WO2007052416A1 - ネック部成形性に優れたボトル缶用アルミニウム合金冷延板およびそのアルミニウム合金冷延板の製造方法 - Google Patents

ネック部成形性に優れたボトル缶用アルミニウム合金冷延板およびそのアルミニウム合金冷延板の製造方法 Download PDF

Info

Publication number
WO2007052416A1
WO2007052416A1 PCT/JP2006/318241 JP2006318241W WO2007052416A1 WO 2007052416 A1 WO2007052416 A1 WO 2007052416A1 JP 2006318241 W JP2006318241 W JP 2006318241W WO 2007052416 A1 WO2007052416 A1 WO 2007052416A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
dispersed particles
aluminum alloy
rolling
rolled sheet
Prior art date
Application number
PCT/JP2006/318241
Other languages
English (en)
French (fr)
Inventor
Katsura Kajihara
Kiyohito Tsuruda
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CA002625098A priority Critical patent/CA2625098A1/en
Priority to US12/090,879 priority patent/US20080302454A1/en
Priority to EP06797959A priority patent/EP1944384A4/en
Publication of WO2007052416A1 publication Critical patent/WO2007052416A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy cold-rolled plate (bottle can material plate) having excellent neck formability of a bottle can as a can body material for a bottle can (beverage can).
  • the aluminum alloy cold rolled sheet referred to in the present invention is a rolled sheet (cold rolled sheet) rolled through hot rolling and cold rolling.
  • the aluminum alloy is also referred to as an A1 alloy.
  • a two-piece aluminum can obtained by seaming a can body and a can lid (can end) is widely used.
  • the body is formed by subjecting a predetermined aluminum plate to can body forming such as cutting and DI forming (drawing and ironing), and then necking the body.
  • the mainstream is one with a smaller end diameter than the body diameter (hereinafter referred to as a two-piece aluminum can).
  • JIS3004 alloy and 3104 alloy which are A1-Mg-Mn alloys, have been widely used!
  • This JIS3004 alloy and 3104 alloy are excellent in ironing workability, and show relatively good formability even when cold rolled at a high rolling rate to increase strength. It is considered preferable.
  • bottle cans! that have a body, a mouth, and a screw cap!
  • the drawing ratio of the diameter of the mouth portion to the diameter of the body portion is larger than that of the two-piece aluminum can, wrinkles (cracks) and cracks are more likely to occur during neck processing.
  • a three-piece bottle can (including a screw cap; hereinafter referred to as a three-piece bottle can) and a two-piece bottle can (including a screw cap). 2 piece bottle cans).
  • the three-piece bottle can is generally manufactured by applying a part of the conventional two-piece aluminum can manufacturing method. That is, as disclosed in Patent Document 1 and Patent Document 2 described later, first, cutting and DI molding, baking, trimming, printing, baking, and necking (top molding: neck force) are performed on a predetermined aluminum plate. Sequentially applied. In the neck processing, a neck portion is formed on the bottom side portion of the body portion, and then an end portion of the neck portion is opened to provide a mouth portion. The outer periphery in the vicinity of the mouth portion is threaded for screw cap attachment to form a screw portion. After that, the flange portion is formed on one of the opening portions of the body portion facing the mouth portion as a bottom portion, and then the bottom portion is tightened to form the bottom portion.
  • the manufacturing method of the two-piece bottle can first includes a cutting on a predetermined aluminum plate A to form a body portion of the bottle can. DI molding is performed to form the body and bottom. Next, a neck neck or spin neck force check is applied in the vicinity of the opening of the body to form a neck, and the opening is used as a mouth. Thereafter, a screw cutting portion for attaching a screw cap is provided on the outer periphery in the vicinity of the mouth portion, whereby a two-piece bottle can is manufactured.
  • this two-piece bottle can, when the neck portion is formed, the neck portion is formed by performing die neck processing or spin neck processing in the vicinity of the opening portion of the body portion. It is difficult to configure with a large aperture ratio of mouth diameter to part diameter.
  • the mouth portion with respect to the diameter of the body portion is formed by the relatively hard rigidity of the aluminum plate.
  • wrinkles and cracks were likely to occur. Therefore, it has been difficult to form the drawing ratio of the conventional two-piece bottle can with the drawing ratio of the three-piece bottle can.
  • the Mn solid solution amount and crystal grain size of the hot-rolled sheet are controlled within a predetermined range, and the ear ratio of the hot-rolled sheet is stabilized to ⁇ 3 to ⁇ 6%, which is then subjected to intermediate annealing. It has also been proposed that the cold-rolled sheet obtained by cold rolling is made to have an ear rate of 0 to 2% stably (Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-256366
  • Patent Document 2 JP 2004-250790 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-342657
  • these two-piece bottle cans tend to be smaller and smaller in diameter in recent years, such as mini bottle cans.
