WO2007060760A1 - 質量分析装置 - Google Patents

質量分析装置 Download PDF

Info

Publication number
WO2007060760A1
WO2007060760A1 PCT/JP2006/312771 JP2006312771W WO2007060760A1 WO 2007060760 A1 WO2007060760 A1 WO 2007060760A1 JP 2006312771 W JP2006312771 W JP 2006312771W WO 2007060760 A1 WO2007060760 A1 WO 2007060760A1
Authority
WO
WIPO (PCT)
Prior art keywords
selection
ion
analysis
mass
valence
Prior art date
Application number
PCT/JP2006/312771
Other languages
English (en)
French (fr)
Inventor
Yoshikatsu Umemura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to US12/094,426 priority Critical patent/US7880135B2/en
Priority to JP2007546353A priority patent/JP4596010B2/ja
Priority to CN2006800434343A priority patent/CN101313215B/zh
Priority to EP06767388A priority patent/EP1956370A4/en
Publication of WO2007060760A1 publication Critical patent/WO2007060760A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0081Tandem in time, i.e. using a single spectrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0086Accelerator mass spectrometers

Definitions

  • the present invention relates to a mass spectrometer, and more specifically, relates to a mass spectrometer capable of performing mass spectrometry on ions outside the product produced by selecting and cleaving ion species to be analyzed in multiple stages.
  • MSZMS analysis tandem analysis
  • an ion species having a specific mass mass (mass-to-charge ratio m / z) is first selected as a precursor ion from ion species generated from a sample containing an analyte, and the selected ion species is selected.
  • the precursor ions are cleaved by CID (Collusion Induced Dissociation) to produce product ions. This is the first ion species selection and cleavage operation.
  • the product ions generated in this way are detected separately for each mass, as in normal MS analysis. Since ionic species derived from certain substances cause a characteristic cleavage by CID, for example, by focusing on the cleavage site, the chemical structure of the target analyte can be determined! Can be obtained.
  • MS n analysis (n ⁇ 3 or more) is effective, in which the selected 'cleavage operation is repeated several times and the final product ions are mass analyzed.
  • MSZ MS analysis selection and dissociation operation only once as described above is a MS 2 analysis. In other words, in MS n analysis, n ⁇ 1 selection / cleavage operations are repeated.
  • mass spectrometers having a function of automatically selecting a precursor ion in MS n analysis are also known!
  • mass spectrometers having a function of automatically selecting a precursor ion in MS n analysis are also known!
  • an ion species that signal intensity corresponding to the peak is the maximum in the MS n analysis
  • n- Selection of ion species for the first time ⁇ A treatment to select as a precursor ion for the cleavage operation is performed.
  • the mass spectrometer described in Patent Document 2 the signal intensity among the plurality of peaks appearing in Masusu vector obtained by MS n_1 analysis in consideration of other peaks Nag only peak which is the maximum, MS n N—Selection of the first ion species in the analysis process to determine the precursor ion for the cleavage operation.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-171442
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-257922
  • the target substance is chemically modified with a certain specific substance, and the site where the specific substance is bound is investigated to determine the structure of the target substance. Once estimated, the method used is used. In such applications, per cent to MS n analysis, 'upon dissociation operation, the previous stage of the n-2 round selection' n-1 round of selection Te focused on the relationship between the precursor ion and product ions in the cleavage operation Thus, it would be very useful if a precursor ion could be selected.
  • the present invention has been made in view of these points, and the object of the present invention is to provide a precursor cation in the selection / cleavage operation in the previous stage in a mass spectrometer capable of MS n analysis. Focusing on the relationship with product ions, the next-stage precursor ions can be automatically selected and analyzed, and especially for the multiply-charged ions, the desired precursor ions are selected appropriately according to the analyst's intention. And providing a mass spectrometer capable of performing MS n analysis.
  • a first invention made to solve the above problems is a mass spectrometer capable of MS n analysis (n ⁇ 3).
  • n Selection of the first ion species' selection criterion for the precursor ion in the cleavage operation: n—Selection of the precursor ion in the second ion selection / cleavage operation and the product ion generated from it Input means for the analyst to input and set the mass difference or equivalent information;
  • a valence determination means for determining the valence of at least one of the selected precursor ions; c) When performing MS n analysis, among the ion species corresponding to the peak appearing in the mass spectrum obtained by MS n_1 analysis, any of the previous precursor ions was determined by the valence determining means. In consideration of the valence, the ion species that matches the selection criteria set by the input means is searched, and this ion species is determined as the precursor ion for the n-first selection / cleavage operation in MS n analysis. Precursor ion selection means,
  • a second invention made to solve the above problems is a mass spectrometer capable of MS n analysis (n ⁇ 3).
  • n Selection of the first ion species' selection criterion for the precursor ion in the cleavage operation: n—Selection of the precursor ion in the second ion selection / cleavage operation and the product ion generated from it
  • a valence judging means for judging the valence of the ion species corresponding to the peak appearing in the mass spectrum obtained by the analysis
  • the mass spectrometers according to the first and second inventions have, as a typical configuration, an ionization unit that ionizes a target substance, and a specific mass from among ion species generated by the ionization unit. Select the ion species that has an ion to cleave.
  • the analyst uses the input means to select the first ion species as the selection criterion for the precursor ion in the second ion species selection / cleavage operation.
  • various analysis conditions such as the measurement mass range may be set, and the selection criteria for the precursor ion in the first ion species selection / cleavage operation may be set.
  • the valence difference or equivalent Enter the information you want.
  • MS 1 analysis, MS 2 analysis, and MS 3 analysis are sequentially executed in accordance with the analysis conditions input as described above or predetermined.
  • the valence determining means determines the valences of one or more ion species corresponding to the peak appearing in the mass spectrum obtained by the MS 1 analysis.
  • the precursor ion selection means determines the valence determined by the valence determination means among the ion species corresponding to the peak appearing in the mass spectrum obtained by the MS 2 analysis. In consideration, search for ion species that meet the selection criteria set by the analyst.
  • the desired relationship is obtained. Can be selected and analyzed as the next-stage precursor ion. At that time, the analyst is completely unaware of the valence of ions. It is only necessary to input selection criteria that focus only on the relationship between the precursor ion and the product ion. For both monovalent ions and polyvalent ions, fragments that are released by cleavage regardless of the valence are analyzed by the analyst. The ions that are intended are selected as precursor ions and the analysis is automatically performed. This makes it possible to obtain information that is very important for estimating the chemical structure and composition with high accuracy.
  • the input means may select the precursor for the n-1 lth ion species selection / cleavage operation.
  • the input means may select the precursor for the n-1 lth ion species selection / cleavage operation.
  • the mass of the fragment it is possible to input the mass of the fragment to be desorbed in the n-2 second ion species selection / cleavage operation, or the mass and the valence.
  • the input means includes n-1 selection of ionic species for the first time as a selection criterion for precursor ions in the cleaving operation.
  • the composition formula of the fragment to be desorbed or the composition formula or the valence or ionic formula is input, and the information power input and set by the input means is used to determine the mass and valence of the fragment. It is good also as a structure further provided with the conversion means to calculate.
  • the composition formula should be simple! If the composition formula is complicated, it is troublesome to input by keyboard operation or the like. Therefore, preferably, the input means selects one from a plurality of pre-registered composition formulas and names, or one of a composition formula and an ionic formula with a plurality of valences. Good.
  • FIG. 1 is a schematic configuration diagram of a mass spectrometer that is one embodiment of the present invention.
  • FIG. 2 is a flowchart of an operation centered on a control Z processing unit when MS 1 analysis, MS 2 analysis, and MS 3 analysis are automatically executed in the mass spectrometer of the present embodiment.
  • FIG. 3 is a schematic diagram showing an outline of processing performed by a separation Z detection unit in MS 1 analysis, MS 2 analysis, and MS 3 analysis in the mass spectrometer of the present example.
  • FIG. 4 An example of a mass spectrum obtained in the mass spectrometer of this example during MS 1 analysis, MS 2 analysis, and MS 3 analysis.
  • FIG. 5 Valence determination process performed in the process of automatic analysis in the mass spectrometer of the present embodiment The conceptual diagram for demonstrating.
  • an ion trap time-of-flight mass spectrometer that combines an ion trap (IT) and a time-of-flight mass spectrometer (TOF-MS) will be described as an example of a mass spectrometer according to the present invention. 1 to 5 will be described.
  • FIG. 1 is a schematic configuration diagram of a mass spectrometer according to the present embodiment.
  • the mass spectrometer according to this embodiment is roughly composed of a separation Z detection unit 10 and a control Z processing unit 20.
  • the separation Z detection unit 10 includes, for example, an ionization unit 11 that ionizes a sample liquid, which is an analysis target separated by a liquid chromatograph, by electrospray ionization (ESI), and a predetermined mass (mZz value).
  • ESI electrospray ionization
  • mZz value predetermined mass
  • a three-dimensional quadrupole ion trap mass spectrometer 12 having a function of generating a product ion by CID cleavage of the precursor ion.
  • a time-of-flight mass analyzer 13 that temporally separates according to the mass, and an ion detector 14 that sequentially detects the separated ions are provided.
  • the control Z processing unit 20 performs an analysis with the control unit 21 that controls each unit of the separation Z detection unit 10.
  • Analytical condition storage unit 22 for storing various analytical conditions in advance, and ion detector 14 for converting the detection signal of 14 forces into digital data and performing data processing to perform a predetermined analysis
  • a data processing unit 23 and a data storage unit 24 for storing data obtained by the analysis, and an input unit 25 for the analyst to perform various input settings and instructions, and an analysis
  • a display unit 26 for displaying conditions and analysis results is connected.
  • the control Z processing unit 20 is realized by a commercially available personal computer, and a characteristic operation as described later is achieved by executing dedicated control Z processing software installed in the computer.
  • the input unit 25 is a keyboard or a pointing device such as a mouse.
  • the mass spectrometer of the present embodiment can repeat the ion species selection / cleavage operation an arbitrary number of times in the ion trap mass spectrometer 12 1S
  • n 3 in the present invention That is, up to MS 3 analysis shall be performed.
  • FIG. 2 shows MS analysis (hereinafter referred to as MS 1 analysis to clarify that it is part of a series of automatic analysis), MS / MS analysis (hereinafter MS) in the mass spectrometer of this example. 2 ) and control for automatically executing MS 3 analysis
  • MS 1 analysis MS / MS analysis
  • Fig. 3 shows processing and operations performed by separation Z detection unit 10 at each of these analyzes
  • Fig. 4 is an example of a mass spectrum represented by analysis data obtained at the time of each analysis
  • Fig. 5 is a conceptual diagram for explaining the valence determination process performed in the course of this analysis. It is.
