH groups to the surface of the carbon nanomaterial in the solvent. This produces a unique radical for solvent-derived hydrophilization. Therefore, OH groups can be bonded to carbon nanomaterials directly or through a process by reaction, and as a result, aggregates of CNTs can be loosened and repeatedly dispersed into individual CNT bundle units (in other words, fibrous CNTs). It is not limited to those using this blue mine type pulse generation circuit.
  • Example 1 a coaxial cable having a length of 30 m and a characteristic impedance (LZC) 1/2 of 55 ⁇ was used to configure a Bloom line type pulse generation circuit.
  • LZC characteristic impedance
  • a voltage wave is formed at each stage and is superimposed and propagated to output a rectangular wave pulse voltage to the load side of the bloom line type pulse generation circuit.
  • the polarity of the generated pulse voltage is opposite to the polarity of the voltage generated by the DC power supply unit 5. That is, in Example 1, the polarity of the streamer discharge is positive.
  • This 1 indicates the length of the coaxial cable and corresponds to the number of stages in the equivalent circuit. Therefore, the pulse width ⁇ can be controlled by adjusting the length of the coaxial cable.
  • the radical generation rate can be controlled by controlling the pulse width ⁇ .
  • R is a charging resistance of 5 ⁇ , and R is impedance.
  • [0040] 8 is a voltage measuring unit using a high voltage probe for measuring the output voltage
  • 9 is a current measuring unit using a Rogowski coil or the like for measuring the output current of the pulse streamer discharge.
  • 10 is a control unit that controls the voltage of the DC power supply unit 5 and the repetition frequency of the pulse streamer discharge based on the measurement results of the voltage measuring unit 8 and the current measuring unit 9.
  • 11 is a timekeeping section for measuring the duration of the pulse streamer discharge
  • 12 is a counter for counting the repetition frequency.
  • the control unit 10 raises the DC power supply unit 5 to a predetermined voltage, and applies a negative voltage from the DC power supply unit 5 to the pulse generating unit 6. Charging progresses with the capacitor component of each stage of the Bloom line type pulse generation circuit, and is released when the gap switch 7 is turned on. A voltage wave is formed at each stage for electricity, and is superimposed and propagated to output a predetermined high pulse voltage to the needle-to-plate electrode on the load side, thereby generating a pulse streamer discharge.
  • This pulse streamer discharge forms plasma in water (partially gasified)
  • This plasma is a non-equilibrium plasma in which only the electron temperature is high, unlike the thermal plasma (plasma in which the electron temperature, ion temperature, and molecular temperature are all high) generated by arc discharge. Therefore, in Example 1, the water temperature can be activated at room temperature, and OH groups are bound to the surface of carbon nanomaterials such as O, 0, H, OH, and H 2 O in water.
  • the kind of radicals that can be combined can be generated.
  • the same is true for other hydrophilic solvents such as alcohol, although the amount produced is different.
  • This non-equilibrium plasma is difficult to generate with thermal plasma, making it possible to generate radicals.
  • the rise between the electrodes is several tens to several hundreds ns, and the pulse width at which the peak value is obtained is preferably 10 ns or more. Therefore, a high pulse voltage of about 1 ⁇ s or less should be applied.
  • the upper and lower limits of the pulse width are determined for the following reasons.
  • the minimum width necessary for the discharge is that the pulse width is longer than this time delay.
  • the streamer discharge shifts to arc discharge, causing melting of the electrode metal and the resulting contamination of the carbon nanomaterial.
  • the norm width is 1 ⁇ s or less of the predetermined length.
  • the repetition frequency is preferably selected from lHz (pps) to 100 Hz (pps) in order to generate radicals and enhance solubility.
  • a hydrophilic solvent such as ethanol or methanol other than water is used as a solvent, radicals are similarly generated.
  • the discharge time should be at least 1 minute, preferably 10 minutes to 1 hour, or even longer.
  • FIG. 2 is a photograph of the light emission image of this pulse streamer discharge
  • FIG. 3 shows the output voltage and current waveform of the pulse streamer discharge of Example 1.
  • the pulse width of the fusible device of Example 1 is 353 ns, which is almost equal to the theoretical value of 329 ns.
  • the output current increases in proportion to time. Therefore, it can be seen that the pulse streamer discharge occurred during the 200 ns when this current increased.
  • radicals can be generated in the water by repeatedly performing the force streamer discharge that performs the pulse streamer discharge with a constant pulse width. Therefore, the discharge is not limited to such a pulse streamer discharge.
  • the transmitted light intensity measurement and SEM observation of the suspension were performed on the suspension which was subjected to the pulse streamer discharge for 5 hours with the soluble cake apparatus of Example 1.
  • a He-Ne laser caliber: about 4 mm
  • VE-7800 real surf s-view microscope
  • the observation was performed after dropping the suspension after the pulse stream discharge treatment onto the cover glass and evaporating the water.
  • the absorption spectrum of the suspension after the pulse streamer discharge treatment was measured, and the emission spectrum of the pulse streamer discharge was measured.
  • the absorption spectrum was measured using a Fourier transform infrared spectrophotometer (FTIR) (FT / IR — 620, manufactured by JASCO Corporation).
  • FTIR Fourier transform infrared spectrophotometer
  • the emission spectrum was measured using a spectroscope (Usio Electric Co., Ltd.). US R—40V) was used.
  • the crystal was measured by a laser Raman spectrophotometer (NRS-2000 manufactured by JASCO Corporation). Sex was evaluated.
  • the pulse streamer discharge is effective for making CNT soluble in water, and in a sense, such a property was imparted to CNT.
  • carbon nanomaterials such as fullerenes other than CNT, carbon nanocapsules, etc., which are not only CNT, are soluble in hydrophilic solvents, and are stable over a long period of time. It can be kept in a state dispersed in a solvent.
  • FIG. 1 the lateral force of the translucent discharge vessel 2 was measured by irradiating the suspension 1 with a He—Ne laser to measure the intensity of the transmitted light and the light transmittance.
  • Figures 5 (a) and 5 (b) show the light transmittance of the suspension before and after the pulse streamer discharge treatment, and three types of transmission when ultrasonic dispersion treatment (500 W, 5 hours) is performed for comparison. Indicates the rate.
  • the suspension of MWCNT after the pulse streamer discharge treatment is 1 from the end of the pulse streamer discharge as described in connection with Fig. 4 (b). Even after more than a month, the dispersibility was stably maintained in water at room temperature.
  • the pulse streamer discharge can dissolve the carbon nanomaterial in the hydrophilic solvent and disperse it in the solvent for a long period of time.
  • Figures 6 (a) and 6 (b) are SEM observation results of the suspension before and after the pulse streamer discharge treatment. These SEM images were taken after evaporating the water in the MWCNT suspension.
  • Fig. 6 (a) shows the suspension before the pulse streamer discharge treatment, and the particles are not uniformly dispersed in the solvent and round aggregated particles are observed. An enlargement of this particle is the upper right photo, which is an aggregate of MWCNT rounded with an average diameter of about 20 m. In the suspension, only such aggregates of MWCNT were observed as a whole, and dispersed MWCNTs in a dispersed state (generally in bundle units) were not observed.
  • This region is a force known to be an absorption spectrum due to O-H stretching vibration. Absorption in this region is due to the presence of OH fundamental force pulse stream discharge that did not exist before the pulse stream discharge treatment. This means that it is bound to MWCNT.
  • This state is shown in Fig. 9 (b).
  • a number of hydrophilic OH groups are formed in a part of MWCNT, which is inherently nonpolar (hydrophobic), and this is compatible with the hydrophilic group (OH group) of the hydrophilic solvent. It is possible to exist stably in water and is considered soluble.
  • hydrophilic solvents such as water and organic solvents (alcohol, acetic acid, etc.) are highly hydrophilic, so they do not dissolve nonpolar solutes and easily dissolve highly hydrophilic polar solutes.
  • organic solvents alcohol, acetic acid, etc.
  • the second reason that the pulse streamer discharge contributes to the solubility is considered to be the presence of physical forces such as shock waves and ultrasonic waves generated by the pulse streamer discharge.
  • the light emission image as shown in FIG. 2 is visually observed, it can be visually confirmed that MWCNT aggregated by shock waves, ultrasonic waves, etc. are crushed into finer aggregates in the state shown in FIG. 9 (a).
  • shock waves, ultrasonic waves, etc. as physical force (grinding force) externally (spontaneously) in addition to the action of the North Streamer discharge (spontaneous action).
  • radicals such as H radical, O radical, and OH radical are generated in a hydrophilic solvent by Nord streamer discharge, and these are bonded to the carbon nanomaterial.
  • the carbon clusters are hydrophilized and dissolved in a hydrophilic solvent.
  • aggregates in which carbon nanomaterials are entangled with each other by physical forces such as shock waves and ultrasonic waves generated simultaneously with the generation of radicals are separated.
  • the material can be stably soluble in a hydrophilic solvent.
  • FIG. 10 shows the results of Raman spectroscopy measurement of MWCNT.
  • the first peak is D band by amorphous carbon near 1350 cm _1.
  • the second peak is the G band derived from graphite near 1590 cm- 1 .
  • the crystallinity of CNT can be evaluated from the ratio GZD of the heights of the D and G bands. In general, if the GZD ratio is large, it can be said that the substance has good crystallinity.
  • the soluble solvent method of Example 1 uses a streamer discharge in a suspension, so that the soluble nanomaterial in the hydrophilic solvent of the carbon nanomaterial can be easily obtained. realizable.
  • the dispersibility of the carbon nanomaterial by this method is stably maintained over a long period of time.
  • streamer discharge can realize solubilization without causing structural deterioration of the carbon nanomaterial, and can improve only dispersibility.
  • the method for dissolving the carbon nanomaterial of Example 1 can uniformly dissolve the carbon nanomaterial in the hydrophilic solvent. Compared to devices that perform arc discharge or devices that separate streamer discharge in gas and dispersion processing, simple devices are required, so that soluble soot treatment can be performed at low cost and processing control is easy. .
  • the apparatus becomes extremely simple, the carbon nanomaterial can be easily and reliably dissolved in the hydrophilic solvent, and the dispersibility can be stably dispersed over a long period of time. Can be maintained.
  • Example 2 As a carbon nanomaterial, the property of poor solubility is stronger than that of multi-walled carbon nanotubes (MWCNT)! Single-walled carbon nanotubes (SWCNT, hereinafter referred to as SWCT) and single-walled carbon nanohorns (hereinafter referred to as SWCH) are soluble.
  • MWCNT multi-walled carbon nanotubes
  • SWCT single-walled carbon nanotubes
  • SWCH single-walled carbon nanohorns
  • FIG. 11 is an explanatory diagram of the soluble cake device according to the second embodiment of the present invention
  • Fig. 12 is a light emission image photograph of the pulse streamer discharge in the second embodiment of the present invention
  • Fig. 13 (a) is a diagram illustrating the implementation of the present invention.
  • Fig. 13 (b) is a pulse streamer discharge performed without publishing in Example 2 of the present invention.
  • Fig. 13 (c) is a photograph of the suspension after treatment
  • Fig. 13 (c) is a photograph of the suspension before the pulse streamer discharge treatment in Example 2 of the present invention
  • Fig. 14 is the presence and absence of publishing and absorption in Example 2 of the present invention.
  • Fig. 11 is an explanatory diagram of the soluble cake device according to the second embodiment of the present invention
  • Fig. 12 is a light emission image photograph of the pulse streamer discharge in the second embodiment of the present invention
  • Fig. 13 (a) is
  • FIG. 15 (a) is an explanatory diagram of the spectral distribution of luminous intensity
  • Fig. 15 (a) is an explanatory diagram of the absorbance of the SWCNT suspension compared with the presence or absence of publishing in Example 2 of the present invention
  • Fig. 15 (b) is Example 2
  • Fig. 16 is an illustration of the absorbance of the S WCNH suspension compared with the presence or absence of bubbling.
  • Fig. 16 shows the time course of the absorbance of the SWCNT suspension after the underwater streamer discharge treatment in Example 2 of the present invention.
  • FIG. 18 is a particle size distribution diagram of a SWCNT suspension subjected to a stream discharge treatment in combination with oxygen gas publishing in Example 2 of the invention.
  • FIG. 18 is a pulse of the single-walled nanotube suspension in Example 2 of the present invention. It is an emission spectrum distribution map in a streamer discharge.
  • Fig. 19 (a) is a photograph of the single-walled carbon nanotube suspension after the pulse streamer discharge treatment performed together with the argon gas publishing in Example 2 of the present invention
  • Fig. 19 (b) is the present invention.
  • Figure 20 shows a photograph of a single-walled carbon nanotube suspension after pulse streamer discharge treatment without publishing in Example 2
  • Fig. 20 shows the effect on absorbance of SWCNT suspension when gas publishing in Example 2 of the present invention.
  • Figure 21 (a) is a photograph of the SWCNT suspension after underwater streamer discharge treatment without gas publishing
  • Fig. 21 (b) is a discharge treatment with nitrogen gas publishing.
  • Fig. 21 (c) shows a state after discharge treatment while performing argon gas publishing.
  • Fig. 21 (b) is a photograph of the SWCNT suspension after underwater streamer discharge treatment without gas publishing
  • Fig. 21 (b) is a discharge treatment with nitrogen gas publishing
  • Fig. 21 (c) shows a state after discharge treatment while performing argon gas publishing
  • Standard Ha emission intensity Fig. 22 (b) is a comparison diagram of emission intensities with standardized emission intensity of O radicals when gas publishing with oxygen, nitrogen, and argon.
  • the soluble rice bran apparatus according to the second embodiment of the present invention basically has the same configuration as that of the soluble rice bran apparatus according to the first embodiment. Accordingly, since the same reference numerals as those described in the first embodiment basically indicate a common configuration, the description is given to the first embodiment and is omitted here.
  • 3a is a single wire made of tungsten for causing a pulse streamer discharge
  • 4 is a flat plate electrode arranged facing the wire electrode 3a.
  • the wire electrode 3a has a diameter of 60 m.
  • the plate electrode 4 is a stainless steel 28 mm x 58 mm rectangle, and the wire electrode 3a and the plate electrode 4 have a gap length g of 13 mm. Is provided.
  • the gap length g is preferably set to about 5 mm to 50 mm for the same reason as described above.
