WO2007060841A1 - 電池構造体、組電池、およびこれらを搭載した車両 - Google Patents

電池構造体、組電池、およびこれらを搭載した車両 Download PDF

Info

Publication number
WO2007060841A1
WO2007060841A1 PCT/JP2006/322350 JP2006322350W WO2007060841A1 WO 2007060841 A1 WO2007060841 A1 WO 2007060841A1 JP 2006322350 W JP2006322350 W JP 2006322350W WO 2007060841 A1 WO2007060841 A1 WO 2007060841A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode active
active material
separator
thickness
material layer
Prior art date
Application number
PCT/JP2006/322350
Other languages
English (en)
French (fr)
Inventor
Kyoichi Watanabe
Takaaki Abe
Takamitsu Saito
Osamu Shimamura
Kenji Hosaka
Hajime Sato
Hideaki Horie
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP06823237.0A priority Critical patent/EP1953861B1/en
Priority to CN2006800439898A priority patent/CN101313434B/zh
Priority to KR1020087012292A priority patent/KR101052163B1/ko
Priority to US12/085,216 priority patent/US8124276B2/en
Publication of WO2007060841A1 publication Critical patent/WO2007060841A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery structure, and more particularly to a battery structure having excellent heat dissipation or vibration isolation.
  • a bipolar battery includes a bipolar electrode in which a positive electrode active material layer, a current collector, and a negative electrode active material layer are laminated in this order, and a separator. It has a structure in which layers are stacked alternately.
  • Each component of a bipolar battery used in a moving body such as a vehicle is designed to be very thin compared to the thickness of the separator and the thickness of the positive electrode active material layer and the thickness of the negative electrode active material layer. It had been. This was because the maximum capacity of the positive electrode active material layer and the negative electrode active material layer in the limited thickness of the bipolar battery itself was attempted to increase the capacity and output.
  • the present inventors have focused on the “thickness ratio” of each component of the bipolar battery, and have made the specific force of the thickness of each component, which has been preferred in the past, to make it easier to dissipate heat inside the battery. It was found that the output of the battery was reduced by making it more susceptible to vibration. The present invention was completed.
  • a bipolar electrode in which a positive electrode active material layer is formed on one surface of a current collector and a negative electrode active material layer is formed on the other surface, and the bipolar electrode are alternately stacked.
  • a single cell layer comprising the adjacent positive electrode active material layer, the separator, and the negative electrode active material layer, wherein the thickness of the separator is the thickness of the positive electrode active material layer.
  • the bipolar battery is characterized in that it is 0.68 times or more and less than 1.0 times relative to the thickness of the negative electrode active material layer and 0.68 times or more and less than 1.0 times the thickness of the negative electrode active material layer Solve the problem.
  • FIG. 1 is a partial cross-sectional schematic view of a bipolar battery.
  • FIG. 2 is a partial schematic cross-sectional view of a conventional bipolar battery.
  • FIG. 3 is a diagram showing a Maspane model of battery elements.
  • FIG. 4 is a partial cross-sectional schematic view of a cell layer.
  • FIG. 5 is a partial cross-sectional schematic view of a single cell layer of a conventional bipolar battery.
  • FIG. 6 is a schematic plan view of a bipolar battery.
  • FIG. 7 is a schematic cross-sectional view of the bipolar battery shown in FIG.
  • FIG. 8 is a schematic cross-sectional view of the bipolar battery shown in FIG.
  • FIG. 9 is a schematic plan view of an assembled battery module in which the bipolar battery shown in FIG. 6 is placed in a battery case.
  • FIG. 10 is a schematic cross-sectional view of the assembled battery module shown in FIG.
  • FIG. 11 is a schematic cross-sectional view of the assembled battery module shown in FIG.
  • FIG. 12 is a schematic plan view of an assembled battery in which the assembled battery modules shown in FIG. 9 are connected in parallel.
  • FIG. 13 is a schematic cross-sectional view of the assembled battery shown in FIG.
  • FIG. 14 is a schematic cross-sectional view of the assembled battery shown in FIG.
  • FIG. 15 is a schematic sectional view of a vehicle.
  • FIG. 16 is a vibration transmissibility-frequency graph of Example 15 and Comparative Example 1.
  • FIG. 17 is a time-temperature graph of Example 15 and Comparative Example 1.
  • FIG. 18 shows the results of measuring the average reduction amount of the bipolar batteries produced in Examples 1 to 6 and Comparative Examples 1 and 2.
  • FIG. 19 shows the results of measuring the resonance shift amount of the bipolar batteries produced in Examples 1 to 6 and Comparative Examples 1 and 2.
  • FIG. 20 shows the results of measuring the average reduction amount, the resonance shift amount, the heat rise, and the heat dissipation time of the bipolar batteries produced in Examples 7 to 13 and Comparative Example 3.
  • FIG. 21 shows the results of measuring the average reduction amount, the resonance shift amount, the heat rise, and the heat dissipation time of the bipolar batteries produced in Example 14 and Comparative Example 4.
  • FIG. 22 shows the results of measuring the average reduction amount, the resonance shift amount, the heat rise, and the heat dissipation time of the bipolar batteries produced in Example 15 and Comparative Example 5.
  • the first of the present invention is a bipolar device in which a positive electrode active material layer 12 is formed on one surface of a current collector 11 and a negative electrode active material layer 13 is formed on the other surface.
  • a single electrode configured to include the positive electrode active material layer 12, the separator 14, and the negative electrode active material layer 13 adjacent to each other.
  • the thickness of the separator 14 is 0.68 times or more and less than 1.0 times with respect to the thickness of the positive electrode active material layer 12, and 0.68 times with respect to the thickness of the negative electrode active material layer 13. This is a bipolar battery characterized by being at least twice and less than 1.0 times.
  • FIG. 2 illustrates a partial schematic cross-sectional view of a conventional bipolar battery.
  • the thickness of the separator 14 relative to the positive electrode active material layer 12 and the negative electrode active material layer 13 It can be seen that there is a big difference in the ratio.
  • the conventional bipolar battery increases the ratio of the thickness of the positive electrode active material layer 12 and the thickness of the negative electrode active material layer 13 for the purpose of increasing the power generation efficiency. The output decreased on the contrary.
  • the structure of the nanopolar battery of the present invention is 0.668 times or more and less than 1.0 times the thickness power of the separator 14 and the thickness of the positive electrode active material layer 12, and the thickness of the negative electrode active material layer
  • it since it is 0.68 times or more and less than 1.0 times, it is very excellent in balance between capacity and heat dissipation or vibration isolation. Therefore, by applying the configuration of the present invention, a high output bipolar A battery can be obtained.
  • the ratios may be 0.68 times or more and less than 1.0 times in both cases, but more preferably 0.75 to 0.95 times! /.
  • the separator prevents contact between the positive electrode active material layer and the negative electrode active material layer. Play a role.
  • the separator functions as an electrolyte in addition to the above-described role of preventing contact.
  • the separator does not play the role of electrolyte, and the separator is also referred to as “separator in a narrow sense”, and the separator that plays the role of electrolyte itself is also referred to as “polymer electrolyte”.
  • the structure of the bipolar battery of the present invention is suitable for both a non-aqueous electrolyte secondary battery and a polymer electrolyte secondary battery.
  • polypropylene or polyolefin which is preferable, can be used in the form of a nonwoven fabric or a microporous membrane. They can form a porous structure in addition to being excellent in insulation, thermal stability, chemical stability, thermal cycleability, or mechanical strength. It is preferable that the separator in the narrow sense has a porous structure because the panel damping effect of the separator is improved and the impregnation rate of the electrolytic solution is improved.
  • the thickness of the narrowly defined separator is preferably 35 ⁇ m or less, more preferably 25 m or less, and still more preferably 20 / z m or less. A thickness of 35 / zm or less is preferable because the output is improved. If the thickness is 25 ⁇ m or less, the bipolar battery can be made thinner.
  • the air permeability of the separator in the narrow sense is preferably 10 to 400 sec, more preferably 40 to 40 Zl0cc. 200secZl0cc. If it is more than lOsecZlOcc, it is excellent in vibration isolation, and if it is less than 400secZl0cc, it is excellent in battery output.
  • the curvature ( ⁇ ) of the narrowly defined separator is 0.5 to 2.0, more preferably 0.9 to 1.8. If it is 0.5 or more, the vibration-proof property is excellent, and if it is 2.0 or less, the battery output is excellent.
  • the hardness Shore ⁇ of the narrowly defined separator is preferably 20 to: L10 force, and more preferably 25 to 95. If Shore A is 20 or more, the resonance frequency shifts to the low frequency side, and the possibility of reaching the resonance frequency when receiving vibration is reduced, that is, it is difficult to resonate with vibration outside the battery. If Shore A is 110 or less, the separator will play the role of panel and damper moderately, improving the vibration isolation. Further, if the hardness Shore A of the narrowly defined separator is within the above range, the bipolar electrodes arranged on both sides can be evenly separated even when the separator is thin, and the bipolar electrodes vibrate. This reduces the possibility of touching and shorting. Measurement method of Shore A in the present invention Complies with WIS-K 6253.
  • the hardness Shore A of at least one layer of the narrowly defined separator is different from the hardness Shore A of other narrowly defined separators. As a result, the vibration isolation can be improved.
  • the force to use five narrowly defined separators when five single cell layers are stacked, the force to use five narrowly defined separators, two of these may be made more flexible or harder than the other three narrowly defined separators. .
  • the hardness of the narrowly defined separators in all five layers may be different. However, these are merely examples, and do not limit the number of single cell layers stacked or the percentage of separators in a narrow sense that changes the hardness. In the conventional general bipolar battery, when a plurality of unit cell layers are stacked, separators in a narrow sense included in these unit cell layers have the same hardness.
  • the hardness separator A of the narrowly-defined separator included in the single-cell layer disposed at the center of the bipolar battery has a narrowly-defined sec- ondity included in the other single-cell layers. It is preferable that the hardness is smaller than the hardness Shore A of the palator. As a result, vibration isolation and heat dissipation can be improved.
  • the laminated body of the unit cell layer and the current collector can be replaced with a dynamic model composed of a mass, a panel, and a damper.
  • Figure 3 shows an example of a bipolar battery in which five cell layers are stacked and a corresponding Maspane model.
  • symbols Kl ⁇ 3 are panel models
  • Cl ⁇ 3 is a damper model
  • M is a mass.
  • K3 bar of The panel constant of K1 and K2 can be made smaller, and the damper coefficient of C3 can be made larger than that of C1 and C2.
  • the peak height around 180Hz can be made smaller, and the vibration isolation can be improved.
  • narrowly defined separator 14 is the most easily heated among the narrowly defined separators, so the hardness of the narrowly defined separator 14 is the narrowly defined separator 14 included in the other unit cell layers 15. Heat dissipation can be improved by making it smaller than i ⁇ ”.
  • the separator When a narrowly defined separator is used, the separator itself does not serve as an electrolyte! Therefore, it is necessary to use an electrolyte together.
  • the electrolytic solution conventionally known ones such as those in which a supporting salt is dissolved in a non-aqueous solvent can be used.
  • PC propylene carbonate
  • PC ethylene carbonate
  • Cyclic carbonates such as EC); chain carbonates such as dimethyl carbonate, methylethyl carbonate, and jetyl carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4 dioxane, 1,2 dimethoxyethane 1,2 dibutoxetane, and 1,3 dixolan, ethenores such as jetinole etenore; y butyrololataton Which ratatones; -tolyls such as acetonitrile; esters such as methyl propionate; amides such as dimethylformamide; esters such as methyl acetate and methyl formate; sulfolane; dimethyl sulfoxide; and 3-methyl-1.3 oxazolidine At least one selected from the group consisting of 2 on forces. Li (CF SO) as supporting salt
  • the electrolyte may contain other additives depending on the purpose.
  • Polymer electrolytes which are separators that prevent contact between the positive electrode active material layer and the negative electrode active material layer and also serve as an electrolyte, are classified into intrinsic polymer electrolytes and gel electrolytes, but both are suitable for the present invention. It is.
  • the intrinsic polymer electrolyte is a solid electrolyte made of a polymer.
  • an intrinsic polymer electrolyte When an intrinsic polymer electrolyte is used, there is an advantage that the electrolyte is not contained in the electrolyte, so there is no risk of leakage and the safety is high.
  • the polymer constituting the intrinsic polymer electrolyte include conventionally known polymers such as polyethylene oxide, polypropylene oxide, polyester-based resin, aramid-based resin, polyolefin-based resin, copolymers thereof, and alloys thereof. More preferably, it is aramid resin.
  • Preferred examples of the polyester-based resin include PET.
  • Preferred examples of the aramid-based resin include rose-type aromatic polyamide and meta-type aromatic polyamide.
  • Preferred examples of the polyolefin-based resin include polyethylene and polypropylene. Can be mentioned. Further, in order to improve ionic conductivity, an electrolyte obtained by adding a supporting salt thereto may be used as an electrolyte, or ionic dissociation groups such as a carboxylic acid group, a phosphoric acid group, a sulfonic acid group, and a siloxane group may be used. It is good also as what is introduce
  • the above-mentioned rosin can form a porous structure. It is preferable that the intrinsic polymer electrolyte has a porous structure because the spring damping effect of the separator is improved and the impregnation rate of the electrolytic solution is improved. In particular, aramid resin can make the separator thinner.
  • the thickness of the intrinsic polymer electrolyte is preferably 35 ⁇ m or less, more preferably 25 It is not more than ⁇ m, more preferably not more than 20 ⁇ m. A thickness of 35 ⁇ m or less is preferable because the output is improved. If the thickness is 25 ⁇ m or less, the bipolar battery can be made thinner.
  • the intrinsic polymer electrolyte has an air permeability of preferably 10 to 400 sec, more preferably Zl0cc.
  • the curvature ( ⁇ ) of the intrinsic polymer electrolyte is preferably 0.5 to 2.0 force, more preferably 0.9 to
  • Intrinsic polymer electrolyte hardness ⁇ is 20 ⁇ : L 10 force, more preferably 25 ⁇ 9
  • hardness Shore A is preferably different from hardness Shore A of other intrinsic polymer electrolytes.
  • the reasons and details of the preferred are as described in the section of hardness Shore A of the separator in the narrow sense of the non-aqueous electrolytic secondary battery described above.
  • the hardness Shore A of the intrinsic polymer electrolyte contained in the single cell layer arranged at the center of the bipolar battery is the same as that of the intrinsic polymer electrolyte contained in the other single cell layers. It is preferred that the hardness is the smallest compared to Shore A. The reason and details are preferably as described in the section of hardness Shore A in the narrow sense of the non-aqueous electrolytic secondary battery described above.
  • a gel electrolyte is a gel in which a polymer forms a three-dimensional network structure through interaction between molecular chains such as chemical bonds, crystallization, or molecular entanglement! /, And the electrolyte is held in the voids. Electrolyte.
  • the panel constant and the damper constant can be easily adjusted, and there is an advantage that it is easy to improve the vibration isolation.
  • the polymer itself has an electrolyte solution with an intrinsic polymer electrolyte having ionic conductivity as a skeleton, or the polymer itself has no ionic conductivity, the polymer or the ionic conductivity is low V, and the polymer is electrolyzed with the skeleton. What hold
  • polymers that have no ionic conductivity or low ionic conductivity include poly Conventionally known ones such as vinylidene fluoride, polybutyl chloride, polyacrylonitrile, polymethyl methacrylate, copolymers thereof, and alloys thereof can be used.
  • the mass ratio between the polymer and the electrolytic solution is not particularly limited, and can be appropriately determined in consideration of the output of the battery, the panel constant, and the like.
  • the thickness of the gel electrolyte is preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less, and still more preferably 20 m or less. A thickness of 35 m or less is preferable because output is improved. If the thickness is 25 ⁇ m or less, the bipolar battery can be made thinner.
  • the air permeability of the polymer serving as the skeleton of the gel electrolyte is preferably 10 to 400 sec Zl0cc, more preferably 40 to 200 sec Zl0cc. lOsecZlOcc
  • Battery output is excellent when it is 400secZl0cc or less.
  • the curvature ( ⁇ ) of the skeleton contained in the gel electrolyte is more preferably 0.5 to 20, more preferably
  • the hardness of the gel electrolyte is preferably 20 to: L 10 force, more preferably 25 to 95.
  • the hardness Shore A of at least one gel electrolyte is preferably different from the hardness Shore A of other intrinsic polymer electrolytes.
  • the preferable reason and details are as described in the section of hardness A of the separator in the narrow sense of the non-aqueous electrolytic secondary battery described above.
  • the hardness shore A of the gel electrolyte contained in the unit cell layer arranged at the center of the bipolar battery is the hardness shore A of the gel electrolyte contained in the other unit cell layers. It is preferably the smallest compared with A. The reason and details are preferable as described in the section of hardness Shore A of the non-aqueous electrolytic secondary battery in the narrow sense.
  • a plurality of types of intrinsic polymer electrolytes may be used, or a plurality of types of gel electrolysis may be used. It is possible to use a material, or to use an intrinsic polymer electrolyte and a gel electrolyte in combination.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material include composite oxides of lithium and transition metals, transition metal oxides, transition metal sulfides, PbO, AgO, and NiOOH.
  • Spinel LiMn O is a compound of transition metal and lithium.
  • Li Mn complex oxides Li Co complex oxides such as LiCoO
  • Ni-based composite oxides Ni-based composite oxides
  • LiFe-based composite oxides such as LiFeO
  • transition gold such as LiFePO
  • Preferred examples include a phosphate compound of a genus and lithium; or a sulfate compound of a transition metal and lithium.
  • transition metal oxides include V 2 O, MnO, and MoO.
  • transition metal sulfides include TiS and MoS.
  • Li-Mn-based complex oxide it is particularly preferable to use a Li-Mn-based complex oxide.
  • the horizontal part of the charge / discharge curve obtained from the voltage-charge / discharge time graph can be tilted, so measure the voltage.
  • SOC state of charge
  • the average particle diameter of the positive electrode active material is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • a thickness of 10 ⁇ m or less is preferable in that the electrode resistance is reduced.
  • the surface of the positive electrode active material layer can be made uniform even if the thickness of the positive electrode active material layer is reduced.
  • the average particle size of the positive electrode active material is preferably 1Z10 or less of the thickness of the separator. If it is 1Z10 or less, the risk that the positive electrode active material breaks through the separator and causes a micro short circuit is reduced.
  • the positive electrode active material layer can also contain an electrolyte, a supporting salt, a conductive additive or the like depending on the purpose.
  • the details of the electrolyte are as described in the section of the separator.
  • Use of an electrolyte can improve ionic conductivity.
  • the supporting salt is as described above in the section of the non-aqueous electrolyte secondary battery.
  • Use of a supporting salt can improve ionic conductivity.
  • Preferable examples of the conductive auxiliary agent include acetylene black, carbon black, and dalafite. Improve electronic conductivity with conductive aids Can do.
  • the amount of the positive electrode active material, the electrolyte, the supporting salt, the conductive additive and the like in the positive electrode active material layer can be appropriately adjusted in consideration of the intended use of the battery.
  • the thickness of the positive electrode active material layer is preferably 35 ⁇ m or less, more preferably 11 ⁇ m or less, and even more preferably 11-7 / ⁇ ⁇ . A thickness of 35 m or less is preferable because the output is improved. If the thickness is 11 m or less, the bipolar battery can be made thinner. A thickness of 7 m or more is preferable because the vibration isolating property of the positive electrode active material can be ensured.
  • the negative electrode active material layer includes a negative electrode active material, which includes a crystalline carbon material; an amorphous carbon material; a metal oxide such as TiO, Ti 2 O, and TiO; and Li Ti 2 O 3
  • Preferred examples include at least one selected from the group consisting of lithium and transition metals.
  • a crystalline carbon material or an amorphous carbon material more preferably an amorphous carbon material.
  • the horizontal portion of the charge / discharge curve obtained with respect to the charge / discharge curve can be tilted.
  • SOC state of charge
  • the average particle size of the negative electrode active material is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • a thickness of 10 ⁇ m or less is preferable in that the electrode resistance is reduced.
  • the surface of the negative electrode active material layer can be made uniform even if the thickness of the negative electrode active material layer is reduced.
  • the average particle size of the negative electrode active material is preferably 1Z10 or less of the thickness of the separator. If it is 1Z10 or less, the risk that the negative electrode active material breaks through the separator and causes a micro short circuit is reduced.
  • the negative electrode active material layer may contain an electrolyte, a supporting salt, a conductive aid, or the like depending on the purpose. Specific examples thereof are as described above in the section of the positive electrode active material layer.
  • the amount of the negative electrode active material, the electrolyte, the supporting salt, and the conductive additive in the negative electrode active material layer can be appropriately adjusted in consideration of the intended use of the battery.
  • the thickness of the negative electrode active material layer is preferably 35 ⁇ m or less, more preferably 13 ⁇ m or less, and further preferably 13 to 10 / ⁇ ⁇ . A thickness of 35 m or less is preferable because the output is improved. A thickness of m or less is preferable because the bipolar battery can be made thinner. A thickness of 10 ⁇ m or more is preferable because the anti-vibration property of the negative electrode can be kept high.
  • the material of the current collector is not particularly limited, and a conventionally known material can be used.
  • a conventionally known material can be used.
  • at least one selected from the group consisting of aluminum, aluminum alloy, titanium, copper, nickel, silver, and stainless steel can be preferably used. These may be used as a single layer, may be used as a multilayer, or a clad material coated with these may be used.
  • the above materials are excellent in corrosion resistance, conductivity, or workability.
  • the thickness of the current collector is preferably 15 ⁇ m or less. If the thickness is 15 ⁇ m or less, the bipolar battery can be made thinner. However, when the current collector itself is used as a tab without connecting a tab to current collectors (hereinafter also referred to as end current collectors) arranged at both ends of the laminate, the thickness of the end current collector is: 0.1 to 2 mm is preferable.
  • the single battery layer of the nanopolar battery includes an adjacent positive electrode active material layer, separator, and negative electrode active material layer.
  • the thickness of the unit cell layer is preferably 10 to 85 m, more preferably 20 to 50 ⁇ m. When the thickness of the cell layer is 85 ⁇ m or less, the heat dissipation and vibration isolation are very good.
  • the cell element included in the conventional bipolar battery was about 135 m in thickness even in the thinnest category.
  • FIG. 4 illustrates a single cell layer having the above structure
  • FIG. 5 illustrates a single cell layer of a conventional bipolar battery. It can be seen that the single cell layer of the present invention is very thin.
  • At least one thickness selected from the group consisting of a positive electrode active material layer, a separator, and a negative electrode active material layer constituting the single battery layer is preferably 35 m or less, more preferably all of them. Is 35 ⁇ m or less, more preferably the thickness of the positive electrode active material layer is 7 to 11 ⁇ m, the thickness of the separator is 13 to 15 ⁇ m, and the thickness of the negative electrode active material layer is 10 to 13 ⁇ m. .
  • Fig. 6 to Fig. 6 are schematic plan views and cross-sectional schematic diagrams (S-S, S'-S ') of a bipolar battery including a laminate comprising the current collector, positive electrode active material layer, separator, and negative electrode active material layer described above. Shown in 8.
  • the shape of the bipolar battery is not particularly limited as long as it does not hinder the present invention, and a conventionally known shape can be applied.
  • the end current collector 17 may be used as a tab as shown in S—S, or the end current collector 17 may be connected to the tab 30 as shown in S′—S ′. May be.
  • a sealing portion can be provided to suppress leakage of the electrolyte solution force S that has exuded the gel electrolyte force.
  • the material of the tab or seal part is not particularly limited, and conventionally known materials can be used as appropriate.
  • the exterior 40 for accommodating the laminate is not particularly limited, and a conventionally known material such as a laminate material can be used.
  • the number of stacked single battery layers is not limited and can be appropriately determined according to the purpose.
  • a second aspect of the present invention is an assembled battery formed by connecting the above bipolar batteries in series or in parallel.
  • FIG. 6 The appearance of the assembled battery module 60 in which the bipolar battery shown in FIG. 6 is placed in a battery case.
  • 9 to 11 are schematic diagrams
  • FIGS. 12 to 14 are schematic external views of the assembled battery 70 in which the six are connected in parallel.
  • the tab 30 is connected to the positive terminal 61 or the negative terminal 61.
  • each assembled battery module 60 is integrated by a connecting plate 71 and a fixing screw 72, and an elastic body is installed between each assembled battery module 60 to form an anti-vibration structure! / Speak. Further, the tab 30 of each assembled battery module 60 is connected by a bus bar 73.
  • 9 to 11 and FIGS. 12 to 14 are examples of the assembled battery module and the assembled battery, and the present invention is not limited thereto.
  • a third aspect of the present invention is a vehicle on which the bipolar battery or the assembled battery described above is mounted.
  • the assembled battery including the bipolar battery of the present invention or the neopolar battery of the present invention has improved heat dissipation or vibration isolation and is excellent in output, it can be preferably used as a power source for moving vehicles.
  • the bipolar battery or the assembled battery 70 of the present invention may be installed under the floor of the vehicle 80, or may be installed behind the seat back or under the seat.
  • the present invention can also be applied to a lithium ion secondary battery having a laminated structure other than the biopolar type.
  • LiMnO average particle size 5 ⁇ m
  • N-methylpyrrolidone a slurry viscosity adjusting solvent
  • a slurry obtained by adding (NMP) was applied to one side of one SUS foil and dried to form a positive electrode active material layer having a thickness of 20 m.
  • hard carbon (average particle size 6 ⁇ m, non-crystalline carbon material) is prepared as a negative electrode active material, and NMP is added to this to form a slurry, which is a single SUS. Paint on one side of the foil The cloth was dried and a negative electrode active material layer having a thickness of 20 m was formed.
  • oligomer of PVdF was impregnated into a polyester nonwoven fabric (thickness 15 m, Shore A40) to produce a narrowly defined separator.
  • LiBETI of OM precursor of ion-conductive polymer matrix that is a polymerization initiator (BDK; host polymer (polymer raw material for polymer gel electrolyte))
  • BDK polymerization initiator
  • a pregel solution consisting of 0.01 to 1% by mass with respect to the body is immersed in the separator in the narrow sense, sandwiched between quartz glass substrates, irradiated with ultraviolet rays for 15 minutes to crosslink the precursor, and the gel electrolyte is obtained.
  • a gel electrolyte was obtained which also included the separator.
  • a bipolar battery having a single cell layer strength was prepared by heating and crosslinking at 80 ° C for 2 hours.
  • Example 2 The same as in Example 1 except that the thickness of the positive electrode active material layer was 28 ⁇ m, the thickness of the negative electrode active material layer was 30 ⁇ m, and the thickness of the separator was 27 m. Was made.
  • the average particle size of the positive electrode active material was 8 ⁇ m, the graphite (crystalline carbon material) was used as the negative electrode active material, the average particle size of the negative electrode active material was 9 ⁇ m, the gel electrolyte Polyolefin (Shore A80) was used as the skeleton, Cu-A1 cladding was used as the current collector, the thickness of the positive electrode active material layer was 35 m, and the thickness of the negative electrode active material layer was 37 m
  • a bipolar battery was produced in the same manner as in Example 1 except that the thickness of the separator was 33 ⁇ m. [0080] (Example 4)
  • the average particle size of the positive electrode active material was 2 ⁇ m
  • the average particle size of the negative electrode active material was 2 ⁇ m
  • aramid Shore A85
  • a nanopolar battery was fabricated in the same manner as in Example 1 except that the thickness was 12 ⁇ m, the thickness of the negative electrode active material layer was 12 ⁇ m, and the thickness of the separator was 11 jm.
  • LiNiO was used as the positive electrode active material, and the average particle size of the positive electrode active material was reduced to 0.
  • the average particle size of the negative electrode active material was 0.8 m
  • that amide (Shore A100) was used as the skeleton of the gel electrolyte
  • the thickness of the positive electrode active material layer was 6 / zm
  • a nanopolar battery was fabricated in the same manner as in Example 1 except that the thickness of the negative electrode active material layer was 6 ⁇ m, the thickness of the separator was 5 ⁇ m, and the thickness of the current collector was 10 m. Produced.
  • LiNiO was used as the positive electrode active material, and the average particle size of the positive electrode active material was reduced to 0.
  • the average particle size of the negative electrode active material was 0.8 m
  • the separator thickness was 14 ⁇ m
  • the current collector A nanopolar battery was fabricated in the same manner as in Example 1 except that the thickness of each was 10 m.
  • the average particle size of the positive electrode active material was 8 ⁇ m, the average particle size of the negative electrode active material was 9 ⁇ m, the thickness of the positive electrode active material layer was 40 ⁇ m, the thickness of the negative electrode active material layer A bipolar battery was fabricated in the same manner as in Example 1 except that the thickness of the separator was set to 45 ⁇ m and the thickness of the separator was set to 50 / zm.
  • the average particle size of the positive electrode active material was 8 ⁇ m, the average particle size of the negative electrode active material was 9 ⁇ m, the thickness of the positive electrode active material layer was 50 ⁇ m, the thickness of the negative electrode active material layer A bipolar battery was fabricated in the same manner as in Example 1 except that the thickness of the separator was set to 55 ⁇ m and the thickness of the separator was set to 50 / zm.
  • An acceleration pickup was installed in the approximate center of the cell layer, and the vibration spectrum of the acceleration pickup when hammered with an impulse hammer was measured.
  • Various settings for measurement comply with JIS B 0908 (vibration and impact pickup calibration method 'basic concept').
  • the obtained measurement spectrum was analyzed by a FET analyzer and converted to dimensions of frequency and acceleration.
  • the obtained frequency was averaged and smoothed to obtain a vibration transmissibility spectrum.
  • the average of the vibration transmissibility spectrum from 10 to 300 Hz was defined as the vibration average value.
  • the spectrum obtained from Comparative Example 1 was used as the vibration average value, and the ratio to the vibration average value of each reference was used as the average reduction amount. Therefore, the larger the average reduction value, the better the vibration isolation than the conventional structure.
  • the maximum peak frequency that appeared on the lowest frequency side of the vibration transmissibility spectrum obtained by measuring the average reduction was obtained.
  • the maximum peak is referred to as a first resonance peak.
  • thermocouple was attached to the tab, a 10C cycle test was conducted for 60 minutes, and the maximum temperature reached for the battery element under test was measured as a heat rise. In addition, after a cycle test of 60 minutes, the current was stopped and the temperature change when left at room temperature was examined, and the time until returning to room temperature was measured. The measurement was performed for a maximum of 60 minutes, and when it did not return to room temperature after 60 minutes, the measurement result was 60 minutes or more.
  • the first resonance peak In the measurement results shown in Fig. 18 and Fig. 19, reference is made to the first resonance peak.
  • the first resonance peaks were 60 Hz and 70 Hz, respectively, which were within the range of frequencies that can be generated by the vehicle, that is, 100 Hz or less. Therefore, in Comparative Example 1, it was surprising that it would resonate when mounted on a vehicle. On the other hand, in Examples 1 to 6, it was found that the first resonance peak was over 100 Hz, and no resonance occurred even when mounted on a vehicle.
  • Comparative Example 1 is 30 ⁇ and Comparative Example 2 is 25 ⁇ , while the present invention has the highest value. But it was 20 ⁇ ⁇ .
  • the heat release time is referred to in the test results.
  • the heat release time was 60 minutes or more in Comparative Examples 1 and 2, whereas in Examples 1 to 6, it was 15 minutes at the maximum. From these results, it can be seen that, as in Examples 1 to 6, the heat dissipation characteristics of the structure of the present invention are significantly improved.
  • the bipolar batteries of Examples 1 to 6 are considered to be excellent in battery output because the single battery layer is excellent in vibration proofing and heat dissipation.
  • a 15 m thick SUS foil was prepared as a current collector. LiMnO (average) as positive electrode active material
  • a gel electrolyte separator was produced by impregnating a polyester non-woven fabric (thickness 15 m, Shore A40) with an oligomer of PVdF, which is a precursor of a cross-linked gel electrolyte.
  • BDK host polymer polymer material of polymer gel electrolyte
  • A1 tab thickness: 100 m, width: 100 mm
  • a Cu tab was vibration welded to the end collector that was in contact with the negative electrode. This was sealed with a maleic acid-modified polypropylene film, SUS foil, and a three-layer laminate material having a nylon strength.
  • Example 7 The same as in Example 7 except that the thickness of the positive electrode active material layer was 28 ⁇ m, the thickness of the negative electrode active material layer was 30 ⁇ m, and the thickness of the separator was 27 m. Was made.
  • the average particle size of the positive electrode active material was 8 ⁇ m
  • the graphite (crystalline carbon material) was used as the negative electrode active material
  • the average particle size of the negative electrode active material was 9 ⁇ m
  • the gel electrolyte Polyolefin (Shore A80) was used as the skeleton
  • Cu-A1 clad was used as the current collector
  • the thickness of the positive electrode active material layer was 35 m
  • the thickness of the negative electrode active material layer was 37 m
  • a bipolar battery was produced in the same manner as in Example 7 except that the thickness of the separator was 33 ⁇ m.
  • the average particle diameter of the positive electrode active material was 2 ⁇ m
  • the average particle diameter of the negative electrode active material was 2 ⁇ m
  • aramid Shore A85
  • the positive electrode active material layer A nanopolar battery was fabricated in the same manner as in Example 7, except that the thickness was 12 ⁇ m, the thickness of the negative electrode active material layer was 12 ⁇ m, and the thickness of the separator was 11 jm.
  • LiNiO was used as the positive electrode active material, and the average particle size of the positive electrode active material was reduced to 0.
  • a bipolar battery was prepared in the same manner as in Example 7, except that the thickness of the positive electrode active material layer was 40 ⁇ m, the thickness of the negative electrode active material layer was 45 ⁇ m, and the thickness of the separator was 50 m. A pond was made.
  • Example 2 Except that the single battery layer produced in Example 2 was sandwiched between the end current collector-positive electrode active material layer and the end current collector-negative electrode active material layer produced in Example 9. A nanopolar battery was fabricated in the same manner as in Example 1.
  • Example 1 except that the single battery layer described below was sandwiched between the end current collector-positive electrode active material layer and the end current collector-negative electrode active material layer prepared in Example 11. A bipolar battery was produced in the same manner.
  • LiNiO was used as the positive electrode active material, and the average particle size of the positive electrode active material was 2 ⁇ m.
  • the average particle diameter of the negative electrode active material was 2 m
  • the thickness of the positive electrode active material layer was 10 m
  • the thickness of the negative electrode active material layer A cell layer was prepared in the same manner as in Example 1 except that the thickness of the separator was changed to 12 ⁇ m and the thickness of the separator was changed to 10 ⁇ m.
  • the average particle size of the positive electrode active material was 2 ⁇ m
  • the average particle size of the negative electrode active material was 2 ⁇ m
  • aramid Shore A85
  • the thickness was 12 ⁇ m
  • the negative electrode active material layer thickness was 12 ⁇ m
  • the separator thickness was 11 m
  • 8 cell layers 8 cell layers and a pair of end collector currents Combine with substances
  • a nanopolar battery was fabricated in the same manner as in Example 7 except that the structure was formed by laminating 10 single battery layers.
  • the positive electrode active material layer has a thickness of 40 ⁇ m
  • the negative electrode active material layer has a thickness of 45 ⁇ m
  • the separator has a thickness of 50 m
  • eight unit cell layers eight unit cell layers, and a pair of end portions.
  • a bipolar battery was fabricated in the same manner as in Example 10 except that the current collector-active material layer was combined to form a structure in which 10 single battery layers were laminated.
  • the average particle diameter of the positive electrode active material was 2 ⁇ m
  • the average particle diameter of the negative electrode active material was 2 ⁇ m
  • aramid Shore A85
  • the positive electrode active material layer The thickness was 12 ⁇ m
  • the negative electrode active material layer thickness was 12 ⁇ m
  • the separator thickness was 11 m
  • 98 unit cell layers a pair of end collectors
  • a bipolar battery was fabricated in the same manner as in Example 7 except that the active material layer was combined to form a structure in which 100 single cell layers were laminated.
  • the thickness of the positive electrode active material layer was 40 ⁇ m, the thickness of the negative electrode active material layer was 45 ⁇ m, the thickness of the separator was 50 m, 98 unit cell layers, and a pair of ends
  • a bipolar battery was fabricated in the same manner as in Example 7 except that the structure was formed by laminating 100 single cell layers by combining the partial current collector active material layer.
  • Figure 16 shows the frequency vibration transmissibility curve (symbol A) of Example 15 and the bipolar of Comparative Example 1.
  • the frequency vibration transmissibility curve (symbol B) of the battery is shown.
  • a typical vehicle is said to have no vibration transmissibility peak in the region where the frequency exceeds 100 Hz, and Example 15 (symbol A) has a vibration transmissibility peak in the region exceeding 100 Hz. Therefore, when mounted on a vehicle, it has excellent anti-vibration properties that do not easily resonate with vehicle vibration.
  • Comparative Example 1 (symbol B) has a peak of vibration transmissibility in the region of 100 Hz or less, and therefore, when mounted on a vehicle, it tends to cause a decrease in output due to vibration that easily resonates with vehicle vibration. .
  • FIG. 17 shows the time battery temperature curve (symbol A) of Example 15 and the time battery temperature curve (symbol B) of Comparative Example 1.
  • Figure 17 shows that there is a large difference in the battery temperature (maximum temperature reached) at 60 min. Since Example 15 has a structure with excellent heat dissipation, the maximum temperature reached is lower than that of Comparative Example 1. That is, the temperature rise of the battery is suppressed. Furthermore, looking at the decrease in battery temperature after the current was stopped, Comparative Example 1 showed a slow decrease in temperature after 60 min, whereas Example 15 showed a rapid decrease in battery temperature. The battery temperature drops to room temperature in about a minute. From these, it can be said that the present invention is excellent in heat dissipation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 バイポーラ電池は、集電体の一方の面に正極活物質層12が形成され、他方の面に負極活物質層13が形成されてなるバイポーラ電極と、前記バイポーラ電極と交互に積層されてなるセパレータ14とを有し、隣接する前記正極活物質層12、前記セパレータ14、および前記負極活物質層13を含んで構成される単電池層15において、前記セパレータ14の厚みは、前記正極活物質層12の厚みに対して0.68倍以上1.0倍未満であり、前記負極活物質層13の厚みに対して0.68倍以上1.0倍未満である。

Description

明 細 書
電池構造体、組電池、およびこれらを搭載した車両
技術分野
[0001] 本発明は電池構造体に関わり、より詳細には放熱性または防振性に優れる電池構 造体に関わる。
背景技術
[0002] 種々ある二次電池の中でも、エネルギー密度や出力密度に優れるバイポーラ型の リチウムイオン二次電池(以下、ノ ィポーラ電池とも記載)に注目が集まっている。ノ ィポーラ電池は、特開 2000— 100471号公報に開示されているように、正極活物質 層、集電体、および負極活物質層がこの順で積層されてなるバイポーラ電極と、セパ レータとが交互に積層されてなる構造を有して 、る。
[0003] 車両などの移動体に用いられるバイポーラ電池の各構成要素は、セパレータの厚 み力 正極活物質層の厚みおよび負極活物質層の厚みに比べて非常に薄くなるよう になるように設計されていた。これは、バイポーラ電池自体の限られた厚みの中で、 正極活物質層および負極活物質層が占める割合を最大限にすることで、高容量化、 高出力化しようとした為であった。
[0004] し力しながら、正極活物質層および負極活物質層は発熱量が大きいためこれらの 割合が大きくなることで電池内部に熱が篕り易くなり、電池に含まれる電解質等の劣 化が起こり易くなるという問題があり、出力を低下させたり、耐用年数を低下させたり する要因の一つとなって 、た。
[0005] さらに、従来のバイポーラ電池は構造上、振動による影響を受けやすぐ振動により ノ ィポーラ電池を構成する各層間が解離し易くなるという問題があり、これも出力を低 下させたり、耐用年数を低下させたりする要因の一つとなっていた。
発明の開示
[0006] 本発明者等は、バイポーラ電池の各構成要素の「厚みの比」に着目し、従来では好 ましいとされてきた各構成要素の厚みの比力 電池内部に熱を篕りやすくしたり、振 動の影響を受けやすくしたりして、却って電池の出力の低下を招いていたことを見出 し、本願発明を完成させた。
[0007] すなわち本発明は、集電体の一方の面に正極活物質層が形成され、他方の面に 負極活物質層が形成されてなるバイポーラ電極と、前記バイポーラ電極と交互に積 層されてなるセパレータとを有し、隣接する前記正極活物質層、前記セパレータ、お よび前記負極活物質層を含んで構成される単電池層において、前記セパレータの 厚みは、前記正極活物質層の厚みに対して 0. 68倍以上 1. 0倍未満であり、前記負 極活物質層の厚みに対して 0. 68倍以上 1. 0倍未満であることを特徴とするバイポ ーラ電池により上記課題を解決する。
図面の簡単な説明
[0008] [図 1]図 1は、バイポーラ電池の部分断面概略図である。
[図 2]図 2は、従来のバイポーラ電池の部分概略断面図である。
[図 3]図 3は、電池要素をマスパネモデル化した図である。
[図 4]図 4は、単電池層の部分断面概略図である。
[図 5]図 5は、従来のバイポーラ電池の単電池層の部分断面概略図である。
[図 6]図 6は、バイポーラ電池の平面概略図である。
[図 7]図 7は、図 6に示すバイポーラ電池の断面概略図である。
[図 8]図 8は、図 6に示すバイポーラ電池の断面概略図である。
[図 9]図 9は、図 6に示したバイポーラ電池を電池ケースに入れた組電池モジュール の平面概略図を示す。
[図 10]図 10は、図 9に示す組電池モジュールの断面概略図である。
[図 11]図 11は、図 9に示す組電池モジュールの断面概略図である。
[図 12]図 12は、図 9に示す組電池モジュールを 6並列に接続した組電池の平面概略 図である。
[図 13]図 13は、図 12に示す組電池の断面概略図である。
[図 14]図 14は、図 12示す組電池の断面概略図である。
[図 15]図 15は、車両の断面概略図である。
[図 16]図 16は、実施例 15、比較例 1の振動伝達率—周波数グラフである。
[図 17]図 17は、実施例 15、比較例 1の時間 温度グラフである。 [図 18]図 18は、実施例 1〜6、比較例 1〜2で作製したバイポーラ電池の平均低減量 を測定した結果を示す。
[図 19]図 19は、実施例 1〜6、比較例 1〜2で作製したバイポーラ電池の共振シフト 量を測定した結果を示す。
[図 20]図 20は、実施例 7〜13、比較例 3で作製したバイポーラ電池の平均低減量、 共振シフト量、ならびに熱上昇および放熱時間を測定した結果を示す。
[図 21]図 21は、実施例 14、比較例 4で作製したバイポーラ電池の平均低減量、共振 シフト量、ならびに熱上昇および放熱時間を測定した結果を示す。
[図 22]図 22は、実施例 15、比較例 5で作製したバイポーラ電池の平均低減量、共振 シフト量、ならびに熱上昇および放熱時間を測定した結果を示す。
発明を実施するための最良の形態
[0009] 本発明の第一は図 1に例示するように、集電体 11の一方の面に正極活物質層 12 が形成され、他方の面に負極活物質層 13が形成されてなるバイポーラ電極 16と、前 記バイポーラ電極 16と交互に積層されてなるセパレータ 14とを有し、隣接する前記 正極活物質層 12、前記セパレータ 14、および前記負極活物質層 13を含んで構成さ れる単電池層 15において、前記セパレータ 14の厚みは、前記正極活物質層 12の 厚みに対して 0. 68倍以上 1. 0倍未満であり、前記負極活物質層 13の厚みに対し て 0. 68倍以上 1. 0倍未満であることを特徴とするノ ィポーラ電池である。
[0010] 対比のため、図 2に従来のバイポーラ電池の部分概略断面図を例示する力 本願 発明を例示した図 1と見比べると正極活物質層 12および負極活物質層 13に対する セパレータ 14の厚みの比に大きな違いがあることがわかる。上述したように、従来の バイポーラ電池は発電効率を上昇させる目的で、正極活物質層 12の厚みおよび負 極活物質層 13の厚みの割合を大きくしていた結果、放熱性または防振性が低下し、 却って出力が低下していた。
[0011] これに対し、本願発明のノ ィポーラ電池の構造はセパレータ 14の厚み力 正極活 物質層 12の厚みに対して 0. 68倍以上 1. 0倍未満であり、負極活物質層の厚みに 対して 0. 68倍以上 1. 0倍未満であるため、容量と、放熱性または防振性とのバラン スに非常に優れる。このため、本願発明の構成を適用することで、高出力のバイポー ラ電池を得ることができる。前記比は双方 0. 68倍以上 1. 0倍未満であればよいが、 0. 75〜0. 95倍あるとより好まし!/、。
[0012] 以下、本願発明のバイポーラ電池の構成要素であるセパレータ、正極活物質層、 負極活物質層、集電体、および単電池層、ならびにその他の構成要素について詳 細を記載する。
[0013] [セパレータ]
非水電解液二次電池と呼ばれる電池内部が液状の電解質 (以下、電解液と記載す る)で満たされたバイポーラ電池の場合、セパレータは正極活物質層と負極活物質 層との接触を防ぐ役割を果たす。また、一般的にポリマー電解質二次電池と呼ばれ る電池内部が電解液で満たされていないバイポーラ電池の場合、セパレータは上述 の接触を防ぐ役割に加えて、自身が電解質の役割を果たす。以下、自身が電解質の 役割を果たさな 、セパレータを「狭義のセパレータ」、自身が電解質の役割を果たす セパレータを「ポリマー電解質」とも記載する。本願発明のバイポーラ電池の構造は 非水電解液二次電池にもポリマー電解質二次電池にも好適である。
[0014] 以下、非水電解液二次電池に用いられるセパレータである狭義のセパレータ、およ びポリマー電解質二次電池に用いられるセパレータであるポリマー電解質の詳細に ついて記載する。
[0015] 非水電解液二次電池の場合
狭義のセパレータとしては、ポリプロピレン、またはポリオレフインが好ましぐこれら は不織布または微多孔膜などの形状で用いられうる。これらは、絶縁性、熱安定性、 化学安定性、冷熱サイクル性、または機械的強度に優れることに加え、多孔質構造 を形成することができる。狭義のセパレータが多孔質構造であるとセパレータのパネ ダンピング効果が向上したり電解液の含浸率が向上したりするため好ま 、。
[0016] 狭義のセパレータの厚みは 35 μ m以下であることが好ましく、より好ましくは 25 m 以下であり、更に好ましくは 20 /z m以下である。厚みが 35 /z m以下であると、出力が 向上するため好ましい。厚みが 25 μ m以下であるとバイポーラ電池を、より薄型化す ることがでさる。
[0017] 狭義のセパレータの透気度は 10〜400secZl0ccが好ましぐより好ましくは 40〜 200secZl0ccである。 lOsecZlOcc以上であると防振性に優れ、 400secZl0cc 以下であると電池出力に優れる。
[0018] 狭義のセパレータの曲路率(γ )は、 0. 5〜2. 0力 子ましく、より好ましくは 0. 9〜1 . 8である。 0. 5以上であると防振性に優れ、 2. 0以下であると電池出力に優れる。
[0019] 狭義のセパレータの硬度ショァ Αは、 20〜: L10力好ましく、より好ましくは 25〜95で ある。ショァ Aが 20以上であると共振周波数が低周波側に移行しに《なり、振動を 受けた際に共振周波数に達する可能性が低くなる、つまり電池外部の振動と共振し にくくなる。ショァ Aが 110以下であるとセパレータが適度にパネとダンバの役割を果 たすため防振性が向上する。また、狭義のセパレータの硬度ショァ Aが前記範囲内 であると、厚みの薄 、セパレータを用いた場合でも両側に配置されたバイポーラ電極 を均一に隔てることができるし、更に、バイポーラ電極同士が振動により接触しショー トする可能性を抑えることができる。本願発明におけるショァ Aの測定方法 WIS— K 6253に準拠する。
[0020] 単電池層を複数積層する場合、少なくとも 1層の狭義のセパレータの硬度ショァ A は、他の狭義のセパレータの硬度ショァ Aと異なることが好ましい。これにより防振性 を向上させることができる。
[0021] 例えば、単電池層を 5層積層する場合、狭義のセパレータを 5層用いる力 この内 の 2層を他の 3層の狭義のセパレータよりも柔軟にしたり、硬くしたりしてもよい。また 5 層全ての狭義のセパレータの硬度が異なるようにしてもよい。ただし、これらはあくま でも例示であって、単電池層の積層数や、硬度を変化させる狭義のセパレータの割 合を限定するものではな 、。従来の一般的なバイポーラ電池は単電池層を複数積層 する場合、これらの単電池層に含まれる狭義のセパレータは同一の硬度を有するも のを用いていた。しかし、同一の硬度を有する狭義のセパレータを全単電池層に配 置した場合と比べて、少なくとも 1層の狭義のセパレータの硬度を他の狭義のセパレ ータの硬度と異ならせた場合、電池のマスパネ構成を変化させることが可能となり、 防振性能を向上させることが可能となる。
[0022] 単電池層を 3層以上積層する場合、バイポーラ電池の中心に配置された単電池層 に含まれる狭義のセパレータの硬度ショァ Aは、他の単電池層に含まれる狭義のセ パレータの硬度ショァ Aと比較して最も小さいことが好ましい。これにより防振性と放 熱性とを向上させることができる。
[0023] 単電池層と集電体との積層体は、マス、パネ、およびダンバから構成される力学モ デルに置き換えることができる。図 3に単電池層を 5層積層してなるバイポーラ電池と これに対応したマスパネモデルとを例示する。図 3において符号 Kl〜3はパネモデ ル、 Cl〜3はダンバモデル、 Mはマスを示す。
[0024] 中心に配置された単電池層 15に含まれる狭義のセパレータ 14mの硬度を他の単 電池層 15に含まれる狭義のセパレータ 1 〜"の硬度よりも小さくすることで、 K3のバ ネ定数を K1および K2のパネ定数よりも小さくすることができ、 C3のダンバ係数を C1 および C2よりも大きくすることができる。その結果、バイポーラ電池が振動を受けた際 の共振周波数を高周波側にずらし 180Hz近辺のピークの高さをより小さくすることが でき、防振性を向上させることができる。
[0025] 更に、狭義のセパレータとして用いられる材質の多くに、ショァ A硬度が小さ ヽ程熱 伝達係数が高くなる傾向がみられる。熱伝達係数が高いもの程放熱性が高くなる。 図 3を例にとると各狭義のセパレータの中で最も熱が篕りやすいのが狭義のセパレー タ 14 でるため、狭義のセパレータ 14 の硬度を他の単電池層 15に含まれる狭義の セパレータ 14i〜"よりも小さくすることで放熱性を向上させることができる。
[0026] 狭義のセパレータの硬度は、図 3を例にとると 14mく 14"1 となるように段階的に変 ィ匕させてもよいし、 14mく 14"= 14、または 14 = 14"く 1 となるように一部のみ小さ くしてちょい。
[0027] 狭義のセパレータを用いる場合、セパレータ自身は電解質の役割を果たさな!/、た め、電解液を併用する必要がある。電解液としては、非水溶媒に支持塩を溶解させ たものなど従来公知のものを用いることができ、例えば、プロピレンカーボネート(以 下、「PC」とも記載する)、およびエチレンカーボネート(以下、「EC」とも記載する)な どの環状カーボネート類;ジメチルカーボネート、メチルェチルカーボネート、および ジェチルカーボネートなどの鎖状カーボネート類;テトラヒドロフラン、 2—メチルテトラ ヒドロフラン、 1, 4 ジォキサン、 1, 2 ジメトキシェタン、 1, 2 ジブトキシェタン、お よび 1, 3 ジォキソラン、ジェチノレエーテノレなどのエーテノレ類; y ブチロラタトンな どのラタトン類;ァセトニトリルなどの-トリル類;プロピオン酸メチルなどのエステル類; ジメチルホルムアミドなどのアミド類;酢酸メチル、ギ酸メチルなどのエステル類;スル ホラン;ジメチルスルホキシド;ならびに 3—メチルー 1. 3 ォキサゾリジン 2 オン 力 なる群より選択される少なくとも 1種が挙げられる。支持塩としては Li (C F SO )
2 5 2 2
N、 LiBF、 LiPF、および LiN (SO CF ) 、 LiN (SO C F ) からなる群より選択さ
4 6 2 3 2 2 2 5 2
れる少なくとも 1種が好ましく挙げられる。電解液は目的に応じて他の添加剤を含みう る。
[0028] ポリマー電解質二次電池の場合
正極活物質層と負極活物質層との接触を防ぎ、更に電解質の役割も果たすセパレ ータであるポリマー電解質は、真性ポリマー電解質とゲル電解質とに分類されるが、 本願発明にはどちらも好適である。
[0029] 真性ポリマー電解質は、ポリマーからなる固体状の電解質である。真性ポリマー電 解質を用いた場合、電解質中に電解液を含まな ヽため液漏れのおそれがなく安全 性が高いという利点がある。真性ポリマー電解質を構成するポリマーとしては、ポリエ チレンォキシド、ポリプロピレンォキシド、ポリエステル系榭脂、ァラミド系榭脂、ポリオ レフイン系榭脂、これらの共重合体、またはこれらのァロイなどの従来公知のものが好 ましぐより好ましくはァラミド榭脂である。ポリエステル系榭脂としては PETなどが好ま しく挙げられ、ァラミド系榭脂としてはバラ系芳香族ポリアミド、メタ系芳香族ポリアミド などが好ましく挙げられ、ポリオレフイン系榭脂としてはポリエチレン、ポリプロピレンな どが好ましく挙げられる。また、イオン電導性を向上させるために、支持塩をこれらに 添カロしたものを電解質としてもよいし、カルボン酸基、リン酸基、スルフォン酸基、シロ キシルァミン基などのイオン性解離基をこれらに導入したものを電解質としてもよい。 支持塩の詳細については上述の非水電解二次電池の項に記載したとおりである。
[0030] 上述の榭脂は、防水性、防湿性、冷熱サイクル性、耐熱安定性、絶縁性に優れるこ とに加え、多孔質構造を形成することができる。真性ポリマー電解質が多孔質構造で あるとセパレータのバネーダンピング効果が向上したり電解液の含浸率が向上したり するため好ましい。特にァラミド系榭脂はセパレータを薄くすることができる。
[0031] 真性ポリマー電解質の厚みは 35 μ m以下であることが好ましぐより好ましくは 25 μ m以下であり、更に好ましくは 20 μ m以下である。厚みが 35 μ m以下であると、出 力が向上するため好ましい。厚みが 25 μ m以下であるとバイポーラ電池を、より薄型 ィ匕することがでさる。
[0032] 真性ポリマー電解質の透気度は 10〜400secZl0ccが好ましぐより好ましくは 40
〜200secZl0ccである。 lOsecZlOcc以上であると防振性に優れ、 400secZlO cc以下であると電池出力に優れる。
[0033] 真性ポリマー電解質の曲路率(γ )は、 0. 5〜2. 0力好ましく、より好ましくは 0. 9〜
1. 8である。 0. 5以上であると防振性に優れ、 2. 0以下であると電池出力に優れる。
[0034] 真性ポリマー電解質の硬度ショァ Αは、 20〜: L 10力 子ましく、より好ましくは 25〜9
5である。好ましい理由および詳細は、上述の非水電解二次電池の狭義のセパレー タの硬度ショァ Aの項に記載したとおりである。
[0035] 単電池層を複数積層する場合、少なくとも 1層の真性ポリマー電解質の硬度ショァ
Aは、他の真性ポリマー電解質の硬度ショァ Aと異なることが好ましい。好ましい理由 および詳細は、上述の非水電解二次電池の狭義のセパレータの硬度ショァ Aの項に 記載したとおりである。
[0036] 単電池層を 3層以上積層する場合、バイポーラ電池の中心に配置された単電池層 に含まれる真性ポリマー電解質の硬度ショァ Aは、他の単電池層に含まれる真性ポリ マー電解質の硬度ショァ Aと比較して最も小さ 、ことが好ま 、。好ま 、理由および 詳細は、上述の非水電解二次電池の狭義のセパレータの硬度ショァ Aの項に記載し たとおりである。
[0037] ゲル電解質は、化学結合、結晶化または分子の絡み合!/、など分子鎖間の相互作 用によってポリマーが三次元的な網目構造を構成し、その空隙に電解液を保持した ゲル状の電解質である。ゲル電解質を用いた場合、パネ定数およびダンバ定数の調 節が容易であり、防振性を向上させやすいという利点がある。
[0038] ポリマー自身力イオン伝導性を有する真性ポリマー電解質を骨格として電解液を保 持したもの、または自身はイオン伝導性を有さな 、ポリマーまたはイオン伝導性が低 V、ポリマーを骨格として電解液を保持したものをゲル電解質として用いることができる 。イオン伝導性を有さないポリマーまたはイオン伝導性が低いポリマーとしては、ポリ フッ化ビ-リデン、ポリビュルクロライド、ポリアクリロニトリル、ポリメチルメタタリレート、 これらの共重合体、またはこれらのァロイなど従来公知のものを用いることができる。 電解液の詳細については上述の非水電解二次電池の項に記載したとおりである。ゲ ル電解質において、ポリマーと電解液との質量比は特に限定されず、電池の出力や 、パネ定数などを考慮に入れ適宜決定することができる。
[0039] ゲル電解質の厚みは 35 μ m以下であることが好ましぐより好ましくは 25 μ m以下 であり、更に好ましくは 20 m以下である。厚みが 35 m以下であると、出力が向上 するため好ましい。厚みが 25 μ m以下であるとバイポーラ電池を、より薄型化すること ができる。
[0040] ゲル電解質の骨格となるポリマーの透気度は 10〜400secZl0ccが好ましぐより 好ましくは 40〜200secZl0ccである。 lOsecZlOcc以上であると防振性に優れ、
400secZl0cc以下であると電池出力に優れる。
[0041] ゲル電解質に含まれる骨格の曲路率( γ )は、 0. 5〜20が好ましぐより好ましくは
0. 9〜1. 8である。 0. 5以上であると防振性に優れ、 20以下であると電池出力に優 れる。
[0042] ゲル電解質の硬度ショァ Αは、 20〜: L 10力好ましく、より好ましくは 25〜95である。
好ましい理由および詳細は、上述の非水電解二次電池の狭義のセパレータの硬度 ショァ Aの項に記載したとおりである。
[0043] 単電池層を複数積層する場合、少なくとも 1層のゲル電解質の硬度ショァ Aは、他 の真性ポリマー電解質の硬度ショァ Aと異なることが好ましい。好ましい理由および詳 細は、上述の非水電解二次電池の狭義のセパレータの硬度ショァ Aの項に記載した とおりである。
[0044] 単電池層を 3層以上積層する場合、バイポーラ電池の中心に配置された単電池層 に含まれるゲル電解質の硬度ショァ Aは、他の単電池層に含まれるゲル電解質の硬 度ショァ Aと比較して最も小さいことが好ましい。好ましい理由および詳細は、上述の 非水電解二次電池の狭義のセパレータの硬度ショァ Aの項に記載したとおりである。
[0045] 上述したように単電池層を複数積層し、含まれる狭義のセパレータのショァ Aを異 ならせる場合、複数種の真性ポリマー電解質を用いてもよいし、複数種のゲル電解 質を用いてもょ 、し、真性ポリマー電解質とゲル電解質とを併用してもよ ヽ。
[0046] [正極活物質層]
正極活物質層は正極活物質を含み、正極活物質としてはリチウムと遷移金属との 複合酸化物、遷移金属酸化物、遷移金属硫化物、 PbO、 AgOまたは NiOOHなど
2
を用いることができる。遷移金属とリチウムとの化合物としては、スピネル LiMn Oな
2 4 どの Li Mn系複合酸化物; LiCoOなどの Li Co系複合酸化物; LiNiOなどの Li
2 2
Ni系複合酸化物; LiFeOなどの Li Fe系複合酸化物; LiFePOなどの遷移金
2 4
属とリチウムとのリン酸ィ匕合物;または遷移金属とリチウムとの硫酸ィ匕合物などが好ま しく挙げられる。遷移金属酸化物の例としては、 V O、 MnO、 MoOなどが挙げら
2 5 2 3
れる。遷移金属硫化物の例として TiS、 MoSなどが好ましく挙げられる。
2 2
[0047] 上述した具体例の中では Li— Mn系複合酸ィ匕物を用いることが特に好ましい。 Li— Mn系複合酸化物を用いると、電圧一充放電時間のグラフから得られる充放電曲線 の中の、充放電時間軸に対して水平な部分を傾けることができるため、電圧を計測 することでバイポーラ電池の充電状態(SOC)を推定することができる。その結果、過 充電や過放電を検知して対処することができ、異常時の信頼性を高くすることができ る。
[0048] 正極活物質の平均粒径は 10 μ m以下が好ましぐより好ましくは 5 μ m以下であり、 更に好ましくは 2 μ m以下である。 10 μ m以下であると電極抵抗が低減する点で好ま しい。 2 m以下であると正極活物質層の厚みを薄くしても、正極活物質層の表面を 均一にすることができる点で好ましい。また、正極活物質の平均粒径はセパレータの 厚みの 1Z10以下であることが好ましい。 1Z10以下であると、正極活物質がセパレ ータを突き破ってマイクロショートを起こすリスクが低減される。
[0049] 正極活物質層は目的に応じて電解質、支持塩、または導電助剤などを含むことも できる。電解質の詳細は上述のセパレータの項に記載したとおりである。電解質を用 いると、イオン伝導度を向上させることができる。支持塩としては、上述の非水電解液 二次電池の項に記載したとおりである。支持塩を用いると、イオン伝導度を向上させ ることができる。導電助剤としては、アセチレンブラック、カーボンブラック、またはダラ ファイトなどが好ましく挙げられる。導電助剤を用いると、電子伝導度を向上させること ができる。正極活物質層における、正極活物質、電解質、支持塩、および導電助剤 などの配合量は、電池の使用目的などを考慮して適宜調整することができる。
[0050] 正極活物質層の厚みは 35 μ m以下であることが好ましぐより好ましくは 11 μ m以 下であり、さらに好ましくは 11〜7 /ζ πιである。厚みが 35 m以下であると、出力が向 上するため好ましい。厚みが 11 m以下であるとバイポーラ電池を、より薄型化する ことができる。厚みが 7 m以上であると正極活物質の防振性が高く確保できるため 好ましい。
[0051] [負極活物質層]
負極活物質層は負極活物質を含み、負極活物質としては結晶性炭素材;非結晶 性炭素材; TiO、 Ti Oおよび TiOなどの金属酸化物;ならびに Li Ti Oなどの
2 3 2 4/3 5/3 4 リチウムと遷移金属との複合酸ィ匕物力 なる群より選択される少なくとも 1種などが好 ましく挙げられる。
[0052] 上述した具体例の中では結晶性炭素材または非結晶性炭素材を用いることが特に 好ましぐより好ましくは非結晶性炭素材である。結晶性炭素材または非結晶性炭素 材を用いると、電圧一充放電時間のグラフ力 得られる充放電曲線の中の、充放電 時間軸に対して水平な部分を傾けることができるため、電圧を計測することでバイポ ーラ電池の充電状態(SOC)を推定することができる。その結果、過充電や過放電を 検知して対処することができ、異常時の信頼性を高くすることができる。
[0053] 負極活物質の平均粒径は 10 μ m以下が好ましぐより好ましくは 5 μ m以下であり、 更に好ましくは 2 μ m以下である。 10 μ m以下であると電極抵抗が低減する点で好ま しい。 2 m以下であると負極活物質層の厚みを薄くしても、負極活物質層の表面を 均一にすることができる点で好ましい。また、負極活物質の平均粒径はセパレータの 厚みの 1Z10以下であることが好ましい。 1Z10以下であると、負極活物質がセパレ ータを突き破ってマイクロショートを起こすリスクが低減される。
[0054] 負極活物質層は目的に応じて電解質、支持塩、または導電助剤などを含むことも できる。これらの具体例は上述の正極活物質層の項にぉ 、て記載したとおりである。 負極活物質層における、負極活物質、電解質、支持塩、および導電助剤などの配合 量は、電池の使用目的などを考慮して適宜調整することができる。 [0055] 負極活物質層の厚みは 35 μ m以下であることが好ましぐより好ましくは 13 μ m以 下であり、さらに好ましくは 13〜10 /ζ πιである。厚みが 35 m以下であると、出力が 向上するため好ましい。厚みが m以下であるとバイポーラ電池を、より薄型化す ることができるため好ましい。厚みが 10 μ m以上であると負極電極の防振性が高く確 保できるため好ましい。
[0056] [集電体]
集電体の材質は特に限定されず従来公知のものを用いることができる。例えば、ァ ルミ-ゥム、アルミニウム合金、チタン、銅、ニッケル、銀、およびステンレス力 なる群 より選択される少なくとも 1種などを好ましく用いることができる。これらは単層で用い てもよいし、複層で用いてもよいし、これらで被覆されたクラッド材を用いてもよい。上 述の材質は耐食性、導電性、または加工性などに優れる。
[0057] 集電体の厚みは 15 μ m以下が好ましい。厚みが 15 μ m以下であるとバイポーラ電 池を薄型化することができる。ただし、積層体の両端に配置された集電体 (以下、端 部集電体とも記載)にタブを連結させず、集電体自身をタブとして用いる場合、端部 集電体の厚みは、 0. l〜2mmが好ましい。
[0058] [単電池層]
ノ ィポーラ電池の単電池層は隣接する正極活物質層、セパレータ、および負極活 物質層を含んで構成される。本願発明において単電池層の厚みは 10〜85 mが 好ましぐより好ましくは 20〜50 μ mである。単電池層の厚みが 85 μ m以下であると 放熱性および防振性に非常に優れる。従来のバイポーラ電池に含まれる単電池要 素は、最も薄い部類でも厚みが 135 m程度あった。対比のため図 4に前記構造の 単電池層を例示し、図 5に従来のバイポーラ電池の単電池層を例示するが、本願発 明の単電池層は非常に薄いことがわかる。
[0059] 単電池層の厚みを従来よりも薄くすることで、バイポーラ電池が振動を受けた際の 共振周波数を高周波側にずらし 180Hz周辺のピークの高さをより小さくすることがで き、防振性を向上させることができる。更に、単電池層の厚みを従来よりも薄くすること で、正極活物質層および負極活物質層における拡散抵抗、イオン移動抵抗の増加 を抑制することができ、発熱量を低減することができる。 [0060] 単電池層を構成する正極活物質層、セパレータ、および負極活物質層からなる群 より選択される少なくとも 1種の厚みは、 35 m以下であることが好ましぐより好ましく はこれら全てが 35 μ m以下であり、更に好ましくは正極活物質層の厚みが 7〜11 μ mであり、セパレータの厚みが 13〜15 μ mであり、負極活物質層の厚みが 10〜13 μ mであ 。
[0061] 単電池層を構成する正極活物質層、セパレータ、および負極活物質層の厚みの比 は、それぞれ、セパレータ:正極活物質層 = 1 : 1. 13〜1 : 2が好ましぐセパレータ: 負極活物質層 = 1: 1. 17〜1: 2が好ましぐ正極活物質層:負極活物質層 = 1: 1〜 1 : 1. 14が好ましい。特に、単電池層の厚みが 20 μ mの場合、正極活物質層:セパ レータ:負極活物質層 = 7 : 6 : 7、または 7 : 5 : 8が好ましぐ単電池層の厚みが 50 mの場合正極活物質層:セパレータ:負極活物質層 = 17 : 15 : 18、または 20 : 10 : 2 0が好ましい。
[0062] [その他の構成要素]
上述の集電体、正極活物質層、セパレータ、および負極活物質層からなる積層体 を含むバイポーラ電池の平面概略図および断面概略図(S— S、S '— S ' )を図 6〜図 8に示す。
[0063] バイポーラ電池の形状は本発明を阻害しない範囲であれば特に限定されず従来 公知の形状を適用することができる。例えば、 S— Sに示すように端部集電体 17をタ ブとして用いる形状にしてもよいし、 S '— S'に示すように端部集電体 17にタブ 30を 連結した形状にしてもよい。また、ゲル電解質を用いる場合 S'—S'の符号 18に示す ようにシール部を設けてゲル電解質力 染み出した電解液力 Sもれ出るのを抑制する こともできる。タブまたはシール部などの材質は特に限定されず、従来公知のものを 適宜用いることができる。積層体を収めるための外装 40としては特に限定されず、ラ ミネート材など従来公知の物を用いることができる。
[0064] また、単電池層の積層数は限定されず、目的に応じて適宜決定することができる。
[0065] 本発明の第二は、上述のバイポーラ電池を、直列または並列に接続してなる組電 池である。
[0066] 図 6に示したバイポーラ電池を電池ケースに入れた組電池モジュール 60の外観模 式図を図 9〜図 11に示し、これを 6並列に接続した組電池 70の外観模式図を図 12 〜図 14に示す。
[0067] 図 9〜図 11において、タブ 30は正極ターミナル 61、または負極ターミナル 61に連 結される。
[0068] 図 9〜図 11において、各組電池モジュール 60は連結板 71と固定ネジ 72により一 体化し、各組電池モジュール 60の間に弾性体を設置して防振構造を形成して!/ヽる。 また、各組電池モジュール 60のタブ 30はバスバー 73により連結されている。図 9〜1 1および図 12〜図 14は組電池モジュールおよび組電池の一例であり、本発明はこ れに限定されない。
[0069] 本発明の第三は、上述のバイポーラ電池または上述の組電池を、搭載してなる車 両である。
[0070] 本発明のバイポーラ電池または本発明のノィポーラ電池を含む組電池は放熱性ま たは防振性が向上され、出力に優れることから、車両等の移動用電源として好ましく 用いることができる。図 15に示すように、本発明のバイポーラ電池または組電池 70は 、車両 80の床下に設置してもよいし、シートバック裏またはシート下などに設置するこ とがでさる。
[0071] また、本発明はバイオポーラ型以外の積層構造のリチウムイオン二次電池にも適用 することができる。
実施例
[0072] 次に実施例を挙げて本願発明を具体的に説明するが、これらの実施例は何ら本願 発明を制限するものではな 、。
[0073] (実施例 1)
厚み 15 mの SUS箔 2枚を端部集電体として用意した。正極活物質として LiMnO (平均粒径 5 μ m)を用意し、これにスラリー粘度調製溶媒である N—メチルピロリドン
2
(NMP)を添加してスラリー状にしたものを 1枚の SUS箔の片面に塗布および乾燥し 、厚み 20 mの正極活物質層を形成した。
[0074] 同様にして、負極活物質としてハードカーボン (平均粒径 6 μ m、非結晶性炭素材) を用意し、これに NMPを添カ卩してスラリー状にしたものを 1枚の SUS箔の片面に塗 布および乾燥し、厚み 20 mの負極活物質層を形成した。
[0075] PVdFのオリゴマーをポリエステル不織布(厚さ 15 m、ショァ A40)に染み込ませ て狭義のセパレータを作製した。次に、イオン伝導性高分子マトリックスの前駆体で ある平均分子量 7500〜9000のモノマー溶液(ポリエチレンォキシドとポリプロピレン ォキシドの共重合体) 5重量0 /0、電解液として PC + EC (PC :EC = 1: 1 (体積比) ) 95 重量%、および 1. OMの LiBETI、重合開始剤(BDK;ホストポリマー(高分子ゲル電 解質の高分子原料)であるイオン伝導性高分子マトリックスの前駆体に対して 0. 01 〜1質量%)からなるプレゲル溶液を、前記狭義のセパレータに浸漬させて、石英ガ ラス基板に挟み込み紫外線を 15分照射して前駆体を架橋させて、ゲル電解質を含 むセパレータカもなるゲル電解質を得た。
[0076] これらを集電体、正極活物質層、セパレータ、負極活物質層、集電体の順になるよ うに組み合わせ、正極と接する端部集電体に A1のタブ(厚み 100 m、幅 100mm) を振動溶着し、負極と接する端部集電体に Cuのタブ (厚み 100 m、幅 100mm)を 振動溶着した。これを、マレイン酸変性ポリプロピレンフィルム、 SUS箔、およびナイ ロン力もなる 3層構造のラミネート材で封止した。
[0077] 次に、 80°Cで 2時間加熱架橋して 1層の単電池層力もなるバイポーラ電池を作製し た。
[0078] (実施例 2)
正極活物質層の厚みを 28 μ mにしたこと、負極活物質層の厚みを 30 μ mにしたこ と、セパレータの厚みを 27 mにしたこと以外は実施例 1と同様にしてノイポーラ電 池を作製した。
[0079] (実施例 3)
正極活物質の平均粒子径を 8 μ mにしたこと、負極活物質としてグラフアイト (結晶 性炭素材)を用いたこと、負極活物質の平均粒子径を 9 μ mにしたこと、ゲル電解質 の骨格としてポリオレフイン(ショァ A80)を用いたこと、集電体として Cu— A1クラッドを 用いたこと、正極活物質層の厚みを 35 mにしたこと、負極活物質層の厚みを 37 mにしたこと、セパレータの厚みを 33 μ mにしたこと以外は実施例 1と同様にしてバイ ポーラ電池を作製した。 [0080] (実施例 4)
正極活物質の平均粒子径を 2 μ mにしたこと、負極活物質の平均粒径を 2 μ mにし たこと、ゲル電解質の骨格としてァラミド (ショァ A85)を用いたこと、正極活物質層の 厚みを 12 μ mにしたこと、負極活物質層の厚みを 12 μ mにしたこと、セパレータの厚 みを 11 j mにしたこと以外は実施例 1と同様にしてノ ィポーラ電池を作製した。
[0081] (実施例 5)
正極活物質として LiNiOを用いたこと、正極活物質の平均粒子径を 0. にし
2
たこと、負極活物質の平均粒子径を 0. 8 m〖こしたこと、ゲル電解質の骨格としてァ ラミド(ショァ A100)を用いたこと、正極活物質層の厚みを 6 /z mにしたこと、負極活 物質層の厚みを 6 μ mにしたこと、セパレータの厚みを 5 μ mにしたこと、集電体の厚 みを 10 mにしたこと以外は実施例 1と同様にしてノ ィポーラ電池を作製した。
[0082] (実施例 6)
正極活物質として LiNiOを用いたこと、正極活物質の平均粒子径を 0. にし
2
たこと、負極活物質の平均粒子径を 0. 8 m〖こしたこと、ゲル電解質の骨格としてァ ラミド(ショァ A90)を用いたこと、セパレータの厚みを 14 μ mにしたこと、集電体の厚 みを 10 mにしたこと以外は実施例 1と同様にしてノ ィポーラ電池を作製した。
[0083] (比較例 1)
正極活物質の平均粒径を 8 μ mにしたこと、負極活物質の平均粒径を 9 μ mにした こと、正極活物質層の厚みを 40 μ mにしたこと、負極活物質層の厚みを 45 μ mにし たこと、セパレータの厚みを 50 /z mにしたこと、以外は実施例 1と同様にしてバイポー ラ電池を作製した。
[0084] (比較例 2)
正極活物質の平均粒径を 8 μ mにしたこと、負極活物質の平均粒径を 9 μ mにした こと、正極活物質層の厚みを 50 μ mにしたこと、負極活物質層の厚みを 55 μ mにし たこと、セパレータの厚みを 50 /z mにしたこと、以外は実施例 1と同様にしてバイポー ラ電池を作製した。
[0085] 実施例 1〜6、比較例 1〜2で作製したバイポーラ電池を用いて、平均低減量の測 定、共振シフト量の測定、ならびに、熱上昇および放熱時間の測定を行った。各測定 方法の詳細を下記に記し、各測定結果を図 18および図 19に示す。
[0086] (平均低減量の測定)
単電池層の略中央に加速度ピックアップを設け、インパルスハンマーによってハン マリングしたときの加速度ピックアップの振動スペクトルを測定した。測定のための各 種設定は、 JIS B 0908 (振動および衝撃ピックアップの校正方法 '基本概念)に準 拠する。得られた測定スペクトルは、 FET分析器により解析し、周波数と加速度の次 元に変換した。この得られた周波数に関して平均化とスムージングを行い、振動伝達 率スペクトルを得た。
[0087] 前記振動伝達率スペクトルの 10〜300Hzまでの平均を振動平均値とした。比較基 準は比較例 1から得られたスペクトルを振動平均値とし、各基準の振動平均値に対 する比を平均低減量とした。従って平均低減量の値が大きい程、従来の構造よりも防 振性に優れることを示す。
[0088] (共振シフト量の測定)
平均低減量の測定で得られた振動伝達率スペクトルの最も低周波側に現れた最大 ピーク周波数を求めた。以下、前記最大ピークを第 1共振ピークという。
[0089] (熱上昇および放熱時間の測定)
タブに熱電対を取り付けて、 10Cのサイクル試験を 60分行い、試験中の電池要素 の最高到達温度を、熱上昇として測定した。また、 60分のサイクル試験の後、電流を 止め、室温で放置した場合の温度変化を調べ、室温に戻るまでの時間を測定した。 測定は、最大 60分まで行い、 60分で室温まで戻らない場合は、 60分以上と測定結 果 じした。
[0090] (測定結果)
図 18および図 19に示す測定結果において、第 1共振ピークを参照する。比較例 1 〜2では第 1共振ピークがそれぞれ 60Hz、 70Hzであり、車両で発生しうる振動数の 範囲内、つまり 100Hz以下であった。したがって、比較例 1では、車両に搭載すると、 共振してしまうことがわ力つた。一方、実施例 1〜6では、いずれも第 1共振ピークが 1 00Hz超であり、車両に搭載しても共振しないことがゎカゝつた。
[0091] 図 18および図 19に示す測定結果において振動減水率を参照すると、振動減水率 は、実施例 1〜6のいずれも 32%以上であり、従来構造の比較例 1に対して格段に 振動を減衰できることがわ力つた。
[0092] 図 18および図 19に示す測定結果において熱上昇を参照すると、比較例 1が 30 δ Τであり、比較例 2が 25 δ Τであるのに対して、本願発明は、最も高い値でも 20 δ Τ であった。
[0093] 試験結果にぉ 、て、放熱時間を参照する。放熱時間は、比較例 1〜2では 60分以 上だったのに対し、実施例 1〜6では、最大でも 15分であった。この結果から、実施 例 1〜6のように、本願発明の構造は、放熱特性が格段に向上することがわかる。
[0094] 実施例 1〜6のバイポーラ電池は、単電池層が防振性および放熱性に優れることか ら、電池出力にも優れるものと考えられる。
[0095] (実施例 7、実施例 1の単電池層 3層品)
厚み 15 mの SUS箔を集電体として用意した。正極活物質として LiMnO (平均
2 粒径 5 μ m)を用意し、これにスラリー粘度調製溶媒である N—メチルピロリドン (NM P)を添加してスラリー状にしたものを SUS箔の一方の面に塗布および乾燥し、厚み 20 mの正極活物質層を形成した。次に負極活物質としてハードカーボン (平均粒 径 6 /ζ πι、非結晶性炭素材)を用意し、これに ΝΜΡを添加してスラリー状にしたもの を SUS箔の他の面に塗布および乾燥し、厚み 20 mの負極活物質層を形成した。
[0096] 加架橋型ゲル電解質の前駆体である PVdFのオリゴマーをポリエステル不織布 (厚 さ 15 m、ショァ A40)に染み込ませてゲル電解質のセパレータを作製した。次に、 イオン伝導性高分子マトリックスの前駆体である平均分子量 7500〜9000のモノマ 一溶液 (ポリエチレンォキシドとポリプロピレンォキシドの共重合体) 5重量0 /0、電解液 として PC+EC (PC :EC= 1 : 1 (体積比)) 95重量0 /0、および 1. 0Mの LiBETI、重 合開始剤 (BDK;ホストポリマー(高分子ゲル電解質の高分子原料)であるイオン伝 導性高分子マトリックスの前駆体に対して 0. 01〜1質量%)カゝらなるプレゲル溶液を 、前記狭義のセパレータに浸漬させて、石英ガラス基板に挟み込み紫外線を 15分照 射して前駆体を架橋させて、ゲル電解質を含むセパレータカゝらなるゲル電解質を得 た。
[0097] 端部集電体として 2枚の SUS箔 (厚み 15 m)を用意し、上述の方法と同様にして それぞれ片面だけに、正極活物質層または負極活物質層を形成した。
[0098] 次に、これらを単電池層が 3層積層された構造になるように組み合わせ、正極と接 する端部集電体に A1のタブ (厚み 100 m、幅 100mm)を振動溶着し、負極と接す る端部集電体に Cuのタブ (厚み 100 m、幅 100mm)を振動溶着した。これを、マ レイン酸変性ポリプロピレンフィルム、 SUS箔、およびナイロン力もなる 3層構造のラミ ネート材で封止した。
[0099] 次に、 80°Cで 2時間加熱架橋して単電池層を 3層積層してなるバイポーラ電池を作 製した。
[0100] (実施例 8、実施例 2の単電池層 3層品)
正極活物質層の厚みを 28 μ mにしたこと、負極活物質層の厚みを 30 μ mにしたこ と、セパレータの厚みを 27 mにしたこと以外は実施例 7と同様にしてノイポーラ電 池を作製した。
[0101] (実施例 9、実施例 3の単電池層 3層品)
正極活物質の平均粒子径を 8 μ mにしたこと、負極活物質としてグラフアイト (結晶 性炭素材)を用いたこと、負極活物質の平均粒子径を 9 μ mにしたこと、ゲル電解質 の骨格としてポリオレフイン(ショァ A80)を用いたこと、集電体として Cu— A1クラッドを 用いたこと、正極活物質層の厚みを 35 mにしたこと、負極活物質層の厚みを 37 mにしたこと、セパレータの厚みを 33 μ mにしたこと以外は実施例 7と同様にしてバイ ポーラ電池を作製した。
[0102] (実施例 10、実施例 4の単電池層 3層品)
正極活物質の平均粒子径を 2 μ mにしたこと、負極活物質の平均粒径を 2 μ mにし たこと、ゲル電解質の骨格としてァラミド (ショァ A85)を用いたこと、正極活物質層の 厚みを 12 μ mにしたこと、負極活物質層の厚みを 12 μ mにしたこと、セパレータの厚 みを 11 j mにしたこと以外は実施例 7と同様にしてノ ィポーラ電池を作製した。
[0103] (実施例 11、実施例 5の単電池層 3層品)
正極活物質として LiNiOを用いたこと、正極活物質の平均粒子径を 0. にし
2
たこと、負極活物質の平均粒子径を 0. 8 m〖こしたこと、ゲル電解質の骨格としてァ ラミド(ショァ A85)を用いたこと、正極活物質層の厚みを 6 mにしたこと、負極活物 質層の厚みを 6 μ mにしたこと、セパレータの厚みを 5 μ mにしたこと、集電体の厚み を 10 μ mにしたこと以外は実施例 7と同様にしてノ ィポーラ電池を作製した。
[0104] (比較例 3、比較例 1の単電池層 3層品)
正極活物質層の厚みを 40 μ mにしたこと、負極活物質層の厚みを 45 μ mにしたこ と、セパレータの厚みを 50 mにしたこと、以外は実施例 7と同様にしてバイポーラ電 池を作製した。
[0105] (実施例 12、実施例 3—実施例 2—実施例 3の 3層品)
実施例 9で作製した、端部集電体一正極活物質層と、端部集電体ー負極活物質層 とを用いて、実施例 2で作製した単電池層を挟持したこと以外は実施例 1と同様にし てノ ィポーラ電池を作製した。
[0106] (実施例 13、実施例 5の単電池層を含む 3層品)
実施例 11で作製した、端部集電体一正極活物質層と、端部集電体ー負極活物質 層とを用いて、下記に記す単電池層を挟持したこと以外は実施例 1と同様にしてバイ ポーラ電池を作製した。
[0107] 正極活物質として LiNiOを用いたこと、正極活物質の平均粒子径を 2 μ mにしたこ
2
と、負極活物質の平均粒子径を 2 mにしたこと、ゲル電解質の骨格としてァラミド( ショァ A85)を用いたこと、正極活物質層の厚みを 10 mにしたこと、負極活物質層 の厚みを 12 μ mにしたこと、セパレータの厚みを 10 μ mにしたこと以外は実施例 1と 同様にして単電池層を作製した。
[0108] 実施例 7〜13、比較例 3で作製したバイポーラ電池を用いて、平均低減量の測定、 共振シフト量の測定、ならびに、熱上昇および放熱時間の測定を行った。各測定方 法の詳細は上述したとおりである。ただし、熱上昇の測定は中央に位置する 2層目と した。各測定結果を図 20に示す。
[0109] (実施例 14、実施例 4の単電池層 10層品)
正極活物質の平均粒子径を 2 μ mにしたこと、負極活物質の平均粒径を 2 μ mにし たこと、ゲル電解質の骨格としてァラミド (ショァ A85)を用いたこと、正極活物質層の 厚みを 12 μ mにしたこと、負極活物質層の厚みを 12 μ mにしたこと、セパレータの厚 みを 11 mにしたこと、 8つの単電池層と、一対の端部集電体ー活性物質とを組み 合わせて、単電池層を 10層積層してなる構造としたこと以外は実施例 7と同様にして ノ ィポーラ電池を作製した。
[0110] (比較例 4、比較例 1の単電池層 10層品)
正極活物質層の厚みを 40 μ mにしたこと、負極活物質層の厚みを 45 μ mにしたこ と、セパレータの厚みを 50 mにしたこと、 8つの単電池層と、一対の端部集電体ー 活物質層とを組み合わせて、単電池層を 10層積層してなる構造としたこと以外は実 施例 10と同様にしてバイポーラ電池を作製した。
[0111] 実施例 14、比較例 4で作製したバイポーラ電池を用いて、平均低減量の測定、共 振シフト量の測定、ならびに、熱上昇および放熱時間の測定を行った。各測定方法 の詳細は上述したとおりである。ただし、熱上昇の測定は中央に位置する 5層目とし た。各測定結果を図 21に示す。
[0112] (実施例 15、実施例 4の単電池層 100層品)
正極活物質の平均粒子径を 2 μ mにしたこと、負極活物質の平均粒径を 2 μ mにし たこと、ゲル電解質の骨格としてァラミド (ショァ A85)を用いたこと、正極活物質層の 厚みを 12 μ mにしたこと、負極活物質層の厚みを 12 μ mにしたこと、セパレータの厚 みを 11 mにしたこと、 98枚の単電池層と、一対の端部集電体ー活物質層とを組み 合わせて、単電池層を 100層積層してなる構造としたこと以外は実施例 7と同様にし てノ ィポーラ電池を作製した。
[0113] (比較例 5、比較例 1の単電池層 100層品)
正極活物質層の厚みを 40 μ mにしたこと、負極活物質層の厚みを 45 μ mにしたこ と、セパレータの厚みを 50 mにしたこと、 98枚の単電池層と、一対の端部集電体 活物質層とを組み合わせて、単電池層を 100層積層してなる構造としたこと以外 は実施例 7と同様にしてノ ィポーラ電池を作製した。
[0114] 実施例 15、比較例 5で作製したバイポーラ電池を用いて、平均低減量の測定、共 振シフト量の測定、ならびに、熱上昇および放熱時間の測定を行った。各測定方法 の詳細は上述したとおりである。ただし、熱上昇の測定は中央に位置する 50層目とし た。各測定結果を図 22に示す。
[0115] 図 16に実施例 15の周波数 振動伝達率曲線 (符号 A)と、比較例 1のバイポーラ 電池の周波数 振動伝達率曲線 (符号 B)とを示す。一般的な車両は周波数が 100 Hzを超えた領域では振動伝達率のピークは生じないものとされており、実施例 15 ( 符号 A)は 100Hzを超えた領域に振動伝達率のピークを有していることから、車両に 搭載した際に車両の振動と共振し難ぐ防振性に優れる。一方、比較例 1 (符号 B)は 100Hz以下の領域に振動伝達率のピークを有して 、ることから、車両に搭載した際 に車両の振動と共振し易ぐ振動による出力低下を招き易い。
[0116] 図 17に実施例 15の時間 電池温度曲線 (符号 A)と、比較例 1の時間 電池温度 曲線 (符号 B)とを示す。図 17をみると、 60minにおける電池温度 (最高到達温度)に 大きな開きがあることがわかる。実施例 15は放熱性に優れる構造をしているため、比 較例 1よりも最高到達温度が低い。つまり、電池の温度上昇が抑制される。更に、電 流を止めてからの電池温度の低下を見ると、比較例 1は 60min以降温度低下が緩や かであるのに対して、実施例 15は電池温度の低下が速やかであり、 10分程度で電 池温度が室温にまで低下している。これらのことから、本願発明は放熱性に優れると いえる。
産業上の利用可能性
[0117] 本発明によれば、放熱性または防振性が改善された、出力に優れるバイポーラ電 池を提供することができる。

Claims

請求の範囲
[1] 集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成 されてなるバイポーラ電極と、前記ノィポーラ電極と交互に積層されてなるセパレー タとを有し、
隣接する前記正極活物質層、前記セパレータ、および前記負極活物質層を含んで 構成される単電池層にお 、て、
前記セパレータの厚みは、前記正極活物質層の厚みに対して 0. 68倍以上 1. 0倍 未満であり、前記負極活物質層の厚みに対して 0. 68倍以上 1. 0倍未満であること を特徴とするバイポーラ電池。
[2] 前記単電池層にお 、て、前記セパレータの厚みは、前記正極活物質層の厚みに 対して 0. 75-0. 95倍であり、前記負極活物質層の厚みに対して 0. 75-0. 95倍 であることを特徴とするバイポーラ電池。
[3] 前記単電池層の厚みは、 10-85 μ mであることを特徴とする請求項 1または 2に記 載のバイポーラ電池。
[4] 前記単電池層の厚みは、 20-50 μ mであることを特徴とする請求項 3に記載のバ ィポーラ電池。
[5] 前記正極活物質層、前記セパレータ、および前記負極活物質層からなる群より選 択される少なくとも 1種の厚みは、 35 m以下であることを特徴とする請求項 1または
2に記載のバイポーラ電池。
[6] 前記セパレータの厚みは、 20 μ m以下であることを特徴とする請求項 1または 2に 記載のバイポーラ電池。
[7] 前記セパレータは、ポリエステル系榭脂、ァラミド系榭脂、およびポリオレフイン系榭 脂からなる群より選択される少なくとも 1種を含むことを特徴とする請求項 1〜6のいず れかに記載のバイポーラ電池。
[8] 前記セパレータの透気度は、 10〜400secZl0ccであることを特徴とする請求項 1
〜7の!、ずれかに記載のバイポーラ電池。
[9] 前記セパレータの曲路率は、 0. 5〜2. 0であることを特徴とする請求項 1〜8のい ずれかに記載のバイポーラ電池。
[10] 前記セパレータは、ゲル電解質を含むことを特徴とする請求項 1〜9のいずれかに 記載のバイポーラ電池。
[11] 前記セパレータの硬度ショァ Aは、 20〜: L 10であることを特徴とする請求項 1〜10 の!、ずれかに記載のバイポーラ電池。
[12] 前記単電池層が複数積層され、
少なくとも 1層のセパレータの硬度ショァ Aは、他のセパレータの硬度ショァ Aと異な ることを特徴とする請求項 1〜11のいずれかに記載のバイポーラ電池。
[13] 前記単電池層が 3層以上積層され、
バイポーラ電池の中心に配置された単電池層に含まれるセパレータの硬度ショァ A は、他の単電池層に含まれるセパレータの硬度ショァ Aと比較して最も小さ 、ことを特 徴とする請求項 1〜12のいずれかに記載のバイポーラ電池。
[14] 前記正極活物質層に含まれる正極活物質の平均粒径は、 2 μ m以下であることを 特徴とする請求項 1〜13のいずれかに記載のバイポーラ電池。
[15] 前記正極活物質層に含まれる正極活物質は、 Li Mn系複合酸ィ匕物であることを 特徴とする請求項 1〜14のいずれかに記載のバイポーラ電池。
[16] 前記負極活物質層に含まれる負極活物質の平均粒径は、 2 μ m以下であることを 特徴とする請求項 1〜15のいずれかに記載のバイポーラ電池。
[17] 前記負極活物質層に含まれる負極活物質は結晶性炭素材または非結晶性炭素材 力もなることを特徴とする請求項 1〜16のいずれかに記載のバイポーラ電池。
[18] 請求項 1〜17のいずれかに記載のバイポーラ電池を、直列または並列に接続して なる組電池。
[19] 請求項 1〜17のいずれかに記載のバイポーラ電池または請求項 18に記載の組電 池を、搭載してなる車両。
PCT/JP2006/322350 2005-11-24 2006-11-09 電池構造体、組電池、およびこれらを搭載した車両 WO2007060841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06823237.0A EP1953861B1 (en) 2005-11-24 2006-11-09 Cell structure, battery and vehicle mounted with those
CN2006800439898A CN101313434B (zh) 2005-11-24 2006-11-09 电池结构体、电池组、以及搭载这些的车辆
KR1020087012292A KR101052163B1 (ko) 2005-11-24 2006-11-09 전지 구조체, 조전지 및 이들을 탑재한 차량
US12/085,216 US8124276B2 (en) 2005-11-24 2006-11-09 Battery structure, assembled battery, and vehicle mounting these thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-339523 2005-11-24
JP2005339523A JP5135678B2 (ja) 2005-11-24 2005-11-24 電池構造体、組電池、およびこれらを搭載した車両

Publications (1)

Publication Number Publication Date
WO2007060841A1 true WO2007060841A1 (ja) 2007-05-31

Family

ID=38067073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322350 WO2007060841A1 (ja) 2005-11-24 2006-11-09 電池構造体、組電池、およびこれらを搭載した車両

Country Status (6)

Country Link
US (1) US8124276B2 (ja)
EP (1) EP1953861B1 (ja)
JP (1) JP5135678B2 (ja)
KR (1) KR101052163B1 (ja)
CN (1) CN101313434B (ja)
WO (1) WO2007060841A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928050B1 (en) * 2006-11-30 2012-04-04 Nissan Motor Co., Ltd. Bipolar Battery and Battery Assembly
CN102823032B (zh) * 2010-03-30 2014-09-10 三井金属矿业株式会社 锂离子电池用正极活性物质材料和锂离子电池
FR2961636B1 (fr) * 2010-06-17 2013-10-18 Commissariat Energie Atomique Accumulateur electrochimique au lithium a architecture bipolaire specifique
KR101192138B1 (ko) 2010-07-01 2012-10-16 삼성에스디아이 주식회사 전극 조립체, 상기 전극 조립체를 제조하는 방법 및 상기 전극 조립체를 포함하는 이차전지
JP5809044B2 (ja) * 2011-12-21 2015-11-10 川崎重工業株式会社 二次電池
JP5984051B2 (ja) 2012-07-12 2016-09-06 株式会社Gsユアサ 電極体
KR102230556B1 (ko) 2012-08-16 2021-03-22 에노빅스 코오퍼레이션 3차원 배터리들을 위한 전극 구조들
JP6413347B2 (ja) 2014-05-26 2018-10-31 株式会社Gsユアサ 蓄電素子
WO2016161367A1 (en) 2015-04-03 2016-10-06 The Regents Of The University Of California Polymeric materials for electrochemical cells and ion separation processes
EP3828976B1 (en) 2015-05-14 2023-07-05 Enovix Corporation Longitudinal constraints for energy storage devices
SG11201809308QA (en) 2016-05-13 2018-11-29 Enovix Corp Dimensional constraints for three-dimensional batteries
JP6409841B2 (ja) * 2016-09-26 2018-10-24 トヨタ自動車株式会社 非水電解液二次電池
EP3520165A4 (en) * 2016-09-28 2020-04-29 Sepion Technologies, Inc. BATTERY CELLS WITH IONIC SEQUESTRATION BY POROUS SEPARATORS
JP6802687B2 (ja) * 2016-10-25 2020-12-16 株式会社豊田自動織機 蓄電装置
JP7086978B2 (ja) 2016-11-16 2022-06-20 エノビクス・コーポレイション 圧縮性カソードを備えた3次元電池
EP3551688B1 (en) 2016-12-07 2023-07-26 Sepion Technologies, Inc. Microstructured ion-conducting composites and uses thereof
KR102322289B1 (ko) * 2017-01-03 2021-11-05 현대자동차주식회사 방열성 복합소재 및 이를 포함하는 수냉식 배터리 시스템
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
KR20200074246A (ko) * 2017-11-15 2020-06-24 에노빅스 코오퍼레이션 전극 어셈블리 및 2차 배터리
US11926207B2 (en) * 2020-10-09 2024-03-12 Hexagon Purus North America Holdings Inc. Battery and auxiliary components for vehicle trailer
WO2022125929A1 (en) 2020-12-11 2022-06-16 Hexagon Purus North America Holdings Inc. Trailer hookup breakaway mitigation systems and methods
JP2024501496A (ja) * 2021-07-09 2024-01-12 エルジー エナジー ソリューション リミテッド 電極組立体
EP4248513A1 (en) * 2021-07-09 2023-09-27 LG Energy Solution, Ltd. Electrode assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275130A (en) 1979-09-27 1981-06-23 California Institute Of Technology Bipolar battery construction
JP2000100471A (ja) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
EP1487034A2 (en) 2003-06-12 2004-12-15 Nissan Motor Co., Ltd. Bipolar battery and related method
JP2005310667A (ja) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd バイポーラ電池、バイポーラ電池の製造方法、組電池およびこれらを搭載した車両
JP2005340089A (ja) * 2004-05-28 2005-12-08 Nissan Motor Co Ltd バイポーラ電池、組電池、およびこれらを搭載した車両
JP2006173095A (ja) * 2004-11-22 2006-06-29 Nissan Motor Co Ltd 電池構造体
JP2006261041A (ja) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd 非水電解質電池および非水電解質電池用電極の製造方法
EP1744393A2 (en) 2005-07-12 2007-01-17 Nissan Motor Company Limited Improvements in or relating to batteries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290414A (en) * 1992-05-15 1994-03-01 Eveready Battery Company, Inc. Separator/electrolyte combination for a nonaqueous cell
US5393617A (en) * 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
US6908711B2 (en) 2002-04-10 2005-06-21 Pacific Lithium New Zealand Limited Rechargeable high power electrochemical device
JP4830250B2 (ja) * 2002-06-12 2011-12-07 日産自動車株式会社 組電池
JP4144312B2 (ja) * 2002-10-08 2008-09-03 日産自動車株式会社 バイポーラ電池
CN1419307A (zh) * 2002-12-10 2003-05-21 天津大学 多层双极单体电池及制造方法
JP4422968B2 (ja) * 2002-12-27 2010-03-03 パナソニック株式会社 電気化学素子
JP2005044663A (ja) * 2003-07-23 2005-02-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法
US20050287425A1 (en) * 2004-06-25 2005-12-29 Celgard Inc. Li/MnO2 battery separators with selective ion transport

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275130A (en) 1979-09-27 1981-06-23 California Institute Of Technology Bipolar battery construction
JP2000100471A (ja) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
EP1487034A2 (en) 2003-06-12 2004-12-15 Nissan Motor Co., Ltd. Bipolar battery and related method
JP2005310667A (ja) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd バイポーラ電池、バイポーラ電池の製造方法、組電池およびこれらを搭載した車両
JP2005340089A (ja) * 2004-05-28 2005-12-08 Nissan Motor Co Ltd バイポーラ電池、組電池、およびこれらを搭載した車両
JP2006173095A (ja) * 2004-11-22 2006-06-29 Nissan Motor Co Ltd 電池構造体
JP2006261041A (ja) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd 非水電解質電池および非水電解質電池用電極の製造方法
EP1744393A2 (en) 2005-07-12 2007-01-17 Nissan Motor Company Limited Improvements in or relating to batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1953861A4

Also Published As

Publication number Publication date
CN101313434B (zh) 2010-10-06
US8124276B2 (en) 2012-02-28
JP5135678B2 (ja) 2013-02-06
KR20080063523A (ko) 2008-07-04
EP1953861B1 (en) 2013-10-16
EP1953861A1 (en) 2008-08-06
US20090136844A1 (en) 2009-05-28
KR101052163B1 (ko) 2011-07-26
EP1953861A4 (en) 2010-03-10
JP2007149400A (ja) 2007-06-14
CN101313434A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2007060841A1 (ja) 電池構造体、組電池、およびこれらを搭載した車両
US9799864B2 (en) Battery, separator, and laminated microporous film
JP4238645B2 (ja) バイポーラ電池
US7501206B2 (en) Bipolar battery, assembled battery, combination assembled battery, and vehicle using the assembled battery or the combination assembled battery
KR20150106808A (ko) 이차 전지 및 이의 제조 방법
JP4111043B2 (ja) バイポーラ二次電池
JP2005149891A (ja) バイポーラ電池、及びそれを用いた組電池
JP2012227066A (ja) セパレータおよび非水電解質電池、ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2006173095A (ja) 電池構造体
JP2012109124A (ja) 非水電解質電池
JP4967230B2 (ja) 電池構造体
JP2008159576A (ja) リチウムイオン電池、組電池、組電池モジュール、車両及びリチウムイオン電池の正極電極の製造方法
JP2006185854A (ja) バイポーラ電池
JP4300310B2 (ja) バイポーラ電池、組電池、複合組電池、および組電池または複合組電池を用いた車両
JP4367235B2 (ja) バイポーラ電池、組電池、およびこれらを搭載した車両
JP2005174691A (ja) バイポーラ電池
JP4466088B2 (ja) 組電池
JP4595302B2 (ja) バイポーラ電池
JP2006164782A (ja) バイポーラ電池、組電池、複合電池およびこれらを搭載した車両
JP4438348B2 (ja) バイポーラ電池および組電池
JP2015057788A (ja) 非水電解質電池の製造方法
JP2005093158A (ja) リチウムイオン二次電池
KR101681452B1 (ko) 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
JP4984388B2 (ja) バイポーラ電池、組電池、複合電池およびこれらを搭載した車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043989.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12085216

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087012292

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006823237

Country of ref document: EP