WO2009096223A1 - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2009096223A1
WO2009096223A1 PCT/JP2009/050362 JP2009050362W WO2009096223A1 WO 2009096223 A1 WO2009096223 A1 WO 2009096223A1 JP 2009050362 W JP2009050362 W JP 2009050362W WO 2009096223 A1 WO2009096223 A1 WO 2009096223A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
power generation
output
flow rate
Prior art date
Application number
PCT/JP2009/050362
Other languages
English (en)
French (fr)
Inventor
Ayako Kawase
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112009000254.4T priority Critical patent/DE112009000254B8/de
Priority to US12/811,860 priority patent/US8092946B2/en
Priority to CN2009801037138A priority patent/CN101933188B/zh
Publication of WO2009096223A1 publication Critical patent/WO2009096223A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method thereof.
  • the fuel gas supply to the fuel cell is interrupted, so the fuel supply flow path for supplying the fuel gas from the fuel supply source to the fuel cell
  • the gas pressure inside becomes lower than the gas pressure during normal operation.
  • Patent Document 1 if the conventional technique as described in Patent Document 1 is adopted to perform rapid acceleration from intermittent operation, even if the supply flow rate of the fuel gas from the fuel supply source is increased, There is a possibility that the fuel gas is not sufficiently supplied to the fuel cell itself until the gas pressure returns to the gas pressure during normal operation. When such a situation occurs, the stoichiometric ratio after the return from the intermittent operation to the normal operation is lowered, and there is a possibility that the stability of the power generation state of the fuel cell cannot be ensured.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a fuel cell system capable of stabilizing the power generation state of the fuel cell in a transition period from a power generation stop state such as intermittent operation to a normal operation. To do.
  • a fuel cell system includes a fuel supply source and a fuel cell, supplies fuel gas from the fuel supply source to the fuel cell, generates power, and stops generating power in the fuel cell.
  • a fuel cell system comprising output limiting means for limiting the output of the fuel cell after the transition from the power generation state to the power generation state, wherein the output restriction means is fuel supplied from the fuel supply source after the transition from the power generation stop state to the power generation state.
  • the fuel cell after the transition from the power generation stop state to the power generation state by reducing the flow rate of the fuel gas used for returning the pressure of the fuel gas in the power generation stop state to the fuel gas pressure in the power generation state from the total gas flow rate.
  • the flow rate of the fuel gas that is actually supplied is calculated, and the output of the fuel cell is limited with the output current value corresponding to the calculated flow rate as the upper limit. .
  • a control method for a fuel cell system includes a fuel supply source and a fuel cell, and supplies fuel gas from the fuel supply source to the fuel cell to generate power, and from a power generation stop state of the fuel cell.
  • a fuel cell system control method for limiting the output of a fuel cell after transition to a power generation state, wherein power generation is stopped from the total flow of fuel gas supplied from a fuel supply source after transition from the power generation stop state to the power generation state.
  • the fuel cell is actually supplied by subtracting the flow rate used to restore the gas pressure from the total supply flow rate of the fuel gas after the transition from the power generation stop state to the power generation state.
  • the flow rate is calculated, and the output of the fuel cell can be limited with the output current value corresponding to the calculated flow rate as the upper limit. Therefore, the amount of gas consumed in the fuel cell after the transition from the power generation stop state to the power generation state can be limited to suppress a decrease in the stoichiometric ratio, so that the power generation state of the fuel cell can be stabilized.
  • the “power generation stop state” means a state in which power generation by the fuel cell is stopped (for example, an operation stop mode in which the operation of the fuel cell is completely stopped, or power generation of the fuel cell is temporarily stopped at a low load, etc. (Intermittent operation mode) means “power generation state” means a state in which the fuel cell continuously generates power (normal operation mode).
  • the “stoichiometric ratio” means the surplus ratio of the amount of gas supplied to the fuel cell with respect to the amount of gas consumed in the fuel cell.
  • a fuel cell system capable of stabilizing the power generation state of the fuel cell in a transition period from a power generation stop state such as intermittent operation to normal operation.
  • the fuel cell system 1 includes a fuel cell 2 that generates electric power upon receiving supply of reaction gases (oxidizing gas and fuel gas), and air as oxidizing gas to the fuel cell 2.
  • the fuel cell 2 is formed of, for example, a solid polymer electrolyte type and has a stack structure in which a large number of single cells are stacked.
  • the unit cell of the fuel cell 2 has a cathode electrode (air electrode) on one surface of an electrolyte made of an ion exchange membrane, an anode electrode (fuel electrode) on the other surface, and further has a cathode electrode and an anode electrode.
  • a pair of separators are provided so as to be sandwiched from both sides.
  • the fuel gas is supplied to the fuel gas flow path of one separator and the oxidizing gas is supplied to the oxidizing gas flow path of the other separator, and the fuel cell 2 generates electric power by this gas supply.
  • the fuel cell 2 is provided with a current sensor 2a and a voltage sensor 2b that detect current and voltage (output current and output voltage) during power generation.
  • a current sensor 2a and a voltage sensor 2b that detect current and voltage (output current and output voltage) during power generation.
  • various types of fuel cells 2 such as a phosphoric acid type and a molten carbonate type can be adopted as the fuel cell 2.
  • the oxidizing gas piping system 3 includes an air compressor 31, an oxidizing gas supply path 32, a humidification module 33, a cathode offgas flow path 34, a diluter 35, a motor M ⁇ b> 1 that drives the air compressor 31, and the like.
  • the air compressor 31 is driven by the driving force of the motor M ⁇ b> 1 that operates according to the control command of the control device 6, and oxygen (oxidizing gas) taken from outside air through an air filter (not shown) is supplied to the cathode electrode of the fuel cell 2.
  • the oxidizing gas supply path 32 is a gas flow path for guiding oxygen supplied from the air compressor 31 to the cathode electrode of the fuel cell 2.
  • Cathode off-gas is discharged from the cathode electrode of the fuel cell 2. This cathode off gas is in a highly moist state because it contains moisture generated by the cell reaction of the fuel cell 2.
  • the humidification module 33 exchanges moisture between the low wet state oxidizing gas flowing through the oxidizing gas supply path 32 and the high wet state cathode off gas flowing through the cathode off gas flow path 34, and is supplied to the fuel cell 2.
  • the cathode off-gas channel 34 is a gas channel for exhausting the cathode off-gas outside the system, and an air pressure regulating valve A1 is disposed in the vicinity of the cathode electrode outlet of the gas channel.
  • the back pressure of the oxidizing gas supplied to the fuel cell 2 is regulated by the air pressure regulating valve A1.
  • the diluter 35 dilutes the hydrogen gas discharge concentration so that it falls within a preset concentration range (such as a range determined based on environmental standards).
  • the diluter 35 communicates with the downstream side of the cathode offgas channel 34 and the downstream side of the anode offgas channel 44 described later, and the hydrogen offgas and the oxygen offgas are mixed and diluted and exhausted outside the system.
  • the fuel gas piping system 4 includes a fuel supply source 41, a fuel gas supply path 42, a fuel gas circulation path 43, an anode off-gas flow path 44, a hydrogen circulation pump 45, a check valve 46, and a motor for driving the hydrogen circulation pump 45. M2 etc.
  • the fuel supply source 41 is means for supplying a fuel gas such as hydrogen gas to the fuel cell 2 and is constituted by, for example, a high-pressure hydrogen tank or a hydrogen storage tank.
  • the fuel gas supply path 42 is a gas flow path for guiding the fuel gas discharged from the fuel gas supply source 41 to the anode electrode of the fuel cell 2, and the gas flow path includes a tank valve H1, hydrogen gas from upstream to downstream. Valves such as a supply valve H2 and an FC inlet valve H3 are provided.
  • the tank valve H1, the hydrogen supply valve H2, and the FC inlet valve H3 are shut valves for supplying (or shutting off) the fuel gas to the fuel cell 2, and are constituted by, for example, electromagnetic valves.
  • the fuel gas circulation path 43 is a return gas flow path for recirculating unreacted fuel gas to the fuel cell 2.
  • the gas flow path includes an FC outlet valve H4, a hydrogen circulation pump 45, and a check valve from upstream to downstream. 46 are respectively arranged.
  • the low-pressure unreacted fuel gas discharged from the fuel cell 2 is moderately pressurized by the hydrogen circulation pump 45 driven by the driving force of the motor M ⁇ b> 2 that operates according to the control command of the control device 6, and is supplied to the fuel gas supply path 42. Led.
  • the backflow of the fuel gas from the fuel gas supply path 42 to the fuel gas circulation path 43 is suppressed by the check valve 46.
  • the anode off gas passage 44 is a gas passage for exhausting the anode off gas including the hydrogen off gas discharged from the fuel cell 2 to the outside of the system, and a purge valve H5 is disposed in the gas passage.
  • the power system 5 includes a high voltage DC / DC converter 51, a battery 52, a traction inverter 53, an auxiliary inverter 54, a traction motor M3, an auxiliary motor M4, and the like.
  • the high-voltage DC / DC converter 51 is a direct-current voltage converter that adjusts the direct-current voltage input from the battery 52 and outputs it to the traction inverter 53 side, and the direct-current input from the fuel cell 2 or the traction motor M3. And a function of adjusting the voltage and outputting it to the battery 52.
  • the charge / discharge of the battery 52 is realized by these functions of the high-voltage DC / DC converter 51. Further, the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 51.
  • the battery 52 is a chargeable / dischargeable secondary battery, and is composed of various types of secondary batteries (for example, a nickel metal hydride battery).
  • the battery 52 can be charged with surplus power or supplementarily supplied with power by control of a battery computer (not shown). Part of the direct-current power generated by the fuel cell 2 is stepped up and down by the high-voltage DC / DC converter 51 and charged in the battery 52.
  • a chargeable / dischargeable battery for example, a capacitor
  • the secondary battery may be employed.
  • the traction inverter 53 and the auxiliary inverter 54 are pulse width modulation type PWM inverters, and convert DC power output from the fuel cell 2 or the battery 52 into three-phase AC power in accordance with a given control command, thereby obtaining a traction motor.
  • the traction motor M3 is a motor for driving the wheels 7L and 7R.
  • the traction motor M3 is provided with a rotation speed detection sensor 5a for detecting the rotation speed.
  • the auxiliary motor M4 is a motor for driving various auxiliary machines, and is a generic term for the motor M1 that drives the air compressor 31, the motor M2 that drives the hydrogen circulation pump 45, and the like.
  • the control device 6 includes a CPU, a ROM, a RAM, and the like, and controls each part of the system in an integrated manner based on the input sensor signals. Specifically, the control device 6 calculates the required output power of the fuel cell 2 based on each sensor signal sent from the rotational speed detection sensor 5a, the accelerator pedal sensor 6a that detects the accelerator pedal opening degree, and the like. Then, the control device 6 controls the output voltage and output current of the fuel cell 2 so as to generate output power corresponding to the required output power. The control device 6 controls the traction motor M3 and the auxiliary motor M4 by controlling the output pulse widths of the traction inverter 53 and the auxiliary inverter 54, and the like.
