WO2007063783A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2007063783A1
WO2007063783A1 PCT/JP2006/323524 JP2006323524W WO2007063783A1 WO 2007063783 A1 WO2007063783 A1 WO 2007063783A1 JP 2006323524 W JP2006323524 W JP 2006323524W WO 2007063783 A1 WO2007063783 A1 WO 2007063783A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
power
catalyst
point
Prior art date
Application number
PCT/JP2006/323524
Other languages
English (en)
French (fr)
Inventor
Kota Manabe
Masahiro Shige
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2006800451461A priority Critical patent/CN101322272B/zh
Priority to US12/083,611 priority patent/US8288050B2/en
Priority to DE112006003141.4T priority patent/DE112006003141B4/de
Publication of WO2007063783A1 publication Critical patent/WO2007063783A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • fuel cells have various restrictions when starting up compared to other power sources.
  • the power generation efficiency of such a fuel cell decreases due to a decrease in temperature or poisoning of the electrode catalyst, and there may be a case where a desired voltage / current cannot be supplied and the device cannot be started.
  • Patent Document 1 Special Table 2 0 0 3-5 0 4 8 0 7
  • the present invention has been made in view of the circumstances described above, and provides a fuel cell system capable of recovering the function of a poisoned electrode catalyst while satisfying the demand for output power. With the goal.
  • a fuel cell system includes a fuel cell configured by laminating an electrode having an electrolyte and a catalyst and a separator, and a normal operation operation that outputs electric power according to a power generation request.
  • a fuel cell system comprising an operation control means capable of controlling the operation of the fuel cell in terms of points, further comprising a judgment means for judging whether or not an operation for recovering the catalyst deterioration of the electrode is necessary, When the determination result is affirmative, the operation control means is an operation operation point that outputs electric power according to a power generation request and has a low-efficiency operation operation point that has a larger power loss than the normal operation operation point. It is characterized by driving at.
  • catalyst degradation of the electrode includes those in which the catalyst function does not recover physically or chemically, and those in which the catalyst function is temporarily recovered by the applied energy (for example, poisoning of the catalyst (noble metal)) And agglomeration (a phenomenon in which noble metals approach each other).
  • the present invention realizes the recovery of the function of the catalyst whose function is lowered due to recoverable catalyst deterioration.
  • the operation control means when the determination result is negative, operates at a normal operation operating point that outputs power corresponding to the power generation request, while the determination If the result is affirmative, the operation may be performed at a low-efficiency operation point that outputs power corresponding to the power generation request and has a power loss larger than the normal operation point.
  • the said operation control means is set to the said normal driving
  • the operation control means includes a voltage conversion device that controls an output voltage of the fuel cell, and an adjustment device that adjusts a supply amount of a reaction gas supplied to the fuel cell.
  • a voltage conversion device that controls an output voltage of the fuel cell
  • an adjustment device that adjusts a supply amount of a reaction gas supplied to the fuel cell.
  • the fuel cell further includes detection means for detecting whether or not the catalyst of the fuel cell is in a poisoned state, and the determination means detects the catalyst of the electrode when it is detected that the catalyst is in a poisoned state.
  • detection means for detecting whether or not the catalyst of the fuel cell is in a poisoned state
  • the determination means detects the catalyst of the electrode when it is detected that the catalyst is in a poisoned state.
  • a mode in which it is judged that an operation for restoring deterioration is necessary is preferable.
  • the detection means detects whether or not the catalyst is in a poisoned state by comparing the set reference electrical characteristics with the electrical characteristics of the fuel cell at the time. Embodiments are preferred.
  • the fuel cell system includes a fuel cell configured by stacking an electrode having an electrolyte and a catalyst and a separator, and the fuel cell at a normal operation operating point that outputs electric power according to a power generation request.
  • An operation control means capable of controlling the operation of the fuel cell, further comprising a determination means for determining whether or not the fuel cell needs to be warmed up, wherein the operation control means has the determination result as If it is affirmative, the vehicle is operated at a low-efficiency operation point that outputs power corresponding to a power generation request and has a power loss larger than that of the through-run operation point. .
  • it is applicable not only to recover the function of the poisoned electrode catalyst, but also to warm up the fuel cell.
  • FIG. 1 is a diagram showing a main configuration of the fuel dragon pond system according to the present embodiment.
  • FIG. 2A is a diagram showing a relationship between output power and power loss according to the embodiment.
  • FIG. 2B is a diagram showing a relationship between output power and power loss according to the embodiment.
  • FIG. 3 is a diagram showing a change in output power according to the embodiment.
  • FIG. 4 is a flowchart showing the shift process of the operating point according to the embodiment.
  • FIG. 5A is a diagram showing a change in output power according to the embodiment.
  • FIG. 5B is a diagram showing a change in output power according to the embodiment.
  • FIG. 6 is a diagram showing a main configuration of a fuel cell system according to a modification. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a main configuration of a fuel cell system 100 according to the present embodiment.
  • a fuel cell system mounted on a vehicle such as a fuel cell vehicle (FCHV), an electric vehicle, or a hybrid vehicle is assumed.
  • FCHV fuel cell vehicle
  • FCHV fuel cell vehicle
  • electric vehicle electric vehicle
  • hybrid vehicle a vehicle
  • moving bodies for example, ships and (Flight aircraft, robots, etc.) and stationary power sources.
  • the fuel cell 40 is a means for generating electric power from the supplied reaction gas (fuel gas and oxidant gas), and uses various types of fuel cells such as solid polymer type, phosphoric acid type, and molten carbonate type. be able to.
  • the fuel cell 40 has a stack structure in which a plurality of single cells each provided with ⁇ ⁇ ⁇ are stacked in series.
  • the output voltage (hereinafter referred to as FC voltage) and output current (hereinafter referred to as FC current) of this fuel cell 40 are Detected by voltage sensor 14 0 and current sensor 1 5 0, respectively.
  • the fuel electrode (anode) of the fuel cell 40 is supplied with a fuel gas such as hydrogen gas from the fuel gas supply source 10, while the oxygen electrode (power sword) is supplied with the oxidizing gas supply source 70 from the air, etc.
  • the oxidizing gas is supplied.
  • the fuel gas supply source 10 is composed of, for example, a hydrogen tank and various valves, and controls the amount of fuel gas supplied to the fuel cell 40 by adjusting the valve opening, ONZOFF time, and the like.
  • the oxidizing gas supply source 70 is composed of, for example, an air compressor, a motor that drives the air compressor, an inverter, and the like, and the amount of oxidizing gas supplied to the fuel cell 40 is adjusted by adjusting the rotational speed of the motor. To do.