  • 2-piece bottle cans such as mini bottle cans, in particular, retort processing
  • the force that increases the tightening load of the cap tends to require strength of the can body that can withstand the increase of the tightening load. For this reason, higher strength is also required on the can material side.
  • the gist of the aluminum alloy cold-rolled sheet for bottle cans excellent in neck formability is as follows: Mn: 0.7 to 1.5% (mass 0 / 0 , the same shall apply hereinafter), Mg: 0.8 to 1.7%, Fe: 0.1 to 0.7%, Si: 0.05 to 0.5%, Cu: 0.1 to 0.6% contains, has with balance of forces Alpha 1 and unavoidable impurities, and, the dispersed particles mosquito ⁇ 300 111 2 per Saizu of 0.05 to 1 111 observed by from 5,000 to 15,000 times the ⁇ tissue Among these dispersed particles, the number ratio of dispersed particles having a size of 0.3 m or more is within a range of 15 to 70% with respect to the total number of dispersed particles. It is assumed that
  • the gist of the manufacturing method of the aluminum alloy cold-rolled sheet for bottle cans excellent in neck part moldability of the present invention is the above gist or a preferred embodiment of an aluminum alloy described later.
  • the ingot is homogenized at a temperature of 550 ° C or higher and then gradually cooled to a temperature range of 450 to 550 ° C at a cooling rate of 25 ° C Zhr or less.
  • 50 to 400 dispersed particles having a size of 0.05 to 1 ⁇ m are observed per 300 / zm 2 as observed by TEM 5000 to 15000 times the plate structure after cold rolling.
  • the number ratio of the dispersed particles having a size of 0.3 m or more in the dispersed particles is to be in the range of 15 to 70% with respect to the total number of dispersed particles.
  • the DI can body of the bottle can is required to be further thinned mainly for the purpose of reducing the manufacturing cost and reducing the weight.
  • it is also strongly required that the ear rate during DI molding is low. If the ear rate during DI molding is lowered, the yield during DI molding can be increased, and furthermore, the can body can be prevented from being broken due to the cutting out of the can body.
  • dispersed particles such as Mg Si present in the aluminum alloy cold-rolled sheet structure are used.
  • the dispersed particles are coarsened to some extent, and then the sizes are made uniform. , Make a certain amount (a certain number).
  • the dispersed particles are coarsened to a certain extent, and the size is made uniform, and a certain amount is present, and is uniform and isotropic in the state of the hot-rolled sheet (direction or anisotropic). Without crystallinity), obtain crystal grains and improve the ear rate of the subsequent cold-rolled sheet.
  • FIG. 1 is a drawing-substituting photograph showing the presence of dispersed particles of an aluminum alloy of the present invention (Invention Example 1).
  • FIG. 2 is a drawing-substituting photograph showing the presence of dispersed particles of the aluminum alloy of the present invention (Invention Example 2).
  • FIG. 3 is a development view of a cup obtained by DI molding a plate material.
  • composition of the aluminum alloy cold-rolled sheet for bottle cans excellent in high-temperature characteristics of the present invention is Mn: 0
  • the composition contains ⁇ 0.6%, the balance being A1 and inevitable impurity power.
  • Mn 0.7 to 1.5%.
  • Mn is an effective element that contributes to improvement in strength and further contributes to improvement in formability.
  • Mn is extremely important because the ironing, neck force, threading, and the like described above are performed during DI molding. It becomes.
  • Mn forms various Mn-based intermetallic compounds such as A1-Fe-Mn-Si-based intermetallic phase.
  • the formability or strength workability during each of the above processes can be improved.
  • the power that emulsion type lubricants are usually used If the amount of ⁇ phase is small, the lubricity is insufficient even when emulsion type lubricants are used. There is a risk of appearance defects such as scuffing and seizure. Therefore, Mn is an indispensable element for generating ⁇ phase and preventing surface flaws during ironing.
  • the Mn content is 0.7% or more, preferably 0.8% or more, preferably 0.85% or more, and more preferably 0.9% or more.
  • the upper limit of the Mn content is 1.5%, preferably 1.3%, more preferably 1.1%, and even more preferably 1.0%.
  • Mg 0.8 to 1.7%.
  • Mg is effective in that the strength can be improved. Furthermore, by including it together with Cu, which will be described later, the cold rolled sheet of the present invention is finally annealed (also called finish annealing. For example, temperature: about 100 to 150 ° C, time: annealing for about 1 to 2 hours), Subsequent canning and soft baking can be suppressed when force baking (baking printing). That is, when both Mg and Cu are contained, Al—Cu—Mg precipitates during baking (baking printing), and thus softness during baking can be suppressed.
