WO2007063875A1 - 自動二輪車用空気入りタイヤ - Google Patents

自動二輪車用空気入りタイヤ Download PDF

Info

Publication number
WO2007063875A1
WO2007063875A1 PCT/JP2006/323776 JP2006323776W WO2007063875A1 WO 2007063875 A1 WO2007063875 A1 WO 2007063875A1 JP 2006323776 W JP2006323776 W JP 2006323776W WO 2007063875 A1 WO2007063875 A1 WO 2007063875A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
tire
cord
pneumatic tire
carcass
Prior art date
Application number
PCT/JP2006/323776
Other languages
English (en)
French (fr)
Inventor
Masahiko Yamamoto
Hidenobu Akahane
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US12/094,685 priority Critical patent/US20090266462A1/en
Priority to EP06833580A priority patent/EP1955873B1/en
Priority to CN2006800446887A priority patent/CN101316731B/zh
Priority to ES06833580T priority patent/ES2380237T3/es
Priority to JP2007547960A priority patent/JP4889654B2/ja
Priority to KR1020087015693A priority patent/KR101323977B1/ko
Publication of WO2007063875A1 publication Critical patent/WO2007063875A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel

Definitions

  • the present invention relates to a pneumatic tire for a motorcycle (hereinafter, also simply referred to as “tire”), and more specifically, by optimizing a ground contact shape and a contact pressure distribution during high-speed traveling, excellent steering stability is achieved.
  • the present invention relates to a pneumatic tire for a high-performance motorcycle that can be demonstrated, and a pneumatic tire for a high-performance motorcycle that has excellent gripping force, stable tire behavior near the cornering limit point, and can exhibit excellent turning performance. .
  • At least one ply of a ply made of a cord for example, a polyethylene terephthalate (PET) cord or a rayon cord
  • a cord for example, a polyethylene terephthalate (PET) cord or a rayon cord
  • Traction performance is improved by placing at least one layer of belt, which is formed by spirally winding a ply formed by banding one or more cords with rubber on the outside of the carcass in the radial direction.
  • An aromatic polyamide cord is generally used as a cord constituting this type of tire belt.
  • Patent Document 1 discloses that a polyketone fiber cord is used as a belt material for a pneumatic radial tire for a motorcycle in order to solve a problem of power, thereby improving gripping at the time of turning and traction. It is reported that the performance can be further improved.
  • Patent Document 2 in order to significantly increase high-speed durability and reduce road noise, a rubberized narrow strip including a plurality of polyketone fiber cords is used as a belt reinforcing layer. It is disclosed that the cord is wound around the endless in a spiral shape so that the cord is substantially parallel to the tire circumferential direction.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-142024 (Claims)
  • Patent Document 2 JP 2000-142025 (Claims)
  • polyketone fiber cords as a reinforcing material for tires has been known for a long time!
  • polyketone fiber cords particularly high heat, have been used as reinforcing materials for pneumatic tires for motorcycles.
  • Polyketone fiber cords with shrinkage properties were not used, and fiber cords and steel cords such as nylon, polyethylene 1,2,6-naphthalate (PEN), and aramid (Kepler (registered trademark)) were mainly used.
  • PEN polyethylene 1,2,6-naphthalate
  • aramid Kepler (registered trademark)
  • nylon fiber cords that have been widely used as tire reinforcement cords have sufficient circumferential rigidity in the room temperature range, but even when running, their elastic modulus is due to temperature environment changes due to heat generation of the tires themselves. There was a situation in which sufficient circumferential rigidity could not be expressed and maintained. Also, when ultra-rigid fibers such as aramid fibers and glass fibers are used, there is no shrinkage, resulting in non-uniformity in the radial tension distribution during tire manufacture, and as a result, sufficient circumference as a reinforcing material. There was a problem that the directional rigidity could not be demonstrated. In addition, when steel cords are used for the belt, there is a problem that the tire weight increases and the low fuel consumption performance deteriorates.
  • an object of the present invention is to provide a pneumatic tire for a motorcycle having excellent steering stability performance by optimizing the contact shape and contact pressure distribution during high-speed traveling. Another object of the present invention is to optimize the contact shape and contact pressure distribution during high-speed driving, provide excellent grip strength, stabilize the behavior of the tire near the cornering limit point, and exhibit excellent turning performance. Another object is to provide a pneumatic tire for a motorcycle.
  • the pneumatic tire for motorcycles of the present invention has a multifilament twisted polycarbonate having a total decitex per cord of 1000 to 20000 decitex.
  • a ton fiber cord having the following formulas (I) and ( ⁇ ),
  • is the elastic modulus at 49 ° C at 25 ° C (cNZdtex), and ⁇ is the heat shrinkage stress (cNZdtex) at 177 ° C). Is used as a reinforcing material.
  • a pneumatic tire for a motorcycle according to the present invention includes a carcass having at least one ply force, and a belt having at least one layer force disposed radially outward of the crown portion of the carcass. It is preferable that the polycarbonate fiber cord is used as a reinforcing material or a reinforcing material for the belt.
  • the pneumatic tire for a motorcycle of the present invention includes at least one piece of force that also has a ply force, and a belt that includes at least one layer disposed on the outer side of the crown portion of the carcass in the radial direction of the tire. It is also preferable that the belt has a belt reinforcing layer on the outer side or the inner side in the tire radial direction, and the polyketone fiber cord is used as a reinforcing material for the belt reinforcing layer.
  • the total decitex is preferably 2000 to 5000 decitex.
  • the polyketone fiber cord is used for both the carcass and the belt.
  • the present invention it is possible to provide a pneumatic tire for a high-performance motorcycle capable of optimizing the contact shape and contact pressure distribution during high-speed traveling and exhibiting excellent steering stability performance.
  • the contact shape and contact pressure distribution during high-speed driving are optimized, the grip force is excellent, the tire behavior near the cornering limit point is stable, and excellent
  • a pneumatic tire for a high-performance motorcycle capable of exhibiting turning performance can be provided.
  • the polyketone fiber cord according to the present invention instead of the steel cord as the belt cord, an effect of reducing the weight can be obtained.
  • FIG. 1 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view in the width direction of a pneumatic tire for a motorcycle according to a preferred embodiment of the present invention.
  • the illustrated tire includes at least one carcass 2 that extends in a toroidal shape between a pair of bead cores 1 embedded in a pair of left and right bead portions 1 (in the illustrated example, one ply force), and its crown portion tire.