  • the battery 60 is a chargeable / dischargeable secondary battery, and is composed of, for example, a nickel metal hydride battery.
  • a chargeable / dischargeable capacitor for example, a capacitor
  • the battery 60 and the fuel cell 40 are connected in parallel to a traction motor inverter 110 and a DC-DC converter 13 30 is provided between the battery 60 and the inverter 110. Yes.
  • the inverter 1 1 0 is, for example, a pulse width modulation type PWM inverter, and the DC power output from the fuel cell 40 or the battery 60 is converted into three-phase AC power in accordance with a control command given from the control device 80. Convert and supply to the traction motor 1 1 5.
  • Traction motor 1 1 5 is a motor for driving wheels 1 1 6 L and 1 1 6 R, and the rotational speed of the motor is controlled by inverter 1 1 0.
  • DC ZDC converter (voltage converter) 1 3 0 is, for example, a funnel bridge converter composed of four power transistors and a dedicated drive circuit (all not shown).
  • the DC / DC converter 1 3 0 boosts or steps down the DC voltage input from the battery 60 and outputs it to the fuel cell 40 side. And a function of boosting or stepping down the DC voltage input from the fuel cell 40 etc. and outputting it to the battery 60 side.
  • the function of the DC / DC converter 1 3 0 realizes charging / discharging of the battery 6 °.
  • Auxiliary equipment 1 2 0 such as vehicle auxiliary equipment and FC auxiliary equipment is connected between the battery 60 and the D C ZD C converter 1 3 0.
  • the battery 60 is a power source for these auxiliary machines 120.
  • Vehicle auxiliary equipment refers to various power devices (lighting equipment, air conditioning equipment, hydraulic pumps, etc.) used during vehicle operation, etc.
  • FC auxiliary equipment is used to operate the fuel cell 40. This refers to various types of power equipment (such as pumps for supplying fuel gas and oxidation gas).
  • the control device 80 is composed of a CPU, ROM, RAM, and the like, and is charged with a voltage sensor 14 0, a current sensor 15 0, a temperature sensor 50 0 that detects the temperature of the fuel cell 40, and a battery 20 charge. Each part of the system is centrally controlled based on the sensor signals input from the SOC sensor that detects the state and the accelerator pedal sensor that detects the opening of the accelerator pedal.
  • control device 80 detects whether or not the electrode catalyst of the fuel cell 40 is poisoned by the following method, and if it is detected that the electrode catalyst is poisoned, the control device 80 is poisoned. In order to restore the characteristics of the electrode catalyst, a process for switching the operation point of the fuel cell 40 is performed (described later).
  • the memory 160 is, for example, a rewritable nonvolatile memory, and stores initial battery characteristic data indicating the battery characteristics in the initial state (for example, at the time of shipment) of the fuel cell 40.
  • the initial battery characteristic data is a two-dimensional map showing the relationship between the current density and voltage of the fuel cell 40 in the initial state, and the voltage decreases as the current density increases.
  • the current density after poisoning is the current density before poisoning (current density indicated in the initial battery characteristics data). Less than. Utilizing such characteristics, this implementation
  • it is detected whether or not the electrode catalyst is in a poisoned state by comparing the FC voltage and FC current detected by the voltage sensor 140 and the current sensor 150 with the initial battery characteristic data. Specifically, when the FC voltage and the FC current are detected by the voltage sensor 140 and the current sensor 150, the control device (detecting means) 80 compares the current density at the same voltage in the initial battery characteristic data. As a result of the comparison, if the following formulas (1) and (2) are satisfied, it is determined that the substance is poisoned. On the other hand, if the following formulas (1) and (2) are not satisfied, Judged not poisonous.
  • V f c V s (1)
  • whether or not the electrode catalyst is poisoned is detected using the initial battery characteristic data, but whether or not the electrode catalyst is poisoned is detected by other methods.
  • a known CO concentration sensor is installed, and the relationship between the CO concentration and the measured voltage value is surveyed and mapped in advance, and the detected CO concentration is determined. Based on this, it may be detected whether or not the electrode catalyst is in a poisoned state.
  • the operation point of the fuel cell 40 will be described in detail with reference to the drawings.
  • Figures 2A and 2B show the relationship between output power and power loss when the fuel cell is operated at different operating points, with the horizontal axis representing FC current and the vertical axis representing FC voltage. .
  • the OCV (Open Circuit Voltage) shown in Fig. 2A and Fig. 2B is the voltage when no current is flowing through the fuel cell. Show.
  • the operating point (I fcl, V fc 1) has a small power loss with respect to the output power. Is generally operated (see Figure 2A). However, when the electrode catalyst of the fuel cell 40 is in a poisoned state, it is necessary to increase the internal temperature of the fuel cell 40 to restore the function of the electrode catalyst. Shifting to the operating point (I fc 2, V fc 2) where power loss is large while securing output power, the function of the poisoned electrode catalyst is restored (see Fig. 2B).
  • the output power P fc, power loss P loss, each output power P fc, and each power loss P 1 oss at each operating point shown in Fig. 2A and Fig. 2B, Street.
  • FIG. 3 shows the change in output power when the fuel cell is operated while shifting the operating point.
  • the horizontal axis represents FC current
  • the vertical axis represents FC voltage and output power.
  • the IV characteristics of the fuel cell are represented by a straight line (hereinafter referred to as IV line).
  • each operation point (I fcl, V fcl), (I fc 2, V fc 2) on the IV line is the operation point (I fcl, V fcl) shown in Fig. 2A and Fig. 2B. , (I fc 2, V fc 2).
  • Fig. 3 shows the change in output power when the fuel cell is operated while shifting the operating point.
  • the horizontal axis represents FC current
  • the vertical axis represents FC voltage and output power.
  • the IV characteristics of the fuel cell are represented by a straight line (hereinafter referred to as IV line).
  • the output power P fc of the fuel cell 40 is based on the maximum output operation point (I f cma x, V f cma x) at which the maximum output power P fcmax is obtained.
  • the output power P fc increases as the FC voltage V fc decreases, while at the operating point on the IV line shown on the right side of the figure, the output power P increases as the FC voltage V fc decreases.
  • fc decreases.
  • the power loss P loss increases as the FC voltage V fc decreases.
  • the operation point on the IV line shown on the right side of the maximum output operation point (for example, the operation point (I fc 1, V ic 1)) is more power loss than driving at the operation point on the IV line shown on the left side of the maximum output operation point (for example, operation point (I fc 2, V fc 2)). loss is large. Therefore, in the following explanation, the operating point on the IV line where the output power P fc increases as the FC voltage V fc decreases is defined as the normal operating point, and the FC voltage V fc decreases. The operating point on the IV line where the output power P fc decreases is defined as the low-efficiency operating point.
  • the normal operating point and low-efficiency operating point are as follows.
  • Fig. 4 is a flowchart showing the shift processing of the operating point
