WO2007072769A1 - 熱発泡性マイクロスフェアー、並びにその製造方法と用途 - Google Patents

熱発泡性マイクロスフェアー、並びにその製造方法と用途 Download PDF

Info

Publication number
WO2007072769A1
WO2007072769A1 PCT/JP2006/325164 JP2006325164W WO2007072769A1 WO 2007072769 A1 WO2007072769 A1 WO 2007072769A1 JP 2006325164 W JP2006325164 W JP 2006325164W WO 2007072769 A1 WO2007072769 A1 WO 2007072769A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming
thermally foamable
temperature
monomer
start temperature
Prior art date
Application number
PCT/JP2006/325164
Other languages
English (en)
French (fr)
Inventor
Tetsuo Ejiri
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to KR1020087013687A priority Critical patent/KR101488024B1/ko
Priority to JP2007551073A priority patent/JP5484673B2/ja
Priority to EP06842850.7A priority patent/EP1964903B1/en
Priority to CN200680047764XA priority patent/CN101341227B/zh
Priority to US12/086,627 priority patent/US8759410B2/en
Priority to KR1020147003802A priority patent/KR101533203B1/ko
Publication of WO2007072769A1 publication Critical patent/WO2007072769A1/ja
Priority to US14/273,356 priority patent/US9605125B2/en
Priority to US15/435,846 priority patent/US10093782B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides

Definitions

  • the present invention relates to a technique related to a thermally foamable microsphere. More specifically, the present invention relates to a thermally foamable microsphere having excellent heat resistance and a high foaming ratio and exhibiting a stable foaming behavior, and a method for producing the thermally foamable microsphere and a suitable application.
  • Background art
  • Heat-foamable microspheres also called heat-expandable microcapsules, are microcapsules made of a volatile foaming agent with an outer shell that also has polymer strength, and are generally used in aqueous dispersion media.
  • an outer shell is formed so as to enclose the foaming agent.
  • thermoplastic resin having a good gas barrier property is generally used.
  • the polymer forming the outer shell is softened by heating.
  • the blowing agent generally, a low boiling point compound such as hydrocarbon which becomes gaseous at a temperature below the softening point of the polymer forming the outer shell is used.
  • Thermally foamable microspheres are used in a wide range of fields such as design-imparting agents, functionality-imparting agents, and light-weighting agents by utilizing the above-described properties of forming foam particles.
  • polymer materials such as synthetic resins (thermoplastic resins and thermosetting resins), rubbers, paints and inks.
  • the required level for thermal foaming microspheres will increase, and for example, improvement in processing characteristics such as heat resistance will be required.
  • conventional thermal foamable microspheres generally have a narrow foaming start temperature range and start foaming at a relatively low temperature. Easy to foam. For this reason, the processing temperature had to be lowered, and the types of synthetic resin and rubber that could be applied were limited.
  • the main monomer is acrylonitrile (I), a monomer containing a carboxyl group (11), A copolymer obtained by polymerizing a monomer (III) having a group that reacts with a carboxyl group of a monomer is used as an outer shell, and heat containing a liquid having a boiling point not higher than the softening temperature of the copolymer.
  • Foaming microspheres have been proposed (Patent Document 1).
  • the foam obtained by this method is characterized by having a glassy brittle outer shell. For this reason, since the foam is completely different from the one having elasticity, the properties of the resin may be lost when creating a porous body having a shape change.
  • Patent Document 2 discloses that an outer shell resin of a thermally foamable microsphere is a nitrile monomer (1), and a single monomer having an unsaturated double bond and a carboxyl group in the molecule.
  • this method can improve heat resistance, the use of a monomer having two or more polymerizable double bonds in the molecule makes the polymer have a crosslinked structure, so that the expansion ratio can be suppressed. End up.
  • Patent Document 3 W099Z43758 publication.
  • Patent Document 2 WO03Z099955.
  • Patent Document 3 Japanese Patent Laid-Open No. 10-306169. Disclosure of the invention
  • the present invention provides a heat-foaming microsphere having excellent heat resistance and a high foaming ratio and exhibiting a stable foaming behavior, a method for producing the heat-foamable microsphere, and a suitable application.
  • the main purpose is to produce the heat-foamable microsphere.
  • the outer shell is a copolymer capable of forming a polymethacrylimide structure, resulting in excellent heat resistance and foaming. It was found that a thermally foamable microsphere having a high magnification and showing a stable foaming behavior can be obtained.
  • the present invention first provides a thermally foamable microsphere in which an outer shell enclosing a foaming agent can form a copolymer having a polymethacrylimide (abbreviated PMI) structure. That is, the thermally foamable microsphere according to the present invention comprises a foaming agent and an outer shell that encloses the foaming agent, and the outer shell has a configuration that can be formed of a copolymer having a polymethacrylimide structure.
  • the monomer capable of forming the polymethacrylimide structure by a copolymerization reaction include methacrylonitrile and methacrylic acid.
  • the thermally foamable microsphere according to the present invention has a b * value of 100 or less after heating at 240 ° C for 2 minutes, or the foaming start temperature and the maximum foaming by heat treatment below the foaming start temperature.
  • the characteristic is that the temperature fluctuation value is within 7% of the foaming start temperature and the maximum foaming temperature before the heat treatment, respectively.
  • a monomer mainly composed of a nitrile monomer and a monomer having a carboxyl group in an aqueous dispersion medium containing a dispersion stabilizer in the presence of a foaming agent a method for producing a thermally foamable microsphere in which the foaming agent is enclosed in an outer shell capable of forming a copolymer having a polymethacrylimide structure by suspension polymerization of a mixture comprising: .
  • meta-tallow-tolyl can be used as the -tolyl-based monomer
  • methacrylic acid can be used as the monomer having a carboxy group.
  • the present invention provides the use of the above-mentioned thermally foamable microsphere as an additive.
  • the heat-foamable microsphere according to the present invention has a characteristic that the foaming start temperature can be sufficiently increased, and therefore when heated to a high temperature when mixed with various synthetic resins, rubber, and binder resin. Undesirably early foaming can be effectively suppressed. Further, even after heating, a stable foaming behavior is maintained, the foaming ratio is high, and the amount of dripping is small, so that the amount of addition can be reduced and the calorie window can be widened.
  • the invention's effect is a characteristic that the foaming start temperature can be sufficiently increased, and therefore when heated to a high temperature when mixed with various synthetic resins, rubber, and binder resin. Undesirably early foaming can be effectively suppressed. Further, even after heating, a stable foaming behavior is maintained, the foaming ratio is high, and the amount of dripping is small, so that the amount of addition can be reduced and the calorie
  • the present invention it is possible to provide a thermally foamable microsphere having excellent heat resistance and a stable foaming behavior with a high foaming ratio. Further, according to the present invention, in addition to increasing the processing temperature before foaming, it is possible to provide a thermally foamable microsphere that does not lower the foaming start temperature even after heat treatment.
  • thermoly foamable microsphere with little thermal yellowing during heating. Further, according to the present invention, agglomeration does not occur during polymerization, and a thermally foamable microsphere can be produced stably.
  • the thermally foamable microsphere according to the present invention comprises a foaming agent and an outer shell that encloses the foaming agent, and the outer shell has a configuration capable of forming a copolymer having a polymethacrylimide structure. It is a feature.
  • This “polymethacrylimide structure” can be obtained by cyclizing a nitrile group and a carboxyl group by heating or the like. Therefore, as a monomer for forming the outer shell, a nitrile monomer and a monomer having a carboxyl group are the main components.
  • the "nitrile monomer” is mainly composed of meta-tali-tolyl, and if necessary, Nitril, oc-black acrylonitrile, a -ethoxyacrylonitrile, fumarol-tolyl, etc. may be used in combination.
  • the "monomer having a carboxyl group” includes methacrylic acid as a main component, and acrylic acid, itaconic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid and the like as necessary. You may use together.
  • the molar ratio of Metatalix-tolyl and methacrylic acid is 1: 9 to 9: 1, more preferably 1: 5 to 5: 1, and still more preferably 1: 3 to 3: 1.
  • vinyl monomers copolymerizable with these may be used. These are used to adjust the foaming properties of the outer shell polymer.
  • the molar ratio of Metatali mouth-tolyl to methacrylic acid is less than 1: 9, the granulation property is reduced and the agglomeration occurs during the polymerization, whereas when the molar ratio is more than 9: 1, thermal yellowing is caused. Significantly lower heat resistance.
  • Examples of the "bule monomer” include vinylidene chloride, butyl acetate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (Meta) acrylic acid esters such as t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, ⁇ -carboxyethyl acrylate Styrene, styrene sulfonic acid or its sodium salt, ⁇ -methyl styrene, styrene monomers such as chlorostyrene, etc., and the polymerization reaction proceeds with a radical initiator such as acrylamide, substituted acrylamide, methacrylamide, substituted methacrylamide. Isomers and mixtures thereof. These copo
  • a polymethacrylimide structure is formed by cyclization of a nitrile group and a carboxyl group
  • the polymerizable carbon-carbon double bond include a bur group, a methacryl group, an acryl group, and a aryl group. Two or more polymerizable carbon carbon double bonds may be the same or different from each other. Use a mixture of two or more different crosslinkable monomers.
  • crosslinkable monomer examples include aromatic dibi-Louis compounds such as dibutenebenzene, dibutanaphthalene, and derivatives thereof; ethylene glycol diatalate, and ethylene glycol diatali.
  • Diethylenically unsaturated carboxylic acid esters such as acrylate, ethylene glycolenoresimethacrylate, diethyleneglycolone dimetatalylate, polyethylenically unsaturated forces such as triethylene glycol diatalylate and triethylene glycol dimetatalylate, rubonic acid ester, 1, 4 butane Bifunctional cross-linkable monomers such as diols, aliphatic terminal alcohols such as 1,9-nonanediol, or talilate or metatalylate, N, N-dibulaline, divinyl ethers such as divinyl ether Can be mentioned.
  • Diethylenically unsaturated carboxylic acid esters such as acrylate, ethylene glycolenoresimethacrylate, diethyleneglycolone dimetatalylate, polyethylenically unsaturated forces such as triethylene glycol diatalylate and triethylene glycol dimetatalylate, rubonic acid ester, 1, 4 butane Bifunctional
  • crosslinkable monomers examples include tri- or more functional groups such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol tritalylate, pentaerythritol trimetatalylate, and triacryl formal. Mention may be made of polyfunctional crosslinkable monomers as well as triallyl cyanurate or triallyl isocyanurate.
  • a suitable amount of the crosslinking agent is 0-0. A 4 mol 0/0, and more preferably 0-0. 3 mol%. When the amount exceeds 4 mol%, the expansion ratio is remarkably reduced.
  • foaming agent included in the outer shell, methane, ethane, propane, n-butane, isobutane, n pentane, isopentane, nepentane, n-hexane, isohexane , N-heptane, isoheptane, n-octane, isooctane, n-nonane, isononane, n-decane, isodecane, n-dodecane, hydrocarbons such as isododecane, chlorofluorocarbons such as CC13F, and tetraalkylsilanes such as tetramethylsilane Etc. can be illustrated.
  • foaming agents can be used alone or in combination of two or more depending on the purpose and application.
  • a chemical foaming agent can also be used together.
  • the ratio of the foaming agent encapsulated in the heat-foamable microsphere is usually 5 to 50% by weight, preferably 7 to 40% by weight, based on the total amount. Therefore, it is desirable to adjust the use ratio of the polymerizable monomer and the foaming agent so that the outer shell polymer and the foaming agent have the above ratio after the polymerization.
  • the heat-foamable microsphere having the above structure is generally obtained by suspension polymerization of a polymerizable monomer in an aqueous dispersion medium containing a dispersion stabilizer in the presence of a foaming agent. Can be manufactured.
  • a polymerizable monomer mixture containing at least a polymerizable monomer and a foaming agent is dispersed in an aqueous dispersion medium to form oil-based polymerizable monomer droplets. To do. This process may be referred to as a “granulation process”.
  • the polymerizable monomer in the aqueous dispersion medium is stirred and mixed with a mixture of polymerizable monomers capable of forming a polymethacrylimide structure and the aqueous dispersion medium. Form droplets of the body mixture.
  • the average particle size of the droplets is preferably approximately 1 to 500 ⁇ m, preferably 3 to 300 ⁇ m, particularly preferably approximately equal to the average particle size of the target thermally foamable microsphere. Preferably, it is 5 to 200 ⁇ m.
  • an aqueous dispersion medium and a polymerizable monomer mixture are supplied into a continuous high-speed rotation high shear type stirring and dispersing machine, and the stirring and dispersing are performed. It is preferable to employ a method in which both are continuously stirred and dispersed in the machine, and then the obtained dispersion is poured into a polymerization tank and suspension polymerization is performed in the polymerization tank.
  • the suspension polymerization causes the inside of the outer shell formed from the produced polymer to be contained.
  • a thermally foamable microsphere having a structure in which a foaming agent is enclosed can be obtained.
  • “Suspension polymerization” is generally performed by degassing the inside of the reaction vessel or replacing it with an inert gas and raising the temperature to 30 to: LO 0 ° C.
  • the polymerization temperature may be controlled to a constant temperature, or the temperature may be increased in stages.
  • the reaction mixture containing the thermally foamable microspheres produced is treated by a method such as filtration, centrifugation or sedimentation to separate the thermally foamable microspheres from the reaction mixture.
  • the separated thermally foamable microspheres are recovered in the form of a wet cake after washing and filtering. If necessary, the surface of the thermally foamable microsphere can be coated with various materials.
  • polymerization initiator for suspension polymerization, those generally used in this technical field can be adopted, but an oil-soluble polymerization initiator that is soluble in a polymerizable monomer is preferred.
  • examples of such polymerization initiators include dialkyl peroxides, diacyl peroxide, and peroxides. Examples include esters, peroxydicarbonates, and azo compounds.
  • polymerization initiator examples include dialkyl peroxides such as methylethyl peroxide, diethyl peroxide, and dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichloro Methyl benzoyl peroxide, diacyl peroxide such as 3,5,5-trimethylhexanoyl peroxide, t-butyl baroxypivalate, t-xyloxypivalate, t-butylperoxyneodecanoate, t-xylazol Xineodecanoate, 1-cyclohexyl 1-methylethylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoto, tamilperoxyneodecanoto, bisneodecanolpa Peroxyesters such as (oxy) diisopropylbenzene, bis
  • Diisopropylperoxydicarbonate di (2-ethylethylperoxy) dicarbonate, dimethoxybutyl butyl dioxycarbonate, di (3-methyl-3-methoxybutinoleperoxy) di Peroxydicarbonates such as carbonates; 2,2'-azobisisobuty-tolyl, 2,2'-azobis (4-methoxy) -1,2,4 dimethylvale-tolyl, 2,2azobis (2,4 dimethylvale) Mouth-tolyl), 1, -azobis (1-cyclohexanecarbo-tolyl) and the like.
  • the polymerization initiator is usually contained in the polymerizable monomer mixture. If it is necessary to suppress early polymerization, a part or part of the polymerization initiator may be added during or after the granulation step. Add everything into the aqueous dispersion medium and transfer it into droplets of the polymerizable monomer mixture.
  • the polymerization initiator is usually used in a proportion of 0.00013% by weight based on the polymerizable monomer.
  • Suspension polymerization is generally performed in an aqueous dispersion medium containing a dispersion stabilizer.
  • the dispersion stabilizer include inorganic fine particles such as silica and magnesium hydroxide.
  • the auxiliary stabilizer for example, a condensation product of diethanolamine and an aliphatic dicarboxylic acid, polyvinylpyrrolidone, polyethylene oxide, various emulsifiers, and the like can be used.
  • the dispersion stabilizer is usually used at a ratio of 0.1 to 20 parts by weight per 100 parts by weight of the polymerizable monomer.
  • An aqueous dispersion medium containing a dispersion stabilizer is usually prepared by blending a dispersion stabilizer or an auxiliary stabilizer with deionized water.
  • the pH of the aqueous phase at the time of polymerization is appropriately determined depending on the type of dispersion stabilizer and auxiliary stabilizer used.
  • silica such as colloidal silica
  • polymerization is performed in an acidic environment.
  • an acid is added as necessary to adjust the pH of the reaction system to 6 or less, preferably about pH 3-4.
  • a dispersion stabilizer that dissolves in an aqueous dispersion medium in an acidic environment such as magnesium hydroxide or calcium phosphate
  • polymerization is performed in an alkaline environment.
  • One preferred combination of dispersion stabilizers is a combination of colloidal silica and a condensation product.
  • a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferred.
  • a condensation product of diethanolamine and adipic acid or a condensation product of diethanolamine and itaconic acid is preferred.
  • the acid value of the condensation product is preferably from 60 to less than 95, more preferably from 65 to 90.
  • an inorganic salt such as sodium chloride or sodium sulfate
  • a thermally foamable microsphere having a more uniform particle shape can be easily obtained.
  • a food salt is preferably used as the inorganic salt.
  • the amount of the colloidal silica used varies depending on the particle size. Usually, the amount is 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the polymerizable monomer. is there.
  • the condensation product is usually used at a ratio of 0.05 to 2 parts by weight per 100 parts by weight of the polymerizable monomer.
  • the inorganic salt is used in a ratio of 0 to L00 parts by weight with respect to 100 parts by weight of the polymerizable monomer.
  • Another preferable combination of the dispersion stabilizer is a combination of colloidal silica and a water-soluble nitrogen-containing material.
  • a combination of colloidal silica and polyvinylpyrrolidone is preferably used.
  • another preferred combination is a combination of magnesium hydroxide and Z or calcium phosphate and an emulsifier.
  • a colloid of hydroxide eg, magnesium hydroxide
  • calcium phosphate a reaction product in an aqueous phase of sodium phosphate and calcium chloride can be used.
  • Emulsifier is not generally used, but an anionic surfactant such as dialkyl sulfosuccinate or polyoxyethylene alkyl (aryl) ether phosphate may be used if desired.
  • polymerization aid a small amount selected from the group consisting of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acids, and potassium borate in an aqueous dispersion medium. Both types of compounds can be present.
  • the polymerization particles do not aggregate during the polymerization, and the heat generated due to the polymerization that does not cause the polymer to adhere to the polymerization can wall is efficiently removed and stabilized. Thus, a thermally foamable microsphere can be produced.
  • alkali metal nitrites sodium nitrite and potassium nitrite are preferable in terms of availability and price.
  • ascorbic acids include ascorbic acid, metal salts of ascorbic acid, and esters of ascorbic acid.
  • water-soluble ones are preferably used.
  • the water-soluble alcorbic acid means one having a solubility in water at 23 ° C of lgZlOOcm3 or more.
  • L-ascorbic acid (vitamin C), sodium ascorbate, and potassium ascorbate are particularly preferably used from the viewpoints of easy availability, cost, and effects.
  • the above-mentioned polymerization assistant composed of these compounds is usually 0.001 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the polymerizable monomer. Used in.
  • the order in which the above components are added to the aqueous dispersion medium is arbitrary.
  • the dispersion stabilizer is added by adding water and a dispersion stabilizer, and if necessary, a stabilizer or a polymerization assistant.
  • An aqueous dispersion medium containing is prepared.
  • the foaming agent, the polymerizable monomer (vinyl monomer) and the crosslinkable monomer are separately added to the aqueous dispersion medium and integrated in the aqueous dispersion medium to form a polymerizable monomer mixture (A oily mixture) may be formed, but usually these are mixed in advance and then added to the aqueous dispersion medium.
  • the polymerization initiator can be used by adding to the polymerizable monomer in advance.
  • a polymerizable monomer mixture is dispersed in water.
  • the polymerization initiator may be added to the medium while stirring, and may be integrated in the aqueous dispersion medium.
  • the polymerizable monomer mixture and the aqueous dispersion medium are mixed in a separate container, stirred and mixed with a stirrer or disperser having high shearing force, and then charged into the polymerization can.
  • the thermally foamable microsphere obtained by the above production method has a structure in which a foaming agent is enclosed in an outer shell formed of a polymer, and the outer shell has a polymethacrylimide structure.
  • This polymethacrylimide structure can be obtained by cyclizing a nitrile group and a carboxyl group by heating or the like.
  • the softening temperature of the outer shell resin can be adjusted by changing the ratio of Metatari-tolyl and methacrylic acid. If you want to lower the softening temperature, increase the ratio of metal mouth-tolyl, and if you want to increase the softening temperature, increase the ratio of methacrylic acid. By changing the softening temperature of the outer shell resin, it is possible to arbitrarily set the foaming start temperature.
  • the foaming start temperature As a method of adjusting the foaming start temperature, it is also effective to change the type of foaming agent. By increasing the ratio of the high-boiling foaming agent, the foaming start temperature can be increased. In the case of the outer shell resin of conventional heat-foamable microspheres, the foaming start temperature decreased when heated at a temperature slightly lower than the foaming start temperature, but the outer surface of the heat-foamable microsphere according to the present invention was reduced. Shell koji has the feature that stable foaming behavior is exhibited without a decrease in foaming start temperature.
  • the fluctuation values of the foaming start temperature and the maximum foaming temperature by the heat treatment below the foaming start temperature are within 7% of the foaming start temperature and the maximum foaming temperature before the heat treatment, respectively. Further, the variation value is preferably within 5%, more preferably within 3%.
  • the use of the thermally foamable microsphere according to the present invention is not limited to a narrow range, and is used as an additive in various fields by being heated and foamed (expanded) or left unfoamed. For example, it can be used for applications such as paint fillers for automobiles, wallpaper and foaming inks (relief patterns such as T-shirts), and anti-shrinkage agents by utilizing its expansibility. In particular, automobile interior parts contribute to the light weight of tires.
  • the thermally foamable microsphere according to the present invention utilizes a volume increase due to foaming, polymer materials such as synthetic resin (thermoplastic resin, thermosetting resin) and rubber, paint, It is used as an additive for the purpose of imparting various functionalities (eg, slipping properties, heat insulation properties, cushioning properties, sound insulation properties, etc.) such as light weight and porous materials such as seed materials.
  • polymer materials such as synthetic resin (thermoplastic resin, thermosetting resin) and rubber, paint
  • various functionalities eg, slipping properties, heat insulation properties, cushioning properties, sound insulation properties, etc.
  • the polymer material include polyethylene, polypropylene, polystyrene, ABS resin, SBS, SIS, hydrogenated SIS, natural rubber, various synthetic rubbers, and thermoplastic polyurethane.
  • the thermally foamable microsphere according to the present invention can be suitably used in the paint, wallpaper, and ink fields that require surface properties and smoothness. Since the thermally foamable microsphere of the present invention is excellent in processability, it can be suitably used in application fields that require processing steps such as kneading, calendering, extrusion force, and injection molding. .
  • the thermally foamable microsphere according to the present invention can be used as a foaming agent, mixed with a polymer material to form a composition, or is thermally foamed without being foamed. It can also be melted and mixed with resin to form pellets. Sarako is blended with polymer materials, paints, inks, etc., and is heated and foamed to contain foam particles (for example, foam molded products, Foamed coating film, foamed ink).
  • foam particles for example, foam molded products, Foamed coating film, foamed ink.
  • TMA measurement was performed using TMA-7 model manufactured by Perkin Elma. Using about 0.25 mg of sample, the temperature was raised at a rate of temperature rise of 5 ° CZ, and the foaming behavior was observed. More specifically, a sample (thermal foaming microsphere) was placed in a container, the temperature was raised at a rate of temperature rise of 5 ° CZ, and the displacement of the height was continuously measured. Changes in sample height in the container The temperature at which the peak began was defined as the foaming start temperature (Tstart), and the temperature at which the height reached the maximum was defined as the maximum foaming temperature (Tmax).
  • Tstart foaming start temperature
  • Tmax maximum foaming temperature
  • the b * value of the coating film for which the expansion ratio (coating method) was measured was measured.
  • This b * value is the b * value in the L * a * b * color system. The larger this value, the stronger yellow.
  • Microsphere 0.5g + silicone oil 2.5g is weighed in an aluminum cup, mixed well, then heated and foamed in a set temperature oven, taken out into a 50ml volumetric flask and diluted with isopropanol. The true specific gravity of the foamed thermofoaming microsphere was determined from the sample weight and the weight after measuring up.
  • methacrylic acid also indicated by MAA
  • blowing agent isooctane 60g blowing agent isooctane 60g
  • polymerization opening A polymerizable mixture was prepared by mixing 2 g of initiator 2, 2′-azobisisobutyl-tolyl (also indicated as V-60).
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 1 is 1: 1 (see Table 1).
  • the aqueous dispersion medium prepared above and the polymerizable mixture were stirred and mixed with a homogenizer to form fine droplets of the polymerizable monomer mixture in the aqueous dispersion medium.
  • An aqueous dispersion medium containing minute droplets of this polymerizable mixture is charged into a polymerization can equipped with a stirrer (1.5 L) and heated in a hot water bath at 60 ° C for 15 hours and further at 70 ° C for 9 hours. And reacted.
  • the slurry containing the thermally foamable microspheres produced was filtered and washed with water and dried to obtain a thermally foamable microsphere having an average particle size of 40 m (see Table 1).
  • Example 2 Suspension polymerization was carried out in the same manner as in Example 1 except that 110 g of Metatari mouth-tolyl and 90 g of methacrylic acid were used to obtain thermally foamable microspheres having an average particle size of 39 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 2 is 1.6: 1.
  • the foaming start temperature was 186 ° C
  • the maximum foaming temperature was 214 ° C
  • the difference was 28 ° C. there were.
  • the expansion ratio was 8.4 times at 230 ° C
  • the b * value was 26.8.
  • Example 3 Suspension polymerization was carried out in the same manner as in Example 1 except that 132 g of Metatari mouth-tolyl and 68 g of methacrylic acid were used to obtain thermally foamable microspheres having an average particle size of 41 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 3 is 2.5: 1.
  • the foaming start temperature was 171 ° C
  • the maximum foaming temperature was 255 ° C
  • the difference was 84 ° C. there were.
  • the expansion ratio was 10.5 times at 220 ° C
  • the b * value was 27.1.
  • Example 4 Suspension polymerization was carried out in the same manner as in Example 1 except that 154 g of Metatari mouth-tolyl and 46 g of methacrylic acid were used to obtain thermally foamable microspheres having an average particle size of 50 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 4 is 4.3: 1.
  • the foaming start temperature was 180 ° C
  • the maximum foaming temperature was 260 ° C
  • the difference was 80 ° C. C.
  • the expansion ratio was 8.6 times at 220 ° C
  • the b * value was 35.4.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 1 except that 60 g of isooctane was changed to 60 g of isopentane to obtain a thermally foamable microsphere having an average particle size of 40 m.
  • the foaming start temperature was 185 ° C
  • the maximum foaming temperature was 240 ° C
  • the difference was 55 ° C. there were.
  • the expansion ratio was 4.5 times at 230 ° C
  • the b * value was 25.0.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 2 except that 60 g of isooctane was changed to 60 g of isopentane to obtain a thermally foamable microsphere having an average particle size of 49 m.
  • the foaming start temperature was 170 ° C
  • the maximum foaming temperature was 240 ° C
  • the difference was 70 ° C. there were.
  • the expansion ratio was 9.1 times at 220 ° C
  • the b * value was 27.0.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 3 except that 60 g of isooctane was changed to 60 g of isopentane to obtain a thermally foamable microsphere having an average particle size of 47 m.
  • the foaming start temperature was 155 ° C
  • the maximum foaming temperature was 220 ° C
  • the difference was 65 ° C. there were.
  • the expansion ratio was 19.2 times at 210 ° C
  • the b * value was 27.5.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 4 except that 60 g of isooctane was changed to 60 g of isopentane to obtain a thermally foamable microsphere having an average particle size of 50 m.
  • the foaming start temperature was 130 ° C
  • the maximum foaming temperature was 210 ° C
  • the difference was 80 ° C. there were.
  • the expansion ratio was 17.3 times at 200 ° C
  • the b * value was 36.0.
  • the foaming start temperature was 251 ° C
  • the maximum foaming temperature was 279 ° C
  • the difference was 28 ° C. there were.
  • the expansion ratio was 1.5 times at 230 ° C
  • the b * value was 28.0.
  • Example 2 Suspended in the same manner as in Example 1 except that 88 g of metatalilonitrile and 112 g of methacrylic acid were replaced with 4 g of metatalilonitrile 130 g, methacrylic acid 66 g and methyl acrylate (indicated by MA in the table). Polymerization was performed to obtain thermally foamable microspheres having an average particle size of 34 m.
  • the foaming start temperature was 171 ° C
  • the maximum foaming temperature was 245 ° C
  • the difference was 74 ° C. there were.
  • the expansion ratio was 10.0 times at 220 ° C
  • the b * value was 27.0.
  • Suspension polymerization was carried out in the same manner as in Example 10 except that 60 g of isooctane was changed from 60 g of isooctane to 60 g of isopentane to obtain thermally foamable microspheres having an average particle size of 50 ⁇ m.
  • the foaming start temperature was 150 ° C
  • the maximum foaming temperature was 220 ° C
  • the difference was 70 ° C. there were.
  • the expansion ratio was 19.1 times at 210 ° C
  • the b * value was 26.9.
  • the foaming start temperature was 171 ° C
  • the maximum foaming temperature was 250 ° C or higher
  • the difference was 79 ° C. That was all.
  • the expansion ratio was 10.2 times at 220 ° C
  • the b * value was 27.0.
  • (B) Preparation of polymerizable mixture Mix 175g of metataric mouth-tolyl (MAN), which is a polymerization monomer, 25g of metaacrylic acid (MAA), 60g of foaming agent isooctane, and 2g of polymerization initiator 2, 2'-azobisisobutyl-tolyl (V-60). A polymerizable mixture was prepared. The molar ratio of methacrylo-tolyl and methacrylic acid in Example 13 is 9: 1.
  • Example 14 Suspension polymerization was carried out in the same manner as in Example 13 except that 129 g of Metatari mouth-tolyl and 71 g of methacrylic acid were used to obtain thermally foamable microspheres having an average particle size of 27 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 14 is 2.3: 1.
  • Example 15 Suspension polymerization was carried out in the same manner as in Example 13 except that 108 g of Metatari mouth-tolyl and 92 g of methacrylic acid were used to obtain thermally foamable microspheres having an average particle size of 26 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 15 is 1.5: 1.
  • the foaming start temperature was 189 ° C
  • the maximum foaming temperature was 266 ° C
  • the difference was 77 ° C. there were.
  • the expansion ratio was 17.6 times at 230 ° C
  • the b * value was 27.0.
  • the thermally expanded particle density is 230. 0. 0046, 240 in C. 0. 0045, 250 in C. C was 0.0000 (see Table 2).
  • Example 16 Suspension polymerization was carried out in the same manner as in Example 13 except that the weight was changed to 88 g of Metatari mouth-tolyl and 112 g of methacrylic acid to obtain a thermally foamable microsphere having an average particle size of 31 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 16 is 1: 1.
  • the foaming start temperature was 199 ° C
  • the maximum foaming temperature was 263 ° C
  • the difference was 64 ° C. there were.
  • the foaming start temperature and the maximum foaming temperature were hardly changed.
  • the expansion ratio was 14.5 times at 230 ° C
  • the b * value was 24.0.
  • Figure 1 shows the change in foaming degree (foaming behavior) between the foaming start temperature and the maximum foaming temperature during TMA measurement.
  • About 0.25 mg of sample was placed in a container, the temperature was increased at a rate of temperature increase of 5 ° CZ, and the displacement at the height was continuously measured. The height at each temperature is shown as 1 at the maximum foaming temperature (Tmax).
  • the thermally foamable microspheres obtained in Example 16 hardly changed to the foaming start temperature and the maximum foaming temperature after heating for 10 minutes at 180 ° C without heating. Not only is there no wrinkle, but it is also possible to maintain a stable foaming property with no change in the foaming behavior between the foaming start temperature and the maximum foaming temperature.
  • the polymerization initiator was changed from 2, 2'-azobisisopetityl-tolyl 2g to lauryl peroxide ( Suspension polymerization was carried out in the same manner as in Example 16 except that the isopentane was changed to 60 g (shown as LPO in the table) to obtain thermally foamable microspheres having an average particle size of 30 m.
  • the foaming start temperature was 200 ° C
  • the maximum foaming temperature was 250 ° C
  • the difference was 50 ° C. there were.
  • the expansion ratio was 7.1 times at 230 ° C
  • the b * value was 23.0.
  • Suspension polymerization was carried out in the same manner as in Example 17 except for changing to Metatalix-tolyl 68 g and methacrylic acid 132 g to obtain thermally foamable microspheres having an average particle size of 28 m.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 18 is 0.7: 1.
  • the foaming start temperature was 207 ° C
  • the maximum foaming temperature was 232 ° C
  • the difference was 25 ° C. there were.
  • the expansion ratio was 4.1 times at 230 ° C
  • the b * value was 23.0.
  • the foaming start temperature was 213 ° C
  • the maximum foaming temperature was 218 ° C
  • the difference was 5 ° C. there were.
  • the expansion ratio was 6.7 times at 230 ° C.
  • trimethylolpropane trimetatalylate was blended in the same manner as in Example 15 above, and an average particle size of 26 ⁇ m was obtained. m thermally foamable microspheres were obtained.
  • the mixing ratio of trimethylolpropane trimethacrylate tributary rate of the polymerizable monomer mixture of the present embodiment 20 is a 0.02 mol 0/0.
  • Example 21 In addition to 108 g of metatalonitrile and 92 g of methacrylic acid, 0.6 g of trimethylolpropane trimetatalylate was added, and suspension polymerization was performed in the same manner as in Example 15 to obtain an average particle size of 29 ⁇ m. m thermally foamable microspheres were obtained.
  • the mixing ratio of trimethylolpropane trimethacrylate tributary rate of the polymerizable monomer mixture of the present Example 21 is 0.07 mol 0/0.
  • the foaming start temperature was 187 ° C
  • the maximum foaming temperature was 223 ° C
  • the difference was 36 ° C. there were.
  • the expansion ratio was 11.3 times at 230 ° C.
  • trimethylolpropane trimetatalylate was suspension-polymerized in the same manner as in Example 15 except that 1. Og was added, and the average particle size was 31 ⁇ m. m thermally foamable microspheres were obtained.
  • the mixing ratio of trimethylolpropane trimethacrylate tributary rate of the polymerizable monomer mixture of the present embodiment 22 is a 0.11 mol 0/0.
  • the foaming start temperature was 185 ° C
  • the maximum foaming temperature was 220 ° C
  • the difference was 35 ° C. there were.
  • the expansion ratio was 8.0 times at 230 ° C.
  • a suspension polymerization was performed in the same manner as in Example 15 except that 98 g of metatalilonitrile and 92 g of methacrylic acid were mixed with 1 Og of methyl acrylate (indicated by MA in the table). A heat-foamable microsphere was obtained.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 23 is 1.4: 1, and the blending ratio of methyl acrylate is 5% by weight.
  • the foaming start temperature was 189 ° C
  • the maximum foaming temperature was 259 ° C
  • the difference was 70 ° C.
  • the expansion ratio was 13.4 at 230 ° C.
  • a suspension polymerization was performed in the same manner as in Example 15 except that 98 g of metatalilonitrile and 92 g of methacrylic acid were added, and 10 g of methyl methacrylate (indicated by MMA in the table) was blended. A heat-foamable microsphere was obtained.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 24 is 1.4: 1, and the blending ratio of methyl methacrylate is 5% by weight.
  • the foaming start temperature was 185 ° C
  • the maximum foaming temperature was 242 ° C
  • the difference was 57 ° C. there were.
  • the expansion ratio was 14.2 times at 230 ° C.
  • Thermally foamable microspheres having an average particle size of 27 m were subjected to suspension polymerization in the same manner as in Example 15 except that 88 g of metatalonitrile and 92 g of methacrylic acid were added and 20 g of methyl methacrylate was blended.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 25 is 1.2: 1, and the blending ratio of methyl methacrylate is 10% by weight.
  • the foaming start temperature was 186 ° C
  • the maximum foaming temperature was 235 ° C
  • the difference was 49 ° C. there were.
  • the expansion ratio was 13.3 times at 230 ° C.
  • Metathali mouth-tolyl 104 g, methacrylic acid 92 g, and 4 g of dimethylaminoethyl methacrylate (shown as DMAEMA in the table) were added, and suspension polymerization was performed in the same manner as in Example 15 above, and the average particle size was A 24 m thermally foamable microsphere was obtained.
  • the molar ratio of methacrylo-tolyl and methacrylic acid in Example 26 is 1.5: 1, and the blending ratio of dimethylaminoethyl methacrylate is 2% by weight.
  • the foaming start temperature was 190 ° C
  • the maximum foaming temperature was 251 ° C
  • the difference was 61 ° C. there were.
  • the expansion ratio was 11.4 times at 230 ° C.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 15 except that 60 g of isooctane was changed to 60 g of isododecane to obtain thermally foamable microspheres having an average particle size of 26 ⁇ m (Table 2). reference).
  • Suspension polymerization was performed in the same manner as in Example 15 except that 60 g of isooctane was changed from 60 g of isooctane to 60 g of isopentane to obtain a thermally foamable microsphere having an average particle size of 31 ⁇ m.
  • the foaming start temperature was 168 ° C
  • the maximum foaming temperature was 234 ° C
  • the difference was 66 ° C. there were.
  • the expansion ratio was 14.4 times at 230 ° C.
  • Thermally expanded particle density is 0.0116, 230 at 220 ° C. 0. 0072, 240 in C. The C was 0.0061.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 15 except that 60 g of isooctane was changed to 40 g of isobutane to obtain a thermally foamable microsphere having an average particle size of 27 m.
  • the foaming start temperature was 159 ° C
  • the maximum foaming temperature was 228 ° C
  • the difference was 69 ° C. there were.
  • the expansion ratio was 9.8 times at 230 ° C.
  • Thermally expanded particle density is 0.0108, 230 at 220 ° C. 0. 0104, 240 in C. The C was 0.00146.
  • Suspension polymerization was carried out in the same manner as in Example 15 except that 60 g of isooctane was changed from 60 g of isooctane to 20 g of isobutane and 40 g of isododecane to obtain a thermally foamable microsphere having an average particle size of 26 m.
  • the foaming start temperature was 175 ° C
  • the maximum foaming temperature was 240 ° C
  • the difference was 65 ° C. there were.
  • the expansion ratio was 10.3 times at 230 ° C.
  • the thermally foamed particle density is 0.0017, 240 at 230 ° C. C. 0.0108, 250.
  • the C was 0.00120.
  • Example 31 Suspension polymerization was carried out in the same manner as in Example 15 except that 60 g of isooctane was changed from 10 g of isooctane to 10 g of isobutane and 50 g of isododecane to obtain a thermally foamable microsphere having an average particle size of 26 m.
  • the foaming start temperature was 198 ° C
  • the maximum foaming temperature was 260 ° C
  • the difference was 62 ° C. there were.
  • the expansion ratio was 8.7 times at 230 ° C.
  • Thermally expanded particle density is 0.0123, 240 at 230 ° C. 0. 0113, 250 in C. The C was 0.00119.
  • the foaming agent was subjected to suspension polymerization in the same manner as in Example 15 except that 60 g of isooctane was changed to 5 g of isobutane and 55 g of isododecane to obtain a thermally foamable microsphere having an average particle size of 25 m.
  • the foaming start temperature was 200 ° C
  • the maximum foaming temperature was 277 ° C
  • the difference was 77 ° C. there were.
  • the expansion ratio was 5.8 times at 230 ° C.
  • Thermally expanded particle density is 0.0221, 240 at 230 ° C. 0.0 in C, 250, 250.
  • the C was 0.00140.
  • suspension polymerization was performed in the same manner as in Example 15 to obtain a thermally foamable microsphere having an average particle size of 25 m. .
  • the foaming start temperature was 193 ° C
  • the maximum foaming temperature was 237 ° C
  • the difference was 44 ° C. there were.
  • the expansion ratio was 11.8 times at 230 ° C.
  • Thermally expanded particle density is 0.0080, 240 at 230 ° C. The C was 0.0088.
  • suspension polymerization was performed in the same manner as in Example 15 to obtain a thermally foamable microsphere having an average particle size of 24 m. .
  • Suspension polymerization was carried out in the same manner as in Example 15 except that the foaming agent was changed from 60 g of isooctane to 40 g of isooctane to obtain thermally foamable microspheres having an average particle size of 25 ⁇ m.
  • the foaming start temperature was 188 ° C
  • the maximum foaming temperature was 256 ° C
  • the difference was 68 ° C. there were.
  • the expansion ratio was 8.6 times at 230 ° C.
  • Thermally expanded particle density is 0.0125, 240 at 230 ° C. 0. 0116, 250 in C. The C was 0.00124.
  • Suspension polymerization was carried out in the same manner as in Example 15 except that the foaming agent was changed from 60 g of isooctane to 80 g of isooctane to obtain thermally foamable microspheres having an average particle size of 27 ⁇ m.
  • the foaming start temperature was 187 ° C
  • the maximum foaming temperature was 260 ° C
  • the difference was 73 ° C. there were.
  • the expansion ratio was 12.4 at 230 ° C.
  • Thermally expanded particle density is 0.0075, 240 at 230 ° C. C. 0.0069, 250. The C was 0.0065.
  • the foaming start temperature was 187 ° C
  • the maximum foaming temperature was 260 ° C
  • the difference was 73 ° C. there were.
  • the expansion ratio was 12.8 times at 230 ° C.
  • Thermally foamed particle density is 0.20072, 240 at 230 ° C. C. 0.0061, 250. The C was 0.0065.
  • the foaming start temperature was 176 ° C
  • the maximum foaming temperature was 231 ° C
  • the difference was 55 ° C. there were.
  • the expansion ratio was 11.0 times at 230 ° C.
  • Thermally expanded particle density is 0.0106, 220 at 210 ° C. C. 0. 0089, 230.
  • the C was 0.0094.
  • the foaming start temperature was 175 ° C
  • the maximum foaming temperature was 235 ° C
  • the difference was 60 ° C. there were.
  • the expansion ratio was 14.2 times at 220 ° C.
  • Thermally foamed particle density is 0.0013, 220 at 210 ° C. 0. 0062, 230 in C. The C was 0.0065.
  • the foaming start temperature was 172 ° C
  • the maximum foaming temperature was 241 ° C
  • the difference was 69 ° C. there were.
  • the expansion ratio was 16.0 times at 210 ° C.
  • Thermally foamed particle density is 0.00083, 220 at 210 ° C. C. 0. 0054, 230. The C was 0.0052.
  • the foaming start temperature was 168 ° C
  • the maximum foaming temperature was 247 ° C
  • the difference was 79 ° C. there were.
  • the expansion ratio was 18.2 times at 210 ° C.
  • Thermally foamed particle density is 0.00083, 220 at 210 ° C. 0. 0044, 230 in C. The C was 0.0047.
  • suspension polymerization was carried out in the same manner as in Example 15 except that 65 g of 20% by weight colloidal silica was changed to 50 g and the rotational speed of the emulsifier was 8,500 r / m.
  • a thermally foamable microsphere with a diameter of 39 m was obtained (see Table 3).
  • the foaming start temperature was 185 ° C
  • the maximum foaming temperature was 266 ° C
  • the difference was 81 ° C. there were.
  • the expansion ratio was 11.3 times at 230 ° C.
  • the thermally foamed particle density was 0.00085 at 210 ° C. and 0.00085 at 23013 C (see Table 3).
  • aqueous dispersion medium 65g of 20% by weight colloidal silica was replaced with 40g, Suspension polymerization was carried out in the same manner as in Example 15 except that the rotational speed of the emulsifier was 7,500 r / m, to obtain thermally foamable microspheres having an average particle size of 58 ⁇ m.
  • suspension polymerization was carried out in the same manner as in Example 15 except that 65 g of 20% by weight colloidal silica was changed to 20 g and the rotational speed of the emulsifier was changed to 5,500 r / m. A 118 ⁇ m thermally foamable microsphere was obtained.
  • This Comparative Example 1 is a test for confirming the effect of using a large amount of acrylonitrile.
  • Suspension polymerization was carried out in the same manner as in Example 1 except that 88 g of Metatari mouth-tolyl and 112 g of methacrylic acid were replaced with 45.4 g of acrylonitrile, 45.4 g of methacrylonitrile, and 109.2 g of methacrylic acid.
  • the polymer became agglomerated during polymerization, and it was impossible to obtain normal heat-foamable microspheres (see Table 4).
  • METATALI-TO-Trill 88 g and METAKUZINORE 112 g were added to AC! J P- ⁇ !; Nore 66.6 g, METAKU! J P- ⁇ !; Nore 66.
  • Suspension polymerization was carried out in the same manner as in Example 1, except that 6 g and metacudinoleic acid were changed to 66.6 g. As a result, the polymer was agglomerated during the polymerization, and normal heat-foamable microspheres could not be obtained.
  • Suspension polymerization was carried out in the same manner as in Example 1 except that 88 g of Metatari mouth-tolyl and 112 g of methacrylic acid were replaced with 200 g of methacrylic acid. As a result, the polymer agglomerated during the polymerization.
  • Suspension polymerization was carried out in the same manner as in Example 1 except that 88 g of metatalilonitrile and 112 g of methacrylic acid were replaced with 200 g of metathalonitrile, whereby a microsphere having a particle size of 47 m was obtained. As a result, the foam was strong.
  • the b * value was 200.
  • This Comparative Example 8 is a test for confirming the influence on the foaming behavior.
  • Metatalix mouth-tolyl 88 g, Methacrylic acid 112 g is acrylonitrile 67 g
  • Metatali mouth-tolyl 31 g, Methacrylic acid 2 g Diethylene glycol dimethatalylate (denoted by DEGDMA in the table) 1.5 g
  • foaming agent Suspension polymerization was carried out in the same manner as in Example 1 except that lg, isooctane 13 g, and isododecane 16 g were used to obtain thermally foamable microspheres having an average particle size of 49 m.
  • the addition amount of the crosslinkable monomer to the polymerizable monomer is 0.35% monole.
  • the foaming start temperature was 204 ° C
  • the maximum foaming temperature was 209 ° C
  • the difference was 5 ° C. there were.
  • the foaming start temperature changed to 135 ° C
  • the maximum foaming temperature changed to 194 ° C.
  • the expansion ratio was 8.3 times at 190 ° C.
  • Figure 2 shows the change in foaming degree (foaming behavior) between the foaming start temperature and the maximum foaming temperature during TMA measurement.
  • the thermally foamable microspheres obtained in this Comparative Example 8 had both the foaming start temperature and the maximum foaming temperature decreased after unheated and heated at 170 ° C for 2 minutes. It can be seen that the foaming behavior between and has changed greatly! (See also Fig. 1).
  • Example 1 22 ° C
  • Example 2 28 ° C
  • Example 3 84 ° C
  • Example 4 80 ° C
  • Example 5 55 ° C
  • Example 6 70 ° C
  • Example 7 65 ° C
  • Example 8 80 ° C
  • Example 9 28 ° C
  • Example 10 0: 74 ° C
  • Example 11 70 ° C. From this, it is clear that the thermally foamable microsphere according to the present invention is excellent in heat resistance.
  • each example of the thermally foamable microsphere according to the present invention has a high foaming ratio. Power! As shown in Examples 1 and 16, after the heat treatment, the foaming start temperature did not decrease, and the foaming behavior was not changed and stable foamability was maintained (Tables 1 and 2). And Figure 1).
  • thermally foamable microsphere according to the present invention had less thermal yellowing during heating. In each Example, no aggregation occurred during the polymerization, and a thermally foamable microsphere could be stably produced.
  • Comparative Examples 1 and 2 which are monomer mixture systems in which acrylonitrile is added to methacryl-tolyl and methacrylic acid, the polymer becomes bulky in the middle of the polymerization, and normal heat-foaming My Helped with no cross sphere (see Table 4).
  • Comparative Example 7 where ethylene glycol dimetatalylate, which is a crosslinkable monomer, was added, the foaming ratio was drastically decreased at 220 ° C with a difference between the foaming start temperature and the maximum foaming temperature (see Table 4). ).
  • Comparative Example 8 after unheated and after heating at 170 ° C for 2 minutes, the foaming start temperature significantly decreased and the foaming behavior changed significantly (see Table 4 and Fig. 2).
  • the present invention can be used as a technique for producing a heat-foamable microsphere having excellent heat resistance and a high foaming ratio.
  • the thermally foamable microsphere according to the present invention can be used as an additive such as a filler for paints for automobiles, a foaming agent for wallpaper or foamed ink, an anti-shrinkage agent, etc.
  • Increased volume by foaming gives various functionalities such as polymer resin such as synthetic resin (thermoplastic resin, thermosetting resin) and rubber, paint, various materials such as porous materials. It can be used as an additive for the purpose.
  • automobile interior parts can contribute to the light weight of tires.
  • FIG. 1 is a view showing a change in foaming degree (foaming behavior) between a foaming start temperature and a maximum foaming temperature of a thermally foamable microsphere according to Example 16.
  • FIG. 2 is a graph showing a change in foaming degree (foaming behavior) between the foaming start temperature and the maximum foaming temperature of the thermally foamable microsphere according to Comparative Example 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】耐熱性に優れ、且つ、発泡倍率が高く、安定した発泡挙動を示す熱発泡性マイクロスフェアー、並びに当該熱発泡性マイクロスフェアーの製造方法と好適な用途を提供すること。 【解決手段】発泡剤を内包する外殻が、ポリメタクリルイミド(polymethacrylimide)構造を有する共重合体により形成された熱発泡性マイクロスフェアー、特に、共重合反応により前記ポリメタクリルイミド構造を形成する単量体が、メタクリロニトリル(methacrylonitrile)とメタクリル酸(methacrylic acid)である熱発泡性マイクロスフェアーを提供する。また、この熱発泡性マイクロスフェアーの製造方法とその添加剤としての使用を提供する。 

Description

明 細 書
熱発泡性マイクロスフェアー、並びにその製造方法と用途
技術分野
[0001] 本発明は、熱発泡性マイクロスフ ア一に係わる技術に関する。より詳しくは、耐熱 性に優れ、且つ、発泡倍率が高ぐ安定した発泡挙動を示す熱発泡性マイクロスフ ァー、並びに当該熱発泡性マイクロスフェアーの製造方法と好適な用途に関する。 背景技術
[0002] 熱膨張性マイクロカプセルとも呼ばれる「熱発泡性マイクロスフェアー」は、揮発性 の発泡剤を重合体力もなる外殻でマイクロカプセルィ匕したものであって、一般には、 水系分散媒体中で、重合性単量体と発泡剤を含有する重合性混合物との懸濁重合 を進行させると、発泡剤を内包するように外殻 (シェル)が形成される。
[0003] この外殻を形成する重合体には、一般に、ガスバリア性が良好な熱可塑性榭脂が 用いられる。外殻を形成する重合体は、加熱により軟化する。発泡剤としては、一般 に、外殻を形成する重合体の軟化点以下の温度でガス状になる炭化水素などの低 沸点化合物が用いられる。
[0004] 熱発泡性マイクロスフェアーを加熱すると、発泡剤が気化して膨張する力が外殻に 働く力 同時に、外殻を形成する重合体の弾性率が急激に減少するため、ある温度 を境にして急激な膨張が起きる。この温度は、「発泡開始温度」と呼ばれる。この発泡 開始温度以上に加熱されると、前記膨張現象により発泡体粒子 (独立気泡体)が形 成され、更に加熱されると、発泡剤が薄くなつた外殻を透過して内圧が低下し、発泡 体粒子が収縮してしまう(へタリ現象)。
[0005] 熱発泡性マイクロスフェアーは、その発泡体粒子を形成する前記特性を利用して、 意匠性付与剤、機能性付与剤、軽量化剤などの広範な分野で用いられている。例え ば、合成樹脂 (熱可塑性榭脂及び熱硬化性榭脂)やゴムなどのポリマー材料、塗料、 インクなどに添加して用いられる。それぞれの用途分野で高性能化が要求されるよう になると、熱発泡性マイクロスフ ア一に対する要求水準も高くなり、例えば、耐熱性 などの加工特性の改善が求められる。 [0006] ところが、従来の熱発泡性マイクロスフ ア一は、一般に、発泡開始温度領域が狭 ぐかつ、比較的低温で発泡を開始するため、発泡成形前の混練加工やペレツトイ匕 などの加工時に早期発泡し易い。そのため、加工温度を低くしなければならず、適用 できる合成樹脂やゴムの種類に制限があった。
[0007] 従来、高温でも使用可能な熱発泡性マイクロスフェアーを得るために、主成分とな る単量体がアクリロニトリル (I)であり、カルボキシル基を含有する単量体 (11)、この単 量体のカルボキシル基と反応する基を持つ単量体 (III)を重合して得られた共重合体 を外殻とし、該共重合体の軟化温度以下の沸点を有する液体を内包する熱発泡性 マイクロスフェアーが提案されている(特許文献 1)。この方法によって得られる発泡体 はガラス状の脆性の外殻を有することが特徴である。このため、発泡体は弾性を有す るものとは全く異なっているので、形状変化のある多孔体を作成する時には榭脂の特 性を失うことがある。
[0008] また、特許文献 2には、熱発泡性マイクロスフェアーの外殻榭脂を、二トリル系単量 体 (1)、分子内に 1つの不飽和二重結合とカルボキシル基を有する単量体 (11)、分子 内に 2以上の重合性二重結合を有する単量体 (III)、必要によりこれらと共重合可能 な単量体 (IV)からなる単量体混合物の重合体とする方法が提案されて!ヽる。この方 法によれば、耐熱性を向上させることは出来るが、分子内に 2以上の重合性二重結 合を有する単量体を使用することによってポリマーが架橋構造をとるので発泡倍率が 抑えられてしまう。また、アクリロニトリルを多く使用すると重合途中で凝集が起きて塊 となり製造性が確保し難くなる。また、アクリロニトリルを多く使用すると加熱時の熱黄 変が著しい。
[0009] 従来、高い耐熱性を有するポリマー材料としてポリメタクリルイミドが知られており、こ れを用いたポリイミドフォーム物質が特許文献 3に開示されている。なお、この特許文 献 3に開示された製造方法は、ポリマープレートを製造後に加熱 ·発泡させてフォー ム物質を製造する方法であり、熱発泡性マイクロスフ ア一の製造方法ではな 、。 特許文献 1: W099Z43758号公報。
特許文献 2 :WO03Z〇99955号公報。
特許文献 3:特開平 10— 306169号公報。 発明の開示
発明が解決しょうとする課題
[0010] 本発明は、耐熱性に優れ、且つ、発泡倍率が高ぐ安定した発泡挙動を示す熱発 泡性マイクロスフェアー、並びに当該熱発泡性マイクロスフェアーの製造方法と好適 な用途を提供することを主な目的とする。
課題を解決するための手段
[0011] 本願発明者は、前記目的を達成するために鋭意研究を行った結果、ポリメタクリル イミド構造を形成し得る共重合体を外殻とすることによって、耐熱性に優れ、且つ、発 泡倍率が高ぐ安定した発泡挙動を示す熱発泡性マイクロスフェアーを得ることがで きることを見出した。
[0012] そこで、本発明では、まず、発泡剤を内包する外殻が、ポリメタクリルイミド (polymeth acrylimide,略記 PMI)構造を有する共重合体を形成し得る熱発泡性マイクロスフ ァーを提供する。即ち、本発明に係る熱発泡性マイクロスフ ア一は、発泡剤とこれ を内部に包み持つ外殻とからなり、該外殻がポリメタクリルイミド構造を有する共重合 体によって形成され得る構成を備える。共重合反応により前記ポリメタクリルイミド構 造を形成可能な単量体の好適例は、メタタリ口-トリル (methacrylonitrile)とメタクリル 酸 (methacrylic acid)でめる。
[0013] 本発明に係る熱発泡性マイクロスフェアーは、 240°Cで 2分加熱後の b *値が 100 以下であることや、発泡開始温度未満での熱処理による発泡開始温度及び最大発 泡温度の変動値が、それぞれ該熱処理前における発泡開始温度及び最大発泡温 度の 7%以内であることなどが特徴である。
[0014] 次に、本発明では、分散安定剤を含有する水系分散媒体中で、発泡剤の存在下、 二トリル系単量体とカルボキシル基を有する単量体を主成分とする単量体とからなる 混合物を懸濁重合することによって、ポリメタクリルイミド構造を有する共重合体を形 成し得る外殻内に前記発泡剤が封入された熱発泡性マイクロスフェアーを製造する 方法を提供する。
[0015] この製造方法では、前記-トリル系単量体としてメタタリ口-トリルを、前記カルボキ シル基を有する単量体としてメタクリル酸を用いることができる。より具体的には、重合 性単量体の前記混合物中に、少なくともメタタリ口-トリルとメタクリル酸のモル比が 1: 9〜9: 1の割合で含まれるものを 70〜: LOO重量%、これらと共重合可能なビュル単 量体を 0〜30重量%、 2官能性以上の架橋性単量体を 0〜0. 4モル%、より好ましく は 0〜0. 3モル0 /0含むように工夫する。
[0016] さらに、本発明は、上記した熱発泡性マイクロスフェアーの添加剤としての使用を提 供する。本発明に係る熱発泡性マイクロスフェアーは、発泡開始温度を充分に高くす ることができるという特性を有するので、各種合成樹脂やゴム、バインダー榭脂との混 合時に高温に加熱したときに、望ましくない早期発泡を効果的に抑制することができ る。また、加熱後にあっても安定した発泡挙動を維持し、発泡倍率が高くへタリが少 ないので、添加量を少なくすることができ、カロ工ウィンドウを広くとることができる。 発明の効果
[0017] 本発明によれば、耐熱性に優れ、かつ、発泡倍率が高ぐ安定した発泡挙動を示 す熱発泡性マイクロスフェアーを提供することができる。また、本発明によれば、発泡 前の加工温度を上げることができることに加えて、熱処理を行った後も発泡開始温度 の低下が起こらない熱発泡性マイクロスフェアーを提供することができる。
[0018] さらに、本発明によれば、加熱時の熱黄変が少ない熱発泡性マイクロスフェアーを 提供することができる。また、本発明によれば、重合途中で凝集が起こらず、安定的 に熱発泡性マイクロスフェアーを製造することができる。
発明を実施するための最良の形態
[0019] 以下、本発明に係る実施形態について説明する。なお、本発明は、以下に説明す る実施形態や実施例によって狭く限定されるものではない。
[0020] 本発明に係る熱発泡性マイクロスフ ア一は、発泡剤とこれを内部に包み持つ外殻 とからなり、該外殻がポリメタクリルイミド構造を有する共重合体を形成し得る構成を備 えることが特徴である。
[0021] この「ポリメタクリルイミド構造」は、二トリル基とカルボキシル基を加熱等によって環 ィ匕させることによって得ることができる。したがって、外殻を形成するための単量体とし ては、二トリル系単量体とカルボキシル基を有する単量体が主成分となる。
[0022] 「二トリル系単量体」としては、メタタリ口-トリルを主成分とし、必要に応じて、アタリ口 二トリル、 oc—クロ口アクリロニトリル、 a—エトキシアクリロニトリル、フマロ-トリルなど を併用しても良い。
[0023] 「カルボキシル基を有する単量体」としては、メタクリル酸を主成分とし、必要に応じ てアクリル酸、ィタコン酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコ ン酸等を併用しても良い。
[0024] メタタリ口-トリルとメタクリル酸のモル比は、 1 : 9〜9 : 1、より好ましくは 1 : 5〜5 : 1、 さらに好ましくは 1: 3〜3: 1である。この他にこれらと共重合可能なビニル単量体を使 用してもよい。これらは、外殻の重合体の発泡特性を調整するのに用いられる。なお 、メタタリ口-トリルのメタクリル酸に対するモル比が 1:9を下回ると、造粒性が低下し、 重合中に塊状化し、一方、同モル比が 9:1を上回ると、熱黄変が著しぐ耐熱性が低 下する。
[0025] 「ビュル単量体」としては、塩化ビ-リデン、酢酸ビュル、メチル (メタ)アタリレート、 ェチル (メタ)アタリレート、 n—ブチル (メタ)アタリレート、イソブチル (メタ)アタリレート 、 t—ブチル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、シクロへキシル (メタ) アタリレート、ベンジル (メタ)アタリレート、 β—カルボキシェチルアタリレートなどの(メ タ)アクリル酸エステル、スチレン、スチレンスルホン酸またはそのナトリウム塩、 α—メ チルスチレン、クロロスチレンなどスチレン系単量体、アクリルアミド、置換アクリルアミ ド、メタクリルアミド、置換メタクリルアミドなどのラジカル開始剤により重合反応が進行 する単量体及びそれらの混合物が挙げられる。これらの共重合可能なビニル単量体 は 0〜30重量%程度使用できる。ビュル単量体が 30重量%を超えると、ポリメタタリ ルイミドの効果が低下する。
[0026] 本発明では、二トリル基とカルボキシル基の環化によってポリメタクリルイミド構造を 形成するため、架橋性単量体の使用は必須ではないが、架橋性単量体を用いる場 合は、 2つ以上の重合性炭素 炭素二重結合(一 C = C一)を有する多官能性単量 体が好適である。重合性炭素 炭素二重結合としては、ビュル基、メタクリル基、ァク リル基、ァリル基が挙げられる。 2つ以上の重合性炭素 炭素二重結合は、それぞれ 同一または相異なっていてもよい。また、異なる架橋性単量体を 2つ以上混合して使 用してちょい。 [0027] 「架橋性単量体」のより具体例として、ジビュルベンゼン、ジビュルナフタレン、これ らの誘導体等の芳香族ジビ-ルイ匕合物;エチレングリコールジアタリレート、ジェチレ ングリコールジアタリレート、エチレングリコーノレジメタクリレート、ジエチレングリコーノレ ジメタタリレート等のジエチレン性不飽和カルボン酸エステル、トリエチレングリコール ジアタリレート及びトリエチレングリコールジメタタリレート等のポリエチレン性不飽和力 ルボン酸エステル、 1, 4 ブタンジオール、 1, 9ーノナンジオール等の脂肪族両末 端アルコール由来のアタリレートまたはメタタリレート、 N, N—ジビュルァ-リン、ジビ -ルエーテル等のジビ-ルイ匕合物などの二官能の架橋性単量体を挙げることができ る。他の架橋性単量体としては、例えば、トリアクリル酸トリメチロールプロパン、トリメタ クリル酸トリメチロールプロパン、ペンタエリスリトールトリアタリレート、ペンタエリスリト ールトリメタタリレート、トリアクリルホルマールなどの三官能以上の多官能架橋性単量 体、並びにトリァリルシアヌレート又はトリアリルイソシァヌレートを挙げることができる。 なお、架橋剤の好適な添加量は 0〜0. 4モル0 /0であり、より好ましくは 0〜0. 3モル %である。 0. 4モル%を超えて使用すると発泡倍率の低下が著しい。
[0028] 次に、上記外殻に内包される「発泡剤」としては、メタン、ェタン、プロパン、 n—ブタ ン、イソブタン、 n ペンタン、イソペンタン、ネ才ペンタン、 n—へキサン、イソへキサ ン、 n—ヘプタン、イソヘプタン、 n—オクタン、イソオクタン、 n—ノナン、イソノナン、 n —デカン、イソデカン、 n—ドデカン、イソドデカン等の炭化水素、 CC13F等のクロロフ ルォロカーボン、テトラメチルシラン等のテトラアルキルシランなどを例示できる。これ らの発泡剤は、 目的や用途に応じて、それぞれ単独で、あるいは 2種以上を組み合 わせて使用することも可能である。また、化学発泡剤を併用することもできる。
[0029] 熱発泡性マイクロスフェアー中に封入される発泡剤の割合は、全量基準で、通常 5 〜50重量%、好ましくは 7〜40重量%である。したがって、重合性単量体と発泡剤 の使用割合は、重合後に外殻重合体と発泡剤とが上記割合となるように調節すること が望ましい。
[0030] 以下、本発明に係る熱発泡性マイクロスフェアーの製造方法にっ 、て説明する。
[0031] まず、上記構成の熱発泡性マイクロスフェアーは、一般には、分散安定剤を含有す る水系分散媒体中で、発泡剤の存在下、重合性単量体を懸濁重合することによって 製造することができる。
[0032] 具体的に説明すると、少なくとも重合性単量体と発泡剤とを含有する重合性単量体 混合物を水系分散媒体中に分散させて、油性の重合性単量体の液滴を形成する。 なお、この工程を「造粒工程」と呼ぶことがある。
[0033] 本発明での造粒工程は、ポリメタクリルイミド構造を形成し得る重合性単量体の混 合物と水系分散媒体とを攪拌混合することにより、水系分散媒体中で重合性単量体 混合物の液滴を形成する。
[0034] この液滴の平均粒径は、目的とする熱発泡性マイクロスフ ア一の平均粒径とほぼ 一致させることが好ましぐ通常 1〜500 μ m、好ましくは 3〜300 μ m、特に好ましく は、 5〜200 μ mである。
[0035] 粒径分布が極めてシャープな熱発泡性マイクロスフェアーを得るには、水系分散媒 体及び重合性単量体混合物を連続式高速回転高剪断型攪拌分散機内に供給し、 該攪拌分散機中で両者を連続的に攪拌して分散させた後、得られた分散液を重合 槽内に注入し、そして、該重合槽内で懸濁重合を行う方法を採用することが好ましい
[0036] 液滴形成に続!、て、重合性開始剤を用いて、重合性単量体の懸濁重合を行うと、 この懸濁重合により、生成重合体から形成された外殻内に発泡剤が封入された構造 を持つ熱発泡性マイクロスフェアーを得ることができる。
[0037] 「懸濁重合」は、一般に、反応槽内を脱気するか、不活性ガスで置換して、 30〜: LO 0°Cの温度に昇温して行う。懸濁重合中、重合温度は一定の温度に制御してもよいし 、段階的に昇温重合してもよい。懸濁重合後、生成した熱発泡性マイクロスフェアー を含有する反応混合物を、濾過、遠心分離または沈降などの方法により処理して、反 応混合物から熱発泡性マイクロスフェアーを分離する。分離した熱発泡性マイクロス フェアーは、洗浄し濾過した後、ウエットケーキの状態で回収される。必要に応じて、 熱発泡性マイクロスフェアーの表面を各種材料でコーティングすることもできる。
[0038] 懸濁重合の「重合開始剤」としては、この技術分野で一般に使用されているものを 採用できるが、重合性単量体に可溶性である油溶性重合開始剤が好ましい。このよ うな重合開始剤としては、例えば、過酸ィ匕ジアルキル、過酸化ジァシル、パーォキシ エステル、パーォキシジカーボネート、及びァゾィ匕合物が挙げられる。
[0039] 重合開始剤のより具体的な例としては、メチルェチルパーオキサイド、ジー t プチ ルパーオキサイド、ジクミルパーオキサイドなどの過酸化ジアルキル;イソブチルパー キサイド、ベンゾィルパーオキサイド、 2, 4ージクロ口ベンゾィルパーオキサイド、 3, 5 , 5—トリメチルへキサノィルパーオキサイドなどの過酸化ジァシル、 t ブチルバーオ キシピバレート、 t キシルバーォキシピバレート、 t ブチルパーォキシネオデカノ エート、 t キシルバーォキシネオデカノエート、 1ーシクロへキシルー 1ーメチルェ チルパーォキシネオデカノエート、 1, 1, 3, 3—テトラメチルブチルパーォキシネオ デカノ ト、タミルパーォキシネオデカノ ト、 ビス ネオデカノィルパ ーォキシ)ジイソプロピルベンゼンなどのパーォキシエステル、ビス(4—tーブチルシ クロへキシル)パーォキシジカーボネート、ジー n—プロピルーォキシジカーボネート
、ジーイソプロピルパーォキシジカーボネート、ジ(2—ェチルェチルパーォキシ)ジ カーボネート、ジーメトキシブチルバ一才キシジカーボネート、ジ(3—メチルー 3—メト キシブチノレパーォキシ)ジカーボネートなどのパーォキシジカーボネート; 2, 2'ーァ ゾビスイソブチ口-トリル、 2, 2'—ァゾビス(4—メトキシ)一 2, 4 ジメチルバレ口-ト リル、 2, 2 ァゾビス(2, 4 ジメチルバレ口-トリル)、 1, —ァゾビス(1—シクロ へキサンカルボ-トリル)などのァゾィ匕合物などを挙げることができる。
[0040] 重合開始剤は、通常、重合性単量体混合物中に含有させるが、早期重合を抑制す る必要がある場合には、上記造粒工程中または造粒工程後に、その一部または全部 を水系分散媒体中に添加して、重合性単量体混合物の液滴中に移行させてもょ ヽ。 重合開始剤は、重合性単量体基準で、通常 0. 0001 3重量%の割合で使用され る。
[0041] 懸濁重合は、一般に、分散安定剤を含有する水系分散媒体中で行われる。分散安 定剤としては、例えば、シリカ、水酸ィ匕マグネシウムなどの無機微粒子を挙げることが できる。補助安定剤として、例えば、ジエタノールァミンと脂肪族ジカルボン酸の縮合 生成物、ポリビニルピロリドン、ポリエチレンオキサイド、各種乳化剤等を使用すること ができる。分散安定剤は、重合性単量体 100重量部に対して、通常 0. 1 20重量 部の割合で使用される。 [0042] 分散安定剤を含有する水系分散媒体は、通常、分散安定剤や補助安定剤を脱ィ オン水に配合して調整する。重合時の水相の pHは、使用する分散安定剤や補助安 定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカなど のシリカを使用する場合は、酸性環境下で重合が行われる。水系分散媒体を酸性に するには、必要に応じて酸を加えて、反応系の pHを 6以下、好ましくは pH3〜4程度 に調整する。水酸ィ匕マグネシウムやリン酸カルシウムなどの酸性環境下で水系分散 媒体に溶解する分散安定剤の場合には、アルカリ性環境下で重合させる。
[0043] 分散安定剤の好ましい組み合わせの一つとして、コロイダルシリカと縮合生成物と の組み合わせがある。縮合生成物としては、ジエタノールァミンと脂肪族ジカルボン 酸との縮合生成物が好ましぐ特にジエタノールァミンとアジピン酸との縮合物や、ジ エタノールァミンとィタコン酸との縮合生成物が好ましい。縮合生成物の酸価は、 60 以上 95未満であることが好ましぐ 65〜90であることがより好ましい。
[0044] さらに、塩ィ匕ナトリウム、硫酸ナトリウム等の無機塩を添加すると、より均一な粒子形 状を有する熱発泡性マイクロスフ ア一が得られ易くなる。無機塩としては、通常、食 塩が好適に用いられる。
[0045] 上記コロイダルシリカの使用量は、その粒子径によっても変わる力 通常、重合性 単量体 100重量部に対して、 0. 5〜20重量部、好ましくは 1〜 15重量部の割合であ る。縮合生成物は、重合性単量体 100重量部に対して、通常、 0. 05〜2重量部の 割合で使用される。無機塩は、重合性単量体 100重量部に対して、 0〜: L00重量部 の割合で使用される。
[0046] 分散安定剤の他の好ましい組み合わせの一つとしては、コロイダルシリカと水溶性 窒素含有物との組み合わせが挙げられる。これらの中でも、コロイダルシリカとポリビ -ルピロリドンとの組み合わせが好適に用いられる。さらに、他の好ましい組み合わせ としては、水酸ィ匕マグネシウム及び Zまたはリン酸カルシウムと乳化剤との組み合わ せがある。
[0047] 「分散安定剤」として、水溶性多価金属塩化合物(例えば、塩化マグネシウム)と水 酸化アルカリ金属(例えば、水酸化ナトリウム)との水相中での反応により得られる難 水溶性金属水酸化物(例えば、水酸ィ匕マグネシウム)のコロイドを用いることができる 。また、リン酸カルシウムとしては、リン酸ナトリウムと塩ィ匕カルシウムとの水相中での反 応生成物を使用することができる。
[0048] 「乳化剤」は、一般に使用しないが、所望により陰イオン性界面活性剤、例えば、ジ アルキルスルホコハク酸塩やポリオキシエチレンアルキル(ァリル)エーテルのリン酸 エステル等を用いてもよい。
[0049] 「重合助剤」として、水系分散媒体中に、亜硝酸アルカリ金属塩、塩化第一スズ、塩 化第二スズ、水可溶性ァスコルビン酸類、及びホウ酸カゝらなる群より選ばれる少なくと も一種の化合物を存在させることができる。これらの化合物の存在下に懸濁重合を行 うと、重合時に、重合粒子同士の凝集が起こらず、重合物が重合缶壁に付着すること がなぐ重合による発熱を効率的に除去しながら安定して熱発泡性マイクロスフェア 一を製造することができる。
[0050] 亜硝酸アルカリ金属の中では、亜硝酸ナトリウム及び亜硝酸カリウムが入手の容易 性や価格の点で好ましい。ァスコルビン酸類としては、アルコルビン酸、ァスコルビン 酸の金属塩、ァスコルビン酸のエステルなどが挙げられる力 これらの中でも水可溶 性のものが好適に用いられる。ここで、水可溶性アルコルビン酸類とは、 23°Cの水に 対する溶解性が lgZlOOcm3以上であるものを意味する。これらの中でも、 L—ァス コルビン酸(ビタミン C)、ァスコルビン酸ナトリウム、及びァスコルビン酸カリウムが、入 手の容易性や価格、作用効果の点で、特に好適に用いられる。
[0051] 前掲したこれらの化合物からなる重合助剤は、重合性単量体 100重量部に対して 、通常、 0. 001〜1重量部、好ましくは 0. 01〜0. 5重量部の割合で使用される。
[0052] 水系分散媒体中に上記各成分を添加する順序は任意であるが、通常は、水と分散 安定剤、必要に応じて安定助剤や重合助剤などを加えて、分散安定剤を含有する 水系分散媒体を調製する。
[0053] 発泡剤、重合性単量体 (ビニル単量体)及び架橋性単量体は、別々に水系分散媒 体に加えて、水系分散媒体中で一体化して重合性単量体混合物 (油性の混合物)を 形成してもよいが、通常は、予めこれらを混合してから、水系分散媒体中に添加する 。重合開始剤は、予め重合性単量体に添加して使用することができる。
[0054] 早期重合を避ける必要がある場合には、例えば、重合性単量体混合物を水系分散 媒体中に添加し、攪拌しながら重合開始剤を加え、水系分散媒体中で一体化しても よい。重合性単量体混合物と水系分散媒体との混合を別の容器で行って、高剪断力 を有する攪拌機や分散機で攪拌混合した後、重合缶に仕込んでもよ!ヽ。
[0055] 上記製造方法によって得られる熱発泡性マイクロスフェアーは、重合体から形成さ れた外殻内に発泡剤が封入された構造を有し、外殻にはポリメタクリルイミド構造を有 する。このポリメタクリルイミド構造は、二トリル基とカルボキシル基を加熱等によって環 ィ匕させること〖こよって得られる。