  • the control device 6 switches between the normal operation mode and the intermittent operation mode.
  • the normal operation mode means an operation mode in which the fuel cell 2 continuously generates power for supplying power to a load device such as the traction motor M3.
  • the intermittent operation mode for example, the power generation of the fuel cell 2 is temporarily stopped during low load operation such as idling, low speed traveling, regenerative braking, etc., and power is supplied from the battery 52 to the load device.
  • the battery 2 means an operation mode in which hydrogen gas and air that can maintain an open-circuit voltage are intermittently supplied.
  • the normal operation mode corresponds to the power generation state in the present invention
  • the intermittent operation mode corresponds to the power generation stop state in the present invention.
  • control device 6 limits the output of the fuel cell 2 after the operation mode of the fuel cell 2 returns (shifts) from the intermittent operation mode to the normal operation mode. Specifically, the control device 6 determines the hydrogen gas pressure in the intermittent operation mode from the total flow rate of the hydrogen gas supplied from the fuel supply source 41 after returning from the intermittent operation mode to the normal operation mode. By reducing the flow rate of the hydrogen gas used for returning to the gas pressure, the flow rate of the hydrogen gas actually supplied to the fuel cell 2 after returning from the intermittent operation mode to the normal operation mode is calculated. Then, the control device 6 limits the output of the fuel cell 2 with the output current value corresponding to the calculated flow rate as an upper limit. That is, the control device 6 functions as output limiting means in the present invention.
  • the control device 6 performs control for realizing the normal operation mode after startup (normal operation control process: S1).
  • the control device 6 calculates the required output power of the fuel cell 2 based on each sensor signal sent from the rotation speed detection sensor 5a, the accelerator pedal sensor 6a, etc., and this calculated output request An output current command value and an output voltage command value corresponding to the power are calculated.
  • the control device 6 calculates the output current command value I 1 and the output voltage command value V 1 based on the IV characteristic map shown in FIG. 3 and the calculated output request power P 1 .
  • the control unit 6, by adjusting the amount of gas supplied to the fuel cell 2 by using the various valves and the air compressor 31, the output current of the fuel cell 2 detected by the current sensor 2a to the output current command value I 1 performs control to approximate, by using the high-voltage DC / DC converter 51 performs a control to bring the output voltage of the fuel cell 2 detected by the voltage sensor 2b to the output voltage command value V 1.
  • the upper limit of the output current command value before entering the intermittent operation mode is I MAX .
  • the control device 6 determines whether or not a condition (operation switching condition) for switching the operation mode of the fuel cell 2 from the normal operation mode to the intermittent operation mode is satisfied (intermittent operation start determination step: S2). .
  • the operation switching condition for example, it is possible to adopt that the change over time in the required power amount or the power generation amount is less than a predetermined threshold.
  • the control device 6 switches the operation mode of the fuel cell 2 from the normal operation mode to the intermittent operation mode (intermittent operation control step). : S3).
  • the intermittent operation control step S ⁇ b> 3 the control device 6 temporarily stops the power generation of the fuel cell 2, supplies power from the battery 52 to the load device, and can maintain an open-ended voltage in the fuel cell 2. Hydrogen gas and air are supplied intermittently.
  • control device 6 determines whether or not the intermittent operation time has elapsed (intermittent operation end determination step: S4), and when determining that the intermittent operation time has elapsed, ends the intermittent operation mode. Return to the normal operation mode (normal operation resumption process: S5).
  • the control device 6 limits the output of the fuel cell 2 with the output current value I lim corresponding to the calculated flow rate Q FC as the upper limit of the output current command value.
  • the output current value I lim corresponding to the flow rate Q FC of the hydrogen gas actually supplied to the fuel cell 2 after returning from the intermittent operation mode to the normal operation mode is set to the intermittent operation mode as shown in FIGS. 3 and 4C. It becomes a value smaller than the upper limit I MAX of the output current command value before entering.
  • the control device 6 determines the output current command value I 2 ( ⁇ I lim ) and the output voltage command value V based on, for example, the output required power P 2 and the IV characteristic map shown in FIG. 2 is calculated. Then, the control unit 6, by adjusting the air supply amount to the fuel cell 2 by using the various valves and the air compressor 31, the output current of the fuel cell 2 detected by the current sensor 2a to the output current command value I 2 performs control to approximate, by using the high-voltage DC / DC converter 51 performs a control to bring the output voltage of the fuel cell 2 detected by the voltage sensor 2b to the output voltage command value V 2.
  • the output limiting step S6 in the present embodiment includes the flow rate calculating step and the output limiting step in the present invention.
  • the flow rate used to restore the gas pressure from the total supply flow rate of hydrogen gas after returning from the intermittent operation mode to the normal operation mode pressure return flow rate.
  • the flow rate actually supplied to the fuel cell 2 can be calculated, and the output of the fuel cell 2 can be limited with the output current value corresponding to the calculated flow rate as the upper limit. Therefore, it is possible to stabilize the power generation state of the fuel cell 2 by suppressing a decrease in the stoichiometric ratio after returning from the intermittent operation mode to the normal operation mode.
  • the present invention is applied in the transition period from the intermittent operation mode in which the power generation of the fuel cell 2 is temporarily stopped at a low load or the like to the normal operation mode.
