JP2009104977A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009104977A
JP2009104977A JP2007277395A JP2007277395A JP2009104977A JP 2009104977 A JP2009104977 A JP 2009104977A JP 2007277395 A JP2007277395 A JP 2007277395A JP 2007277395 A JP2007277395 A JP 2007277395A JP 2009104977 A JP2009104977 A JP 2009104977A
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
converter
high potential
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007277395A
Other languages
English (en)
Inventor
Michio Yoshida
道雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007277395A priority Critical patent/JP2009104977A/ja
Publication of JP2009104977A publication Critical patent/JP2009104977A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃費の低下を抑えつつ燃料電池の劣化促進を抑制することが可能な燃料電池システムを提供する。
【解決手段】燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池40と、前記燃料電池40の発電状態を制御する制御装置10とを備え、制御装置10は、DC/DCコンバータ30を作動させることにより、燃料電池40の電圧が所定の高電位回避電圧閾値以上になることを抑制する高電位化回避制御を行うとともに、酸化ガスの低減により燃料電池40の総電圧が低下する総電圧低下領域時に、DC/DCコンバータ30をOFFする。
【選択図】図1

Description

本発明は、燃料電池システムに係り、例えば車載用の燃料電池システムに関する。
近年、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池をエネルギ源とする燃料電池システムが注目されている。燃料電池システムは、燃料電池のアノードに燃料タンクから高圧の燃料ガスを供給するとともに、カソードに酸化ガスとしての空気を加圧供給し、これら燃料ガスと酸化ガスとを電気化学反応させ、起電力を発生させるものである。
このような燃料電池システムにおいて、燃料電池の劣化促進を抑制するために、所定の条件下において燃料電池の電圧が所定の閾値以上になることを抑制する制御を行うものがある(例えば、特許文献1参照)。
特開2007−109569号公報
ところで、上記の制御時にて、余剰電力をバッテリーで吸収できない場合に、コンバータのスイッチング周波数を高く設定してエネルギー損失を増大させることで余剰電力を吸収する方式が考えられるが、この場合、コンバータによるエネルギー損失の発生による燃費の低下を招いてしまう。
そこで、本発明は、燃費の低下を抑えつつ燃料電池の劣化促進を抑制することが可能な燃料電池システムを提供することを目的とする。
本発明の燃料電池システムは、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池と、前記燃料電池の発電電力が供給される電力被供給部と、前記燃料電池の出力電圧を制御するコンバータと、コンバータ指令電圧を制御する制御部と、を備える燃料電池システムであって、前記制御部は、コンバータ指令電圧を前記燃料電池の開放電圧よりも低い高電位回避電圧に維持することにより前記燃料電池の総電圧が所定の高電位回避電圧閾値以上になることを抑制する高電位化回避制御を行うとともに、該高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が漸次低下している間は前記コンバータをOFFする。
高電位化回避制御中に酸化ガス欠状態が生じて燃料電池の総電圧が低下している状態では、当該燃料電池の総電圧をコンバータによって制御することはできない。そこで、本発明は、燃料電池の総電圧が低下している間は、コンバータによる燃料電池の総電圧制御を実施しないこととし、コンバータをOFFすることにしている。これにより、コンバータをONしている間のエネルギー損失を抑え、システム全体における燃費を向上させることができる。
上記構成においては、前記高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が低下し始める前に、前記燃料電池に酸化ガスを消費させるようにしてもよい。
前記燃料電池に酸化ガスを消費させる一例として、前記制御部は、前記高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が低下し始める前に、コンバータ指令電圧を前記高電位回避電圧よりも一時的に低下させてもよい。
かかる構成によれば、高電位化回避制御中に自然に酸化ガス欠状態が生じて燃料電池の総電圧が漸次低下するようになるまでの時間を早めることができる。その結果、高電位回避制御中にコンバータをONしている時間が短縮され、コンバータをOFFしている累積時間を長くすることができる。
本発明の燃料電池システムによれば、燃費の低下を抑えつつ燃料電池の劣化促進を抑制することができる。
以下、本発明に係る実施の形態について図面を参照しながら説明する。
図1は本実施形態に係る燃料電池システム100の要部構成を示す図である。本実施形態では、燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)、電気自動車、ハイブリッド自動車などの車両に搭載される燃料電池システムを想定するが、車両のみならず各種移動体(例えば、二輪車や船舶、飛行機、ロボットなど)にも適用可能である。さらに、移動体に搭載された燃料電池システムに限らず、定置型の燃料電池システムや携帯型の燃料電池システムにも適用可能である。
この車両は、減速ギア12を介して車輪63L、63Rに連結されたトラクションモータ(電力被供給部)61を駆動力源として走行する。トラクションモータ61の電源は、電源システム1である。電源システム1から出力される直流は、インバータ(電力被供給部)60で三相交流に変換され、トラクションモータ61に供給される。トラクションモータ61は制動時に発電機としても機能することができる。電源システム1は、燃料電池40、バッテリ(電力被供給部)20、DC/DCコンバータ(コンバータ、電力被供給部)30などから構成される。
燃料電池40は、供給される反応ガス(燃料ガス及び酸化ガス)から電力を発生する手段であり、固体高分子型、燐酸型、溶融炭酸塩型など種々のタイプの燃料電池を利用することができる。燃料電池40は、フッ素系樹脂などで形成されたプロトン伝導性のイオン交換膜などから成る高分子電解質膜41を備え、高分子電解質膜の表面には白金触媒(電極触媒)が塗布されている。
なお、高分子電解質膜41に塗布する触媒は白金触媒に限らず、白金コバルト触媒(以下、単に触媒という)などにも適用可能である。燃料電池40を構成する各セルは、高分子電解質膜41の両面にアノード極42とカソード極43とをスクリーン印刷などで形成した膜・電極接合体44を備えている。燃料電池40は、複数の単セルを直列に積層したスタック構造を有している。
この燃料電池40の出力電圧(以下、FC電圧)及び出力電流(以下、FC電流)は、それぞれ電圧センサ92及び電流センサ93によって検出される。燃料電池40の燃料極(アノード)には、燃料ガス供給源70から水素ガスなどの燃料ガスが供給される一方、酸素極(カソード)には、酸化ガス供給源80から空気などの酸化ガスが供給される。
燃料ガス供給源70は、例えば水素タンクや様々な弁などから構成され、弁開度やON/OFF時間などを調整することにより、燃料電池40に供給する燃料ガス量を制御する。
酸化ガス供給源80は、例えばエアコンプレッサやエアコンプレッサを駆動するモータ(電力被供給部)、インバータ(電力被供給部)などから構成され、該モータの回転数などを調整することにより、燃料電池40に供給する酸化ガス量を調整する。
バッテリ20は、充放電可能な二次電池であり、例えばニッケル水素バッテリなどにより構成されている。もちろん、バッテリ20の代わりに二次電池以外の充放電可能なあらゆる蓄電器(例えばキャパシタ)を設けても良い。このバッテリ20は、燃料電池40の放電経路に介挿され、燃料電池40と並列に接続されている。バッテリ20と燃料電池40とはトラクションモータ用のインバータ60に並列接続されており、バッテリ20とインバータ6の間にはDC/DCコンバータ30が設けられている。
インバータ60は、例えば複数のスイッチング素子によって構成されたパルス幅変調方式のPWMインバータであり、制御装置10から与えられる制御指令に応じて燃料電池40またはバッテリ20から出力される直流電力を三相交流電力に変換し、トラクションモータ61へ供給する。トラクションモータ61は、車輪63L、63Rを駆動するためのモータであり、かかるモータの回転数はインバータ60によって制御される。
DC/DCコンバータ30は、例えば4つのパワー・トランジスタと専用のドライブ回路(いずれも図示略)によって構成されたフルブリッジ・コンバータである。DC/DCコンバータ30は、バッテリ20から入力されたDC電圧を昇圧または降圧して燃料電池40側に出力する機能、燃料電池40などから入力されたDC電圧を昇圧または降圧してバッテリ20側に出力する機能を備えている。また、DC/DCコンバータ30の機能により、バッテリ20の充放電が実現される。
バッテリ20とDC/DCコンバータ30の間には、車両補機やFC補機などの補機類(電力被供給部)50が接続されている。バッテリ20は、これら補機類50の電源となる。なお、車両補機とは、車両の運転時などに使用される種々の電力機器(照明機器、空調機器、油圧ポンプなど)をいい、FC補機とは、燃料電池40の運転に使用される種々の電力機器(燃料ガスや酸化ガスを供給するためのポンプなど)をいう。
上述した各要素の運転は制御装置(制御部)10によって制御される。制御装置10は、内部にCPU、ROM、RAMを備えたマイクロコンピュータとして構成されている。
制御装置10は、入力される各センサ信号に基づいて燃料ガス通路に設けられた調圧弁71や酸化ガス通路に設けられた調圧弁81、燃料ガス供給源70、酸化ガス供給源80、バッテリ20、DC/DCコンバータ30、インバータ60など、システム各部を制御する。
この制御装置10には、例えば圧力センサ91によって検知される燃料ガスの供給圧力や電圧センサ92によって検知される燃料電池40のFC電圧、電流センサ93によって検知される燃料電池40のFC電流、SOCセンサ21によって検知されるバッテリ20の充電状態SOC(State Of Charge)をあらわすSOC値など、種々のセンサ信号が入力される。
本実施形態では、バッテリ20の充電量が制限されている場合であっても、例えばDC/DCコンバータ30のスイッチング周波数を上昇させ、該DC/DCコンバータでのエネルギー損失を増大させることで、確実に燃料電池40の電圧が当該燃料電池40の開放電圧よりも低い所定の高電位化回避電圧閾値以上になることを回避する。
次に、制御装置10によって間欠的に実行される高電位化回避制御処理について説明する。
制御装置10は、燃料電池40に対する要求電力を算出する。要求電力としては、例えばトラクションモータ61や補機類50を駆動するための電力である。そして、制御装置10は、不図示のI−V特性及びI−P特性をあらわす特性マップを利用して、要求電力に応じた燃料電池40の出力電圧を算出する。この特性マップは、予め実験などにより求められ、製造出荷時などに制御装置10の内部メモリ11に格納される。なお、この特性マップの値は固定値しても良いが、逐次書き換え可能な値としても良い。
そして、制御装置10は、燃料電池40の出力電圧を強制的に下げる必要があるか否かを判断する。具体的には、制御装置10は、出力電圧と高電位化回避目標閾値電圧(以下、閾値電圧Vth)とを比較し、出力電圧が閾値電圧Vthを超えている場合には、燃料電池40の出力電圧を強制的に下げる必要があると判断する一方、出力電圧が閾値電圧Vth以下である場合には、燃料電池40の出力電圧を強制的に下げる必要はないと判断する。
この閾値電圧Vthは、燃料電池40の開放電圧よりも低い電圧であり、予め実験などにより求められ、製造出荷時などに制御装置10の内部メモリ11に格納される。また、閾値電圧Vthは固定値としても良いが、例えば周囲環境(外気温度や燃料電池温度、湿度、運転モードなど)に応じて逐次書き換え可能な値としても良い。
制御装置10は、上記の判断において、燃料電池40の出力電圧を強制的に下げる必要がないと判断した場合には、燃料電池40の高電位化を回避する制御は不要であるため、当該処理を終了する。
一方、制御装置10は、上記の判断において、燃料電池40の出力電圧を強制的に下げる必要があると判断した場合には、該燃料電池40の出力電圧を閾値電圧Vthを下回る値まで強制的に下げる制御を行う。このとき、燃料電池40の出力電圧を強制的にどの値まで下げるかは任意に設定可能である。そして、制御装置10は、余剰電力をバッテリ20で吸収可能か否か(すなわち、バッテリ20に蓄電できるか否か)を判断する。詳述すると、制御装置10は、SOCセンサ21によって検知されるSOC値から検出し、バッテリ20の残容量を把握するなどして余剰電力をバッテリ20で吸収できるか否かを判断する。
制御装置10は、余剰電力をバッテリ20で吸収できると判断した場合には、余剰電力をバッテリ20で吸収(バッテリ20に蓄電)した後、処理を終了する。一方、制御装置10は、余剰電力をバッテリ20で吸収できないと判断した場合には、例えばDC/DCコンバータ30のスイッチング周波数を高く設定し、DC/DCコンバータ30のエネルギー損失を増大させることで余剰電力Pを吸収した後、処理を終了する。
ところで、図2に示すように、出力停止モードでの高電位化回避制御中においては、燃料電池40への反応ガスの供給が停止しているため、DC/DCコンバータ30への指令電圧(図2の破線)を閾値電圧Vthに維持しても、燃料電池40内に残存する反応ガスが発電により消費されるので、燃料電池40の総電圧(図2の実線で示すFCセル総電圧)が漸次低下し、閾値電圧Vthを維持することはできない。
このため、燃料電池40の総電圧が閾値電圧Vthよりも低い所定の電圧維持酸化ガスブロー電圧(高電位回避最低電圧)まで下がると、エアコンプレッサを再起動して酸化ガスを燃料電池40に供給する電圧維持酸化ガスブロー作動を行い、これにより、燃料電池40の総電圧を上昇させて閾値電圧Vthにまで回復させる。この電圧維持酸化ガスブロー作動では、例えば、酸化ガス供給源80のエアコンプレッサを最低エア流量で駆動する。
このように、出力停止モードでの高電位化回避制御中においては、コンバータ指令電圧を閾値電圧Vthに維持しても、燃料電池40の総電圧が閾値電圧Vthに維持されない総電圧低下領域が存在する。つまり、この閾値電圧Vthを維持できない総電圧低下領域では、DC/DCコンバータ30による電圧制御を行ったとしても、燃料電池40の総電圧は低下してしまう。
したがって、本実施形態では、図2に示すように、制御装置10が、この閾値電圧Vthを維持できない総電圧低下領域において、DC/DCコンバータ30による制御を停止させ、その後、電圧維持酸化ガスブロー作動により酸化ガスを燃料電池40に供給して燃料電池40の総電圧を上昇させて閾値電圧Vthにまで回復させるときに、再びDC/DCコンバータ30による電圧制御を行う。
このようにすると、図3に示すように、出力停止モードでの高電位化回避制御中において、DC/DCコンバータ30を間欠的に停止させることができ、DC/DCコンバータ30の電圧制御によるエネルギー損失を抑え、システム全体における燃費を向上させることができる。
また、図4に示すように、閾値電圧Vthを維持できない総電圧低下領域の直前にて、DC/DCコンバータ30の指令電圧を一旦低下させても良い。このようにすると、燃料電池40は発電電流を上昇させるべく発電し、これにより、システム内に残存する酸化ガスの消費が促進される。すると、燃料電池40では、酸化ガス欠状態が図2に示す場合よりも早期に生じることとなり、総電圧低下領域がより早いタイミングで、より多く生じることとなる。
図5は、DC/DCコンバータ30のON/OFF切換のタイミングと、OFFしている累積時間との関係を示す概念図であり、(a)は上記閾値電圧Vthを維持できない総電圧低下領域の直前に酸化ガスを強制的に消費しなかった場合(図2の実施形態に相当)の概念図であり、また、(b)及び(c)は同総電圧低下領域の直前に酸化ガスを強制的に消費した場合の概念図である。
なお、同図のハッチング部分は、DC/DCコンバータ30がONの時を示しており、同図の白抜き部分は、DC/DCコンバータ30がOFFの時を示している。
同図より、(b)の場合は、総電圧低下領域の直前に酸化ガス消費を強制実施した結果、DC/DCコンバータ30をOFFしている累積時間が(a)の場合の2/3になったことを読み取ることができ、また、(c)の場合は、総電圧低下領域の直前に酸化ガス消費を強制実施した結果、DC/DCコンバータ30をOFFしている累積時間が(a)の場合の1/3になったことを読み取ることができる。
つまり、図4に示すような制御を行う実施形態によれば、出力停止モードでの高電位化回避制御中において、DC/DCコンバータ30をより多くの時間、間欠的に停止させることができることとなり、DC/DCコンバータ30の電圧制御によるエネルギー損失をさらに抑えることが可能になる。よって、システム全体における燃費をさらに向上させることができる。
本実施形態に係る燃料電池システムの要部構成を示す図である。 同燃料電池システムの総電圧低下領域を説明するタイムチャート。 同燃料電池システムの総電圧低下領域を説明するタイムチャート。 同燃料電池システムの総電圧低下領域を説明するタイムチャート。 同燃料電池システムにおけるDC/DCコンバータのON/OFF切換のタイミングと、OFFしている累積時間との関係を示す概念図。
符号の説明
1…燃料電池システム、10…制御装置(制御部)、30…DC/DCコンバータ(コンバータ)、40…燃料電池。

Claims (3)

  1. 燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池と、
    前記燃料電池の発電電力が供給される電力被供給部と、
    前記燃料電池の出力電圧を制御するコンバータと、
    コンバータ指令電圧を制御する制御部と、を備える燃料電池システムであって、
    前記制御部は、コンバータ指令電圧を前記燃料電池の開放電圧よりも低い高電位回避電圧に維持することにより前記燃料電池の総電圧が所定の高電位回避電圧閾値以上になることを抑制する高電位化回避制御を行うとともに、該高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が漸次低下している間は前記コンバータをOFFする燃料電池システム。
  2. 前記制御部は、前記高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が低下し始める前に、コンバータ指令電圧を前記高電位回避電圧よりも一時的に低下させる請求項1に記載の燃料電池システム。
  3. 前記高電位化回避制御中に酸化ガス欠状態が生じて前記燃料電池の総電圧が低下し始める前に、前記燃料電池に酸化ガスを消費させる請求項1に記載の燃料電池システム。
JP2007277395A 2007-10-25 2007-10-25 燃料電池システム Withdrawn JP2009104977A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277395A JP2009104977A (ja) 2007-10-25 2007-10-25 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277395A JP2009104977A (ja) 2007-10-25 2007-10-25 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2009104977A true JP2009104977A (ja) 2009-05-14

Family

ID=40706437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277395A Withdrawn JP2009104977A (ja) 2007-10-25 2007-10-25 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2009104977A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053037A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 燃料電池システム
JP2016207435A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 燃料電池車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053037A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 燃料電池システム
JPWO2015053037A1 (ja) * 2013-10-09 2017-03-09 日産自動車株式会社 燃料電池システム
JP2016207435A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 燃料電池車両

Similar Documents

Publication Publication Date Title
JP4274278B2 (ja) 燃料電池システム
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
JP4400669B2 (ja) 燃料電池システム
JP4424418B2 (ja) 燃料電池システム及び燃料電池車両
JP4761162B2 (ja) 燃料電池システム
KR101551085B1 (ko) 연료 전지 차량의 제어 방법
WO2013150651A1 (ja) 燃料電池システム
CN107452972B (zh) 燃料电池系统及其控制方法
JP2007165104A (ja) 燃料電池システム及び移動体
JP2011146326A (ja) 燃料電池システム
JP2009059558A (ja) 燃料電池システム
US20150042156A1 (en) Vehicle electric power supply control system and vehicle
JP4516093B2 (ja) 燃料電池システム及びその始動方法
JP2010244937A (ja) 燃料電池システム
JP4240234B1 (ja) 燃料電池システム
JP5812423B2 (ja) 燃料電池システム
JP2009064754A (ja) 燃料電池システム及びその起動方法
JP6174528B2 (ja) 2電源負荷駆動燃料電池システムの制御方法及び燃料電池自動車
WO2009084578A1 (ja) 燃料電池システム
WO2009096223A1 (ja) 燃料電池システム及びその制御方法
JP2009104977A (ja) 燃料電池システム
JP2010244980A (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP2009129679A (ja) 燃料電池システム
JP2009093916A (ja) 燃料電池システム
WO2013150619A1 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120125