  • a tread 4 is disposed on the outer side of the belt 3 in the tire radial direction.
  • either one of the carcass 2 or the belt 3, preferably both the reinforcing materials are polyketone fibers (hereinafter abbreviated as “PK fibers”) cords described in detail below.
  • PK fibers polyketone fibers
  • Powerful PK fibers have higher belt clamping force than conventional polyester and rayon fibers, which have higher heat shrinkage stress and 2.4 to 3.3 times higher elastic modulus than conventional fiber materials.
  • this PK fiber cord as a tire reinforcement, it is possible to arrange a fiber cord having high rigidity in the circumferential direction in a state where the tension (residual stress) inside the tire is uniform in the radial direction. it can.
  • the ground contact shape and contact pressure distribution of the tire can be maintained uniformly from low speed to high speed because of its thermal stability. As a result, excellent high-speed steering stability can be exhibited.
  • the remaining cords may be the carcass 2 or Even if a cord commonly used in the belt 3 is used, a desired effect based on the PK fiber cord can be obtained.
  • the PK fiber cord used in the present invention is a multifilament twisted PK fiber cord having a total decitex per cord of 1000 to 20000 dtex, preferably 2000 to 5000 dtex. If the total decitex per unit is less than 1000 decitex, the required circumferential rigidity is insufficient and the expected durability improvement effect cannot be obtained. On the other hand, if it exceeds 20000 decitex, the cord diameter becomes unnecessarily large, and there is a possibility that the tire weight increases due to an increase in the amount of rubber for covering, and the ground contact speed increases and the durability level deteriorates.
  • the PK fiber cord used in the present invention has the following formulas (I) and ( ⁇ ⁇ ⁇ ),
  • the heat shrinkage stress ⁇ is 177 ° C by heating a 25 cm long fixed sample of the above cocoon fiber cord, which has been subjected to general dipping treatment, at a heating rate of 5 ° CZ.
  • the stress generated in the cord (unit: cNZdtex), and the elastic modulus E is the elastic modulus at 49N load at 25 ° C of the same PK fiber cord, and the SS curve of the JIS cord tensile test This is the elastic modulus of the unit cNZdtex calculated from the tangent at 49N.
  • the above equation (1) is derived from the following.
  • the force that keeps the tire shape change under high-speed driving conditions is input from the outside world (centrifugal force) Anti-Fl, in which the reinforcing member passively develops against (strain), and Anti-F2, in which the reinforcing member actively develops due to heat generation.
  • the main governing factor of F1 is the stiffness EC of the reinforcing member cord
  • the main governing factor of F2 is the heat shrinkage stress HF of the reinforcing member cord.
  • the sum of F1 and F2 must be above a certain level in order to effectively control the shape change during high-speed driving. If the contribution ratios are ⁇ and ⁇ (where ⁇ > 0 and j8> 0), the following relationship holds.
  • ⁇ and ⁇ are coefficients depending on the use environment such as tire size and structure, reinforcing member reinforcing position, reinforcing direction, tire internal pressure, load, speed, temperature, and the like. From the above formula,
  • aramid fiber cords are highly elastic but ⁇ is almost 0, which does not satisfy the required performance of the present invention, and nylon fibers and PEN fibers, and the cords, have insufficient elastic modulus.
  • the present inventor has found that the above-mentioned PK fiber cord is applied to a tire reinforcing material as a cord capable of obtaining appropriate physical properties satisfying the required performance of the present invention.
  • the cocoon fiber cord further comprises the following formula (III),
  • the twist coefficient ⁇ force is preferably in the range of 50 to 4000. ⁇ When the twist coefficient ⁇ of the fiber cord is less than 850, the heat shrinkage stress cannot be secured sufficiently, while when it exceeds 4000, the elastic modulus cannot be secured sufficiently and the reinforcing ability is reduced.
  • the above-mentioned cocoon fiber cord is formed by twisting 2 to 3 filament bundles made of polyketone having a fineness of 500 to 10,000 dtex.
  • the fineness of the filament bundle used for the PK fiber cord is less than 500 dtex, both the elastic modulus and the heat shrinkage stress are insufficient.
  • the filament bundle exceeds 100 OOdtex the cord diameter becomes thick and the driving cannot be performed densely.
  • the PK fiber cord has a reversibility that shrinks at a high temperature and expands when returned to room temperature.
  • the PK fiber cord contracts at high temperatures, i.e., at high speeds, and the tread can be sufficiently suppressed, while at low temperatures, i.e., at low speeds, the PK fiber cords
  • the tire can be stretched to sufficiently maintain the contact area of the tire.
  • the polyketone used as a raw material for the PK fiber cord is represented by the following general formula (IV):
  • A is a portion derived from an unsaturated compound polymerized by an unsaturated bond, and each repeating unit may be the same or different! / May be repeated
  • Those consisting essentially of units are preferred.
  • 97 mol% or more of repeating units are 1- Kiso trimethylene [- CH 2 - CH 2 - CO-] in which polyketone is preferably 99 mol 0/0 or more force S1- O Kiso polyketone is more preferably tool 100 mol% are trimethylene is 1-Okisotorime styrene Some polyketones are most preferred.
  • the powerful polyketone may be partially bonded to each other from the ketone groups and from the unsaturated compounds, but the unsaturated compound-derived portions and the ketone groups are alternately arranged, It is preferable that the ratio of the portion is 90% by mass or more, more preferably 97% by mass or more, and most preferably 100% by mass.
  • the unsaturated compound that forms A is most preferably ethylene, but propylene, butene, pentene, cyclopentene, hexene, cyclohexene, heptene, otaten, Non-saturated hydrocarbons such as nonene, decene, dodecene, styrene, acetylene, and allene, methyl acrylate, methyl methacrylate, vinyl acetate, acrylamide, hydroxyethyl methacrylate, undecenoic acid, undecenol, 6-Black Hexene, N-Buylpyrrolidone, Sulphonyl Phosphonic Acid Jetylester, Sodium Styrenesulfonate, Sodium Allylsulfonate, Vinylpyrrolidone, and Salt-Buluyl Compounds Also good.
  • the polymerization degree of the polyketone is represented by the following formula (V),
  • t and ⁇ are the flow time of the viscosity tube at 25 ° C. of a diluted solution of hexafluoroisopropanol having a purity of 98% or more and a polyketone dissolved in the hexafluoroisopropanol.
  • C is the mass (g) of the solute in the above diluted solution lOOmL). It is preferable that the intrinsic viscosity [ ⁇ ?] Is in the range of l to 20dLZg. It is even more preferable that it is within.
  • the intrinsic viscosity is less than IdLZg, the molecular weight is too small to obtain a high-strength polyketone fiber cord, and troubles such as fluff and yarn breakage occur frequently during spinning, drying and drawing.
  • the intrinsic viscosity exceeds 20 dLZg, it takes time and cost to synthesize the polymer, and it becomes difficult to uniformly dissolve the polymer, which may adversely affect the spinnability and physical properties. is there.
  • the PK fiber preferably has a crystal structure with a crystallinity of 50 to 90% and a crystal orientation of 95% or more. If the degree of crystallinity is less than 50%, the structure of the fiber is insufficient and sufficient strength cannot be obtained, and the shrinkage characteristics and dimensional stability during heating may be unstable. For this reason, the crystallinity is preferably 50 to 90%, more preferably 60 to 85%.
  • the method for fiberizing the polyketone (1) a method in which undrawn yarn is spun and then subjected to multistage hot drawing, and drawn at a specific temperature and magnification in the final drawing step of the multistage hot drawing. (2) A method in which after unspun yarn is spun, heat-stretched, and then rapidly cooled while high tension is applied to the fiber after the heat-stretching is preferred.
  • a desired filament suitable for the production of the polyketone fiber cord can be obtained by fiberizing the polyketone by the method (1) or (2).
  • the spinning method of the unstretched yarn of the polyketone a conventionally known method without particular limitation can be adopted, and specifically, JP-A-2-112413 and JP-A-4-228. 613, Hexafluoroisopropanol, as described in JP-T-4505344, wet spinning using an organic solvent such as talesol, International Publication No.99Z18143, International Publication No.OOZ09611, Examples thereof include a wet spinning method using an aqueous solution of zinc salt, calcium salt, thiocyanate, iron salt and the like as described in JP-A-2001-164422, JP-A-2004-218189, and JP-A-2004-285221. Of these, the wet spinning method using an aqueous solution of the above salt is preferred.
  • a polyketone polymer is dissolved in hexafluorosolpropanol, m-taresol, or the like at a concentration of 0.25 to 20% by mass, extruded from a spinning nozzle to be fiberized, and then toluene.
  • the unstretched polyketone yarn can be obtained by removing the solvent in a non-solvent bath such as ethanol, isopropanol, n-hexane, isooctane, acetone, methyl ethyl ketone, and washing.
  • a polyketone polymer is dissolved in an aqueous solution of zinc salt, calcium salt, thiocyanate, iron salt, etc. at a concentration of 2 to 30% by mass, and 50 to 130
  • the spinning nozzle force is also pushed into the coagulation bath at ° C to perform gel spinning, followed by desalting and drying.
  • Unstretched polyketone can be obtained by drying or the like.
  • the aqueous solution in which the polyketone polymer is dissolved it is preferable to use a mixture of halogenated zinc and a halogenated alkali metal salt or a halogenated alkaline earth metal salt.
  • An aqueous solution of a metal salt, an organic solvent such as acetone or methanol, or the like can be used.
  • a hot drawing method in which the undrawn yarn is heated and drawn to a temperature higher than the glass transition temperature of the undrawn yarn is more preferable.
  • the drawing of the drawn yarn may be performed in one step in the above method (2), but is preferably performed in multiple steps.
  • the method of hot drawing is not particularly limited.
  • a method of running a yarn on a heating roll or a heating plate can be employed.
  • the total stretching ratio that the thermal stretching temperature is preferably within the range of 110 ° C to (the melting point of the polyketone) is preferably 10 times or more.
  • the temperature in the final drawing step of the multi-stage hot drawing is 110 ° C to (the drawing temperature of the drawing step three steps before the final drawing step is 3 ° The range of C) is preferred. Further, the draw ratio in the final drawing step of the multistage hot drawing is preferably in the range of 1.0 to 1.5.
  • the tension applied to the fiber after completion of hot drawing is preferably in the range of 0.5 to 4 cNZdtex, and the cooling rate in rapid cooling is 30 It is preferable that the temperature is not lower than ° CZ seconds, and the cooling end temperature in the rapid cooling is preferably not higher than 50 ° C.
  • the heat-stretched polyketone fiber As a rapid cooling method of the heat-stretched polyketone fiber, a conventionally known method without particular limitation can be adopted, and specifically, a cooling method using a roll is preferable. Since the polyketone fiber thus obtained has a large residual elastic strain, it is usually preferable to perform relaxation heat treatment so that the fiber length is shorter than the fiber length after hot drawing.
  • the temperature of the relaxation heat treatment is preferably in the range of 50 to: LOO ° C, and the relaxation ratio is preferably in the range of 0.980-0.999 times.
  • the PK fiber cord also has a multi-filament twisted PK fiber force formed by twisting a plurality of the polyketone filaments.
  • the filament bundle having the polyketone force is twisted and then two or By combining the three and applying an upper twist in the opposite direction, a twisted cord can be obtained.
  • the physical temperature and the temperature of the molded product at the time of use are close to the temperature showing the maximum heat shrinkage stress (maximum heat shrink temperature).
  • the processing temperature such as the RFL processing temperature and vulcanization temperature in the adhesive processing performed as necessary is 100 to 250 ° C, and when the tire material generates heat due to repeated use or high-speed rotation.
  • the maximum heat shrinkage temperature is preferably in the range of 100 to 250 ° C, more preferably in the range of 150 to 240 ° C.
  • the carcass and belt coating rubber various conventionally used rubbers that are not particularly limited can be used.
  • FIG. 2 is a cross-sectional view in the width direction of a pneumatic tire for motorcycles according to another preferred embodiment of the present invention.
  • the illustrated tire is arranged between the pair of bead cores 1 and a carcass 2 that extends in a toroidal shape (one in the illustrated example) that also has a ply force, and its crown portion is disposed radially outward of the tire.
  • the belt 3 is composed of two or more layers (two layers in the illustrated example) intersecting each other. Further, a reinforcing material is provided substantially on the outer side in the tire radial direction of the belt 3 in the tire circumferential direction. At least one (1 in the illustrated example) belt reinforcing layer 5 that is rotated is disposed.
  • the cord angle of the crossing belt 3 can be set to 10 to 80 ° with respect to the tread circumferential line, for example.
  • the reinforcing material of the belt reinforcing layer 5 is the PK fiber cord described in detail above.
  • the PK fiber according to the present invention has a higher heat shrinkage stress and a higher elastic modulus of 2.4 to 3.3 times compared to the conventional polyester and rayon fibers, and tightens the belt more than the conventional fiber material.
  • the thermal stability of the tire can be maintained uniformly from the low-speed to high-speed tire contact shape and contact pressure distribution. As a result, it is possible to exhibit cornering performance that is stable in a variety of speed ranges.
  • the PK fiber cord shrinks at a high temperature and has a reversibility that expands when returned to room temperature
  • the PK fiber in the belt reinforcing layer at a high temperature, that is, at high speed running.
  • the cord shrinks and exhibits a sufficient tagging effect to fully project the tread.
  • the belt reinforcement layer can be suppressed at low temperatures, that is, at low speeds.
  • the PK fiber cord can be stretched to secure a sufficient contact area of the tire.
  • the polyketone fiber cord is wound by a single wire or two wires, and the winding density is preferably 20 to 50 and Z50mm.
  • the coating rubber for the belt reinforcing layer 5 various compounded rubbers that are conventionally used for the belt reinforcing layer can be used.
  • the belt reinforcing layer 5 is a force that must be provided by at least one belt.
  • One or more belt reinforcing layers arranged to cover the entire width of the belt layer 3 and only the shoulder portion. It is also preferable to comprise one or more belt reinforcing layers (not shown). In this case as well, it is important to dispose PK fiber cords for each of the two belt reinforcing layers.
  • FIG. 3 shows a sectional view in the width direction of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • the illustrated tire has at least one belt reinforcing layer 5 similar to the above on the inner side in the tire radial direction of the belt layer 3.
  • This tire is the same as the tire of the preferred embodiment shown in FIG. 2 except that the arrangement of the belt reinforcing layer 5 is different.
  • the belt reinforcing layer 5 is arranged inside the belt 3 in the tire radial direction. Even so, the desired effect of the present invention can be obtained.
  • the carcass 2, belt 3 or belt reinforcing layer is not particularly limited except that the PK fiber cord is used as a reinforcing material.
  • the PK fiber cord according to the present invention is used as one of the five reinforcing materials, the desired effect of the present invention based on the PK fiber cord can be obtained. Further, conventionally used cords can be appropriately used for the remaining reinforcing cords.
  • an inner liner is usually disposed in the innermost layer of the tire, and a tread pattern is appropriately formed on the tread surface.
  • a tread pattern is appropriately formed on the tread surface.
  • an inert gas such as nitrogen
  • This dope was heated to 80 ° C, filtered through a 20 ⁇ m sintered filter, and then passed through a 10mm air gap from a nozzle with a diameter of 0.10mm and 50 holes kept at 80 ° C. Later, it was extruded into water at 18 ° C containing 5% by weight of salty zinc and discharged at a rate of 2.5 ccZ, and a solidified yarn was drawn while pulling at a rate of 3.2 mZ.
  • the coagulated yarn was washed with an aqueous sulfuric acid solution having a concentration of 2 mass% and a temperature of 25 ° C, and further washed with water at 30 ° C, and then the coagulated yarn was scraped at a rate of 3.2 mZ.
  • the coagulated yarn was impregnated with IRGAN OX1098 (manufactured by Ciba Specialty Chemicals) and IRGANOX1076 (manufactured by Ciba Specialty Chemicals) in an amount of 0.05% by mass (with respect to polyketone polymer), and then the coagulated yarn was mixed at 240 ° C. After drying, a finishing agent was applied to obtain an undrawn yarn.
  • a finishing agent having the following composition was used.
  • the obtained undrawn yarn was stretched at 240 ° C in the first stage, followed by the second stage at 258 ° C, the third stage at 268 ° C, and the fourth stage at 272 ° C. Subsequently, the fifth stage was stretched five times at 1.08 times (stretching tension: 1.8 cNZdtex) at 200 ° C and scraped with a scraper.
  • the total draw ratio from undrawn yarn to five-stage drawn yarn was 17.1 times.
  • This fiber yarn had a strength of 15.6 cN / dtex, an elongation of 4.2%, and an elastic modulus of 347 cNZdtex.
  • a pneumatic tire for a motorcycle of the type shown in Fig. 1 was prototyped according to conventional methods according to the conditions shown in Tables 1 and 2 below.
  • Conventional Example 1 Comparative Example 1, and Examples 11 and 12, the belt cord of Conventional Example 2 was used.
  • Conventional Example 2 Comparative Example 2 and Examples 2-1, 2-2, the carcass ply cord used in Conventional Example 1 was used.
  • PET fiber cord (1670dtexZ2, 35 X 35): Number of driven 60.0 Z50mm rayon fiber cord (1840dtexZ3, 35 X 35): Number of driven 60.0 Z50mm PK fiber cord (1670dtexZ2, 35 X 35 (Example 1— 1), 1670dtex / 2, 20 X 20
  • PK fiber cord 1670dtexZ2, 20 X 20 (Example 2-1), 1670dtex / 2, 30 X 30 (Example 2-2), driven 100 ZlOcm, angle to circumferential direction 70 °
  • Heat shrinkage stress ⁇ of fiber cord Polyketone fiber cord that has been subjected to general dip treatment before vulcanization, and ⁇ is the heat shrinkage stress at 177 ° C, and a 25 cm long fixed sample is 5 ° CZ. Heating was performed at a heating rate of 1 minute, and the stress generated at 177 ° C was measured and calculated from the generated force (unit: cN / dtex).
  • test tire was mounted on the rear wheel of a motorcycle with a displacement of 750 cc, and the vehicle was driven V ⁇ .
  • Straight running stability at a speed of 150 kmZh, turning stability, rigidity, and handling were evaluated. The evaluation is shown on a 10-point scale.
  • PK fiber cords with high heat shrinkage stress on Z or belts contributes to the reduction of tire weight and excellent vehicle driving stability at high speeds.
  • pneumatic radial tires provided with a belt reinforcing layer 5 were prototyped according to the conventional methods according to the following Table 3 and the conditions shown below.
  • Kevlar (registered trademark) code (Kev): Aramid 1670dtexZ2, 35 X 35, 100 driven / 10cm, angle with respect to circumferential direction 70 °
  • PK fiber cord heat-shrinkage stress ⁇ The heat-shrinkage stress at 177 ° C of a polyketone fiber cord that has been subjected to general dip treatment is ⁇ , and a fixed sample of 25 cm in length is 5 Heating was performed at a temperature increase rate of ° CZ, and the stress generated at 177 ° C was measured and calculated from the generated force (unit: cN / dtex).
  • test tire was mounted on the rear wheel of a motorcycle with a displacement of 750cc, and the vehicle was run.
  • the straight running stability and cornering performance at speeds below lOOkmZh were evaluated.
  • the evaluation was expressed as an index with the result of Comparative Example 3-1 set to 100. The higher the number, the better the result.
  • test tire was mounted on the rear wheel of a motorcycle with a displacement of 750cc, and the vehicle was run.
  • the straight running stability and cornering performance at speeds of 150kmZh and above were evaluated.
  • the evaluation was expressed as an index with the result of Comparative Example 3-1 set to 100. The larger the value, the better the result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明 細 書
自動二輪車用空気入りタイヤ 技術分野
[0001] 発明は、自動二輪車用空気入りタイヤ(以下単に「タイヤ」とも称する)に関し、詳しく は、高速走行時の接地形状や接地圧分布の適正化を図ることで、優れた操縦安定 性を発揮し得る高性能自動二輪車用空気入りタイヤ、および、グリップ力に優れコー ナリング限界点近傍でのタイヤの挙動が安定し、優れた旋回性能を発揮し得る高性 能自動二輪車用空気入りタイヤに関する。
背景技術
[0002] 自動二輪車用空気入りタイヤとしては、トレッド周線に対して 75〜90° の傾斜角度 で延びるコード(例えば、ポリエチレンテレフタレート(PET)コードまたはレーヨンコー ド)によるプライの少なくとも 1枚力もなるカーカスの径方向外側に、 1本または複数本 のコードをゴムで被覆して帯状に成形したプライを螺旋状に巻き回してなる、少なくと も 1層のベルトを配置することによって、トラクシヨン性能を向上したタイヤが開発され ている。この種のタイヤのベルトを構成するコードには、芳香族ポリアミドコードが一般 に用いられている。
[0003] このようなベルトコードをほぼトレッド周線に沿って配置したタイヤにおいては、ベル トコードをトレッド周線に対して傾けて配置した、いわゆるクロスベルトのタイヤに比し 、いわゆる旋回時グリップ力が低いという問題が生じるおそれがある。特許文献 1では 、力かる問題を解消するために、自動二輪車用空気入りラジアルタイヤのベルト材料 としてポリケトン繊維コードを使用することが開示されており、これにより、旋回時グリツ プカを向上するとともにトラクシヨン性能をより一層向上させることができると報告され ている。
[0004] 一方、特許文献 2では、高速耐久性を大幅に高めるとともに、ロードノイズの低減を 図るために、ベルト補強層として、ポリケトン繊維コードを複数本含むゴム引きされた 狭幅のストリップを該コードがタイヤ周方向に実質上平行になるようにラセン状にェン ドレスに巻きつけることが開示されている。 特許文献 1:特開 2000— 142024号公報 (特許請求の範囲等)
特許文献 2:特開 2000— 142025号公報 (特許請求の範囲等)
発明の開示
発明が解決しょうとする課題
[0005] 上述のように、タイヤの補強材としてポリケトン繊維コードを使用することは従来より 知られて!/ヽたが、これまで自動二輪車用空気入りタイヤの補強材としてポリケトン繊維 コード、特に高熱収縮特性を有するポリケトン繊維コードは使用されておらず、主に ナイロン、ポリエチレン一 2, 6—ナフタレート(PEN)、ァラミド (ケプラー(登録商標)) などの繊維コードやスチールコードが使用されていた。
[0006] しかし、例えば、タイヤ補強コードとして汎用されてきたナイロン繊維コードは、室温 域では十分な周方向剛性を有して 、ても走行時にはタイヤ自体の発熱による温度環 境変化によって弾性率が低下してしまい、充分な周方向剛性を発現、維持することが できない状況が存在した。また、ァラミド繊維やガラス繊維等の超高剛性繊維を使用 した場合には、収縮がないため、タイヤ製造時に径方向の張力分布に不均一が生じ てしまい、その結果、補強材として充分な周方向剛性を発揮できないという問題点が あった。また、ベルトにスチールコードを使用した場合はタイヤ重量が重くなり、低燃 費性能が悪ィ匕するという問題もあった。
[0007] さらに、カーカスに PETコードやレーヨンコードを使用している従来の自動二輪車 用タイヤは、高速回転中にタイヤの温度が上昇した際、タイヤのせり出しゃ軟ィ匕が起 こり、高速時の操縦安定性が悪くなるという問題があった。
[0008] そこで、本発明の目的は、高速走行時の接地形状や接地圧分布の適正化を図つ て、優れた操縦安定性能を有する自動二輪車用空気入りタイヤを提供することにある 。また、本発明の他の目的は、高速走行時の接地形状や接地圧分布の適正化を図 つて、グリップ力に優れコーナリング限界点近傍でのタイヤの挙動が安定し、優れた 旋回性能を発揮し得る自動二輪車用空気入りタイヤを提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明の自動二輪車用空気入りタイヤは、コード 1本 あたりの総デシテックスが 1000〜20000デシテックスのマルチフィラメント撚りポリケ トン繊維コードであって、下記式 (I)および (Π)、
σ≥-0. 01E+ 1. 2 (I)
σ≥0. 02 (II)
(上記式中、 Εは 25°Cにおける 49Ν荷重時の弾性率(cNZdtex)であり、 σは 177 °Cにおける熱収縮応力(cNZdtex)である)で表される関係を満足するポリケトン繊 維コードが、補強材として用いられていることを特徴とするものである。
[0010] 本発明の自動二輪車用空気入りタイヤは、少なくとも 1枚のプライ力もなるカーカス と、該カーカスのクラウン部タイヤ半径方向外側に配置された少なくとも 1層力もなる ベルトとを備え、前記カーカスの補強材または前記ベルトの補強材として、前記ポリケ トン繊維コードを用いたものであることが好ま U、。
[0011] また、本発明の自動二輪車用空気入りタイヤは、少なくとも 1枚のプライ力もなる力 一カスと、該カーカスのクラウン部タイヤ半径方向外側に配置された少なくとも 1層か らなるベルトとを備え、前記ベルトのタイヤ半径方向外側または内側にベルト補強層 を有し、該ベルト補強層の補強材として、前記ポリケトン繊維コードを用いたものであ ることも好まし 、。
[0012] 本発明の自動二輪車用空気入りタイヤにおいては、下記式、
σ≥0. 4
で表される関係を満足することが好ましぐまた、下記式、
1. 5≥ σ
で表される関係を満足することも好ましい。さらに、前記総デシテックスは、好ましくは 2000〜5000デシテックスである。さらにまた、本発明においては、前記カーカスお よび前記ベルトの双方に、前記ポリケトン繊維コードが使用されていることが好ましい
発明の効果
[0013] 本発明によれば、高速走行時の接地形状や接地圧分布の適正化が図られ、優れ た操縦安定性能を発揮し得る高性能自動二輪車用空気入りタイヤを提供することが できる。また、本発明によれば、高速走行時の接地形状や接地圧分布の適正化が図 られ、グリップ力に優れコーナリング限界点近傍でのタイヤの挙動が安定し、優れた 旋回性能を発揮し得る高性能自動二輪車用空気入りタイヤを提供することができる。 さらに、ベルトコードとしてスチールコードの代わりに本発明に係るポリケトン繊維コー ドを使用することにより、重量の軽減効果をも得ることができる。
図面の簡単な説明
[0014] [図 1]本発明の一実施の形態に係る自動二輪車用空気入りタイヤを示す幅方向断面 図である。
[図 2]本発明の他の実施の形態に係る自動二輪車用空気入りタイヤを示す幅方向断 面図である。
[図 3]本発明のさらに他の実施の形態に係る自動二輪車用空気入りタイヤを示す幅 方向断面図である。
符号の説明
[0015] 1 ビードコア
2 カーカス
3 ベルト(ベルト層)
4 トレッド
5 ベルト補強層
発明を実施するための最良の形態
[0016] 以下、本発明の自動二輪車用空気入りタイヤの実施の形態につき具体的に説明 する。
図 1に、本発明の一好適実施形態に係る自動二輪車用空気入りタイヤの幅方向断 面図を示す。図示するタイヤは、左右一対のビード部にそれぞれ埋設された一対の ビードコア 1間にトロイド状に延在する少なくとも 1枚(図示例では 1枚)のプライ力もな るカーカス 2と、そのクラウン部タイヤ半径方向外側に配置された、トレッド幅とほぼ等 しい幅を有する少なくとも 1層のベルト層(図示例ではコードが互いに交錯する 2層) 力 なるベルト 3とを備えている。また、ベルト 3のタイヤ径方向外側にはトレッド 4が配 設されている。
[0017] 本好適実施形態においては、カーカス 2またはベルト 3のいずれか一方、好ましくは 双方の補強材が、下記に詳述するポリケトン繊維(以下「PK繊維」と略記する)コード であることが肝要である。力かる PK繊維は、従来のポリエステル及びレーヨン繊維対 比、熱収縮応力が高ぐまた弾性率が 2. 4〜3. 3倍と高ぐ従来の繊維材質よりベル トの締め付け力が高くなる特性がある。よって、この PK繊維コードをタイヤの補強材と して適用することにより、周方向に剛性の高い繊維コードをタイヤ内部での張力(残 留応力)が径方向に均一な状態で配置することができる。また、その熱安定性から低 速から高速までタイヤの接地形状や接地圧分布を均一に保持することが可能となる 。その結果、優れた高速操縦安定性を発揮することができるようになる。
[0018] なお、この好適実施形態にお!、ては、カーカス 2またはベルト 3の補強材の 、ずれ か一方に本発明に係る PK繊維コードを用いる限り、残りのコードにはカーカス 2また はベルト 3において慣用されているコードを用いても、 PK繊維コードに基づく所望の 効果を得ることができる。
[0019] 本発明に用いる PK繊維コードは、コード 1本あたりの総デシテックスが 1000〜200 00デシテックス、好ましくは 2000〜5000デシテックスであるマルチフィラメント撚り P K繊維コードである。 1本あたりの総デシテックスが 1000デシテックス未満では必要 な周方向剛性が不足し、期待した耐久性向上効果が得られない。一方、 20000デシ テックスを超えると、必要以上にコード径が大きくなり、被覆するためのゴム量が増え ることによるタイヤ重量増加および接地性高速、耐久レベルの悪ィ匕を招くおそれがあ る。
[0020] また、本発明に用いる PK繊維コードは、下記式 (I)および (Π)、
σ≥-0. 01E+ 1. 2 (I)
σ≥0. 02 (II)
で表される関係を満足することを要する。ここで、熱収縮応力 σは、一般的なディップ 処理を施した加硫前の上記 ΡΚ繊維コードの、 25cmの長さ固定サンプルを 5°CZ分 の昇温スピードで加熱して、 177°C時にコードに発生する応力(単位: cNZdtex)で あり、また、弾性率 Eは、同様の PK繊維コードの 25°Cにおける 49N荷重時の弾性率 であって、 JISのコード引張り試験による SSカーブの 49N時の接線より算出される単 位 cNZdtexの弾性率である。上記式(1)は、以下のことから導き出される。
[0021] 高速走行状態でのタイヤの形状変化を保持する力には、外界からの入力(遠心力 、歪)に対して補強部材が受動的に発現する抗カ Flと、発熱によって補強部材が能 動的に発現する抗カ F2とが存在する。 F1の主要な支配因子として補強部材コード の剛性 ECがあり、 F2の主要な支配因子として補強部材コードの熱収縮応力 HFがあ る。すなわち、高速走行時の形状変化を効果的に制御するためには F1と F2の和が あるレベル以上にあることが必要である。それぞれの寄与率を α、 β (ここで α > 0か つ j8 > 0)とおくと、下記の関係が成り立つ。
a X F1 + β X F2 > γ ( γ > 0)
ここで、 な、 β、 γはタイヤサイズや構造、補強部材の補強位置、補強方向やタイヤ の内圧、荷重、速度、温度等の使用環境に因る係数である。上記式より下記式、
Figure imgf000008_0001
が得られ、切片 0 Z j8、傾き a Z j8の上領域にあることが必要とされることが導か れる。
[0022] 上記式 (I)の関係を満たせば、弾性率 Eが小さくてもタイヤ中でコードが縮もうとする 応力 (残留応力)がある結果、高弾性によるタイヤ補強を実現でき、接地性を確保す ることができる。また、上記式 (Π)の関係を満たさないと、即ち、 σが少なくとも 0. 02 以上でないとタイヤ製造時にコードがたるみ、座屈が発生しやすくなるために高弾性 による接地性向上効果を得ることができなくなる。なお、 σが 0. 02未満の材質のコー ドを用いて製造方法の工夫により固く巻きつけることは、タイヤ周方向および径方向 での均一性が失われ、ュニフォミティーの悪ィ匕等を招くことになる。かかるコード物性 として、ァラミド繊維コードは高弾性だが σがほぼ 0であり、本発明の必要性能を満た しておらず、またナイロン繊維や PEN繊維と 、つたコードでは弾性率が十分ではな い。本発明者は、力かる観点力 鋭意検討した結果、本発明の必要性能を満たす妥 当な物性が得られるコードとして上記 PK繊維コードのタイヤ補強材への適用を見出 したのである。
[0023] 上記式 (Π)は、より所望の効果を得る上で、下記式、
σ≥0. 4
で表される関係を満足することが、好ましい。但し、 σが 1. 5より大きくなると加硫時の 収縮力が大きくなりすぎ、結果的にタイヤ内部のコード乱れやゴムの配置乱れを引き 起こし、耐久性悪ィ匕ゃュニフォミティー悪ィ匕を招くおそれがあるため、上限として、下 式、
1. 5≥ σ
で表される関係を満足することが好まし 、。
[0024] また、上記 ΡΚ繊維コードは、さらに、下記式 (III)、
a =T X D1 2 (III)
(式中、 Tは撚り数(回 ZlOOmm)であり、 Dはコードの総繊度 (dtex)である)で定義 される撚り係数 α力 ¾50〜4000の範囲であることが好ましい。 ΡΚ繊維コードの撚り 係数 αが 850未満では、熱収縮応力が十分に確保できず、一方、 4000を超えると、 弾性率が十分に確保できず、補強能が小さくなる。
[0025] さらに、上記 ΡΚ繊維コードは、繊度が 500〜10000dtexのポリケトンからなるフイラ メント束を 2〜3本撚り合わせてなることが好ましい。 PK繊維コードに用いるフィラメン ト束の繊度が 500dtex未満では、弾性率'熱収縮応力ともに不十分となる一方、 100 OOdtexを超えると、コード径が太くなつて、打ち込みを密にできなくなる。
[0026] さらにまた、上記 PK繊維コードは、高温下で収縮し、室温に戻すと伸長する可逆 性を有することが好ましい。これにより、高温下、即ち、高速走行時においては PK繊 維コードが収縮して、トレッドの迫り出しを十分に抑制することができる一方、低温下、 即ち、低速走行時においては PK繊維コードが伸長して、タイヤの接地面積を十分に ½保することができる。
[0027] 上記 PK繊維コードの原料のポリケトンとしては、下記一般式 (IV)、
Figure imgf000009_0001
(式中、 Aは不飽和結合によって重合された不飽和化合物由来の部分であり、各繰り 返し単位にぉ 、て同一であっても異なって!/、てもよ 、)で表される繰り返し単位から 実質的になるものが好適であり、その中でも、繰り返し単位の 97モル%以上が 1ーォ キソトリメチレン [― CH2— CH2— CO— ]であるポリケトンが好ましく、 99モル0 /0以上 力 S1—ォキソトリメチレンであるポリケトンが更に好ましぐ 100モル%が 1—ォキソトリメ チレンであるポリケトンが最も好ま 、。
[0028] 力かるポリケトンは、部分的にケトン基同士、不飽和化合物由来の部分同士が結合 して 、てもよ 、が、不飽和化合物由来の部分とケトン基とが交互に配列して 、る部分 の割合が 90質量%以上であることが好ましぐ 97質量%以上であることが更に好まし く、 100質量%であることが最も好ましい。
[0029] また、上記式 (IV)にお 、て、 Aを形成する不飽和化合物としては、エチレンが最も 好ましいが、プロピレン、ブテン、ペンテン、シクロペンテン、へキセン、シクロへキセン 、ヘプテン、オタテン、ノネン、デセン、ドデセン、スチレン、アセチレン、アレン等のェ チレン以外の不飽和炭化水素や、メチルアタリレート、メチルメタタリレート、ビニルァ セテート、アクリルアミド、ヒドロキシェチルメタタリレート、ゥンデセン酸、ゥンデセノー ル、 6—クロ口へキセン、 N—ビュルピロリドン、スル-ルホスホン酸のジェチルエステ ル、スチレンスルホン酸ナトリウム、ァリルスルホン酸ナトリウム、ビニルピロリドンおよ び塩ィ匕ビュル等の不飽和結合を含む化合物等であってもよい。
[0030] さらに、上記ポリケトンの重合度としては、下記式 (V)、
Γ 7ϊ Ί _ lim (T - t)
(上記式中、 tおよび Τは、純度 98%以上のへキサフルォロイソプロパノールおよび 該へキサフルォロイソプロパノールに溶解したポリケトンの希釈溶液の 25°Cでの粘度 管の流過時間であり、 Cは、上記希釈溶液 lOOmL中の溶質の質量 (g)である)で定 義される極限粘度 [ τ? ]が、 l〜20dLZgの範囲内にあることが好ましぐ 3〜8dLZg の範囲内にあることがより一層好ましい。極限粘度が IdLZg未満では、分子量が小 さ過ぎて、高強度のポリケトン繊維コードを得ることが難しくなる上、紡糸時、乾燥時 および延伸時に毛羽や糸切れ等の工程上のトラブルが多発することがあり、一方、極 限粘度が 20dLZgを超えると、ポリマーの合成に時間およびコストがかかる上、ポリ マーを均一に溶解させることが難しくなり、紡糸性および物性に悪影響が出ることが ある。
[0031] さらにまた、 PK繊維は、結晶化度が 50〜90%、結晶配向度が 95%以上の結晶構 造を有することが好ましい。結晶化度が 50%未満の場合、繊維の構造形成が不十 分であって十分な強度が得られないばかりか加熱時の収縮特性や寸法安定性も不 安定となるおそれがある。このため、結晶化度としては 50〜90%が好ましぐより好ま しくは 60〜85%である。
[0032] 上記ポリケトンの繊維化方法としては、(1)未延伸糸の紡糸を行った後、多段熱延 伸を行い、該多段熱延伸の最終延伸工程で特定の温度および倍率で延伸する方法 や、(2)未延伸糸の紡糸を行った後、熱延伸を行い、該熱延伸終了後の繊維に高い 張力をかけたまま急冷却する方法が好ま 、。上記(1)または(2)の方法でポリケトン の繊維化を行うことで、上記ポリケトン繊維コードの作製に好適な所望のフィラメントを 得ることができる。
[0033] ここで、上記ポリケトンの未延伸糸の紡糸方法としては、特に制限はなぐ従来公知 の方法を採用することができ、具体的には、特開平 2— 112413号、特開平 4— 228 613号、特表平 4 505344号に記載されているようなへキサフルォロイソプロパノー ルゃ m タレゾール等の有機溶剤を用いる湿式紡糸法、国際公開第 99Z18143号 、国際公開第 OOZ09611号、特開 2001— 164422号、特開 2004— 218189号、 特開 2004— 285221号に記載されているような亜鉛塩、カルシウム塩、チォシアン 酸塩、鉄塩等の水溶液を用いる湿式紡糸法が挙げられ、これらの中でも、上記塩の 水溶液を用いる湿式紡糸法が好まし ヽ。
[0034] 例えば、有機溶剤を用いる湿式紡糸法では、ポリケトンポリマーをへキサフルォロイ ソプロパノールや m タレゾール等に 0. 25〜20質量%の濃度で溶解させ、紡糸ノ ズルより押し出して繊維化し、次いでトルエン、エタノール、イソプロパノール、 n—へ キサン、イソオクタン、アセトン、メチルェチルケトン等の非溶剤浴中で溶剤を除去、 洗浄してポリケトンの未延伸糸を得ることができる。
[0035] 一方、水溶液を用いる湿式紡糸法では、例えば、亜鉛塩、カルシウム塩、チオシァ ン酸塩、鉄塩等の水溶液に、ポリケトンポリマーを 2〜30質量%の濃度で溶解させ、 50〜130°Cで紡糸ノズル力も凝固浴に押し出してゲル紡糸を行い、さらに脱塩、乾 燥等してポリケトンの未延伸を得ることができる。ここで、ポリケトンポリマーを溶解させ る水溶液には、ハロゲンィ匕亜鉛と、ハロゲンィ匕アルカリ金属塩またはハロゲンィ匕アル カリ土類金属塩とを混合して用いることが好ましぐ凝固浴には、水、金属塩の水溶 液、アセトン、メタノール等の有機溶媒等を用いることができる。
[0036] また、得られた未延伸糸の延伸法としては、未延伸糸を該未延伸糸のガラス転移 温度よりも高い温度に加熱して引き伸ばす熱延伸法が好ましぐさらに、かかる未延 伸糸の延伸は、上記(2)の方法では一段で行ってもよいが、多段で行うことが好まし い。熱延伸の方法としては、特に制限はなぐ例えば、加熱ロール上や加熱プレート 上に糸を走行させる方法等を採用することができる。ここで、熱延伸温度は、 110°C 〜(ポリケトンの融点)の範囲内が好ましぐ総延伸倍率は、好適には 10倍以上とする
[0037] 上記(1)の方法でポリケトンの繊維化を行う場合、上記多段熱延伸の最終延伸ェ 程における温度は、 110°C〜(最終延伸工程の一段前の延伸工程の延伸温度 3 °C)の範囲が好ましぐまた、多段熱延伸の最終延伸工程における延伸倍率は、 1. 0 1〜1. 5倍の範囲が好ましい。一方、上記(2)の方法でポリケトンの繊維化を行う場 合、熱延伸終了後の繊維にかける張力は、 0. 5〜4cNZdtexの範囲が好ましぐま た、急冷却における冷却速度は、 30°CZ秒以上であることが好ましぐ更に、急冷却 における冷却終了温度は、 50°C以下であることが好ましい。熱延伸されたポリケトン 繊維の急冷却方法としては、特に制限はなぐ従来公知の方法を採用することができ 、具体的には、ロールを用いた冷却方法が好ましい。なお、こうして得られるポリケトン 繊維は、弾性歪みの残留は大きいため、通常、緩和熱処理を施し、熱延伸後の繊維 長よりも繊維長を短くすることが好ましい。ここで、緩和熱処理の温度は、 50〜: LOO°C の範囲が好ましぐまた、緩和倍率は、 0. 980-0. 999倍の範囲が好ましい。
[0038] 上記 PK繊維コードは、上記ポリケトンのフィラメントを複数本撚り合わせてなるマル チフィラメント撚りの PK繊維力もなり、例えば、上記ポリケトン力もなるフィラメント束に 下撚りをかけ、次いでこれを 2本または 3本合わせて、逆方向に上撚りをかけることで 、撚糸コードとして得ることができる。
[0039] また、 PK繊維コードの高い熱収縮特性を最も効果的に活用するには、加工時の処 理温度や使用時の成型品の温度が、最大熱収縮応力を示す温度 (最大熱収縮温度 )と近い温度であることが望ましい。具体的には、必要に応じて行われる接着剤処理 における RFL処理温度や加硫温度等の加工温度が 100〜250°Cであること、また、 繰り返し使用や高速回転によってタイヤ材料が発熱した際の温度は 100〜200°Cに もなることなどから、最大熱収縮温度は、好ましくは 100〜250°Cの範囲内、より好ま しくは 150〜240°Cの範囲内である。
[0040] なお、本好適実施形態にお!、て、カーカスおよびベルトのコーティングゴムとしては 、特に制限はなぐ従来より用いられている各種配合ゴムを用いることができる。
[0041] 図 2に、本発明の他の好適実施形態に係る自動二輪車用空気入りタイヤの幅方向 断面図を示す。図示するタイヤは、一対のビードコア 1間にトロイド状に延在する少な くとも 1枚(図示例では 1枚)のプライ力もなるカーカス 2と、そのクラウン部タイヤ半径 方向外側に配置され、コードが互いに交錯する 2層以上(図示例では 2層)のベルト 層カゝらなるベルト 3とを備えており、さらに、ベルト 3のタイヤ半径方向外側に、補強材 が実質的にタイヤ周方向に卷回されてなる少なくとも 1枚(図示例では 1枚)のベルト 補強層 5が配置されている。なお、交錯ベルト 3のコード角度は、例えば、トレッド周線 に対し 10〜80° とすることができる。
[0042] 本好適実施形態においては、ベルト補強層 5の補強材が、上記で詳述した PK繊維 コードであることが肝要である。前述したように、本発明に係る PK繊維は従来のポリ エステル及びレーヨン繊維対比、熱収縮応力が高ぐまた弾性率が 2. 4〜3. 3倍と 高ぐ従来の繊維材質よりベルトの締め付け力が高くなる特性がある。よって、この P K繊維コードをベルト補強層 5に適用することにより、周方向に剛性の高い繊維コード をタイヤ内部での張力(残留応力)が径方向に均一な状態で配置することができる。 また、その熱安定性力 低速から高速までタイヤの接地形状や接地圧分布を均一に 保持することが可能となる。その結果、様々な速度域において安定した直進性ゃコ ーナリング性能を発揮することができるようになる。
[0043] この場合、特に、上記 PK繊維コードが、高温下で収縮し、室温に戻すと伸長する 可逆性を有すると、高温下、即ち、高速走行時においてはベルト補強層内の PK繊 維コードが収縮して、十分なタガ効果を発揮することによりトレッドの迫り出しを十分に 抑制することができる一方、低温下、即ち、低速走行時においてはベルト補強層内の
PK繊維コードが伸長して、タイヤの接地面積を十分に確保することができるため、好 ましい。
[0044] 本好適実施形態において所期の効果を得る上で、上記ポリケトン繊維コードは、単 線または 2本線により卷回し、好ましくは巻き付け密度を 20本〜 50本 Z50mmとする 。また、ベルト補強層 5のコーティングゴムとしては、特に制限はなぐ従来ベルト補強 層に用いられている各種配合ゴムを用いることができる。さらに、ベルト補強層 5は、 図 2に示すように、少なくとも 1枚にて設けることが必要である力 ベルト層 3の全幅を 覆って配置された 1枚以上のベルト補強層と、ショルダー部のみに配置された 1枚以 上のベルト補強層とからなるものとすることも好適である(図示せず)。なお、この場合 も、 2枚のベルト補強層のそれぞれについて、 PK繊維コードを配設することが肝要で ある。
[0045] 次に、図 3に、本発明のさらに他の好適実施形態に係る自動二輪車用空気入りタイ ャの幅方向断面図を示す。図示するタイヤは、ベルト層 3のタイヤ半径方向内側に、 前記と同様の少なくとも 1枚のベルト補強層 5を有する。このタイヤは、図 2に示す好 適実施形態のタイヤとベルト補強層 5の配置が異なっている点以外は同様であり、こ のようにベルト補強層 5をベルト 3のタイヤ半径方向内側に配置しても本発明の所望 の効果を得ることができる。
[0046] なお、本発明の自動二輪車用空気入りタイヤにおいては、上記 PK繊維コードを補 強材として用いる以外の点については、特に制限されるものではなぐカーカス 2、ベ ルト 3またはベルト補強層 5の補強材の 、ずれか一つに本発明に係る PK繊維コード を用いるものである限り、 PK繊維コードに基づく本発明の所望の効果を得ることがで きる。また、残りの補強コードには、従来慣用されているコードを適宜用いることができ る。
[0047] 例えば、図示はしないが、タイヤの最内層には通常インナーライナ一が配置され、ト レッド表面には、適宜トレッドパターンが形成される。また、本発明の空気入りタイヤに おいて、タイヤ内に充填する気体としては、通常のあるいは酸素分圧を変えた空気、 または、窒素等の不活性ガスを用いることができる。 実施例
[0048] 以下、本発明を、実施例を用いてより詳細に説明する。
(PK繊維の調製例)
常法により調製したエチレンと一酸ィ匕炭素が完全交互共重合した極限粘度 5. 3の ポリケトンポリマーを、塩ィ匕亜鉛 65質量% /塩ィ匕ナトリウム 10質量%含有する水溶液 に添加し、 80°Cで 2時間攪拌溶解し、ポリマー濃度 8質量%のドープを得た。
[0049] このドープを 80°Cに加温し、 20 μ m焼結フィルターでろ過した後に、 80°Cに保温 した紡口径 0. 10mm , 50ホールの紡口より 10mmのエアーギャップを通した後に 5質量%の塩ィ匕亜鉛を含有する 18°Cの水中に吐出量 2. 5ccZ分の速度で押出し、 速度 3. 2mZ分で引きながら凝固糸条とした。
[0050] 引き続き凝固糸条を濃度 2質量%、温度 25°Cの硫酸水溶液で洗浄し、さらに 30°C の水で洗浄した後に、速度 3. 2mZ分で凝固糸を卷取った。この凝固糸に IRGAN OX1098 (Ciba Specialty Chemicals社製)、 IRGANOX1076 (Ciba Special ty Chemicals社製)をそれぞれ 0. 05質量%ずつ(対ポリケトンポリマー)含浸せし めた後に、該凝固糸を 240°Cにて乾燥後、仕上剤を付与して未延伸糸を得た。
[0051] 仕上剤は以下の組成のものを用いた。
ォレイン酸ラウリルエステル Zビスォキシェチルビスフエノール AZポリエーテル(プ ロピレンォキシド Zエチレンォキシド = 35Z65:分子量 20000) Zポリエチレンォキ シド 10モル付加ォレイルエーテル Zポリエチレンォキシド 10モル付加ひまし油エー テル Zステアリルスルホン酸ナトリウム Zジォクチルリン酸ナトリウム = 30Z30ZlO Z5Z23Z1Z1 (質量%比)。
[0052] 得られた未延伸糸を 1段目を 240°Cで、引き続き 258°Cで 2段目、 268°Cで 3段目、 272°Cで 4段目の延伸を行った後に、引き続き 5段目に 200°Cで 1. 08倍 (延伸張力 1. 8cNZdtex)の 5段延伸を行い、卷取機にて卷取った。未延伸糸から 5段延伸糸 までの全延伸倍率は 17. 1倍であった。この繊維原糸は強度 15. 6cN/dtex,伸度 4. 2%、弾性率 347cNZdtexと高物性を有していた。また、 150°C X 30分乾熱処 理時熱収縮率 4. 3%、最大熱収縮応力 0. 92cNZdtexと高い熱収縮特性を具備し て!、た。このようにして得られた PK繊維コードを以下の実施例等で使用した。 [0053] <実施例 1, 2>
図 1に示すタイプの自動二輪車用空気入りタイヤを、下記表 1、表 2および以下に 示す条件に従い、それぞれ常法により試作した。なお、従来例 1、比較例 1および実 施例 1 1, 1 2ではベルトコードとして従来例 2のものを用いた。また、従来例 2、比 較例 2および実施例 2— 1, 2— 2ではカーカスプライコードとして従来例 1のものを用 いた。
[0054] (タイヤサイズ):後輪用 190Z55R17 (なお、下記試験では前輪用としてサイズ 120
Z70R17のタイヤを用いた。 )
(カーカスプライコード)
PET繊維コード(1670dtexZ2、 35 X 35):打ち込み数 60. 0本 Z50mm レーヨン繊維コード(1840dtexZ3、 35 X 35):打ち込み数 60. 0本 Z50mm PK繊維コード(1670dtexZ2、 35 X 35 (実施例 1— 1)、 1670dtex/2, 20 X 20
(実施例 1 2) ):打ち込み数 60. 0本 Z50mm
(ベノレ卜コード)
スチールコード: I X 5 X 0. 25mm,打込み数 80本 ZlOcm、周線方向に対する角 度 70°
ケブラー(登録商標)コード (Kev) : 1670dtexZ2、 30 X 30、打込み 100本 ZlOc m、周線方向に対する角度 70°
PK繊維コード: 1670dtexZ2、 20 X 20 (実施例 2—1)、 1670dtex/2, 30 X 30 (実施例 2— 2)、打込み 100本 ZlOcm、周線方向に対する角度 70°
[0055] (繊維コードの弾性率 E):—般的なディップ処理を施した加硫前のポリケトン繊維コ ードの、 25°C、 49N荷重時の弾性率を Eとして、 JISのコード引張り試験による SS力 ーブの 49N時の接線より算出した(単位: cN/dtex)。
(繊維コードの熱収縮応力 σ ):一般的なディップ処理を施した加硫前のポリケトン繊 維コードの、 177°C時における熱収縮応力を σとして、 25cmの長さ固定サンプルを 5°CZ分の昇温スピードで加熱し、 177°C時に発生する応力を測定し、発生する力よ り算出した(単位: cN/dtex)。
[0056] 得られた各供試タイヤにつき、下記評価方法に従い高速時実車操縦安定性の評 価を行った。これらの結果を、下記の表 1、表 2に併せて示す。
(高速時実車操縦安定性)
供試タイヤを排気量が 750ccの自動二輪車の後輪に装着して実車走行を行 Vヽ、速 度 150kmZh以上での直進安定性、旋回安定性、剛性感、ハンドリングをフィーリン グ評価した。評価は、 10点満点で表示した。
[表 1]
Figure imgf000017_0001
表 2]
Figure imgf000017_0002
[0059] 上記表 1および表 2に示す結果より、本発明においてタイヤのカーカスプライおよび
Zまたはベルトに熱収縮応力が高 、PK繊維コードを用 、ることにより、タイヤ重量の 低減とともに、優れた高速時実車操縦安定性が得られることが分力ゝる。
[0060] <実施例 3>
図 2および図 3に示すように、ベルト補強層 5を配設した空気入りラジアルタイヤを、 下記表 3および以下に示す条件に従い、それぞれ常法により試作した。
(タイヤサイズ):後輪用 190Z55R17 (なお、下記試験では前輪用としてサイズ 120 Z70R17のタイヤを用いた。 )
(カーカスプライコード):ナイロンコード(940dtexZ2)、打ち込み数 60. 0本 Z50m m
(ベノレ卜コード)
スチールコード(Steel) : 1 X 5 X 0. 25mm,打込み数 80本 ZlOcm、周線方向に対 する角度 70°
ケブラー(登録商標)コード (Kev):ァラミド 1670dtexZ2、 35 X 35、打込み 100本 /10cm,周線方向に対する角度 70°
[0061] (PK繊維コードの弾性率 E):—般的なディップ処理を施した加硫前のポリケトン繊維 コードの、 25°C、 49N荷重時の弾性率を Eとして、 JISのコード引張り試験による SS力 ーブの 49N時の接線より算出した(単位: cN/dtex)。
(PK繊維コードの熱収縮応力 σ ):一般的なディップ処理を施した加硫前のポリケト ン繊維コードの、 177°C時における熱収縮応力を σとして、 25cmの長さ固定サンプ ルを 5°CZ分の昇温スピードで加熱し、 177°C時に発生する応力を測定し、発生する 力より算出した (単位: cN/dtex)。
[0062] 得られた各供試タイヤにつき、下記評価方法に従い評価を行った。これらの結果を 、下記の表 3に併せて示す。
(低速時操縦性能)
供試タイヤを排気量が 750ccの自動二輪車の後輪に装着して実車走行を行い、速 度 lOOkmZh以下での直進安定性、コーナリング性能をフィーリング評価した。評価 は、比較例 3—1の結果を 100として指数表示した。数値が大なる程結果が良好であ る。
(高速時操縦性能)
供試タイヤを排気量が 750ccの自動二輪車の後輪に装着して実車走行を行い、速 度 150kmZh以上での直進安定性、コーナリング性能をフィーリング評価した。評価 は、比較例 3—1の結果を 100として指数表示した。数値が大なる程結果が良好であ る。
[表 3]
Figure imgf000019_0001
上記表 3に示す結果より、本発明にお 、てタイヤのベルト補強層に熱収縮応力が 高い PK繊維を用いることにより、周方向剛性を広い速度域で保ちながら、優れた接 地性と走行性能が得られることが分かる。

Claims

請求の範囲
[1] コード 1本あたりの総デシテックスが 1000〜20000デシテックスのマルチフィラメン ト撚りポリケトン繊維コードであって、下記式 (I)および (Π)、
σ≥-0. 01E+ 1. 2 (I)
σ≥0. 02 (II)
(上記式中、 Εは 25°Cにおける 49Ν荷重時の弾性率(cNZdtex)であり、 σは 177 °Cにおける熱収縮応力(cNZdtex)である)で表される関係を満足するポリケトン繊 維コードが、補強材として用いられていることを特徴とする自動二輪車用空気入りタイ ャ。
[2] 少なくとも 1枚のプライ力もなるカーカスと、該カーカスのクラウン部タイヤ半径方向 外側に配置された少なくとも 1層からなるベルトとを備え、
前記カーカスの補強材が前記ポリケトン繊維コードである請求項 1記載の自動二輪 車用空気入りタイヤ。
[3] 少なくとも 1枚のプライ力もなるカーカスと、該カーカスのクラウン部タイヤ半径方向 外側に配置された少なくとも 1層からなるベルトとを備え、
前記ベルトの補強材が前記ポリケトン繊維コードである請求項 1または 2記載の自 動二輪車用空気入りタイヤ。
[4] 少なくとも 1枚のプライ力もなるカーカスと、該カーカスのクラウン部タイヤ半径方向 外側に配置された少なくとも 1層からなるベルトとを備え、
前記ベルトのタイヤ半径方向外側にベルト補強層を有し、該ベルト補強層の補強 材が前記ポリケトン繊維コードである請求項 1〜3のうちいずれか一項記載の自動二 輪車用空気入りタイヤ。
[5] 少なくとも 1枚のプライ力もなるカーカスと、該カーカスのクラウン部タイヤ半径方向 外側に配置された少なくとも 1層からなるベルトとを備え、
前記ベルトのタイヤ半径方向内側にベルト補強層を有し、該ベルト補強層の補強 材が前記ポリケトン繊維コードである請求項 1〜3のうちいずれか一項記載の自動二 輪車用空気入りタイヤ。
[6] 下記式、 σ≥0. 4
で表される関係を満足する請求項 1〜5のうちいずれか一項記載の自動二輪車用空 気入りタイヤ。
[7] 下記式、
1. 5≥ σ
で表される関係を満足する請求項 1〜6のうちいずれか一項記載の自動二輪車用空 気入りタイヤ。
[8] 前記総デシテックスが 2000〜5000デシテックスである請求項 1〜7のうち!/、ずれ か一項記載の自動二輪車用空気入りタイヤ。
[9] 前記カーカスおよび前記ベルトの双方に、前記ポリケトン繊維コードが使用されて いる請求項 2〜8のうちいずれか一項記載の自動二輪車用空気入りタイヤ。
PCT/JP2006/323776 2005-11-29 2006-11-29 自動二輪車用空気入りタイヤ WO2007063875A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/094,685 US20090266462A1 (en) 2005-11-29 2006-11-29 Pneumatic tire for motorcycle
EP06833580A EP1955873B1 (en) 2005-11-29 2006-11-29 Pneumatic tire for motorcycle
CN2006800446887A CN101316731B (zh) 2005-11-29 2006-11-29 机动二轮车用充气轮胎
ES06833580T ES2380237T3 (es) 2005-11-29 2006-11-29 Neumático para motocicleta
JP2007547960A JP4889654B2 (ja) 2005-11-29 2006-11-29 自動二輪車用空気入りタイヤ
KR1020087015693A KR101323977B1 (ko) 2005-11-29 2006-11-29 자동 이륜차용 공기 타이어

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005344489 2005-11-29
JP2005-344489 2005-11-29
JP2005372133 2005-12-26
JP2005-372133 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007063875A1 true WO2007063875A1 (ja) 2007-06-07

Family

ID=38092208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323776 WO2007063875A1 (ja) 2005-11-29 2006-11-29 自動二輪車用空気入りタイヤ

Country Status (7)

Country Link
US (1) US20090266462A1 (ja)
EP (1) EP1955873B1 (ja)
JP (2) JP4889654B2 (ja)
KR (1) KR101323977B1 (ja)
CN (1) CN101316731B (ja)
ES (1) ES2380237T3 (ja)
WO (1) WO2007063875A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063875A1 (ja) * 2005-11-29 2007-06-07 Bridgestone Corporation 自動二輪車用空気入りタイヤ
FR2974583B1 (fr) 2011-04-28 2013-06-14 Michelin Soc Tech Cable textile composite aramide-polycetone
JP6083303B2 (ja) * 2013-04-03 2017-02-22 横浜ゴム株式会社 空気入りタイヤ
US20150020943A1 (en) * 2013-07-22 2015-01-22 Bridgestone Americas Tire Operations, Llc Low-Metal Tire
JP6608363B2 (ja) 2013-12-23 2019-11-20 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 二輪車用タイヤ
JP7365342B2 (ja) 2017-12-22 2023-10-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン 改善されたフーピングプライを備えたタイヤ
CN111801220B (zh) 2017-12-22 2022-10-21 米其林集团总公司 生产丝状增强元件的方法
WO2019122619A1 (fr) 2017-12-22 2019-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une nappe de frettage perfectionnée

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142024A (ja) * 1998-11-16 2000-05-23 Bridgestone Corp 二輪自動車用空気入りラジアルタイヤ
JP2001295134A (ja) * 2000-04-12 2001-10-26 Asahi Kasei Corp ポリケトン繊維およびポリケトンコード
JP2001334807A (ja) * 2000-05-30 2001-12-04 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2002339275A (ja) * 2001-05-16 2002-11-27 Asahi Kasei Corp ポリケトンコードおよびその製造方法
JP2003013326A (ja) * 2001-06-26 2003-01-15 Asahi Kasei Corp ポリケトン繊維、その製造方法及びポリケトン撚糸物
WO2004014668A1 (ja) * 2002-08-09 2004-02-19 Bridgestone Corporation 自動二輪車用空気入りタイヤ
JP2004091969A (ja) * 2002-08-30 2004-03-25 Asahi Kasei Fibers Corp ポリケトンコードの製造方法
JP2005313576A (ja) * 2004-04-30 2005-11-10 Bridgestone Corp 空気入りラジアルタイヤ及びその製法
JP2005535505A (ja) * 2002-08-09 2005-11-24 ソシエテ ド テクノロジー ミシュラン 二輪付き車両用のタイヤ
JP2006123649A (ja) * 2004-10-27 2006-05-18 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤの製造方法
WO2006080253A1 (ja) * 2005-01-31 2006-08-03 Bridgestone Corporation 乗用車用空気入りラジアルタイヤ
JP2006224949A (ja) * 2005-01-21 2006-08-31 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2006256600A (ja) * 2005-02-17 2006-09-28 Bridgestone Corp 空気入りラジアルタイヤ
JP2006315515A (ja) * 2005-05-12 2006-11-24 Bridgestone Corp 空気入りラジアルタイヤ
JP2006321383A (ja) * 2005-05-19 2006-11-30 Bridgestone Corp 空気入りラジアルタイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146701U (ja) * 1982-03-29 1983-10-03 株式会社ブリヂストン 高速走行型2輪車用空気入りタイヤ
US5194210A (en) * 1990-05-09 1993-03-16 Akzo Nv Process for making polyketone fibers
US5576104A (en) * 1994-07-01 1996-11-19 The Goodyear Tire & Rubber Company Elastomers containing partially oriented reinforcing fibers, tires made using said elastomers, and a method therefor
US5513683A (en) * 1994-07-01 1996-05-07 The Goodyear Tire & Rubber Company Tires made using elastomers containing springy fibers
WO2001003954A1 (en) * 1999-07-09 2001-01-18 Pirelli Pneumatici Spa High performance tyre with tread band having an anisotropic underlayer stable upon temperature variation
JP3883510B2 (ja) * 2001-02-27 2007-02-21 旭化成せんい株式会社 ポリケトン繊維及びその製造方法
JP4325906B2 (ja) * 2002-08-09 2009-09-02 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
WO2004020707A1 (ja) * 2002-08-29 2004-03-11 Asahi Kasei Fibers Corporation ポリケトン繊維およびその製造方法
JP3966867B2 (ja) * 2004-04-28 2007-08-29 旭化成せんい株式会社 ポリケトン処理コードおよびその製造方法
WO2007063875A1 (ja) * 2005-11-29 2007-06-07 Bridgestone Corporation 自動二輪車用空気入りタイヤ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142024A (ja) * 1998-11-16 2000-05-23 Bridgestone Corp 二輪自動車用空気入りラジアルタイヤ
JP2001295134A (ja) * 2000-04-12 2001-10-26 Asahi Kasei Corp ポリケトン繊維およびポリケトンコード
JP2001334807A (ja) * 2000-05-30 2001-12-04 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2002339275A (ja) * 2001-05-16 2002-11-27 Asahi Kasei Corp ポリケトンコードおよびその製造方法
JP2003013326A (ja) * 2001-06-26 2003-01-15 Asahi Kasei Corp ポリケトン繊維、その製造方法及びポリケトン撚糸物
JP2005535505A (ja) * 2002-08-09 2005-11-24 ソシエテ ド テクノロジー ミシュラン 二輪付き車両用のタイヤ
WO2004014668A1 (ja) * 2002-08-09 2004-02-19 Bridgestone Corporation 自動二輪車用空気入りタイヤ
JP2004091969A (ja) * 2002-08-30 2004-03-25 Asahi Kasei Fibers Corp ポリケトンコードの製造方法
JP2005313576A (ja) * 2004-04-30 2005-11-10 Bridgestone Corp 空気入りラジアルタイヤ及びその製法
JP2006123649A (ja) * 2004-10-27 2006-05-18 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤの製造方法
JP2006224949A (ja) * 2005-01-21 2006-08-31 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
WO2006080253A1 (ja) * 2005-01-31 2006-08-03 Bridgestone Corporation 乗用車用空気入りラジアルタイヤ
JP2006256600A (ja) * 2005-02-17 2006-09-28 Bridgestone Corp 空気入りラジアルタイヤ
JP2006315515A (ja) * 2005-05-12 2006-11-24 Bridgestone Corp 空気入りラジアルタイヤ
JP2006321383A (ja) * 2005-05-19 2006-11-30 Bridgestone Corp 空気入りラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1955873A4 *

Also Published As

Publication number Publication date
ES2380237T3 (es) 2012-05-09
EP1955873B1 (en) 2012-01-18
US20090266462A1 (en) 2009-10-29
KR101323977B1 (ko) 2013-10-30
JPWO2007063875A1 (ja) 2009-05-07
CN101316731A (zh) 2008-12-03
JP2011255895A (ja) 2011-12-22
EP1955873A4 (en) 2010-04-07
KR20080072754A (ko) 2008-08-06
CN101316731B (zh) 2011-06-22
JP5131942B2 (ja) 2013-01-30
JP4889654B2 (ja) 2012-03-07
EP1955873A1 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP5072368B2 (ja) 空気入りラジアルタイヤ
JP5131942B2 (ja) 自動二輪車用空気入りタイヤ
JP5134948B2 (ja) 乗用車用空気入りラジアルタイヤ
JP4832133B2 (ja) 空気入り安全タイヤ
JP2007168711A (ja) 重荷重用空気入りラジアルタイヤ
JP4950516B2 (ja) 重荷重用空気入りラジアルタイヤ
JP4769613B2 (ja) 空気入り安全タイヤ
JP2007137199A (ja) 空気入りラジアルタイヤ
JP5093874B2 (ja) 空気入りタイヤ
JP2006315515A (ja) 空気入りラジアルタイヤ
JP4766602B2 (ja) 空気入りラジアルタイヤ
JP4953640B2 (ja) 重荷重用空気入りラジアルタイヤ
JP4817948B2 (ja) 空気入りタイヤ
JP5035952B2 (ja) ランフラットタイヤ
JP4953639B2 (ja) 高性能空気入りタイヤ
JP5052040B2 (ja) 空気入りタイヤ
JP2009096456A (ja) 空気入りタイヤ
JP2008044396A (ja) 空気入りラジアルタイヤ
WO2007074719A1 (ja) 空気入りタイヤ
WO2007136055A1 (ja) 空気入りタイヤ
JP2009190726A (ja) 空気入りラジアルタイヤ
JP2009190727A (ja) 空気入りラジアルタイヤ
JP2009067323A (ja) 空気入りタイヤ
JP2009040245A (ja) 航空機用空気入りタイヤ
JP2008024190A (ja) 空気入りランフラットラジアルタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044688.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007547960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087015693

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12094685

Country of ref document: US