  • the analyst sets analysis conditions such as the ion method and measurement mass range for MS 1 analysis, MS 2 analysis, and MS 3 analysis prior to automatic analysis, and also selects and cleaves.
  • selection criteria for automatically selecting the precursor ions at each stage are set by the input unit 25 (step Sl).
  • the precursor ion selection criteria for MS 2 analysis are to determine ion intensity (peak signal intensity) and mass, which are generally known in the art.
  • the precursor of MS 3 analysis The scion selection criterion is information on a fragment to be desorbed during MS 2 analysis. Specifically, the mass of the fragment is input numerically or the composition formula of the fragment is input.
  • composition formula In the case of a form for inputting the composition formula, rather than inputting alphanumeric characters from the input section 25, a list of a large number of pre-registered composition formulas is displayed on the screen of the display section 26, Of these, it is preferable to select a desired composition formula with a mouse or the like because it saves the labor of the analyst and fewer input errors are required.
  • the composition formula when the composition formula is input, the composition formula is converted into mass in the control unit 21.
  • the analysis conditions and the precursor ion selection criteria input as described above are stored in the analysis condition storage unit 22.
  • the control unit 21 starts with the mass analysis unit 12, under the analysis conditions of the MS 1 analysis stored in the analysis condition storage unit 22. Operate 13 to acquire MS 1 analysis data (steps S2, S3). Specifically, the ion trap mass analyzer 12 temporarily holds the ions generated in the ion chamber 11 without selecting or cleaving the ions, and the held ions are simultaneously time-of-flight type. Introduced into the mass spectrometer 13. The time-of-flight mass analyzer 13 separates the ions for each mass and sequentially detects them with the ion detector 14 (see FIG. 3 (a)). The MS 1 analysis data obtained in this way is data representing the mass spectrum shown in FIG. 4 (a), for example. This MS analysis data is stored in the data storage unit 24. Further, the data processing unit 23 determines the valence Z of each ion species corresponding to the peak appearing in the mass spectrum based on the MS analysis data (step S4).
  • Various methods can be considered as a method for determining the valence of an ion species.
  • a method already proposed by the applicant of the present application in Japanese Patent Application No. 2005-141845 can be used.
  • this method will be schematically described with reference to FIG.
  • This method matches peak patterns within isotope clusters (a group of peaks with multiple mZz values that are derived from ions with the same elemental composition and that differ depending on the isotope composition in the ions).
  • the valence is determined while identifying the isotope cluster.
  • each peak of the mass spectrum shown in FIG. 4 represents an isotopic cluster as shown in FIG. 5 as a single peak for convenience.
  • the mZz value and peak intensity of each peak are obtained from the mass spectrum as shown in FIG. .
  • a peak that serves as a reference for searching for an isotope cluster pattern is determined according to a predetermined algorithm. For example, when selecting the peak intensity V and the reference peak in order, the base peak (the peak with the highest intensity among the measured peaks, the peak A in Figure 5) is the reference in the first process. It becomes a peak.
  • the base peak the peak with the highest intensity among the measured peaks, the peak A in Figure 5
  • peaks that have already been identified as peaks belonging to the isotope cluster by the previous processing are excluded from the selection of the reference peak.
  • the peak pattern around the reference peak is examined, and the valence pattern is determined by determining whether or not the peak pattern matches the peak appearance pattern in each valence isotope cluster. Perform matching.
  • the valence pattern matching is based on the valence range for searching for isotope clusters, the allowable range for resolution for searching for peaks belonging to isotope clusters, and the minimum number of peaks considered to constitute an isotope cluster. , Etc. are performed according to the conditions.
  • valence pattern matching is performed for each step width assumed when the reference peak is assumed to be included in the isotope cluster of each valence from the position of the mZz value of the reference peak. This is done by checking whether a peak exists at a distant position. For example, when the reference peak is included in a monovalent isotope cluster, the plurality of peaks belonging to the isotope cluster show peak patterns having different mZz values by 1, so that the search step width is 1. This is the case of isotope cluster 1 in Fig. 5.
  • the peak belonging to the isotope cluster shows a peak pattern with different mZz values by 1Z2, so the search step width is 1 Z2. Become. This is the case of isotope cluster 2 in Fig. 5.
  • the phase relative to the reference peak changed according to the mass value of the reference peak (mZz value multiplied by the assumed valence Z).
  • a threshold value for the intensity is set, and the peak having an intensity below this threshold value is also excluded from the candidate power of the peak belonging to the isotope cluster during matching.
  • the peak indicated by the arrow in FIG. 5 matches the peak pattern of a monovalent isotope cluster including reference peak A, but is judged to be noise because the relative intensity with respect to reference peak A is less than the threshold.
  • Candidate powers for peaks belonging to isotope cluster 1 are excluded. Also already The upper and lower limits of the intensity for matching are determined by the relative intensities of adjacent peaks matched as peaks belonging to the same isotope cluster. Try to remove.
  • a peak pattern centered on the reference peak and a matched isotope cluster valence pattern are sequentially obtained, and among these, the matching resolution (when searching for each peak belonging to an isotope cluster)
  • the isotope cluster is identified by selecting the isotope cluster valence pattern with the smallest standard deviation of the measured and predicted values), and the valence of the selected valence pattern is determined by the identified isotope. Judged as the valence of each peak belonging to the cluster.
  • the above is an example of the valence determination process in step S4.
  • the data processing unit 23 selects the precursor ion for MS 2 analysis stored in the analysis condition storage unit 22 among the plurality of ion species obtained by the MS 1 analysis.
  • An appropriate ion species is automatically selected as the precursor ion P1 in accordance with the standard (step S5).
  • the precursor ion selection reference force of MS 2 analysis When the ion species corresponding to the peak with the highest signal intensity is observed among the observed ion species peaks, the MS shown in Fig. 4 (a) In one analysis data, M Z + ion is selected as the precursor ion PI.
  • the control unit 21 temporarily stores information on the mass M and valence Z of the precursor ion P1 in an internal memory (step S6).
  • the control unit 21 When the above processing relating to the MS 1 analysis is completed, the control unit 21 then operates the mass analysis units 12 and 13 under the conditions for selecting and cleaving the precursor ion P1 selected automatically.
  • MS 2 analysis data is acquired (steps S7, S8). Specifically, the ion trap mass analyzer 12 captures all the ion species generated in the ion source 11 and then excludes ion species other than the precursor ion P1 (that is, the precursor ion P1 is mass-selected). Then, the precursor ion P1 remaining in the ion trap is CID-cleaved, and then various product ions generated by the cleavage are simultaneously introduced into the time-of-flight mass spectrometer 13.
  • MS 2 analysis data is for example For example, the data represents the mass spectrum shown in Fig. 4 (b).
  • the MS 2 analysis data is also stored in the data storage unit 24.
  • the mass N of the fragment desorbed at the time of MS 2 analysis (strictly, at the time of the first selection of the MS 2 analysis' cleavage operation) is stored. It is set.
  • the data processor 23 information and mass N, by using the information of the mass M and valence Z of the MS 2 analysis at the precursor ion P1 that has been temporarily stored in the first, obtained by MS 2 analysis Search for an ion species with a mass of M-(N / Z) among the ion species corresponding to the peak appearing in the obtained mass spectrum, and select this as the next precursor ion P2 (step S9) .
  • the MS 3 analysis precursor ion selection criterion the mass N of the fragment desorbed at the time of MS 2 analysis (strictly, at the time of the first selection of the MS 2 analysis' cleavage operation) is stored. It is set.
  • the data processor 23 information and mass N, by using the information of the mass M and valence Z of the MS 2 analysis at the precursor ion P1 that has been
  • the valence force of the precursor ion PI is 3 ⁇ 4, and a peak corresponding to an ion species having a mass of M (N / Z) is observed on the mass spectrum.
  • step S10 it is determined whether or not an ion species that meets the conditions can be found. Therefore, it is determined whether or not an ion species that meets the conditions can be found (step S10), and if the ions that meet the conditions cannot be found, control for this automatic analysis is performed without performing the next MS 3 analysis. The process ends. In addition, if no ion species that meets the conditions is found, the maximum signal intensity in the peak observed on the mass spectrum obtained by MS 2 analysis is determined according to another predetermined analysis condition (for example, MS 2 analysis). The ion corresponding to the peak that gives the ion is the precursor ion P2, etc.), and MS 3 analysis may be performed.
  • another predetermined analysis condition for example, MS 2 analysis
  • step S10 When an ion that meets the conditions is found in step S10 and selected as the precursor ion P2, the control unit 21 subsequently selects the two automatically selected precursor ions, that is, 1st selection ⁇ Precursor ion P1 to be subjected to cleavage operation and 2nd selection ⁇ Precursor ion P2 to be subjected to cleavage operation are sequentially selected 'Mass analyzers 12 and 13 are operated under the conditions for cleavage.
  • Get MS 3 analysis data Step Sl l, SI 2
  • the ion trap mass spectrometer 12 captures all ion species generated in the ion trap 11, and then excludes ion species other than the precursor ion P1 (that is, the quality). After the CID cleavage of the precursor ion P1 selectively left in the ion trap, ion species other than the precursor ion P2 are generated inside the ion trap. Force is eliminated (ie mass selection is performed). Then, the precursor ion P2 selectively left in the ion trap is CID-cleaved again, and various product ions generated by the cleavage are simultaneously introduced into the time-of-flight mass analyzer 13. Then, the product ions are separated into masses by the time-of-flight mass spectrometer 13 and sequentially detected by the ion detector 14 (see FIG. 3 (c)).
  • MS 3 analysis data obtained in this way is data representing a mass spectrum shown in Fig. 4 (c), for example.
  • the MS 3 analysis data is also stored in the data storage unit 24. Here, this MS 3 analysis data is finally output and provided to the analyst.
  • the precursor ions are sequentially selected based on the conditions preset by the analyst, and the MS 1 analysis, the MS 2 analysis, and the MS 3 analysis are sequentially performed. It is automatically executed and the result of the MS 3 analysis is output. In the meantime, the analyst does not have to make any judgment or input operation on the way of selecting the precursor ion! Therefore, the troublesome and complicated work for selecting the precursor ion is greatly reduced.
  • MS 3 minutes with selective-dissociation operation in two stages in the automatic analysis It is natural that the present invention can be extended to multi-stage MS n analysis where n ⁇ 4, although it is not performed.
  • the higher the number of repetitions of the selection / cleavage operation the more complicated the manual selection of precursor ions becomes. Therefore, the automatic selection of precursor ions as in the present invention reduces the labor of the analyst, and the analysis efficiency. The effect of improvement is even greater.
  • the present invention is applied to the ion trap time-of-flight mass spectrometer.
  • the ion species can be selected and cleaved in multiple stages, and finally caused by the cleaving.
  • the configuration of the separation Z detection unit 10 is not particularly limited as long as the configuration can detect ions by mass separation.
  • the ionization method in the ionization section 11 is not particularly limited.