  • the present invention can also be applied to a transition period from an operation stop mode (power generation stop state) in which operation 2 is completely stopped to a normal operation mode.
  • the fuel cell system according to the present invention can be mounted on a fuel cell vehicle, and can also be mounted on various mobile bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle. is there. Further, the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).
  • 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • 2 is a flowchart for explaining a control method of the fuel cell system shown in FIG. 1.
  • 4 is an IV characteristic map of the fuel cell system shown in FIG. 1. It is a time chart which shows ON / OFF of the intermittent operation mode of the fuel cell system shown in FIG. It is a time chart which shows the time history of the hydrogen gas supply flow rate of the fuel cell system shown in FIG. It is a time chart which shows the time history of the output electric current command value (upper limit) of the fuel cell system shown in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】間欠運転等の発電停止状態から通常運転への過渡期において燃料電池の発電状態を安定させることができる燃料電池システムを提供する。 【解決手段】燃料供給源から燃料電池へと燃料ガスを供給して発電を行うとともに、燃料電池の発電停止状態から発電状態への移行後における燃料電池の出力を制限する出力制限手段を備える燃料電池システムである。出力制限手段は、発電停止状態から発電状態への移行後に燃料供給源から供給される燃料ガスの全流量から、発電停止状態における燃料ガスの圧力を発電状態における燃料ガスの圧力に復帰させるために用いられる燃料ガスの流量を減じることにより、発電停止状態から発電状態への移行後に燃料電池に実際に供給される燃料ガスの流量を算出し、この算出した流量に対応した出力電流値を上限として燃料電池の出力を制限する。

Description

燃料電池システム及びその制御方法
 本発明は、燃料電池システム及びその制御方法に関する。
 従来より、反応ガス(燃料ガス及び酸化ガス)の供給を受けて発電を行う燃料電池を備えた燃料電池システムが実用化されている。また、現在においては、燃料電池に加えて蓄電池等の二次電池を備え、低負荷時等に燃料電池の発電を一時的に停止させる運転(間欠運転)を行い、負荷の増加時等に通常運転に復帰して発電を再開させる燃料電池システムが提案されている(例えば、特許文献1参照)。
特開2003-303605号公報
 ところで、燃料電池の発電を一時的に停止させる間欠運転時においては、燃料電池への燃料ガス供給が遮断されるため、燃料供給源から燃料電池へと燃料ガスを供給するための燃料供給流路内におけるガス圧力が、通常運転時におけるガス圧力よりも低下する。
 このため、前記特許文献1に記載したような従来の技術を採用して間欠運転から急加速を行おうとすると、燃料供給源からの燃料ガスの供給流量を増大させても、燃料供給流路内のガス圧力が通常運転時のガス圧力に復帰するまでの間は燃料電池自体に燃料ガスが充分に供給されない、という事態が発生し得る。このような事態が発生すると、間欠運転から通常運転への復帰後におけるストイキ比が低下して、燃料電池の発電状態の安定性が確保できないおそれがあった。
 本発明は、かかる事情に鑑みてなされたものであり、間欠運転等の発電停止状態から通常運転への過渡期において燃料電池の発電状態を安定させることができる燃料電池システムを提供すること目的とする。
 前記目的を達成するため、本発明に係る燃料電池システムは、燃料供給源及び燃料電池を備え、燃料供給源から燃料電池へと燃料ガスを供給して発電を行うとともに、燃料電池の発電停止状態から発電状態への移行後における燃料電池の出力を制限する出力制限手段を備える燃料電池システムであって、出力制限手段は、発電停止状態から発電状態への移行後に燃料供給源から供給される燃料ガスの全流量から、発電停止状態における燃料ガスの圧力を発電状態における燃料ガスの圧力に復帰させるために用いられる燃料ガスの流量を減じることにより、発電停止状態から発電状態への移行後に燃料電池に実際に供給される燃料ガスの流量を算出し、この算出した流量に対応した出力電流値を上限として燃料電池の出力を制限するものである。
 また、本発明に係る燃料電池システムの制御方法は、燃料供給源及び燃料電池を備え、燃料供給源から前記燃料電池へと燃料ガスを供給して発電を行うとともに、燃料電池の発電停止状態から発電状態への移行後における燃料電池の出力を制限する燃料電池システムの制御方法であって、発電停止状態から発電状態への移行後に燃料供給源から供給される燃料ガスの全流量から、発電停止状態における燃料ガスの圧力を発電状態における燃料ガスの圧力に復帰させるために用いられる燃料ガスの流量を減じることにより、発電停止状態から発電状態への移行後に燃料電池に実際に供給される燃料ガスの流量を算出する流量算出工程と、流量算出工程で算出した流量に対応した出力電流値を上限として燃料電池の出力を制限する出力制限工程と、を備えるものである。