  • Figs. 5 and 5B are diagrams showing changes in output power when the operating point is shifted.
  • the operation point of the fuel cell 40 is changed from the normal operation point (I fc 1, V fc 1) to the low efficiency operation point (I fc 2, V fc 2) Assuming a case where the frequency is fixed (see Fig. 5A and Fig. 5B).
  • the control device (determination means) 80 first determines whether or not an operation for recovering catalyst deterioration is necessary (step S1). Specifically, by comparing the FC voltage and FC current detected by the voltage sensor 140 and the current sensor 150 with the initial battery characteristic data, it is detected whether or not the electrode catalyst is poisoned. When the electrode catalyst is not in a poisoned state, it is determined that the operation for recovering the catalyst deterioration is not necessary, whereas when the electrode catalyst is in the poisoned state, the operation for recovering the catalyst deterioration is determined to be necessary. To do.
  • control device 80 When the electrode catalyst is not in a poisoned state, the control device (operation control means) 80 continues the operation at a normal operation operating point that outputs power corresponding to the system request (power generation request). On the other hand, when the electrocatalyst is in a poisoned state, the control device 80 first checks the current operation point (here, normal operation point (I fc 1, V fc 1)) (step S). 2).
  • the control device 80 derives the operation point (target operation point) of the fuel cell 40 sufficient to restore the function of the poisoned electrode catalyst (step S3). For example, if the output power P fc 1 is obtained by operating at the normal operation operating point (I fc 1, V fc 1), for example, the same output power P fc as this output power
  • the poisoned electrode catalyst satisfies these conditions because the catalytic reduction reaction occurs and the catalytic function is restored by controlling the cell voltage of the fuel cell 40 to 0.6 V or less.
  • the driving operation point may be derived as the target driving operation point (details will be described later).
  • the control device (operation control means) 80 operates when the target operation operating point is derived. Start shifting points (step S4).
  • the operation point is shifted by controlling only the FC voltage from the normal operation point (I fc 1, V fc 1) to the low efficiency operation point (I fc 2, V fc 2), As shown in 5 A, the output power of the fuel cell 40 fluctuates greatly according to the shift of the operation point of the IV line 11 (see power line p 11). More specifically, when the operation point is shifted by controlling only the FC voltage using the DCZD C converter 1 30, high output operation (maximum output) that cannot be performed under normal operating conditions during the shift process. It is necessary to perform operation at the operating point.
  • the normal operation operating point (I fc 1, V fc 1) is changed to the low-efficiency operating point (I fc 2 , V fc 2) until the operating power is shifted so that the output power is kept constant (see power line p 1 2).
  • the DC voltage is controlled using the DCZ DC converter (voltage converter) 1 30 and the controller (adjusting means) 80 adjusts the amount of oxidation gas supplied from the oxidizing gas supply source 70. In this case (by reducing the amount of oxidizing gas), the FC current is controlled.
  • the IV characteristic of the fuel cell 40 shifts from the IV line 11 to the IV line 12, and the output power of the fuel cell 40 is kept constant regardless of the shift of the operating point.
  • the control device 80 refers to a timer (not shown) or the like to determine whether or not the target set time has elapsed since the operation point was shifted (step S5).
  • the target set time is sufficient time (for example, 10 seconds) to recover the function of the electrode catalyst after starting operation at the low-efficiency operation point, and can be obtained in advance by experiments or the like. If the control device 80 determines that the target setting time has not elapsed (step S5; NO), it repeatedly executes step S5. On the other hand, when the control device 80 determines that the target set time has elapsed (step S5; YES), the control operating point after the shift is set to the value before the shift. Return to the operating point (step S6) and end the process.
  • the poisoned electrode catalyst recovers its function by controlling the cell voltage of the fuel cell 40 to 0.6 V or less. You may do it.
  • the cell voltage is set to 0.5 V ( ⁇ 0.6 V).
  • the target operation operating point is as follows.
  • the calculated target operating point is before the shift. Even if it is not on the IV line, it is possible to position the desired operating point on the IV line by changing the IV characteristics by controlling the FC current together with the FC voltage.
  • the FC current is controlled by adjusting the amount of oxidizing gas supplied from the oxidizing gas supply source 70, but the amount of fuel gas supplied from the fuel gas supply source 10 is adjusted.
  • the FC current may be controlled.
  • the operation point of the fuel cell 40 is shifted from the normal operation point to the low efficiency operation point.
  • the driving operation point may be shifted at the timing shown.
  • the system is operated at a low-efficiency operating point and then shifted to a normal operating point, so that the system is always operated with the catalyst function enhanced. You may make it.
  • the operation point may be shifted from the normal operation point to the low efficiency operation point.
  • the function of the catalyst that has decreased during operation may be recovered to prepare for the next startup.
  • the operation point of the fuel cell 40 is shifted from the normal operation point to the low efficiency operation point in order to recover the function of the poisoned electrode catalyst.
  • warm-up operation is required, such as when warm-up is performed at low temperature startup, or when rapid warm-up is performed before system operation is stopped.
  • control device 80 when the control device 80 receives an activation command for the system from an operation switch or the like, the control device 80 detects the internal temperature of the fuel cell 40 using the temperature sensor 50 or the like.
  • the control device (determination means) 80 determines that the warm-up operation is necessary when the internal temperature of the fuel cell 40 is lower than a preset threshold temperature, and the operation operation point shown in FIG. The shift process is executed. Since the subsequent operation is the same as that of the present embodiment, description thereof is omitted.
  • the temperature sensor 50 a temperature sensor that detects the outside air temperature, a temperature sensor that detects the temperature of the refrigerant flowing in the cooling mechanism (not shown), or the like may be used.
  • the configuration in which the inverter 110 for the traction motor is connected to the output end of the fuel cell is illustrated.
  • a configuration in which a motor inverter 110 is connected may be employed.
  • the fuel cell system 100 ′ shown in FIG. 6 the same reference numerals are given to the portions corresponding to the fuel cell system 100 shown in FIG. 1, and detailed description thereof will be omitted.
  • the hybrid power supply system including the fuel cell 40 and the battery 60 has been described as an example. However, the present embodiment can also be applied to a power supply system including only the fuel cell 40.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 出力電力の要求を満たしつつ、被毒された電極触媒の回復などを行うことが可能な燃料電池システムを提供する。制御装置は、電極触媒が被毒状態にあることを検知すると、被毒された電極触媒の機能を回復するのに十分な目標運転動作点を導出し、出力電力が一定に保持される運転動作点のシフトを実現する。具体的には、DC/DCコンバータを用いてFC電圧を制御するとともに、酸化ガス供給源から供給される酸化ガス量を調整することで、FC電流を制御する。

Description

明細書 燃料電池システム 技術分野
本発明は、 燃料電池システムに関する。 背景技術
一般に、 燃料電池は他の電源に比べて起動に際して種々の制約が存在する。 かかる燃料電池の発電効率は、 温度の低下や電極触媒の被毒に起因して減少 し、 所望の電圧 電流を供給することができずに機器を起動できない場合も 生じる。
このような事情に鑑み、 燃料電池を始動する際、 各電極に供給するァノ一 ド燃料 (例えば燃料ガス) 及び力ソード燃料 (例えば酸化ガス) の少なくと もいずれか一方を不足状態とし、 電極の一部の過電圧を增加させてさらなる 熱を発生させることで、 燃料電池の温度を上昇させ、 電極触媒の被毒などを 回復させる方法が提案されている (例えば、 特許文献 1参照)。
[特許文献 1 ] 特表 2 0 0 3— 5 0 4 8 0 7号公報 発明の開示
しかしながら、 電極触媒の被毒や燃料電池の温度低下による電池特性の劣 化は、 始動時のみならず通常運転中にも生ずる。 このため、 上記の如く始動 時にのみ電極触媒の被毒を回復させただけでは、 通常運転中に生じる電極触 媒の被毒などにより電池特性は劣化し、 要求される電力を出力することがで きない。 また、 上記構成では、 始動時の要求電力にかかわらず電極触媒の被 毒などを回復させる運転を行うため、 要求電力に応じた発電を迅速に開始す ることができないという問題もあった。
本発明は、 以上説明した事情を鑑みてなされたものであり、 出力電力の要 求を満たしつつ、 被毒された電極触媒の機能回復などを行うことが可能な燃 料電池システムを提供することを目的とする。
上述した問題を解決するため、 本発明に係る燃料電池システムは、 電解質 及び触媒を有する電極とセパレータとを積層して構成される燃料電池と、 発 電要求に応じた電力を出力する通常運転動作点にて前記燃料電池の運転制御 が可能な運転制御手段とを備えた燃料電池システムであって、 前記電極の触 媒劣化を回復させる運転が必要か否かを判断する判断手段をさらに備え、 前 記運転制御手段は、 前記判断結果が肯定的である場合には、 発電要求に応じ た電力を出力する運転動作点であって前記通常運転動作点よりも電力損失の 大きな低効率運転動作点にて運転することを特徴とする。
かかる構成によれば、 電極触媒が劣化している場合であっても、 出力電力 の要求を満たしつつ、 被毒された電極触媒の機能を回復させることが可能と なる。 ここで、 「電極の触媒劣化」 には、 物理的または化学的に触媒の機能 が回復しないものと、 与えるエネルギーによって触媒の機能が一時的に回復 するもの (例えば、 触媒 (貴金属) の被毒や凝集 (貴金属同士が近寄る現 象)) がある。 本願発明は、 このうち回復可能な触媒劣化により触媒の機能 が低下したものについて、 かかる機能の回復を実現する。
ここで、 上記構成にあっては、 前記運転制御手段は、 前記判断結果が否定 的である場合には、 発電要求に応じた電力を出力する通常運転動作点にて運 転する一方、 前記判断結果が肯定的である場合には、 発電要求に応じた電力 を出力する運転動作点であって前記通常運転動作点よりも電力損失の大きな 低効率運転動作点にて運転しても良い。
また、 上記構成にあっては、 前記運転制御手段は、 前記通常運転動作点に て運転している間に、 前記判断手段によって肯定的な判断がなされた場合に は、 前記燃料電池の出力電力を変えずに前記低効率運転動作点へと運転を切 り換える態様が好ましい。
また、 前記運転制御手段は、 前記燃料電池の出力電圧を制御する電圧変換 装置と、 前記燃料電池に供給する反応ガスの供給量を調整する調整手段とを 備え、 該電圧変換装置にて前記燃料電池の出力電圧を制御するとともに、 該 調整手段にて前記反応ガスの供給量を調整して前記燃料電池の出力電流を制 御することで、 前記燃料電池の出力電力を変えずに前記低効率運転動作点へ と運転を切り換える態様が好ましい。
また、 前記燃料電池の触媒が被毒状態にあるか否かを検知する検知手段を さらに備え、 前記判断手段は、 前記触媒が被毒状態にあることが検知された 場合に、 前記電極の触媒劣化を回復させる運転が必要と判断する態様が好ま しい。
また、 前記検知手段は、 設定された基準となる電気的特性と、 当該時点に おける前記燃料電池の電気的特性とを比較することにより、 前記触媒が被毒 状態にあるか否かを検知する態様が好ましい。
また、 本発明に係る燃料電池システムは、 電解質及び触媒を有する電極と セパレータとを積層して構成される燃料電池と、 発電要求に応じた電力を出 力する通常運転動作点にて前記燃料電池の運転制御が可能な運転制御手段と を備えた燃料電池システムであって、 前記燃料電池の暖気運転が必要か否か を判断する判断手段をさらに備え、 前記運転制御手段は、 前記判断結果が肯 定的である場合には、 発電要求に応じた電力を出力する運転動作点であって 前記通索運転動作点よりも電力損失の大きな低効率運転動作点にて運転する ことを特徴とする。 このように、 被毒された電極触媒の機能を回復させる場 合だけでなく、 燃料電池を暖機する場合にも適用可能である。
以上説明したように、 本発明によれば、 出力電力の要求を満たしつつ、 劣 ィ匕した電極触媒の回復などを行うことが可能となる。 図面の簡単な説明
図 1は、 本実施形態に係る燃料竜池システムの要部構成を示す図である。 図 2 Aは、 同実施形態に係る出力電力と電力損失との関係を示す図である。 図 2 Bは、 同実施形態に係る出力電力と電力損失との関係を示す図である。 図 3は、 同実施形態に係る出力電力の変化をあらわす図である。
図 4は、 同実施形態に係る運転動作点のシフト処理を示すフローチヤ一ト である。
図 5 Aは、 同実施形態に係る出力電力の変化をあらわす図である。
図 5 Bは、 同実施形態に係る出力電力の変化をあらわす図である。
図 6は、 変形例に係る燃料電池システムの要部構成を示す図である。 発明を実施するための最良の形態
以下、 本発明に係る実施の形態について図面を参照しながら説明する。 A . 本実施形態
図 1は本実施形態に係る燃料電池システム 1 0 0の要部構成を示す図であ る。 本実施形態では、 燃料電池自動車 (F C H V ; Fuel Cell Hyblid Vehicle) , 電気自動車、 ハイブリッド自動車などの車両に搭載される燃料電 池システムを想定するが、 車両のみならず各種移動体 (例えば、 船舶や飛行 機、 ロボットなど) や定置型電源にも適用可能である。
燃料電池 4 0は、 供給される反応ガス (燃料ガス及び酸化ガス) から電力 を発生ずる手段であり、 固体高分子型、 燐酸型、 熔融炭酸塩型など種々のタ イブの燃料電池を利用することができる。 燃料電池 4 0は、 Μ Ε Αなどを備 えた複数の単セルを直列に積層したスタック構造を有している。 この燃料電 池 4 0の出力電圧 (以下、 F C電圧) 及び出力電流 (以下、 F C電流) は、 それぞれ電圧センサ 1 4 0及ぴ電流センサ 1 5 0によって検出される。 燃料 電池 4 0の燃料極 (アノード) には、 燃料ガス供給源 1 0から水素ガスなど の燃料ガスが供給される一方、 酸素極 (力ソード) には、 酸化ガス供給源 7 0から空気などの酸化ガスが供給される。
燃料ガス供給源 1 0は、 例えば水素タンクや様々な弁などから構成され、 弁開度や O NZO F F時間などを調整することにより、 燃料電池 4 0に供給 する燃料ガス量を制御する。
酸化ガス供給源 7 0は、 例えばエアコンプレッサやエアコンプレッサを駆 動するモータ、 インバータなどから構成され、 該モータの回転数などを調整 することにより、 燃料電池 4 0に供給する酸化ガス量を調整する。
バッテリ 6 0は、 充放電可能な二次電池であり、 例えばニッケル水素バッ テリなどにより構成されている。 もちろん、 バッテリ 6 0の代わりに二次電 池以外の充放電可能な蓄電器 (例えばキャパシタ) を設けても良い。 このバ ッテリ 6 0と燃料電池 4 0とはトラクションモータ用のインバータ 1 1 0に 並列接続されており、 バッテリ 6 0とインバータ 1 1 0の間には D Cノ D C コンバータ 1 3 0が設けられている。
インバータ 1 1 0は、 例えばパルス幅変調方式の P WMインバータであり、 制御装置 8 0から与えられる制御指令に応じて燃料電池 4 0またはバッテリ 6 0から出力される直流電力を三相交流電力に変換し、 トラクションモータ 1 1 5へ供給する。 トラクシヨンモータ 1 1 5は、 車輪 1 1 6 L、 1 1 6 R を駆動するためのモータであり、 かかるモータの回転数はインバータ 1 1 0 によって制御される。
D C ZD Cコンバータ (電圧変換装置) 1 3 0は、 例えば 4つのパワー · トランジスタと専用のドライブ回路 (いずれも図示略) によって構成された フノレブリッジ ' コンバータである。 D C/D Cコンバータ 1 3 0は、 バッテ リ 6 0から入力された D C電圧を昇圧または降圧して燃料電池 4 0側に出力 する機能、 燃料電池 4 0などから入力された D C電圧を昇圧または降圧して バッテリ 6 0側に出力する機能を備えている。 また、 D C /D Cコンバータ 1 3 0の機能により、 バッテリ 6◦の充放電が実現される。
バッテリ 6 0と D C ZD Cコンバータ 1 3 0の間には、 車両補機や F C補 機などの補機類 1 2 0が接続されている。 バッテリ 6 0は、 これら補機類 1 2 0の電源となる。 なお、 車両補機とは、 車両の運転時などに使用される 種々の電力機器 (照明機器、 空調機器、 油圧ポンプなど) をいい、 F C補機 とは、 燃料電池 4 0の運転に使用される種々の電力機器 (燃料ガスや酸化ガ スを供給するためのポンプなど) をいう。
制御装置 8 0は、 C P U、 R OM, R AMなどにより構成され、 電圧セン サ 1 4 0や電流センサ 1 5 0、 燃料電池 4 0の温度を検出する温度センサ 5 0、 バッテリ 2 0の充電状態を検出する S O Cセンサ、 アクセルペダルの開 度を検出するアクセルペダルセンサなどから入力される各センサ信号に基づ き、 当該システム各部を中枢的に制御する。
また、 制御装置 8 0は、 以下に示す方法により燃料電池 4 0の電極触媒が 被毒状態にあるか否かを検知し、 被毒状態にあることを検知した場合には、 被毒された電極触媒の特性を回復すべく、 燃料電池 4 0の運転動作点を切り 換える処理を行う (後述)。
メモリ 1 6 0は、 例えば書き換え可能な不揮発性メモリであり、 燃料電池 4 0の初期状態 (例えば製造出荷時) における電池特性を示す初期電池特性 データなどが格納されている。 初期電池特性データは、 初期状態における燃 料電池 4 0の電流密度と電圧との関係を示す二次元マップであり、 電流密度 が高くなるにつれ電圧は低下する。
周知のとおり、 燃料電池 4 0の電極触媒が被毒すると電池特性は低下し、 同一電圧で比較すると被毒後の電流密度は被毒前の電流密度 (初期電池特性 データに示される電流密度) よりも低下する。 かかる特性を利用し、 本実施 形態では、 電圧センサ 140及び電流センサ 1 50によって検知される F C 電圧及び F C電流と初期電池特性データとを比較することで、 電極触媒が被 毒状態にあるか否かを検知する。 詳述すると、 制御装置 (検知手段) 80は、 電圧センサ 140及び電流センサ 1 50によって FC電圧及び FC電流が検 知されると、 初期電池特性データにおける同一電圧での電流密度と比較する。 かかる比較の結果、 下記式 (1)、 (2) が成立している場合には被毒状態で あると判断する一方、 下記式 (1)、 (2) が成立していない場合には被毒状 態でないと判断する。
V f c =V s · · . ( 1 )
I f c < I s + a · · · (2)
V f c ; F C電圧
V s ;初期電池特性データにおける電圧
I f c ; F C電流
I s ;初期電池特性データにおける電流密度
a ;所定値
なお、 上記説明では、 初期電池特性データを利用して電極触媒が被毒状態 にあるか否かを検知したが、 他の方法によつて電極触媒が被毒状態にあるか 否かを検知しても良いのはもちろんである。 例えば、 一酸化炭素によって電 極触媒が被毒される場合には、 既知の CO濃度センサを設け、 CO濃度と電 圧測定値との関係を予め調査 ·マップ化し、 検知される CO濃度等に基づい て電極触媒が被毒状態にあるか否かを検知しても良い。 以下、 図面を参照し ながら燃料電池 40の運転動作点について詳細に説明する。
図 2 A及び図 2 Bは、 異なる運転動作点で燃料電池を運転したときの出力 電力と電力損失との関係を示す図であり、 横軸に FC電流、 縦軸に FC電圧 をあらわしている。 また、 図 2 A及び図 2 Bに示す OCV (Open Circuit Voltage;開回路電圧) は、 燃料電池に電流を流していない状態での電圧を あらわす。
図 2 A及び図 2 Bに示す電流 ·電圧特性 (以下、 I V特性) が得られる燃 料電池 40においては、 出力電力に対して電力損失の小さな運転動作点 ( I f c l、 V f c 1 ) にて運転されるのが一般的である (図 2A参照)。 しか しながら、 燃料電池 40の電極触媒が被毒状態にある場合には、 燃料電池 4 0の内部温度を上昇させて電極触媒の機能を回復させる必要があるため、 本 実施形態では、 必要な出力電力を確保しつつ電力損失の大きな運転動作点 (I f c 2, V f c 2) にシフトして運転し、 被毒状態の電極触媒の機能を 回復させる (図 2 B参照)。 ここで、 図 2 A及び図 2 Bに示す各運転動作点 での出力電力 P f c、 電力損失 P l o s s , 各出力電力 P f cの関係、 各電 力損失 P 1 o s sの関係を示せば次の通りである。
<運転動作点 ( I f c、 V f c 1 ) について >
I f c l *V f c l =P f c l · · · (3)
I f c l *OCV-P f c l =P l o s s l · · · (4) く運転動作点 ( I f c 2、 V f c 2) について >
I f c 2 *V f c 2 = P f c 2 · · · (5)
I f c 2 *OCV-P f c 2 = P l o s s 2 · · · (6) ぐ各出力電力、 各電力損失の関係 >
P f c 1 =P f c 2 · · · (7) P l o s s l <P l o s s 2 · · · (8) 図 3は、 運転動作点をシフトしながら燃料電池を運転したときの出力電力 の変化をあらわす図であり、 横軸に FC電流、 縦軸に FC電圧及び出力電力 をあらわしている。 なお、 図 3では、 説明の便宜上、 燃料電池の I V特性を 直線 (以下、 I Vライン) であらわす。 また、 I Vライン上の各運転動作点 ( I f c l、 V f c l)、 ( I f c 2、 V f c 2) は、 図 2 A及び図 2 Bに示 す各運転動作点 ( I f c l、 V f c l)、 (I f c 2、 V f c 2) に対応する。 図 3に示すように、 燃料電池 40の出力電力 P f cは、 最大出力電力 P f c m a xが得られる最大出力運転動作点 (I f cma x、 V f cma x) を 中心に、 図示左側に示す I Vライン上の運転動作点では F C電圧 V f cの低 下に伴って出力電力 P f cは増大する一方、 図示右側に示す I Vライン上の 運転動作点では F C電圧 V f cの低下に伴って出力電力 P f cは減少する。 前述したように、 電力損失 P l o s sは、 F C電圧 V f cが低下するにつ れ増大する。 このため、 燃料電池 40を運転して同一の電力を出力する場合 であっても、 最大出力運転動作点の右側に示す I Vライン上の運転動作点 (例えば、 運転動作点 ( I f c 1、 V i c 1)) で運転する方が、 最大出力 運転動作点の左側に示す I Vライン上の運転動作点 (例えば、 運転動作点 (I f c 2、 V f c 2)) で運転するよりも電力損失 P l o s sは大きい。 よ つて、 以下の説明では、 FC電圧V f cの低下に伴って出力電力 P f cが增 大する I Vライン上の運転動作点を通常運転動作点と定義し、 FC電圧 V f cの低下に伴って出力電力 P f cが減少する I Vライン上の運転動作点を低 効率運転動作点と定義する。 なお、 通常運転動作点及び低効率運転動作点を 表せば次の通りである。
<通常運転動作点 (I f c、 V f c) について〉
I f c≤ I f cma x · · · (9)
V f c m a x≤ V f c . . . (10) <低効率運転動作点 ( I f c、 V f c) について >
I f cma xく I f c · · · ( 1 1 )
V f c <V f cma x * · · (1 2) 次に、 図 4などを参照しながら制御装置 80によって実行される運転動作 点のシフト処理について説明する。
図 4は、 運転動作点のシフ ト処理を示すフローチャートであり、 図 5 Α及 び図 5 Bは、 運転動作点をシフトしたときの出力電力の変化を示した図であ る。 なお、 以下の説明では、 被毒された電極触媒の機能を回復すべく、 燃料 電池 40の運転動作点を通常運転動作点 (I f c 1、 V f c 1) から低効率 運転動作点 ( I f c 2、 V f c 2) ヘシフ卜する場合を想定する (図 5 A及 び図 5 B参照)。
制御装置 (判断手段) 80は、 まず、 触媒劣化を回復させる運転が必要か 否かを判断する (ステップ S l)。 具体的には、 電圧センサ 1 40及び電流 センサ 1 50によって検知される FC電圧及び FC電流と初期電池特性デー タとを比較することで、 電極触媒が被毒状態にあるか否かを検知し、 電極触 媒が被毒状態にない場合には触媒劣化を回復させる運転は必要ないと判断す る一方、 電極触媒が被毒状態にある場合には触媒劣化を回復させる運転が必 要と判断する。
制御装置 (運転制御手段) 80は、 電極触媒が被毒状態にない場合には、 システム要求 (発電要求) に応じた電力を出力する通常運転動作点にて運転 を継続する。 一方、 制御装置 80は、 電極触媒が被毒状態にある場合には、 まず、 現時点における運転動作点 (ここでは、 通常運転動作点 ( I f c 1、 V f c 1)) を確認する (ステップ S 2)。
次に、 制御装置 80は、 被毒された電極触媒の機能を回復するのに十分な 燃料電池 40の運転動作点 (目標運転動作点) を導出する (ステップ S 3)。 一例を挙げて説明すると、 例えば、 通常運転動作点 ( I f c 1、 V f c 1) で運転することにより、 出力電力 P f c 1が得られる場合には、 この出力電 力と同じ出力電力 P f c 2 (=P f c 1) が得られる低効率運転動作点 ( I f c 2、 V f c 2) を目標運転動作点として導出する。 なお、 被毒された電 極触媒は、 燃料電池 40のセル電圧が 0. 6 V以下に制御されることにより、 触媒還元反応が起こって触媒機能が回復されるため、 このような条件を満た す運転動作点を目標運転動作点として導出しても良い (詳細は後述)。
制御装置 (運転制御手段) 80は、 目標運転動作点を導出すると運転動作 点のシフトを開始する (ステップ S 4)。 ここで、 通常運転動作点 ( I f c 1、 V f c 1 ) から低効率運転動作点 ( I f c 2、 V f c 2) まで FC電圧 のみを制御して運転動作点をシフトした場合には、 図 5 Aに示すように、 I Vライン 1 1の運転動作点のシフトに応じて燃料電池 40の出力電力は大き く変動してしまう (パワーライン p 1 1参照)。 より具体的には、 DCZD Cコンバータ 1 30を用いて FC電圧のみを制御して運転動作点をシフトし た場合には、 シフト過程において通常の使用環境下ではありえないような高 出力運転 (最大出力運転動作点における運転など) を行う必要が生じる。 そこで、 本実施形態では、 F C電圧とともに F C電流を制御することで、 図 5 Bに示すように、 通常運転動作点 ( I f c 1、 V f c 1) から低効率運 転動作点 ( I f c 2、 V f c 2) まで、 出力電力が一定に保持される運転動 作点のシフ トを実現する (パワーライン p 1 2参照)。 具体的には、 DCZ DCコンバータ (電圧変換装置) 1 30を用いて FC電圧を制御するととも に、 制御装置 (調整手段) 80が酸化ガス供給源 70から供給される酸化ガ ス量を調整することで (ここでは酸化ガス量を絞ることで)、 FC電流を制 御する。 かかる制御を行うことで、 燃料電池 40の I V特性は I Vライン 1 1から I Vライン 1 2にシフトし、 運転動作点のシフ卜によらずに燃料電池 40の出力電力は一定に保持される。
制御装置 80は、 運転動作点をシフトすると、 タイマ (図示略) などを参 照し、 運転動作点をシフトしてから目標設定時間が経過したか否かを判断す る (ステップ S 5)。 ここで、 目標設定時間は、 低効率運転動作点で運転を 開始してから電極触媒の機能を回復するのに十分な時間 (例えば 1 0秒) で あり、 予め実験などによって求めることができる。 制御装置 80は、 目標設 定時間が経過して.いないと判断すると (ステップ S 5 ; NO), ステップ S 5を繰り返し実行する。 一方、 制御装置 80は、 目標設定時間が経過したと 判断すると (ステップ S 5 ; YE S)、 シフ ト後の運転動作点をシフ ト前の 運転動作点に戻し (ステップ S 6)、 処理を終了する。
以上説明したように、 本実施形態に係る燃料電池システムによれば、 出力 電力の要求を満たしつつ、 被毒された電極触媒の機能を回復などを行うこと が可能となる。
なお、 上述したように、 被毒された電極触媒は、 燃料電池 40のセル電圧 を 0. 6 V以下に制御することで触媒の機能が回復するため、 次のようにし て運転動作点を導出しても良い。
例えば、 燃料電池 40が 300セルの積層スタック構造を有しており、 要 求される出力電力が 1 kWの場合、 セル電圧を 0. 5V (< 0. 6 V) に設 定したとすると、 目標運転動作点は次のようになる。
<目標運転動作点 (I f c、 V f c) について〉
V f c = 300 * 0. 5 = 1 50V · * · (1 3) I f c = 1 000/1 50 = 6. 7 A · ' · (14) ここで、 求めた目標運転動作点がシフ ト前の I Vライン上にない場合であ つても、 FC電圧とともに FC電流を制御して I V特性を変えることで、 求 めた目標運転動作点を I Vライン上に位置させることが可能となる。
B. 変形例
(1) 上述した実施形態では、 酸化ガス供給源 70から供給される酸化ガス 量を調整することで、 FC電流を制御したが、 燃料ガス供給源 10から供給 される燃料ガス量を調整することで、 FC電流を制御しても良い。
(2) 上述した実施形態では、 電極触媒が被毒状態にあることを検知した場 合に、 燃料電池 40の運転動作点を通常運転動作点から低効率運転動作点へ シフトしたが、 以下に示すタイミングで運転動作点をシフトするようにして も良い。
例えば、 システム起動時にいったん低効率運転動作点で運転してから通常 運転動作点へとシフトし、 常に触媒の機能を高めた状態でシステム運転を行 うようにしても良い。 また、 要求される出力電力が所定値以下になったとき (例えばアイ ドル出力付近など)、 運転動作点を通常運転動作点から低効率 運転動作点へとシフトするようにしても良い。 さらに、 システム停止後に低 効率運転動作点にて運転を行うことで、 運転中に低下した触媒の機能を回復 させて次回の起動に備えるようにしても良い。
( 3 ) 上述した実施形態では、 被毒された電極触媒の機能を回復するために、 燃料電池 4 0の運転動作点を通常運転動作点から低効率運転動作点へシフト する構成としたが、 例えば低温起動時に暖機運転を行う場合やシステム運転 停止前に急速暖機を行う場合など、 暖機運転が必要なあらゆる場合に適用可 能である。
一例を挙げて説明すると、 制御装置 8 0は操作スィツチなどから当該シス テムの起動命令を受け取ると、 温度センサ 5 0などを利用して燃料電池 4 0 の内部温度を検知する。 制御装置 (判断手段) 8 0は、 燃料電池 4 0の内部 温度が予め設定された閾値温度を下回っている場合には、 暖機運転が必要で あると判断し、 図 4に示す運転動作点のシフト処理を実行する。 この後の動 作については、 本実施形態と同様であるため、 説明を省略する。 なお、 温度 センサ 5 0の代わりに、 外気温度を検出する温度センサや冷却機構 (図示 略) を流れる冷媒の温度を検出する温度センサなどを利用しても良い。
( 4 ) 上述した実施形態では、 燃料電池の出力端にトラクシヨンモータ用の インバータ 1 1 0が接続される構成を例示したが、 例えば図 6に示すように バッテリ 6◦の出力端にトラクシヨンモータ用のインバータ 1 1 0が接続さ れる構成であっても良い。 なお、 図 6に示す燃料電池システム 1 0 0 ' につ いて、 ϋ 1に示す燃料電池システム 1 0 0と対応する部分には同一符号を付 し、 詳細な説明を省略する。 また、 上述した本実施形態では燃料電池 4 0と バッテリ 6 0を備えたハイプリッド電源システムを例に説明したが、 燃料電 池 4 0のみからなる電源システムにも適用可能である。

Claims

請求の範囲
1 . 電解質及び触媒を有する電極とセパレータとを積層して構成される燃 料電池と、
発電要求に応じた電力を出力する通常運転動作点にて前記燃料電池の運転 制御が可能な運転制御手段とを備えた燃料電池システムであって、
前記電極の触媒劣化を回復させる運転が必要か否かを判断する判断手段を さらに備え、
前記運転制御手段は、 前記判断結果が肯定的である場合には、 発電要求に 応じた電力を出力する運転動作点であって前記通常運転動作点よりも電力損 失の大きな低効率運転動作点にて運転することを特徴とする燃料電池システ ム。
2 . 前記運転制御手段は、 前記通常運転動作点にて運転している間に、 前 記判断手段によって肯定的な判断がなされた場合には、 前記燃料電池の出力 電力を変えずに前記低効率運転動作点へと運転を切り換えることを特徴とす る請求項 1に記載の燃料電池システム。
3 . 前記運転制御手段は、 前記燃料電池の出力電圧を制御する電圧変換装 置と、 前記燃料電池に供給する反応ガスの供給量を調整する調整手段とを備 え、 該電圧変換装置にて前記燃料電池の出力電圧を制御するとともに、 該調 整手段にて前記反応ガスの供給量を調整して前記燃料電池の出力電流を制御 することで、 前記燃料電池の出力電力を変えずに前記低効率運転動作点へと 運転を切り換えることを特徴とする請求項 2に記載の燃料電池システム。
4 . 前記判断手段は、 前記燃料電池の触媒が被毒状態にあるか否かを検知 し、 被毒状態にあることを検知した場合に前記電極の触媒劣化を回復させる 運転が必要と判断することを特徴とする請求項 3に記載の燃料電池システム。
5 . 前記判断手段は、 設定された基準となる電気的特性と、 当該時点にお ける前記燃料電池の電気的特性とを比較することにより、 前記触媒が被毒状 態にあるか否かを検知することを特徴とする請求項 4に記載の燃料電池シス テム。
6 . 前記判断手段は、 当該システム起動時に、 前記電極の触媒劣化を回復 させる運転が必要と判断することを特徴とする請求項 3に記載の燃料電池シ ステム。
7 . 前記判断手段は、 前記システム要求電力が所定値以下となったとき、 前記電極の触媒劣化を回復させる運転が必要と判断することを特徴とする請 求項 3に記載の燃料電池システム。
8 . 前記判断手段は、 当該システム停止時に、 前記電極の触媒劣化を回復 させる運転が必要と判断することを特徴とする請求項 3に記載の燃料電池シ ステム。
9 . 電解質及び触媒を有する電極とセパレータとを積層して構成される燃 料電池と、
発電要求に応じた電力を出力する通常運転動作点にて前記燃料電池の運転 制御が可能な運転制御手段とを備えた燃料電池システムであって、
前記燃料電池の暖機運転が必要か否かを判断する判断手段をさらに備え、 前記運転制御手段は、 前記判断結果が肯定的である場合には、 発電要求に 応じた電力を出力する運転動作点であって前記通常運転動作点よりも電力損 失の大きな低効率運転動作点にて運転することを特徴とする燃料電池システ ム。
1 0 . 前記燃料電池に関わる温度を検出するセンサをさらに備え、 前記判断手段は、 前記センサの検出結果に基づき暖機が必要か否かを判断 することを特徴とする請求項 9に記載の燃料電池システム。
PCT/JP2006/323524 2005-11-30 2006-11-20 燃料電池システム WO2007063783A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800451461A CN101322272B (zh) 2005-11-30 2006-11-20 燃料电池系统
US12/083,611 US8288050B2 (en) 2005-11-30 2006-11-20 Fuel cell system
DE112006003141.4T DE112006003141B4 (de) 2005-11-30 2006-11-20 Brennstoffzellensystem mit Leistungssteuerung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-345607 2005-11-30
JP2005345607A JP4905847B2 (ja) 2005-11-30 2005-11-30 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2007063783A1 true WO2007063783A1 (ja) 2007-06-07

Family

ID=38092118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323524 WO2007063783A1 (ja) 2005-11-30 2006-11-20 燃料電池システム

Country Status (6)

Country Link
US (1) US8288050B2 (ja)
JP (1) JP4905847B2 (ja)
KR (1) KR100973761B1 (ja)
CN (1) CN101322272B (ja)
DE (1) DE112006003141B4 (ja)
WO (1) WO2007063783A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218340A (ja) * 2007-03-07 2008-09-18 Toyota Motor Corp 燃料電池システム
WO2008130048A1 (ja) * 2007-04-16 2008-10-30 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
WO2009084650A1 (ja) * 2007-12-28 2009-07-09 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
JP2009163958A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 燃料電池システム
EP2178148A1 (en) * 2007-07-30 2010-04-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
US20100291452A1 (en) * 2007-08-28 2010-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101911359A (zh) * 2007-12-27 2010-12-08 丰田自动车株式会社 燃料电池系统
US8216734B2 (en) 2008-01-28 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8343675B2 (en) 2005-12-07 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101675550B (zh) * 2007-07-03 2013-09-04 丰田自动车株式会社 燃料电池系统及其控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905642B2 (ja) 2005-12-05 2012-03-28 トヨタ自動車株式会社 燃料電池システム及び移動体
JP2009037742A (ja) * 2007-07-31 2009-02-19 Canon Inc 燃料電池装置
JP4656539B2 (ja) * 2007-11-21 2011-03-23 トヨタ自動車株式会社 燃料電池システム
JP5456721B2 (ja) 2011-05-12 2014-04-02 本田技研工業株式会社 燃料電池システム
JP5294097B2 (ja) * 2011-08-04 2013-09-18 トヨタ自動車株式会社 燃料電池システム
TWI489686B (zh) * 2012-10-19 2015-06-21 郭振坤 不斷電燃料電池發電系統
JP6052049B2 (ja) * 2013-05-08 2016-12-27 トヨタ自動車株式会社 燃料電池システム
JP6304141B2 (ja) * 2015-06-24 2018-04-04 トヨタ自動車株式会社 燃料電池システム
JP6711231B2 (ja) * 2016-10-04 2020-06-17 トヨタ自動車株式会社 燃料電池の出力性能回復装置及び燃料電池の出力性能回復方法
JP7163794B2 (ja) 2019-01-28 2022-11-01 トヨタ自動車株式会社 燃料電池システム
DE102020124579A1 (de) 2020-09-22 2022-03-24 Audi Aktiengesellschaft Brennstoffzellensystem mit lastpunktabhängiger Degradationsregeneration

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165966A (ja) * 1985-01-17 1986-07-26 Sanyo Electric Co Ltd 燃料電池燃料極の再生方法
JPH08138711A (ja) * 1994-11-10 1996-05-31 Toyota Motor Corp 燃料電池の駆動装置および触媒被毒率検出装置並びに燃料電池システム
JPH11219715A (ja) * 1998-01-30 1999-08-10 Toyota Central Res & Dev Lab Inc 燃料電池の運転制御方法
JPH11345624A (ja) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd 燃料電池の作動方法
JP2000048845A (ja) * 1998-07-24 2000-02-18 Toyota Motor Corp 燃料電池システム
JP2000208162A (ja) * 1999-01-13 2000-07-28 Toyota Motor Corp 燃料電池システム
JP2002500421A (ja) * 1997-12-23 2002-01-08 バラード パワー システムズ インコーポレイティド アノードでの周期的な燃料欠乏と共に電気化学的燃料電池を動作させるための方法及び装置
JP2003068343A (ja) * 2001-08-23 2003-03-07 Nissan Motor Co Ltd 燃料電池用改質システム
JP2003115318A (ja) * 2001-10-03 2003-04-18 Mitsubishi Heavy Ind Ltd 燃料電池の運転装置及び方法
JP2003142134A (ja) * 2001-11-06 2003-05-16 Daikin Ind Ltd 燃料電池システム
JP2003536232A (ja) * 2000-06-22 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Pem型燃料電池の性能を再生する方法および装置
JP2004039527A (ja) * 2002-07-05 2004-02-05 Nissan Motor Co Ltd 燃料電池システム
JP2006128016A (ja) * 2004-10-29 2006-05-18 Aisin Seiki Co Ltd 燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598549B2 (ja) * 1994-11-10 2004-12-08 トヨタ自動車株式会社 燃料電池の発電装置
US6329089B1 (en) 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
JP2000008845A (ja) 1998-06-17 2000-01-11 Toyota Motor Corp 触媒コンバータ
JP4085642B2 (ja) * 2002-02-05 2008-05-14 株式会社エクォス・リサーチ 燃料電池システム
JP5389309B2 (ja) * 2002-02-06 2014-01-15 バトル、メモリアル、インスティテュート 燃料電池の電極から汚染物質を除去する方法
BR0308950A (pt) * 2002-03-29 2007-01-30 Estco Battery Man Inc sistema de gerenciamento da saúde da célula de combustìvel
JP4590829B2 (ja) 2003-05-14 2010-12-01 パナソニック株式会社 燃料電池システム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165966A (ja) * 1985-01-17 1986-07-26 Sanyo Electric Co Ltd 燃料電池燃料極の再生方法
JPH08138711A (ja) * 1994-11-10 1996-05-31 Toyota Motor Corp 燃料電池の駆動装置および触媒被毒率検出装置並びに燃料電池システム
JP2002500421A (ja) * 1997-12-23 2002-01-08 バラード パワー システムズ インコーポレイティド アノードでの周期的な燃料欠乏と共に電気化学的燃料電池を動作させるための方法及び装置
JPH11219715A (ja) * 1998-01-30 1999-08-10 Toyota Central Res & Dev Lab Inc 燃料電池の運転制御方法
JPH11345624A (ja) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd 燃料電池の作動方法
JP2000048845A (ja) * 1998-07-24 2000-02-18 Toyota Motor Corp 燃料電池システム
JP2000208162A (ja) * 1999-01-13 2000-07-28 Toyota Motor Corp 燃料電池システム
JP2003536232A (ja) * 2000-06-22 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Pem型燃料電池の性能を再生する方法および装置
JP2003068343A (ja) * 2001-08-23 2003-03-07 Nissan Motor Co Ltd 燃料電池用改質システム
JP2003115318A (ja) * 2001-10-03 2003-04-18 Mitsubishi Heavy Ind Ltd 燃料電池の運転装置及び方法
JP2003142134A (ja) * 2001-11-06 2003-05-16 Daikin Ind Ltd 燃料電池システム
JP2004039527A (ja) * 2002-07-05 2004-02-05 Nissan Motor Co Ltd 燃料電池システム
JP2006128016A (ja) * 2004-10-29 2006-05-18 Aisin Seiki Co Ltd 燃料電池システム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574777B2 (en) 2005-12-07 2013-11-05 Toyota Jodosha Kabushiki Kaisha Fuel cell system
US8343675B2 (en) 2005-12-07 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8084151B2 (en) 2007-03-07 2011-12-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method therefor
WO2008111654A1 (ja) * 2007-03-07 2008-09-18 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、電極触媒の劣化判定方法、および移動体
JP2008218340A (ja) * 2007-03-07 2008-09-18 Toyota Motor Corp 燃料電池システム
WO2008130048A1 (ja) * 2007-04-16 2008-10-30 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
US9236623B2 (en) 2007-04-16 2016-01-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101675550B (zh) * 2007-07-03 2013-09-04 丰田自动车株式会社 燃料电池系统及其控制方法
EP2178148A4 (en) * 2007-07-30 2012-06-27 Toyota Motor Co Ltd FUEL CELL SYSTEM AND METHOD OF CONTROLLING THE SAME
US8859157B2 (en) 2007-07-30 2014-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
EP2178148A1 (en) * 2007-07-30 2010-04-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
US9577271B2 (en) 2007-07-30 2017-02-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
US20100291452A1 (en) * 2007-08-28 2010-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8460835B2 (en) * 2007-08-28 2013-06-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101911359A (zh) * 2007-12-27 2010-12-08 丰田自动车株式会社 燃料电池系统
US8603687B2 (en) 2007-12-28 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2009163958A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 燃料電池システム
WO2009084650A1 (ja) * 2007-12-28 2009-07-09 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
US8216734B2 (en) 2008-01-28 2012-07-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE112009000223B4 (de) * 2008-01-28 2017-07-06 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem

Also Published As

Publication number Publication date
KR20080056322A (ko) 2008-06-20
US8288050B2 (en) 2012-10-16
KR100973761B1 (ko) 2010-08-04
DE112006003141B4 (de) 2018-06-14
US20090130509A1 (en) 2009-05-21
CN101322272B (zh) 2011-01-12
JP2007149595A (ja) 2007-06-14
DE112006003141T5 (de) 2008-10-23
JP4905847B2 (ja) 2012-03-28
CN101322272A (zh) 2008-12-10

Similar Documents

Publication Publication Date Title
WO2007063783A1 (ja) 燃料電池システム
JP4905642B2 (ja) 燃料電池システム及び移動体
KR100987736B1 (ko) 연료전지시스템
CN102664278B (zh) 燃料电池系统
JP4495111B2 (ja) 燃料電池システムにおけるコンタクタ故障検知装置
US9793558B2 (en) Fuel cell system
JP3816436B2 (ja) 燃料電池車両の制御装置
US8445153B2 (en) Fuel cell high-potential prevention control system
US9831513B2 (en) Fuel cell stack and control method thereof
JP2009059558A (ja) 燃料電池システム
JP2006351407A (ja) 燃料電池システム
JP2004193063A (ja) 燃料電池システム
JP2004146118A (ja) 燃料電池システム
JP4334500B2 (ja) 電源システム
JP6186344B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP2010244980A (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP2009104977A (ja) 燃料電池システム
JP2009129679A (ja) 燃料電池システム
JP2009176665A (ja) 燃料電池システム
JP2016021295A (ja) 電源システム及び車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045146.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12083611

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087012669

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006003141

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003141

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833328

Country of ref document: EP

Kind code of ref document: A1