Abstract

 分析者は予め入力部25より2回目の開裂に際してのプリカーサイオン選択基準として、1回目の開裂で脱離する断片の質量を他の分析条件とともに入力する。自動分析が開始されると制御部21はMS1分析、MS2分析、MS3分析を順次実行するが、その過程で、データ処理部23はMS1分析により得られたマススペクトルに現れたピークに対応した各イオン種の価数を判定する。また、MS2分析終了後に、MS2分析によるマススペクトルに現れたピークに対応したイオン種の中で、上記判定された価数を考慮して選択基準に適合したイオン種を探索し、MS3分析の2回目の開裂のプリカーサイオンとして選定する。このようにして対象イオンの価数に拘わらず、MSn分析の各段で選択・開裂させるプリカーサイオンをその前段の開裂で脱離する断片の質量に応じて自動的に選定することで、分析効率を改善するとともに精度の高い化学構造情報を得ることができる。

Description

明 細 書
質量分析装置
技術分野
[0001] 本発明は質量分析装置に関し、さら〖こ詳しくは、分析対象であるイオン種を多段階 に選択 ·開裂させて生成したプロダ外イオンを質量分析することが可能な質量分析 装置に関する。
背景技術
[0002] イオントラップ型質量分析計などを用いた質量分析にぉ 、て、 MSZMS分析 (タン デム分析)という手法が知られている。一般的な MSZMS分析では、まず分析対象 物質を含む試料より生成したイオン種の中から目的とする特定の質量 (質量電荷比 m /z)を有するイオン種をプリカーサイオンとして選別し、その選別したプリカーサイオン を CID (Collusion Induced Dissociation:衝突誘起分解)によって開裂させてプロダク トイオンを生成する。これが 1回目のイオン種の選択'開裂操作である。これにより生 成されたプロダクトイオンを、通常の MS分析と同様に、質量毎に分離して検出する。 或る種の物質に由来するイオン種は CIDにより特徴的な開裂を起こすため、例えば 開裂を起こした部位に着目することで、目的とする分析対象物質の化学構造などに つ!、ての情報を取得することができる。
[0003] 近年、こうした質量分析装置は生化学分野、医療'製薬分野などで盛んに利用され るようになってきており、それに伴い、分析対象の物質はタンパク質、ペプチド、脂質 などますます分子量が大きくなり、その化学構造 (組成)も複雑になる傾向にある。そ のため、目的物質の性質によっては、 1回の選択 ·開裂操作だけでは十分に小さな 質量までイオンが開裂しない場合が多くなつている。そうした場合には、選択'開裂操 作を複数回繰り返し、最終的に生成したプロダクトイオンを質量分析する MSn分析 (n ≥3以上)が有効である。なお、上記のような 1回のみの選択 ·開裂操作による MSZ MS分析は MS2分析である。即ち、 MSn分析では n— 1回の選択'開裂操作の繰り返 しが行われる。
[0004] こうした MSn分析では、 1回目、 2回目、…、 n—1回目の選択 ·開裂操作の対象とす るイオン種 (プリカーサイオン)をそれぞれ分析開始前に予め決めておく必要がある。 従来、一般的には、こうした各段のプリカーサイオンの選定は、分析を行って得られ たデータを分析者自身が解析することにより為されることが多い。そのため、多段回 のイオン種の選択'開裂操作を伴う MSn分析を行う際には、分析者自身が分析条件 を検討'変更しながら同一試料を何度も分析し直す必要があり、たいへんに面倒な作 業であって分析効率も低 、ものであった。
[0005] こうした煩雑な作業を軽減するため、 MSn分析においてプリカーサイオンの選定を 自動的に行う機能を有する質量分析装置も知られて!、る。例えば特許文献 1に記載 の質量分析装置では、 MSn_1分析により得られたマススペクトルに現れる複数のピー クの中で、信号強度が最大であるピークに対応したイオン種を MSn分析における n— 1回目のイオン種の選択 ·開裂操作のプリカーサイオンとして選定する処理が行われ る。また、特許文献 2に記載の質量分析装置では、 MSn_1分析により得られたマスス ベクトルに現れる複数のピークの中で信号強度が最大であるピークだけでなぐ他の ピークも考慮して、 MSn分析における n— 1回目のイオン種の選択'開裂操作のプリ カーサイオンを決定する処理が行われる。
[0006] このようなプリカーサイオンの自動選定機能を有する質量分析装置によれば、分析 者がいちいち分析データを検討してプリカーサイオンを選定する手間は不要になる。 しかしながら、いずれも単一のマススペクトルの情報に基づいてプリカーサイオンを決 定するものであるため、例えば開裂によって特定の断片が脱離することがわ力つてい るような場合でも、こうした脱離によって生じたイオンに着目してこれをプリカーサィォ ンとして選択するような分析を行うことができな 、。
[0007] 一方、従来より知られている MSZMS分析が可能なトリプルステージ四重極型質 量分析装置では、特定のプロダクトイオンを生じる全てのプリカーサイオンを検出す るプリカーサイオンスキャンや、特定の中性断片(中性ィ匕学種)を脱離する全てのプリ カーサイオンを検出する-ユートラルロススキャンなどの測定法が用いられている。こ うした手法の特徴は、或る特定のプロダクトイオンや-ユートラルロスを持つプリカ一 サイオンのみを特異的に検出することにある。し力しながら、こうした質量分析装置は n≥3以上の MSn分析ができず、構造解析に必要な情報を十分に収集することがで きない。また、イオンが 1価であればよいが、多価イオンである場合にはイオン力も脱 離した異なる種類の断片を区別できなくなることがあるため、正確な情報を得ることが できない。
[0008] 特許文献 1:特開 2000— 171442号公報
特許文献 2:特開 2004— 257922号公報
発明の開示
発明が解決しょうとする課題
[0009] 特に生化学分野等における物質の構造解析の際には、目的物質に対し或る特定 物質で化学修飾を行 、、その特定物質が結合した部位を調査することで目的物質の 構造を推定するといつた手法が用いられる。このような用途においては、 MSn分析に ぉ 、て n— 1回目の選択'開裂操作の際に、その前段の n— 2回目の選択'開裂操作 におけるプリカーサイオンとプロダクトイオンとの関係に着目してプリカーサイオンを 選定することができれば非常に有用である。
[0010] 本発明はこのような点に鑑みて成されたものであり、その目的とするところは、 MSn 分析が可能な質量分析装置において、前段の選択 ·開裂操作におけるプリカ一サイ オンとプロダクトイオンとの関係に着目して次段のプリカーサイオンを自動的に選定し て分析を行うことができ、特に多価イオンについても分析者の意図に沿った所望のプ リカーサイオンを適切に選定して MSn分析を遂行することができる質量分析装置を 提供することである。
課題を解決するための手段
[0011] 上記課題を解決するために成された第 1発明は、 MSn分析 (n≥3)が可能な質量 分析装置において、
a) n— 1回目のイオン種の選択'開裂操作に際してのプリカーサイオンの選択基準と して、 n— 2回目のイオン種の選択 ·開裂操作におけるプリカーサイオンとそれから生 成されるプロダクトイオンとの質量差又はそれに相当する情報を、分析者が入力設定 するための入力手段と、
b)選定されたプリカーサイオンの少なくともいずれか 1つの価数を判定する価数判 定手段と、 c)MSn分析を行う際に、 MSn_1分析により得られたマススペクトルに現れたピークに 対応したイオン種の中で、それまでのいずれかのプリカーサイオンについて前記価 数判定手段により判定された価数を考慮して、前記入力手段により入力設定された 前記選択基準に適合したイオン種を探索し、このイオン種を MSn分析における n— 1 回目の選択 ·開裂操作のプリカーサイオンとして決定するプリカーサイオン選定手段 と、
を備えることを特徴として 、る。