  • the discharge container 2 of Example 2 is a box-shaped container of 60 mm (horizontal direction) X 30 mm (vertical direction) X 3 Omm (height direction).
  • 13 is a gas ejection passage for introducing oxygen and inert gas into the liquid in the discharge vessel 2 and publishing
  • 14 is a flow control valve provided in the gas ejection passage 13
  • 15 is a stirring device.
  • Figure 12 shows the pulse streamer discharge generated between the wire and plate electrodes.
  • SWCNT is mixed in a hydrophilic solvent in the discharge vessel 2, in Example 2, water is operated, and the control unit 10 is operated.
  • the control unit 10 opens the flow control valve 14 to eject a publishing gas such as oxygen into the feed liquid at a constant flow rate.
  • the control unit 10 operates the stirring device 15 to stir the suspension 1 so that the distribution of bubbles and SWCNTs is uniform.
  • a high voltage is applied between the wire-to-plate electrode, pulse streamer discharge is performed for a predetermined time, and the carbon nanomaterial is dissolved.
  • the rise between the electrodes is several tens to several hundreds ns, and the pulse width is generated in order to generate a no-striker discharge that generates radicals that change the poor solubility of CNTs to solubility.
  • a high pulse voltage 10 ns or more and 1 ⁇ s or less at 1 Hz to: LOOHz. Discharge for at least 1 minute, preferably 10 minutes to 1 hour, or even longer.
  • FIG. 13 shows the results when pulse streamer discharge is performed while publishing oxygen.
  • FIG. 14 shows the relationship between the presence of publishing during pulse streamer discharge and the spectral distribution of SWCNT absorbance. According to this, the maximum absorbance is exhibited at 256 nm regardless of the presence or absence of publishing.
  • the suspension concentration is 10 gZml in all cases.
  • Figure 15 (a) shows a comparison of how the presence or absence of publishing affects the water solubility of SWCNT by pulse streamer discharge, using the maximum absorption light intensity at 256 nm as an index.
  • Figure 15 (b) shows the results of a similar evaluation for a SWCNH suspension with a suspension concentration of 50 / z gZml.
  • FIG. 15 (a) shows a comparison of the absorbance of the SWCNT suspensions with and without publishing at a suspension concentration of 10 gZml. According to this, the direction of publishing oxygen is 1.5 times higher than that of publishing force. This indicates that the suspension of SW CNTs with oxygen publishing is more turbid.
  • FIG. 15 (b) shows a comparison of the absorbance of the SWCNH suspension with and without publishing at a suspension concentration of 50 gZ ml. According to this, the direction of publishing oxygen is about twice as light as that of publishing force. This indicates that the suspension of SWCNH with oxygen publishing is much cloudy.
  • the SWCNT suspension is stable and dispersible in water at room temperature even after one month (31 days) from the end of the pulse streamer discharge. Maintained. It was confirmed that the same SWCNH suspension maintained stable dispersibility in room temperature water until the 26th. Since it was confirmed that V and deviation were stable, the experiment was terminated. Therefore, pulse streamer discharge can dissolve a single-layer carbon nanomaterial such as SWCNT or SWCNH in a hydrophilic solvent and disperse it in the solvent over a long period of time.
  • Figure 16 shows the time course of the absorbance of the SWCNT suspension after the underwater stream discharge treatment. According to this, it can be seen that the absorbance peak slightly decreased for several days after the discharge treatment regardless of the presence or absence of oxygen publishing, and a part of the water-contained SWCNT reaggregated slightly. However, the absorbance of both suspensions has remained almost constant after 10 days. The reason why it is possible to maintain the soluble property for a long time is the effect of the pulse stream discharge. The rate of decrease in absorbance over 10 days is approximately 15% when oxygen publishing is performed and approximately 40% when oxygen publishing is not performed. It can be seen that reaggregation can be suppressed.
  • FIG. 17 compares the particle size distribution of SWCNT aggregates in a SWCNT suspension subjected to streamer discharge treatment using oxygen gas publishing. According to this, the particle size distribution is reduced by about 10 _2 ⁇ 10_ 3 by the discharge treatment.
  • the SWCNT particle size after the discharge treatment is about 100 ⁇ m, which is larger than the SWCNT bundle diameter of 15nm. This is considered to be a uniform distribution even in individual bundle units.
  • FIG. 18 is a light emission spectrum distribution diagram during pulse stream discharge of the SWCNT suspension.
  • publishing contributes not only to a physical stirring effect but also to a chemical reaction. That is, in the vicinity along the discharge channel, there are microbubbles formed by publishing only by the microbubbles generated by the discharge, and within these microbubbles, the mean free path of the electrons in the gas (mean free path) ) Will form longer energetic electrons than that in the liquid, and this collision will produce, for example, H 0 ⁇ 11 lasers.
  • Non-Patent Document 4 when the publishing gas is oxygen, a large amount of OH radicals are generated, and when the publishing gas is argon, there are many H radicals and O radicals, and the amount of OH radicals generated is small.
  • Argon gas publishing has the best effect on the solubility of SWCNT. This indicates that in the case of argon, mainly generated H radicals and O radicals play a major role in soluble matter.
  • the type of gas (actually the solubility of the gas) also has an effect, and argon shows that radicals produced by a highly soluble gas make a large contribution to OH group bonding. .
  • H radicals generated by discharge reacts with O radicals or O adsorbed on the surface of SWCNT or SWCNH to form OH groups, which also contributes to solubilization.
  • the publishing gas is an inert gas such as argon gas
  • these gases when these gases generate a small amount of OH radicals, H radicals and O radicals are generated.
  • This O radical oxidizes the surface of SWCNT and SWCNH and releases them.
  • the H radical force generated by electricity reacts with O radicals adsorbed on this surface to generate OH groups.
  • air since it is inactive, it does not affect the electrode or the like. Since air also consists of oxygen and inert nitrogen gas, it can be understood from the above explanation as a sum.
  • FIG. 19 (a) is a photograph of the single-walled carbon nanotube suspension after the pulse streamer discharge treatment performed together with argon gas publishing in Example 2 of the present invention
  • FIG. 19 (b) is in Example 2 of the present invention. It is a photograph of the single-walled carbon nanotube suspension after the pulse streamer discharge treatment performed without bubbling. According to Figs. 19 (a) and 19 (b), it can be seen that the highest suspended state is maintained when publishing the inert gas argon.
  • FIG. 20 shows the effect of SWCNT suspension on absorbance when gas publishing anoregone and nitrogen as inert gas, that is, gas dependence of solubilization efficiency.
  • the absorbances without gas publishing and with oxygen publishing are also shown.
  • the absorbance rises more than 3 times that without publishing, that is, solubilized SWCNTs increase.
  • Figures 21 (a), (b), and (c) show the state of the SWCNT suspension after the underwater streamer discharge treatment
  • Figure 21 (a) shows the underwater streamer discharge treatment without gas publishing
  • Fig. 21 (b) shows the state after the underwater streamer discharge treatment with nitrogen gas publishing
  • Fig. 21 (c) shows the state after the underwater streamer discharge treatment with argon gas publishing.
  • the effectiveness of gas publishing can be seen at a glance. In this way, SWBN by underwater streamer discharge is achieved by gas publishing of inert gas such as oxygen, argon, and nitrogen.
  • Figures 22 (a) and (b) show the standardized emission intensity of Ha and O radicals when gas publishing is performed with oxygen, nitrogen, and argon, with the emission intensity without gas publishing as an index. It has become.
  • the emission intensity is shown when the underwater streamer discharge is performed for 1 minute while publishing these gases and then the underwater streamer discharge is performed without publishing. The latter is slightly lower than the former, but increases at least 1.5 times more than without gas publishing. The maximum is about 3 times for argon, about 2.2 to 2.5 times for nitrogen, and about 1.6 times for oxygen.
  • the display width shown in an I shape at each light emission intensity apex shows the fluctuation range of the measurement.
  • the generation of Ha and O radicals is most effective by argon gas publishing, followed by nitrogen gas bubbling and then oxygen gas publishing.
  • the fusible efficiency shown in Fig. 20 is in the order of gas publishing of argon, nitrogen, and oxygen, which means that the radicals generated by gas publishing are closely related to the soluble qualities of SWCNT. Show that you are involved.
  • the solubility of argon in water lcm 3 (20 ° C) is 0.035 cm 3
  • the solubility of oxygen in water lcm 3 (20 ° C) is 0.031 cm 3
  • nitrogen in water lcm 3 The solubility (20 ° C) of 0.016 cm 3 strongly suggests the involvement of gas solubility. If the radicals generated by such highly soluble gases make a large contribution to the OH bond, oxygen can be OH radicals, argon and nitrogen, etc.
  • This inert gas mainly generates H radicals and O radicals, so the combined strength of the solubility and the reaction process of the OH group may determine the degree of solubility. At least, the effectiveness of argon gas publishing is outstanding.
  • the solubilization method of Example 2 does not publish the gas in the suspension, and does not publish the gas. It can be dissolved in a hydrophilic solvent.
  • the dispersibility of the carbon nanomaterial by this method is stably maintained over a long period of time.
  • this method can achieve a soluble property that does not cause structural deterioration of the carbon nanomaterial, and can improve only the dispersibility.
  • by using a combination of streamer discharge and publishing it is possible to suppress the subsequent re-aggregation as well as to increase the concentration of the soluble carbon nanomaterial, and to maintain the dispersibility for a long time.
  • Example 3 describes the case of solubilizing single-walled carbon nanotubes (SWCNT) and single-walled single-bonn nanohorns (SWCNH).
  • SWCNT single-walled carbon nanotubes
  • SWCNH single-walled single-bonn nanohorns
  • the present invention is not limited to SWCNT and SWCNH, but can be applied to carbon nanomaterials such as MWCNT.
  • Example 2 publishing was performed in order to dissolve poorly soluble carbon nanomaterials such as SWCNT and SWCNH.
  • Example 3 in order to generate OH groups on the surface of SWCNT or SWCNH, an underwater streamer discharge is performed in a solvent that easily generates OH radicals.
  • Example 3 the suspension was made into an aqueous solution of hydrogen peroxide (H 2 O 2) and
  • Fig. 23 (a) is a photograph of a single-walled carbon nanotube suspension after pulse streamer discharge treatment in an aqueous solution of peroxygen and oxygen in Example 3 of the present invention
  • Fig. 23 (b) is a photograph of the present invention.
  • 6 is a photograph of a single-walled carbon nanotube suspension before a pulse streamer discharge treatment in Example 3.
  • the suspension concentration of SWCNT is 100 gZml
  • the concentration of hydrogen peroxide (30%) is 100 mlZmin
  • the treatment time (discharge time) is 10 minutes. Even if the suspension is made into ozone gas O aqueous solution (ozone water),
  • the present invention can be applied to a solubilizing method in which a carbon nanomaterial can be dissolved in a hydrophilic solvent to maintain dispersibility over a long period of time.
  • FIG. 1 is an explanatory diagram of the soluble rice bran apparatus in Example 1 of the present invention.
  • FIG. 2 Photoluminescence picture of pulse streamer discharge in the present invention
  • FIG. 3 is an explanatory diagram of output voltage and current waveform of pulse streamer discharge in Example 1 of the present invention.
  • FIG. 4 (a) Photograph of the suspension before the pulse stream discharge treatment in Example 1 of the present invention, (b) Photograph of the suspension after the pulse stream discharge treatment in Example 1 of the present invention [5] (a ) Explanatory diagram of transmittance before and after pulse stream discharge processing and ultrasonic dispersion processing in Example 1 of the present invention, (b) Enlarged view of chain line portion of transmittance in (a) [Fig. 6] (a ) SEM photograph of multilayer nanotube before Rustri discharge treatment in Example 1 of the present invention, (b) SEM photograph of multilayer carbon nanotube after pulse strip discharge treatment in Example 1 of the present invention
  • FIG. 8 Emission spectrum measurement diagram from pulse stream discharge in Example 1 of the present invention.
  • FIG. 9 (a) Explanatory diagram of dispersion of multi-walled carbon nanotubes after the Rustori discharge process in Example 1 of the present invention. ) Enlarged illustration of multi-walled carbon nanotubes in (a)
  • FIG. 10 Raman spectroscopic diagram of multi-walled nanotubes after pulse stream discharge treatment in Example 1 of the present invention
  • FIG. 12 shows a luminescence image photograph of a pulse stream discharge in Example 2 of the present invention.
  • FIG. 13 (a) Photograph of suspension after pulse stream discharge treatment performed together with oxygen gas publishing in Example 2 of the present invention, (b) Without gas publishing in Example 2 of the present invention. Photograph of the suspension after the pulse stream discharge treatment performed, (c) Photograph of the suspension before the pulse stream discharge treatment in Example 2 of the present invention
  • FIG. 14 is an explanatory diagram of the spectral distribution of the presence and absence of publishing and absorbance in Example 2 of the present invention.
  • FIG. 15 (a) An explanatory diagram of the absorbance of the SWCNT suspension compared with the presence or absence of publishing in Example 2 of the present invention.
  • FIG. 16 Time course of absorbance of SWCNT suspension after underwater stream discharge treatment in Example 2 of the present invention.
  • FIG. 17 is a particle size distribution diagram of a SWCNT suspension subjected to a stream discharge treatment in combination with oxygen gas bubbling in Example 2 of the present invention.
  • FIG. 18 Emission spectrum distribution diagram during pulse streamer discharge of single-walled nanotube suspension in Example 2 of the present invention
  • FIG. 19 (a) Photograph of single-walled carbon nanotube suspension after pulse streamer discharge treatment performed together with argon gas publishing in Example 2 of the present invention, (b) No publishing in Example 2 of the present invention. Of single-walled carbon nanotube suspension after pulse streamer discharge treatment performed in
  • FIG. 20 is a comparative diagram showing the effect on the absorbance of the SWCNT suspension when gas publishing in Example 2 of the present invention.
  • FIG.21 (a) Photo of SWCNT suspension after underwater streamer discharge treatment without gas publishing, (b) Photo of state after discharge treatment with nitrogen gas publishing, (c ) Photo after discharge treatment with argon gas publishing
  • FIG. 23 (a) Photograph of single-walled carbon nanotube suspension after pulse streamer discharge treatment in an aqueous solution of peroxygen and oxygen in Example 3 of the present invention, (b) Example of the present invention Photo of single-walled carbon nanotube suspension before pulse streamer discharge treatment in Fig. 3