 かかる構成及び方法を採用すると、発電停止状態から発電状態への移行後における燃料ガスの全供給流量から、ガス圧力を復帰させるために用いられる流量を減じることにより、燃料電池に実際に供給される流量を算出し、この算出した流量に対応した出力電流値を上限として燃料電池の出力を制限することができる。従って、発電停止状態から発電状態への移行後における燃料電池での消費ガス量を制限してストイキ比の低下を抑制することができるので、燃料電池の発電状態を安定させることができる。
 なお、「発電停止状態」とは、燃料電池による発電を停止した状態(例えば、燃料電池の運転を完全に停止させる運転停止モードや、低負荷時等に燃料電池の発電を一時的に停止させる間欠運転モード)を意味し、「発電状態」とは、燃料電池が継続的に発電を行っている状態(通常運転モード)を意味する。また、「ストイキ比」とは、燃料電池での消費ガス量に対する燃料電池への供給ガス量の余剰比を意味する。
 本発明によれば、間欠運転等の発電停止状態から通常運転への過渡期において燃料電池の発電状態を安定させることができる燃料電池システムを提供することが可能となる。
 以下、図面を参照して、本発明の実施形態に係る燃料電池システム1について説明する。本実施形態においては、本発明を燃料電池車両の車載発電システムに適用した例について説明することとする。
 まず、図1を用いて、本発明の実施形態に係る燃料電池システム1の構成について説明する。
 本実施形態に係る燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池2、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4、システムの電力を充放電する電力系5、システム全体を統括制御する制御装置6等を備えている。
 燃料電池2は、例えば固体高分子電解質型で構成され、多数の単電池を積層したスタック構造を備えている。燃料電池2の単電池は、イオン交換膜からなる電解質の一方の面にカソード極(空気極)を有し、他方の面にアノード極(燃料極)を有し、さらにカソード極及びアノード極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、このガス供給により燃料電池2は電力を発生する。燃料電池2には、発電中の電流及び電圧(出力電流及び出力電圧)を検出する電流センサ2a及び電圧センサ2bが取り付けられている。なお、燃料電池2としては、固体高分子電解質型のほか、燐酸型や熔融炭酸塩型等種々のタイプのものを採用することができる。
 酸化ガス配管系3は、エアコンプレッサ31、酸化ガス供給路32、加湿モジュール33、カソードオフガス流路34、希釈器35、エアコンプレッサ31を駆動するモータM1等を有している。
 エアコンプレッサ31は、制御装置6の制御指令で作動するモータM1の駆動力により駆動されて、図示していないエアフィルタを介して外気から取り込んだ酸素(酸化ガス)を燃料電池2のカソード極に供給する。酸化ガス供給路32は、エアコンプレッサ31から供給される酸素を燃料電池2のカソード極に導くためのガス流路である。燃料電池2のカソード極からはカソードオフガスが排出される。このカソードオフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。
 加湿モジュール33は、酸化ガス供給路32を流れる低湿潤状態の酸化ガスと、カソードオフガス流路34を流れる高湿潤状態のカソードオフガスと、の間で水分交換を行い、燃料電池2に供給される酸化ガスを適度に加湿する。カソードオフガス流路34は、カソードオフガスをシステム外に排気するためのガス流路であり、そのガス流路のカソード極出口付近にはエア調圧弁A1が配設されている。燃料電池2に供給される酸化ガスの背圧は、エア調圧弁A1によって調圧される。希釈器35は、水素ガスの排出濃度を予め設定された濃度範囲(環境基準に基づいて定められた範囲等)に収まるように希釈する。希釈器35には、カソードオフガス流路34の下流及び後述するアノードオフガス流路44の下流が連通しており、水素オフガス及び酸素オフガスは混合希釈されてシステム外に排気されることとなる。
 燃料ガス配管系4は、燃料供給源41、燃料ガス供給路42、燃料ガス循環路43、アノードオフガス流路44、水素循環ポンプ45、逆止弁46、水素循環ポンプ45を駆動するためのモータM2等を有している。
 燃料供給源41は、燃料電池2へ水素ガス等の燃料ガスを供給する手段であり、例えば高圧水素タンクや水素貯蔵タンク等によって構成される。燃料ガス供給路42は、燃料ガス供給源41から放出される燃料ガスを燃料電池2のアノード極に導くためのガス流路であり、そのガス流路には上流から下流にかけてタンクバルブH1、水素供給バルブH2、FC入口バルブH3等の弁が配設されている。タンクバルブH1、水素供給バルブH2及びFC入口バルブH3は、燃料電池2へと燃料ガスを供給(又は遮断)するためのシャットバルブであり、例えば電磁弁によって構成されている。
 燃料ガス循環路43は、未反応燃料ガスを燃料電池2へ還流させるための帰還ガス流路であり、そのガス流路には上流から下流にかけてFC出口バルブH4、水素循環ポンプ45、逆止弁46が各々配設されている。燃料電池2から排出された低圧の未反応燃料ガスは、制御装置6の制御指令で作動するモータM2の駆動力により駆動される水素循環ポンプ45によって適度に加圧され、燃料ガス供給路42へ導かれる。燃料ガス供給路42から燃料ガス循環路43への燃料ガスの逆流は、逆止弁46によって抑制される。アノードオフガス流路44は、燃料電池2から排出された水素オフガスを含むアノードオフガスをシステム外に排気するためのガス流路であり、そのガス流路にはパージバルブH5が配設されている。
 電力系5は、高圧DC/DCコンバータ51、バッテリ52、トラクションインバータ53、補機インバータ54、トラクションモータM3、補機モータM4等を備えている。
 高圧DC/DCコンバータ51は、直流の電圧変換器であり、バッテリ52から入力された直流電圧を調整してトラクションインバータ53側に出力する機能と、燃料電池2又はトラクションモータM3から入力された直流電圧を調整してバッテリ52に出力する機能と、を有する。高圧DC/DCコンバータ51のこれらの機能により、バッテリ52の充放電が実現される。また、高圧DC/DCコンバータ51により、燃料電池2の出力電圧が制御される。
 バッテリ52は、充放電可能な二次電池であり、種々のタイプの二次電池(例えばニッケル水素バッテリ等)により構成されている。バッテリ52は、図示していないバッテリコンピュータの制御によって余剰電力を充電したり補助的に電力を供給したりすることが可能になっている。燃料電池2で発電された直流電力の一部は、高圧DC/DCコンバータ51によって昇降圧され、バッテリ52に充電される。なお、バッテリ52に代えて二次電池以外の充放電可能な蓄電器(例えばキャパシタ)を採用することもできる。