[0012] また上記課題を解決するために成された第 2発明は、 MSn分析 (n≥3)が可能な質 量分析装置において、
a) n— 1回目のイオン種の選択'開裂操作に際してのプリカーサイオンの選択基準と して、 n— 2回目のイオン種の選択 ·開裂操作におけるプリカーサイオンとそれから生 成されるプロダクトイオンとの質量差又はそれに相当する情報、及び価数差又はそれ に相当する情報を、分析者が入力設定するための入力手段と、
b)分析により得られたマススペクトルに現れたピークに対応したイオン種の価数を判 定する価数判定手段と、
c) MSn分析を行う際に、 MSn_1分析により得られたマススペクトルに現れたピークに 対応したイオン種の中で、 n— 2回目の選択'開裂操作のプリカーサイオンとプロダク トイオンとについて前記価数判定手段によりそれぞれ判定された価数を考慮して、前 記入力手段により入力設定された前記選択基準に適合したイオン種を探索し、この イオン種を MSn分析における n— 1回目の選択'開裂操作のプリカーサイオンとして 決定するプリカーサイオン選定手段と、
を備えることを特徴として 、る。
[0013] 上記第 1及び第 2発明に係る質量分析装置は、典型的な構成として、目的物質をィ オン化するイオン化部と、該イオン化部により生成されたイオン種の中から特定の質 量を持つイオン種を選択して開裂させるという選択 ·開裂操作を複数段階繰り返した 結果発生したプロダクトイオンを質量に応じて分離する質量分離部と、該質量分離部 により分離されたイオンを検出する検出部と、有し、一連の自動分析として、 MS1分 析、 MS2分析、 ···、 MSn分析を順次実行することが可能である。 [0014] 即ち、例えば n= 3である場合には、一連の自動分析として MS1分析、 MS2分析、 及び、 MS3分析を順次実行することになる。第 1発明に係る質量分析装置では、この 自動分析に先立って、分析者は入力手段により、 2回目のイオン種の選択 ·開裂操 作に際してのプリカーサイオンの選択基準として、 1回目のイオン種の選択 ·開裂操 作におけるプリカーサイオンとそれから生じるプロダクトイオンとの質量差又はそれに 相当する情報を入力設定する。実際には、これ以外の各種の分析条件、例えば測定 質量範囲等を設定するとともに、 1回目のイオン種の選択 ·開裂操作におけるプリカ 一サイオンの選択基準等も設定するようにしてもょ 、。また第 1発明に係る質量分析 装置では、 1回目のイオン種の選択 ·開裂操作におけるプリカーサイオンとそれから 生じるプロダクトイオンとの質量差又はそれに相当する情報のほかに、価数差又はそ れに相当する情報も入力する。
[0015] 自動分析が開始されると、上述したように入力された又は予め決められた分析条件 に従って MS1分析、 MS2分析、 MS3分析が順次実行されるわけであるが、その過程 で MS1分析が終了すると、価数判定手段は、その MS1分析により得られたマススぺ タトルに現れたピークに対応した 1乃至複数のイオン種の価数を判定する。また、 MS 2分析が終了すると、プリカーサイオン選定手段は、その MS2分析により得られたマス スペクトルに現れたピークに対応したイオン種の中で、上記価数判定手段により判定 された価数を考慮して、分析者が設定した選択基準に適合したイオン種を探索する 。開裂による断片の脱離が-ユートラルロスとの前提の下では、 MS2分析の 1回目の 選択 ·開裂操作のプリカーサイオンの価数はそれ力も生じたプロダクトイオンでも維持 される。そこで、この価数を考慮することで、多価イオンであっても脱離した断片の質 量が一定のものを見い出して、分析者が意図するプリカーサイオンを選定することが できる。
発明の効果
[0016] したがって第 1及び第 2発明に係る質量分析装置によれば、 MSn分析において前 段の選択 ·開裂操作におけるプリカーサイオンとプロダクトイオンとの関係に着目して 、所望の関係となるようなイオンを次段のプリカーサイオンとして自動的に選定して分 析を行うことができる。また、その際に、分析者はイオンの価数を全く意識することなく プリカーサイオンとプロダクトイオンとの関係にのみ着目した選択基準を入力すれば よぐ 1価イオンであっても多価イオンであっても、価数とは無関係に開裂により脱離 する断片が分析者の意図するところであるようなイオンがプリカーサイオンとして選定 されて分析が自動的に遂行される。これによつて、化学構造や組成を推定するのに 非常に重要な情報を高い精度で得ることができる。
[0017] なお、上記入力手段により分析者が入力する情報の態様は各種のものが考えられ るが、一例として、上記入力手段は、 n—l回目のイオン種の選択'開裂操作に際して のプリカーサイオンの選択基準として、 n—2回目のイオン種の選択'開裂操作にお いて脱離する断片の質量、又は質量と価数とを数値入力するものとすることができる
[0018] また、別の態様として、上記入力手段は、 n—1回目のイオン種の選択'開裂操作に 際してのプリカーサイオンの選択基準として、 n—2回目のイオン種の選択'開裂操作 にお!/ヽて脱離する断片の組成式、或いは組成式と価数又はイオン式とを入力するも のとし、該入力手段により入力設定された情報力 前記断片の質量や価数を算出す る換算手段をさらに備える構成としてもよい。
[0019] この場合、組成式が簡単であればよ!ヽが、複雑である場合にはキーボード操作等 で入力するのは面倒である。そこで、好ましくは、前記入力手段は予め登録されてい る複数の組成式や名称の中から、或!、は複数の価数を伴った組成式やイオン式の 中から 1つを選択する構成とするとよい。
図面の簡単な説明
[0020] [図 1]本発明の一実施例である質量分析装置の概略構成図。
[図 2]本実施例の質量分析装置において MS1分析、 MS2分析、及び MS3分析を自 動的に実行する際の制御 Z処理部を中心とする動作のフローチャート。
[図 3]本実施例の質量分析装置において MS1分析、 MS2分析、及び MS3分析の際 に分離 Z検出部でなされる処理の概略を示す模式図。
[図 4]本実施例の質量分析装置において MS1分析、 MS2分析、及び MS3分析の際 に得られるマススペクトルの一例。
[図 5]本実施例の質量分析装置における自動分析の過程で行われる価数判定処理 を説明するための概念図。
符 〇号の説明
··分離 Z検出部
11 · '·イオン化部
12· "三次元四重極イオントラップ型質量分析部
13· ··飛行時間型質量分析部
14· '·イオン検出器
20· ··制御 Z処理部
21 · ··制御部
22· 分析条件記憶部
23· ··データ処理部
24· ··データ記憶部
25· ··入力部
26· ··表示部
発明を実施するための最良の形態
[0022] 以下、本発明に係る質量分析装置の一実施例として、イオントラップ (IT)と飛行時 間型質量分析計 (TOF— MS)とを組み合わせたイオントラップ飛行時間型質量分析 装置について図 1〜図 5を参照して説明する。
[0023] 図 1は本実施例による質量分析装置の概略構成図である。図 1に示すように、本実 施例による質量分析装置は、大別して分離 Z検出部 10と制御 Z処理部 20とから成 る。分離 Z検出部 10は、例えば液体クロマトグラフにより成分分離された分析対象で ある試料液をエレクトロスプレイイオン化法(ESI=Electrospray Ionization)によってィ オン化するイオン化部 11と、所定の質量 (mZz値)を有するイオンをプリカーサィォ ンとして選択するとともに、該プリカ一サイオンを CID開裂させてプロダクトイオンを生 成する機能を持つ三次元四重極イオントラップ型質量分析部 12と、導入されたィォ ンを質量に応じて時間的に分離する飛行時間型質量分析部 13と、分離されたイオン を順次検出するイオン検出器 14と、を備えている。
[0024] 制御 Z処理部 20は、分離 Z検出部 10の各部を制御する制御部 21と、分析を実行 するための各種の分析条件を予め記憶しておくための分析条件記憶部 22と、イオン 検出器 14力もの検出信号をデジタルデータに変換した後にデータ処理を行うことで 所定の解析を行うためのデータ処理部 23と、分析により得られたデータを保存して おくためのデータ記憶部 24と、を備え、これに分析者が各種の入力設定や指示を行 うための入力部 25と、分析条件や分析結果等を表示するための表示部 26とが接続 されている。通常、この制御 Z処理部 20は市販のパーソナルコンピュータにより具現 化され、このコンピュータにインストールされた専用の制御 Z処理ソフトウェアを実行 することにより後述するような特徴的な動作が達成される。その場合、入力部 25はキ 一ボードやマウス等のポインティングデバイスなどである。もちろん、汎用のパーソナ ルコンピュータでなぐこれに特ィ匕したコンピュータを組み込む構成としてもよ 、。
[0025] 次に、本実施例の質量分析装置を用いた典型的な分析の手順について、図 2〜図 5を参照しながら説明する。本実施例の質量分析装置はイオントラップ型質量分析部 12にお 、て任意の回数だけイオン種の選択'開裂操作を繰り返すことが可能である 1S 以下に説明する例では本発明における n= 3、即ち MS3分析までを実行するもの とする。
[0026] 図 2は本実施例の質量分析装置において MS分析 (以下、一連の自動分析中の一 部であることを明確にするために MS1分析と記す)、 MS/MS分析 (以下 MS2分析 と記す)及び MS3分析を自動的に実行する際の制御 Z処理部 20を中心とする動作 のフローチャート、図 3はこれらの各分析時に分離 Z検出部 10でなされる処理や操 作の概略を示す模式図、図 4はこれら各分析時に得られる分析データで表されるマ ススペクトルの一例、図 5はこの分析の過程で行われる価数判定処理を説明するた めの概念図である。
[0027] まず、分析者 (ユーザー)は自動分析に先立って、 MS1分析、 MS2分析、 MS3分析 についてのイオンィ匕法や測定質量範囲などの分析条件を設定するとともに、選択-開 裂操作を伴う MS2分析及び MS3分析につ 、ては各段のプリカーサイオンを自動選 定するための選択基準を入力部 25により設定する (ステップ Sl)。ここで、 MS2分析 のプリカーサイオン選択基準はイオン強度 (ピークの信号強度)や質量を判断するも のであり、これは従来力も一般に知られているものである。一方、 MS3分析のプリカ一 サイオン選択基準は、 MS2分析時に脱離する断片に関する情報であり、具体的には その断片の質量を数値で以て入力したり、その断片の組成式を入力したりする。
[0028] なお、組成式を入力する形態の場合には、入力部 25から英数字で入力するよりも、 予め登録してある多数の組成式のリストを表示部 26の画面上に表示し、その中から マウス等で所望の組成式を選択するほうが分析者の手間が省け、しカゝも入力ミスが少 なくて済むため好ましい。いずれにしても組成式で入力された場合には、制御部 21 の内部で組成式を質量に換算する。上記のように入力された分析条件やプリカーサ イオン選択基準は分析条件記憶部 22に記憶される。
[0029] 制御部 21の制御の下に自動分析が開始されると、制御部 21はまず、分析条件記 憶部 22に格納されている MS1分析の分析条件で以て質量分析部 12、 13を動作さ せ MS1分析データを取得する (ステップ S2、 S3)。具体的には、イオントラップ型質 量分析部 12ではイオンの選択や開裂操作を行わずに単にイオンィ匕部 11で生成され たイオンを一時的に保持し、保持したイオンを一斉に飛行時間型質量分析部 13に 導入する。そして、飛行時間型質量分析部 13によりイオンを質量毎に分離してィォ ン検出器 14で順次検出する(図 3 (a)参照)。これにより得られた MS1分析データは、 例えば図 4 (a)に示すマススペクトルを表すデータである。この MS分析データはデー タ記憶部 24に保存される。また、データ処理部 23はこの MS分析データに基づいて 、マススペクトルに出現しているピークに対応する各イオン種の価数 Zを判定する (ス テツプ S4)。
[0030] イオン種の価数の判定方法としては各種方法が考えられるが、例えば本願出願人 が特願 2005— 141845により既に提案している方法を利用することができる。ここで 、この方法を図 5を用いて概略的に説明する。この方法は、同位体クラスター(同一の 元素組成を有するイオンに由来し、イオン中の同位体組成の相違によって異なる m Zz値を示す複数本のピーク力 成るピーク群)内でのピークパターンのマッチングを 判定することで同位体クラスターを同定しながら価数を確定するものである。なお、図 4に示すマススペクトルの各ピークは、詳細には図 5に示すような同位体クラスターを 便宜上 1本のピークとして表して 、る。
[0031] まず、図 5に示すようなマススペクトルより、各ピークの mZz値、ピーク強度を求める 。その後、同位体クラスターパターンを探すための基準となるピーク (基準ピーク)の 候補となるピークを所定のアルゴリズムに従って決定する。例えばピーク強度の大き V、順に基準ピークとなるピークを選択する場合には、最初の処理ではベースピーク( 測定されたピークの中で最大の強度を有するピーク、図 5では Aのピーク)が基準ピ ークとなる。なお、 2回目以降の処理では、それ以前の処理によって、既に同位体ク ラスターに属するピークとして同定されたピークは基準ピークの選択から除外する。
[0032] 続いて、上記基準ピークを中心としてその周りのピークパターンを調べ、各価数の 同位体クラスターにおけるピークの出現パターンに該ピークパターンが一致する力否 かを判定することで価数パターンマッチングを行う。このとき、価数パターンマツチン グは、同位体クラスターを探すための価数範囲、同位体クラスターに属するピークを 探すための分解能の許容範囲、同位体クラスターを構成するとみなすピーク数の最 小値、などの条件に則って行われる。
[0033] 具体的には、価数パターンマッチングは、基準ピークの mZz値の位置から、該基 準ピークが各価数の同位体クラスターに含まれると仮定したときに想定されるステップ 幅分ずつ離れた位置にピークが存在するか否かを調べることにより行われる。例えば 、基準ピークが 1価の同位体クラスターに含まれる場合には、該同位体クラスターに 属する複数のピークは mZz値が 1ずつ異なるピークパターンを示すため、探索のス テツプ幅は 1となる。これが、図 5中の同位体クラスター 1の場合である。また、基準ピ ークが 2価の同位体クラスターに含まれる場合には、該同位体クラスターに属するピ ークは mZz値が 1Z2ずつ異なるピークパターンを示すため、探索のステップ幅は 1 Z2となる。これが、図 5中の同位体クラスター 2の場合である。
[0034] なお、基準ピークより前方にあるピーク (前方ピーク)に対しては、基準ピークのマス 値 (mZz値に仮定した価数 Zを乗じた値)に応じて変化させた基準ピークに対する相 対強度の閾値を設定し、この閾値以下の強度を持つピークは、マッチングの際に同 位体クラスターに属するピークの候補力も外すようにする。例えば、図 5において矢印 で示したピークは、基準ピーク Aを含む 1価の同位体クラスターのピークパターンにマ ツチするものの、基準ピーク Aに対する相対強度が閾値以下であるためノイズである と判断され、同位体クラスター 1に属するピークの候補力 除外される。また、既にそ の同位体クラスターに属するピークとしてマッチされた隣接するピークに対する相対 強度によって、マッチングのための強度の上下限値を決め、その上下限値から外れ た強度を持つピークは同位体クラスターピークの候補力も外すようにする。
[0035] 上記価数パターンマッチングにおいて、基準ピークを中心としたピークパターンとマ ツチした同位体クラスター価数パターンを順次求め、このうち、マッチング分解能(同 位体クラスターに属する各ピークを探す際の測定値と予測値の差の標準偏差)が最 も小さい同位体クラスター価数パターンを選出することによって同位体クラスターを同 定し、選択された価数パターンの価数を、同定された同位体クラスターに属する各ピ 一クの価数として判定する。以上が、ステップ S4の価数判定処理の一例である。
[0036] 図 2に戻り説明を続けると、データ処理部 23では、 MS1分析により得られた複数の イオン種の中で、分析条件記憶部 22に格納されている MS2分析のプリカーサイオン 選択基準に照らして適切なイオン種をプリカーサイオン P1として自動的に選定する( ステップ S5)。例えば MS2分析のプリカーサイオン選択基準力 観測されたイオン種 のピークの中で最も信号強度の高!ヽピークに対応したイオン種とされて ヽる場合には 、図 4 (a)に示す MS1分析データでは MZ+イオンがプリカーサイオン PIとして選択さ れる。上述のような判定処理によって各イオン種の価数は求まっているから、或るィォ ン種がプリカーサイオン P1として選択されれば、そのプリカーサイオン P1の質量 Mと 価数 Zとは確定する。そこで、制御部 21はこのプリカーサイオン P1の質量 Mと価数 Z に関する情報を内部のメモリに一時的に記憶しておく(ステップ S6)。
[0037] MS1分析に関わる上記処理が終了すると、次に制御部 21は、先に自動的に選定 したプリカーサイオン P1を選択 ·開裂させる条件の下で質量分析部 12、 13を動作さ せ、 MS2分析データを取得する (ステップ S7、 S8)。具体的には、イオントラップ型質 量分析部 12ではイオンィ匕部 11で生成されたイオン種をー且全て捕捉した後にプリカ 一サイオン P1以外のイオン種を排除し (つまりプリカーサイオン P1を質量選択し)、ィ オントラップ内に残したプリカーサイオン P1を CID開裂させた後にその開裂によって 生成された各種のプロダクトイオンを一斉に飛行時間型質量分析部 13に導入する。 そして、飛行時間型質量分析部 13によりこれらイオンを質量毎に分離してイオン検 出器 14で順次検出する(図 3 (b)参照)。これにより得られた MS2分析データは例え ば図 4 (b)に示すマススペクトルを表すデータである。この MS2分析データもデータ 記憶部 24に保存される。
[0038] 分析条件記憶部 22には MS3分析プリカーサイオン選択基準として、 MS2分析時( 厳密には MS2分析の 1回目の選択'開裂操作の際)に脱離した断片の質量 Nが設定 されている。そこでデータ処理部 23は、この質量 Nの情報と、先に一時記憶しておい た MS2分析時のプリカーサイオン P1の質量 M及び価数 Zの情報とを利用して、 MS2 分析により得られたマススペクトルに現れているピークに対応したイオン種の中で、 M - (N/Z)の質量を持ったイオン種を探索し、これを次のプリカーサイオン P2として 選定する(ステップ S9)。図 4 (b)の例ではプリカーサイオン PIの価数力 ¾であり、 M (N/Z)の質量を持ったイオン種に対応するピークがマススペクトル上で観測され ているので、このイオン種を次の MS3分析の 2回目の選択'開裂操作の対象のプリカ 一サイオン P2として選定する。
[0039] 但し、プリカーサイオン選択基準などによっては、このときに条件に合致するイオン 種が必ずしも見つかるとは限らない。そこで、条件に合致するイオン種が見い出せた 否かを判定し (ステップ S 10)、条件に合致するイオンが見い出せな力つた場合には 次の MS3分析を行うことなくこの自動分析に関する制御 Z処理を終了する。また、条 件に合致するイオン種が見い出せない場合には、予め定められた別の分析条件に 従って(例えば MS2分析により得られたマススペクトル上で観測されるピークの中で 最大の信号強度を与えるピークに対応するイオンをプリカーサイオン P2とする等)、 MS3分析を実行するようにしても構わな 、。
[0040] ステップ S10で条件に合致するイオンが見い出されてこれをプリカーサイオン P2と して選定した場合には、続いて制御部 21は、先に自動的に選定した 2つのプリカ一 サイオン、即ち、 1回目の選択 ·開裂操作の対象とするプリカーサイオン P1と 2回目の 選択 ·開裂操作の対象とするプリカーサイオン P2とを順次選択 '開裂させる条件の下 で質量分析部 12、 13を動作させ、 MS3分析データを取得する (ステップ Sl l、 SI 2)
[0041] 具体的には、イオントラップ型質量分析部 12ではイオンィ匕部 11で生成されたィォ ン種をー且全て捕捉した後にプリカーサイオン P1以外のイオン種を排除し (つまり質 量選択を行い)、イオントラップ内に選択的に残したプリカーサイオン P1を CID開裂 させた後にその開裂によって生成された各種のプロダクトイオンの中でプリカ一サイ オン P2以外のイオン種をイオントラップ内部力 排除する(つまり質量選択を行う)。 そして、イオントラップ内に選択的に残したプリカーサイオン P2を再び CID開裂させ た後に、その開裂によって生成された各種のプロダクトイオンを一斉に飛行時間型質 量分析部 13に導入する。それから、飛行時間型質量分析部 13によりプロダクトィォ ンを質量毎に分離してイオン検出器 14で順次検出する(図 3 (c)参照)。
[0042] これにより得られた MS3分析データは例えば図 4 (c)に示すマススペクトルを表す データである。この MS3分析データもデータ記憶部 24に保存される。ここでは、この MS3分析データが最終的に出力され、分析者に提供されることになる。
[0043] 以上のようにして本実施例による質量分析装置では、分析者が予め設定した条件 に基づいてプリカーサイオンが順次選定されながら、 MS1分析、 MS2分析、及び MS 3分析が順番に自動的に実行され、その MS3分析による結果が出力される。その間、 分析者はプリカーサイオンの選定に関して途中で何ら判断や入力操作を行う必要が な!、ので、プリカーサイオンを選定するための面倒で煩雑な作業は大幅に軽減され る。また、質量分析により得られた各イオン種の価数が自動的に判定されてそれを見 込んだプリカーサイオンが選定されるので、 1価以外の多価イオンであっても、脱離し た断片の質量が一定のものを確実に選択することができ、化学構造等の解析に重要 な情報を得ることができる。
[0044] なお、上記説明では、 CID開裂によって電荷を持たない中性断片が脱離する-ュ ートラルロスを前提としているため、 MS1分析と MS2分析とではプリカーサイオン Pl、 P2の価数は変化しな 、とみなして 、るが、ニュートラルロスではなく価数が変化する 可能性があるような断片の脱離を想定する場合には、 MS2分析データに基づいて観 察された各イオンの価数を判定する処理を加えてもよい。即ち、図 2のフローチャート においてステップ S4で行った価数の判定処理と同様の処理をステップ S8の後にも 追加し、ここで得られた価数の情報をプリカーサイオン P2の選定の際に利用するよう にするとよい。
[0045] また、上記実施例では、自動分析において 2段階の選択 ·開裂操作を伴う MS3分 析までし力、行っていないが、 n≥4である多段の MSn分析に本発明を拡張できること は当然である。実際上、選択 ·開裂操作の繰り返し回数が多くなるほど手作業による プリカーサイオンの選定作業は一段と煩雑になるから、本発明のような自動的なプリ カーサイオンの選定による分析者の労力低減、分析効率の改善の効果は一層大きく なる。
[0046] また、上記実施例では、イオントラップ飛行時間型質量分析装置に本発明を適用し ていたが、多段階にイオン種の選択 '開裂が可能であって、最終的に開裂によって 生じたイオンを質量分離して検出可能な構成でありさえすれば、分離 Z検出部 10の 構成は特に限定されない。また、イオンィ匕部 11におけるイオンィ匕法も特に限定され ない。
[0047] なお、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜変更、修 正、追加を行っても本願特許請求の範囲に包含されることは当然である。

Claims

請求の範囲
[1] MSn分析 (n≥3)が可能な質量分析装置において、
a) n— 1回目のイオン種の選択'開裂操作に際してのプリカーサイオンの選択基準と して、 n— 2回目のイオン種の選択 ·開裂操作におけるプリカーサイオンとそれから生 成されるプロダクトイオンとの質量差又はそれに相当する情報を、分析者が入力設定 するための入力手段と、
b)選定されたプリカーサイオンの少なくともいずれか 1つの価数を判定する価数判 定手段と、
c) MSn分析を行う際に、 MSn_1分析により得られたマススペクトルに現れたピークに 対応したイオン種の中で、それまでのいずれかのプリカーサイオンについて前記価 数判定手段により判定された価数を考慮して、前記入力手段により入力設定された 前記選択基準に適合したイオン種を探索し、このイオン種を MSn分析における n— 1 回目の選択 ·開裂操作のプリカーサイオンとして決定するプリカーサイオン選定手段 と、
を備えることを特徴とする質量分析装置。
[2] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の質量を数値入力するものであることを特徴とする請求項 1に記載の質量分析装 置。
[3] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の組成式を入力するものであり、該入力手段により入力設定された組成式力 前 記断片の質量を算出する換算手段をさらに備えることを特徴とする請求項 1に記載の 質量分析装置。
[4] 前記入力手段は、予め登録されている複数の組成式の中から 1つを選択するもの であることを特徴とする請求項 3に記載の質量分析装置。
[5] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の名称を予め登録されている複数の名称の中から 1つ選択するものであり、該入 力手段により入力設定された名称から前記断片の質量を算出する換算手段をさらに 備えることを特徴とする請求項 1に記載の質量分析装置。
[6] MSn分析 (n≥3)が可能な質量分析装置にお!、て、
a) n— 1回目のイオン種の選択'開裂操作に際してのプリカーサイオンの選択基準と して、 n— 2回目のイオン種の選択 ·開裂操作におけるプリカーサイオンとそれから生 成されるプロダクトイオンとの質量差又はそれに相当する情報、及び価数差又はそれ に相当する情報を、分析者が入力設定するための入力手段と、
b)分析により得られたマススペクトルに現れたピークに対応したイオン種の価数を判 定する価数判定手段と、
c) MSn分析を行う際に、 MSn_1分析により得られたマススペクトルに現れたピークに 対応したイオン種の中で、 n— 2回目の選択'開裂操作のプリカーサイオンとプロダク トイオンとについて前記価数判定手段によりそれぞれ判定された価数を考慮して、前 記入力手段により入力設定された前記選択基準に適合したイオン種を探索し、この イオン種を MSn分析における n— 1回目の選択'開裂操作のプリカーサイオンとして 決定するプリカーサイオン選定手段と、
を備えることを特徴とする質量分析装置。
[7] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の質量及び価数を数値入力するものであることを特徴とする請求項 6に記載の質 量分析装置。
[8] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の組成式及び価数又はイオン式を入力するものであり、該入力手段により入力設 定された情報カゝら前記断片の質量や価数を算出する換算手段をさらに備えることを 特徴とする請求項 6に記載の質量分析装置。
[9] 前記入力手段は、予め登録されている複数の価数を伴った組成式やイオン式の中 から 1つを選択するものであることを特徴とする請求項 8に記載の質量分析装置。 [10] 前記入力手段は、 n— 1回目のイオン種の選択'開裂操作に際してのプリカ一サイ オンの選択基準として、 n— 2回目のイオン種の選択'開裂操作において脱離する断 片の名称を予め登録されている複数の名称の中から 1つ選択するものであり、該入 力手段により入力設定された名称から前記断片の質量や価数を算出する換算手段 をさらに備えることを特徴とする請求項 6に記載の質量分析装置。
PCT/JP2006/312771 2005-11-22 2006-06-27 質量分析装置 WO2007060760A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/094,426 US7880135B2 (en) 2005-11-22 2006-06-27 Mass spectrometer
JP2007546353A JP4596010B2 (ja) 2005-11-22 2006-06-27 質量分析装置
CN2006800434343A CN101313215B (zh) 2005-11-22 2006-06-27 质量分析装置
EP06767388A EP1956370A4 (en) 2005-11-22 2006-06-27 SPECTROSCOPE OF MASS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005336449 2005-11-22
JP2005-336449 2005-11-22

Publications (1)

Publication Number Publication Date
WO2007060760A1 true WO2007060760A1 (ja) 2007-05-31

Family

ID=38066999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312771 WO2007060760A1 (ja) 2005-11-22 2006-06-27 質量分析装置

Country Status (6)

Country Link
US (1) US7880135B2 (ja)
EP (1) EP1956370A4 (ja)
JP (1) JP4596010B2 (ja)
KR (1) KR100969938B1 (ja)
CN (1) CN101313215B (ja)
WO (1) WO2007060760A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095957A1 (ja) * 2008-02-01 2009-08-06 Shimadzu Corporation 質量分析装置及び質量分析方法
JP2009222664A (ja) * 2008-03-18 2009-10-01 Hitachi High-Technologies Corp 質量分析装置、質量分析方法および質量分析用プログラム
KR100947869B1 (ko) 2007-12-31 2010-03-18 한국기초과학지원연구원 푸리에변환 이온 싸이클로트론 공명 질량분석기의 제어 신호 발생 제어방법
WO2014155530A1 (ja) * 2013-03-26 2014-10-02 株式会社島津製作所 質量分析装置
JP2015148461A (ja) * 2014-02-05 2015-08-20 株式会社島津製作所 質量分析装置及び質量分析方法
CN107533031A (zh) * 2015-05-13 2018-01-02 Dh科技发展私人贸易有限公司 自上而下蛋白质鉴定方法
JP2019200183A (ja) * 2018-05-18 2019-11-21 株式会社島津製作所 内在性ペプチド同定用スペクトルライブラリ作成方法、内在性ペプチド同定方法、及び内在性ペプチド同定装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026476B2 (en) * 2006-09-21 2011-09-27 Shimadzu Corporation Mass analyzing method
JP5024390B2 (ja) * 2007-12-20 2012-09-12 株式会社島津製作所 質量分析システム
CN101541070B (zh) * 2009-04-27 2014-08-20 中兴通讯股份有限公司 一种多天线系统的发射方法和装置
US11094399B2 (en) * 2011-01-11 2021-08-17 Shimadzu Corporation Method, system and program for analyzing mass spectrometoric data
JP5783326B2 (ja) * 2012-04-12 2015-09-24 株式会社島津製作所 質量分析装置
JP5821767B2 (ja) * 2012-04-20 2015-11-24 株式会社島津製作所 クロマトグラフタンデム四重極型質量分析装置
US9236231B2 (en) * 2012-05-18 2016-01-12 Dh Technologies Development Pte. Ltd. Modulation of instrument resolution dependant upon the complexity of a previous scan
JP6229529B2 (ja) * 2014-02-19 2017-11-15 株式会社島津製作所 イオントラップ質量分析装置及びイオントラップ質量分析方法
CN111902719A (zh) * 2018-02-19 2020-11-06 塞尔诺生物科学有限责任公司 可靠自动的质谱分析
US10665440B1 (en) 2018-11-19 2020-05-26 Thermo Finnigan Llc Methods for multiplexed MS-3 analyses of peptides

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120856A (ja) * 1984-07-09 1986-01-29 Jeol Ltd マス・スペクトルの開裂ピ−ク表示方式
JPH10293120A (ja) * 1997-04-17 1998-11-04 Hitachi Ltd 質量スペクトル表示方法,質量スペクトル表示装置,質量分析方法及び質量分析装置
JPH1164285A (ja) * 1997-08-21 1999-03-05 Shimadzu Corp 質量分析装置のデータ処理装置
JP2000171442A (ja) 1998-12-02 2000-06-23 Hitachi Ltd 質量分析方法及び装置
JP2004259452A (ja) * 2003-02-24 2004-09-16 Hitachi High-Technologies Corp 質量分析装置及び質量分析方法
JP2004257922A (ja) 2003-02-27 2004-09-16 Hitachi High-Technologies Corp 質量分析スペクトルの解析システム
JP2005141845A (ja) 2003-11-07 2005-06-02 Fujitsu Ltd 半導体装置
JP2005265697A (ja) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology 糖鎖構造同定方法及び同解析装置
JP2005300420A (ja) * 2004-04-14 2005-10-27 Shimadzu Corp 糖タンパク質構造解析手法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014850B (zh) * 1986-11-26 1991-11-20 株式会社岛津制作所 四级式质量分析仪
US5905258A (en) * 1997-06-02 1999-05-18 Advanced Research & Techology Institute Hybrid ion mobility and mass spectrometer
JP4515819B2 (ja) * 2003-08-13 2010-08-04 株式会社日立ハイテクノロジーズ 質量分析システム
US7473892B2 (en) * 2003-08-13 2009-01-06 Hitachi High-Technologies Corporation Mass spectrometer system
JP2005241251A (ja) * 2004-02-24 2005-09-08 Hitachi High-Technologies Corp 質量分析システム
CN1326191C (zh) * 2004-06-04 2007-07-11 复旦大学 用印刷电路板构建的离子阱质量分析仪
JP4324702B2 (ja) * 2004-11-02 2009-09-02 株式会社島津製作所 質量分析方法
US20090026360A1 (en) * 2005-05-13 2009-01-29 Shimadzu Corporation Mass analysis data analyzing apparatus and program thereof
JP2009068981A (ja) * 2007-09-13 2009-04-02 Hitachi High-Technologies Corp 質量分析システム及び質量分析方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120856A (ja) * 1984-07-09 1986-01-29 Jeol Ltd マス・スペクトルの開裂ピ−ク表示方式
JPH10293120A (ja) * 1997-04-17 1998-11-04 Hitachi Ltd 質量スペクトル表示方法,質量スペクトル表示装置,質量分析方法及び質量分析装置
JPH1164285A (ja) * 1997-08-21 1999-03-05 Shimadzu Corp 質量分析装置のデータ処理装置
JP2000171442A (ja) 1998-12-02 2000-06-23 Hitachi Ltd 質量分析方法及び装置
JP2004259452A (ja) * 2003-02-24 2004-09-16 Hitachi High-Technologies Corp 質量分析装置及び質量分析方法
JP2004257922A (ja) 2003-02-27 2004-09-16 Hitachi High-Technologies Corp 質量分析スペクトルの解析システム
JP2005141845A (ja) 2003-11-07 2005-06-02 Fujitsu Ltd 半導体装置
JP2005265697A (ja) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology 糖鎖構造同定方法及び同解析装置
JP2005300420A (ja) * 2004-04-14 2005-10-27 Shimadzu Corp 糖タンパク質構造解析手法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956370A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947869B1 (ko) 2007-12-31 2010-03-18 한국기초과학지원연구원 푸리에변환 이온 싸이클로트론 공명 질량분석기의 제어 신호 발생 제어방법
WO2009095957A1 (ja) * 2008-02-01 2009-08-06 Shimadzu Corporation 質量分析装置及び質量分析方法
JP2009222664A (ja) * 2008-03-18 2009-10-01 Hitachi High-Technologies Corp 質量分析装置、質量分析方法および質量分析用プログラム
WO2014155530A1 (ja) * 2013-03-26 2014-10-02 株式会社島津製作所 質量分析装置
CN105051526A (zh) * 2013-03-26 2015-11-11 株式会社岛津制作所 质量分析装置
JP5979306B2 (ja) * 2013-03-26 2016-08-24 株式会社島津製作所 質量分析装置
JP2015148461A (ja) * 2014-02-05 2015-08-20 株式会社島津製作所 質量分析装置及び質量分析方法
CN107533031A (zh) * 2015-05-13 2018-01-02 Dh科技发展私人贸易有限公司 自上而下蛋白质鉴定方法
JP2018517125A (ja) * 2015-05-13 2018-06-28 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド トップダウンタンパク質同定方法
JP2019200183A (ja) * 2018-05-18 2019-11-21 株式会社島津製作所 内在性ペプチド同定用スペクトルライブラリ作成方法、内在性ペプチド同定方法、及び内在性ペプチド同定装置

Also Published As

Publication number Publication date
US20090166522A1 (en) 2009-07-02
CN101313215B (zh) 2012-01-11
EP1956370A1 (en) 2008-08-13
KR20080070013A (ko) 2008-07-29
US7880135B2 (en) 2011-02-01
EP1956370A4 (en) 2011-08-31
JPWO2007060760A1 (ja) 2009-05-07
JP4596010B2 (ja) 2010-12-08
KR100969938B1 (ko) 2010-07-14
CN101313215A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2007060760A1 (ja) 質量分析装置
JP5590156B2 (ja) 質量分析方法及び装置
JP3743717B2 (ja) 質量分析データの解析方法および質量分析データの解析装置および質量分析データの解析プログラムならびにソリューション提供システム
JP2004257922A (ja) 質量分析スペクトルの解析システム
JP4849128B2 (ja) 質量分析方法
JP2020532738A (ja) 質量スペクトルデータの取得および解析方法
JP4857000B2 (ja) 質量分析システム
JP6737396B2 (ja) 質量分析装置及びクロマトグラフ質量分析装置
JP5510011B2 (ja) 質量分析方法及び質量分析装置
JP5733412B2 (ja) 質量分析データ解析方法及び装置
JP5003508B2 (ja) 質量分析システム
US10788469B2 (en) Mass spectrometry data processor, mass spectrometry data processing method, and mass spectrometry data processing program
JP5979306B2 (ja) 質量分析装置
US8180576B2 (en) Data processor for mass spectrometer
JP6698668B2 (ja) 断片化エネルギーを切り替えながらの幅広い四重極rf窓の高速スキャニング
JP6202206B2 (ja) Ms/ms型質量分析方法及びms/ms型質量分析装置
JP5983371B2 (ja) ペプチド構造解析方法及び装置
JP2008039608A (ja) 質量分析システム
JP2009257850A (ja) 質量分析システム
US20130204537A1 (en) Amino Acid Sequence Analyzing Method and Amino Acid Sequence Analyzing Apparatus
JP2008170346A (ja) 質量分析システム
JP2022056935A (ja) 分子構造解析システム及び分子構造解析方法
US20140353490A1 (en) Mass spectrometry systems and methods for improved multiple reaction monitoring
JP6477332B2 (ja) 質量分析方法、質量分析装置、及び質量分析用プログラム
JP2009288113A (ja) 質量分析システムおよび質量分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043434.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087011980

Country of ref document: KR

Ref document number: 2006767388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12094426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE