WO2007077827A1 - 電動アシスト自転車 - Google Patents

電動アシスト自転車 Download PDF

Info

Publication number
WO2007077827A1
WO2007077827A1 PCT/JP2006/325917 JP2006325917W WO2007077827A1 WO 2007077827 A1 WO2007077827 A1 WO 2007077827A1 JP 2006325917 W JP2006325917 W JP 2006325917W WO 2007077827 A1 WO2007077827 A1 WO 2007077827A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary power
operating condition
electrically assisted
motor
assisted bicycle
Prior art date
Application number
PCT/JP2006/325917
Other languages
English (en)
French (fr)
Inventor
Satoshi Kamiya
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2007552937A priority Critical patent/JP5048519B2/ja
Priority to EP06843301.0A priority patent/EP1967446B1/en
Publication of WO2007077827A1 publication Critical patent/WO2007077827A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions

Definitions

  • the present invention relates to an electrically assisted bicycle that switches between generation and stop of auxiliary power when a predetermined generation 'stop condition is satisfied.
  • an electric assist bicycle that generates auxiliary power substantially proportional to the pedaling force of an occupant by a motor does not require auxiliary power in order to extend the cruising distance per charging of the battery. There is something that stops the motor in some cases.
  • An example of this type of electrically assisted bicycle is disclosed in Japanese Patent Application Laid-Open No. 2000-72080.
  • the electrically assisted bicycle shown in this publication stops the auxiliary power when the occupant's pedaling force is smaller than the predetermined assist cut pedaling force for a predetermined time, and the occupant's pedaling force stops the predetermined assist restart pedaling force.
  • a configuration is adopted in which auxiliary power is generated when it becomes larger.
  • the assist-cut pedaling force and the assist-restarting pedaling force are both constant values and cannot be changed by the owner of the power-assisted bicycle.
  • the conventional electrically assisted bicycle configured as described above has an increased cruising range, but may have a poor usability. This is because there is a difference in the physical strength of the occupants, and the road surface condition may change suddenly, for example, when the paved road enters an unpaved road. In other words, conventional power-assisted bicycles may generate auxiliary power when auxiliary power is not required, or may not occur when auxiliary power is required. There is.
  • the present invention has been made to solve such problems, and it is possible to switch between an operation mode in which the cruising distance is extended and an operation mode in which auxiliary power is sufficiently generated when necessary.
  • An object of the present invention is to provide an electric assist bicycle.
  • an electrically assisted bicycle is based on a motor that generates auxiliary power corresponding to the magnitude of the treading force and an operating condition that generates and stops the auxiliary power.
  • the operating condition is configured as a set of a generating condition for generating auxiliary power and a stopping condition for stopping the auxiliary power.
  • a plurality of sets having different power consumption amounts of the motor are set, and the motor controller includes an operation condition switching means for switching the plurality of sets of operation conditions into an operation condition for motor control.
  • the operating condition in which the amount of power consumption of the motor is relatively reduced is switched as the operating condition for motor control, so that the cruising distance per one charge of the battery is extended.
  • the operating condition that causes a relatively large amount of power consumption of the motor is switched as the operating condition for controlling the motor, so that there is no shortage when auxiliary power is required.
  • the present invention it is possible to switch between a driving mode in which priority is given to extending the cruising distance and a driving mode in which priority is given to the use of auxiliary power, so that it is possible to provide a power-assisted bicycle that is easy to use.
  • the occupant can switch between the driving mode giving priority to the extension of the cruising distance and the driving mode giving priority to the use of the auxiliary power as required by the switch operation. . Therefore, it is possible to provide a power-assisted bicycle that is even easier to use.
  • the driving mode giving priority to the extension of the cruising distance and the driving mode giving priority to the use of auxiliary power are automatically selected so as to match the driving state. For this reason, the occupant does not need to be aware of the switching of driving modes, so that it is possible to provide an electrically assisted bicycle that is even easier to use.
  • the occupant can arbitrarily change the threshold value for each operating condition so as to be the most suitable condition, the occupant can assist in adapting to the physical strength, preference, etc. of the occupant. Can generate power.
  • the occupant can know whether or not the force generating the auxiliary power is stopped by looking at the display means. Therefore, according to the present invention, it is possible to provide an electrically assisted bicycle capable of easily grasping the situation where auxiliary power is generated.
  • FIG. 1 is a block diagram showing a configuration of a control system of an electrically assisted bicycle according to the present invention.
  • FIG. 2 is a block diagram showing the configuration of auxiliary power ONZOFF calculating means and operating condition switching means.
  • FIG. 3 is a time chart showing the generation and stoppage of auxiliary power for each operating condition with respect to pedal force changes.
  • FIG. 4 is a time chart showing changes in auxiliary power when auxiliary power is generated due to a change in operating conditions.
  • FIG. 5 is a time chart showing changes in auxiliary power when auxiliary power is generated during traveling.
  • FIG. 6 is a time chart showing the timing of stopping the auxiliary power.
  • FIG. 7 is a flowchart showing an operation when selecting an operation condition.
  • Fig. 8 is a flowchart showing an operation when controlling generation / stop of auxiliary power.
  • FIG. 1 is a block diagram showing the configuration of a control system for an electrically assisted bicycle according to the present invention
  • FIG. 2 is a block diagram showing the configuration of auxiliary power ONZOFF calculating means and operating condition switching means
  • FIG. FIG. 4 is a time chart showing changes in auxiliary power when auxiliary power is generated due to a change in operating conditions.
  • FIG. 5 is a time chart showing changes in auxiliary power when auxiliary power is generated during travel
  • Fig. 6 is a time chart showing when to stop the auxiliary power
  • Fig. 7 is an operation when the operating conditions are switched.
  • FIG. 8 is a flowchart showing an operation when controlling generation / stop of auxiliary power.
  • the reference numeral 1 indicates a motor controller for an electrically assisted bicycle according to this embodiment.
  • This motor controller 1 includes a battery 2, a motor 3 that generates auxiliary power using the battery 2 as a power source, an operating condition switching automatic Z manual switch 4, an operating condition switching switch 5, and an operating condition threshold setting described later.
  • Means 6, auxiliary power operation display means 7, acceleration sensor 8, inclination angle sensor 9, vehicle speed sensor 10, and torque sensor 11 are connected.
  • the operating condition switching automatic Z manual switch 4, the operating condition switching switch 5 and the operating condition threshold setting means 6 are provided with a plurality of operating conditions (auxiliary power for each group) in this electrically assisted bicycle as described later. This is used to switch between different occurrence and stop conditions.
  • Each of these switches is a so-called push button switch force, and is connected to the motor controller 1 so that the operating condition can be switched or the threshold value can be changed by pressing the switch.
  • These switches are attached to the switch box 12 together with the auxiliary power operation display means 7, and are attached to a steering handle (not shown) through the switch box 12.
  • the auxiliary power operation display means 7 is constituted by a lamp.
  • the acceleration sensor 8 It is for detecting the acceleration at the time of driving
  • the tilt angle sensor 9 is for detecting the tilt angle of the vehicle body that tilts forward or downward on a slope.
  • the vehicle speed sensor 10 is for detecting the vehicle speed based on the rotation of a rotating body such as a wheel, pedal crankshaft, and motor 3. It should be noted that the vehicle speed can also be calculated by calculation using a motor voltage or a motor current without using the vehicle speed sensor 10.
  • the torque sensor 11 is for detecting the magnitude of the pedaling force when the occupant steps on the pedal (not shown).
  • the motor controller 1 includes a CPU 21 that calculates the output of the motor 3 and controls the generation and stop of auxiliary power, and a motor drive circuit 22 that supplies current to the motor 3 with the current value calculated by the CPU 21. And storage means 23 for storing operating conditions to be described later. This storage means 23 is constituted by a nonvolatile memory.
  • the motor drive circuit 22 is provided with a current detection circuit 24 for detecting the current flowing through the motor 3.
  • the CPU 21 is configured to obtain the output of the motor 3 by a method well known in the art. That is, the CPU 21 has a torque sensor input processing means 25 for obtaining the magnitude of the torque (stepping force) based on the voltage of the torque sensor 11, and a motor corresponding to the magnitude of the pedaling force obtained by the torque sensor input processing means 25. Torque current calculation means 26 for obtaining the output (current command value) 3 and DUTY calculation means 27 for obtaining the duty ratio during motor driving based on the current command value obtained by the torque current calculation means 26. .
  • the CPU 21 When generating auxiliary power that also serves as the power of the motor 3, the CPU 21 sends PWM output data to the motor drive circuit 22 so that a motor output corresponding to the pedaling force of the occupant at that time can be obtained. On the other hand, when stopping the auxiliary power, the CPU 21 sends PWM output data to the motor drive circuit 22 so that the auxiliary power is lost.
  • the stop of the auxiliary power here includes a state in which the motor 3 rotates so that the power transmission member between the motor 3 and the wheel rotates together with the wheel in addition to the motor 3 stopping. A state in which the motor 3 does not generate auxiliary power but rotates as follows is referred to as a no-load accompanying state.
  • the CPU 21 is configured to switch generation / stop of auxiliary power based on a predetermined operating condition.
  • the composition is adopted.
  • the CPU 21 includes auxiliary power ONZOFF calculating means 31, operating condition switching means 32, vehicle load calculating means 33, load torque observer 34, etc., as shown in FIG. .
  • the auxiliary power ONZOFF calculating means 31 has a condition that the magnitude of the input torque (the magnitude of the occupant's pedaling force) obtained by the torque sensor input processing means 25 generates the auxiliary power (
  • this condition is simply referred to as an auxiliary power generation condition
  • a control signal is sent to the duty calculation means 27 so that auxiliary power is generated.
  • the auxiliary power ON / OFF calculating means 31 satisfies the condition that the magnitude of the input torque stops the auxiliary power (hereinafter, this condition is simply referred to as the auxiliary power stop condition), and the state that satisfies the parenthesis condition is in advance.
  • a control signal is sent to the duty calculation means 27 so that the auxiliary power is lost after continuing for the set time (stop waiting time Tw).
  • the auxiliary power ONZOFF calculating means 31 stops the auxiliary power after putting the motor 3 in a no-load accompanying state for a predetermined time.
  • the auxiliary power ONZOFF calculating means 31 lights the auxiliary power operation display means 7 when generating auxiliary power.
  • This data refers to the magnitude of the difference between the maximum pedaling force and the minimum pedaling force, the amount of change in pedaling force per unit time, the amount of change in pedal rotation (increase in auxiliary power by decreasing rotation), or a value obtained by combining these Etc.
  • the condition when the auxiliary power ONZOFF calculating means 31 sends a control signal to the DUTY calculating means 27, that is, the operating condition for generating and stopping the auxiliary power is the generation condition for generating the auxiliary power and the auxiliary power is stopped. It consists of one set of stop conditions. As will be described later, this operating condition is set for a plurality of yarns with different power consumption amounts of the motor 3. The plurality of operating conditions are determined in advance, and are stored in the storage means 23 as shown in FIGS. These operating conditions are read or updated as necessary by the auxiliary power ON ZOFF calculating means 31 as described later.
  • the auxiliary power ONZOFF calculation means 31 includes an auxiliary power reduction means 35, a minimum timing detection means 36, an auxiliary power stop means 37, and a setting storage means 3 described later. 8 and equipped.
  • the operating condition switching means 32 switches two operating conditions to be described later to serve as an operating condition for motor control. More specifically, the operating condition switching means 32 selects either one of the two operating conditions manually or automatically, and uses this one operating condition as the operating condition switching result information. It is configured to be sent.
  • the auxiliary power ONZOFF calculating means 31 reads the operating condition corresponding to the operating condition switching information from the storage means 23, and performs the above-described motor control based on this operating condition.
  • the two operating conditions are relative to the operating condition 1 in which the power consumption of the motor 3 is relatively large and the power consumption of the motor 3 There are two operating conditions, which are fewer.
  • the operation mode when operation condition 1 is selected is simply referred to as the normal mode.
  • the operation mode when operating condition 2 is selected is as follows!
  • auxiliary power generation conditions 1, 2 which are conditions for generating auxiliary power
  • auxiliary power stop conditions 1, 2 which are conditions for stopping auxiliary power. It consists of and respectively.
  • the sinusoidal curve shown in FIG. 3 shows how the pedaling force changes.
  • the horizontal axis represents time and the vertical axis represents the magnitude of the pedaling force.
  • the value of the treading force set as the auxiliary power operating condition 1 is shown as auxiliary power generating pedaling force 1
  • the treading force value set as the auxiliary power stopping condition 1 is shown as auxiliary power stopping treading force 1.
  • Auxiliary power Stop pedaling force 1 is smaller than Auxiliary power generating pedaling force 1!
  • the value of the treading force set as the auxiliary power operating condition 2 is set as the auxiliary power generating pedaling force 2
  • the value of the treading force set as the auxiliary power stop condition 2 is set as the auxiliary power stopping treading force 2.
  • the auxiliary power generation pedaling force 2 is set to a value larger than the auxiliary power generation pedaling force 1.
  • the auxiliary power stop pedaling force 2 is set to a value that is smaller than the auxiliary power generation pedaling force 2 and larger than the auxiliary power generation pedaling force 1.
  • the operation condition switching means 32 is connected to an operation condition switching automatic Z manual switch 4, an operation condition switching switch 5, and an operation condition threshold value setting means 6.
  • the operating condition switching means 32 is connected to load detecting means 39 in the CPU 21.
  • Operation condition switching automatic Z manual switch 4 is used to select whether operation condition 1 and operation condition 2 are switched manually or automatically.
  • the operating condition switching switch 5 is for selecting either the operating condition 1 or the operating condition 2 when manual is selected by the operating condition switching automatic Z manual switch 4.
  • the operating condition threshold value setting means 6 includes the pedaling force values (threshold values) set in the auxiliary power generation condition 1 and the auxiliary power stop condition 1 of the operating condition 1, and the auxiliary power generation of the operating condition 2.
  • the pedaling force values (threshold values) set in Condition 2 and Auxiliary Power Stop Condition 2 are each changed to any value as desired by manual switch operation.
  • the load detection means 39 employs a circuit that obtains the current load of the electrically assisted bicycle by calculation when automatic is selected by the operation condition switching automatic Z manual switch 4.
  • the load detecting means 39 according to this embodiment is constituted by a load torque observer 34 (see FIG. 1).
  • This load torque observer 34 is generally called a disturbance observer, and sets the vehicle load as unknown information.
  • the load torque observer 34 is set by the vehicle speed detected by the vehicle speed sensor 10, the input torque (passenger's pedaling force) detected by the torque sensor 11, and the torque current calculation means 26.
  • the system uses a current command value (motor output) to detect the vehicle load.
  • vehicle load calculation means 33 can be used as shown in FIGS.
  • the vehicle load calculation means 33 is a circuit that calculates the load of the vehicle body by calculation based on the acceleration of the vehicle body detected by the acceleration sensor 8 and the inclination angle detected by the inclination angle sensor 9. It has been.
  • the load detection means 39 described above can be configured by only one of the load torque observer 34 and the vehicle load calculation means 33. However, in addition to this, it is also possible to cause both the load torque observer 34 and the vehicle load calculation means 33 to calculate the load and adopt, for example, an average value of these loads.
  • the operation condition switching means 32 when manual operation is selected by the operation condition switching automatic Z manual switch 4, uses the operation condition selected by the operation condition switching switch 5 as operation condition switching result information. Auxiliary power ONZOFF calculation means 31 Further, the operation condition switching means 32 is one of the operation condition 1 and the operation condition 2 based on the load of the vehicle body obtained by the load detection means 39 when automatic is selected by the operation condition switching automatic Z manual switch 4. Choose either one yourself.
  • the operation condition 1 normal mode
  • the operation condition 2 low power consumption mode
  • the operating condition switching means 32 sends the operating condition selected by itself to the auxiliary power ONZOFF calculating means 31 as the operating condition switching result information.
  • the operation condition switching means 32 switches a plurality of operation conditions (operation condition 1 and operation condition 2) to be an operation condition for motor control.
  • the auxiliary power reducing means 35 of the auxiliary power ONZOFF calculating means 31 is for preventing the passenger from feeling uncomfortable when the auxiliary power is generated.
  • the auxiliary power reduction means 35 sets the magnitude of the auxiliary power when it is generated so that the ratio of the auxiliary power to the occupant's pedaling force is relatively smaller than normal.
  • auxiliary power reduction means 35 for example, as shown in FIG. 4, in the low current consumption mode in which the operating condition 2 is selected and no auxiliary power is generated, at time T1.
  • the ratio of auxiliary power to human power input is gradually increased from 0 until it reaches the normal level.
  • the ratio of auxiliary power to human input is simply called the assist ratio.
  • Auxiliary power ONZOFF calculation means 31 Minimum timing detection means 36 and auxiliary power stop means 37 This is to prevent the passengers from feeling uncomfortable when the auxiliary power is stopped while driving.
  • the minimum timing detection means 36 detects a change in the pedaling force of the occupant at all times, and after the stop waiting time Tw has elapsed in the process of stopping the auxiliary power, a detection signal is output when the magnitude of the pedaling force becomes minimum. Send to auxiliary power stop means 37.
  • the auxiliary power stopping means 37 is configured to stop the auxiliary power when a detection signal is sent from the minimum timing detecting means 36.
  • the auxiliary power ONZOFF calculation means 31 including these minimum timing detection means 36 and auxiliary power stop means 37, as shown in FIG. 6, for example, when the operating condition 2 is in the selected low current consumption mode, the occupant For example, when the pedaling force is less than the auxiliary power stop pedaling force 2 (time T3) and this pedaling force is low for a predetermined time (time T4) and then the pedaling force is minimized (T5), the minimum time A detection signal is sent from the detection means 36 to the auxiliary power stop means 37, and the auxiliary power stop means 37 stops the auxiliary power.
  • the setting power saving means 38 of the auxiliary power ONZOFF calculating means 31 is set to the current operating condition (operating condition 1 or operating condition 2) switched by the operating condition switching means 32 and this operating condition.
  • the threshold values (auxiliary power generating pedaling force 1, 2, auxiliary power stopping pedaling force 1, 2) are stored in the storage means 23.
  • the setting storage means 38 reads the operating conditions and threshold values stored in the storage means 23 last time when the CPU 21 is started up (when the power is turned on). Set the value as the initial value.
  • the motor controller 1 first sets operating conditions by operating as shown in the flowchart of FIG. That is, the motor controller 1 determines whether the operation condition switching automatic / manual switch 4 is switched to manual or automatic in step S1 of the flowchart shown in FIG. If it is switched to manual at this time, it is determined in step S2 whether or not the operating condition switching switch 5 has been switched from the normal mode (operating condition 1) to the low current consumption mode (operating condition 2). . For this determination, the data stored in the storage means 23 as ONZOFF for switching the operating conditions is used. And do it. This data is configured so that the operation state of the operation condition switching switch 5 is divided, and is updated every time the operation condition switching switch 5 is operated.
  • step S3 it is determined whether or not the operating condition switching switch 5 has been switched from the low power consumption current mode to the normal mode. This determination is performed using data stored in the storage means 23 as ONZOFF for switching the operating conditions. In step S3, if this switching has not been performed, the generation / stop of auxiliary power is controlled based on the previously selected operating condition (current mode). In step S3, when switching is performed by the operating condition switching switch 5, the operating condition is switched to the normal mode (operating condition 1) in step S4.
  • step S2 If switching is performed in step S2, the operating condition is switched to the low current consumption mode (operating condition 2) in step S5.
  • step S1 the current load on the vehicle body is calculated in step S6, and in step S7, the current load on the vehicle body changes over the predetermined operating conditions! Determine if /.
  • step S8 If the load on the vehicle body is greater than the value when the operating condition is switched, it is determined in step S8 whether or not the current mode is the normal mode. At this time, if it is not the normal mode, the process proceeds to step S4 to change to the normal mode, and if it is the normal mode, the control is performed based on the current operation condition.
  • step S7 if the load of the vehicle body is switched to the operating condition and is equal to or less than the value, it is determined in step S9 whether or not the current mode is a power consumption mode. At this time, if not in the low current consumption mode, the process proceeds to step S5 to switch to the low current consumption mode, and if in the low current consumption mode, control is performed based on the current operating conditions.
  • step P1 of the flowchart shown in FIG. If auxiliary power is generated, it is determined in step P2 whether the current mode is normal mode. If it is in the normal mode, the process proceeds to Step P3, where it is determined whether or not the current occupant's pedaling force is smaller than the pedaling force set in the auxiliary power stop condition 1.
  • step P3 At this time, if the pedaling force is smaller, as shown in steps P4 to P6, time measurement is started and the auxiliary movement is continued until the stop waiting time Tw for stopping the auxiliary power elapses. After the stop waiting time Tw has elapsed, the auxiliary power is stopped in step P7. In step P3, if the pedaling force is greater than or equal to the pedaling force set in auxiliary power stop condition 1, the process proceeds to step P6 to generate auxiliary power. In this case, the assist ratio is set to the normal level.
  • step P2 If it is determined in step P2 that the current mode is not the normal mode, the process proceeds to step P8, where it is determined whether or not the pedaling force is smaller than the pedaling force set in the auxiliary power stop condition 2. At this time, if the pedal effort is smaller, as shown in steps P9 to P10 and P6, the auxiliary power is used until the stop waiting time Tw for starting the time measurement and stopping the auxiliary power has elapsed. After the stop waiting time Tw elapses, it is determined in step P 11 whether or not the pedal force is minimized. Until the pedal effort is minimized, the process proceeds to step P6 to generate auxiliary power, and when the pedal effort is minimized, the process proceeds to step P7 to stop the auxiliary power.
  • step P1 determines whether or not the current pedal effort is equal to or greater than the pedal effort set in the auxiliary power generation condition 1.
  • Step P14 it is determined whether or not the force is immediately after the operating condition has been changed (the mode has been changed). Proceed to Step P6 to generate auxiliary power. If the operating conditions have just been changed, the process proceeds to step P15 to generate auxiliary power so that the assist ratio becomes smaller than normal.
  • step P12 If it is determined in step P12 that the current mode is not the normal mode, the process proceeds to step P16, in which whether or not the current pedaling force is set to the auxiliary power generation condition 2 and is greater than or equal to the pedaling force Is determined. As a result, if YES, that is, if the current pedaling force is greater, it is determined in step P17 whether or not the current driving force is present. If the vehicle is running, go to Step P15 to move the auxiliary movement so that the assist ratio is smaller than normal. Generate power. If it is not in the running state, proceed to Step P6 to generate the auxiliary power of the size set in the low current consumption mode.
  • the operating condition 2 in which the power consumption of the motor 3 is relatively reduced is switched by the operating condition switching means 32.
  • the cruising range per charge can be extended.
  • the operating condition 1 where the power consumption of the motor 3 is relatively increased is switched by the operating condition switching means 32, so that the auxiliary power can be generated without being insufficient.
  • the auxiliary power can be gradually increased when the auxiliary power is generated, the driving mode in which the auxiliary power is generated from the state where the auxiliary power is not generated is changed. There is no sense of incongruity to the crew when moving.
  • the auxiliary power when stopping the auxiliary power, the auxiliary power is stopped when the pedaling force is minimized, so that the passenger feels uncomfortable when the auxiliary power stops. Gana,.
  • the occupant maximizes the threshold (stepping force value) when switching the operating conditions. Because it can be changed to be suitable conditions, auxiliary power is generated according to the physical strength and taste of the occupant.
  • the occupant can know whether auxiliary power is generated or stopped by looking at the auxiliary power operation display means 7. For this reason, according to this electrically assisted bicycle, a passenger can easily grasp the situation in which auxiliary power is generated.
  • the electrically assisted bicycle when the power is turned on, that is, when the motor controller 1 is started, the operating condition selected during the previous run is automatically selected by the setting storage means 38. . For this reason, according to this electrically assisted bicycle, there is no need to switch between the driving mode that prioritizes extension of the cruising distance and the driving mode that prioritizes the use of auxiliary power each time the motor controller 1 is started. Simple.
  • the electrically assisted bicycle according to the present invention can be used as an electrically assisted bicycle from which a motor output corresponding to the magnitude of human power can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Rehabilitation Tools (AREA)

Abstract

 踏力に対応する補助動力を発生させるモータ(3)を備える。補助動力を発生・停止させる作動条件に基づいてモータ(3)の動作を制御するモータコントローラ(1)を備える。作動条件は、補助動力を発生させる発生条件と補助動力を停止させる停止条件とを1組として構成される。この作動条件は、モータの消費電力量が異なる複数組設定される。モータコントローラ(1)は、これらの複数組の作動条件を切替えてモータ制御用の作動条件とする作動条件切替手段(32)を備えている。

Description

明 細 書
電動アシスト自転車
技術分野
[0001] 本発明は、予め定めた発生'停止条件が満たされたときに補助動力の発生'停止を 切換える電動アシスト自転車に関するものである。
背景技術
[0002] 従来、乗員の踏力に略比例するような補助動力をモータによって発生させる電動ァ シスト自転車としては、ノ ッテリの 1回の充電当たりの航続距離を延ばすために、補助 動力が不必要であるときはモータを停止させるものがある。この種の電動アシスト自 転車としては、例えば特開 2000— 72080号公報に開示されているものがある。
[0003] この公報に示された電動アシスト自転車は、乗員の踏力が予め定めたアシストカット 踏力より小さい状態が所定時間継続したときに補助動力を停止させ、乗員の踏力が 予め定めたアシスト再開踏力より大きくなつたときに補助動力を発生させる構成が採 られている。アシストカット踏力とアシスト再開踏力とは、いずれも一定の値であり、電 動アシスト自転車の所有者が変えることはできな 、。
発明の開示
発明が解決しょうとする課題
[0004] 上述したように構成された従来の電動アシスト自転車は、航続距離が延びる反面、 使い勝手が悪くなるおそれがあった。これは、乗員の体力には差があり、また例えば 舗装路カも未舗装路に入った場合などのように路面状況が急変することがある力もで ある。すなわち、従来の電動アシスト自転車においては、補助動力が不必要なときに 補助動力が発生したり、補助動力が必要なときに発生しないことがあるから、使い勝 手が悪!、ものとなるおそれがある。
[0005] 本発明はこのような問題を解消するためになされたもので、航続距離が延びるよう な運転形態と、必要なときに補助動力が充分発生するような運転形態とを切替えるこ とができる電動アシスト自転車を提供することを目的とする。
課題を解決するための手段 [0006] この目的を達成するために、本発明に係る電動アシスト自転車は、踏力の大きさに 対応した補助動力を発生させるモータと、補助動力を発生 '停止させる作動条件に 基づ 、てモータの動作を制御するモータコントローラとを備えた電動アシスト自転車 において、前記作動条件は、補助動力を発生させる発生条件と補助動力を停止させ る停止条件とを 1組として構成され、かっこの作動条件は、モータの消費電力量が異 なる複数組設定され、前記モータコントローラは、これらの複数組の作動条件を切替 えてモータ制御用の作動条件とする作動条件切替手段を備えているものである。 発明の効果
[0007] 本発明によれば、モータの消費電力量が相対的に少なくなる作動条件がモータ制 御用の作動条件として切替えられることによって、バッテリの 1回の充電当たりの航続 距離が延びる。また、モータの消費電力量が相対的に多くなる作動条件がモータ制 御用の作動条件として切替えられることによって、補助動力が必要なときに不足する ことなく発生する。
したがって、本発明によれば、航続距離の延長を優先した運転形態と、補助動力の 使用を優先した運転形態との切替えが可能となるから、使い勝手力 い電動アシスト 自転車を提供することができる。
[0008] 請求項 2記載の発明によれば、航続距離の延長を優先した運転形態と、補助動力 の使用を優先した運転形態との切替えを乗員がスィッチ操作によって必要に応じて 行うことができる。このため、より一層使い勝手がよい電動アシスト自転車を提供する ことができる。
[0009] 請求項 3記載の発明によれば、航続距離の延長を優先した運転形態と、補助動力 の使用を優先した運転形態とが運転状態に適合するように自動的に選択される。こ のため、乗員は運転形態の切替えを意識しなくてよいから、より一層使い勝手力 い 電動アシスト自転車を提供することができる。
[0010] 請求項 4記載の発明によれば、発生する補助動力が徐々に増大するようになるから 、補助動力が発生して 、な 、状態から補助動力が発生する運転形態に移行したとき に乗員に違和感を与えることがな 、。
請求項 5記載の発明によれば、踏力が最小になったときに補助動力が停止するか ら、補助動力の停止時に乗員に違和感を与えることがない。
[0011] 請求項 6記載の発明によれば、乗員が各作動条件しき ヽ値を最も適した条件となる ように任意に変えることができるから、乗員の体力、好みなどに適合するように補助動 力を発生させることができる。
請求項 7記載の発明によれば、乗員は、表示手段を見ることによって、補助動力が 発生している力停止しているかを知ることができる。このため、この発明によれば、補 助動力の発生する状況を容易に把握することができる電動アシスト自転車を提供す ることがでさる。
[0012] 請求項 8記載の発明によれば、電源投入時などの作動条件切替手段の起動時に 前回の走行時に選択した作動条件が自動的に選択される。このため、この発明によ れば、航続距離の延長を優先した運転形態と、補助動力の使用を優先した運転形 態との切替えを作動条件切替手段の起動毎に行う必要がない。したがって、上述し たように運転形態の切替を行うことができる構成を採って ヽるにもかかわらず、操作が 簡単な電動アシスト自転車を提供することができる。
図面の簡単な説明
[0013] [図 1]図 1は、本発明に係る電動アシスト自転車の制御系の構成を示すブロック図で ある。
[図 2]図 2は、補助動力 ONZOFF計算手段および作動条件切替手段の構成を示す ブロック図である。
[図 3]図 3は、踏力変化に対する作動条件毎の補助動力の発生'停止を示すタイムチ ヤートである。
圆 4]図 4は、作動条件変更に起因して補助動力が発生するときの補助動力の変化 を示すタイムチャートである。
[図 5]図 5は、走行中に補助動力が発生するときの補助動力の変化を示すタイムチヤ ートである。
[図 6]図 6は、補助動力を停止する時期を示すタイムチャートである。
[図 7]図 7は、作動条件を選択するときの動作を示すフローチャートである。
[図 8]図 8は、補助動力の発生 ·停止を制御するときの動作を示すフローチャートであ る。
発明を実施するための最良の形態
[0014] 以下、本発明に係る電動アシスト自転車の一実施の形態を図 1ないし図 8によって 詳細に説明する。
図 1は本発明に係る電動アシスト自転車の制御系の構成を示すブロック図、図 2は 補助動力 ONZOFF計算手段および作動条件切替手段の構成を示すブロック図、 図 3は踏力変化に対する作動条件毎の補助動力の発生 ·停止を示すタイムチャート 、図 4は作動条件変更に起因して補助動力が発生するときの補助動力の変化を示す タイムチャートである。
[0015] 図 5は走行中に補助動力が発生するときの補助動力の変化を示すタイムチャート、 図 6は補助動力を停止する時期を示すタイムチャート、図 7は作動条件を切替えると きの動作を示すフローチャート、図 8は補助動力の発生 ·停止を制御するときの動作 を示すフローチャートである。
[0016] これらの図において、符号 1で示すものは、この実施の形態による電動アシスト自転 車用のモータコントローラを示す。このモータコントローラ 1は、ノ ッテリ 2と、このバッ テリ 2を電源として補助動力を発生させるモータ 3と、後述する作動条件切替自動 Z 手動スィッチ 4、作動条件切替スィッチ 5および作動条件しきい値設定手段 6と、補助 動力作動表示手段 7と、加速度センサ 8と、傾斜角センサ 9と、車速センサ 10と、トル クセンサ 11とが接続されて 、る。
[0017] 作動条件切替自動 Z手動スィッチ 4、作動条件切替スィッチ 5および作動条件しき い値設定手段 6は、後述するように、この電動アシスト自転車において複数組の作動 条件 (各組毎に補助動力の発生,停止の条件が異なる)を切替えるために使用するも のである。これらのスィッチは、それぞれいわゆる押しボタンスィッチ力 なり、押すこ とによって作動条件の切替えまたはしきい値の変更を行うことができるようにモータコ ントローラ 1に接続されている。これらのスィッチは、補助動力作動表示手段 7とともに スィッチボックス 12に取付けられ、このスィッチボックス 12を介して操向ハンドル(図 示せず)に装着されている。
[0018] 補助動力作動表示手段 7はランプによって構成されて 、る。加速度センサ 8は、こ の電動アシスト自転車の走行時の加速度を検出するためのものである。傾斜角セン サ 9は、坂道などで前下がりまたは前上がりに傾斜する車体の傾斜角度を検出する ためのものである。車速センサ 10は、車輪、ペダルクランク軸、モータ 3などの回転体 の回転に基づいて車速を検出するためのものである。なお、車速を検出するに当た つては、車速センサ 10を用いることなぐモータ電圧'モータ電流などを用いた演算 によって算出することもできる。トルクセンサ 11は、乗員がペダル(図示せず)を踏み 込んだときの踏力の大きさを検出するためのものである。
[0019] モータコントローラ 1は、モータ 3の出力の演算や補助動力の発生'停止の制御など を実施する CPU21と、この CPU21によって計算された電流値をもってモータ 3に電 流を流すモータ駆動回路 22と、後述する作動条件を記憶するための記憶手段 23と を備えている。この記憶手段 23は不揮発性メモリによって構成されている。モータ駆 動回路 22には、モータ 3に流れている電流を検出するための電流検出回路 24が設 けられている。
[0020] CPU21は、従来力もよく知られている方法によってモータ 3の出力を求める構成が 採られている。すなわち、 CPU21は、トルクセンサ 11の電圧に基づいてトルク(踏力 )の大きさを求めるトルクセンサ入力処理手段 25と、このトルクセンサ入力処理手段 2 5によって求められた踏力の大きさに対応するモータ 3の出力(電流指令値)を求める トルク電流計算手段 26と、このトルク電流計算手段 26によって求められた電流指令 値に基づいてモータ駆動時のデューティー比を求める DUTY計算手段 27とを備え ている。
[0021] この CPU21は、モータ 3の動力力もなる補助動力を発生させるときに、モータ駆動 回路 22にそのときの乗員の踏力に対応したモータ出力が得られるように PWM出力 データを送る。一方、 CPU21は、補助動力を停止させるときは、補助動力がなくなる ようにモータ駆動回路 22に PWM出力データを送る。ここでいう補助動力の停止とは 、モータ 3が停止する他に、モータ 3と車輪との間の動力伝達部材が車輪と一体に回 転するようにモータ 3が回転する状態を含む。このように補助動力は発生しないがモ ータ 3は回転するような状態を以下においては無負荷連れ回り状態という。
[0022] CPU21は、補助動力の発生.停止を予め定めた作動条件に基づいて切替える構 成が採られている。 CPU21は、これを実現するために、図 2に示すように、補助動力 ONZOFF計算手段 31と、作動条件切替手段 32と、車両負荷計算手段 33と、負荷 トルクオブザーノ 34などを備えて 、る。
[0023] 補助動力 ONZOFF計算手段 31は、この実施の形態においては、トルクセンサ入 力処理手段 25によって求められた入力トルクの大きさ (乗員の踏力の大きさ)が補助 動力を発生させる条件 (以下、この条件を単に補助動力発生条件という)を満たした ときに、補助動力が発生するように DUTY計算手段 27に制御信号を送出する。また 、この補助動力 ON/OFF計算手段 31は、入力トルクの大きさが補助動力を停止さ せる条件 (以下、この条件を単に補助動力停止条件という)を満たし、かっこの条件を 満たす状態が予め定めた時間 (停止待ち時間 Tw)だけ継続した後に、補助動力が なくなるように DUTY計算手段 27に制御信号を送る。
[0024] この補助動力 ONZOFF計算手段 31は、補助動力を停止させるに当って、予め定 めた時間だけモータ 3を無負荷連れ回り状態とした後に停止させる。また、補助動力 ONZOFF計算手段 31は、補助動力を発生させるときには補助動力作動表示手段 7を点灯させる。なお、補助動力の発生 ·停止を制御すべき運転状態を検出するに当 たっては、上述したように踏力の大きさを用いる他に、以下に述べるデータを用いるこ とができる。このデータとは、最大踏力と最小踏力の差分の大きさや、踏力の単位時 間当たりの変化量、ペダル回転数の変化分(回転減少で補助動力増大)あるいはこ れらを組み合わせて求めた値などである。
[0025] 補助動力 ONZOFF計算手段 31が DUTY計算手段 27に制御信号を送るときの 条件、すなわち、補助動力を発生'停止させる作動条件は、補助動力を発生させる 発生条件と、補助動力を停止させる停止条件とを 1組として構成されている。この作 動条件は、後述するように、モータ 3の消費電力量が異なる複数糸且設定されている。 これらの複数 の作動条件は、予め定められており、図 1および図 2に示すように、 記憶手段 23に記憶させてある。これらの作動条件は、後述するように、補助動力 ON ZOFF計算手段 31によって必要に応じて読み出されたり、更新されたりする。
また、補助動力 ONZOFF計算手段 31は、図 2に示すように、後述する補助動力 低減手段 35と、最小時期検出手段 36と、補助動力停止手段 37と、設定保存手段 3 8とを備えている。
[0026] 作動条件切替手段 32は、後述する 2つの作動条件を切替えてモータ制御用の作 動条件とする。詳述すると、作動条件切替手段 32は、 2つの作動条件のうちいずれ か一方の作動条件を手動または自動で選択し、この一方の作動条件を作動条件切 替結果情報として補助動力 ONZOFF計算手段 31〖こ送るように構成されて ヽる。補 助動力 ONZOFF計算手段 31は、作動条件切替情報に対応した作動条件を記憶 手段 23から読み出し、この作動条件に基づいて上述したモータ制御を行う。
[0027] 2つの作動条件とは、この実施の形態においては、図 2に示すように、モータ 3の消 費電力量が相対的に多くなる作動条件 1と、モータ 3の消費電力量が相対的に少な くなる作動条件 2とがある。作動条件 1が選択された場合の運転モードを以下におい ては単に通常モードという。また、作動条件 2が選択された場合の運転モードを以下 にお!/、ては低消費電流モードと!/、う。
[0028] これらの 2つの作動条件 1, 2は、補助動力を発生させるときの条件である補助動力 発生条件 1, 2と、補助動力を停止させるときの条件である補助動力停止条件 1, 2と からそれぞれ構成されている。これらの発生'停止条件 1, 2は、図 3に示すように設 定されている。
[0029] 図 3において、同図中に示す正弦波状の曲線は、踏力が変化する様子を示してお り、横軸に時間をとり、縦軸に踏力の大きさをとつて描いてある。図 3においては、補 助動力作動条件 1として設定された踏力の値を補助動力発生踏力 1とし、補助動力 停止条件 1として設定された踏力の値を補助動力停止踏力 1として示す。補助動力 停止踏力 1は、補助動力発生踏力 1より小さ!/、値に設定されて!、る。
[0030] また、図 3においては、補助動力作動条件 2として設定された踏力の値を補助動力 発生踏力 2とし、補助動力停止条件 2として設定された踏力の値を補助動力停止踏 力 2として示す。補助動力発生踏力 2は、補助動力発生踏力 1より大きい値に設定さ れている。また、補助動力停止踏力 2は、補助動力発生踏力 2より小さくかつ補助動 力発生踏力 1より大きくなる値に設定されている。
[0031] この実施の形態による電動アシスト自転車においては、図 3に示すように、作動条 件 1が選択された場合 (通常モード)は、作動条件 2が選択された場合 (低消費電流 モード)に較べて乗員の踏力が相対的に小さくても補助動力が発生するようになる。
[0032] 作動条件切替手段 32には、図 2に示すように、作動条件切替自動 Z手動スィッチ 4と、作動条件切替スィッチ 5と、作動条件しきい値設定手段 6とが接続されている。ま た、作動条件切替手段 32には、 CPU21内において、負荷検出手段 39が接続され ている。
作動条件切替自動 Z手動スィッチ 4は、作動条件 1と作動条件 2の切替を手動で行 うか自動で行うかを選択するためのものである。作動条件切替スィッチ 5は、作動条 件切替自動 Z手動スィッチ 4によって手動が選択された場合に作動条件 1と作動条 件 2のうちいずれか一方を選択するためのものである。
[0033] 作動条件しきい値設定手段 6は、作動条件 1の補助動力発生条件 1および補助動 力停止条件 1に設定された踏力の値 (しきい値)と、作動条件 2の補助動力発生条件 2および補助動力停止条件 2に設定された踏力の値 (しきい値)とを、それぞれ手動 によるスィッチ操作によって好みに応じ任意の値に変更するためのものである。
[0034] 負荷検出手段 39は、作動条件切替自動 Z手動スィッチ 4によって自動が選択され た場合にこの電動アシスト自転車の現在の負荷を演算によって求める回路が採られ ている。この実施の形態による負荷検出手段 39は、負荷トルクオブザーバ 34 (図 1参 照)によって構成されている。この負荷トルクオブザーバ 34は、一般的に外乱ォブザ ーバと呼ばれるものにおいて、未知の情報として車両負荷を設定したものである。
[0035] この実施の形態による負荷トルクオブザーバ 34は、車速センサ 10によって検出さ れた車速と、トルクセンサ 11によって検出された入力トルク (乗員の踏力)と、トルク電 流計算手段 26によって設定された電流指令値 (モータ出力)とを用いて車体の負荷 を検出する構成が採られている。なお、車体の負荷を検出するためには、上記負荷ト ルクオブザーバ 34の他に、図 1および図 2に示すように、車両負荷計算手段 33を用 いることがでさる。
[0036] この車両負荷計算手段 33は、加速度センサ 8によって検出された車体の加速度と 、傾斜角センサ 9によって検出された傾斜角とに基づいて車体の負荷を演算によつ て求める回路が採られている。上述した負荷検出手段 39としては、負荷トルクォブザ ーバ 34と車両負荷計算手段 33とのうちいずれか一方のみによって構成することがで きるが、この他に、負荷トルクオブザーバ 34と車両負荷計算手段 33との両方に負荷 を算出させ、これらの負荷の例えば平均値を採用するように構成することもできる。
[0037] この実施の形態による作動条件切替手段 32は、作動条件切替自動 Z手動スイツ チ 4により手動が選択された場合、作動条件切替スィッチ 5によって選択された作動 条件を作動条件切替結果情報として補助動力 ONZOFF計算手段 31に送る。また 、作動条件切替手段 32は、作動条件切替自動 Z手動スィッチ 4により自動が選択さ れた場合、負荷検出手段 39によって求められた車体の負荷に基づいて作動条件 1 と作動条件 2とのうちいずれか一方を自ら選択する。
[0038] この選択時には、車体の負荷が予め定めた負荷より大きいときは作動条件 1 (通常 モード)が選択され、車体の負荷が設定負荷以下であるときは作動条件 2 (低消費電 流モード)が選択される。そして、作動条件切替手段 32は、このように自ら選択した作 動条件を作動条件切替結果情報として補助動力 ONZOFF計算手段 31に送る。 すなわち、作動条件切替手段 32は、複数 の作動条件 (作動条件 1と作動条件 2) を切替えてモータ制御用の作動条件とする。
[0039] 補助動力 ONZOFF計算手段 31の補助動力低減手段 35は、補助動力が発生す るときに乗員に違和感を与えることがないようにするためのものである。この補助動力 低減手段 35は、乗員の踏力に対する補助動力の割合が通常時より相対的に小さく なるように、補助動力の発生時の大きさを設定する。
[0040] この補助動力低減手段 35においては、例えば図 4に示すように、作動条件 2が選 択された低消費電流モードにあって補助動力が発生していない状態で、時間 T1のと きに作動条件 1に切替えられて補助動力が発生するようになった場合、人力系の入 力に対する補助動力の割合を 0から通常レベルに達するまで徐々に増大させる。な お、以下においては、人力系の入力(踏力)に対する補助動力の割合を単にアシスト 比という。
[0041] また、例えば図 5に示すように、作動条件 2が選択された低消費電流モードにあつ て補助動力が発生していない状態で、踏力が補助動力発生踏力 2を越えた場合 (時 間 T2)、アシスト比を 0から通常レベルに達するまで徐々に増大させる。
[0042] 補助動力 ONZOFF計算手段 31の最小時期検出手段 36と補助動力停止手段 37 は、走行中に補助動力を停止させたときに乗員に違和感を与えることがないようにす るためのものである。
最小時期検出手段 36は、乗員の踏力の変化を常時検出し、補助動力を停止する 行程において停止待ち時間 Twが経過した後であって、踏力の大きさが最小になつ たときに検出信号を補助動力停止手段 37に送出する。
[0043] 補助動力停止手段 37は、最小時期検出手段 36から検出信号が送られたときに補 助動力を停止させる構成が採られている。これらの最小時期検出手段 36と補助動力 停止手段 37とを備えた補助動力 ONZOFF計算手段 31においては、図 6に示すよ うに、例えば作動条件 2が選択された低消費電流モードにある場合、乗員の踏力が 例えば補助動力停止踏力 2を下回り(時間 T3)、この踏力が低い状態が予め定めた 時間だけ経過し (時間 T4)、その後に踏力が最小になったとき (T5)に、最小時期検 出手段 36から補助動力停止手段 37に検出信号が送られ、補助動力停止手段 37が 補助動力を停止させる。
[0044] 補助動力 ONZOFF計算手段 31の設定保存手段 38は、作動条件切替手段 32に よって切替えられている現在の作動条件 (作動条件 1または作動条件 2)と、この作動 条件に設定されているしきい値 (補助動力発生踏力 1, 2、補助動力停止踏力 1, 2) とを記憶手段 23に記憶させる。また、この設定保存手段 38は、 CPU21の起動時 (電 源投入時)に、記憶手段 23が記憶している前回の電源切断時の作動条件としきい値 とを読み込み、この作動条件としき 、値とを初期値として設定する。
[0045] 次に、上述したモータ 3コンローラの動作を図 7および図 8に示すフローチャートに よって詳細に説明する。
モータコントローラ 1は、先ず、図 7に示すフローチャートに示すように動作すること によって作動条件を設定する。すなわち、モータコントローラ 1は、図 7に示すフロー チャートのステップ S 1にお 、て、作動条件切替自動 Ζ手動スィッチ 4が手動に切替 えられているか自動に切替えられているかを判別する。このとき、手動に切替えられ ている場合は、ステップ S2において、作動条件切替スィッチ 5が通常モード (作動条 件 1)から低消費電流モード (作動条件 2)に切替えられた力否かを判別する。この判 別は、記憶手段 23に作動条件切替の ONZOFFとして記憶されているデータを用 いて行う。このデータは、作動条件切替スィッチ 5の操作状態が分力るように構成され ており、作動条件切替スィッチ 5を操作する毎に更新される。
[0046] この判別結果が NOの場合は、ステップ S3に進み、作動条件切替スィッチ 5が低消 費電流モードから通常モードに切替えられたか否かを判別する。この判別は、記憶 手段 23に作動条件切替の ONZOFFとして記憶されているデータを用いて行う。ス テツプ S3において、この切替えが行われていない場合は、前回選択した作動条件( 現在のモード)に基づいて補助動力の発生'停止を制御する。ステップ S3において、 作動条件切替スィッチ 5による切替えが行われた場合は、ステップ S4において、作動 条件を通常モード (作動条件 1)に切替える。
[0047] ステップ S2において、切替えが行われた場合は、ステップ S5において、作動条件 を低消費電流モード (作動条件 2)に切替える。
一方、ステップ S1において自動が選択されていた場合は、ステップ S6において、 車体の現在の負荷を計算し、ステップ S7において、現在の車体の負荷が予め定め た作動条件切替しき!、値より大き!/、か否かを判別する。
[0048] 車体の負荷が作動条件切替しき 、値より大き 、場合、ステップ S8にお 、て、現在 のモードが通常モードであるか否かを判別する。このとき、通常モードではない場合 は、ステップ S4に進んで通常モードに変更し、通常モードである場合は、現在の作 動条件に基づ 、て制御を行う。
[0049] ステップ S7にお 、て、車体の負荷が作動条件切替しき 、値以下である場合は、ス テツプ S9において、現在のモードが低消費電流モードである力否かを判別する。こ のとき、低消費電流モードではない場合は、ステップ S5に進んで低消費電流モード に切替え、低消費電流モードである場合は、現在の作動条件に基づいて制御を行う
[0050] 上述したように制御モードを決定した後、モータコントローラ 1は、図 8に示すフロー チャートのステップ P1において、現在補助動力を発生している力否かを判別する。補 助動力が発生している場合は、ステップ P2において、現在のモードが通常モードで ある力否かを判別する。通常モードである場合は、ステップ P3に進み、現在の乗員 の踏力が補助動力停止条件 1で設定された踏力より小さいか否かを判別する。 [0051] このとき、踏力の方が小さい場合は、ステップ P4〜P6に示すように、時間計測を開 始し、補助動力を停止させるときの停止待ち時間 Twが経過するまでの間は補助動 力を発生させ、停止待ち時間 Twが経過した後にステップ P7において補助動力を停 止させる。ステップ P3において、踏力が補助動力停止条件 1で設定された踏力以上 である場合は、ステップ P6に進み、補助動力を発生させる。この場合、アシスト比は 通常レベルに設定される。
[0052] ステップ P2において、通常モードではないと判別されたときは、ステップ P8に進み 、踏力が補助動力停止条件 2で設定された踏力より小さいか否かを判別する。このと き、踏力の方が小さい場合は、ステップ P9〜P10および P6に示すように、時間計測 を開始し、補助動力を停止させるときの停止待ち時間 Twが経過するまでの間は補 助動力を発生させ、停止待ち時間 Twが経過した後にステップ P 11において踏力が 最小になった力否かを判別する。そして、踏力が最小になるまではステップ P6に進 んで補助動力を発生させ、踏力が最小になったときにステップ P7に進んで補助動力 を停止させる。
[0053] 一方、ステップ P1にお 、て、 NOと判別された場合、すなわち現在は補助動力を発 生していないと判別された場合であって、ステップ P12において、現在のモードが通 常モードであると判別された場合は、ステップ P13に進み、現在の踏力が補助動力 発生条件 1に設定されている踏力以上である否かを判別する。
[0054] この判別の結果、踏力の方が大きい場合、ステップ P 14において、作動条件が替え られた (モードが替わった)直後である力否かを判別し、切替直後ではな 、場合はス テツプ P6に進んで補助動力を発生させる。また、作動条件が替えられた直後の場合 は、ステップ P15に進み、アシスト比が通常より小さくなるように補助動力を発生させ る。
[0055] ステップ P12において、現在のモードが通常モードではないと判別された場合は、 ステップ P 16に進み、現在の踏力が補助動力発生条件 2に設定されて 、る踏力以上 であるか否かを判別する。この結果、 YES、すなわち現在の踏力の方が大きい場合 は、ステップ P17において、現在走行している状態である力否かを判別する。走行状 態である場合は、ステップ P15に進み、アシスト比が通常より小さくなるように補助動 力を発生させる。走行状態ではない場合は、ステップ P6に進み、低消費電流モード で設定された大きさの補助動力を発生させる。
[0056] 上述したように構成された電動アシスト自転車によれば、モータ 3の消費電力量が 相対的に少なくなる作動条件 2が作動条件切替手段 32により切替えられることによつ て、ノ ッテリの 1回の充電当たりの航続距離を延ばすことができる。また、モータ 3の消 費電力量が相対的に多くなる作動条件 1が作動条件切替手段 32により切替えられる ことによって、補助動力が必要なときに不足することなく発生するようになる。
[0057] したがって、この電動アシスト自転車にぉ 、ては、航続距離の延長を優先した運転 形態と、補助動力の使用を優先した運転形態との切替えが可能となり、乗員の体力、 趣向などに応じた走行が可能になる。
[0058] この実施の形態による電動アシスト自転車においては、作動条件切替自動 Z手動 スィッチ 4により手動を選択することにより、航続距離の延長を優先した運転形態と、 補助動力の使用を優先した運転形態との切替えを乗員がスィッチ操作によって必要 に応じて行うことができる。このため、この電動アシスト自転車においては、人為的に かつ容易に運転形態を変えることができる。
[0059] この実施の形態による電動アシスト自転車においては、作動条件切替自動 Z手動 スィッチ 4により自動を選択することにより、航続距離の延長を優先した運転形態と、 補助動力の使用を優先した運転形態とが運転状態に適合するように自動的に選択さ れる。このため、この電動アシスト自転車によれば、乗員は、運転形態の切替えを意 識する必要がない。
[0060] この実施の形態による電動アシスト自転車においては、補助動力が発生するときに 補助動力を徐々に増大させることができるから、補助動力が発生していない状態から 補助動力が発生する運転形態に移行したときに乗員に違和感を与えることがない。
[0061] この実施の形態による電動アシスト自転車においては、補助動力を停止させるに当 たって、踏力が最小になったときに補助動力を停止させるから、補助動力の停止時 に乗員に違和感を与えることがな 、。
[0062] この実施の形態による電動アシスト自転車においては、作動条件しきい値設定手 段 6を操作することにより、作動条件を切替える際のしきい値 (踏力の値)を乗員が最 も適した条件となるように変えることができるから、乗員の体力、趣向などに合わせて 補助動力が発生する。
[0063] この実施の形態による電動アシスト自転車においては、乗員は、補助動力作動表 示手段 7を見ることによって、補助動力が発生しているか停止しているかを知ることが できる。このため、この電動アシスト自転車によれば、補助動力の発生する状況を乗 員が容易に把握することができる。
[0064] この実施の形態による電動アシスト自転車においては、電源投入時、すなわちモー タコントローラ 1の起動時に、前回の走行時に選択していた作動条件が設定保存手 段 38によって自動的に選択される。このため、この電動アシスト自転車によれば、航 続距離の延長を優先した運転形態と、補助動力の使用を優先した運転形態との切 替えをモータコントローラ 1の起動毎に行う必要がなぐ操作が簡単である。
産業上の利用可能性
[0065] 本発明に係る電動アシスト自転車は、人力の大きさに対応したモータの出力が得ら れる電動アシスト自転車として使用することができる。

Claims

請求の範囲
[1] 踏力の大きさに対応した補助動力を発生させるモータと、
前記補助動力を発生'停止させる作動条件に基づいて前記モータの動作を制御す るモータコントローラとを備えた電動アシスト自転車において、
前記作動条件は、補助動力を発生させる発生条件と補助動力を停止させる停止条 件とを 1組として構成され、
かっこの作動条件は、モータの消費電力量が異なる複数組設定され、 前記モータコントローラは、これらの複数組の作動条件を切替えてモータ制御用の 作動条件とする作動条件切替手段を備えて!/ゝることを特徴とする電動アシスト自転車
[2] 請求項 1記載の電動アシスト自転車において、
作動条件切替手段は、複数組の作動条件のうち 1組の作動条件を手動により選択 する作動条件切替スィッチが接続されて!ヽることを特徴とする電動アシスト自転車。
[3] 請求項 1記載の電動アシスト自転車において、
モータコントローラは、走行時の負荷を検出する負荷検出手段を備え、 作動条件切替手段は、前記負荷検出手段によって検出された負荷の大きさに基づ V、て複数組の作動条件のうち 1組の作動条件を選択する構成が採られて!/ヽることを 特徴とする電動アシスト自転車。
[4] 請求項 1な!、し請求項 3のうち ヽずれか一つに記載の電動アシスト自転車にお!、て モータコントローラは、走行中に補助動力が発生していない状態力も補助動力が発 生する状態に移行するときは、人力に対する補助動力の大きさの割合を相対的に小 さく設定する補助動力低減手段を備えて ヽることを特徴とする電動アシスト自転車。
[5] 請求項 1な!、し請求項 4のうち 、ずれか一つに記載の電動アシスト自転車にお!、て モータコントローラは、ペダル踏力が最も小さくなる最小時期を検出する最小時期 検出手段と、
前記最小時期検出手段によって検出された最小時期に補助動力を停止させる補 助動力停止手段とを備えて!/、ることを特徴とする電動アシスト自転車。
[6] 請求項 1な!、し請求項 5のうち ヽずれか一つに記載の電動アシスト自転車にお!、て モータコントローラは、各作動条件のしきい値をそれぞれ変更可能な作動条件しき V、値設定手段を備えて!/、ることを特徴とする電動アシスト自転車。
[7] 請求項 1な!、し請求項 6のうち ヽずれか一つに記載の電動アシスト自転車にお!、て モータコントローラは、補助動力の発生の有無を判別可能に表示する表示手段を 備えて 、ることを特徴とする電動アシスト自転車。
[8] 請求項 1な!、し請求項 7のうち ヽずれか一つに記載の電動アシスト自転車にお!、て モータコントローラは、現在の作動条件を記憶する記憶手段と、
この記憶手段に記憶された作動条件を起動時の初期値とする設定保存手段とを備 えたことを特徴とする電動アシスト自転車。
PCT/JP2006/325917 2005-12-28 2006-12-26 電動アシスト自転車 WO2007077827A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007552937A JP5048519B2 (ja) 2005-12-28 2006-12-26 電動アシスト自転車
EP06843301.0A EP1967446B1 (en) 2005-12-28 2006-12-26 Motorized assist bicycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-377569 2005-12-28
JP2005377569 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077827A1 true WO2007077827A1 (ja) 2007-07-12

Family

ID=38228180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325917 WO2007077827A1 (ja) 2005-12-28 2006-12-26 電動アシスト自転車

Country Status (4)

Country Link
EP (1) EP1967446B1 (ja)
JP (1) JP5048519B2 (ja)
KR (1) KR101014278B1 (ja)
WO (1) WO2007077827A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162175A (ja) * 2011-02-07 2012-08-30 Yamaha Motor Co Ltd 電動補助自転車
JP2015514627A (ja) * 2012-04-23 2015-05-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ペダル駆動式車両の制御方法及び装置
US9643497B2 (en) 2014-10-31 2017-05-09 Shimano Inc. Bicycle control apparatus
JP2019137119A (ja) * 2018-02-07 2019-08-22 ヤマハ発動機株式会社 電動補助自転車及びその駆動システム
JP2019172214A (ja) * 2018-03-29 2019-10-10 株式会社シマノ 人力駆動車用制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583490B1 (ja) * 2009-06-19 2010-11-17 パナソニック株式会社 電動補助自転車
JP5921936B2 (ja) * 2012-03-30 2016-05-24 本田技研工業株式会社 電動補助自転車
JP6218172B2 (ja) * 2012-12-17 2017-10-25 ヤマハ発動機株式会社 駆動ユニット及び電動補助自転車
FR3009270B1 (fr) * 2013-07-31 2016-09-09 Michelin & Cie Dispositif et procede de regulation de la puissance d'assistance d'un velo a assistance electrique
DE102017219398A1 (de) 2017-10-27 2019-05-02 Brose Antriebstechnik GmbH & Co. Kommanditgesellschaft, Berlin Hybridantrieb für ein Elektrofahrrad

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092370A (ja) * 1995-04-17 1997-01-07 Honda Motor Co Ltd 電動補助自転車
JPH0966884A (ja) 1995-09-01 1997-03-11 Suzuki Motor Corp 補助動力自転車の電源制御装置
JP2655878B2 (ja) * 1988-06-14 1997-09-24 ジャパン・イー・エム株式会社 駆動・負荷制御機構付自転車
JPH1076987A (ja) * 1996-09-06 1998-03-24 Bridgestone Cycle Co 補助動力付き自転車
JPH10181672A (ja) * 1996-12-25 1998-07-07 Sanyo Electric Co Ltd 補助動力付き車両
JPH11105778A (ja) * 1997-10-02 1999-04-20 Mitsubishi Heavy Ind Ltd 自転車用補助駆動モータの制御装置
JPH11147494A (ja) * 1997-11-14 1999-06-02 Honda Motor Co Ltd 自動変速制御装置およびこれを用いた電動補助自転車
JP2000072080A (ja) 1998-08-31 2000-03-07 Yamaha Motor Co Ltd 電動補助自転車の補助動力制御方法
JP2001030970A (ja) * 1999-07-26 2001-02-06 Yamaha Motor Co Ltd 電動車両
JP2002019685A (ja) * 2000-07-06 2002-01-23 Sanyo Electric Co Ltd 前輪駆動電動自転車
EP1298050A1 (en) 2001-09-28 2003-04-02 Honda Giken Kogyo Kabushiki Kaisha Indicator of a motor-assisted bicycle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480998B2 (ja) * 1993-10-29 2003-12-22 ヤマハ発動機株式会社 電動モータ付き乗り物
JPH07228286A (ja) * 1994-02-18 1995-08-29 Kiyadeitsuku Technol Service:Kk 自転車用電動駆動装置
JP3667856B2 (ja) * 1996-02-02 2005-07-06 ヤマハ発動機株式会社 補助動力付き車両の補助動力制御装置
JPH1111375A (ja) * 1997-06-27 1999-01-19 Matsushita Electric Ind Co Ltd 電気自転車の制御方法
JP3327181B2 (ja) * 1997-09-29 2002-09-24 松下電器産業株式会社 電気自転車
JP4183791B2 (ja) * 1998-03-26 2008-11-19 松下電器産業株式会社 補助動力装置付き車輌
JP3985930B2 (ja) * 2000-09-18 2007-10-03 本田技研工業株式会社 電動補助自転車の補助力制御装置
JP2002264882A (ja) * 2001-03-06 2002-09-18 Mitsuba Corp 電動アシスト自転車のアシスト力制御方法
JP4124411B2 (ja) * 2001-09-28 2008-07-23 本田技研工業株式会社 電動補助自転車の回生制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655878B2 (ja) * 1988-06-14 1997-09-24 ジャパン・イー・エム株式会社 駆動・負荷制御機構付自転車
JPH092370A (ja) * 1995-04-17 1997-01-07 Honda Motor Co Ltd 電動補助自転車
JPH0966884A (ja) 1995-09-01 1997-03-11 Suzuki Motor Corp 補助動力自転車の電源制御装置
JPH1076987A (ja) * 1996-09-06 1998-03-24 Bridgestone Cycle Co 補助動力付き自転車
JPH10181672A (ja) * 1996-12-25 1998-07-07 Sanyo Electric Co Ltd 補助動力付き車両
JPH11105778A (ja) * 1997-10-02 1999-04-20 Mitsubishi Heavy Ind Ltd 自転車用補助駆動モータの制御装置
JPH11147494A (ja) * 1997-11-14 1999-06-02 Honda Motor Co Ltd 自動変速制御装置およびこれを用いた電動補助自転車
JP2000072080A (ja) 1998-08-31 2000-03-07 Yamaha Motor Co Ltd 電動補助自転車の補助動力制御方法
JP2001030970A (ja) * 1999-07-26 2001-02-06 Yamaha Motor Co Ltd 電動車両
JP2002019685A (ja) * 2000-07-06 2002-01-23 Sanyo Electric Co Ltd 前輪駆動電動自転車
EP1298050A1 (en) 2001-09-28 2003-04-02 Honda Giken Kogyo Kabushiki Kaisha Indicator of a motor-assisted bicycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1967446A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162175A (ja) * 2011-02-07 2012-08-30 Yamaha Motor Co Ltd 電動補助自転車
JP2015514627A (ja) * 2012-04-23 2015-05-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ペダル駆動式車両の制御方法及び装置
US9834277B2 (en) 2012-04-23 2017-12-05 Robert Bosch Gmbh Method and device for controlling a pedal-operated vehicle
US9643497B2 (en) 2014-10-31 2017-05-09 Shimano Inc. Bicycle control apparatus
JP2019137119A (ja) * 2018-02-07 2019-08-22 ヤマハ発動機株式会社 電動補助自転車及びその駆動システム
JP7060974B2 (ja) 2018-02-07 2022-04-27 ヤマハ発動機株式会社 電動補助自転車及びその駆動システム
JP2019172214A (ja) * 2018-03-29 2019-10-10 株式会社シマノ 人力駆動車用制御装置
US11377166B2 (en) 2018-03-29 2022-07-05 Shimano Inc. Human-powered vehicle control device

Also Published As

Publication number Publication date
KR20080077199A (ko) 2008-08-21
EP1967446A1 (en) 2008-09-10
EP1967446B1 (en) 2014-02-26
KR101014278B1 (ko) 2011-02-16
EP1967446A4 (en) 2012-02-29
JP5048519B2 (ja) 2012-10-17
JPWO2007077827A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5048519B2 (ja) 電動アシスト自転車
EP3127736B1 (en) Regeneration control device of electrically driven vehicle
JP4744283B2 (ja) 補助動力付き車両
JP5842105B2 (ja) 電動アシスト自転車
JP2005278284A (ja) ハイブリッド四輪駆動車の制御装置およびハイブリッド四輪駆動車
JP2004122848A (ja) 電動パワーステアリング制御装置
EP2783970B1 (en) Controller for electric bicycle, power unit for electric bicycle, and electric bicycle
JP2007230411A (ja) 補助動力付き車両
JP2008143330A (ja) 電動補助自転車の駆動力制御装置及び電動補助自転車
JP2014042434A (ja) 鞍乗型電動車両、パワーユニットおよびパワーユニットの制御方法
US20170129341A1 (en) Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle
TW202007583A (zh) 馬達控制裝置、方法及電動輔助車
JP4888300B2 (ja) モータトルク制御装置
JP2024506180A (ja) 電気駆動可能な自転車の電気駆動モータを起動するための方法
JP2007191114A (ja) 補助動力付き車両
JP2010264977A (ja) 電動アシスト自転車
JP6559939B2 (ja) 電動補助自転車
JP2004306818A (ja) 電動アシスト自転車及びその制御方法
JP6391846B2 (ja) 電動アシスト自転車
JP7313846B2 (ja) モータ駆動制御装置及び電動アシスト車
JPH08256401A (ja) 電気式車両の速度制御装置
JP4623864B2 (ja) 電動アシスト自転車
JP2006025471A (ja) 電動車両用バッテリの劣化判定システム
JP2001245402A (ja) 電動車
KR101548914B1 (ko) 전기자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007552937

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087014563

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006843301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE