WO2004014668A1 - 自動二輪車用空気入りタイヤ - Google Patents

自動二輪車用空気入りタイヤ Download PDF

Info

Publication number
WO2004014668A1
WO2004014668A1 PCT/JP2003/010205 JP0310205W WO2004014668A1 WO 2004014668 A1 WO2004014668 A1 WO 2004014668A1 JP 0310205 W JP0310205 W JP 0310205W WO 2004014668 A1 WO2004014668 A1 WO 2004014668A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
main groove
tread
standard
belt
Prior art date
Application number
PCT/JP2003/010205
Other languages
English (en)
French (fr)
Inventor
Tsutomu Nakamura
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/523,970 priority Critical patent/US20060130949A1/en
Priority to JP2004527394A priority patent/JPWO2004014668A1/ja
Priority to EP03784645A priority patent/EP1547819A4/en
Publication of WO2004014668A1 publication Critical patent/WO2004014668A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/001Tyres requiring an asymmetric or a special mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10783Reinforcing plies made up from wound narrow ribbons

Definitions

  • the present invention relates to a pneumatic tire for a motorcycle, and in particular, to a pneumatic tire for a motorcycle capable of improving steering stability by being applied to at least a front wheel or a rear wheel of the motorcycle, and an uneven wear resistance.
  • the present invention relates to a pneumatic tire for a motorcycle capable of improving various performances such as steering stability and road surface unevenness in a well-balanced manner. ⁇ :
  • a spiral belt structure consisting only of steel cords to increase the bending rigidity of the treads is too rigid, making it difficult to maintain high ride comfort and high slip resistance. If the number of cords driven is simply reduced in the spiral belt that has been Poor puncture properties and reduced bending stiffness in the cross-sectional direction cause adverse effects such as reduced fatigue resistance of the tread rubber and ply material against repeated bending.
  • the applicant of the present invention first determined the appropriate number of cords to be driven in a spiral structure using a combination of two types of cords, to improve the steering stability and other performances.
  • a pneumatic tire that can be improved and a method for manufacturing the same are also proposed.
  • radial tires for motorcycles having at least one layer of angled belts together with conventional spiral belts are also known, and such tires are compared with a belt structure which is only a spiral belt and does not have an angled belt.
  • conventional pneumatic tires for motorcycles having a spiral force or angled belt and having a radial force-casing structure, particularly front tires have a conventional pattern in which the tires have a C-shape when viewed from the rear of the tire.
  • ⁇ et road surface
  • dry dry road surface
  • a first object of the present invention is to use a spiral belt and an angled belt in combination to take advantage of the superior characteristics of each belt, to provide a kinetic performance including a turning force at a corner, a grip limit, and an overall It is an object of the present invention to provide a pneumatic tire for a motorcycle applicable to a front wheel or a rear wheel, which is capable of improving a smooth running behavior of a vehicle body, improving controllability of slippage and absorbing road surface unevenness, and improving steering stability. .
  • a second object of the present invention is to provide a motorcycle applicable to a front wheel or a rear wheel, which is optimal in terms of uneven wear resistance, absorption of road surface unevenness, jettability, steering stability and stain resistance.
  • An object of the present invention is to provide a pneumatic tire for a vehicle. Disclosure of the invention
  • the present inventor has found that at least a specific main groove component is formed in the center area of the tread of the tread in the combined belt structure of the spiral belt and the angled belt. It has been found that the first object can be achieved by the arrangement, and the present invention has been completed.
  • the first aspect of the present invention provides a bead core embedded in a pair of left and right bead portions, and a toroidal straddle extending from one bead portion to the other bead portion, and both end portions are wound around the bead core. And a locked carcass layer, a belt layer disposed radially outside the crown portion of the carcass layer, and a tread portion disposed radially outside the belt layer in the tire radial direction.
  • motorcycle pneumatic tires A spiral belt whose code direction is substantially a tire circumferential direction; and at least one of the spiral belts arranged on at least an outer layer of the spiral belt has a code direction at an angle with respect to a tire equatorial plane.
  • An angled belt having; and
  • a pneumatic tire for a motorcycle wherein a main groove component having an angle of 0 ° or more and less than 20 ° with respect to a circumferential direction is arranged at least in an area of a tread center on a tread portion of the tread. is there.
  • the center of the groove width of the main groove component is assembled on a standard rim specified in the standard, and is filled with an internal pressure of 80% of the standard maximum internal pressure of the tire.
  • the peripheries which are approximately 10% of the length of the belly between the tread center portion and the end of the tread on both sides, are arranged in regions separated from each other on both sides.
  • the total length of the groove length of the main groove component is assembled on the standard rim specified in the standard, and the standard center rim is filled with 80% of the tire's standard internal pressure. Is preferably 50% or more.
  • the groove width of the main groove component is assembled on a standard rim specified in the standard, and the tire is filled with an internal pressure of 80% of the maximum internal pressure of the tire in a no-load standard state. It is preferably from 5% to 7.5%.
  • the cords constituting the spiral belt and the angled belt both have an initial tensile resistance of 50 cNZ or more.
  • the cord angle of the angled belt is 80 ° to 20 ° with respect to the tire equatorial plane.
  • the total width of the angled belt is 150 to 70% of the tread width.
  • the center area has an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction.
  • a tread pattern tire with a main groove component has never been proposed before.
  • the center of the center is combined with a tread pattern having a main groove component having an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction.
  • Bending stiffness in one area can be kept low, the overall deflection of the vehicle body can be made mild, and the controllability of slippage and the absorption of road surface irregularities can be kept high. This makes it possible to supplement these performances that are reduced by adding an angled reinforcing belt.
  • the addition of angled belts maximizes the kinetic performance, including turning force at corners, and the height of the grip limit due to the improvement in tensile rigidity and bending rigidity in the cross-section direction, resulting in the front wheel or rear wheel. The degree of structural freedom when applied to the wheel is increased.
  • the exercise performance including the turning force at the corner, the grip limit, the overall run-out behavior of the vehicle body, the controllability of the slip, and the absorption of the uneven road surface can be easily achieved.
  • the steering stability can be improved.
  • the present inventor has found that, in a combined belt structure of a spiral belt and an angled belt or in one of the belt structures, two types of specific inclined main grooves, It has been found that the second object can be achieved by arranging a specific main groove component at a predetermined position, and the following second invention has been completed.
  • the second invention relates to a bead core embedded in a pair of left and right bead portions, and a toroidal straddle extending from one bead portion to the other bead portion, and both end portions are wound around the bead core.
  • An automatic vehicle comprising: a stopped carcass layer; a belt layer disposed radially outside the crown portion of the carcass layer in the tire radial direction; and a tread portion disposed radially outside the belt layer in the tire radial direction.
  • the belt layer comprises a spiral belt whose code direction is substantially the tire circumferential direction and an angled belt whose code direction is at an angle with respect to the Z or tire equatorial plane;
  • An inclined main groove A is formed on the tread portion of the tread from the upstream to the downstream from the tread center region toward the shoulder region at an acute angle of 45 ° or more and less than 75 ° with respect to the circumferential direction, and an acute angle Are arranged in the same angle range from the downstream to the upstream, and a raw groove component C having an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction in one region of the tread center.
  • It is a pneumatic tire for a motorcycle characterized by the above.
  • the inclined main groove A and the inclined main groove are assembled in a standard rim specified in the standard and filled with an internal pressure of 80% of a standard maximum internal pressure of the tire in a no-load standard state.
  • the groove B has a groove width of 1.5% to 7.5% of the length of the edge between the treads on both sides, and the groove lengths of the inclined main groove A and the inclined main groove B are both side tred. It is preferably at least 20% of the length of the end-to-end level.
  • the distribution of the groove length and the groove area of the inclined main groove A and the inclined main groove B are respectively as follows:
  • the center of the groove width of the main groove component C is assembled on the standard rim specified in the standard, and is filled with an internal pressure of 80% of the tire's standard maximum internal pressure. It is preferable that the peripheral portion, which is approximately 10% of the end-to-end peripheral length, is disposed in a region separated from each other on both sides.
  • the total groove length of the main groove component C is assembled on the standard rim specified in the standard, and the tire center is filled with an internal pressure of 80% of the maximum internal pressure of the tire under no load. It is preferably at least 15% of the circumference, more preferably at least 30%.
  • the total length of the groove length of the main groove component C is set on a standard rim specified in the standard, and the tire maximum is specified.
  • a no-load standard state filled with an internal pressure of 80% of the internal pressure it is preferably 50% or more of the circumference of the tread center portion.
  • the main groove component is one of the inclined main groove A and the inclined main groove B. [0205] At least one of them may be formed by inflection so as to have an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction in one area of the tread center.
  • the main groove component C is at least one circumferential straight groove or a zigzag groove disposed in the one area of the tread center in a groove other than the inclined main groove A and the inclined main groove B. You may.
  • the total groove area ratio of the pattern on the tread tread is 5% to 20% in the no-load standard state. It is preferable that
  • the cords constituting the spiral belt and the angled belt both have an initial tensile resistance of 50 cNZ or more.
  • a main groove is formed in one direction from a tread center area to a shoulder area with respect to an input direction and a flow of water in a boat. The water was flowing.
  • the combination of the inclined main groove A and the inclined main groove B particularly, by arranging these in an integrated and optimally balanced manner, the tire rotation direction Improvement of cornering grip due to the pattern edge effect against the input in the inclined main groove that forms a C-shape when viewed from behind, and during cornering in the inclined main groove that forms an inverted C-shape when viewed from the rear in the tire rotation direction. It is possible to reduce the pattern rigidity. As a result, it is possible to improve the cornering grip force in a dry state, and it is possible to minimize the deterioration of uneven wear.
  • the inclined main groove A and the inclined main groove B in combination, it is possible to optimize the distribution of the bending rigidity of the tread portion in the ground contact portion during cornering. This improves ground contact, improves cornering grip and turning force, thus maximizing these benefits and minimizing disadvantages for important performance suitable for each application. It becomes possible to.
  • the main groove component C especially by arranging the main groove component C together with the inclined main groove A and the inclined main groove B in an integrated and well-balanced manner, the road surface unevenness absorption and The tread section necessary for ensuring steering stability The distribution of bending stiffness can be properly adjusted.
  • the load is the maximum load (maximum load capacity) of a single wheel in the applicable size described in the following standard
  • the internal pressure is the single load of the single wheel in the applicable size described in the following standard.
  • the rim is the air pressure corresponding to the maximum load (maximum load capacity), and the rim is the standard rim (or .Ap proved Rim, Recommed nded Rim) of the applicable size described in the following standards. That is.
  • FIG. 1 is a cross-sectional view of a pneumatic motorcycle tire according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a cord angle 0 of the angled belt.
  • FIG. 3 is an explanatory diagram showing the total width BW of the angled belt.
  • FIG. 4 is an illustration showing a tread pattern of the tire according to the embodiment of the first invention. It is an open plan view.
  • FIG. 5 is an explanatory diagram showing an angle ⁇ of the main groove component Ml with respect to the circumferential direction.
  • FIG. 6 is an explanatory diagram showing an installation position of the main groove component Ml.
  • FIG. 7 is an explanatory diagram showing the total length T of the groove lengths of the main groove component M1.
  • FIG. 8 is a developed plan view showing a tread pattern of a tire according to another embodiment of the first invention.
  • FIG. 9 is an exploded plan view showing a tread pattern of the tire according to the second embodiment of the present invention.
  • FIG. 10 is a developed plan view showing a tread pattern of a tire according to another embodiment of the second invention.
  • FIG. 11 is a developed plan view showing a tread pattern of a sunseter according to still another embodiment of the second invention.
  • FIG. 12 is a developed plan view showing a tread pattern of the tire of Conventional Example 1.
  • FIG. 13 is a developed plan view showing a tread pattern of the tire of Conventional Example 2.
  • FIG. 14 is a developed plan view showing a tread pattern of the tire of Conventional Example 3.
  • FIG. 15 is a developed plan view showing a tread pattern of the tire of Conventional Example 4.
  • FIG. 16 is a developed plan view showing a tread pattern of the tire of Conventional Example 5.
  • FIG. 1 shows a pneumatic tire 10 for a motorcycle according to an embodiment of the first invention.
  • the force-spray material 12 constituting the skeleton of the pneumatic tire 10 is obtained by rubber coating with organic fiber cords such as nylon or polyester arranged in parallel.
  • the code is formed by a plurality of layers arranged in a direction crossing the equatorial plane CL of the pneumatic tire 10 at an angle of 20 to 90 °.
  • the cords of the carcass ply 12 of a plurality of layers intersect each other and are inclined in opposite directions to the tire equatorial plane CL.
  • a pair of bead cores 14 each of which is wound and bundled in a ring shape are arranged near both ends of the force-spray material 12.
  • Carcass The ply material 12 straddles the pair of bead cores 14 in a toroidal shape, and both ends of the carcass ply material 12 are wound and locked. Further, in the gap between the carcass ply members 12 on the upper part of the bead core 14, bead fillers 16 made of hard rubber and formed in a tapered shape are embedded.
  • the crown portion 18 of the pneumatic tire 10 is provided with a tread 22 formed in a ring shape by a rubber material and in contact with a road surface.
  • a side wall 24 is disposed on the force ply material 12 at a portion connecting the bead core 14 and both ends of the tread 22, and an innermost layer of the pneumatic tire 10 is provided.
  • An inner liner (not shown) is formed at the bottom.
  • a belt layer which will be described in detail below, is formed between the force-casply material 12 and the tread portion 22.
  • two angled belts 26B are arranged on the outer layer of the spiral belt 26A, but at least one angled belt 26B is arranged on at least the outer layer of the spiral belt 26A. If provided, the desired effects of the first invention can be obtained.
  • the spiral belt 26 A is a spiral-shaped long rubber-coated cord (not shown) in which one cord is covered with rubber or a belt-like ply (not shown) in which a plurality of cords are covered with rubber.
  • the cord direction is substantially the circumferential direction of the tire.
  • the spiral belt 26 A preferably has a cord with an initial tensile resistance of 50 cNZ or more, from the viewpoint of securing the hoop strength as a belt material and securing the reinforcing effect.
  • aromatic polyamides eg, duPont, trade name Kepler
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • rayon rayon
  • aliphatic polyamide nylon etc. It can be appropriately selected from organic fiber and glass fiber materials.
  • the 26 B includes the turning force at the corner due to the improvement in the tensile strength and bending rigidity in the cross section direction.
  • the code angle is 80 with respect to the tire equatorial plane CL in order to maximize the athletic performance and the maximum grip. It is preferably about 20 ° (see FIG. 2).
  • the total width BW of the angled belt 26B is 150 to 70% of the trough width W (see FIG. 3).
  • the angled belt 26B is a ply in which a plurality of codes juxtaposed are covered with rubber, and is arranged at an angle to the tire equatorial plane.
  • the angled belt 26 B has an initial tensile resistance of 50 cN from the viewpoint of securing the hoop strength as the belt material and securing the reinforcing effect. Or more, and the material can be appropriately selected from the same materials as in the case of the spiral belt 26 A.
  • the main groove component Ml is located in the center area of the tread of the tread 22. Are located.
  • the main groove component Ml needs to be arranged in the tread center region so as to have an angle ⁇ of 0 ° or more and less than 20 ° with respect to the circumferential direction (see FIG. 5).
  • the center of the groove width of the main groove component M1 is assembled on the standard rim specified in the standard, and the internal pressure of the tire is 80% of the standard maximum internal pressure.
  • a perimeter length L of about 10% of the length of the trellis between the tread center and both ends of the trellis is arranged in an area separated from each other on both sides (No. See Figure 6).
  • the total length T of the groove length of the main groove component Ml is assembled on the standard rim specified in the standard, and in the unloaded standard state where the internal pressure of 80% of the standard maximum internal pressure of the tire is filled.
  • the main groove component M2 is discontinuous in the circumferential direction, If the total length is 50% or more of the part circumference, the above-described effects can be obtained favorably.
  • the groove width GW of the main groove component Ml is assembled on the standard rim specified in the standard, and the internal pressure of 80% of the standard maximum internal pressure of the tire is filled.
  • the reference length be 1.5% to 7.5% of the length between the tread ends on both sides (see Fig. 4).
  • the inclined main grooves other than the main groove component M1 are conventional. As in the case of the turn, it can be arranged as appropriate from the viewpoint of ensuring drainage.
  • an inclined main groove S1 forming a C-shape as viewed from the rear in the tire rotation direction is formed. ing. With the arrangement of the inclined main groove S1, a pattern wedge effect with respect to input can be obtained, and the cornering grip can be improved.
  • the inclined main grooves S2 are formed alternately from one circumferential end of the main groove component M2 and form a U shape as viewed from the rear in the tire rotation direction.
  • the belt structure is not limited to the combined belt structure of the spiral belt and the angled belt as in the first invention, and in addition to the combined belt structure, May be adopted.
  • the basic structure other than the belt can be the same as that of the pneumatic tire 10 for a motorcycle according to the first embodiment of the present invention shown in FIG.
  • the inclined main groove A 1 and the inclined main groove are arranged.
  • the inclined main groove A1 has an acute angle of 45 ° or more and less than 75 ° with respect to the circumferential direction, so that it goes from upstream to downstream from the tread center region toward the shoulder region, and the inclined main groove B1 is The acute angle is set so that it goes from downstream to upstream at the same angle, and the main groove component C 1 has an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction in one area of the tread center.
  • upstream means the tire It is forward in one direction of rotation and “downstream” means backward in one direction of rotation of the tire.
  • the inclination of the main grooves A 1 and B 1 makes it possible to improve the cornering grip force on dry roads, minimizing the deterioration of uneven wear and at the same time improving the grounding
  • the cornering grip and turning force are improved.
  • the main groove component C1 optimizes the distribution of bending stiffness in the tread portion necessary for ensuring road surface unevenness absorption and steering stability, and provides tightness and turning performance in a small camber area. And can be kept high.
  • a front tire having an angled belt structure can sufficiently maintain stain resistance.
  • the inclined main groove A1 forming a U-shape when viewed from the rear in the tire rotation direction and the inclined main groove B1 forming an inverted C-shape when viewed from the rear in the tire rotation direction are shown in FIG.
  • the left and right patterns may be offset (shifting the phase) with a part of the tread center being symmetrical, and the offset amount is preferably set to 0 to 1/20 of the entire circumference.
  • the pitch of the inclined groove A1 and the inclined main groove B1 is 1/100 to 1/20 of the entire circumference.
  • the inclined main groove A 1 and the inclined main groove B 1 may be linear or curved, and may have a bending point like the inclined main groove B 1 as shown in FIG.
  • the main groove component C1 shown in FIG. 9 is formed linearly in the circumferential direction at a part of the tread center, it may be intermittent or zigzag.
  • the internal pressure of the tire is 80% of the standard maximum internal pressure.
  • the groove width of the inclined main groove A1 and the inclined main groove B1 is 1.5% to 7.5% of the length of the refill between both ends of the tread, and It is preferable that the groove lengths of the inclined main groove A1 and the inclined main groove B1 are 20% or more of the length of the entire length between both ends of the tread. Further, the distribution of the groove length and the groove area between the inclined main groove A 1 and the inclined main groove B 1 are as follows,
  • the center of the groove width of the main groove component C 1 is assembled on a standard rim specified in the standard, and is 80% of the standard maximum internal pressure of the tire. In the no-load standard state filled with internal pressure, it should be located within the area separated by about 10% of the length of the belt from the center of the tread to both sides of the tread end, approximately 10% of the length of the bridge. Preferred (corresponding to Ml in FIG. 6).
  • the total length of the groove length of the main groove component C1 is set to the standard rim specified in the standard, and the tire center circumference in the unloaded standard state filled with an internal pressure of 80% of the tire's maximum specified internal pressure. It is preferably 15% or more, more preferably 30% or more, and when the belt layer has at least one angled belt on the outer layer of the spiral belt, the main groove component C
  • the total length of the groove length of 1 is assembled on the standard rim specified in the standard and filled with internal pressure of 80% of the tire's standard maximum internal pressure, no-load standard condition, 50% or more of the tread center center circumference (Corresponding to M l in FIG. 7). Thereby, the stain resistance can be sufficiently maintained.
  • the main groove component C 1 is formed by grooves other than the inclined main groove A 1 and the inclined main groove B 1. It may be at least one circumferential straight groove or zigzag groove arranged in one area of the tread center.
  • the main groove component C 2 and the inclined main groove B 2 are within the tread center area. It is formed by inflection.
  • the main groove component C 2 may be formed by inflection of the inclined main groove A 2, or may be formed by inflection of both the inclined main groove A 2 and the inclined main groove B 2 .
  • the main groove component C2 formed by such inflection has an angle of 0 ° or more and less than 20 ° with respect to the circumferential direction.
  • the main groove component C 3 and the inclined main groove B 3 change within the area of the tread center. It is formed by bending.
  • the tire is assembled into a standard rim specified in the standard, Under the no-load standard condition filled with 80% of the internal pressure of the It is preferable that the total groove area ratio of the pattern on the tread surface portion is 5% to 20%.
  • the rotation direction of the tire emphasizes uneven wear and wet handling stability (drainage performance, etc.) and dry handling stability (road grip performance). ) Can be selectively mounted in the direction of rotation, and can be rotated in both directions.
  • the mounting should be performed according to “one direction of rotation” shown in FIGS. 9 and 10.
  • the other direction of rotation opposite to “the one direction of rotation” shown in FIG.
  • a motorcycle pneumatic tire 10 of the embodiment shown in FIG. 1 was used as a rear tire.
  • This tire has a size of 190 to 50 ZR17, has two nylon carcass plies, and has a bead filler hardness of 95 ° (a Shore A hardness).
  • the spiral belt 26A is made of aramide fiber (made by du Pont, trade name Kevlar, twisted structure: 670 d / 2, initial tensile resistance: 736 cN / strand).
  • aramide fiber made by du Pont, trade name Kevlar, twisted structure: 670 d / 2, initial tensile resistance: 736 cN / strand.
  • One long rubber-coated cord covered with rubber was spirally formed. The number of implants was 30/25 mm.
  • the two angled belts 26 B disposed on the outer layer of the spiral belt 26 A are made of aramide fiber (manufactured by du Pont, trade name Kepler, twisted structure: 1670 d / 2. Initial tensile resistance: 7 36 c ⁇ / 'line) It is a cord belt ply (number of driving: 18 lines ⁇ 25 mm). This cord angle is 45 ° with respect to the tire equatorial plane.
  • the two angled belts 26 B cross each other and are inclined in opposite directions with respect to the tire equatorial plane CL. Also, with this angle
  • the total width of PC leak 003/010205 belt 26B is 95% of the tread width.
  • the pattern on the tread of tread 22 was of the type shown in Fig. 4. That is, the main groove component Ml is linearly arranged in the circumferential direction at the tread center portion.
  • the groove width GW of the main groove component M1 is assembled on the standard rim specified in the JATMA standard and filled with 80% of the maximum internal pressure of the tire under no-load standard conditions. It is 3% of the length.
  • the tread pattern has an inclined main groove S1 that forms a C shape when viewed from the rear in the tire rotation direction.
  • the same rear tire as that of the example was used as a test tire except that a pattern shown in FIG. 8 was used as a pattern on the tread of the tread 22.
  • a main groove component M2 that is discontinuous in the circumferential direction exists instead of the linear main groove component M1 in FIG.
  • the total length T of the groove length of the main groove component M2 is set to the standard rim specified by JATMA standards, and the tire is partially loaded around the center of the tread center under the no-load standard condition filled with an internal pressure of 80% of the maximum internal pressure of the tire. 56%.
  • the total groove area ratio of the pattern on the tread tread is almost the same as in the first embodiment.
  • test tires were the same as those in the example except that the type shown in Fig. 13 was used as the pattern on the tread of tread 22.
  • the main groove component M1 in Fig. 4 does not exist, and the inclined main grooves S4 that form a U-shape when viewed from the rear in the tire rotation direction are alternately treaded left and right. Dosen extends beyond a part of the body, and its ends are connected to each other to form I have.
  • the total groove area ratio of the pattern on the tread of the tread is almost the same as in the first embodiment.
  • Each of these tires was mounted on the vehicle as rear tires, and conventional tires of size 120Z70 ZR17 were mounted as front tires, and running tests were performed.
  • the results shown in Table 1 below were obtained.
  • Each test result was indicated by an index, with the result of Conventional Example 1 being 100, based on the feeling evaluation by the driver. The better the result, the better the result.
  • the rim size of the front tire used in the running test is MT3.50x17, and the rim size of the rear tire is MT6.00x17.
  • the tire pressures of the front and rear tires were 250 kPa and 290 kPa, respectively.
  • the angle of the main groove Ml, the arrangement range L of the main groove Ml, the total length T of the main groove Ml, the width GW of the main groove Ml, the initial pull of the spiral belt cord The tension resistance, the initial tensile resistance of the angled belt cord, the cord angle 0 of the angled belt, and the width BW of the angled belt are varied as shown in the table below, and based on the filling by the driver, Rigidity, cornering grip, and straight running stability (or turning stability) were evaluated out of 10 points. Points are best at 10 points, and those over 10 points are overkill, tend to have high rigidity and poor riding comfort. The results are shown in Tables 2 to 9 below.
  • the pneumatic tire 10 for a motorcycle according to the embodiment shown in FIG. 1 has no spiral belt 26 A, and has a belt layer composed of only two angled belts 26 B. Used as The size of this tire is MCR120Z70ZR17, it has two nylon carcass plies, and the bead filer has a hardness of 95 ° (Shore-A hardness).
  • Two angled belts 26 B are made of aramide fiber (made by du Pont, trade name Kevlar, twist structure: 1670 dZ2, initial tensile resistance: 736 cNZ) cord Belt ply (number of shots: 18/25 mm). This cord angle is 68 ° with respect to the tire equatorial plane.
  • the two angled belts 26 B cross each other and are inclined in opposite directions to the tire equatorial plane CL.
  • the total width of the angled belt 26B is 95% of the tread width.
  • the tread pattern of tread 22 was of the type shown in Fig. 9. That is, the inclined main groove A 1, the inclined main groove B 1, and the main groove component C 1 are arranged.
  • the inclined raw groove A 1 has an acute angle of 60 ° with respect to the circumferential direction.
  • the main groove component B is such that the inclined main groove B is directed from the downstream to the upstream at an acute angle of 60 ° with respect to the circumferential direction so as to flow from the upstream toward the shoulder region from the evening region toward the shoulder region.
  • Numerals 1 are respectively arranged linearly in the circumferential direction at a part of the tread center.
  • the inclined main groove A 1 and the inclined main groove B 1 The pattern (a pattern with a total of 15 pitches) is offset, and the offset amount is 1/2 of the pitch length of one pattern.
  • the pitch of the inclined main groove A 1 and the inclined main groove B 1 is 1/15 of the entire circumference.
  • the groove width of the inclined main groove A1 and the inclined main groove B1 is set on both sides in the no-load standard state where it is assembled on the standard rim specified by the JATMA standard and filled with an internal pressure of 80% of the maximum internal pressure of the tire.
  • 3% of the end-to-end reference length, and the groove lengths of the inclined main groove A1 and the inclined main groove B1 are 40% and 30% of the length of the peripheral edge between the tread ends on both sides, respectively.
  • the distribution of the groove length and the groove area of the inclined main groove A 1 and the inclined main groove B 1 are as follows, respectively.
  • the total groove area ratio of the pattern on the tread tread is 12%.
  • Example 3 The same tires as in Example 3 were used as test tires except that the type shown in FIG. 14 was used as the pattern on the tread portion of the tread 22.
  • the tread pattern shown in FIG. 14 there is a main groove component C4, and an inclined main groove S5 that forms a C shape when viewed from the rear in the tire rotation direction is arranged.
  • the total groove area ratio of the pattern on the tread tread is almost the same as that of the third embodiment.
  • Example 3 The same test tires as in Example 3 were used as test tires except that the type shown in Fig. 15 was used as the pattern on the tread portion of tread 22.
  • the tread pattern shown in FIG. 15 there is a main groove component C5, and an inclined main groove S6 that forms an inverted figure of eight when viewed from the rear in the tire rotation direction is arranged.
  • the total groove area ratio of the pattern on the tread tread is almost the same as that in the third embodiment.
  • the angled belt 26 B did not exist, and the belt layer was constituted only by the spiral belt 26 A. Those were used as front tires.
  • the tire size, power splice and bead filler are the same as in the third embodiment.
  • Spiral belt 26 A is made of rubber fiber cord (made by du Pont, trade name Kevlar, twist structure: 1670 d / 2, initial 51 tension resistance: 736 c)
  • One long rubber-coated cord covered with was spirally wound and formed.
  • the number of implants was set to 30 Z 25 mm.
  • the pattern on the tread of tread 22 was of the type shown in FIG. That is, the inclined main groove A2, the inclined main groove B2, and the main groove component C2 are arranged, and the inclined main groove A2 has a trough at an acute angle of 60 ° with respect to the circumferential direction.
  • the inclined main grooves B 2 are arranged so that the acute angle with respect to the circumferential direction is 60 ° from the downstream toward the upstream so that the inclined main groove B 2 is directed from the upstream toward the shoulder region from the docent region toward the shoulder region. .
  • the main groove component C2 is formed by bending the inclined main groove B2 so as to have an angle of substantially 0 ° with respect to the circumferential direction at a part of the tread center.
  • the total groove length of the main groove component C2 is set on a standard rim specified in the JATMA standard, and is filled with an internal pressure of 80% of the tire's maximum specified internal pressure. 25% of the length.
  • the inclined main groove A2 and the inclined main groove B2 have offsets in the left and right patterns (a pattern of 15 pitches in total) with a part of the tread center being symmetrical, and the offset amount is 1 pattern length of 1 pitch. / 2.
  • the pitch of the inclined main groove A2 and the inclined main groove B2 is 1/15 of the entire circumference.
  • the groove width of the inclined main groove A 2 and the inclined main groove B 2 is set on both sides in the no-load standard state where it is assembled on a standard rim specified by the JATMA standard and filled with a tire pressure of 80% of the tire's maximum internal pressure.
  • the groove lengths of the inclined main groove A2 and the inclined main groove B2 are both 40% of the length of the peripheral end between the treads on both sides. Further, the distribution of the groove length and the groove area of the inclined main groove A 2 and the inclined main groove B 2 are as follows, respectively.
  • the maximum internal pressure of the tire is 80%.
  • the total groove area ratio of the pattern on the tread surface is 12%.
  • an angled belt 26B was not present, and a belt layer composed of only a spiral belt 26A was used as a front tire. .
  • the tire size, carcass ply and bead filler are the same as in Example 3.
  • Spiral belt 26 A is made of rubber fiber cord (duPont, trade name Kevlar, twist structure: 670 dZ2, initial tensile resistance: 736 c NZ). It was formed by spirally winding one long rubber-coated cord covered with. The number of implants was 30/25 mm.
  • the tread pattern of tread 22 was of the type shown in Fig. 11. That is, the inclined main groove A 3, the inclined main groove B 3, and the main groove component C 3 are arranged.
  • the inclined main groove A 3 has an acute angle of 60 ° with respect to the circumferential direction and has a trough.
  • the inclined main grooves B 3 are arranged so that the acute angle with respect to the circumferential direction is 60 ° from the downstream to the upstream so that the inclined main groove B 3 is directed from the upstream to the downstream from the center toward the shoulder region. .
  • the main groove component C 3 is formed by bending the inclined main groove B 3 so as to have an angle of substantially 0 ° with respect to the circumferential direction at a part of the tread center.
  • the total groove length of the main groove component C3 is set on the standard rim specified in the JATMA standard, and is filled with an internal pressure of 80% of the maximum internal pressure of the tire. It is 58% of the circumference.
  • the inclined main groove A 3 and the inclined main groove B 3 are offset from the left and right patterns (a pattern of 15 pitches in total) with the tread center symmetrical, and the offset amount is 1 pattern length of 1 pitch length. Z2.
  • the pitch of the inclined main groove A3 and the inclined main groove B3 is 1/15 of the entire circumference.
  • the groove width of the inclined main groove A 3 and the inclined main groove B 3 is set to the standard rim specified by the JATMA standard, and the groove width of the inclined main groove A 3 and the inclined main groove B 3 is set at the tread end on both sides in a no-load standard state filled with an internal pressure of 80% of the tire's standard maximum internal pressure.
  • the groove length is 3% of the length of the gap, and the groove lengths of the inclined main groove A3 and the inclined main groove B3 are both 40% of the length of the edge between the tread ends on both sides. Furthermore, the inclination main groove A 3 and the inclination main groove B 3
  • the groove length and groove area distribution are as follows,
  • Example 4 The same test tires as in Example 4 were used as test tires except that the pattern shown in FIG. 16 was used as the pattern on the tread portion of the tread 22.
  • the main groove component C does not exist, and the inclined main groove S7 that forms an eight-shape when viewed from the rear in the tire rotation direction is arranged.
  • the total groove area ratio of the pattern on the tread tread is almost the same as that of the fourth embodiment.
  • Each of these tires was mounted on the vehicle as a front tire, and the conventional tires of size MCR 190/50 ZR 17 were mounted as rear tires, and a running test was performed. The results are shown in Tables 10 and 11 below. Got. Each test result is based on the filling evaluation by the driver. Based on the results of Conventional Example 3 for Conventional Examples 4 and 3, and the results of Conventional Example 5 for Examples 4 and 5, It was indicated by an index. The higher the value, the better the result.
  • the size of the rim of the front tire used in the running test is MT3.50x17, and the size of the rim of the rear tire is MT6.00x17.
  • the tire pressure for both front and rear tires was 250 kPa.
  • the motorcycle pneumatic tire having the radial force-single structure is attached to both the front and rear wheels
  • at least one of the front wheel and the rear wheel has the pneumatic motorcycle according to the first aspect of the present invention.
  • the pneumatic tire for a motorcycle according to the second invention is mounted on at least one of the front wheel and the rear wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

ベルト層26が、コード方向が実質的にタイヤ周方向であるスパイラルベルト26Aと、スパイラルベルト26Aの少なくとも外層に配置された少なくとも1枚の、タイヤ赤道面に対しコード方向が角度を有する角度付きベルト26Bと、を有する自動車二輪車用空気入りタイヤであり、そのトレッド22の踏面部に、少なくともトレッドセンター領域に周方向に対し0°以上20°未満の角度を有する主溝成分が配置されている。これにより、夫々のベルトがもつ優位な特性を活かし、コーナーでの旋回力を含む運動性能、グリップ限界、全般的な車体の振れ挙動の収まり、滑りのコントロール性および路面凹凸吸収性を向上させ、操縦安定性を高めた、前輪または後輪に適用可能な自動二輪車用空気入りタイヤとなる。

Description

明 細 書 自動二輪車用空気入りタイヤ 技術分野
本発明は、 自動二輪車用空気入りタイヤに関し、 特には、 自動二輪車の少なく とも前車 または後輪に適用することにより操縦安定性を高めることのできる自動 二輪車用空気入りタイヤ、 並びに耐偏摩耗性、 操縦安定性および路面凹凸吸収性 等の諸性能をバランスよく高めることのできる自動二輪車用空気入りタイヤに関 する。 冃:
近年、 車両の軽量化、 高性能化が進み、 超高速時の安定性の確保がより重要に なってきた。 これにより、 これまでの、 タイヤ赤道面に対しコード方向が所定の 角度を有する角度付きベルト構造から、 高速時の接地形状変化が小さく、 高速耐 久性にも優れている、 コ一ド方向が実質的にタイヤ周方向のスパイラルベルト構 造が採用されるようになってきた。
かかるスパイラルベルト構造は、 元来、 踏面曲げ剛性 (トレッ ド幅方向) が低 いという欠点をも持っため、 ハンドリング応答性、 路面グリップ力の低さ等とい つた操縦性能の面で問題があった。 そこで本出願人は、 先に、 スパイラルベルト 構造を採用することにより高速耐久性の向上を図るとともに、 トレツ ドにキヤッ プ ·ベース構造を採用してスパイラルベルトの構造柔軟性を高強度のキヤップゴ ムで補強し、 かつべ一スゴムの硬度をキヤップゴムよりも低くすることでハンド リ ング性能変化を小さく保つことができる二輪車用空気入りタイヤを提案した
(特開 2 0 0 0— 1 7 7 3 1 8号公報) 。
また、 踏面曲げ剛性を高めるためにスチールコ一ドのみで構成されたスパイラ ルベルト構造では剛性が高くなりすぎ、 乗り心地性ゃ耐スリップ性を高く保つこ とが困難となり、 またスチールコー ドのみで構成されたスパイラルベルトにおい て単にコー ドの打込み本数を減らした場合、 空気圧に対する破壊強度の低下、 耐 パンク性の低下、 および断面方向の曲げ剛性の低下により繰り返し屈曲に対する トレツ ドゴムとプライ材の耐疲労性の低下という弊害が生じる。 このような問題 を解決するために、 本出願人は、 先に、 二種類のコードの組合せによるスパイラ ル構造においてコ一ドの打込み本数を適切な本数とし、 操縦安定性やその他の性 能を向上させ得る空気入りタイヤ及びその製造方法も提案している (特開
2 0 0 2 - 5 9 7 0 7号公報) 。
一方、 今迄のスパイラルベルトとともに、 少なくとも 1層の角度付きベルトを 有する自動二輪車用ラジアルタイヤも知られており、 かかるタイヤにおいては、 スパイラルベルトのみで角度付きベルトを有さないベル卜構造に比較して、 コ一 ナ一での旋回力を含む運動性能およびグリップ限界の高さの面で優位であること が知られている。
しかしながら、 これまでのスパイラルベルトと角度付きベルトとの併用型の自 動二輪車用ラジアル構造タイヤにおいては、 トレッ ド領域の曲げ剛性分布が最適 化されていなかつたため、 全般的な車体の振れ挙動の収まり、 滑りのコント口一 ル性、 路面凹凸吸収性において十分に最適化されているとはいえなかった。 特 に、 スパイラルベルトの外層に角度付きベル卜を有するベルト構造の場合にこの 傾向が強くなることが知られている。
かかる問題を解決するために、 角度付きベルトのコ一ド材質の強力を弱める、 コ一ド角度を周方向に対し大きくする、 センタ一部で角度付きベルトを切り離し する、 などの対策がとられてきた。 しかし、 かかる対策ではベルトの断面方向引 張り剛性と曲げ剛性との最適化が図れず、 十分に角度付きベルトのメリ ッ トを引 き出すことができなかった。
また、 今までの、 スパイラルベルトまたは角度付きベルトを有するラジアル 力一カス構造の自動二輪車用空気入りタイヤの特にフロント用タイヤは、 タイヤ 回転後方より見てハの字形の従来パターンの場合、 濡れた路面 (以下 「ゥエツ ト」 と略記する) でのコーナ—リンググリ ップ等の操縦安定性や制動性 (以下 「ゥエツ ト性」 と総称する) には有利であるが、 乾燥路面 (以下 「ドライ」 と略 記する) での横方向入力に対し剛性が高く保たれ難いため、 コーナ—リンググリ ップが高く保たれず、 かつコーナリング状態での接地部分の偏摩耗という点でも 不利であった。 逆に、 タイヤ回転後方より見て逆ハの字形の従来パターンの場合 は、 乾燥路面での横方向入力に対し剛性が高く保たれ、 コーナリンググリップに 有利となり、 かつコーナリング状態での接地部分の偏摩耗にも有利であるが、 ゥ エツ ト性には不利であった。 また、 いずれの場合にも、 トレッ ドセンタ一部での タイヤ断面方向の曲げ剛性が高くなりすぎるため、 路面凹凸吸収性が十分ではな く、 また一般道走行で頻繁に使用される小キャンバ—域でのゥヱッ ト性と旋回力 とを高く保ち難かった。
さらに、 一般的に角度付きベルトを有する構造が多いフロントタイヤでは、 夕 ィャセンタ一部でのコーナリ ングフオースが高くなりすぎるため、 耐シミ一性が 十分に保たれなかった。
そこで本発明の第 1の目的は、 スパイラルベルトと角度付きベルトとを併用し て、 夫々のベルトがもつ優位な特性を活かし、 コーナ一での旋回力を含む運動性 能、 グリップ限界、 全般的な車体の振れ挙動の収まり、 滑りのコントロール性お よび路面凹凸吸収性を向上させ、 操縦安定性を高めた、 前輪または後輪に適用可 能な自動二輪車用空気入りタイャを提供することにある。
また、 本発明の第 2の目的は、 耐偏摩耗性、 路面凹凸吸収性、 ゥエツ ト性、 操 縦安定性および耐シミ一性を最適ィ匕した、 前輪または後輪に適用可能な自動二輪 車用空気入りタイヤを提供することにある。 発明の開示
本発明者は、 上記課題を解決すべく鋭意検討した結果、 スパイラルベルトと角 度付きベルトとの併用型ベルト構造において、 トレッ ドの踏面部のセンタ一領域 に、 少なく とも特定の主溝成分を配置することにより上記第 1の目的を達成し得 ることを見出し、 本第一発明を完成するに至った。
即ち、 本第一発明は、 左右一対のビード部に埋設されたビ—ドコアと、 一方の ビ—ド部から他方のビ一ド部にトロイ ド状に跨がり両端部分が該ビードコアに巻 回され係止されたカーカス層と、 該カ一カス層のクラウン部のタィャ径方向外側 に配置されたベルト層と、 該ベルト層のタイヤ径方向外側に配置された卜レツ ド 部と、 を備えた自動二輪車用空気入りタイヤにおいて、 前記ベルト層が、 コ一ド方向が実質的にタイヤ周方向であるスパイラルベルト と、 該スパイラルベルトの少なくとも外層に配置された少なくとも 1枚の、 タイ ャ赤道面に対しコ一ド方向が角度を有する角度付きベルトと、 を有し、
前記トレッ ドの踏面部に、 少なくともトレツ ドセンタ一領域に周方向に対し 0 ° 以上 2 0 ° 未満の角度を有する主溝成分が配置されていることを特徴とする自 動二輪車用空気入りタイヤである。
本第一発明の自動二輪車用空気入りタイヤにおいて、 前記主溝成分の溝幅の中 心が、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充 填した無負荷標準状態で、 トレッ ドセンタ—部から両側トレッ ド端間べリフエ リー長の略 1 0 %のペリフヱリ一長を両側に各々隔てた領域内に、 配置されてい ることが好ましい。
また、 前記主溝成分の溝長さの総長さが、 規格に定める標準リムに組み、 タイ ャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセン ター部周長の 5 0 %以上であることが好ましい。
さらに、 前記主溝成分の溝幅が、 規格に定める標準リムに組み、 タイヤの規格 最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 両側トレッ ド端間べリフ エリー長の 1 . 5 %〜7 . 5 %であることが好ましい。
さらにまた、 前記スパイラルベルトと前記角度付きベルトとを構成するコ一ド が共に初期引張り抵抗度 5 0 c NZ本以上であることが好ましい。
さらにまた、 前記角度付きベルトのコ一ド角度がタイヤ赤道面に対して 8 0 ° 〜2 0 ° であることが好ましい。
さらにまた、 前記角度付きベルトの総幅がトレッ ド幅の 1 5 0〜 7 0 %である ことが好ましい。
本第一発明の作用を以下に説明する。
従来のスパイラルベルトを有し、 その外層に少なくとも 1枚の角度付きベルト を有するラジアル構造の自動二輪車用空気入りタイヤにおいて、 センタ一領域に 周方向に対し 0 ° 以上 2 0 ° 未満の角度を有する主溝成分を有する トレツ ドパ ターンのタイヤは、 これまでに提案されたことはなかった。
角度付きベルトをスパイラルベルトの外層に有する構造は、 角度付きベルトを 有さない構造または角度付きベルトを内層に有する構造に比較して、 コーナーで の旋回力を含む運動性能、 グリ ップ限界の高さの面で優位であるが、 全般的な車 体の振れ挙動の収まり、 滑りのコントロール性および路面凹凸吸収性において不 利である。 本第一発明においては、 これを解決するために、 センタ一領域に周方 向に対し 0 ° 以上 2 0 ° 未満の角度を有する主溝成分を有する トレツ ドパターン と組み合わせたことにより、 トレッ ドセンタ一領域の曲げ剛性を低く保ち、 全般 的な車体の振れ挙動をマイルドにし、 滑りのコン トロール性、 路面凹凸吸収性を 高く維持しておくことができる。 これにより、 角度付き補強ベルトを付加するこ とによって低下するこれら性能を補完することが可能となる。 また、 角度付きべ ルトの付加により断面方向引張り剛性と曲げ剛性の向上によるコーナーでの旋回 力を含む運動性能およびグリップ限界の高さを最大限に引き出すことができ、 結 果として、 前輪または後輪への適用時における構造的自由度が増すことになる。 以上の結果、 本第一発明においては、 コーナーでの旋回力を含む運動性能、 グリ ップ限界、 全般的な車体の振れ挙動の収まり、 滑りのコント口—ル性および路面 凹凸吸収性を容易にバランス良く向上させることができ、 操縦安定性を高めるこ とができる。
また、 本発明者は、 上記課題を解決すべく更に鋭意検討した結果、 スパイラル ベル卜と角度付きベルトとの併用型ベルト構造またはいずれか一方のベルト構造 において、 2種の特定傾斜主溝と、 特定の主溝成分とを所定箇所に配置すること により上記第 2の目的を達成し得ることを見出し、 以下の本第二発明を完成する に至った。
即ち、 本第二発明は、 左右一対のビード部に埋設されたビ一ドコアと、 一方の ビード部から他方のビ一ド部にトロイ ド状に跨がり両端部分が該ビードコアに卷 回され係止されたカーカス層と、 該カ一カス層のクラウン部のタイヤ径方向外側 に配置されたベルト層と、 該ベルト層のタイヤ径方向外側に配置されたトレツ ド 部と、 を備えた自動二牵翕車用空気入りタイヤにおいて、
前記ベルト層が、 コ一ド方向が実質的にタイヤ周方向であるスパイラルベルト および Zまたはタイャ赤道面に対しコ一ド方向が角度を有する角度付きベルトか らなり、 前記トレッ ドの踏面部に、 周方向に対して鋭角側角度が 4 5 ° 以上 7 5 ° 未満 でトレツ ドセンタ一領域よりショルダー領域に向けて上流から下流へ向かう傾斜 主溝 Aと、 鋭角側角度が同角度範囲内にて下流から上流へ向かう傾斜主溝 Bと、 トレッ ドセンタ一領域にて周方向に対し 0 ° 以上 2 0 ° 未満の角度を有する生溝 成分 Cと、 が配置されていることを特徴とする自動二輪車用空気入りタイヤであ る。
本第二発明の自動二輪車用空気入りタイヤにおいて、 規格に定める標準リムに 組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 前記 傾斜主溝 Aおよび前記傾斜主溝 Bの溝幅が両側トレッ ド端間べリフ リ一長の 1 . 5 %〜 7 . 5 %であり、 かつ、 前記傾斜主溝 Aおよび前記傾斜主溝 Bの溝長 さが両側トレツ ド端間べリフヱリ一長の 2 0 %以上であることが好ましい。 また、 前記傾斜主溝 Aと前記傾斜主溝 Bとの溝長さおよび溝面積の配分が夫々 下記、
ァ) 溝長さの配分、 B : A = 1 0 : 1 0〜2 5
ィ) 溝面積の配分、 B : A = 1 0 : 1 0〜2 5
で表される関係を満足することが好ましい。
さらに、 前記主溝成分 Cの溝幅の中心が、 規格に定める標準リムに組み、 タイ ャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセン ターから両側トレッ ド端間べリフヱリ一長の略 1 0 %のペリフヱリ一長を両側に 各々隔てた領域内に、 配置されていることが好ましい。
さらにまた、 前記主溝成分 Cの溝長さの総長さが、 規格に定める標準リムに組 み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセンタ一部周長の 1 5 %以上であることが好ましく、 より好ましくは 3 0 %以 上である。
さらにまた、 前記ベルト層がスパイラルベルトの外層に少なくとも 1枚の角度 付きベルトを有する場合、 前記主溝成分 Cの溝長さの総長さが、 規格に定める標 準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態 で、 トレツ ドセンター部周長の 5 0 %以上であることが好ましい。
さらにまた、 前記主溝成分じが、 前記傾斜主溝 Aおよび前記傾斜主溝 Bのうち 0205 少なくとも一方が前記トレッ ドセンタ一領域内で、 周方向に対し 0 ° 以上 2 0 ° 未満の角度を有するように変曲することにより形成されていていもよい。
さらにまた、 前記主溝成分 Cが、 前記傾斜主溝 Aおよび前記傾斜主溝 B以外の 溝にて、 前記トレッ ドセンタ一領域内に配置される少なくとも 1本の周方向直線 溝またはジグザグ溝であってもよい。
さらにまた、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の 内圧を充填した無負荷標準状態で、 前記トレッ ド踏面部におけるパターンの全溝 面積比率が 5 %〜 2 0 %であることが好ましい。
さらにまた、 前記スパイラルベルトと前記角度付きベルトとを構成するコ一ド が共に初期引張り抵抗度 5 0 c NZ本以上であることが好ましい。
本第二発明の作用を以下に説明する。
従来の自動二輪車用空気入りタイヤのトレツ ドパターンは、 入力方向やゥヱッ 卜での水の流れに対し、 トレツ ドセンタ一領域からショルダー領域に一方向に主 溝が形成され、 この主溝に沿って水が流れるようにされていた。
これに対し、 本第二発明においては、 前記傾斜主溝 Aと前記傾斜主溝 Bとの組 み合わせにより、 特にはこれらを統合的にバランスょく最適配置することによ り、 タイヤ回転方向後方から見てハの字形を形成する傾斜主溝での入力に対する パターンエッジ効果によるコーナリンググリップの向上と、 タイヤ回転方向後方 から見て逆ハの字形を形成する傾斜主溝でのコーナリ ング中のパターン剛性の低 下抑制との実現が可能となる。 これにより、 ドライでのコーナリ ンググリップカ の向上が可能となり、 偏摩耗性の悪化を最小限に止めることができる。
また、 前記傾斜主溝 Aと前記傾斜主溝 Bとを組み合わせて配置することによ り、 コ一ナリング中の接地部分内でのトレッ ド部の曲げ剛性の分布を適正化する ことができる。 これにより、 接地性が向上し、 コーナリンググリ ップおよび旋回 力が向上するため、 各使用用途に適した重要性能に対しこれらのメリッ トを最大 限に引き出すことができ、 かつデメリッ トを最小限にすることが可能となる。 本第二発明ではさらに、 前記主溝成分 Cをも組み合わせることにより、 特には これを前記傾斜主溝 Aと前記傾斜主溝 Bとともに統合的にバランスよく最適配置 することにより、 路面凹凸吸収性および操縦安定性の確保に必要なトレッ ド部の 曲げ剛性の分布を適正ィヒすることができる。 これにより、 路面凹凸吸収性を改善 し、 また一般道走行で頻繁に使用される小キャンバー域でのゥヱッ ト性と旋回性 とを高く保つことができる。 また、 ハン ドルシミ一に対し、 コーナリ ングパワー を下げるために有効な位置に溝を配置することができるため、 一般的に角度付き ベルト (バイアスベルト) を有する構造が多いフロントタイヤでは、 耐シミ一性 を十分に保つことができる。 以上の結果、 本第二発明においては、 前記傾斜主溝
A、 前記傾斜主溝 Bおよび前記主溝成分 Cを最適配置することにより、 耐偏摩耗 性、 路面凹凸吸収性、 ゥ ッ ト性、 操縦安定性および耐シミー性を最適化するこ とが可能となる。
尚、 ここで、 荷重とは下記規格に記載されている適用サイズにおける単輪の最 大荷重 (最大負荷能力) のことであり、 内圧とは下記規格に記載されている適用 サイズにおける単輪の最大荷重 (最大負荷能力) に対応する空気圧のことであ り、 リムとは下記規格に記載されている適用サイズにおける標準リム (また は、 . Ap p r o v e d R i m 、 R e c omme n d e d R i m ) のことである。
そして、 規格とは、 タイヤが生産又は使用される地域に有効な産業規格によつ て決められている。 例えば、 アメリカ合衆国では" T h e T i r e a n d R i m A s s o c i a t i o n I n c. の Ye a r B o o k" であり、 欧 州では、 " T h e E u r o p e a n T i r e a n d R i m T e c h n i c a l O r g a n i z a t i o nの S t a n d e r d s M a n u a l " であり、 日本では日本自動車タイヤ協会の" J ATMA Ye a r B o o k" にて規定されている。 図面の簡単な説明
第 1図は、 本発明の実施の形態に係る自動二輪車用空気入りタイヤの断面図で ある。
第 2図は、 角度付きベルトのコード角度 0を示す説明図である。
第 3図は、 角度付きベルトの総幅 BWを示す説明図である。
第 4図は、 本第一発明の実施の形態に係るタイヤのトレツ ドパターンを示す展 開平面図である。
第 5図は、 主溝成分 M lの周方向に対する角度 αを示す説明図である。
第 6図は、 主溝成分 M lの設置位置を示す説明図である。
第 7図は、 主溝成分 M 1の溝長さの総長さ Tを示す説明図である。
第 8図は、 本第一発明の他の実施の形態に係るタイヤのトレッ ドパターンを示 す展開平面図である。
第 9図は、 本第二発明の実施の形態に係るタイヤのトレツ ドパターンを示す展 開平面図である。
第 1 0図は、 本第二発明の他の実施の形態に係るタイヤの卜レツ ドパターンを 示す展開平面図である。
第 1 1図は、 本第二発明の更に他の実施の形態に係る夕ィャのトレツ ドパター ンを示す展開平面図である。
第 1 2図は、 従来例 1のタイヤのトレツ ドパタ一ンを示す展開平面図である。 第 1 3図は、 従来例 2のタイヤの トレッ ドパタ一ンを示す展開平面図である。 第 1 4図は、 従来例 3のタイヤの トレッ ドパターンを示す展開平面図である。 第 1 5図は、 従来例 4のタイヤの トレッ ドパターンを示す展開平面図である。 第 1 6図は、 従来例 5のタイヤの 卜レツ ドパターンを示す展開平面図である。 発明を実施するための最良の形態
本第一発明の実施の形態に係る空気入りタイヤを第 1図に基づき説明する。 第 1図は、 本第一発明の実施の形態に係る自動二輪車用空気入りタイヤ 1 0を 示す。 この空気入りタイヤ 1 0の骨格を構成する力一カスプライ材 1 2は、 ナイ ロンやポリエステル等の有機繊維コードを平行に並べてゴムコ一ティングしたも のである。 そのコ一 ドはこの空気入りタイヤ 1 0の赤道面 C Lに対して 2 0〜 9 0 ° の角度で交差する方向にそれぞれ配列した複数層により形成されている。 なお、 複数層のカーカスプライ 1 2のコードは互いに交差しており、 また、 タイ ャ赤道面 C Lに対して互いに反対方向に傾斜している。
この力一カスプライ材 1 2の両端部近傍には、 それぞれリング状にスチールヮ ィャ一が巻かれて束ねられた一対のビードコア 1 4が配置されている。 カーカス プライ材 1 2は、 これら一対のビードコア 1 4にトロイ ド状に跨がり該カーカス プライ材 1 2の両端部が巻き付けられて係止されている。 さらに、 このビ一ドコ ァ 1 4の上部のカーカスプライ材 1 2間の隙間には、 硬質ゴム製で先細り形状に 形成されたビ一ドフイラ一 1 6がそれぞれ埋設されている。
この空気入りタイヤ 1 0のクラウン部 1 8には、 ゴム材により円環状に形成さ れて路面に接地するトレッ ド 2 2が配置されている。 また、 ビードコア 1 4とト レツ ド 2 2の両端部との間を繋ぐ部分の力一カスプライ材 1 2上にはサイ ドウ オール 2 4が配置されており、 この空気入りタイヤ 1 0の最内層にはィンナーラ イナ一 (図示せず) が形成されている。
本第一発明においては、 上述の構造の自動二輪車用空気入りタイヤ 1 0におい て、 力一カスプライ材 1 2とトレッ ド部 2 2との間に以下に詳述するベルト層
2 6が配設されている。 なお、 第 1図に示す好適例においては、 かかるベルト層
2 6としてスパイラルベルト 2 6 Aの外層に 2枚の角度付きベルト 2 6 Bが配設 されているが、 角度付きベルト 2 6 Bは、 スパイラルベルト 2 6 Aの少なく とも 外層に少なくとも 1枚配設されていれば、 本第一発明の所望の効果を得ることが できる。
スパイラルベルト 2 6 Aは、 1本のコ一ドをゴムで被覆した長尺状のゴム被覆 コード (図示せず) または複数本のコードをゴムで被覆した帯状プライ (図示せ ず) を螺旋状に巻き回して形成され、 コード方向が実質的にタイヤ周方向とされ たものである。
このスパイラルベルト 2 6 Aは、 ベルト材としてのタガ強度の確保および補強 効果の確保等の観点から、 コードの初期引張り抵抗度が 5 0 c NZ本以上である ことが好ましく、 スチールコ一ドの他、 芳香族ポリアミ ドであるァラミ ド (例え ば、 d u P o n t社製、 商品名ケプラー) 、 ポリエチレンナフタレー ト ( P E N) 、 ポリエチレンテレフタレート (P E T) 、 レーヨン、 脂肪族ポリア ミ ドであるナイロン等の有機繊維、 さらにはグラスファイバーの材質の中より適 宜選ぶことができる。
次に、 スパイラルベルト 2 6 Aの外層に配設された 2枚の角度付きベルト
2 6 Bは、 断面方向引張り剛性と曲げ剛性の向上によるコーナーでの旋回力を含 む運動性能およびグリップ限界の高さを最大限に引き出す上で、 コ—ド角度 が タイヤ赤道面 C Lに対して 8 0。 〜 2 0 ° であることが好ましい (第 2図参 照) 。 また、 同様の理由から、 角度付きベル卜 2 6 Bの総幅 B Wが卜レツ ド幅 W の 1 5 0〜 7 0 %であることが好ましい (第 3図参照) 。
角度付きベルト 2 6 Bは、 並置された複数本のコ一ドをゴムで被覆したプライ であり、 タイヤ赤道面に対して角度を付けて配設される。 この角度付きベルト 2 6 Bは、 スパイラルベルト 2 6 Aの場合と同様に、 ベルト材としてのタガ強度 の確保および補強効果の確保等の観点から、 コー ドの初期引張り抵抗度が 5 0 c N/本以上であることが好ましく、 その材質もスパイラルベルト 2 6 Aの 場合と同様の材質の中から適宜選択することができる。
本第一発明の実施の形態に係る空気入りタイヤにおいては、 上述の基本骨格構 造とともに、 第 4図に示すように、 トレツ ド 2 2の踏面部におけるセンタ一領域 に主溝成分 M lが配置されている。 この主溝成分 M lは、 トレッ ドセンタ—領域 に周方向に対し 0 ° 以上 2 0 ° 未満の角度《を有するようにして配置する必要が ある (第 5図参照) 。 かかる主溝成分 M 1の配置により、 トレッ ドセンタ—領域 の曲げ剛性を低く保ち、 全般的な車体の振れ挙動をマイルドにし、 滑りのコント ロール性、 路面凹凸吸収性を高く維持しておくことが可能となり、 角度付き補強 ベルトによつて低下するこれら性能を補完することが可能となる。 このような主 溝成分 M 1の配置による作用を良好に得る上で、 主溝成分 M 1の溝幅の中心を、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した 無負荷標準状態で、 トレッ ドセンタ一から両側トレッ ド端間べリフヱリ一長の略 1 0 %のペリフヱリー長 Lを両側に各々隔てた領域内に、 配置することが好まし い (第 6図参照) 。
また、 同様の理由により、 主溝成分 M lの溝長さの総長さ Tを、 規格に定める 標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状 態で、 トレッ ドセン夕一部周長の 5 0 %以上とすることが好ましい (第 7図参 照) 。 よって、 第 4図に示すように主溝成分 M lを周方向に連続的とせずに、 例 えば、 第 8図に示す本第一発明の他の実施の形態に係る空気入りタイヤのトレッ ドパターンのように、 主溝成分 M 2を周方向に不連続としてもトレッ ドセンタ一 部周長の 5 0 %以上の総長であれば、 上述の作用を良好に得ることができる。 さらに、 上述の作用が良好に得られるようにするために、 主溝成分 M lの溝幅 GWを、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を 充填した無負荷標準状態で、 両側トレッ ド端間べリフヱリ—長の 1 . 5 % 7 . 5 %とすることが好ましい (第 4図参照) 。
なお、 本第一発明においては、 主溝成分 M 1以外の傾斜主溝等は従来、。ターン の場合と同様に排水性を確保する等の見地から適宜配置することができる。 例え ば、 第 4図に示す本第一発明の実施の形態に係る空気入りタイヤのトレツ ドパ ターンにおいては、 タイヤ回転方向後方から見てハの字形を形成する傾斜主溝 S 1が形成されている。 この傾斜主溝 S 1の配置により、 入力に対するパターン ェッジ効果が得られ、 コーナリンググリップの向上を図ることができる。
また、 第 8図に示す本第一発明の他の実施の形態に係る空気入りタイヤのトレ ッ ドパターンにおいては、 主溝成分 M 2を周方向に不連続とした場合、 この不連 続の主溝成分 M 2の一方の周方向端部から交互に、 タィャ回転方向後方から見て の字形を形成する傾斜主溝 S 2が形成されている。
次に、 本第二発明の実施の形態に係る空気入りタイヤを説明する。
本第二発明においては、 そのベルト構造は本第一発明のように、 スパイラルべ ルトと角度付きベル卜との併用型ベルト構造に限定されず、 かかる併用型ベルト 構造の他に、 いずれか一方のベルト構造のみを採用してもよい。 また、 ベルト以 外の基本構造は、 第 1図に示す本第一発明の実施の形態に係る自動二輪車用空気 入りタイヤ 1 0と同様とすることができる。
本第二発明の実施の形態に係る空気入りタイヤにおいては、 上述の基本骨格構 造とともに、 トレッ ド 2 2の踏面部に、 第 9図に示すように、 傾斜主溝 A 1と、 傾斜主溝 B 1と、 主溝成分 C 1とが配置されている。 傾斜主溝 A 1は、 周方向に 対して鋭角側角度が 4 5 ° 以上 7 5 ° 未満でトレッ ドセンタ一領域よりショル ダー領域に向けて上流から下流へ向かうようにし、 傾斜主溝 B 1は、 鋭角側角度 が同角度にて下流から上流へ向かうようにし、 さらに主溝成分 C 1は、 トレッ ド センタ一領域にて周方向に対し 0 ° 以上 2 0 ° 未満の角度を有するようにして配 置する必要がある (第 5図の M lに対応する) ここで、 「上流」 とは、 タイヤ 回転一方の方向側前方であり、 「下流」 とは当該タイヤ回転一方の方向側後方を 意味する。
かかる傾斜.主溝 A 1および B 1の配置により、 乾燥路面でのコーナリ ンググリ ップ力の向上が可能となり、 偏摩耗性の悪化を最小限に止めることができると同 時に、 接地性が向上し、 コーナリンググリップおよび旋回力が向上する。 また、 主溝成分 C 1により、 路面凹凸吸収性および操縦安定性の確保に必要なトレッ ド 部の曲げ剛性の分布を適正化することができ、 小キャンバ一域でのゥヱッ ト性と 旋回性とを高く保つことができる。 また、 角度付きベルト構造を有するフロン ト タイヤでは、 耐シミ一性を十分に保つことができる。
本第二発明においては、 タイヤ回転方向後方から見てハの字形を形成する傾斜 主溝 A 1およびタイヤ回転方向後方から見て逆ハの字形を形成する傾斜主溝 B 1 は、 第 9図に示すように、 トレツ ドセンタ一部を対称として左右のパターンがォ フセッ ト (位相をずらす) されていてもよく、 オフセッ ト量は全周長の 0〜1ノ 2 0とすることが好ましい。 また、 傾斜 ΐ溝 A 1および傾斜主溝 B 1のピッチは 全周長の 1 / 1 0 0〜1 / 2 0とすることが好ましい。 さらに、 傾斜主溝 A 1お よび傾斜主溝 B 1は直線的でも曲線的でもよく、 さらに第 9図に示すように傾斜 主溝 B 1のように屈曲点を有していてもよい。 第 9図に示す主溝成分 C 1は、 ト レツ ドセンタ一部において周方向に直線的に形成されているが、 断続的であって もジグザグ状であってもよい。
本第二発明においては、 傾斜主溝 A 1および傾斜主溝 B 1の配置による上述の 作用を良好に得る上で、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 前記傾斜主溝 A 1および前記傾斜主 溝 B 1の溝幅が両側トレッ ド端間ぺリフヱリ一長の 1 . 5 %〜 7 . 5 %であり、 かつ、 前記傾斜主溝 A 1および前記傾斜主溝 B 1の溝長さが両側トレッ ド端間べ リフヱリ一長の 2 0 %以上であることが好ましい。 さらに、 傾斜主溝 A 1と傾斜 主溝 B 1との溝長さおよび溝面積の配分が夫々下記、
ァ) 溝長さの配分、 B 1 : A 1 = 1 0 : 1 0〜2 5
ィ) 溝面積の配分、 B 1 : A 1 = 1 0 : 1 0〜2 5
で表される関係を満足することが好ましい。 また、 主溝成分 C 1の配置による上述の作用を良好に得る上で、 主溝成分 C 1 の溝幅の中心が、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 % の内圧を充填した無負荷標準状態で、 トレッ ドセンタ一から両側トレッ ド端間べ リフヱリ一長の略 1 0 %のべリフヱリ一長を両側に各々隔てた領域内に、 配置さ れていることが好ましい (第 6図の M lに対応する) 。 また、 主溝成分 C 1の溝 長さの総長さが、 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 % の内圧を充填した無負荷標準状態で、 トレッ ドセンター部周長の、 好ましくは 1 5 %以上、 より好ましくは 3 0 %以上であることが好ましく、 さらに、 ベルト 層がスパイラルベルトの外層に少なくとも 1枚の角度付きベルトを有する場合に は、 前記主溝成分 C 1の溝長さの総長さが、 規格に定める標準リムに組み、 タイ ャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレツ ドセン ター部周長の 5 0 %以上であることが好ましい (第 7図の M lに対応する) 。 こ れにより耐シミ一性を十分に保つことができる。
本第二発明の他の実施の形態に係る空気入りタイヤのトレッ ドパターンとし て、 図示はしないが、 主溝成分 C 1が、 傾斜主溝 A 1および傾斜主溝 B 1以外の 溝にて、 前記トレッ ドセンタ一領域内に配置される少なくとも 1本の周方向直線 溝またはジグザグ溝であってもよい。
第 1 0図に示す本第二発明の更に他の実施の形態に係る空気入りタイヤのトレ- ツ ドパターンにおいては、 主溝成分 C 2が、 傾斜主溝 B 2がトレツ ドセンター領 域内で変曲することにより形成されている。 この場合、 主溝成分 C 2が傾斜主溝 A 2が変曲することにより形成されても、 あるいは傾斜主溝 A 2および傾斜主溝 B 2の双方が変曲することにより形成されてもよい。 かかる変曲により形成され る主溝成分 C 2は周方向に対し 0 ° 以上 2 0 ° 未満の角度を有するようにする。 第 1 1図に示す本第二発明の更に他の実施の形態に係る空気入りタイヤのトレ ッ ドパターンにおいても、 主溝成分 C 3が、 傾斜主溝 B 3がトレツ ドセンタ一領 域内で変曲することにより形成されている。
本第二発明においては、 上述の作用を良好に得る上で、 傾斜生溝 Aと、 傾斜主 溝 Bと、 主溝成分 Cとを組み合わせて配置するにあたり、 規格に定める標準リム に組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 前 記トレツ ド踏面部におけるパターンの全溝面積比率が 5 %〜 2 0 %であることが 好ましい。
尚、 本第二発明の空気入りタ—ィャにおいては、 タイヤの回転方向は、 耐偏摩 耗、 ゥヱッ ト操縦安定性 (排水性能など) を重視するとともに、 ドライ操縦安定 性 (路面グリップ性能など) をも重視する観点から、 その回転方向を選択装着す ることが可能であり、 両方向に回転させることが可能である。
例えば、 ゥヱッ 卜/ドライ操縦安定性能の双方を重視する場合 (例えば、 リア タイヤ等の場合) は、 第 9図および第 1 0図に示す 「回転一方の方向」 に従った 装着をし、 一方、 偏摩耗重視の場合 (特にフロントタイヤ等の場合) は、 第 1 1 図に示す 「回転一方の方向」 と逆の 「回転他方の方向」 に従った装着をすること が可能である。
次に、 実施の形態で説明した空気入りタイャの実施例と従来例に係るタィャと を比較して行つた走行試験およびその結果について以下に説明する。
先ず、 本第一発明の実施例および従来例について説明する。
実施例 1
第 1図に示す実施の形態の自動二輪車用空気入りタイヤ 1 0をリアタイヤとし て用いた。 このタイヤのサイズは 1 9 0ノ 5 0 Z R 1 7であり、 2枚のナイロン カーカスプライを有し、 ビー ドフイラ一は硬度 9 5 ° (ショァ一 A硬度) であ る。
スパイラルベルト 2 6 Aは、 ァラミ ド繊維 ( d u P o n t社製、 商品名ケブ ラー、 撚り構造: 1 6 7 0 d / 2、 初期引張り抵抗度: 7 3 6 c N/本) のコー ドをゴムで被覆した長尺状のゴム被覆コ—ド 1本を螺旋状に巻き回して形成し た。 打ち込み本数は 3 0本 / 2 5 mmとした。
次に、 このスパイラルベルト 2 6 Aの外層に配設された 2枚の角度付きベルト 2 6 Bは、 ァラミ ド繊維 ( d u P o n t社製、 商品名ケプラー、 撚り構造: 1 6 7 0 d / 2、 初期引張り抵抗度 : 7 3 6 c Ν /'本) コ—ドのベルトプライ (打ち込み数: 1 8本 Ζ 2 5 mm) である。 このコード角度はタイヤ赤道面に対 して 4 5 ° である。 2枚の角度付きベルト 2 6 Bは互いに交差しており、 かつ、 タイヤ赤道面 C Lに対して互いに反対方向に傾斜している。 また、 この角度付き PC漏 003/010205 ベルト 2 6 Bの総幅はトレツ ド幅の 9 5 %である。
トレッ ド 2 2の踏面部におけるパターンは第 4図に示すタイプのものを採用し た。 即ち、 主溝成分 M lは、 卜レツ ドセンター部において周方向に直線的に配置 されている。 この主溝成分 M 1の溝幅 GWは、 J A T MA規格に定める標準リム に組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 両 側トレツ ド端間ぺリフヱリ一長の 3 %である。 また、 このトレッ ドパタ一ンは、 タイヤ回転方向後方から見てハの字形を形成する傾斜主溝 S 1が形成されてい る。
実施例 2
トレツ ド 2 2の踏面部におけるパターンとして第 8図に示すタイプのものを採 用した以外は実施例と同様のリアタイヤを供試タイヤとした。 第 8図に示すトレ ッ ドパターンでは、 第 4図における直線的な主溝成分 M lの代わりに周方向に不 連続な主溝成分 M 2が存在する。 主溝成分 M 2の溝長さの総長さ Tは、 J A T M A規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧 を充填した無負荷標準状態で、 トレッ ドセンタ一部周長の 5 6 %である。 トレッ ド踏面部におけるパターンの全溝面積比率は実施例 1とほぼ同じである。
従来例 1
トレツ ド 2 2の踏面部におけるパターンとして第 1 2図に示すタイプのものを 採用した以外は実施例と同様のリアタイヤを供試タイヤとした。 第 1 2図に示す トレッ ドパターンでは、 第 4図における主溝成分 M 1が存在せず、 タイヤ回転方 向後方から見て八の字形を形成する傾斜主溝 S 3が左右交互にトレツ ドセンター 部を越えて延在している。 トレッ ド踏面部におけるパターンの全溝面積比率は実 施例 1とほぼ同じである。
従来例 2
トレッ ド 2 2の踏面部におけるパターンとして第 1 3図に示すタイプのものを 採用した以外は実施例と同様のリ了タィャを供試タィャとした。 第 1 3図に示す トレッ ドパターンでは、 第 4図における主溝成分 M 1が存在せず、 タイヤ回転方 向後方から見てハの字形を形成する傾斜主溝 S 4が、 左右交互にトレッ ドセン 夕一部を越えて延在し、 一つ置きにその端部同士が結合してへの字形を形成して いる。 トレツ ド踏面部におけるパタ一ンの全溝面積比率は実施例 1とほぼ同じで ある。
これら各タイヤをリアタイヤとして車両に装着し、 フロントタイヤとしてはい ずれもサイズ 120Z70 ZR 17の従来タイヤを装着して走行試験を行い、 下 記の第 1表に示す結果を得た。 各試験結果は、 ドライバ一によるフィーリング評 価に基づき、 従来例 1の結果を 100として指数で表示した。 数値が犬なる程結 果が良好である。
なお、 走行試験の際に用いフロン トタイヤのリムのサイズは MT 3. 50 X 17であり、 リアタイヤのリムのサイズは MT 6. 00 x 17である。 フロン ト タイヤおよびリアタイヤのタイャ空気圧は、 それぞれ 2 5 0 k P aおよび 290 k P aとした。
第 1表
Figure imgf000020_0001
第 1表の結果より、 実施例 1、 2においては、 従来例 1および 2に比し、 全て においてバランスよく各性能が向上することが確かめられた。
次に、 実施例 1のタイヤにおいて、 主溝 M lの角度ひ、 主溝 M lの配置範囲 L、 主溝 M lの総長さ T、 主溝 M lの幅 GW、 スパイラルベルトコードの初期引 張抵抗度、 角度付きベルトコー ドの初期引張抵抗度、 角度付きベルトのコード角 度 0および角度付きベルトの幅 B Wを下記表に示すように変動させて、 ドライ バ一によるフィ一リングに基づき、 1 0点満点にて剛性感、 コ—ナリンググリッ プ、 直進安定性 (または旋回安定性) を評価した。 点数は 1 0点が最も良く、 1 0点を超えるものは行き過ぎであり、 剛性が高く乗り心地が悪化する傾向があ る。 この結果を下記の第 2表〜第 9表に示す。
第 2表 主溝 Mlの角度 (° ) 0 10 20 30 40 剛性感 9 10 11 13 15 コーナ一リンググリップ 7 8 7 5 4 直進安定性 8 7 6 5 4 第 3表
Figure imgf000021_0001
第 4表
Figure imgf000021_0002
第 5表
主溝 Mlの幅 GW (%) 1 1.5 4.5 7 7.5 剛性感 3 6 10 12 15 コーナ一リ ンググリ ップ 3 6 9 7 5 直進安定性 3 5 8 9 7
第 6表
Figure imgf000022_0001
第 7表
Figure imgf000022_0002
第 ο 角度付きベルトのコード
10 20 50 80 90 角度 Θ (° )
剛性感 17 12 10 8 6 コーナーリンググリ ップ 2 6 8 7 5 直進安定性 2 5 6 7 7
3 010205 第 9表
Figure imgf000023_0001
次に、本第二発明の実施例および従来例について説明する。
実施例 3
第 1図に示す実施の形態の自動二輪車用空気入りタイヤ 1 0において、 スパイ ラルベルト 2 6 Aが存在せず、 2枚の角度付きベルト 2 6 Bだけでベルト層を構 成したものをフロントタイヤとして用いた。 このタイヤのサイズは M C R 1 2 0 Z 7 0 Z R 1 7であり、 2枚のナイロンカーカスプライを有し、 ビードフイラ一 は硬度 9 5 ° (ショァ—A硬度) である。
2枚の角度付きベルト 2 6 Bは、 ァラミ ド繊維 ( d u P o n t社製、 商品名 ケブラ—、 撚り構造: 1 6 7 0 d Z 2、 初期引張り抵抗度: 7 3 6 c N Z本) コードのベルトプライ (打ち込み数: 1 8本/ 2 5 mm) である。 このコード角 度はタイヤ赤道面に対して 6 8 ° である。 2枚の角度付きベルト 2 6 Bは互いに 交差しており、 かつ、 タイヤ赤道面 C Lに対して互いに反対方向に傾斜してい る。 また、 この角度付きベルト 2 6 Bの総幅はトレッ ド幅の 9 5 %である。
また、 トレツ ド 2 2の踏面部におけるパターンは第 9図に示すタイプのものを 採用した。 即ち、 傾斜主溝 A 1と、 傾斜主溝 B 1と、 主溝成分 C 1とが配置され ており、 傾斜生溝 A 1は、 周方向に対して鋭角側角度が 6 0 ° でトレッ ドセン 夕一領域よりショルダ一領域に向けて上流から下流へ向かうように、 傾斜主溝 B は、 周方向に対して鋭角側角度が 6 0 ° で下流から上流へ向かうように、 さらに 主溝成分 C 1は、 トレッ ドセンタ一部にて周方向に直線的に、 夫々配置されてい る。
傾斜主溝 A 1および傾斜主溝 B 1は、 トレツ ドセンタ一部を対称として左右の パターン (全 1 5 ピッチのパターン) がオフセッ トされており、 オフセッ ト量は パターン 1ピッチ長の 1 / 2である。 また、 傾斜主溝 A 1および傾斜主溝 B 1の ピッチは全周長の 1 / 1 5である。 さらに、 J A T MA規格に定める標準リムに 組み、 タィャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 傾斜 主溝 A 1および傾斜主溝 B 1の溝幅が両側トレッ ド端間べリフヱリ—長の 3 %で あり、 かつ、 傾斜主溝 A 1および傾斜主溝 B 1の溝長さが、 夫々両側トレッ ド端 間ペリフヱリ一長の 4 0 %および 3 0 %である。 さらにまた、 傾斜主溝 A 1と傾 斜主溝 B 1 との溝長さおよび溝面積の配分が夫々下記、
ァ) 溝長さの配分、 B : A = 1 0 ·· 1 3
ィ) 溝面積の配分、 B : A - 1 0 ·· 1 3
で表される関係にある。
また、 J A T MA規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ド踏面部におけるパターンの全溝 面積比率は 1 2 %である。
従来例 3
卜レツ ド 2 2の踏面部におけるパターンとして第 1 4図に示すタイプのものを 採用した以外は実施例 3と同様のフロントタイヤを供試タイヤとした。 第 1 4図 に示すトレッ ドパターンでは、 主溝成分 C 4が存在し、 タイヤ回転方向後方から 見てハの字形を形成する傾斜主溝 S 5が配置されている。 トレツ ド踏面部におけ るパターンの全溝面積比率は実施例 3とほぼ同じである。
従来例 4
トレッ ド 2 2の踏面部におけるパターンとして第 1 5図に示すタイプのものを 採用した以外は実施例 3と同様のフロントタイヤを供試タイヤとした。 第 1 5図 に示すトレッ ドパターンでは、 主溝成分 C 5が存在し、 タイヤ回転方向後方から 見て逆八の字形を形成する傾斜主溝 S 6が配置されている。 トレツ ド踏面部にお けるパターンの全溝面積比率は実施例 3とほぼ同じである。
実施例 4
第 1図に示す実施の形態の自動二輪車用空気入りタイヤ 1 0において、 角度付 さベルト 2 6 Bが存在せず、 スパイラルベルト 2 6 Aだけでベルト層を構成した ものをフロントタイヤとして用いた。 タイヤサイズ、 力一カスプライおよびビー ドフィラ一については実施例 3と同様である。
スパイラルベルト 2 6 Aは、 ァラミ ド繊維 (d u P o n t社製、 商品名ケブ ラー、 撚り構造: 1 6 7 0 d / 2、 初期 51張り抵抗度: 7 3 6 c 本) のコー ドをゴムで被覆した長尺状のゴム被覆コード 1本を螺旋状に巻き回して形成し た。 打ち込み本数は 3 0本 Z 2 5 mmとした。
また、 トレッ ド 2 2の踏面部におけるパターンは第 1 0図に示すタイプのもの を採用した。 即ち、 傾斜主溝 A 2と、 傾斜主溝 B 2と、 主溝成分 C 2とが配置さ れており、 傾斜主溝 A 2は、 周方向に対して鋭角側角度が 6 0 ° でトレッ ドセン ター領域よりショルダー領域に向けて上流から下流へ向かうように、 傾斜主溝 B 2は、 周方向に対して鋭角側角度が 6 0 ° で下流から上流へ向かうように、 夫々配置されている。 主溝成分 C 2は、 傾斜主溝 B 2がトレツ ドセンタ一部にて 周方向に対し実質的に 0 ° の角度を有するように変曲することにより形成されて いる。 主溝成分 C 2の溝長さの総長さは、 J A T MA規格に定める標準リムに組 み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセンタ一部周長の 2 5 %である。
傾斜主溝 A 2および傾斜主溝 B 2は、 トレッ ドセンタ一部を対称として左右の パターン (全 1 5ピッチのパターン) がオフセッ トされており、 オフセッ ト量は パタ一ン 1 ピッチ長の 1 / 2である。 また、 傾斜主溝 A 2および傾斜主溝 B 2の ピッチは全周長の 1 / 1 5である。 さらに、 J A T M A規格に定める標準リムに 組み、 タイヤの規格最大内圧の 8 0 %の內圧を充填した無負荷標準状態で、 傾斜 主溝 A 2および傾斜主溝 B 2の溝幅が両側トレッ ド端間べリフヱリ一長の 3 %で あり、 かつ、 傾斜主溝 A 2および傾斜主溝 B 2の溝長さが共に両側トレッ ド端間 ペリフェリ一長の 4 0 %である。 さらにまた、 傾斜主溝 A 2と傾斜主溝 B 2との 溝長さおよび溝面積の配分が夫々下記、
ァ) 溝長さの配分、 B : A = 1 0 : 1 0
ィ) 溝面積の配分、 B : A = 1 0 : 1 0
で表される関係にある。
また、 J A T MA規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 卜レツ ド踏面部におけるパターンの全溝 面積比率は 1 2 %である。
実施例 5
第 1図に示す実施の形態の自動二輪車用空気入りタイヤ 1 0において、 角度付 きベルト 2 6 Bが存在せず、 スパイラルベルト 2 6 Aだけでベルト層を構成した ものをフロントタイヤとして用いた。 タイヤサイズ、 カーカスプライおよびビー ドフィラーについては実施例 3と同様である。
スパイラルベルト 2 6 Aは、 ァラミ ド繊維 ( d u P o n t社製、 商品名ケブ ラー、 撚り構造 : 1 6 7 0 d Z 2、 初期引張り抵抗度: 7 3 6 c NZ本) のコー ドをゴムで被覆した長尺状のゴム被覆コー ド 1本を螺旋状に巻き回して形成し た。 打ち込み本数は 3 0本 / 2 5 mmとした。
また、 トレッ ド 2 2の踏面部におけるパターンは第 1 1図に示すタイプのもの を採用した。 即ち、 傾斜主溝 A 3と、 傾斜主溝 B 3と、 主溝成分 C 3とが配置さ れており、 傾斜主溝 A 3は、 周方向に対して鋭角側角度が 6 0 ° でトレッ ドセン ター領域よりショルダー領域に向けて上流から下流へ向かうように、 傾斜主溝 B 3は、 周方向に対して鋭角側角度が 6 0 ° で下流から上流へ向かうように、 夫々配置されている。 主溝成分 C 3は、 傾斜主溝 B 3がトレツ ドセンタ一部にて 周方向に対し実質的に 0 ° の角度を有するように変曲することにより形成されて いる。 主溝成分 C 3の溝長さの総長さは、 J A T MA規格に定める標準リムに組 み、 タイャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 卜レッ ドセンター部周長の 5 8 %である。
傾斜主溝 A 3および傾斜主溝 B 3は、 トレッ ドセンター部を対称として左右の パターン (全 1 5 ピッチのパターン) がオフセッ トされており、 オフセッ ト量は パタ一ン 1 ピッチ長の 1 Z 2である。 また、 傾斜主溝 A 3および傾斜主溝 B 3の ピッチは全周長の 1 / 1 5である。 さらに、 J A T M A規格に定める標準リムに 組み、 タイヤの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 傾斜 主溝 A 3および傾斜主溝 B 3の溝幅が両側トレッ ド端間べリフェリ—長の 3 %で あり、 かつ、 傾斜主溝 A 3および傾斜主溝 B 3の溝長さが共に両側トレッ ド端間 ペリフヱリ一長の 4 0 %である。 さらにまた、 傾斜主溝 A 3と傾斜主溝 B 3との 溝長さおよび溝面積の配分が夫々下記、
ァ) 溝長さの配分、 B ·· A = 10 : 10
ィ) 溝面積の配分、 B ·· A= 10 : 10
で表される関係にある。
また、 J ATMA規格に定める標準リムに組み、 タイヤの規格最大内圧の 80 %の内圧を充填した無負荷標準状態で、 卜レツ ド踏面部におけるパターンの全溝 面積比率は 12 %である。
従来例 5
トレッ ド 22の踏面部におけるパターンとして第 16図に示すタイプのものを 採用した以外は実施例 4と同様のフロントタイヤを供試タイヤとした。 第 16図 に示すトレッ ドパターンでは、 主溝成分 Cが存在せず、 タイヤ回転方向後方から 見て八の字形を形成する傾斜主溝 S 7が配置されている。 トレッ ド踏面部におけ るパターンの全溝面積比率は実施例 4とほぼ同じである。
これら各タイヤをフロントタイヤとして車両に装着し、 リアタイヤとしてはい ずれもサイズ MCR 190/50 ZR 17の従来タイヤを装着して走行試験を行 い、 下記の第 10表および第 1 1表に示す結果を得た。 各試験結果は、 ドライ バ一によるフィ一リング評価に基づき、 従来例 4および実施例 3に対しては従来 例 3を、 また実施例 4、 5に対しては従来例 5の結果を夫々 100として指数で 表示した。 数値が大なる程結果が良好である。
なお、 走行試験の際に用いたフロントタイヤのリムのサイズは MT 3. 50 X 17であり、 リアタイヤのリムのサイズは MT 6. 00 x 17である。 フロン ト タイヤおよびリアタイヤのタイヤ空気圧は、 ともに 250 kP aとした。
第 1 0表 従来例 3 従来例 4 実施例 3 ドライコ-ナ -グリップ ·旋回性 100 110 120 耐シミ一性 100 100 100 ゥヱッ ト性 100 85 95 耐偏摩耗性 100 120 115 第 1 1表
Figure imgf000028_0001
第 1 0表および第 1 1表の結果より、 実施例 3〜 5においては、 実施例 3のゥ エツ ト性にお 、て若干性能が落ちるものの、 他は従来例 3〜 5に比し、 全てにお いてバランスよく各性能が向上することが確かめられた。 産業上の利用可能性
以上説明してきたように、 ラジアル力一カス構造の自動二輪車用空気入りタイ ャを前後輪両方に装着する組み合わせにおいて、 少なくとも前輪または後輪のう ちの一方に本第一発明の自動二輪車用空気入りタイャを装着することにより、 ス パイラルベルトと角度付きベルトが夫々もつ優位な特性を活かし、 コーナ一での 旋回力を含む運動性能、 グリップ限界、 全般的な車体の振れ挙動の収まり、 滑り のコントロール性および路面凹凸吸収性を向上させ、 操縦安定性を高めることが できる。
また、 ラジアル力一カス構造の自動二輪車用空気入りタイヤを前後輪両方に装 着する組み合わせにおいて、 少なくとも前輪または後輪のうちの一方に本第二発 明の自動二輪車用空気入りタイヤを装着することにより、 耐偏摩耗性、 路面凹凸 吸収性、 ゥヱッ ト性、 操縦安定性および耐シミ—性を最適化することができる。

Claims

請 求 の 範 囲
1 . 左右一対のビ一ド部に埋設されたビ一ドコアと、 一方のビード部から他方の ビ一ド部にトロイ ド状に跨がり両端部分が該ビ—ドコアに巻回され係止された カーカス層と、 該カーカス層のクラウン部のタイヤ径方向外側に配置されたベル ト層と、 該ベルト層のタイヤ径方向外側に配置されたトレツ ド部と、 を備えた自 動二輪車用空気入りタィャにおいて、
前記ベルト層が、 コ一ド方向が実質的にタイヤ周方向であるスパイラルベルト と、 該スパイラルベルトの少なくとも外層に配置された少なくとも 1枚の、 タイ ャ赤道面に対しコ—ド方向が角度を有する角度付きベルトと、 を有し、
前記トレッ ドの踏面部に、 少なくともトレッ ドセンタ一領域に周方向に対し 0 ° 以上 2 0 ° 未満の角度を有する主溝成分が配置されていることを特徵とする自 動二輪車用空気入りタイヤ。
2 . 前記主溝成分の溝幅の中心が、 規格に定める標準リムに組み、 タイヤの規格 最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレツ ドセンタ一部から 両側トレッ ド端間べリフヱリ一長の略 1 0 %のペリフヱリ一長を両側に各々隔て た領域内に、 配置されている請求の範囲第 1項記載の自動二輪車用空気入りタイ ャ。
3 . 前記主溝成分の溝長さの総長さが、 規格に定める標準リムに組み、 タイヤの 規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセンター部 周長の 5 0 %以上である請求の範囲第 1項記載の自動二輪車用空気入りタイヤ。
4 . 前記主溝成分の溝幅が、 規格に定める標準リムに組み、 タイヤの規格最大内 圧の 8 0 %の内圧を充填した無負荷標準状態で、 両側トレッ ド端間べリフヱリ— 長の 1 . 5 9'6〜7 . 5 %である請求の範囲第 1項記載の自動二輪車用空気入り夕 ィャ。
5 . 前記スパイラルベル卜と前記角度付きベル卜とを構成するコードが共に初期 弓 I張り抵抗度 5 0 c NZ本以上である請求の範囲第 1項記載の自動二輪車用空気 入りタイヤ。
6 . 前記角度付きベルトのコード角度がタイヤ赤道面に対して 8 0 ° 〜 2 0 ° で ある請求の範囲第 1項記載の自動二輪車用空気ノ
7. 前記角度付きベルトの総幅がトレッ ド幅の 1 50 ~ 70 %である請求の範囲 第 1項記載の自動二輪車用空気入りタイヤ。
8. 左右一対のビ一ド部に埋設されたビ一ドコアと、 一方のビ一ド部から他方の ビ一ド部にトロイ ド状に跨がり両端部分が該ビ一ドコアに巻回され係止された カーカス層と、 該カーカス層のクラウン部のタイャ径方向外側に配置されたベル ト層と、 該ベルト層のタイャ径方向外側に配置されたトレツ ド部と、 を備えた自 動二輪車用空気入りタイヤにおいて、
前記ベルト層が、 コ一ド方向が実質的にタイヤ周方向であるスパイラルベルト および/またはタイヤ赤道面に対しコ一ド方向が角度を有する角度付きベルトか らなり、
前記トレッ ドの踏面部に、 周方向に対して鋭角側角度が 45° 以上 75° 未満 でトレツ ドセンタ一領域よりショルダー領域に向けて上流から下流へ向かう傾斜 主溝 Aと、 鋭角側角度が同角度範囲内にて下流から上流へ向かう傾斜主溝 Bと、 トレッ ドセンター領域にて周方向に対し 0° 以上 20° 未満の角度を有する主溝 成分 Cと、 が配置されていることを特徴とする自動二車侖車用空気入りタイヤ。
9. 規格に定める標準リムに組み、 タイヤの規格最大内圧の 80 %の内圧を充填 した無負荷標準状態で、 前記傾斜主溝 Aおよび前記傾斜主溝 Bの溝幅が両側トレ ッ ド端間ぺリフヱリ一長の 1. 5 %〜 7 · 5 %であり、 かつ、 前記傾斜主溝 Aお よび前記傾斜主溝 Bの溝長さが両側卜レッ ド端間ぺリフヱリ—長の 20 %以上で ある請求の範囲第 8項記載の自動二輪車用空気入りタイヤ。
10. 前記傾斜主溝 Aと前記傾斜主溝 Bとの溝長さおよび溝面積の配分が夫々下 記、
ァ) 溝長さの配分、 B : A= 10 : 10〜25
ィ) 溝面積の配分、 B : A= 10 : 10〜25
で表される関係を満足する請求の範囲第 8項記載の自動二輪車用空気入りタイ ャ。
1 1. 前記主溝成分 Cの溝幅の中心が、 規格に定める標準リムに組み、 タイヤの 規格最大内圧の 80 %の内圧を充填した無負荷標準状態で、 トレッ ドセンターか ら両側卜レッ ド端間べリフヱリ一長の略 1 0 %のペリフヱリ一長を両側に各々隔 てた領域内に、 配置されている請求の範囲第 8項記載の自動二輪車用空気入り夕 ィャ。
1 2 . 前記主溝成分 Cの溝長さの総長さが、 規格に定める標準リムに組み、 タイ ャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレッ ドセン 夕—部周長の 1 5 %以上である請求の範囲第 8項記載の自動二輪車用空気入り夕 ィャ。
1 3 . 前記ベルト層がスパイラルベルトの外層に少なくとも 1枚の角度付きベル トを有する場合、 前記主溝成分 Cの溝長さの総長さが、 規格に定める標準リムに 組み、 タィャの規格最大内圧の 8 0 %の内圧を充填した無負荷標準状態で、 トレ ッ ドセンター部周長の 5 0 %以上である請求の範囲第 1 2項記載の自動二輪車用 空気入りタイヤ。
1 4. 前記生溝成分じが、 前記傾斜主溝 Aおよび前記傾斜主溝 Bのうち少なくと も一方が前記卜レツ ドセンター領域内で、 周方向に対し 0 ° 以上 2 0 ° '未満の角 度を有するように変曲することにより形成されて 、る請求の範囲第 8項記載の自 動二輪車用空気入りタイヤ。
1 5 . 前記主溝成分 が、 前記傾斜主溝 Aおよび前記傾斜主溝 B以外の溝にて、 前記トレッ ドセンタ一領域内に配置される少なくとも 1本の周方向直線溝または ジグザグ溝である請求の範囲第 8項記載の自動二輪車用空気入りタイヤ。
1 6 . 規格に定める標準リムに組み、 タイヤの規格最大内圧の 8 0 %の内圧を充 填した無負荷標準状態で、 前記トレッ ド踏面部におけるパターンの全溝面積比率 が 5 %〜 2 0 %である請求の範囲第 8項記載の自動二輪車用空気入りタイヤ。
1 7 . 前記スパイラルベルトと前記角度付きベル卜とを構成するコードが共に初 期引張り抵抗度 5 0 c NZ本以上である請求の範囲第 8項記載の自動二輪車用空 気入りタイヤ。
PCT/JP2003/010205 2002-08-09 2003-08-11 自動二輪車用空気入りタイヤ WO2004014668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/523,970 US20060130949A1 (en) 2002-08-09 2003-08-11 Pneumatic tire for two-wheeled motor vehicle
JP2004527394A JPWO2004014668A1 (ja) 2002-08-09 2003-08-11 自動二輪車用空気入りタイヤ
EP03784645A EP1547819A4 (en) 2002-08-09 2003-08-11 PNEUMATIC FOR TWO-WHEEL MOTOR VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/233091 2002-08-09
JP2002233091 2002-08-09

Publications (1)

Publication Number Publication Date
WO2004014668A1 true WO2004014668A1 (ja) 2004-02-19

Family

ID=31711853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010205 WO2004014668A1 (ja) 2002-08-09 2003-08-11 自動二輪車用空気入りタイヤ

Country Status (4)

Country Link
US (1) US20060130949A1 (ja)
EP (1) EP1547819A4 (ja)
JP (1) JPWO2004014668A1 (ja)
WO (1) WO2004014668A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273248A (ja) * 2005-03-30 2006-10-12 Bridgestone Corp 二輪車用空気入りタイヤ
JP2006273249A (ja) * 2005-03-30 2006-10-12 Bridgestone Corp 二輪車用空気入りタイヤ
WO2007063875A1 (ja) * 2005-11-29 2007-06-07 Bridgestone Corporation 自動二輪車用空気入りタイヤ
JP2007223453A (ja) * 2006-02-23 2007-09-06 Bridgestone Corp 自動二輪車用空気入りタイヤ
WO2011118186A1 (ja) * 2010-03-26 2011-09-29 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP2012056471A (ja) * 2010-09-09 2012-03-22 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2012162160A (ja) * 2011-02-04 2012-08-30 Bridgestone Corp 自動二輪車用空気入りタイヤ
US8656970B2 (en) * 2005-05-17 2014-02-25 Bridgestone Corporation Pneumatic radial tire for motorcycle
JP2014113958A (ja) * 2012-12-11 2014-06-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2015212142A (ja) * 2015-06-23 2015-11-26 株式会社ブリヂストン 自動二輪車用空気入りタイヤ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585307B2 (ja) * 2004-12-24 2010-11-24 住友ゴム工業株式会社 自動二輪車用タイヤの製造方法
JP4943830B2 (ja) * 2006-12-20 2012-05-30 株式会社ブリヂストン 二輪車用空気入りタイヤ
RU2405682C1 (ru) * 2006-12-26 2010-12-10 Бриджстоун Корпорейшн Пневматическая шина
CA2712131A1 (en) * 2008-01-15 2009-07-23 Titan International, Inc. Multiple bead radial tire
WO2010073280A1 (en) * 2008-12-24 2010-07-01 Pirelli Tyre S.P.A. Tyre for motorcycles
USD608724S1 (en) 2009-03-16 2010-01-26 Trek Bicycle Corporation Bicycle tire tread
JP5193166B2 (ja) * 2009-12-08 2013-05-08 住友ゴム工業株式会社 自動二輪車用タイヤ
JP4989753B2 (ja) * 2010-06-09 2012-08-01 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5314718B2 (ja) * 2011-02-25 2013-10-16 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5385998B2 (ja) * 2012-02-03 2014-01-08 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5385997B2 (ja) * 2012-02-03 2014-01-08 住友ゴム工業株式会社 自動二輪車用タイヤ
US20150020943A1 (en) * 2013-07-22 2015-01-22 Bridgestone Americas Tire Operations, Llc Low-Metal Tire
JP6946875B2 (ja) * 2017-09-08 2021-10-13 住友ゴム工業株式会社 空気入りタイヤ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109106A (ja) * 1987-10-23 1989-04-26 Bridgestone Corp 二輪車用空気入りラジアルタイヤ
JPH01109107A (ja) * 1987-10-23 1989-04-26 Bridgestone Corp 二輪車用空気入りラジアルタイヤ
JPH11291715A (ja) * 1998-04-07 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH11291716A (ja) * 1998-04-13 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2000043509A (ja) * 1998-07-28 2000-02-15 Bridgestone Corp 二輪自動車用空気入りタイヤ
US6070631A (en) * 1996-07-29 2000-06-06 Pirelli Coordinamento Pneumatici Spa High-transverse-curvature tire, in particular for front wheels of motor-vehicles
US6220320B1 (en) * 1997-02-27 2001-04-24 Bridgestone Corporation Pneumatic motorcycle tire
US20010045263A1 (en) * 2000-04-25 2001-11-29 Bridgestone Corporation Method of mounting a pneumatic radial tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157405A (ja) * 1984-12-28 1986-07-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2702835B2 (ja) * 1990-10-29 1998-01-26 住友ゴム工業株式会社 自動二輪車用ラジアルタイヤ
DE69110667T2 (de) * 1991-01-07 1995-11-09 Michelin & Cie Lutfreifen für motorräder.
ES2198109T3 (es) * 1998-01-07 2004-01-16 Bridgestone Corporation Cubierta neumatica radial para una motocicleta.
ES2188251T3 (es) * 1999-02-19 2003-06-16 Michelin Soc Tech Neumatico para motocicleta que presenta una armadura de corona con tela de elementos circunferenciales.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109106A (ja) * 1987-10-23 1989-04-26 Bridgestone Corp 二輪車用空気入りラジアルタイヤ
JPH01109107A (ja) * 1987-10-23 1989-04-26 Bridgestone Corp 二輪車用空気入りラジアルタイヤ
US6070631A (en) * 1996-07-29 2000-06-06 Pirelli Coordinamento Pneumatici Spa High-transverse-curvature tire, in particular for front wheels of motor-vehicles
US6220320B1 (en) * 1997-02-27 2001-04-24 Bridgestone Corporation Pneumatic motorcycle tire
JPH11291715A (ja) * 1998-04-07 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH11291716A (ja) * 1998-04-13 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2000043509A (ja) * 1998-07-28 2000-02-15 Bridgestone Corp 二輪自動車用空気入りタイヤ
US20010045263A1 (en) * 2000-04-25 2001-11-29 Bridgestone Corporation Method of mounting a pneumatic radial tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1547819A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273249A (ja) * 2005-03-30 2006-10-12 Bridgestone Corp 二輪車用空気入りタイヤ
JP4616047B2 (ja) * 2005-03-30 2011-01-19 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP4634841B2 (ja) * 2005-03-30 2011-02-16 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP2006273248A (ja) * 2005-03-30 2006-10-12 Bridgestone Corp 二輪車用空気入りタイヤ
US8656970B2 (en) * 2005-05-17 2014-02-25 Bridgestone Corporation Pneumatic radial tire for motorcycle
WO2007063875A1 (ja) * 2005-11-29 2007-06-07 Bridgestone Corporation 自動二輪車用空気入りタイヤ
JP2011255895A (ja) * 2005-11-29 2011-12-22 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP4889654B2 (ja) * 2005-11-29 2012-03-07 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP2007223453A (ja) * 2006-02-23 2007-09-06 Bridgestone Corp 自動二輪車用空気入りタイヤ
WO2011118186A1 (ja) * 2010-03-26 2011-09-29 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP2012056471A (ja) * 2010-09-09 2012-03-22 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2012162160A (ja) * 2011-02-04 2012-08-30 Bridgestone Corp 自動二輪車用空気入りタイヤ
JP2014113958A (ja) * 2012-12-11 2014-06-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2015212142A (ja) * 2015-06-23 2015-11-26 株式会社ブリヂストン 自動二輪車用空気入りタイヤ

Also Published As

Publication number Publication date
US20060130949A1 (en) 2006-06-22
EP1547819A1 (en) 2005-06-29
JPWO2004014668A1 (ja) 2005-12-02
EP1547819A4 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2004014668A1 (ja) 自動二輪車用空気入りタイヤ
JP2799322B2 (ja) 自動二輪車用空気入りタイヤ
JP4535460B2 (ja) 自動二輪車用空気入りラジアルタイヤ
US20090095397A1 (en) Floating two-ply tire
JPS5973307A (ja) 二輪車用空気入りベルテツドタイヤ対
WO2006008876A1 (ja) 二輪自動車用タイヤ
JP4976001B2 (ja) 二輪車用空気入りタイヤ
JP4319278B2 (ja) 二輪車用空気入りタイヤ
CN105934355B (zh) 机动两轮车用轮胎
JP4394582B2 (ja) 二輪車用空気式タイヤ
JP4325906B2 (ja) 自動二輪車用空気入りタイヤ
US20060225825A1 (en) Belt package for super single truck tires
EP2729314B1 (en) Motorcycle tyres
US11535061B2 (en) Bicycle tyre
KR19990083264A (ko) 높은횡곡률계수를갖는,특히2륜차량용타이어
JP4540587B2 (ja) 二輪車用空気入りタイヤ
JP4349607B2 (ja) 自動二輪車用空気入りタイヤ
JPS61253205A (ja) 競走用非対称空気入りタイヤ
EP2300245B1 (en) Motorcycle tire
US20100051162A1 (en) Modular two-ply tire with directional side plies
JP3372486B2 (ja) モーターサイクル用ラジアルタイヤ
JPS5975805A (ja) 空気入りラジアルタイヤ
EP0820883A1 (en) Motor-cycle radial tyre
JP6982523B2 (ja) 三輪車用タイヤ
JPH04129802A (ja) 自動二輪車用ラジアルタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004527394

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006130949

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523970

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003784645

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003784645

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10523970

Country of ref document: US