[0056] しかし、加熱時に黄変着色するという問題が起こり得る。この問題の発生は、二トリ ル基の熱変性が原因であるため、この耐熱黄変性を改良したい場合は、カルボキシ ル基のモル比を増やすことが好まし 、。
[0057] 黄変度合!/、を表す指標として、 L * a * b *表色系の「b *値」がある。この b *値が 大きいほど黄色くなり、 b *値が小さくなるほど青が強くなる。例えば、靴底の軽量ィ匕 に使用する場合、色が白い靴底には酸ィ匕チタンを使用するが、黄変が著しいとより多 量の酸ィ匕チタンを使用する必要が生じる。このため、 b *値は 100以下、より好ましく は 50以下である。
[0058] 外殻榭脂の軟化温度は、メタタリ口-トリルとメタクリル酸の比率を変えることで調整 することが可能である。軟ィ匕温度を下げたい場合は、メタタリ口-トリルの比率を増や し、軟化温度を上げたい場合はメタクリル酸の比率を増やす。外殻樹脂の軟化温度 を変えることによって、発泡開始温度を任意に設定することが可能となる。
[0059] 発泡開始温度を調節する方法として、発泡剤の種類を変えることも有効である。高 沸点の発泡剤の比率を増やすことによって発泡開始温度も上げることができる。従来 の熱発泡性マイクロスフェアーの外殻榭脂では、発泡開始温度より若干低 、温度で 加熱すると、発泡開始温度の低下が見られたが、本発明に係る熱発泡性マイクロス フェアーの外殻榭脂は、発泡開始温度の低下が見られず、安定した発泡挙動を示 すという特徴がある。より具体的には、発泡開始温度未満での熱処理による発泡開 始温度及び最大発泡温度の変動値が、それぞれ該熱処理前における発泡開始温 度及び最大発泡温度の 7%以内である。さらに、該変動値は、好ましくは 5%以内、よ り好ましくは 3%以内である。 [0060] ここで、本発明に係る熱発泡性マイクロスフ ア一の用途は、狭く限定されず、加熱 発泡 (膨張)させて、あるいは未発泡のままで、各種分野において添加剤として使用 される。例えば、その膨張性を利用して、自動車等の塗料の充填剤、壁紙や発泡ィ ンク (T—シャツ等のレリーフ模様付け)の発泡剤、収縮防止剤などの用途に利用さ れる。特に、自動車の内装部材ゃタイヤの軽量ィ匕に寄与するものである。
[0061] また、本発明に係る熱発泡性マイクロスフェアーは、発泡による体積増加を利用し て、合成樹脂 (熱可塑性榭脂、熱硬化性榭脂)やゴムなどのポリマー材料、塗料、各 種資材などの軽量ィ匕ゃ多孔質ィ匕などの各種機能性付与 (例えば、スリップ性、断熱 性、クッション性、遮音性等)を目的する添加剤として使用される。ポリマー材料として は、ポリエチレン、ポリプロピレン、ポリスチレン、 ABS榭脂、 SBS、 SIS,水素添加 SI S、天然ゴム、各種合成ゴム、熱可塑性ポリウレタンなどが挙げられる。
[0062] さらに、本発明に係る熱発泡性マイクロスフ ア一は、表面性や平滑性が要求され る塗料、壁紙、インク分野に好適に用いることができる。本発明の熱発泡性マイクロス フェアーは、加工性に優れているので、混練加工、カレンダー加工、押出し力卩ェ、射 出成形などの加工工程を必要とする用途分野に好適に用いることができる。
[0063] このように、本発明に係る熱発泡性マイクロスフェアーは、発泡剤として使用したり、 ポリマー材料と混合して組成物としたりすることができ、あるいは、未発泡のまま熱可 塑性榭脂と溶融混連し、ペレツトイ匕することもでき、さら〖こは、ポリマー材料や塗料、ィ ンクなどに配合し、加熱発泡して発泡体粒子を含有する物品(例えば、発泡成型品、 発泡塗膜、発泡インク)とすることができる。
実施例
[0064] 以下、実施例及び比較例を挙げて、本発明につ 、てより具体的に説明する。まず は、各パラメータの「測定方法」について説明する。
[0065] (1)発泡開始温度及び最大発泡温度。
パーキンエルマ一社製の TMA— 7型を用いて「TMA測定」を行った。サンプル約 0. 25mgを使用し、昇温速度 5°CZ分で昇温して、発泡挙動を観察した。より具体的 には、容器にサンプル (熱発泡性マイクロスフェアー)を入れて、昇温速度 5°CZ分で 昇温し、その高さの変位を連続的に測定した。容器内におけるサンプルの高さの変 位が始まった温度を発泡開始温度 (Tstart)とし、高さが最大となった温度を最大発 泡温度(Tmax)とした。
[0066] (2)発泡倍率 (塗膜法)。
エチレン'酢酸ビュル共重合体(EVA;エチレン Z酢酸ビュル = 30Z70重量0 /0) を含有する EVA系水性ェマルジヨン (濃度 55重量%)に対して、熱発泡性マイクロス フェアーが固形分換算で 5 : 1となるように添加して塗工液を調整する。この塗工液を 両面アート紙に 200 mのギャップを有するコーターで塗布した後、オーブンに入れ 90°Cで 5分間乾燥する。乾燥後の塗膜厚みを計測した後、所定温度のオーブンに 入れて 2分間加熱、発泡させる。発泡後の塗膜厚みを測定し、発泡前後の塗膜圧比 力 発泡倍率を求める。
[0067] (3)平均粒径。
島津製作所製の粒径分布測定器 SALD - 3000Jを用 、て測定した。
[0068] (4)色調の測定。
色差計 (ミノルタ社、色彩色差計 CR-200)を用いて、発泡倍率 (塗膜法)を測定し た塗膜の b *値を測定した。この b *値は、 L * a * b *表色系における b *値のことで あり、この値が大きいほど、黄色が強いことを示す。
[0069] (5)発泡粒子密度。
マイクロスフェアー 0. 5g +シリコンオイル 2. 5gをアルミカップに秤取り、良く混ぜ た後、設定温度のオーブンで加熱発泡して取り出し、 50mlのメスフラスコに入れ、ィ ソプロパノールでメスアップしてサンプル重量、メスアップ後の重量から発泡した熱発 泡性マイクロスフェアーの真比重を求めた。
[0070] <実施例 1 >
(A)水系分散媒体の調製。 20重量%コロイダルシリカ 40g、 50重量%ジエタノール ァミン—アジピン酸縮合生成物(酸価 = 78mgKOH/g) l. 6g、亜硝酸ナトリウム 0.
12g、塩ィ匕ナトリウム 177g、水 565gを混合した後、塩酸を添カ卩して pHが 3. 2になる ように調整して、水系分散媒体を調製した。
[0071] (B)重合性混合物の調製。重合単量体であるメタタリ口-トリル (表中 MANで示す) 8
8gとメタクリル酸(同じく MAAで示す) 112g、発泡剤イソオクタン 60g、及び重合開 始剤 2、 2' —ァゾビスイソプチ口-トリル(同じく V— 60で示す) 2gを混合して、重合 性混合物を調製した。なお、本実施例 1のメタクリロ-トリルとメタクリル酸のモル比は 、 1 : 1でぁる(表1参照)。
[0072] (C)懸濁重合。前記で調製した水系分散媒体と重合性混合物とを、ホモジナイザー で攪拌混合して、水系分散媒体中に重合性単量体混合物の微小な液滴を形成した 。この重合性混合物の微小な液滴を含有する水系分散媒体を、攪拌機付きの重合 缶(1. 5L)に仕込み、温水バスを用いて 60°Cで 15時間、さらに 70°Cで 9時間加熱し て反応させた。重合後、生成した熱発泡性マイクロスフェアーを含有するスラリーを濾 過'水洗し、乾燥して、平均粒径 40 mの熱発泡性マイクロスフ ア一得た (表 1参 照)。
[0073] (D)発泡性評価。上記で得られた熱発泡性マイクロスフェアーをそのままサンプルと して TMA測定を行った結果、発泡開始温度は 195°C、最大発泡温度は 217°Cであ り、その差は 22°Cであった。また、上記熱発泡性マイクロスフェアーを、 170°Cで 2分 間加熱してから TMA測定を行ったところ、発泡開始温度、最大発泡温度とも変化は 見られな力つた。発泡倍率は、 230°Cで 8.4倍であった (表 1参照)。
[0074] (E)色調の測定。前記 (D)で 240°Cで 2分加熱して発泡させた塗膜の b*値は 24.5 であった (表 1参照)。
[0075] <実施例 2>
メタタリ口-トリル 110g、メタクリル酸 90gに換えたこと以外は、上記実施例 1と同様 の方法で懸濁重合し、平均粒径 39 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 2のメタクリロ-トリルとメタクリル酸のモル比は、 1.6 : 1である。
[0076] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 186°C、最大発泡温度は 214°Cであり、その差は 28 °Cであった。発泡倍率は 230°Cで 8.4倍、 b*値は 26. 8であった。
[0077] <実施例 3 >
メタタリ口-トリル 132g、メタクリル酸 68gに換えたこと以外は、上記実施例 1と同様 の方法で懸濁重合し、平均粒径 41 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 3のメタクリロ-トリルとメタクリル酸のモル比は、 2.5 : 1である。 [0078] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 171°C、最大発泡温度は 255°Cであり、その差は 84 °Cであった。発泡倍率は 220°Cで 10. 5倍、 b*値は 27. 1であった。
[0079] <実施例 4>
メタタリ口-トリル 154g、メタクリル酸 46gに換えたこと以外は、上記実施例 1と同様 の方法で懸濁重合し、平均粒径 50 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 4のメタクリロ-トリルとメタクリル酸のモル比は、 4. 3 : 1である。
[0080] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 180°C、最大発泡温度は 260°Cであり、その差は、 8 0°Cであった。発泡倍率は 220°Cで 8. 6倍、 b*値は 35. 4であった。
[0081] <実施例 5 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、上記実施例 1 と同様の方法で懸濁重合し、平均粒径 40 mの熱発泡性マイクロスフェアーを得た
[0082] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 185°C、最大発泡温度は 240°Cであり、その差は 55 °Cであった。発泡倍率は 230°Cで 4. 5倍、 b*値は 25. 0であった。
[0083] <実施例 6 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、上記実施例 2 と同様の方法で懸濁重合し、平均粒径 49 mの熱発泡性マイクロスフェアーを得た
[0084] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 170°C、最大発泡温度は 240°Cであり、その差は 70 °Cであった。発泡倍率は 220°Cで 9. 1倍、 b*値は 27. 0であった。
[0085] <実施例 7 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、上記実施例 3 と同様の方法で懸濁重合し、平均粒径 47 mの熱発泡性マイクロスフェアーを得た [0086] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 155°C、最大発泡温度は 220°Cであり、その差は 65 °Cであった。発泡倍率は 210°Cで 19. 2倍、 b*値は 27. 5であった。
[0087] <実施例 8 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、上記実施例 4 と同様の方法で懸濁重合し、平均粒径 50 mの熱発泡性マイクロスフェアーを得た
[0088] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 130°C、最大発泡温度は 210°Cであり、その差は 80 °Cであった。発泡倍率は 200°Cで 17. 3倍、 b*値は 36. 0であった。
[0089] <実施例 9 >
発泡剤を、イソオクタン 60gからイソドデカン 60gに換えたこと以外は、上記実施例 3 と同様の方法で懸濁重合し、平均粒径 31 μ mの熱発泡性マイクロスフェアーを得た
[0090] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 251°C、最大発泡温度は 279°Cであり、その差は 28 °Cであった。発泡倍率は 230°Cで 1. 5倍、 b*値は 28. 0であった。
[0091] <実施例 10>
メタタリロニトリル 88g、メタクリル酸 112gを、メタタリロニトリル 130g、メタクリル酸 66g 、アクリル酸メチル (表中 MAで示す) 4gに換えたこと以外は、上記実施例 1と同様の 方法で懸濁重合し、平均粒径 34 mの熱発泡性マイクロスフェアーを得た。
[0092] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 171°C、最大発泡温度は 245°Cであり、その差は 74 °Cであった。発泡倍率は 220°Cで 10. 0倍、 b*値は 27. 0であった。
[0093] <実施例 11 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、前記実施例 1 0と同様の方法で懸濁重合し、平均粒径 50 μ mの熱発泡性マイクロスフェアーを得 [0094] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 150°C、最大発泡温度は 220°Cであり、その差は 70 °Cであった。発泡倍率は 210°Cで 19. 1倍、 b*値は 26. 9であった。
[0095] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 171°C、最大発泡温度は 250°C以上であり、その差 は 79°C以上であった。発泡倍率は 220°Cで 10. 2倍、 b*値は 27. 0であった。
[0096] <実施例 13 >
(A)水系分散媒体の調製。 20重量%コロイダルシリカ 65g、 50重量%ジエタノール ァミン—アジピン酸縮合生成物(酸価 = 78mgKOH/g) 6. 5g、亜硝酸ナトリウム 0. 24g、塩ィ匕第一スズ 0. 04g、塩ィ匕ナトリウム 177g、水 555gを混合した後、塩酸を添 カロして pHが 3. 2になるように調整して、水系分散媒体を調製した。
[0097] (B)重合性混合物の調製。重合単量体であるメタタリ口-トリル (MAN) 175gとメタク リル酸(MAA) 25g、発泡剤イソオクタン 60g、及び重合開始剤 2、 2' ーァゾビスイソ プチ口-トリル (V— 60) 2gを混合して、重合性混合物を調製した。なお、本実施例 1 3のメタクリロ-トリルとメタクリル酸のモル比は、 9 : 1である。
[0098] (C)懸濁重合は実施例 1と同様の方法によって行い、平均粒径 27 mの熱発泡性 マイクロスフェアー得た。
[0099] 得られた熱発泡性マイクロスフェアーをそのままサンプルとして、実施例 1と同様の方 法により(D)発泡性評価及び (E)色調の測定を行った結果、発泡開始温度は 211 。C、最大発泡温度は 218°Cであり、その差は 7°Cであった。発泡倍率は、 220°Cで 6 . 5倍、 値は 41. 0であった。
[0100] <実施例 14 >
メタタリ口-トリル 129g、メタクリル酸 71gに換えたこと以外は、上記実施例 13と同様 の方法で懸濁重合し、平均粒径 27 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 14のメタクリロ-トリルとメタクリル酸のモル比は、 2. 3 : 1である。
[0101] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 204°C、最大発泡温度は 259°Cであり、その差は 55 °Cであった。発泡倍率は 230°Cで 17. 0倍、 b*値は 31. 0であった。 [0102] <実施例 15 >
メタタリ口-トリル 108g、メタクリル酸 92gに換えたこと以外は、上記実施例 13と同様 の方法で懸濁重合し、平均粒径 26 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 15のメタクリロ-トリルとメタクリル酸のモル比は、 1. 5 : 1である。
[0103] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 189°C、最大発泡温度は 266°Cであり、その差は 77 °Cであった。発泡倍率は 230°Cで 17. 6倍、 b*値は 27. 0であった。
[0104] また、熱発泡粒子密度は、 230。Cで 0. 0046、 240。Cで 0. 0045、 250。Cで 0. 00 68であった (表 2参照)。
[0105] <実施例 16 >
メタタリ口-トリル 88g、メタクリル酸 112gに換えたこと以外は、上記実施例 13と同様 の方法で懸濁重合し、平均粒径 31 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 16のメタクリロ-トリルとメタクリル酸のモル比は、 1 : 1である。
[0106] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 199°C、最大発泡温度は 263°Cであり、その差は 64 °Cであった。また、上記熱発泡性マイクロスフェアーを、 180°Cで 10分間加熱してか ら TMA測定を行ったところ、発泡開始温度、最大発泡温度にほとんど変化は見られ なかった。発泡倍率は 230°Cで 14. 5倍、 b*値は 24. 0であった。
[0107] 図 1に、 TMA測定時の発泡開始温度と最大発泡温度との間における発泡度合い の変化 (発泡挙動)を示す。容器にサンプル約 0. 25mgを入れて、昇温速度 5°CZ 分で昇温し、その高さの変位を連続的に測定した。各温度における高さは、最大発 泡温度 (Tmax)における高さを 1として示した。
[0108] 図 1に示すように、本実施例 16で得られた熱発泡性マイクロスフェアーは、未加熱 及び 180°Cで 10分間加熱後において、発泡開始温度、最大発泡温度にほとんど変 ィ匕がないのみならず、発泡開始温度と最大発泡温度との間における発泡挙動にも変 ィ匕がなぐ安定した発泡性を維持していることが分力る。
[0109] <実施例 17 >
重合開始剤を、 2、 2' —ァゾビスイソプチ口-トリル 2gからラウリルパーオキサイド( 表中 LPOで示す)イソペンタン 60gに換えたこと以外は、上記実施例 16と同様の方 法で懸濁重合し、平均粒径 30 mの熱発泡性マイクロスフェアーを得た。
[0110] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 200°C、最大発泡温度は 250°Cであり、その差は 50 °Cであった。発泡倍率は 230°Cで 7. 1倍、 b*値は 23. 0であった。
[0111] く実施例 18 >
メタタリ口-トリル 68g、メタクリル酸 132gに換えたこと以外は、上記実施例 17と同様 の方法で懸濁重合し、平均粒径 28 mの熱発泡性マイクロスフェアーを得た。なお 、本実施例 18のメタクリロ-トリルとメタクリル酸のモル比は、 0. 7 : 1である。
[0112] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 207°C、最大発泡温度は 232°Cであり、その差は 25 °Cであった。発泡倍率は 230°Cで 4. 1倍、 b*値は 23. 0であった。
[0113] く実施例 19 >
メタタリロニトリル 175g、メタクリル酸 25gに加えて、トリメチロールプロパントリメタタリ レート(表中 TMPTMAで示す)を 0. 4gを配合したこと以外は、上記実施例 13と同 様の方法で懸濁重合し、平均粒径 30 mの熱発泡性マイクロスフェアーを得た。な お、本実施例 19の重合性単量体混合物中のトリメチロールプロパントリメタタリレート の配合比率は 0. 04モル0 /0である。
[0114] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 213°C、最大発泡温度は 218°Cであり、その差は 5 °Cであった。発泡倍率は 230°Cで 6. 7倍であった。
[0115] く実施例 20 >
メタタリロニトリル 108g、メタクリル酸 92gに加えて、トリメチロールプロパントリメタタリ レートを 0. 2gを配合したこと以外は、上記実施例 15と同様の方法で懸濁重合し、平 均粒径 26 μ mの熱発泡性マイクロスフェアーを得た。なお、本実施例 20の重合性単 量体混合物中のトリメチロールプロパントリメタタリレートの配合比率は 0. 02モル0 /0で ある。
[0116] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 188°C、最大発泡温度は 250°Cであり、その差は 62 °Cであった。発泡倍率は 230°Cで 10. 6倍であった。
[0117] く実施例 21 >
メタタリロニトリル 108g、メタクリル酸 92gに加えて、トリメチロールプロパントリメタタリ レートを 0. 6gを配合したこと以外は、上記実施例 15と同様の方法で懸濁重合し、平 均粒径 29 μ mの熱発泡性マイクロスフェアーを得た。なお、本実施例 21の重合性単 量体混合物中のトリメチロールプロパントリメタタリレートの配合比率は 0. 07モル0 /0で ある。
[0118] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 187°C、最大発泡温度は 223°Cであり、その差は 36 °Cであった。発泡倍率は 230°Cで 11. 3倍であった。
[0119] く実施例 22 >
メタタリロニトリル 108g、メタクリル酸 92gに加えて、トリメチロールプロパントリメタタリ レートを 1. Ogを配合したこと以外は、上記実施例 15と同様の方法で懸濁重合し、平 均粒径 31 μ mの熱発泡性マイクロスフェアーを得た。なお、本実施例 22の重合性単 量体混合物中のトリメチロールプロパントリメタタリレートの配合比率は 0. 11モル0 /0で ある。
[0120] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 185°C、最大発泡温度は 220°Cであり、その差は 35 °Cであった。発泡倍率は 230°Cで 8. 0倍であった。
[0121] <実施例 23 >
メタタリロニトリル 98g、メタクリル酸 92gとし、アクリル酸メチル(表中 MAで示す)を 1 Ogを配合したこと以外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 27 mの熱発泡性マイクロスフェアーを得た。なお、本実施例 23のメタクリロ-トリルとメ タクリル酸のモル比は、 1.4: 1であり、アクリル酸メチルの配合比率は 5重量%である
[0122] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 189°C、最大発泡温度は 259°Cであり、その差は 70 °Cであった。発泡倍率は 230°Cで 13. 4倍であった。
[0123] <実施例 24 >
メタタリロニトリル 98g、メタクリル酸 92gとし、メタクリル酸メチル(表中 MMAで示す) を 10gを配合したこと以外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 25 μ mの熱発泡性マイクロスフェアーを得た。なお、本実施例 24のメタクリロ-トリル とメタクリル酸のモル比は、 1.4 : 1であり、メタクリル酸メチルの配合比率は 5重量%で ある。
[0124] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 185°C、最大発泡温度は 242°Cであり、その差は 57 °Cであった。発泡倍率は 230°Cで 14. 2倍であった。
[0125] <実施例 25 >
メタタリロニトリル 88g、メタクリル酸 92gとし、メタクリル酸メチルを 20gを配合したこと 以外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 27 mの熱発泡性マ イクロスフェアーを得た。なお、本実施例 25のメタクリロ-トリルとメタクリル酸のモル比 は、 1.2 : 1であり、メタクリル酸メチルの配合比率は 10重量%である。
[0126] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 186°C、最大発泡温度は 235°Cであり、その差は 49 °Cであった。発泡倍率は 230°Cで 13. 3倍であった。
[0127] <実施例 26 >
メタタリ口-トリル 104g、メタクリル酸 92gとし、ジメチルアミノエチルメタタリレート(表 中 DMAEMAで示す)を 4gを配合したこと以外は、上記実施例 15と同様の方法で 懸濁重合し、平均粒径 24 mの熱発泡性マイクロスフェアーを得た。なお、本実施 例 26のメタクリロ-トリルとメタクリル酸のモル比は、 1.5 : 1であり、ジメチルアミノエチ ルメタタリレートの配合比率は 2重量%である。
[0128] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 190°C、最大発泡温度は 251°Cであり、その差は 61 °Cであった。発泡倍率は 230°Cで 11. 4倍であった。
[0129] [表 1]
Figure imgf000024_0001
*1:230°C、 *2:220°C、 *3:210°C、 *4:200°C、 *5:190°C
[0130] <実施例 27>
発泡剤を、イソオクタン 60gからイソドデカン 60gに換えたこと以外は、上記実施例 1 5と同様の方法で懸濁重合し、平均粒径 26 μ mの熱発泡性マイクロスフェアーを得 た (表 2参照)。
[0131] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 232°C、最大発泡温度は 283°Cであり、その差は 51 。。であった。熱発泡粒子密度は、 240。Cで 0. 0612、 250。Cで 0. 0236であった(表 2参照)。
[0132] <実施例 28 >
発泡剤を、イソオクタン 60gからイソペンタン 60gに換えたこと以外は、上記実施例 1 5と同様の方法で懸濁重合し、平均粒径 31 μ mの熱発泡性マイクロスフェアーを得 た。
[0133] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 168°C、最大発泡温度は 234°Cであり、その差は 66 °Cであった。発泡倍率は 230°Cで 14. 4倍であった。熱発泡粒子密度は、 220°Cで 0 . 0116、 230。Cで 0. 0072、 240。Cで 0. 0061であった。
[0134] <実施例 29 >
発泡剤を、イソオクタン 60gからイソブタン 40gに換えたこと以外は、上記実施例 15 と同様の方法で懸濁重合し、平均粒径 27 mの熱発泡性マイクロスフェアーを得た
[0135] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 159°C、最大発泡温度は 228°Cであり、その差は 69 °Cであった。発泡倍率は 230°Cで 9. 8倍であった。熱発泡粒子密度は、 220°Cで 0. 0108、 230。Cで 0. 0104、 240。Cで 0. 0146であった。
[0136] <実施例 30>
発泡剤を、イソオクタン 60gから、イソブタン 20gとイソドデカン 40gに換えたこと以外 は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 26 mの熱発泡性マイク ロスフェアーを得た。
[0137] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 175°C、最大発泡温度は 240°Cであり、その差は 65 °Cであった。発泡倍率は 230°Cで 10. 3倍であった。熱発泡粒子密度は、 230°Cで 0 . 0097、 240。Cで 0. 0108、 250。Cで 0. 0120であった。
[0138] <実施例 31 > 発泡剤を、イソオクタン 60gから、イソブタン 10gとイソドデカン 50gに換えたこと以外 は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 26 mの熱発泡性マイク ロスフェアーを得た。
[0139] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 198°C、最大発泡温度は 260°Cであり、その差は 62 °Cであった。発泡倍率は 230°Cで 8. 7倍であった。熱発泡粒子密度は、 230°Cで 0. 0123、 240。Cで 0. 0113、 250。Cで 0. 0119であった。
[0140] <実施例 32 >
発泡剤を、イソオクタン 60gから、イソブタン 5gとイソドデカン 55gに換えたこと以外 は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 25 mの熱発泡性マイク ロスフェアーを得た。
[0141] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 200°C、最大発泡温度は 277°Cであり、その差は 77 °Cであった。発泡倍率は 230°Cで 5. 8倍であった。熱発泡粒子密度は、 230°Cで 0. 0221、 240。Cで 0. 0205、 250。Cで 0. 0140であった。
[0142] <実施例 33 >
発泡剤を、イソオクタン 60gから、イソペンタン 20gとイソドデカン 40gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 25 mの熱発泡性マイ クロスフェアーを得た。
[0143] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 193°C、最大発泡温度は 237°Cであり、その差は 44 °Cであった。発泡倍率は 230°Cで 11. 8倍であった。熱発泡粒子密度は、 230°Cで 0 . 0080、 240。Cで 0. 0088であった。
[0144] <実施例 34 >
発泡剤を、イソオクタン 60gから、イソペンタン 10gとイソドデカン 50gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 24 mの熱発泡性マイ クロスフェアーを得た。
[0145] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 195°C、最大発泡温度は 264°Cであり、その差は 69 °Cであった。発泡倍率は 230°Cで 8. 5倍であった。熱発泡粒子密度は、 230°Cで 0. 0127、 240。Cで 0. 0117、 250。Cで 0. 0110であった。
[0146] <実施例 35 >
発泡剤を、イソオクタン 60gから、イソペンタン 5gとイソドデカン 55gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 22 mの熱発泡性マイ クロスフェアーを得た。
[0147] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 208°C、最大発泡温度は 272°Cであり、その差は 64 。。であった。熱発泡粒子密度は、 240。Cで 0. 0155、 250。Cで 0. 0154であった。
[0148] <実施例 36 >
発泡剤を、イソオクタン 60gから、イソオクタン 40gに換えたこと以外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 25 μ mの熱発泡性マイクロスフェアーを得 た。
[0149] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 188°C、最大発泡温度は 256°Cであり、その差は 68 °Cであった。発泡倍率は 230°Cで 8. 6倍であった。熱発泡粒子密度は、 230°Cで 0. 0125、 240。Cで 0. 0116、 250。Cで 0. 0124であった。
[0150] <実施例 37>
発泡剤を、イソオクタン 60gから、イソオクタン 80gに換えたこと以外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 27 μ mの熱発泡性マイクロスフェアーを得 た。
[0151] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 187°C、最大発泡温度は 260°Cであり、その差は 73 °Cであった。発泡倍率は 230°Cで 12. 4倍であった。熱発泡粒子密度は、 230°Cで 0 . 0075、 240。Cで 0. 0069、 250。Cで 0. 0068であった。
[0152] <実施例 38 >
発泡剤を、イソオクタン 60gから、イソオクタン 100gに換えたこと以外は、上記実施 例 15と同様の方法で懸濁重合し、平均粒径 23 mの熱発泡性マイクロスフェアーを 得た。
[0153] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 187°C、最大発泡温度は 260°Cであり、その差は 73 °Cであった。発泡倍率は 230°Cで 12. 8倍であった。熱発泡粒子密度は、 230°Cで 0 . 0072、 240。Cで 0. 0061、 250。Cで 0. 0068であった。
[0154] <実施例 39 >
メタタリ口-トリル 110g、メタクリル酸 86gとし、アクリル酸メチルを 4gを配合し、さらに 発泡剤を、イソオクタン 60gから、イソペンタン 22gとイソオクタン 22gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 21 mの熱発泡性マイ クロスフェアーを得た。
[0155] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 176°C、最大発泡温度は 231°Cであり、その差は 55 °Cであった。発泡倍率は 230°Cで 11. 0倍であった。熱発泡粒子密度は、 210°Cで 0 . 0106、 220。Cで 0. 0089、 230。Cで 0. 0094であった。
[0156] <実施例 40>
メタタリ口-トリル 110g、メタクリル酸 86gとし、アクリル酸メチルを 4gを配合し、さらに 発泡剤を、イソオクタン 60gから、イソペンタン 30gとイソオクタン 30gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 24 mの熱発泡性マイ クロスフェアーを得た。
[0157] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 175°C、最大発泡温度は 235°Cであり、その差は 60 °Cであった。発泡倍率は 220°Cで 14. 2倍であった。熱発泡粒子密度は、 210°Cで 0 . 0093、 220。Cで 0. 0062、 230。Cで 0. 0068であった。
[0158] <実施例 41 >
メタタリ口-トリル 110g、メタクリル酸 86gとし、アクリル酸メチルを 4gを配合し、さらに 発泡剤を、イソオクタン 60gから、イソペンタン 40gとイソオクタン 40gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 26 mの熱発泡性マイ クロスフェアーを得た。
[0159] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 172°C、最大発泡温度は 241°Cであり、その差は 69 °Cであった。発泡倍率は 210°Cで 16. 0倍であった。熱発泡粒子密度は、 210°Cで 0 . 0083、 220。Cで 0. 0054、 230。Cで 0. 0052であった。
[0160] <実施例 42>
メタタリ口-トリル 110g、メタクリル酸 86gとし、アクリル酸メチルを 4gを配合し、さらに 発泡剤を、イソオクタン 60gから、イソペンタン 50gとイソオクタン 50gに換えたこと以 外は、上記実施例 15と同様の方法で懸濁重合し、平均粒径 30 mの熱発泡性マイ クロスフェアーを得た。
[0161] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 168°C、最大発泡温度は 247°Cであり、その差は 79 °Cであった。発泡倍率は 210°Cで 18. 2倍であった。熱発泡粒子密度は、 210°Cで 0 . 0083、 220。Cで 0. 0044、 230。Cで 0. 0047であった。
[0162] [表 2]
Figure imgf000030_0001
*1 :230°C *2 :220°C *3 :210°C *4:200°C *5 : 190°C
[0163] <実施例 43 >
水系分散媒体の調製において、 20重量%コロイダルシリカ 65gを 50gに換え、乳化 機回転数を 8, 500r/mとしたこと以外は、上記実施例 15と同様の方法で懸濁重合し 、平均粒径 39 mの熱発泡性マイクロスフェアーを得た (表 3参照)。
[0164] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 185°C、最大発泡温度は 266°Cであり、その差は 81 °Cであった。発泡倍率は 230°Cで 11. 3倍であった。熱発泡粒子密度は、 210°Cで 0 . 0210 220 Cで 0. 0113 230 Cで 0. 0085であった(表 3参照)。
[0165] <実施例 44>
水系分散媒体の調製において、 20重量%コロイダルシリカ 65gを 40gに換え換え、 乳化機回転数を 7, 500r/mとした以外は、上記実施例 15と同様の方法で懸濁重合 し、平均粒径 58 μ mの熱発泡性マイクロスフェアーを得た。
[0166] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 181°C、最大発泡温度は 232°Cであり、その差は 51
°Cであった。発泡倍率は 230°Cで 11. 3倍であった。熱発泡粒子密度は、 210°Cで 0
. 0150、 220 Cで 0. 0100、 230 Cで 0. 0086であった。
[0167] <実施例 45 >
水系分散媒体の調製において、 20重量%コロイダルシリカ 65gを 20gに換え、乳化 機回転数を 5, 500r/mとした以外は、上記実施例 15と同様の方法で懸濁重合し、 平均粒径 118 μ mの熱発泡性マイクロスフェアーを得た。
[0168] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 177°C、最大発泡温度は 201°Cであり、その差は 24
°Cであった。発泡倍率は 210°Cで 2. 8倍であった。熱発泡粒子密度は、 210°Cで 0.
0598、 220 Cで 0. 0641、 230 Cで 0. 0748であった。
[0169] [表 3]
Figure imgf000031_0001
*1 :230°C、 *2 :220°C、 *3 :210°C、 *4:200°C、 *5 : 190°C
[0170] <比較例 1 >
本比較例 1は、アクリロニトリルを多量に使用したときの影響を確認するための試験 である。メタタリ口-トリル 88g、メタクリル酸 112gを、アクリロニトリル 45.4g、メタクリロ 二トリル 45.4g、メタクリル酸 109.2gに換えたこと以外は、上記実施例 1と同様の方法 で懸濁重合した。この結果、重合途中でポリマーが塊状ィ匕してしまい、正常な熱発泡 性マイクロスフェアーを得ることができな力つた (表 4参照)。
[0171] <比較例 2> 特許文献 2の実施例に近 ヽ組成での造粒性を確認するため、メタタリ口-トリル 88g 、メタクリル酸 112gを、アクリロニトリル 45.4g、メタタリ口-トリル 45.4g、メタクリル酸 1 09.2gに換え、さらに架橋性単量体としてエチレングリコールジメタクリレート (表中 EG DMAで示す) 2.72gをカ卩えたこと以外は、上記実施例 1と同様の方法で懸濁重合し た。この結果、重合途中でポリマーが塊状ィ匕してしまい、正常な熱発泡性マイクロス フェアーを得ることができなかった。
[0172] <比較例 3 >
アクリロニトリルをさらに多く使用した時の影響を確認するため、メタタリ口-トリル 88 g、メタクジノレ 112gを、ァク! J P-卜!;ノレ 66. 6g、メタク! J P-卜!;ノレ 66. 6g、メタクジノレ 酸 66.6gに換えたこと以外は、実施例 1と同様の方法で懸濁重合した。この結果、重 合途中でポリマーが塊状ィ匕してしまい、正常な熱発泡性マイクロスフェアーを得ること ができなかった。
[0173] <比較例 4>
特許文献 2の実施例に近 ヽ組成での造粒性を確認するため、メタタリ口-トリル 88g 、メタクジノレ 112gを、ァク! J P-卜!;ノレ 66. 6g、メタク! J P-卜!;ノレ 66. 6g、メタクジノレ 66. 6gに換え、さらに架橋性単量体としてエチレングリコールジメタタリレート 2. 86g を加えたこと以外は、上記実施例 1と同様の方法で懸濁重合した。
[0174] この結果、重合途中でポリマーが塊状ィ匕してしまい、正常な熱発泡性マイクロスフエ ァーを得ることができな力 た。
[0175] <比較例 5 >
メタタリ口-トリル 88g、メタクリル酸 112gをメタクリル酸 200gのみにかえたこと以外 は、実施例 1と同様の方法で懸濁重合した。その結果、重合途中でポリマーが塊状 化した。
[0176] <比較例 6 >
メタタリロニトリル 88g、メタクリル酸 112gをメタタリロニトリル 200gのみにかえたこと 以外は、実施例 1と同様の方法で懸濁重合したところ、粒径 47 mのマイクロスフヱ ァーを得た。その結果、発泡しな力つた。 b *値は 200であった。
[0177] <比較例 7> 架橋性単量体の影響を確認するため、架橋性単量体としてエチレングリコールジメ タクリレートを 2. 72gカ卩えたこと以外は、上記実施例 3と同様の方法で懸濁重合し、 平均粒径 50 μ mの熱発泡性マイクロスフェアーを得た。架橋性単量体の重合性単 量体に対する添力卩量は 0. 5モル%である。
[0178] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 169°C、最大発泡温度は 173°Cであった。発泡倍率 は、 220°Cで 1. 1倍と極端に低下した。
[0179] <比較例 8 >
本比較例 8は、発泡挙動への影響を確認するための試験である。メタタリ口-トリル 8 8g、メタクリル酸 112gを、アクリロニトリル 67g、メタタリ口-トリル 31g、メタクリル酸 2g、 ジエチレングリコールジメタタリレート(表中 DEGDMAで示す) 1. 5gとし、発泡剤を、 イソオクタン 60gから、イソペンタン lgとイソオクタン 13g、イソドデカン 16gに換えたこ と以外は、上記実施例 1と同様の方法で懸濁重合し、平均粒径 49 mの熱発泡性 マイクロスフェアーを得た。架橋性単量体の重合性単量体に対する添加量は 0. 35 モノレ%である。
[0180] この結果得られた熱発泡性マイクロスフェアーをそのままサンプルとして TMA測定 を行った結果、発泡開始温度は 204°C、最大発泡温度は 209°Cであり、その差は 5 °Cであった。また、上記熱発泡性マイクロスフェアーを、 170°Cで 2分間加熱してから TMA測定を行ったところ、発泡開始温度は 135°C、最大発泡温度は 194°Cへ変化 した。 170°Cで 2分間加熱後の、発泡倍率は、 190°Cで 8.3倍であった。
[0181] 図 2に、 TMA測定時の発泡開始温度と最大発泡温度との間における発泡度合い の変化 (発泡挙動)を示す。本比較例 8で得られた熱発泡性マイクロスフェアーは、未 加熱及び 170°Cで 2分間加熱後において、発泡開始温度、最大発泡温度がともに低 下し、さらに発泡開始温度と最大発泡温度との間における発泡挙動が大きく変化し て!、ることが分かる(図 1も参照)。
[0182] [表 4]
Figure imgf000034_0001
*1:230°C、 *2:220°C、 *3:210°C、 *4:200°C、 *5:190°C
[0183] 前掲した「表 1」に示された結果力 わ力るように、本発明に係る熱発泡性マイクロス フェアーの各実施例では、発泡開始温度と最大発泡温度の差が大き力つた。具体的 には、実施例 1:22°C、実施例 2:28°C、実施例 3:84°C、実施例 4:80°C、実施例 5: 55°C、実施例 6:70°C、実施例 7:65°C、実施例 8:80°C、実施例 9:28°C、実施例 1 0:74°C、実施例 11:70°C、であった。このことから、本発明に係る熱発泡性マイクロ スフエアーは、耐熱性に優れていることが明らかである。
[0184] また、本発明に係る熱発泡性マイクロスフ ア一の各実施例は、高 、発泡倍率を有 する。力!]えて、実施例 1及び 16に示したように、熱処理を行った後も発泡開始温度の 低下が起こらず、発泡挙動にも変化を生じずに安定した発泡性を維持する(表 1、 2 及び図 1参照)。
[0185] さらに、本発明に係る熱発泡性マイクロスフ ア一は、加熱時の熱黄変が少なかつ た。また、各実施例では、重合途中で凝集が起こらず、安定的に熱発泡性マイクロス フェアーを製造することができた。
[0186] 一方、メタクリル-トリルとメタクリル酸に、アクリロニトリルをカ卩えた単量体混合物系 である比較例 1、 2では、重合途中でポリマー塊状ィヒしてしまい、正常な熱発泡性マ イクロスフェアーが得られな力つた (表 4参照)。また、架橋性単量体であるエチレング リコールジメタタリレートを添加した比較例 7では、発泡開始温度と最大発泡温度の差 力 程度で、発泡倍率も 220°Cで極端に低下した (表 4参照)。 [0187] さらに、比較例 8では、未加熱及び 170°Cで 2分間加熱後において、発泡開始温度 が著しく低下し、発泡挙動が大きく変化した (表 4及び図 2参照)。
産業上の利用可能性
[0188] 本発明は、耐熱性に優れ、かつ、発泡倍率の高い熱発泡性マイクロスフェアーの製 造技術として利用できる。また、本発明に係る熱発泡性マイクロスフェアーは、その膨 張性を利用して、自動車等の塗料の充填剤、壁紙や発泡インクの発泡剤、収縮防止 剤などの添加剤として利用でき、その発泡による体積増加特性により、合成樹脂 (熱 可塑性榭脂、熱硬化性榭脂)やゴムなどのポリマー材料、塗料、各種資材などの軽 量ィ匕ゃ多孔質ィ匕などの各種機能性付与を目的する添加剤として利用できる。特に、 自動車の内装部材ゃタイヤの軽量ィ匕に寄与することができる。また、表面性や平滑 性が要求される塗料、壁紙、インク分野に好適に利用でき、さらに、加工性に優れて いるため、混練加工、カレンダー加工、押出し加工、射出成形などの加工工程を必 要とする用途分野に利用できる。
図面の簡単な説明
[0189] [図 1]実施例 16にかかる熱発泡性マイクロスフ ア一の発泡開始温度と最大発泡温 度との間における発泡度合いの変化 (発泡挙動)を示す図である。
[図 2]比較例 8にかかる熱発泡性マイクロスフ ア一の発泡開始温度と最大発泡温度 との間における発泡度合いの変化 (発泡挙動)を示す図である。

Claims

請求の範囲
[1] 発泡剤を内包する外殻が、ポリメタクリルイミド (polymethacrylimide)構造を有する共 重合体を形成し得る熱発泡性マイクロスフェアー。
[2] 共重合反応により前記ポリメタクリルイミド構造を形成する単量体は、メタタリロニトリ ル(methacrylonitrile)とメタクリル酸(methacrylic acid)であることを特徴とする請求の 範囲第 1項記載の熱発泡性マイクロスフェアー。
[3] 240°Cで 2分加熱後の b *値が 100以下であることを特徴とする請求の範囲第 1項 又は第 2項に記載の熱発泡性マイクロスフェアー。
[4] 発泡開始温度未満での熱処理による発泡開始温度の変動値が、該熱処理前にお ける発泡開始温度の 7%以内であって、かつ、該熱処理による最大発泡温度の変動 値力 該熱処理前における最大発泡温度の 7%以内であることを特徴とする請求の 範囲第 1項力 第 3項のいずれか一項に記載の熱発泡性マイクロスフェアー。
[5] 分散安定剤を含有する水系分散媒体中で、発泡剤の存在下、二トリル系単量体と カルボキシル基を有する単量体を主成分とする単量体とからなる混合物を懸濁重合 することによって、ポリメタクリルイミド構造を有する共重合体を形成し得る外殻内に前 記発泡剤が封入された熱発泡性マイクロスフェアーを製造する方法。
[6] 前記-トリル系単量体はメタクリロ-トリルであり、前記カルボキシル基を有する単量 体はメタクリル酸であることを特徴とする請求の範囲第 5項記載の製造方法。
[7] 重合性単量体の混合物は、少なくともメタタリ口-トリルとメタクリル酸のモル比が 1: 9〜9: 1の割合で含まれるものを 70〜: L00重量%、これらと共重合可能なビュル単 量体を 0〜30重量%、 2官能性以上の架橋性単量体を 0〜0. 4モル%含むことを特 徴とする請求の範囲第 6項記載の製造方法。
[8] 請求の範囲第 1項から第 4項の 、ずれか一項に記載の熱発泡性マイクロスフェアー の添加剤としての使用。
PCT/JP2006/325164 2005-12-19 2006-12-18 熱発泡性マイクロスフェアー、並びにその製造方法と用途 WO2007072769A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020087013687A KR101488024B1 (ko) 2005-12-19 2006-12-18 열발포성 마이크로스페어, 그리고 그 제조 방법과 용도
JP2007551073A JP5484673B2 (ja) 2005-12-19 2006-12-18 熱発泡性マイクロスフェアー、並びにその製造方法と用途
EP06842850.7A EP1964903B1 (en) 2005-12-19 2006-12-18 Heat-expandable microspheres, process for production of the same and uses thereof
CN200680047764XA CN101341227B (zh) 2005-12-19 2006-12-18 热发泡性微球及其制造方法和用途
US12/086,627 US8759410B2 (en) 2005-12-19 2006-12-18 Thermally foamable microsphere, method of producing the same, and use thereof
KR1020147003802A KR101533203B1 (ko) 2005-12-19 2006-12-18 열발포성 마이크로스페어, 그리고 그 제조 방법과 용도
US14/273,356 US9605125B2 (en) 2005-12-19 2014-05-08 Thermally foamable microsphere, method of producing the same, and use thereof
US15/435,846 US10093782B2 (en) 2005-12-19 2017-02-17 Thermally foamable microsphere, method of producing the same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-364784 2005-12-19
JP2005364784 2005-12-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/086,627 A-371-Of-International US8759410B2 (en) 2005-12-19 2006-12-18 Thermally foamable microsphere, method of producing the same, and use thereof
US14/273,356 Continuation US9605125B2 (en) 2005-12-19 2014-05-08 Thermally foamable microsphere, method of producing the same, and use thereof

Publications (1)

Publication Number Publication Date
WO2007072769A1 true WO2007072769A1 (ja) 2007-06-28

Family

ID=38188547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325164 WO2007072769A1 (ja) 2005-12-19 2006-12-18 熱発泡性マイクロスフェアー、並びにその製造方法と用途

Country Status (6)

Country Link
US (3) US8759410B2 (ja)
EP (1) EP1964903B1 (ja)
JP (2) JP5484673B2 (ja)
KR (2) KR101488024B1 (ja)
CN (1) CN101341227B (ja)
WO (1) WO2007072769A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050863A1 (ja) * 2007-10-16 2009-04-23 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
JP2009120660A (ja) * 2007-11-13 2009-06-04 Sekisui Chem Co Ltd 熱膨張性マイクロカプセル及び発泡成形体
JP2009161698A (ja) * 2008-01-09 2009-07-23 Sekisui Chem Co Ltd 熱膨張性マイクロカプセル及び発泡成形体
JP2009203451A (ja) * 2008-02-01 2009-09-10 Sekisui Chem Co Ltd 発泡成形用マスターバッチ及び発泡成形体
JP2010264707A (ja) * 2009-05-18 2010-11-25 Nittetsu Corrosion Prevention Co Ltd 断熱発泡ポリオレフィン被覆鋼管
WO2010143512A1 (ja) 2009-06-09 2010-12-16 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途
WO2011122227A1 (ja) 2010-03-31 2011-10-06 積水化学工業株式会社 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
WO2011122229A1 (ja) 2010-03-31 2011-10-06 積水化学工業株式会社 熱膨張性マイクロカプセル、熱膨張性マイクロカプセルの製造方法、発泡性マスターバッチ及び発泡成形体
JP2012136695A (ja) * 2010-12-03 2012-07-19 Matsumoto Yushi Seiyaku Co Ltd 熱膨張性微小球およびその用途
CN102775550A (zh) * 2012-07-12 2012-11-14 西能化工科技(上海)有限公司 一种中高温热膨胀性微球及减少其中残余单体的方法
JP2015129290A (ja) * 2010-11-19 2015-07-16 松本油脂製薬株式会社 熱膨張性微小球およびその用途
US9102805B2 (en) 2008-09-30 2015-08-11 Sekisui Chemical Co., Ltd. Masterbatch for foam molding and molded foam
US9109096B2 (en) 2008-11-07 2015-08-18 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule and foam-molded article
WO2017110201A1 (ja) * 2015-12-21 2017-06-29 株式会社クレハ マイクロスフェアー、当該マイクロスフェアーを含む熱発泡性樹脂組成物、構造部材、および成形体、ならびに当該構造部材および当該成形体の製造方法
JP2017185448A (ja) * 2016-04-05 2017-10-12 株式会社クレハ マイクロスフェアー、熱発泡性樹脂組成物、並びに発泡成形体及びその製造方法
WO2017195438A1 (ja) * 2016-05-11 2017-11-16 株式会社クレハ 発泡成形体の製造方法
US10093783B2 (en) 2014-11-26 2018-10-09 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and application thereof
US10093782B2 (en) 2005-12-19 2018-10-09 Kureha Corporation Thermally foamable microsphere, method of producing the same, and use thereof
CN110698721A (zh) * 2019-10-15 2020-01-17 江苏科技大学 一种聚甲基丙烯酰亚胺热膨胀微球及其制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367618A1 (en) 2008-12-22 2011-09-28 Akzo Nobel N.V. Microspheres
CN101857656B (zh) * 2010-05-24 2011-08-31 四川大学 用于生产聚甲基丙烯酰亚胺泡沫材料的可发性颗粒及应用
JP5943591B2 (ja) * 2010-12-08 2016-07-05 松本油脂製薬株式会社 断熱管およびその製造方法
CN102225983B (zh) * 2011-05-03 2013-04-24 浙江理工大学 一种含有酰亚胺基的聚合物泡沫材料及其制备方法
JP6043427B2 (ja) * 2012-05-30 2016-12-14 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. 微小球体
EP2671716A1 (en) 2012-06-08 2013-12-11 Hexcel Composites SASU Low density composite materials, their production and use
EP2892702B1 (en) 2012-09-07 2016-08-31 Akzo Nobel Chemicals International B.V. A method and a device for preparation of expanded thermoplastic microspheres
CN103421206B (zh) * 2013-07-24 2016-02-17 江苏科技大学 一种丙烯腈/甲基丙烯酸共聚物泡沫塑料的制备方法
SE541504C2 (en) * 2014-05-23 2019-10-22 Matsumoto Yushi Seiyaku Kk Heat-expandable microspheres, process for producing the same and application thereof
GB201420055D0 (en) 2014-11-11 2014-12-24 Technion Res & Dev Foundation Low density micropsheres
KR20170078737A (ko) * 2014-12-02 2017-07-07 가부시끼가이샤 구레하 지름이 큰 열발포성 마이크로스피어 및 이의 제조 방법
WO2016091847A1 (en) 2014-12-11 2016-06-16 Akzo Nobel Chemicals International B.V. Apparatus and method for expanding thermally expandable thermoplastic microspheres to expanded thermoplastic microspheres
JP5967252B1 (ja) * 2015-04-13 2016-08-10 横浜ゴム株式会社 タイヤトレッド用ゴム組成物およびスタッドレスタイヤ
WO2017002659A1 (ja) * 2015-06-29 2017-01-05 松本油脂製薬株式会社 熱膨張性微小球の製造方法及びその利用
SG11201700924QA (en) * 2016-02-02 2017-09-28 Imh Equipment Pte Ltd A manufacturing process for heat and radiant resistant coating
US11504922B2 (en) 2016-03-23 2022-11-22 Donkervoort Automobielen B.V. Multi-layered composite structures and methods for the preparation thereof
GB2558971A (en) 2016-12-16 2018-07-25 Formformform Ltd Silicone elastomer composition
CN107556515A (zh) * 2017-08-17 2018-01-09 成都新柯力化工科技有限公司 一种用于聚苯乙烯发泡塑料的阻燃型发泡剂及其制备方法
CN107739492A (zh) * 2017-09-26 2018-02-27 西能化工科技(上海)有限公司 轻质减震实心轮胎及其制备方法
CA3095670A1 (en) 2018-04-05 2019-10-10 Nouryon Chemicals International B.V. Device for preparation of expanded microspheres
EP3786224A4 (en) 2018-04-27 2022-02-09 Kaneka Corporation MASTERBATCH, POLYCARBONATE RESIN COMPOSITION, INJECTION MOLDED FOAM BODY AND METHOD FOR PRODUCING THE SAME
EP3628710A1 (en) 2018-09-26 2020-04-01 Holland Novochem Technical Coatings B.V. Coating composition
CN110317288A (zh) * 2019-05-21 2019-10-11 湖南兆恒材料科技有限公司 一种聚甲基丙烯酰亚胺泡沫及其制备方法
CN110606976B (zh) * 2019-10-15 2022-02-18 江苏科技大学 一种聚甲基丙烯酰亚胺泡沫材料的制备方法
CN112852004B (zh) * 2019-11-28 2022-03-29 浙江海虹控股集团有限公司 一种包裹二氧化碳的热膨胀微球及其制备方法
EP4112698A4 (en) * 2020-02-28 2024-01-24 Matsumoto Yushi-Seiyaku Co., Ltd. THERMO-EXPANDABLE MICROSPHERES, THEIR PRODUCTION METHOD AND THEIR USE
CN113549241A (zh) * 2020-04-23 2021-10-26 南京工业大学 一种聚合物发泡微球及其制备方法
CN112661901A (zh) * 2020-12-23 2021-04-16 西能化工科技(上海)有限公司 热膨胀微球制备方法和热膨胀微球
CN112795050B (zh) * 2020-12-31 2023-06-30 运研材料科技(上海)有限公司 一种具有低起发膨胀温度的热膨胀微球、其制备方法及应用
WO2022250181A1 (ko) * 2021-05-28 2022-12-01 한남대학교 산학협력단 코어-쉘 구조를 갖는 기능성 팽창제
CN113861492A (zh) * 2021-09-29 2021-12-31 崔宾 可膨胀微球的制备方法
FR3134107A1 (fr) 2022-03-30 2023-10-06 Saint-Gobain Glass France Composition adhésive pour article verrier comprenant des moyens d’expansion et vitrage feuilleté pour automobile comprenant une telle composition
FR3135413A1 (fr) 2022-05-13 2023-11-17 Saint-Gobain Glass France Miroir pouvant être facilement enlevé d’un support sur lequel il est collé
CN115433302A (zh) * 2022-10-08 2022-12-06 成都雷隐科技有限公司 一种改性gmi材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543875A (en) * 1977-06-10 1979-01-12 Roehm Gmbh Polyacrylimido foam or polymethacrylimido foam* its manufacture and laminate made therefrom
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPH10306169A (ja) * 1997-04-25 1998-11-17 Roehm Gmbh ポリメタクリルイミドフォーム物質の製造法、該フォーム物質、該フォーム物質の使用法並びに該フォーム物質から形成された核を有するプレプレッグ
JP2002012693A (ja) * 2000-04-28 2002-01-15 Kureha Chem Ind Co Ltd 熱発泡性マイクロスフェアー及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1594202A (en) 1925-12-23 1926-07-27 Eugene J Jalbert Oil burner
US5310807A (en) * 1992-12-30 1994-05-10 E. I. Du Pont De Nemours And Company Star polymers made from macromonomers made by cobalt chain transfer process
DE4416877A1 (de) * 1994-05-13 1995-11-16 Basf Ag Wasserlöslich oder wasserdispergierbare Pfropfpolymerisate von Proteinen als Ledergerbstoffe
DE69921099T2 (de) * 1998-02-24 2006-03-09 Matsumoto Yushi-Seiyaku Co., Ltd., Yao Wärmeausdehnbare mikrokapseln, verfahren zur herstellung und verwendung derselben
US6235800B1 (en) 1998-03-13 2001-05-22 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsules and method of utilizing the same
WO2001083636A1 (fr) * 2000-04-28 2001-11-08 Kureha Kagaku Kogyo K.K. Macrosphere thermoexpansible et son procede de fabrication
US7252882B2 (en) 2000-04-28 2007-08-07 Kureha Corporation Thermally foamable microsphere and production process thereof
JP5044074B2 (ja) * 2001-06-11 2012-10-10 株式会社クレハ 熱発泡性マイクロスフェアー及びその製造方法
KR100868512B1 (ko) * 2002-05-24 2008-11-12 마쓰모토유시세이야쿠 가부시키가이샤 열팽창성 마이크로 캡슐 및 그 이용
WO2004058910A1 (ja) 2002-12-25 2004-07-15 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性マイクロカプセル、発泡成形物の製造方法及び発泡成形物
JP2005313397A (ja) 2004-04-28 2005-11-10 Mitsui Chemicals Inc 複合材及び多層プリント配線板
JP5204368B2 (ja) 2004-05-19 2013-06-05 積水化学工業株式会社 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP5204369B2 (ja) * 2004-05-19 2013-06-05 積水化学工業株式会社 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP2005343967A (ja) 2004-06-01 2005-12-15 Sekisui Chem Co Ltd 独立気泡成形体用樹脂組成物及び独立気泡成形体
JP5150042B2 (ja) * 2004-07-02 2013-02-20 積水化学工業株式会社 独立気泡成形体用樹脂組成物及び独立気泡成形体
JP5280606B2 (ja) * 2005-04-01 2013-09-04 積水化学工業株式会社 独立気泡成形体用樹脂組成物及び独立気泡成形体
US8329298B2 (en) * 2005-10-20 2012-12-11 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and a process for producing the same
EP1952880B1 (en) 2005-10-27 2016-08-03 Bridgestone Corporation Thermal expansion microspheres and process for producing them
CN101341227B (zh) 2005-12-19 2012-05-30 株式会社吴羽 热发泡性微球及其制造方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543875A (en) * 1977-06-10 1979-01-12 Roehm Gmbh Polyacrylimido foam or polymethacrylimido foam* its manufacture and laminate made therefrom
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPH10306169A (ja) * 1997-04-25 1998-11-17 Roehm Gmbh ポリメタクリルイミドフォーム物質の製造法、該フォーム物質、該フォーム物質の使用法並びに該フォーム物質から形成された核を有するプレプレッグ
JP2002012693A (ja) * 2000-04-28 2002-01-15 Kureha Chem Ind Co Ltd 熱発泡性マイクロスフェアー及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964903A1 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093782B2 (en) 2005-12-19 2018-10-09 Kureha Corporation Thermally foamable microsphere, method of producing the same, and use thereof
CN101827911B (zh) * 2007-10-16 2013-03-27 松本油脂制药株式会社 热膨胀性微球,其制备方法及其应用
US8247465B2 (en) 2007-10-16 2012-08-21 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres, process for producing the same, and application thereof
WO2009050863A1 (ja) * 2007-10-16 2009-04-23 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張性微小球、その製造方法および用途
JP2009120660A (ja) * 2007-11-13 2009-06-04 Sekisui Chem Co Ltd 熱膨張性マイクロカプセル及び発泡成形体
JP2009161698A (ja) * 2008-01-09 2009-07-23 Sekisui Chem Co Ltd 熱膨張性マイクロカプセル及び発泡成形体
JP2009203451A (ja) * 2008-02-01 2009-09-10 Sekisui Chem Co Ltd 発泡成形用マスターバッチ及び発泡成形体
US9102805B2 (en) 2008-09-30 2015-08-11 Sekisui Chemical Co., Ltd. Masterbatch for foam molding and molded foam
US9109096B2 (en) 2008-11-07 2015-08-18 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule and foam-molded article
JP2010264707A (ja) * 2009-05-18 2010-11-25 Nittetsu Corrosion Prevention Co Ltd 断熱発泡ポリオレフィン被覆鋼管
WO2010143512A1 (ja) 2009-06-09 2010-12-16 松本油脂製薬株式会社 熱膨張性微小球、その製造方法および用途
EP2529830A2 (en) 2009-06-09 2012-12-05 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and a method of making heat-expandable microspheres and application thereof
US9126178B2 (en) 2009-06-09 2015-09-08 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and a method of making heat-expandable microspheres and application thereof
US9776157B2 (en) 2010-03-31 2017-10-03 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule, method for producing thermally expandable microcapsule, foamable masterbatch, and foam molded article
WO2011122229A1 (ja) 2010-03-31 2011-10-06 積水化学工業株式会社 熱膨張性マイクロカプセル、熱膨張性マイクロカプセルの製造方法、発泡性マスターバッチ及び発泡成形体
WO2011122227A1 (ja) 2010-03-31 2011-10-06 積水化学工業株式会社 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
JP2015129290A (ja) * 2010-11-19 2015-07-16 松本油脂製薬株式会社 熱膨張性微小球およびその用途
JP2012136695A (ja) * 2010-12-03 2012-07-19 Matsumoto Yushi Seiyaku Co Ltd 熱膨張性微小球およびその用途
CN102775550B (zh) * 2012-07-12 2014-09-10 西能化工科技(上海)有限公司 一种中高温热膨胀性微球及减少其中残余单体的方法
CN102775550A (zh) * 2012-07-12 2012-11-14 西能化工科技(上海)有限公司 一种中高温热膨胀性微球及减少其中残余单体的方法
US10093783B2 (en) 2014-11-26 2018-10-09 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and application thereof
WO2017110201A1 (ja) * 2015-12-21 2017-06-29 株式会社クレハ マイクロスフェアー、当該マイクロスフェアーを含む熱発泡性樹脂組成物、構造部材、および成形体、ならびに当該構造部材および当該成形体の製造方法
JP2017113654A (ja) * 2015-12-21 2017-06-29 株式会社クレハ マイクロスフェアー、これを含む熱発泡性樹脂組成物、構造部材、および成形体
JP2017185448A (ja) * 2016-04-05 2017-10-12 株式会社クレハ マイクロスフェアー、熱発泡性樹脂組成物、並びに発泡成形体及びその製造方法
WO2017175519A1 (ja) * 2016-04-05 2017-10-12 株式会社クレハ マイクロスフェアー、熱発泡性樹脂組成物、並びに発泡成形体及びその製造方法
CN108884376A (zh) * 2016-04-05 2018-11-23 株式会社吴羽 微球体、热发泡性树脂组合物、以及发泡成型体及其制造方法
CN108884376B (zh) * 2016-04-05 2021-04-02 株式会社吴羽 微球体、热发泡性树脂组合物、以及发泡成型体及其制造方法
WO2017195438A1 (ja) * 2016-05-11 2017-11-16 株式会社クレハ 発泡成形体の製造方法
CN110698721A (zh) * 2019-10-15 2020-01-17 江苏科技大学 一种聚甲基丙烯酰亚胺热膨胀微球及其制备方法

Also Published As

Publication number Publication date
US20140243438A1 (en) 2014-08-28
KR20080084938A (ko) 2008-09-22
KR101488024B1 (ko) 2015-01-29
US20090292031A1 (en) 2009-11-26
US8759410B2 (en) 2014-06-24
EP1964903A1 (en) 2008-09-03
CN101341227B (zh) 2012-05-30
KR101533203B1 (ko) 2015-07-02
EP1964903B1 (en) 2017-03-22
EP1964903A4 (en) 2012-06-13
JPWO2007072769A1 (ja) 2009-05-28
US9605125B2 (en) 2017-03-28
US10093782B2 (en) 2018-10-09
KR20140025615A (ko) 2014-03-04
CN101341227A (zh) 2009-01-07
JP2014080616A (ja) 2014-05-08
US20170158835A1 (en) 2017-06-08
JP5484673B2 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2007072769A1 (ja) 熱発泡性マイクロスフェアー、並びにその製造方法と用途
JP4945243B2 (ja) 熱発泡性マイクロスフェアー、その製造方法、その使用、それを含む組成物、及び物品
JP4320356B2 (ja) 熱膨張性微小球、その製造方法および用途
EP2204428B1 (en) Heat-expandable microspheres, process for producing the same, and application thereof
EP1408097B2 (en) Heat-expandable microsphere and process for producing the same
JP4916483B2 (ja) 真球状の発泡性マイクロスフェアー及びその製造方法
JP3670980B2 (ja) 熱発泡性マイクロスフェアー及びその製造方法
EP1288272A1 (en) Heat-expandable macrosphere and process for producing the same
JP5534576B2 (ja) 熱膨張性マイクロスフェアー及びその製造方法、添加剤並びに成形体
JP4633987B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP4903924B2 (ja) 発泡性マイクロスフェアー及びその製造方法
JP5131948B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP6276423B2 (ja) 熱発泡性マイクロスフェアー、並びにそれを含む組成物及び成形体
JP4945079B2 (ja) 熱発泡性マイクロスフェアー及びその製造方法
JP2004323854A (ja) 熱膨張性マイクロカプセル及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047764.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007551073

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2006842850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006842850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12086627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020147003802

Country of ref document: KR