 トラクションインバータ53及び補機インバータ54は、パルス幅変調方式のPWMインバータであり、与えられる制御指令に応じて燃料電池2又はバッテリ52から出力される直流電力を三相交流電力に変換してトラクションモータM3及び補機モータM4へ供給する。トラクションモータM3は、車輪7L、7Rを駆動するためのモータである。トラクションモータM3には、その回転数を検知する回転数検知センサ5aが取付けられている。補機モータM4は、各種補機類を駆動するためのモータであり、エアコンプレッサ31を駆動するモータM1や水素循環ポンプ45を駆動するモータM2等を総称したものである。
 制御装置6は、CPU、ROM、RAM等により構成され、入力される各センサ信号に基づき、当該システムの各部を統合的に制御する。具体的には、制御装置6は、回転数検知センサ5aやアクセルペダル開度を検出するアクセルペダルセンサ6a等から送出される各センサ信号に基づいて、燃料電池2の出力要求電力を算出する。そして、制御装置6は、この出力要求電力に対応する出力電力を発生させるように燃料電池2の出力電圧及び出力電流を制御する。また、制御装置6は、トラクションインバータ53及び補機インバータ54の出力パルス幅等を制御して、トラクションモータM3及び補機モータM4を制御する。
 また、制御装置6は、通常運転モードと間欠運転モードとの切り換えを行う。通常運転モードとは、トラクションモータM3等の負荷装置への電力供給のために燃料電池2が発電を継続的に行う運転モードを意味する。間欠運転モードとは、例えばアイドリング時、低速走行時、回生制動時等のような低負荷運転時に燃料電池2の発電を一時的に休止し、バッテリ52から負荷装置への電力供給を行い、燃料電池2には開放端電圧を維持し得る程度の水素ガス及び空気の供給を間欠的に行う運転モードを意味する。通常運転モードは本発明における発電状態に相当し、間欠運転モードは本発明における発電停止状態に相当する。
 また、制御装置6は、燃料電池2の運転モードが間欠運転モードから通常運転モードへと復帰(移行)した後における燃料電池2の出力を制限する。具体的には、制御装置6は、間欠運転モードから通常運転モードへの復帰後に燃料供給源41から供給される水素ガスの全流量から、間欠運転モードにおける水素ガスの圧力を通常運転モードにおける水素ガスの圧力に復帰させるために用いられる水素ガスの流量を減じることにより、間欠運転モードから通常運転モードへの復帰後に燃料電池2に実際に供給される水素ガスの流量を算出する。そして、制御装置6は、算出した流量に対応した出力電流値を上限として燃料電池2の出力を制限する。すなわち、制御装置6は、本発明における出力制限手段として機能するものである。
 次に、図2のフローチャート、図3のマップ及び図4A~図4Cのタイムチャートを用いて、本実施形態に係る燃料電池システム1の制御方法について説明する。
 まず、制御装置6は、起動後に通常運転モードを実現させるための制御を行う(通常運転制御工程:S1)。通常運転制御工程S1において、制御装置6は、回転数検知センサ5aやアクセルペダルセンサ6a等から送出される各センサ信号に基づいて、燃料電池2の出力要求電力を算出し、この算出した出力要求電力に対応する出力電流指令値及び出力電圧指令値を算出する。例えば、制御装置6は、図3に示したIV特性マップと、算出した出力要求電力Pと、に基づいて、出力電流指令値I及び出力電圧指令値Vを算出する。そして、制御装置6は、各種弁やエアコンプレッサ31を用いて燃料電池2へのガス供給量を調整することにより、電流センサ2aで検出した燃料電池2の出力電流を出力電流指令値Iに近付ける制御を行うとともに、高圧DC/DCコンバータ51を用いることにより、電圧センサ2bで検出した燃料電池2の出力電圧を出力電圧指令値Vに近付ける制御を行う。なお、本実施形態においては、間欠運転モードに入る前の出力電流指令値の上限をIMAXとする。
 次いで、制御装置6は、燃料電池2の運転モードを通常運転モードから間欠運転モードに切り換えるための条件(運転切替条件)が充足されるか否かを判定する(間欠運転開始判定工程:S2)。運転切替条件としては、例えば、要求電力量や発電量の経時変化が所定の閾値未満となること等を採用することができる。そして、制御装置6は、間欠運転開始判定工程S2において運転切替条件が充足されるものと判定した場合に、燃料電池2の運転モードを通常運転モードから間欠運転モードへと切り替える(間欠運転制御工程:S3)。間欠運転制御工程S3において、制御装置6は、燃料電池2の発電を一時的に停止させ、バッテリ52から負荷装置への電力供給を行い、燃料電池2には開放端電圧を維持し得る程度の水素ガス及び空気の供給を間欠的に行う。
 次いで、制御装置6は、間欠運転時間が経過したか否かを判定し(間欠運転終了判定工程:S4)、間欠運転時間が経過したものと判定した場合には、間欠運転モードを終了して通常運転モードへ復帰する(通常運転再開工程:S5)。
 ところで、間欠運転モードを実現させて燃料電池2の発電を一時的に停止させると、燃料電池2への水素ガス供給が遮断されるため、燃料供給源41から燃料電池2へと水素ガスを供給するための燃料ガス供給流路42内における水素ガスの圧力が、通常運転モードにおける圧力よりも低下する。このため、制御装置6は、間欠運転モードから通常運転モードへの復帰の際に、燃料ガス供給流路42内における水素ガスの圧力を通常運転モードにおける値に復帰させるとともに、燃料電池2の出力を制限する(出力制限工程:S6)。
 出力制限工程S6において、制御装置6は、図4A及び図4Bに示すように、間欠運転モードから通常運転モードへの復帰後における水素ガスの全供給流量Qから、水素ガスの圧力を復帰させるために用いられる圧力復帰用流量Qを減じることにより、燃料電池2に実際に供給される水素ガスの流量QFCを算出する。そして、制御装置6は、算出した流量QFCに対応した出力電流値Ilimを出力電流指令値の上限として、燃料電池2の出力を制限する。間欠運転モードから通常運転モードへの復帰後に燃料電池2に実際に供給される水素ガスの流量QFCに対応した出力電流値Ilimは、図3及び図4Cに示すように、間欠運転モードに入る前の出力電流指令値の上限IMAXよりも小さい値となる。
 出力制限工程S6において、制御装置6は、例えば出力要求電力Pと、図3に示したIV特性マップと、に基づいて、出力電流指令値I(<Ilim)及び出力電圧指令値Vを算出する。そして、制御装置6は、各種弁やエアコンプレッサ31を用いて燃料電池2へのエア供給量を調整することにより、電流センサ2aで検出した燃料電池2の出力電流を出力電流指令値Iに近付ける制御を行うとともに、高圧DC/DCコンバータ51を用いることにより、電圧センサ2bで検出した燃料電池2の出力電圧を出力電圧指令値Vに近付ける制御を行う。本実施形態における出力制限工程S6は、本発明における流量算出工程及び出力制限工程を含むものである。