Abstract

【課題】本発明は、カーボンナノ材料を構造劣化させることなく親水性溶媒に簡単且つ均一に溶解させることができ、長期間にわたって分散性を維持することができ、可溶化処理が低コストで行え、処理のコントロールが容易なカーボンナノ材料の可溶化方法を提供することを目的とする。 【解決手段】本発明のカーボンナノ材料の可溶化方法は、カーボンナノ材料を親水性溶媒に混入し、該親水性溶媒中でストリーマ放電を行って、カーボンナノ材料を親水性溶媒中に溶解し、安定して分散した状態を保持することを主要な特徴とする。

Description

明 細 書
力一ボンナノ材料の可溶化方法
技術分野
[0001] 本発明は、カーボンナノチューブ(以下、 CNT)やフラーレン等のカーボンナノ材料 を水やアルコール等の親水性溶媒に溶解するカーボンナノ材料の可溶ィ匕方法に関 する。
背景技術
[0002] 近年、ナノテクノロジ一は急速な進歩を遂げている。中でも CNTは優れた特性を備 えており、注目を集めている。すなわち、 CNTは電気的特性、機械的強度等に優れ ており、榭脂ゃ有機半導体などから複合材料を構成するフイラ一として大きな期待が 寄せられ、今後電子デバイス、電気化学などへの応用が限りなく見込まれている。ま た、 CNTはそのサイズ (直径)が数 nmであることから、プローブ等の材料として、さら に医療、薬学面においては抗癌ゃ抗ウィルス等の医療用成分の生体内への輸送手 段として、あるいは化粧品の配合成分として期待が高まっている。この点、 C60、 C70 等のフラーレン、カーボンナノホーン、カーボンナノカプセルも同様である。なお、ここ でいう CNT、フラーレン、カーボンナノカプセルは、純粋の炭素クラスターのほかに 一部異種原子を置換したり、異種原子を内包したりした炭素クラスターを含むもので ある。
[0003] しかし、 CNT、カーボンナノホーン、フラーレン等はこのような優れた特性にも力か わらず、水や有機溶媒 (アルコール、酢酸等)などの親水性溶媒に溶け難いという性 質を有している。 CNTでも、単層カーボンナノチューブ(SWCNT)の方が多層カー ボンナノチューブ (MWCNT)よりも格段に強 ヽ難溶性を示す。単層カーボンナノホ ーン(SWCNH)も同様である。そして、この性質がカーボンナノ材料に対する大きな 期待と裏腹にその利用の拡大を阻んでいる。
[0004] すなわち、水等の親水性溶媒は親水性が高ぐ親水性の高い極性溶質を溶解し易 いが、 CNT、フラーレン等のカーボンナノ材料は無極性 (疎水性)であるため、これに 溶解し難い。このため、従来、 CNT、フラーレンの表面に酸処理等の化学的処理を 施して表面改質を行い、表面にカルボシキル基を形成する化学的結合法や、界面活 性剤等の可溶化剤を CNT、フラーレンの表面に物理吸着させて可溶ィ匕する物理的 吸着法が行われている (例えば特許文献 1、 2)。なお、物理的吸着法は可溶化を促 進するため可溶化剤の添加の後に超音波振動等が加えられることが多い。このような 物理的吸着法は、上述した化学的吸着法と異なり、 CNT表面に構造上の欠陥を形 成することが少ないという特徴を有している。ここで、親水性溶媒とは親水基を備えた 誘電率の高 、溶媒のことである。
[0005] ところで、この可溶ィ匕処理と直接の関係はないが、本発明者らは従来、カーボンナ ノ粒子の効率的生産方法として、水中での高電圧パルスアーク放電法を提案した( 非特許文献 1)。この研究の中で本発明者らは、非特許文献 1の生産方法で生産さ れたカーボンナノ粒子が水中で均一に分散した状態で生成されることを発見した。
[0006] しかし、この非特許文献 1で報告した生産方法は、水中でパルスアーク放電するこ とによりカーボンナノ粒子の生産と可溶ィ匕を一挙に達成する画期的な方法であった 力 このとき起こる分散はあくまでカーボンナノ粒子を生産するときに付随して発生す るもので、任意の生産方法で生成されたカーボンナノ材料を親水性溶媒に溶解させ る一般性のある可溶ィ匕方法ではなカゝつた。しかも、ここで利用する高電圧パルスァー ク放電法は、基本的には熱プラズマを利用するためにガス中での処理に馴染むもの で、高エネルギーが必要であり、装置も簡便なものとは言い難いものであった。
[0007] ここで、本明細書にぉ 、て「可溶化」とは、親水性溶媒に溶解しがた!/、疎水性の溶 質に一部親水性の性質を与え、その性質により溶媒中にこの溶質を分散させることを 意味する。従って、本明細書でいう「可溶化」はエマルシヨン (乳化)に対応した濁りの ない状態を意味するものではなぐ難溶解性溶質の溶解ィ匕処理と分散化 (濁りを常 態として形成する)を組み合わせたものに相当する。
[0008] さて、非特許文献 1のパルスアーク放電のように熱プラズマを利用するのではなぐ 酸素または窒素ガス等の低温プラズマ (非平衡プラズマ)を利用し、多層 CNTを気中 でプラズマ処理して表面の炭素に対する酸性官能基の含有率を 2%以上とし、超音 波等を使って液中に分散させる分散方法が提案された (例えば特許文献 3)。この方 法は低温プラズマを利用するため、放電のための装置は高電圧パルスアーク放電法 の場合よりは簡単なものになる。
[0009] この特許文献 3においては、多層 CNTの分散が可能になる理由として、酸性官能 基が多層 CNTの表面に存在することで、液中で隣接する別の多層 CNTの酸性官能 基同士が反発しあうようになり、絡み合つていた多層 CNTがほぐれ、分散するとの仮 説が述べられている。しかし、上記特定のガス雰囲気でプラズマ処理を行って酸性官 能基の含有率を 2%以上とし、さらにその後液中に超音波、高速攪拌等の物理的な 分散処理を行うのは、ガス中の処理と液中での処理が必要で工程数が増え、処理が 複雑になり、時間が掛カる上に装置が大掛力り化し、制御、管理が難しくなり、高コス トになるものであった。
[0010] このように CNTの表面修飾のための従来のプラズマ処理はガス雰囲気中での放電 を利用するが、放電はガス雰囲気だけでなく水中でも発生する。これは非特許文献 1 のカーボンナノ粒子生産方法で本発明者らが報告したとおりである。
[0011] そして、水の中でパルスストリーマ放電を行えば、 OHラジカル、 Hラジカル、 Oラジ カル、 H Oなどのラジカル、及びオゾン Oが生成されることも報告されている(例え
2 2 3
ば非特許文献 2, 3)。そして、放電プラズマ力もそのエネルギーの約 30%に相当す る強い紫外線が放射され、放電のチャネルに沿った付近が活性化され、このとき生成 された H Oが紫外線によって OHラジカルに分解されるとも報告されている(非特許
2 2
文献 2)。しかし、これら非特許文献 2, 3で報告されたパルスストリーマ放電は、水中 内にラジカルを形成し、その活性化された作用によって水中の微生物や有害化学物 質を処理するものであり、カーボンナノ材料の親水性溶媒中における物理的性質の 1つ、すなわち難溶性の性質を可溶性の性質に変えるという課題と、その解決手段( カーボンナノ材料を親水性溶媒に溶解させるための可溶ィ匕の方法)とは無縁のもの である。なお、例えば、上記のような水の浄ィ匕に水中ストリーマ放電を利用したものと して排水処理装置がある (例えば特許文献 4)。
[0012] さらに、水中でのパルスストリーマ放電を行うときガスパブリングを行うと、物理的な 作用だけでなく直接ィ匕学的な作用を与え、ラジカルが生成されることも報告されてい る(非特許文献 4)。非特許文献 4によれば、ガスパブリングを行うガスが酸素の場合、 OHラジカルが相当量生成され、アルゴンの場合、 Hラジカル、 Oラジカルが多ぐ O Hラジカルは生成量が少ない。しかし、非特許文献 4は非特許文献 2, 3と同様、カー ボンナノ材料を親水性溶媒に溶解させる可溶ィ匕の方法を示唆するものではな 、。す なわち、カーボンナノ材料を可溶ィ匕するために、溶媒中でのストリーマ放電を利用し てどのような寄与ができるのかにっ 、ては、現在のところ未知である。
[0013] 特許文献 1 :特開平 8— 12310号公報
特許文献 2:特開 2001— 104771号公報
特許文献 3:特開 2003 - 300715号公報
特許文献 4:特開 2001— 252665号公報
特干文献 1 :J.buehiro,K.Imasaka,Y.Ohshiro,u.Zhou,M.Hara,N.bano^ Production of. carbon nanoparticles usingpulsed arc discharge triggerd by dielectric breakdown ι n water", Japan Journal.Applied Physics, 42卷、 2003年、 p. 1483— p. 1485 f^^ j¾2: B.Sun,M.Sato,J.S.Clements^ "Non-uniform pulse discharge- induced radicalproductin in distilled water", Journal. Electrostatics^ 43卷、 1998年、 p. 115 -p. 126
特許文献 3 : H.Akiyama、 "Streamer discharge in liquid and theirapplications,,、 IEE ETrans.Electr.Insl.、 39卷、 2000年、 p. 646— p. 652
f^^ j¾4 : B.Sun,M.Sato,J.S.Clements^ "Optical study of active species puroduc ed bya pulsed streamer corona discharge in water", Journal. Electrostatics^ 39卷、 1 997年、 p. 189— p. 202
発明の開示
発明が解決しょうとする課題
[0014] 以上説明したように、 CNTやカーボンナノホーン、フラーレン等のカーボンナノ材 料は親水性溶媒に溶けな 、と 、う性質を有して 、る。このため化学的結合法や界面 活性剤等による物理的吸着法が行われている。しかし、化学的結合法ではカーボン ナノ材料の構造を傷つけ、カーボンナノ材料の構造劣化を招来してしまうし、物理的 吸着法は可溶化剤の濃度コントロールなど微妙な処理が必要で、不安定因子が多く 、処理を安定的にコントロールすることが難しい。
[0015] また、本発明者らは、水中での高電圧パルスアーク放電により生産したカーボンナ ノ粒子が水中で均一に分散することを発見したが、この分散はカーボンナノ粒子の生 産の過程で生じた現象で、他の生産方法で生成されたカーボンナノ材料を親水性溶 媒に溶解させるものではな 、し、この高電圧パルスアーク放電で得た粒子の分散性 をさらに向上させることができ、その他様々な方法で生産された既存のカーボンナノ 材料に対する一般性のある長期保存に適した最適な分散化方法であるとは言い難 いものであった。
[0016] そして、特許文献 3の分散方法は、気中でプラズマ処理して酸性官能基の比率をコ ントロールし、その後に液中に分散させるため、処理が複雑で時間を要し、高コストに なり、コントロールが難しいものであった。また、非特許文献 3、特許文献 4で報告され た水中パルスストリーマ放電は、水中の微生物や有害化学物質を処理するため OH ラジカルを利用するもので、カーボンナノ材料の可溶ィ匕方法とは無関係である。
[0017] また、非特許文献 4は、水中でパルスストリーマ放電を行うときガスパブリングを行う と、物理的な作用だけでなく直接ィ匕学的な作用により、ラジカルを生成することを開 示する。しかし、これはラジカルの活性によって微生物や有害化学物質を処理するた めのものにすぎないし、難溶性のカーボンナノ材料の可溶ィ匕という課題と、その方法 を示唆するものではない。以上要するに、カーボンナノ材料の構造などには変化を 与えず (構造劣化させず)に、 1つの性質、すなわち難溶性の性質だけを可溶性の性 質に変えるという課題とその解決手段は、特許文献 1〜4、非特許文献 1〜4には開 示されていない。
[0018] 今後カーボンナノ材料は電子デバイス、電気化学などの数多くの分野で応用が見 込まれ、医療、薬学の分野における薬剤や医療用成分の輸送手段、さらに化粧品等 の日常品の分野でも配合成分を生体内へ輸送する輸送手段などとして大きな期待 が寄せられて 、る。これらの技術にとってカーボンナノ材料の可溶ィ匕技術は欠力せ ない技術であり、カーボンナノ材料を親水性溶媒に簡単且つ均一に可溶化する技術 の開発が望まれている。
[0019] そこで本発明は、カーボンナノ材料を構造劣化させることなく親水性溶媒に簡単且 つ均一に溶解させることができ、長期間にわたって安定して分散性を維持することが でき、可溶化処理が低コストで行え、処理のコントロールが容易なカーボンナノ材料 の可溶化方法を提供することを目的とする。
課題を解決するための手段
[0020] 本発明のカーボンナノ材料の可溶ィ匕方法は、カーボンナノ材料を親水性溶媒に混 入し、親水性溶媒中で繰り返しストリーマ放電を行ってカーボンナノ材料の表面に O H基を結合させることが可能な溶媒由来のラジカルを溶媒中に生成し、カーボンナノ 材料を前記ラジカルで親水化して該溶媒に溶解可能に処理すると共に、親水性溶 媒中に安定して分散させることを主要な特徴とする。
発明の効果
[0021] 本発明のカーボンナノ材料の可溶ィ匕方法によれば、カーボンナノ材料を構造劣化 させることなく親水性溶媒に簡単且つ均一に溶解させることができ、長期間にわたつ て安定して分散性を維持することができ、可溶ィ匕処理を低コストで行え、処理のコント ロールを容易に行うことができる。
発明を実施するための最良の形態
[0022] 本発明の第 1の形態は、カーボンナノ材料を親水性溶媒に混入し、親水性溶媒中 で繰り返しストリーマ放電を行ってカーボンナノ材料の表面に OH基を結合させること が可能な溶媒由来のラジカルを前記溶媒中に生成し、カーボンナノ材料を前記ラジ カルで親水化して該溶媒に溶解可能にすると共に、親水性溶媒中に安定して分散さ せることを特徴とするカーボンナノ材料の可溶ィ匕方法であり、カーボンナノ材料を構 造劣化させることなく親水性溶媒に簡単且つ均一に溶解させることができ、長期間に わたって分散性を維持することができ、可溶ィ匕処理を低コストで行え、処理のコント口 ールを容易にすることができる。
[0023] 本発明の第 2の形態は、第 1の形態に従属する形態であって、ストリーマ放電がパ ルスストリーマ放電であることを特徴とするカーボンナノ材料の可溶ィ匕方法であり、処 理にきわめて簡便な装置を使え、カーボンナノ材料を親水性溶媒に簡単に溶解させ ることができ、長期間にわたって安定して分散性を維持することができる。
[0024] 本発明の第 3の形態は、第 1または第 2の形態に従属する形態であって、ストリーマ 放電が、親水性溶媒中に主として Hラジカル、 Oラジカルを生成し、親水性溶媒中の カーボンナノ材料に OH基を形成することを特徴とするカーボンナノ材料の可溶ィ匕方 法であり、カーボンナノ材料を構造劣化させることなく親水性溶媒に簡単且つ均一、 簡単に溶解させることができ、長期間にわたって安定して分散性を維持することがで きる。
[0025] 本発明の第 4の形態は、第 1または第 2の形態に従属する形態であって、ストリーマ 放電が、親水性溶媒中に主として OHラジカルを生成し、親水性溶媒中のカーボン ナノ材料に OH基を形成することを特徴とするカーボンナノ材料の可溶ィ匕方法であり 、カーボンナノ材料を構造劣化させることなく親水性溶媒に簡単且つ均一、簡単に 溶解させることができ、長期間にわたって安定して分散性を維持することができる。
[0026] 本発明の第 5の形態は、第 1または第 2の形態に従属する形態であって、放電中に 該放電による自発または他発の物理力として衝撃波及び又は超音波が前記親水性 溶媒中のカーボンナノ材料にカ卩えられることを特徴とするカーボンナノ材料の可溶ィ匕 方法であり、カーボンナノ材料を親水性溶媒にラジカルと物理力の相乗作用で簡単 、迅速に溶解させることができる。
[0027] 本発明の第 6の形態は、第 1または第 2の形態に従属する形態であって、カーボン ナノ材料が多層カーボンナノチューブ、単層カーボンナノチューブ、フラーレン、カー ボンナノカプセルのいずれかであることを特徴とするカーボンナノ材料の可溶ィ匕方法 であり、様々なカーボンナノ材料を可溶ィ匕して、様々な用途に利用することができる。
[0028] 本発明の第 7の形態は、第 1または第 2の形態に従属する形態であって、ストリーマ 放電がパルス幅 10ns以上で 1 μ s以下のパルス電圧を所定周波数で電極間に印加 することにより行われることを特徴とするカーボンナノ材料の可溶ィ匕方法であり、親水 性溶媒中にラジカルを生成して、カーボンナノ材料を構造劣化させることなく確実に 親水化して親水性溶媒に簡単且つ均一に溶解させることができ、長期間にわたって 分散性を維持することができ、可溶ィ匕処理を低コストで行え、処理のコントロールを容 易にすることができる。
[0029] 本発明の第 8の形態は、カーボンナノ材料を親水性溶媒に混入し、親水性溶媒内 にガスをパブリングさせながら繰り返しストリーマ放電を行ってカーボンナノ材料の表 面に ΟΗ基を結合させることが可能な溶媒由来のラジカルを溶媒中に生成し、カーボ ンナノ材料を前記ラジカルで親水化して該溶媒に溶解可能にすると共に、親水性溶 媒中に安定して分散させることを特徴とするカーボンナノ材料の可溶ィ匕方法であり、 懸濁液中でガスをパブリングしながらストリーマ放電するため、簡単に単層カーボン ナノチューブや単層カーボンナノホーンなどの難溶性のカーボンナノ材料を親水性 溶媒へ可溶ィ匕することができ、カーボンナノ材料の分散性は長期間にわたって安定 して維持することができる。また、カーボンナノ材料の構造劣化を生じさせることなぐ 可溶ィ匕を実現でき、分散性だけを向上させることができる。
[0030] 本発明の第 9の形態は、第 8の形態に従属する形態であって、ガスが酸素、オゾン または不活性ガスのいずれかであることを特徴とするカーボンナノ材料の可溶ィ匕方 法であり、 SWCNTや SWCNHなどの難溶性のカーボンナノ材料を効果的に親水 性溶媒へ可溶ィ匕することができ、カーボンナノ材料の分散性は長期間にわたって安 定して維持することができる。
[0031] 本発明の第 10の形態は、過酸ィ匕水素またはオゾンを溶解した親水性溶媒にカー ボンナノ材料を混入し、親水性溶媒中で繰り返しストリーマ放電を行ってカーボンナ ノ材料の表面に OH基を結合させることが可能な溶媒由来のラジカルを溶媒中に生 成し、カーボンナノ材料を前記ラジカルで親水化して該溶媒に溶解可能にすると共 に、親水性溶媒中に安定して分散させることを特徴とするカーボンナノ材料の可溶ィ匕 方法であり、簡単に単層カーボンナノチューブや単層カーボンナノホーンなどの難溶 性のカーボンナノ材料を親水性溶媒へ可溶ィ匕することができ、カーボンナノ材料の 分散性は長期間にわたって安定して維持することができる。また、カーボンナノ材料 の構造劣化を生じさせることなぐ可溶ィ匕を実現でき、分散性だけを向上させることが できる。
実施例
[0032] (実施例 1)
以下、本発明の実施例 1におけるカーボンナノ材料の可溶ィ匕方法について説明を する。なお、本明細書においては、 CNT、カーボンナノホーン、フラーレン、カーボン ナノカプセル等を対象とするためカーボンナノ材料という力 ナノサイズでなぐ中に はミクロンサイズのものを含む場合がある。従ってこのような場合を含めてカーボンナ ノ材料という。また、実施例 1においてはカーボンナノ材料の例として多層カーボンナ ノチューブ (MWCNT)を可溶ィ匕させる場合を説明する力 単層カーボンナノチュー ブ(SWCNT)、フラーレン、カーボンナノカプセル等でも同様であり、以下の説明は 多層ナノチューブだけに限られるものではない。なお、 SWCNTと単層カーボンナノ ホーン(SWCNH)の可溶ィ匕を更に促進する可溶ィ匕方法については実施例 2 3で 詳細に説明する。
[0033] 図 1は本発明の実施例 1における可溶ィ匕装置の説明図、図 2は本発明におけるパ ルスストリ 放電の発光像写真、図 3は本発明の実施例 1におけるパルスストリ 放電の出力電圧、電流波形の説明図、図 4 (a)は本発明の実施例 1におけるパルス ストリ 放電処理前の懸濁液の写真、図 4 (b)は本発明の実施例 1における ルス ストリ 放電処理後の懸濁液の写真、図 5 (a)は本発明の実施例 1におけるパルス ストリ 放電処理前後及び超音波分散処理を行った場合の透過率の説明図、図 5 (b)は(a)の透過率の鎖線部部分の拡大図、図 6 (a)は本発明の実施例 1におけるパ ルスストリ 放電処理前の多層ナノチューブの SEM写真、図 6 (b)は本発明の実 施例 1におけるパルスストリ 放電処理後の多層カーボンナノチューブの SEM写 真、図 7は本発明の実施例 1におけるパルスストリ 放電処理前後における多層力 一ボンナノチューブの FTIR測定結果説明図、図 8は本発明の実施例 1におけるパ ルスストリ 放電力もの発光スペクトル測定図、図 9 (a)は本発明の実施例 1におけ るパルスストリ 放電処理後の多層カーボンナノチューブの分散化説明図、図 9 (b )は(a)の多層カーボンナノチューブの拡大説明図、図 10は本発明の実施例 1にお けるパルスストリ 放電処理後の多層ナノチューブのラマン分光測定図である。
[0034] 図 1にお!/、て、 1は水やエタノール、メタノール等の親水性溶媒に CNT、フラーレン 、カーボンナノカプセル等のカーボンナノ材料、実施例 1においては水に多層カーボ ンナノチューブ(以下、 MWCNT)を混入した懸濁液であり、 2はこの懸濁液 1を収容 でき内部で放電可能な放電管等の放電用容器である。なお、パルスストリ 放電 処理前に懸濁液 1を攪拌しなければ、 MWCNTは短時間で沈降して 2層化してしまう
[0035] 懸濁液 1に混入する MWCNTは純度が高いものが望ましぐ実施例 1では純度 95 %の MWCNT25mgをイオン交換水 lOOmLに懸濁させ、これによつて 250 μ g/mL の懸濁液 1とし、このうちの 10mL程度を放電用容器 2に収容すると共に、以下説明 する針対平板電極を懸濁液 1に浸漬して測定した。なお、 MWCNTの純度を上げる ための方法は、後で行う放電処理の妨げとならない限り、どのような方法でもよい。
[0036] 3は針対平板電極を構成するパルスストリーマ放電をさせるための針電極、 4は針 電極 3と対向して配置される平板電極である。針電極 3の先端は微小な球状体となつ ており、実施例 1ではタングステン製で約 0. 3mmの曲率半径を有している。また、平 板電極 4はステンレス製の直径 10mmの円板で、針電極 3と平板電極 4にはギャップ 長 gとして 10mmの間隔が設けられている。ギャップ長 gは 5mm〜50mm程度が好 適である。すなわち、ギャップ長 gが短すぎればアーク放電に移行し、長すぎるとストリ 一マ放電が発生しなくなる。従って、ストリーマ放電を発生させて目的とするラジカル を生成するためには、電圧の大きさやパルス幅の影響も考慮して 5mm〜50mmの 中から適したものを選択すればよい。針対平板電極間に高電圧が印加されると、針 電極 3と平板電極 4の間でパルスストリーマ放電が発生する。なお、実施例 1において は、針電極 3とこれに対向する平板電極 4の組合せによってパルスストリーマ放電を 行うが、パルスストリーマ放電を発生させるためには水中に高電界領域を形成すれば よぐ針電極以外に細!、ワイヤー電極などを用いるのも好適である。
[0037] 次に、 5は電圧を可変することができる直流電源部であり、 6はパルス発生部、 7は スパークギャップを備えたギャップスィッチである。直流電源部 5は一端を接地し、他 端をパルス発生部 6に接続して負極性の電圧を印加する。なお、電圧の極性は正極 性であっても構わな!/ヽが、電圧の極性によって安定してノ ルスストリーマ放電を発生 させる条件 (電圧の振幅、パルス幅など)が変化する場合がある。この点、ラジカルを 生成するためには負極性の電圧を印加する方が優れて 、る。パルスストリーマ放電 のためのパルス発生部 6はブルームライン型パルス生成回路を利用するものが好適 であり、この回路は単位長さ当り静電容量 C、インダクタンス Lの特性を有するステー ジがライン方向に複数段分布した等価回路として表される。なお、実施例 1のパルス 発生部 6はこのブルームライン型パルス生成回路によってパルスストリーマ放電を行う 力 パルス発生部 6は、溶媒中のカーボンナノ材料の表面に OH基を結合させること が可能であって、溶媒由来の親水化のために特有なラジカルを生成し、この作用に よって直接または反応によるプロセスを経てカーボンナノ材料に OH基を結合でき、 これにより CNTの凝集体がほぐれて、個々の CNTのバンドル単位(いわば繊維状の CNT)にまで分散できるように繰り返しストリーマ放電を行えればよぐこのブルームラ イン型パルス生成回路を利用するものに限られない。
[0038] 実施例 1においてはブルームライン型パルス生成回路を構成するために、長さ 30 mで、特性インピーダンス(LZC) 1/2が 55 Ωの同軸ケーブルを使用した。ギャップス イッチ 7が動作すると、各ステージで電圧波が形成され、これが重畳、伝播されて、ブ ルームライン型パルス生成回路の負荷側に矩形波のパルス電圧を出力する。この時 、発生するパルス電圧の極性は、直流電源部 5によって発生した電圧の極性とは逆 になる。すなわち、実施例 1においては、ストリーマ放電の極性は正極性となる。また 、このときの矩形波のパルス幅 τは τ = 21 (LC) 1/2である。この 1は同軸ケーブルの 長さを示し、等価回路のステージ数に相当する。従って、同軸ケーブルの長さを調節 することによって、パルス幅 τをコントロールできる。そして、このパルス幅 τをコント口 ールすることでラジカルの生成速度を制御できる。
[0039] なお、図 1に示す可溶化装置において Rは 5Μ Ωの充電抵抗であり、 Rはインピー
1 2 ダンスマッチングのために設けられた 150 Ωの抵抗である。また、実施例 1の可溶ィ匕 装置においては直流電源部 5を—40kV、スパークギャップを 13mm、繰り返し周波 数 15Hz (pps)とした。このとき、理論上のパルス幅 τは 329nsとなる。
[0040] 8は出力電圧を測定するための高圧プローブを用いた電圧測定部、 9は同じくパル スストリーマ放電の出力電流を測定するためのロゴスキーコイル等を使った電流測定 部である。次に、 10は電圧測定部 8と電流測定部 9の測定結果に基づいて直流電源 部 5の電圧、パルスストリーマ放電の繰り返し周波数を制御する制御部である。 11は パルスストリーマ放電を継続する時間を計時する計時部、 12は繰り返し周波数をカウ ントするためのカウンタである。
[0041] そこで、以下、実施例 1の可溶ィ匕装置の動作について説明する。図示しないスイツ チを ONすることにより、制御部 10が直流電源部 5を所定電圧に上昇させ、直流電源 部 5から負極性の電圧をパルス発生部 6に印加する。ブルームライン型パルス生成回 路の各ステージのコンデンサ成分で充電が進み、ギャップスィッチ 7が導通すると放 電のため各ステージで電圧波が形成され、これが重畳、伝播されて、負荷側の針対 平板電極に所定の高パルス電圧を出力し、パルスストリーマ放電が発生する。
[0042] このパルスストリーマ放電は水中にプラズマを形成 (部分的にガス化して形成)する
1S このプラズマはアーク放電によって発生する熱プラズマ (電子温度、イオン温度、 分子温度のいずれもが高温になるプラズマ)とは異なり、電子温度だけが高温になる 非平衡プラズマである。従って、実施例 1の場合水温は常温のままで活性化させるこ とができ、水中に Oや 0、 H、 OH、 H O等のカーボンナノ材料の表面に OH基を結
3 2 2
合させることが可能な種類のラジカルを生成させることができる。その他のアルコール 等の親水性溶媒でも生成量は異なるが同様である。なお、この非平衡プラズマは熱 プラズマでは生成が難 U、ラジカルを生成することを可能にするものである。この CN Tの難溶性を可溶性に変化させるラジカルを生成するパルスストリーマ放電を発生さ せるためには、電極間に立ち上がりが数十〜数百 ns、波高値となるパルス幅はでき れば 10ns以上で 1 μ s以下程度の高パルス電圧を印加すればよい。このパルス幅の 上限と下限は以下の理由によって決定されたものである。すなわち、印加された電圧 が所定値に達してからストリーマ放電が発生するまでには時間遅れが避けられない。 このためパルス幅はこの時間遅れよりも長いことが放電に必要な、最低限の条件とな る。また、逆にパルス幅が長すぎるとストリーマ放電がアーク放電に移行してしまい、 電極金属の溶融とこれによるカーボンナノ材料の汚損を招 、てしまう。カーボンナノ 材料に影響を与えないことを条件に難溶性の性質だけを可溶性の性質に変えるため には、ノ ルス幅が所定長さの 1 μ s以下であることがきわめて重要である。また、繰り 返し周波数は、ラジカルを生成して溶解性を高めるために、 lHz (pps)〜100Hz (p ps)を選択するのが好適である。また、溶媒として水以外のエタノール、メタノール等 の親水性溶媒を使用した場合も同様にラジカルを生成する。なお、放電時間は少な くとも 1分間、できれば 10分〜 1時間、あるいはさらにそれ以上処理を継続して行うの がよい。
[0043] 図 2はこのパルスストリーマ放電の発光像の写真であり、図 3は実施例 1のパルスス トリーマ放電の出力電圧と電流波形を示している。図 3によれば、実施例 1の可溶ィ匕 装置のパルス幅は 353nsで、理論値である 329nsとほぼ一致している。また、立ち上 力 Sり後パルス電圧が印加されている間、出力電流は時間と比例して増加している。こ のため、この電流が増加している 200nsの間に、パルスストリーマ放電が発生してい ることが分かる。なお、実施例 1では一定パルス幅でパルスストリーマ放電を行ってい る力 ストリーマ放電を繰り返し行えば水中にラジカルを生成させることができるから、 放電はこのようなパルスストリーマ放電に限られない。
[0044] 続いて、水中でパルスストリーマ放電を行った懸濁液の分散性について説明する。
実施例 1の可溶ィ匕装置で 5時間パルスストリーマ放電を行った懸濁液に対して、分散 性を評価するために懸濁液の透過光強度測定と SEM観察を行った。透過光強度の 測定には、 He— Neレーザ(口径約 4mm)を用いた。また SEM観察は、リアルサーフ エスビュー顕微鏡 (キーエンス (株)製 VE— 7800)を用いた。観察は、パルスストリ 一マ放電処理後の懸濁液をカバーガラスに滴下し、水を蒸発させた後に行った。可 溶ィ匕の理由を探求するため、パルスストリーマ放電処理後の懸濁液の吸収スペクトル を測定すると共に、パルスストリーマ放電の発光スペクトルの測定を行った。吸収スぺ タトルの測定には、フーリエ変換赤外分光光度計 (FTIR) (日本分光 (株)製 FT/IR — 620)を用い、発光スペクトルの測定においては、分光器 (ゥシォ電機 (株)製 US R— 40V)を用いた。また、パルスストリーマ放電が MWCNTの構造に影響を与えた かどうかを調査するため、懸濁液から水を蒸発させた後、レーザラマン分光光度計( 日本分光 (株)製 NRS— 2000)によりその結晶性を評価した。
[0045] 図 4 (a) (b)はパルスストリーマ放電処理前後の懸濁液の状態を示して 、る。パルス ストリーマ放電処理前の懸濁液は、搔き混ぜても図 4 (a)のように MWCNTがすぐに 沈殿し、上澄みの水溶液は透明となる。これに対して、この懸濁液中で 5時間パルス ストリーマ放電を行うと、時間の経過と共に溶媒の色は徐々に黒くなり、濁りが全体に 広がった。パルスストリーマ放電終了から 5日経過しても図 4 (b)に示すように懸濁液 の分散性はこの状態で維持された。図示はしないが、その後 1ヶ月以上経過してもこ の分散性は変わりがない。この結果から、 CNTを水に可溶ィ匕させるためにパルススト リーマ放電は有効であり、ある意味 CNTにこのような性質が付与されたということがで きる。そして、後述する理由から、 CNTだけでなぐ CNT以外のフラーレン、カーボン ナノカプセル等のカーボンナノ材料を親水性溶媒に可溶ィ匕し、長期間にわたって安 定して溶媒中に分散させた状態を保つことができるものである。
[0046] 次に、懸濁液の透過光強度測定の結果を説明する。図 1において透光性の放電用 容器 2の側面力 懸濁液 1に He— Neレーザを照射することにより透過光の強度を測 定し、光の透過率を測定した。図 5 (a) (b)はパルスストリーマ放電処理前後の懸濁液 に対する光の透過率と、これらと比較のための超音波分散処理(500W、 5時間)を 行った場合の 3種類の透過率を示す。
[0047] パルスストリーマ放電処理前の懸濁液の場合、測定開始から常に透過率が 100% であることから、 MWCNTの分散性がきわめて低い (溶解しない)ことが分かる。超音 波で分散処理した MWCNTの懸濁液も、図 5 (b)に示すように 3分程度で透過率が ほぼ 100%に達し、上澄みは透明になった。これに対し、パルスストリーマ放電処理 後の MWCNTの懸濁液では、測定開始から 1週間経過しても透過率が 5%以下であ り、水溶液の分散性が維持された。なお、図 5 (a) (b)には示していないが、パルスス トリーマ放電処理後の MWCNTの懸濁液は、図 4 (b)に関連して説明したとおり、パ ルスストリーマ放電終了から 1ヶ月以上経過しても室温の水中で安定して分散性が維 持された。
[0048] 従って、透過光強度測定の面からみても、パルスストリーマ放電はカーボンナノ材 料を親水性溶媒に可溶ィ匕し、長期間にわたって溶媒中に分散させることができること が分かる。
[0049] ここで、懸濁液中の MWCNTをパルスストリーマ放電処理前後で SEM観察した結 果について説明する。図 6 (a) (b)はパルスストリーマ放電処理前後の懸濁液の SE M観察結果である。これらの SEM像は、 MWCNT懸濁液の水分を蒸発させた後に 撮影したものである。図 6 (a)はパルスストリーマ放電処理前の懸濁液を示し、溶媒に 均一に分散せず、丸く凝集した粒子が観測される。この粒子を拡大したものが右上の 写真で、平均直径が約 20 mで丸まった MWCNTの凝集体となっている。この懸濁 液中には全体的にこのような MWCNTの凝集体のみが観測され、分散した状態の 繊維状 (概ねバンドル単位)の MWCNTは観測されなかった。
[0050] これに対し、パルスストリーマ放電処理後においては、図 6 (b)のように繊維状の M WCNTがほぼ均一に全体的に分散している。図 6 (a)に示すような凝集体は放電処 理後の水溶液中にほとんど存在せず、図 6 (b)のような状態で均一に分散して!/、る。 従って、 ルスストリ 放電は凝集体を形成して安定ィ匕して 、る MWCNTをほぐし 、各繊維状の MWCNTをそれぞれ水中で安定的に存在させ、水溶液中にほぼ均一 に分散させることが分かる。
[0051] このように実施例 1のカーボンナノ材料の可溶ィ匕方法によれば、パルスストリ 放 電によって MWCNTが水中に安定して分散される力 以下、この可溶ィ匕を可能にす る理由を説明する。先ず、この可溶化にパルスストリ 放電が寄与する最大の理由 は、パルスストリ 放電処理が MWCNTに OH基を結合することが考えられる。図 7にパルスストリ 放電処理前後で MWCNTの懸濁液の FTIR測定を行った結果 を示す。図 7によれば、パルスストリ 放電処理した後にだけ、 3200cm―1 3500 cm_1の領域にお!、てスペクトルの吸収が生じて!/、る。
[0052] この領域は O— Hの伸縮振動による吸収スペクトルであることが知られている力 こ の領域で吸収があったことは、パルスストリ 放電処理前には存在していない OH 基力 パルスストリ 放電により MWCNTに結合されたことを意味する。この状態を 図 9 (b)に示す。図 9 (b)に示すように、本来無極性 (疎水性)である MWCNTの一部 に親水性である OH基が多数形成され、これが親水性溶媒の親水基 (OH基)と馴染 み、安定して水中に存在することが可能となり、可溶ィ匕したと考えられる。すなわち、 水や有機溶媒 (アルコール、酢酸等)などの親水性溶媒は親水性が高いため、無極 性の溶質を溶解せず、親水性の高い極性溶質を溶解し易いが、無極性の MWCNT に対してパルスストリ 放電によって OH基が結合され、溶解可能になったものと考 えられる。
[0053] そして、この MWCNTに OH基を結合させるメカニズムとして次の反応が考えられる 。図 8の発光スペクトルにおいて、実施例 1の条件(パルス電圧、パルス幅、繰り返し 周波数、放電時間等)では、 H aラジカル (656η)と Οラジカル(777nm)のピークが 明確に検出されることから、先ず放電により生成された Oラジカルが MWCNTの表面 を酸ィ匕し、これによつて MWCNTの表面改質が起こり、続いて放電により生成された Hラジカルが MWCNTの表面に吸着した Oラジカルと反応し、 OH基が生成されたと 考えられる。 [0054] このほか図 8に示す測定では明確に検出されていないが、上述した非特許文献 3 で説明したように、水中のパルスストリーマ放電が OHラジカル(309nm)を発生させ ることが知られている。従って、実施例 1とは放電の条件を変えることにより Hラジカル 、 Oラジカルのほかに OHラジカルを生成して、あるいは主として直接 OHラジカルを 生成して MWCNTに結合させることにより OH基を形成することができる。
[0055] また、パルスストリーマ放電が可溶ィ匕に寄与する第 2の理由として、パルスストリーマ 放電により発生する衝撃波、超音波等の物理力の存在が考えられる。図 2のような発 光像を目視したとき、図 9 (a)に示すような状態で、衝撃波、超音波等により凝集した MWCNTが更に細かな凝集体へ粉砕されることが目視により確認できる。なお、ノ ルスストリーマ放電の作用(自発的作用)だけでなぐ外的 (他発的)に物理力(粉砕 力)として衝撃波、超音波等を加えるのも好適である。
[0056] このように実施例 1によれば、ノ ルスストリーマ放電によって親水性溶媒中に Hラジ カル、 Oラジカル、 OHラジカル等のラジカルを生成し、これらをカーボンナノ材料に 結合することにより、炭素クラスターを親水化して親水性溶媒中に溶解し、併せて、ラ ジカル生成と同時に発生する衝撃波、超音波等の物理力でカーボンナノ材料が絡 み合った凝集体を分離するので、カーボンナノ材料を親水性溶媒に安定して可溶ィ匕 することができる。
[0057] 最後に、パルスストリーマ放電がカーボンナノ材料の構造に与える影響にっ 、て説 明する。実施例 1のカーボンナノ材料の構造に対する放電の影響はラマン分光測定 で行った。図 10は MWCNTのラマン分光測定結果である。図 10によれば、ノ レスス トリーマ放電処理の前後のいずれにおいても、 CNTに特徴的な 2つのピークが現れ ている。 1つ目のピークは、 1350cm_1付近の非晶質炭素による Dバンドである。 2つ 目のピークは、 1590cm— 1付近のグラフアイト由来の Gバンドである。この Dバンドと G バンドの高さの比 GZDから、 CNTの結晶性の良さを評価することができる。一般的 に GZD比が大きければ結晶性が良好な物質ということができる。
[0058] そこで、図 10の上段の測定結果を基にパルスストリーマ放電前の MWCNTの GZ D比を求めると、ノ ルスストリーマ放電前の GZD比は 0. 7となり、下段の測定結果を 基にパルスストリーマ放電後の GZD比を求めると 0. 8となって、パルスストリーマ放 電前後で GZD比がほぼ同じ値を示した。これは、ノ ルスストリーマ放電によって M WCNTの構造劣化が生じていないことを示しており、パルスストリーマ放電が MWC NTの構造劣化を生じさせることなぐ可溶化を実現し、分散性だけを向上させたこと が分かる。
[0059] 以上説明したように、実施例 1の可溶ィ匕方法は、懸濁液中でのストリーマ放電を利 用するため、簡単にカーボンナノ材料の親水性溶媒への可溶ィ匕を実現できる。この 方法によるカーボンナノ材料の分散性は長期間にわたって安定して維持される。また 、ストリーマ放電はカーボンナノ材料の構造劣化を生じさせることなぐ可溶化を実現 でき、分散性だけを向上させることができる。
[0060] また、実施例 1のカーボンナノ材料の可溶ィ匕方法は、カーボンナノ材料を親水性溶 媒に均一に溶解させることができ、この処理を行う可溶ィ匕装置が高電圧パルスアーク 放電を行う装置やガス中でのストリーマ放電と分散処理を分離して行う装置等と比較 して簡便な装置で済み、可溶ィ匕処理が低コストで行え、処理のコントロールが容易に なる。
[0061] そして、ストリーマ放電をパルスストリーマ放電にすれば、きわめて簡便な装置となり 、カーボンナノ材料を親水性溶媒に簡単、確実に溶解させることができ、長期間にわ たって安定して分散性を維持することができる。
[0062] (実施例 2)
以下、本発明の実施例 2におけるカーボンナノ材料の可溶ィ匕方法について説明を する。実施例 2においてはカーボンナノ材料として、難溶性の性質が多層カーボンナ ノチューブ(MWCNT)より強!、単層カーボンナノチューブ(SWCNT、以下 SWCT) 、単層カーボンナノホーン (SWCNH、以下 SWCH)を可溶ィ匕する場合を説明する。 し力し、 SWCNTや SWCNHに限られず、 MWCNTなどカーボンナノ材料全般に適 用できることは言うまでもない。
[0063] 図 11は本発明の実施例 2における可溶ィ匕装置の説明図、図 12は本発明の実施例 2におけるパルスストリーマ放電の発光像写真、図 13 (a)は本発明の実施例 2におけ る酸素ガスのパブリングと共に行ったパルスストリーマ放電処理後の懸濁液の写真、 図 13 (b)は本発明の実施例 2におけるパブリングなしで行ったパルスストリーマ放電 処理後の懸濁液の写真、図 13 (c)は本発明の実施例 2におけるパルスストリーマ放 電処理前の懸濁液の写真、図 14は本発明の実施例 2におけるパブリングの有無と吸 光度のスペクトル分布説明図、図 15 (a)は本発明の実施例 2におけるパブリングの有 無で比較した SWCNT懸濁液の吸光度の説明図、図 15 (b)は本発明の実施例 2〖こ おけるバブリングの有無で比較した S WCNH懸濁液の吸光度の説明図、図 16は本 発明の実施例 2における水中ストリーマ放電処理後の SWCNT懸濁液の吸光度の 経時変化図、図 17は本発明の実施例 2における酸素ガスパブリングを併用してストリ 一マ放電処理した SWCNT懸濁液の粒径分布図、図 18は本発明の実施例 2におけ る単層ナノチューブ懸濁液のパルスストリーマ放電中の発光スペクトル分布図である
[0064] また、図 19 (a)は本発明の実施例 2におけるアルゴンガスのパブリングと共に行つ たパルスストリーマ放電処理後の単層カーボンナノチューブ懸濁液の写真、図 19 (b )は本発明の実施例 2におけるパブリングなしで行ったパルスストリーマ放電処理後 の単層カーボンナノチューブ懸濁液の写真、図 20は本発明の実施例 2におけるガス パブリングしたときの SWCNT懸濁液の吸光度への影響を示す比較図であり、図 21 (a)はガスパブリングなしで水中ストリーマ放電処理した後の SWCNT懸濁液の状態 の写真、図 21 (b)は窒素のガスパブリングをしながら放電処理した後の状態の写真、 図 21 (c)はアルゴンのガスパブリングをしながら放電処理した後の状態の写真、図 2 2 (a)は酸素、窒素、アルゴンでガスパブリングを行った場合の H aの発光強度を規 格ィ匕した発光強度の比較図、図 22 (b)は酸素、窒素、アルゴンでガスパブリングを行 つた場合の Oラジカルの発光強度を規格ィ匕した発光強度の比較図である。
[0065] 本発明の実施例 2の可溶ィ匕装置は、基本的に実施例 1の可溶ィ匕装置と共通の構 成を有している。従って、実施例 1で説明した符号と同一符号は、基本的に共通の構 成を示すから、実施例 1に説明を譲り、ここでは省略する。
[0066] 図 11において、 3aはパルスストリーマ放電をさせるためのタングステン製のワイヤ 一電極、 4はワイヤー電極 3aと対向して配置される平板電極である。ワイヤー電極 3a は 60 mの直径を有している。また、平板電極 4はステンレス製の 28mm X 58mm の矩形をしており、ワイヤー電極 3aと平板電極 4にはギャップ長 gとして 13mmの間隔 が設けられている。なお、ギャップ長 gは上述した理由と同様で 5mm〜50mm程度 に設定するのが好適である。ワイヤー対平板電極間に高電圧が印加されると、ワイヤ 一電極 3aと平板電極 4の間でパルスストリーマ放電がワイヤー電極 3aの複数箇所で 発生する。なお、実施例 2の放電用容器 2は 60mm (横方向) X 30mm (縦方向) X 3 Omm (高さ方向)の箱型容器である。
[0067] さらに実施例 2の構成の説明を続ける。 13は酸素や不活性ガスを放電容器 2内の 液中に導きパブリングさせるガス噴出路であり、 14はガス噴出路 13に設けられた流 量制御弁、 15は攪拌装置である。図 12はワイヤー対平板電極間で発生したパルス ストリーマ放電の様子を示す。図 11に示す直流電源部 5、パルス発生部 6、ギャップ スィッチ 7、更に出力電圧を測定する電圧測定部 8、出力電流を測定する電流測定 部 9、計時部 11、カウンタ 12は、実施例 1と基本的に同様であり、説明を省略する。
[0068] SWCNTの可溶ィ匕の手順を説明すると、 SWCNTを放電容器2内の親水性溶媒、 実施例 2においては水に混入し、制御部 10を動作させる。制御部 10はまず流量制 御弁 14を開き、酸素等のパブリングガスを一定の流量で送り液中に噴出させる。さら に制御部 10は攪拌装置 15を動作させ懸濁液 1中で気泡と SWCNTの分布が均一 になるように攪拌させる。その後、ワイヤー対平板電極間に高電圧を印加し、所定時 間パルスストリーマ放電を行い、カーボンナノ材料を可溶ィ匕する。なお、この場合も実 施例 1と同様、 CNTの難溶性を可溶性に変化させるラジカルを生成するノ ルスストリ 一マ放電を発生させるために、電極間に立ち上がりが数十〜数百 ns、パルス幅はで きれば 10ns以上で 1 μ s以下程度の高パルス電圧を 1Hz〜: LOOHzで印加する。少 なくとも 1分間、できれば 10分〜 1時間、あるいはさらにそれ以上放電処理を行う。
[0069] そこで、以下パブリングガスとして噴出させた場合の作用につ 、て説明する。バブリ ングガスは酸素である。パルスストリーマ放電を行わない状態では図 13 (c)の懸濁液 のようになり、ほとんど SWCNTが溶解することはない。し力し、これに対してパルスス トリーマ放電を行うと、図 13 (b)のように溶解する。これは実施例 1において説明した とおりである。このとき懸濁液 1は全体的に濁って SWCNTが溶解したことが分かる。 なお、放電容器 2内の水の量は 50ml、混入した SMCNTは 5mgZ50ml、ガス流量 は 100mlZmin、処理時間(放電時間) 10分で実験している。このときのパルスストリ ーマ放電処理前のSMCNTのSEM写真は図6 (a)とほとんど同様、また、パルススト リーマ放電処理後の SMCNTの SEM写真は図 6 (b)とほとんど同様になるので再掲 しな 、。図 6 (a) (b)を参照された!、。
[0070] これに対し、酸素をパブリングしながらパルスストリーマ放電した場合の結果を図 13
(a)に示す。ガス流量は 100mlZmin、処理時間(放電時間) 10分である。図 13 (b) の懸濁液 1よりも濁りが相当に強ぐ全体的により濃い色(黒に近いグレー)に変色し ている。これは SWCNTが放電だけの場合より更に溶解し、液中に均等に分散して いることを示している。なお、実験は上記の条件で行った力 流量を 100mlZmin〜 500mlZminに変えても結果は同様であった。さらに 500mlZminを越えてバブリン グした場合も同様と考えられる。
[0071] このガスパブリングの効果を定量的に評価するため紫外一可視線を照射し、バブリ ングの有無によりパルスストリーマ放電したときの懸濁液の吸光度の比較を行った。 図 14はパルスストリーマ放電時のパブリングの有無と SWCNT吸光度のスペクトル分 布の関係を示したものである。これによれば 256nmのところでパブリングの有無と関 係なく最大の吸光度を示す。懸濁濃度はいずれも 10 gZmlである。そこで、この 2 56nmにおける最大吸収光度を指標として、パブリングの有無がパルスストリーマ放 電による SWCNTの水溶ィ匕にどのように影響するかを比較して示したものが図 15 (a) である。また、懸濁濃度 50 /z gZmlの SWCNH懸濁液について同様の評価を行つ た結果が図 15 (b)である。
[0072] 図 15 (a)は懸濁濃度 10 gZmlでパブリングの有無により SWCNT懸濁液の吸光 度の比較を行ったものである。これによれば酸素をパブリングした方力 パブリングし な力つた場合より 1. 5倍以上の吸光度となっている。これは酸素をパブリングした SW CNTの懸濁液がより濁っていることを示す。同様に、図 15 (b)は懸濁濃度 50 gZ mlでパブリングの有無により SWCNH懸濁液の吸光度の比較を行ったものである。 これによれば酸素をパブリングした方力 パブリングしな力つた場合より 2倍程度の吸 光度となって 、る。これは酸素をパブリングした SWCNHの懸濁液が格段に濁って いることを示す。なお、図 15 (a) (b)には示していないが、 SWCNTの懸濁液はパル スストリーマ放電終了から 1ヶ月(31日)経過しても室温の水中で安定して分散性が 維持された。同じぐ SWCNHの懸濁液は 26日まで室温の水中で安定して分散性が 維持されることを確認した。 V、ずれも安定して 、ることが十分確認されたため実験を 終了した。従って、パルスストリーマ放電は SWCNTや SWCNHなどの単層のカー ボンナノ材料を親水性溶媒に可溶ィ匕し、長期間にわたって溶媒中に分散させること ができる。
[0073] さらに図 11の構成において測定条件を変更して実験した。すなわち、高電圧側の ワイヤー電極 3aとして直径 60 μ mのワイヤー、接地側の平板電極 4に 15mm X 40m mの矩形のステンレス板を用い、ギャップ長 gを 12mmとした。この装置で、長さ 〜5 μ m、直径 lnm〜2nm (バンドル直径 15nm)、純度 50%〜70%、懸濁濃度 10 0 μ gZmLの SWCNT(Aldrich社製 519308— 250MG)を混入した懸濁液 60ML 中で酸素ガスのパブリングをしながらパルスストリーマ放電を 1時間行った。その結果 を図 16に示す。図 16は水中ストリ一マ放電処理後の S WCNT懸濁液の吸光度の経 時変化を示すものである。これによれば、放電処理後からの数日間は酸素パブリング の有無に関わらず吸光度のピークは少し減少しており、水溶ィ匕した SWCNTの一部 が僅かながら再凝集していることが分かる。しかし、どちらの懸濁液の吸光度も 10日 以降はほぼ一定の吸光度を維持している。長期間可溶ィ匕を保てるのはパルスストリ 一マ放電による作用の所以である。この 10日間の吸光度の減少率は酸素パブリング を行ったときは約 15%、酸素パブリングなしの場合は約 40%であって、酸素パブリン グの併用で SWCNTの可溶ィ匕濃度を高めるだけでなぐ再凝集も抑制できて ヽること が分かる。
[0074] 図 17は酸素ガスパブリングを併用してストリーマ放電処理した SWCNT懸濁液の S WCNTの凝集体の粒径分布を比較したものである。これによれば、放電処理により 粒径分布が 10_2〜10_3程度減少している。放電処理後の SWCNTの粒径は 100η m程度で、 SWCNTのバンドル直径 15nmより大きい値であるが、 SWCNTの高いァ スぺタト比を考慮すると、水中ストリーマ放電によって SWCNTの凝集体がほぐれて 繊維状となり、個々のバンドル単位にまで均一に分散したと考えられる。
[0075] 図 18は SWCNT懸濁液のパルスストリ一マ放電中の発光スぺクトル分布図である。
図 18によれば、酸素ガスパブリングを行った場合の H a (656nm)ラジカル、 H j8 (4 86nm)ラジカル、 0 (777nm)ラジカルの発光強度力 パブリングを行わなかった場 合の H aラジカル、 H βラジカル、 Οラジカルの発光強度より 2倍近く上昇しており、 酸素ガスのパブリングが Οだけでなぐ Οラジカル、 Ηラジカルを格段に増加させてい ることが分力ゝる。
[0076] 以上のことから、パブリングは単に物理的な攪拌効果だけではなぐ化学的な反応 にも寄与していることが分かる。すなわち、放電のチャネルに沿った付近には、放電 による微小気泡だけでなぐパブリングによって形成された微小気泡が存在するよう になり、この微小気泡内ではガス中の電子の平均自由行路(mean free path)が液体 中のそれよりも長ぐ高エネルギーの電子が形成され、この衝突で例えば H 0→11ラ
2 ジカル + OHラジカルのように、ラジカルを生成するものと考えられる。ただ、バブリン グガスの種類でラジカルの量に違いがある。非特許文献 4によれば、パブリングガス が酸素の場合、 OHラジカルが非常に多く生成され、パブリングガスがアルゴンの場 合、 Hラジカル、 Oラジカルが多ぐ OHラジカルは生成量が少ない。図 20、図 22 (a) (b) (c)に関連して後述する力 アルゴンのガスパブリングは SWCNTの可溶ィ匕に最 も優れた作用を有す。これは、アルゴンの場合、主として生成される Hラジカル、 Oラ ジカルが可溶ィ匕に大きな役割を果たしていることを示す。言い換えれば、パブリング の際、ガスの種類 (実はそのガスの溶解度)も影響し、溶解度の大きいガスが生成す るラジカルが OH基結合に大きな寄与をすることをアルゴンが示して 、るとも 、える。
[0077] 酸素ガスの場合は、水中のノ ルスストリーマ放電が直接に OHラジカルを発生させ 、この OHラジカル力 SWCNTや SWCNHの表面に結合することにより OH基を形成 したことが可溶ィ匕の主だった原因と考えられる。しかし、このほか放電により生成され た Oラジカルや O力 WCNTや SWCNHの表面を酸化し、これによつて表面改質が
3
起こり、続いて放電により生成された Hラジカルが SWCNTや SWCNHの表面に吸 着した Oラジカルや Oと反応し、 OH基を生成することも可溶化に二次的な寄与をす
3
ると考えられる。それ故、オゾン (o )ガスをバグリングするのでもよい。
3
[0078] この点、上記したようにパブリングガスがアルゴンガス等の不活性ガスの場合、言 ヽ 換えれば OHラジカルの生成量が少ないこれらのガスの場合は、 Hラジカル、 Oラジ カルが生成され、この Oラジカルが SWCNTや SWCNHの表面を酸化し、さらに放 電により生成された Hラジカル力この表面に吸着した Oラジカルと反応し、 OH基を生 成する。この際不活性であるため電極等に影響を与えない。空気も酸素と不活性の 窒素ガスからなるため総和として以上の説明から理解できる。図 19 (a)は本発明の実 施例 2におけるアルゴンガスのパブリングと共に行ったパルスストリーマ放電処理後の 単層カーボンナノチューブ懸濁液の写真、図 19 (b)は本発明の実施例 2におけるバ ブリングなしで行ったパルスストリーマ放電処理後の単層カーボンナノチューブ懸濁 液の写真である。図 19 (a) (b)によれば、不活性ガスのアルゴンをパブリングしたとき 最も高い懸濁状態となり、これを維持することが分かる。 SWCNTの懸濁液濃度 100 μ g/mUアルゴンガスの流量 100mlZmin、処理時間(放電時間) 10分である。
[0079] 図 20は不活'性ガスとしてのァノレゴン、窒素をガスパブリングしたときの SWCNT懸 濁液の吸光度への影響、すなわち可溶化効率のガス依存性を示す。比較のため同 時に、ガスパブリングなしの場合と、酸素をパブリングした場合の吸光度も示す。上述 した 15mm X 40mmの平板電極 4でギャップ長 g 12mm、 SWCNT (Aldrich社製 51 9308— 250MG)の懸濁液で測定し、処理 5日後のピーク吸光度をガスパブリングな しの数値を指標として規格ィ匕して定量ィ匕したものである。これ〖こよると、ガスパブリング の効果は、アルゴン、窒素、酸素の順に大きいことが分かる。とくにアルゴンのガスバ プリングを併用した場合、パブリングなしの場合に対して 3倍以上の吸光度上昇、す なわち可溶化 SWCNTが増加する。
[0080] 図 21 (a) (b) (c)は水中ストリーマ放電処理後の SWCNT懸濁液の様子を示してお り、図 21 (a)はガスパブリングなしの水中ストリーマ放電処理後の状態、図 21 (b)は 窒素のガスパブリングをしながら水中ストリーマ放電処理した後の状態、図 21 (c)は アルゴンのガスパブリングをしながら水中ストリーマ放電処理した後の状態を示す。 目 視でも一見してガスパブリングの有効性が分かる。このように、酸素や、アルゴン、窒 素等の不活性ガスをガスパブリングすることにより、水中ストリーマ放電による SWCN
Tの可溶ィ匕を高効率ィ匕できることが分かる。なお、空気は酸素と窒素の混合ガスであ り、これについても同様であることは上述した。要するに、いずれのガスパブリングも 水中ストリーマ放電によって発生するラジカルを増加させ、 SWCNT表面の改質を促 進させたと考えられる。 SWCNH等でも同様である。ラジカルの生成に関しては図 18 の発光スペクトルによって説明したとおりであり、溶媒に由来し、例えば酸素パブリン グを行って水中ストリーマ放電した場合、 H a (656nm)、 0 (777nm)ラジカルの発 光強度はそれぞれ 1. 6倍、 1. 7倍に増加する。なお、 H |8 (486nm)、 0 (844nm) ラジカルの発光強度もそれぞれ 1. 5倍、 1. 2倍に増加する。
[0081] 図 22 (a) (b)は酸素、窒素、アルゴンでガスパブリングを行った場合の H aと Oラジ カルの発光強度をそれぞれガスパブリングなしの場合の発光強度を指標として規格 化したものである。併せて、これらガスをガスパブリングしながら 1分間水中ストリーマ 放電を行い、その後パブリングなしの状態で水中ストリーマ放電した場合の発光強度 を示す。後者は前者の発光強度よりやや減少するが、ガスパブリングなしの場合より 少なくとも 1. 5倍以上に増加する。アルゴンの場合が最大で 3倍程度になり、窒素の 場合は 2. 2倍〜 2. 5倍程度、酸素の場合 1. 6倍程度となる。なお、図 22 (a) (b)に おいて各発光強度頂点の I字状に示した表示幅は測定の変動幅を示す。従って、 H aと Oラジカルの生成はアルゴンのガスパブリングが最も効果的で、次いで窒素のガ スバブリング、酸素のガスパブリングの順となる。図 20に示した可溶ィ匕効率において も、同様にアルゴン、窒素、酸素のガスパブリングの順になることから、これはガスの パブリングによって生成されたラジカルが SWCNTの可溶ィ匕に密接に関与しているこ とを示す。
[0082] そして図 22 (a) (b)に示すように、不活性ガスによっても Oラジカルが増加したり、 H ラジカルも増大したりしていることから、パブリングするために供給したガス原子が直 接ラジカルの供給源になっているとは考えにくい。さらに、図 22 (a) (b)において、ガ スバブリングしながら 1分間水中ストリーマ放電し、その後パブリングを停止して水中 ストリーマ放電した場合にも発光強度が増カロして 、ることから、 1分経過して状態では パブリングの物理的な作用は働 、ておらず、ガスパブリングによって水に溶解したガ スがラジカルの発生を促進させたことが分かる。なお、アルゴンの水 lcm3への溶解 度(20°C)が 0. 035cm3であり、酸素の水 lcm3への溶解度(20°C)が 0. 031cm3, 窒素の水 lcm3への溶解度(20°C)が 0. 016cm3であることがガスの溶解度の関与を 強く示唆している。そして、このように溶解度の高いガスが生成するラジカルが OH基 結合に大きな寄与をしているとすれば、酸素は OHラジカル、またアルゴンと窒素等 の不活性ガスは Hラジカル、 Oラジカルを主として生成するため、溶解度と OH基結 合の反応プロセスとの組合せ力も可溶性の大きさが決まって 、る可能性がある。少な くとも、アルゴンによるガスパブリングの有効性は特出している。
[0083] 以上説明したように、実施例 2の可溶化方法は、懸濁液中でガスをパブリングしな 力 Sらストリーマ放電するため、簡単に SWCNTや SWCNHなどの難溶性のカーボン ナノ材料を親水性溶媒へ可溶ィ匕することができる。この方法によるカーボンナノ材料 の分散性は長期間にわたって安定して維持される。また、この方法によってカーボン ナノ材料の構造劣化を生じさせることなぐ可溶ィ匕を実現でき、分散性だけを向上さ せることができる。そして、ストリーマ放電とパブリングの併用でカーボンナノ材料の可 溶ィ匕濃度を高めるだけでなぐその後の再凝集も抑制でき、長期間分散性を維持さ せることができる。
[0084] また、ストリーマ放電のほ力ガスパブリングするだけであるから、高電圧パルスアーク 放電を行う装置やガス中でのストリーマ放電と分散処理を分離して行う装置等と比較 して簡便な装置で済み、可溶ィ匕処理が低コストで行え、処理のコントロールが容易に なる。
[0085] (実施例 3)
以下、本発明の実施例 3におけるカーボンナノ材料の可溶ィ匕方法について説明を する。実施例 3も実施例 2と同様に、単層カーボンナノチューブ (SWCNT)、単層力 一ボンナノホーン(SWCNH)を可溶化する場合を説明する。し力し、 SWCNTや S WCNHに限られず、 MWCNTなどのカーボンナノ材料に適用できることは言うまでも ない。
[0086] 実施例 2においては、 SWCNTや SWCNHなどの難溶性のカーボンナノ材料を可 溶ィ匕するためにパブリングを行った。これに対して、実施例 3においては SWCNTや SWCNHの表面に OH基を生成するために、 OHラジカルを生成し易い溶媒にして おいて水中ストリーマ放電を行うものである。
[0087] すなわち、実施例 3では懸濁液を過酸化水素(H O )の水溶液にしておいて水中
2 2
パルスストリーマ放電を行う。このとき、放電のチャネルに沿った付近は H Oリッチの
2 2 状態となる。この状態でパルスストリーマ放電のプラズマ力 強 、紫外線が放射され、 放電に沿った付近の H Oを活性化し、例えば H O +h v→20Hラジカルの反応を
2 2 2 2
生じ、 OHラジカルに分解する。この OHラジカルを SWCNTや SWCNHの表面に直 接結合させることにより OH基を形成するものである。図 23 (a)は本発明の実施例 3に おける過酸ィ匕酸素の水溶液中で行ったパルスストリーマ放電処理後の単層カーボン ナノチューブ懸濁液の写真、図 23 (b)は本発明の実施例 3におけるパルスストリーマ 放電処理前の単層カーボンナノチューブ懸濁液の写真である。図 23 (a) (b)によれ ば、過酸ィ匕水素溶液でパルスストリーマ放電処理したときも懸濁状態となり、これを維 持することが分かる。ガスパブリングは行わず、 SWCNTの懸濁液濃度 100 gZml 、過酸化水素の濃度(30%)、流量 100mlZmin、処理時間(放電時間) 10分である 。なお、懸濁液をオゾンガス Oの水溶液 (オゾン水)にしておくのでも同様に OH基を
3
形成することができる。
[0088] 実施例 3の可溶化方法は、懸濁液中で過酸化水素水溶液にしてストリーマ放電す るため、簡単に SWCNTや SWCNHなどの難溶性のカーボンナノ材料を親水性溶 媒へ可溶ィ匕することができる。この方法によるカーボンナノ材料の分散性は長期間に わたって安定して維持される。また、この方法によってカーボンナノ材料の構造劣化 を生じさせることなぐ可溶ィ匕を実現でき、分散性だけを向上させることができる。
[0089] また、ストリーマ放電のほか過酸ィ匕水素水溶液にするだけであるから、高電圧パル スアーク放電を行う装置やガス中でのストリーマ放電と分散処理を分離して行う装置 等と比較して簡便な装置で済み、可溶ィ匕処理が低コストで行え、処理のコントロール が容易になる。
産業上の利用可能性
[0090] 本発明は、カーボンナノ材料を親水性溶媒に溶解させて長期間にわたつて分散性 を維持することができる可溶ィ匕方法に適用できる。
図面の簡単な説明
[0091] [図 1]本発明の実施例 1における可溶ィ匕装置の説明図
[図 2]本発明におけるパルスストリーマ放電の発光像写真
[図 3]本発明の実施例 1におけるパルスストリーマ放電の出力電圧、電流波形の説明 図 [図 4] (a)本発明の実施例 1におけるパルスストリ 放電処理前の懸濁液の写真、( b)本発明の実施例 1におけるパルスストリ 放電処理後の懸濁液の写真 圆 5] (a)本発明の実施例 1におけるパルスストリ 放電処理前後及び超音波分散 処理を行った場合の透過率の説明図、 (b) (a)の透過率の鎖線部部分の拡大図 [図 6] (a)本発明の実施例 1における ルスストリ 放電処理前の多層ナノチュー ブの SEM写真、(b)本発明の実施例 1におけるパルスストリ 放電処理後の多層 カーボンナノチューブの SEM写真
[図 7]本発明の実施例 1におけるパルスストリ 放電処理前後における多層カーボ ンナノチューブの FTIR測定結果説明図
[図 8]本発明の実施例 1におけるパルスストリ 放電からの発光スペクトル測定図 [図 9] (a)本発明の実施例 1における ルスストリ 放電処理後の多層カーボンナノ チューブの分散化説明図、(b) (a)の多層カーボンナノチューブの拡大説明図
[図 10]本発明の実施例 1におけるパルスストリ 放電処理後の多層ナノチューブの ラマン分光測定図
圆 11]本発明の実施例 2における可溶ィ匕装置の説明図
[図 12]本発明の実施例 2におけるにおけるパルスストリ 放電の発光像写真
[図 13] (a)本発明の実施例 2における酸素ガスのパブリングと共に行ったパルスストリ 一マ放電処理後の懸濁液の写真、(b)本発明の実施例 2におけるガスパブリングな しで行ったパルスストリ 放電処理後の懸濁液の写真、(c)本発明の実施例 2にお けるパルスストリ 放電処理前の懸濁液の写真
[図 14]本発明の実施例 2におけるパブリングの有無と吸光度のスペクトル分布説明図 [図 15] (a)本発明の実施例 2におけるパブリングの有無で比較した SWCNT懸濁液 の吸光度の説明図、(b)本発明の実施例 2におけるパブリングの有無で比較した SW CNH懸濁液の吸光度の説明図
[図 16]本発明の実施例 2における水中ストリ 放電処理後の SWCNT懸濁液の吸 光度の経時変化図
[図 17]本発明の実施例 2における酸素ガスバブリングを併用してストリ一マ放電処理 した SWCNT懸濁液の粒径分布図 [図 18]本発明の実施例 2における単層ナノチューブ懸濁液のパルスストリーマ放電中 の発光スペクトル分布図
[図 19] (a)本発明の実施例 2におけるアルゴンガスのパブリングと共に行ったパルス ストリーマ放電処理後の単層カーボンナノチューブ懸濁液の写真、(b)本発明の実 施例 2におけるパブリングなしで行ったパルスストリーマ放電処理後の単層カーボン ナノチューブ懸濁液の写真
[図 20]本発明の実施例 2におけるガスパブリングしたときの SWCNT懸濁液の吸光 度への影響を示す比較図
[図 21] (a)ガスパブリングなしで水中ストリーマ放電処理した後の SWCNT懸濁液の 状態の写真、(b)窒素のガスパブリングをしながら放電処理した後の状態の写真、(c )アルゴンのガスパブリングをしながら放電処理した後の状態の写真
[図 22] (a)酸素、窒素、アルゴンでガスパブリングを行った場合の H aの発光強度を 規格化した発光強度の比較図、(b)酸素、窒素、アルゴンでガスパブリングを行った 場合の Oラジカルの発光強度を規格ィ匕した発光強度の比較図
[図 23] (a)本発明の実施例 3における過酸ィ匕酸素の水溶液中で行ったパルスストリー マ放電処理後の単層カーボンナノチューブ懸濁液の写真、(b)本発明の実施例 3に おけるパルスストリーマ放電処理前の単層カーボンナノチューブ懸濁液の写真 符号の説明
1 懸濁液
2 放電用容器
3 針電極
3a ワイヤー電極
4 平板電極
5 直流電源部
6 パルス発生部
7 ギャップスィッチ
8 電圧測定部
9 電流測定部 050649 制御部
計時部
カウンタ
ガス噴出路
流量制御弁
攪拌装置

Claims

請求の範囲
[1] カーボンナノ材料を親水性溶媒に混入し、前記親水性溶媒中で繰り返しストリーマ放 電を行って前記カーボンナノ材料の表面に OH基を結合させることが可能な溶媒由 来のラジカルを前記溶媒中に生成し、前記カーボンナノ材料を前記ラジカルで親水 化して該溶媒に溶解可能にすると共に、前記親水性溶媒中に安定して分散させるこ とを特徴とするカーボンナノ材料の可溶ィ匕方法。
[2] 前記ストリーマ放電がパルスストリーマ放電であることを特徴とする請求項 1記載の力 一ボンナノ材料の可溶ィ匕方法。
[3] 前記ストリーマ放電が、前記前記親水性溶媒中に主として Hラジカル、 Oラジカルを 生成し、前記前記親水性溶媒中のカーボンナノ材料に OH基を形成することを特徴 とする請求項 1または 2記載のカーボンナノ材料の可溶ィ匕方法。
[4] 前記ストリーマ放電が、前記前記親水性溶媒中に主として OHラジカルを生成し、前 記前記親水性溶媒中のカーボンナノ材料に OH基を形成することを特徴とする請求 項 1または 2記載のカーボンナノ材料の可溶ィ匕方法。
[5] 放電中に該放電による自発または他発の物理力として衝撃波及び又は超音波が前 記前記親水性溶媒中のカーボンナノ材料に加えられることを特徴とする請求項 1また は 2記載のカーボンナノ材料の可溶ィ匕方法。
[6] 前記カーボンナノ材料が多層カーボンナノチューブ、単層カーボンナノチューブ、フ ラーレン、カーボンナノカプセルの 、ずれかであることを特徴とする請求項 1または 2 記載のカーボンナノ材料の可溶ィ匕方法。
[7] 前記ストリーマ放電がパルス幅 10ns以上で 1 μ s以下のパルス電圧を所定周波数で 電極間に印加することにより行われることを特徴とする請求項 1または 2記載のカーボ ンナノ材料の可溶ィ匕方法。
[8] カーボンナノ材料を親水性溶媒に混入し、前記親水性溶媒内にガスをパブリングさ せながら繰り返しストリーマ放電を行って前記カーボンナノ材料の表面に ΟΗ基を結 合させることが可能な溶媒由来のラジカルを前記溶媒中に生成し、前記カーボンナノ 材料を前記ラジカルで親水化して該溶媒に溶解可能にすると共に、前記親水性溶 媒中に安定して分散させることを特徴とするカーボンナノ材料の可溶ィ匕方法。
[9] 前記ガスが酸素、オゾンまたは不活性ガスのいずれかであることを特徴とする請求項 8記載のカーボンナノ材料の可溶ィ匕方法。
[10] 過酸ィ匕水素またはオゾンを溶解した親水性溶媒にカーボンナノ材料を混入し、前記 親水性溶媒中で繰り返しストリーマ放電を行って前記カーボンナノ材料の表面に OH 基を結合させることが可能な溶媒由来のラジカルを前記溶媒中に生成し、前記カー ボンナノ材料を前記ラジカルで親水化して該溶媒に溶解可能にすると共に、前記親 水性溶媒中に安定して分散させることを特徴とするカーボンナノ材料の可溶ィ匕方法。
PCT/JP2007/050649 2006-01-20 2007-01-18 カーボンナノ材料の可溶化方法 WO2007083681A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007554932A JP4752073B2 (ja) 2006-01-20 2007-01-18 カーボンナノ材料の可溶化方法
US12/086,302 US8048275B2 (en) 2006-01-20 2007-01-18 Method of solubilizing carbon nanomaterial

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-012400 2006-01-20
JP2006012400 2006-01-20
JP2006-217823 2006-08-10
JP2006217823 2006-08-10

Publications (1)

Publication Number Publication Date
WO2007083681A1 true WO2007083681A1 (ja) 2007-07-26

Family

ID=38287633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050649 WO2007083681A1 (ja) 2006-01-20 2007-01-18 カーボンナノ材料の可溶化方法

Country Status (3)

Country Link
US (1) US8048275B2 (ja)
JP (1) JP4752073B2 (ja)
WO (1) WO2007083681A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283420A (ja) * 2008-05-26 2009-12-03 Kumamoto Univ 液体ストリーマ状放電発生装置
EP2313341A2 (en) * 2008-07-07 2011-04-27 Nanunanu Ltd. Inorganic nanotubes
JP2011102203A (ja) * 2009-11-10 2011-05-26 Teijin Ltd 窒化ホウ素ナノチューブ誘導体、その分散液、及び該窒化ホウ素ナノチューブ誘導体の製造方法
JP2012040507A (ja) * 2010-08-19 2012-03-01 Fujikura Kasei Co Ltd フィラー分散液の製造方法
JP2012129201A (ja) * 2010-11-22 2012-07-05 National Institute Of Advanced Industrial & Technology カーボン材料に金属微粒子が担持された金属微粒子担持体およびその製造方法
JP2013001882A (ja) * 2011-06-21 2013-01-07 Ulvac Japan Ltd グラフェンインク及びその製造方法
JP2013131487A (ja) * 2011-11-22 2013-07-04 National Institute Of Advanced Industrial & Technology プラズマ評価装置
JP2013147367A (ja) * 2012-01-18 2013-08-01 Toyo Jushi Kk 修飾カーボンナノフィラーの製造方法
JP2015102553A (ja) * 2013-11-22 2015-06-04 財團法人工業技術研究院Industrial Technology Research Institute 被覆プローブおよびその製造方法
JP2016113306A (ja) * 2014-12-10 2016-06-23 地方独立行政法人東京都立産業技術研究センター ナノ粒子の製造方法
JP2017039899A (ja) * 2015-08-21 2017-02-23 藤倉化成株式会社 フィラー分散液の製造方法および製造装置
JP2019044056A (ja) * 2017-08-31 2019-03-22 東洋樹脂株式会社 カーボンナノフィラー分散液及び複合材料
WO2019151077A1 (ja) * 2018-01-30 2019-08-08 株式会社スギノマシン 原料の湿式微粒化方法及び湿式微粒化装置
JPWO2021010437A1 (ja) * 2019-07-17 2021-01-21
WO2023032677A1 (ja) * 2021-09-03 2023-03-09 株式会社大阪ソーダ カーボンナノチューブ水分散液

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101355433B1 (ko) 2012-07-11 2014-02-05 한국에너지기술연구원 표면 개질된 탄소섬유를 포함하는 레독스 흐름전지
KR102653892B1 (ko) 2018-08-30 2024-04-02 삼성전자주식회사 화학적 기계적 연마용 슬러리 조성물, 그의 제조 방법, 및 그를 이용한 반도체 소자의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119930A (ja) * 2003-10-20 2005-05-12 Shimizu Corp カーボンナノチューブの親水化方法
JP2005213108A (ja) * 2004-01-30 2005-08-11 Nara Institute Of Science & Technology カーボンナノチューブを含む水溶液の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695953B1 (en) * 1993-11-05 2004-02-24 Florida State University Accelerated methods of oxidizing organic contaminants in aqueous mediums using corona induced reactions and particles therewith
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
US5648523A (en) * 1995-10-26 1997-07-15 Chiang Long Y Fullerene derivatives as free-radical scavengers
JP2001104771A (ja) 1999-10-05 2001-04-17 Ricoh Co Ltd 薄膜および薄膜の製造方法
JP2001252665A (ja) 2000-03-14 2001-09-18 Mitsubishi Heavy Ind Ltd 排水処理装置
JP2003300715A (ja) 2001-11-14 2003-10-21 Toray Ind Inc 多層カーボンナノチューブ、分散液、溶液および組成物、これらの製造方法、ならびに粉末状カーボンナノチューブ
AUPS220302A0 (en) * 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
TW200512007A (en) * 2003-05-30 2005-04-01 Fullerene Internat Corp Cosmetic compositions containing fullerene clusters
US7122165B2 (en) * 2003-11-03 2006-10-17 The Research Foundation Of State University Of New York Sidewall-functionalized carbon nanotubes, and methods for making the same
JP2005272184A (ja) * 2004-03-23 2005-10-06 Honda Motor Co Ltd 親水性カーボンナノチューブの製造方法
US7276283B2 (en) * 2004-03-24 2007-10-02 Wisconsin Alumni Research Foundation Plasma-enhanced functionalization of carbon-containing substrates
JP4515798B2 (ja) * 2004-03-24 2010-08-04 本田技研工業株式会社 カーボンナノチューブ強化複合材料の製造方法
WO2006065937A2 (en) * 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
JP3841106B1 (ja) * 2005-03-28 2006-11-01 ダイキン工業株式会社 生体侵襲反応低減方法、物質改質装置及び空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119930A (ja) * 2003-10-20 2005-05-12 Shimizu Corp カーボンナノチューブの親水化方法
JP2005213108A (ja) * 2004-01-30 2005-08-11 Nara Institute Of Science & Technology カーボンナノチューブを含む水溶液の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BING SUN ET AL.: "Optical study of active species produced by a pulsed streamer corona discharge in water", J. ELECTROSTATICS, vol. 39, 1997, pages 189 - 202, XP004068487 *
IMASAKA K. ET AL.: "Suichu Microplasma ni yoru Carbon Nanotube no Suiyoka (3) Suiso Bubbling ni yoru Kokoritsuka (Formation of Nano Interface between Water-soluble Carbon Nanotube and Bacteria Using Dielectrophoresis)", DAI 67 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 29 August 2006 (2006-08-29), pages 459 U30P-D-3], XP003015475 *
KANETAKE Y. ET AL.: "Taso Carbon Nanotube Kendaku Suiyoekichu deno Streamer Hoden ni yoru Nanotube no Bunsanka (Dispersion of multi-walled carbon nanotubes by pulsed streamer discharge in the suspension of carbon nanotubes", DENKI GAKKAI HODEN KENKYUKAI SHIRYO, vol. ED-06, no. 1-19, 26 January 2006 (2006-01-26), pages 1 - 6, XP003015474 *
KATO Y. ET AL.: "Suichu Pulse Streamer Hoden o Mochiita Carbon Nanotube Suiyoka no Gas Bubbling ni yoru Kokorsuka (The effectiveness of gas bubbling in water solubilization of carbon nanotubes by pulsed streamer discharge in water", ANNUAL CONFERENCE OF FUNDAMENTALS AND MATERIALS SOCIETY IEE JAPAN, vol. 2006, 21 August 2006 (2006-08-21), pages 539, XP003015476 *
KIMINOBU IMASAKA ET AL.: "Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water", NANOTECHNOLOGY, vol. 17, 28 July 2006 (2006-07-28), pages 3421 - 3427, XP020103885 *
SANO N. ET AL.: "Pressure effects on nanotubes formation using the submerged arc in water method", CHEM. PHYS. LETT., vol. 378, no. 1-2, 2003, pages 29 - 34, XP003015473 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283420A (ja) * 2008-05-26 2009-12-03 Kumamoto Univ 液体ストリーマ状放電発生装置
EP2313341A2 (en) * 2008-07-07 2011-04-27 Nanunanu Ltd. Inorganic nanotubes
EP2313341A4 (en) * 2008-07-07 2011-08-24 Nanunanu Ltd INORGANIC CANNONS
JP2011102203A (ja) * 2009-11-10 2011-05-26 Teijin Ltd 窒化ホウ素ナノチューブ誘導体、その分散液、及び該窒化ホウ素ナノチューブ誘導体の製造方法
JP2012040507A (ja) * 2010-08-19 2012-03-01 Fujikura Kasei Co Ltd フィラー分散液の製造方法
JP2012129201A (ja) * 2010-11-22 2012-07-05 National Institute Of Advanced Industrial & Technology カーボン材料に金属微粒子が担持された金属微粒子担持体およびその製造方法
JP2013001882A (ja) * 2011-06-21 2013-01-07 Ulvac Japan Ltd グラフェンインク及びその製造方法
JP2013131487A (ja) * 2011-11-22 2013-07-04 National Institute Of Advanced Industrial & Technology プラズマ評価装置
JP2013147367A (ja) * 2012-01-18 2013-08-01 Toyo Jushi Kk 修飾カーボンナノフィラーの製造方法
JP2015102553A (ja) * 2013-11-22 2015-06-04 財團法人工業技術研究院Industrial Technology Research Institute 被覆プローブおよびその製造方法
US9970959B2 (en) 2013-11-22 2018-05-15 Industrial Technology Research Institute Coated probe and method of fabricating the same
JP2016113306A (ja) * 2014-12-10 2016-06-23 地方独立行政法人東京都立産業技術研究センター ナノ粒子の製造方法
JP2017039899A (ja) * 2015-08-21 2017-02-23 藤倉化成株式会社 フィラー分散液の製造方法および製造装置
JP2019044056A (ja) * 2017-08-31 2019-03-22 東洋樹脂株式会社 カーボンナノフィラー分散液及び複合材料
WO2019151077A1 (ja) * 2018-01-30 2019-08-08 株式会社スギノマシン 原料の湿式微粒化方法及び湿式微粒化装置
JP2019130448A (ja) * 2018-01-30 2019-08-08 株式会社スギノマシン 原料の湿式微粒化方法及び湿式微粒化装置
JPWO2021010437A1 (ja) * 2019-07-17 2021-01-21
WO2021010437A1 (ja) * 2019-07-17 2021-01-21 国立大学法人九州大学 分散液、分散液の製造方法、及び、分散液の保存安定性向上方法
WO2023032677A1 (ja) * 2021-09-03 2023-03-09 株式会社大阪ソーダ カーボンナノチューブ水分散液

Also Published As

Publication number Publication date
JP4752073B2 (ja) 2011-08-17
JPWO2007083681A1 (ja) 2009-06-11
US20090250333A1 (en) 2009-10-08
US8048275B2 (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2007083681A1 (ja) カーボンナノ材料の可溶化方法
Harish et al. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review
Cui et al. Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues
Imasaka et al. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water
WO2005052053A1 (ja) カーボンナノチューブ分散極性有機溶媒及びその製造方法
JP2013147367A (ja) 修飾カーボンナノフィラーの製造方法
JP2007254271A (ja) 炭素材料の製造方法、炭素材料および電子素子の製造方法
JP6152598B2 (ja) カーボンナノチューブ分散液作製方法
Daletou et al. Highly-energy efficient oxidation of MWCNT with nanosecond pulsed dielectric barrier discharge plasma
JP5534456B2 (ja) カーボンナノチューブの製造方法
Kaneko et al. Creation of nanoparticle–nanotube conjugates for life-science application using gas–liquid interfacial plasmas
Boran Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress
Hu et al. Controllable synthesis and Photoluminescence (PL) of amorphous and crystalline carbon nanoparticles
Di Crescenzo et al. Lipophilic guanosine derivatives as carbon nanotube dispersing agents
Kaneko et al. Controlled gas–liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials
Voggu et al. New strategies for the enrichment of metallic single-walled carbon nanotubes
Glory et al. Dispersion study of long and aligned multi-walled carbon nanotubes in water
Tan et al. Ordered deposition of Pd nanoparticles on sodium dodecyl sulfate-functionalized single-walled carbon nanotubes
Mohsin Preparation of carbon nanotube by pulse laser ablation of graphite target in deionized water
Satyabola et al. Transformation of nanodiamonds to onion-like carbons by ambient electrospray deposition
KR100591526B1 (ko) 새로운 탄소 나노튜브-핵산 결합체의 제조
JP2004323258A (ja) カーボンナノチューブの精製方法
KR20180113707A (ko) 나노 복합 소재, 이를 포함하는 약물 전달체 및 나노 복합 소재의 제조 장치
Sun et al. Solubilization of single-walled carbon nanotubes using ozone generated by dielectric barrier discharge
Kshirsagar et al. Flame deposition method for carbon nanoparticles employing green precursors and its composite with Au nanoparticles for photocatalytic degradation of methylene blue

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12086302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706956

Country of ref document: EP

Kind code of ref document: A1