 以上説明した実施形態に係る燃料電池システム1においては、間欠運転モードから通常運転モードへの復帰後における水素ガスの全供給流量から、ガス圧力を復帰させるために用いられる流量(圧力復帰用流量)を減じることにより、燃料電池2に実際に供給される流量を算出し、この算出した流量に対応した出力電流値を上限として燃料電池2の出力を制限することができる。従って、間欠運転モードから通常運転モードへの復帰後におけるストイキ比の低下を抑制して、燃料電池2の発電状態を安定させることができる。
 なお、以上の実施形態においては、低負荷時等に燃料電池2の発電を一時的に停止させる間欠運転モードから通常運転モードへの過渡期において本発明を適用した例を示したが、燃料電池2の運転を完全に停止させる運転停止モード(発電停止状態)から通常運転モードへの過渡期に本発明を適用することもできる。
 本発明に係る燃料電池システムは、以上の実施形態に示すように、燃料電池車両に搭載可能であり、また、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも搭載可能である。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用してもよい。
本発明の実施形態に係る燃料電池システムの構成図である。 図1に示した燃料電池システムの制御方法を説明するためのフローチャートである。 図1に示した燃料電池システムのIV特性マップである。 図1に示した燃料電池システムの間欠運転モードのON/OFFを示すタイムチャートである。 図1に示した燃料電池システムの水素ガス供給流量の時間履歴を示すタイムチャートである。 図1に示した燃料電池システムの出力電流指令値(上限)の時間履歴を示すタイムチャートである。
符号の説明
 1…燃料電池システム、2…燃料電池、6…制御装置(出力制限手段)、41…燃料供給源。

Claims (3)

  1.  燃料供給源及び燃料電池を備え、前記燃料供給源から前記燃料電池へと燃料ガスを供給して発電を行うとともに、前記燃料電池の発電停止状態から発電状態への移行後における前記燃料電池の出力を制限する出力制限手段を備える燃料電池システムであって、
     前記出力制限手段は、
     前記発電停止状態から前記発電状態への移行後に前記燃料供給源から供給される燃料ガスの全流量から、前記前記発電停止状態における燃料ガスの圧力を前記発電状態における燃料ガスの圧力に復帰させるために用いられる燃料ガスの流量を減じることにより、前記発電停止状態から前記発電状態への移行後に前記燃料電池に実際に供給される燃料ガスの流量を算出し、この算出した流量に対応した出力電流値を上限として前記燃料電池の出力を制限するものである、
    燃料電池システム。
  2.  前記出力制限手段は、前記発電停止状態としての運転停止モード又は間欠運転モードから前記発電状態としての通常運転モードへの移行後における前記燃料電池の出力を制限するものである、
    請求項1に記載の燃料電池システム。
  3.  燃料供給源及び燃料電池を備え、前記燃料供給源から前記燃料電池へと燃料ガスを供給して発電を行うとともに、前記燃料電池の発電停止状態から発電状態への移行後における前記燃料電池の出力を制限する燃料電池システムの制御方法であって、
     前記発電停止状態から前記発電状態への移行後に前記燃料供給源から供給される燃料ガスの全流量から、前記発電停止状態における燃料ガスの圧力を前記発電状態における燃料ガスの圧力に復帰させるために用いられる燃料ガスの流量を減じることにより、前記発電停止状態から前記発電状態への移行後に前記燃料電池に実際に供給される燃料ガスの流量を算出する流量算出工程と、
     前記流量算出工程で算出した流量に対応した出力電流値を上限として前記燃料電池の出力を制限する出力制限工程と、
    を備える、
    燃料電池システムの制御方法。
PCT/JP2009/050362 2008-01-30 2009-01-14 燃料電池システム及びその制御方法 WO2009096223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009000254.4T DE112009000254B8 (de) 2008-01-30 2009-01-14 Brennstoffzellensystem und Verfahren zur Steuerung des Systems
US12/811,860 US8092946B2 (en) 2008-01-30 2009-01-14 Fuel cell system and control method of the system
CN2009801037138A CN101933188B (zh) 2008-01-30 2009-01-14 燃料电池系统及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-019702 2008-01-30
JP2008019702A JP4831437B2 (ja) 2008-01-30 2008-01-30 燃料電池システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2009096223A1 true WO2009096223A1 (ja) 2009-08-06

Family

ID=40912576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050362 WO2009096223A1 (ja) 2008-01-30 2009-01-14 燃料電池システム及びその制御方法

Country Status (5)

Country Link
US (1) US8092946B2 (ja)
JP (1) JP4831437B2 (ja)
CN (1) CN101933188B (ja)
DE (1) DE112009000254B8 (ja)
WO (1) WO2009096223A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120594B2 (ja) * 2006-10-20 2013-01-16 トヨタ自動車株式会社 燃料電池システム及びその運転方法
JP5755552B2 (ja) * 2011-11-21 2015-07-29 株式会社日本自動車部品総合研究所 燃料電池システム及び燃料電池システムの制御方法
JP5910439B2 (ja) * 2012-09-28 2016-04-27 三菱自動車工業株式会社 電力制御装置
CN113540527B (zh) * 2021-07-16 2022-10-04 同济大学 一种多时序燃料电池输出控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284102A (ja) * 1997-04-10 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の出力制御装置
JP2003036871A (ja) * 2001-07-24 2003-02-07 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2006019153A (ja) * 2004-07-02 2006-01-19 Honda Motor Co Ltd 燃料電池システムおよびその起動方法
JP2006092948A (ja) * 2004-09-24 2006-04-06 Nissan Motor Co Ltd 燃料電池の発電量制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662872B2 (ja) 2000-11-17 2005-06-22 本田技研工業株式会社 燃料電池電源装置
JP3911435B2 (ja) 2002-04-11 2007-05-09 トヨタ自動車株式会社 電源システムおよびその制御方法
JP4507584B2 (ja) 2003-12-15 2010-07-21 トヨタ自動車株式会社 燃料電池システム
JP2005267969A (ja) * 2004-03-17 2005-09-29 Toyota Motor Corp 燃料電池システム
CA2580424C (en) * 2004-09-24 2011-01-04 Nissan Motor Co., Ltd. Power generation control system for fuel cell
JP4821949B2 (ja) 2005-01-24 2011-11-24 トヨタ自動車株式会社 燃料電池システム
US20060194082A1 (en) * 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell
JP4788945B2 (ja) * 2005-04-06 2011-10-05 トヨタ自動車株式会社 燃料電池システム
JP4997804B2 (ja) * 2006-03-27 2012-08-08 日産自動車株式会社 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284102A (ja) * 1997-04-10 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の出力制御装置
JP2003036871A (ja) * 2001-07-24 2003-02-07 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2006019153A (ja) * 2004-07-02 2006-01-19 Honda Motor Co Ltd 燃料電池システムおよびその起動方法
JP2006092948A (ja) * 2004-09-24 2006-04-06 Nissan Motor Co Ltd 燃料電池の発電量制御装置

Also Published As

Publication number Publication date
CN101933188B (zh) 2013-09-11
US8092946B2 (en) 2012-01-10
JP4831437B2 (ja) 2011-12-07
US20100279192A1 (en) 2010-11-04
DE112009000254T5 (de) 2011-02-17
CN101933188A (zh) 2010-12-29
DE112009000254B8 (de) 2014-03-13
DE112009000254B4 (de) 2014-01-02
JP2009181809A (ja) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5120594B2 (ja) 燃料電池システム及びその運転方法
US8722266B2 (en) Fuel cell system
JP5007665B2 (ja) 燃料電池システム
US8691453B2 (en) Fuel cell system
JP4761162B2 (ja) 燃料電池システム
KR101136497B1 (ko) 연료전지시스템 및 그 제어방법
US9793558B2 (en) Fuel cell system
JP4993293B2 (ja) 燃料電池システム及び移動体
JP5757227B2 (ja) 燃料電池システム及びその制御方法
KR101135654B1 (ko) 연료전지시스템 및 그 제어방법
JP2008130442A (ja) 燃料電池システム
WO2008099743A1 (ja) 燃料電池システム
JP4831437B2 (ja) 燃料電池システム及びその制御方法
JP2008226595A (ja) 燃料電池システム及びその制御方法
CN107452974B (zh) 缺氢判断方法及缺氢判断装置
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
JP2013171682A (ja) 燃料電池システム及び燃料電池の制御方法
JP5672639B2 (ja) 燃料電池システム及びその運転方法
JP2010157426A (ja) 燃料電池システム
WO2013080358A1 (ja) 燃料電池システム及びその制御方法
JP2008130443A (ja) 燃料電池システム
JP2018022667A (ja) 燃料電池システム
JP2009140658A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103713.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12811860

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000254

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09706904

Country of ref document: EP

Kind code of ref document: A1