  • the Mg content is 0.8% or more, preferably 0.9% or more, and more preferably 1.0% or more.
  • Mg is excessive, work hardening is likely to occur, and formability is reduced. Therefore, the upper limit of the Mg content is 1.7%, preferably 1.6%, and more preferably 1.35%.
  • Mg also affects the amount of Mn deposited and dissolved. In other words, as the amount of Mg increases, the amount of precipitation of the A1-Fe-Mn-Si intermetallic compound phase) is suppressed, and the amount of Mn solid solution tends to increase. For this reason, it is preferable to determine the Mg content in relation to the Mn solid solution amount.
  • Fe has the effect of refining crystal grains, and further generates the above-mentioned A1-Fe-Mn-Si intermetallic compound ( ⁇ phase), which contributes to the improvement of moldability. Fe is also useful in that it promotes Mn crystallization and precipitation and controls the amount of Mn solid solution in the aluminum matrix and the dispersion state of Mn-based intermetallic compounds. On the other hand, if Fe is excessive in the presence of Mn, a large primary intermetallic compound is likely to be generated, which may impair the moldability.
  • the Fe content can be set according to the Mn content, and the preferred mass ratio (FeZMn) of Fe and Mn is, for example, in the range of 0.1 to 0.7, preferably It is in the range of 0.2 to 0.6, and more preferably in the range of 0.3 to 0.5.
  • the lower limit Fe content is 0.1% or more, preferably 0.2% or more, and more preferably 0.3% or more. Further, the upper limit content of Fe is 0.7% or less, preferably 0.6% or less, and more preferably 0.5% or less.
  • Si 0.05-0.5%.
  • Si consists of Mg Si intermetallic compounds and A1-Fe-Mn-Si intermetallic compounds (hyperphase).
  • the Si content is 0.05% or more, preferably 0.1% or more, and more preferably 0.
  • the upper limit of the Si content is 0.5%, preferably 0.45%, more preferably 0.4%.
  • the lower limit of Cu content is 0.1% or more, preferably 0.15% or more, more preferably 0.2%. That's it.
  • the upper limit of Cu content is 0.6%, preferably 0.5%, more preferably 0.35%.
  • examples of the strength improving element having the same effect include Cr and Zn.
  • one or two of Cr and Zn can be selectively contained.
  • the Cr content is 0.001% or more, preferably 0.002% or more, in order to exert the strength improvement effect.
  • the upper limit of the Cr content is 0.3%, preferably 0.25%.
  • the strength can be improved by aging precipitation of Al—Mg—Zn-based particles.
  • the Zn content is 0.05% or more, preferably 0.06% or more.
  • the upper limit for the Zn content is 0.5%, preferably 0.45%.
  • Ti is a grain refinement element. This effect was demonstrated! / Sometimes it is contained selectively. In this case, the Ti content is 0.005% or more, preferably 0.01% or more, and more preferably 0.015% or more. If Ti is excessive, a huge A1-Ti intermetallic compound crystallizes and hinders formability. Therefore, the upper limit of Ti content is 0.2%, preferably 0.1%, more preferably 0.05%.
  • the Ti may be contained alone, but may be contained together with a small amount of B.
  • the B content when selectively contained is 0.0001% or more, preferably 0.0005% or more, and more preferably 0.0008% or more.
  • the upper limit of the B content is 0.05%, preferably 0.01%, and more preferably 0.005%.
  • the elements other than those described above are unavoidable impurities, and in order not to inhibit the above-mentioned plate characteristics, the content should be basically low.
  • the inclusion of up to the upper limit of each element of 3000 series aluminum alloy is permitted.
  • dispersed particles such as Mg Si, Al—Fe—Mn—Si (hyperphase), precipitates
  • Mg Si, Al—Fe—Mn—Si (hyperphase) precipitates present in the aluminum alloy cold rolled sheet structure are roughened to some extent.
  • the size is made uniform and a certain amount (a certain number) is present.
  • a certain amount a certain number
  • the pinning effect of the dispersed particles is alleviated, and uniform and isotropic crystal grains (not having directionality or anisotropy) are obtained in the hot-rolled sheet state, and the ear ratio is improved.
  • the ratio of the number of dispersed particles having a size of 0.3 m or more is set to a range of 15 to 70% with respect to the total number of dispersed particles.
  • the lower limit of the number ratio of the dispersed particles having the above size is preferably 20% or more, more preferably 25% or more, and the range is 20 to 70%, and further 25 to 70%. And is preferred.
  • Figs. 1 and 2 show 10000-fold TEM photographs of the cold rolled sheet structure of the aluminum alloy of the present invention.
  • the dispersed black particles compounds such as Mg Si and precipitates
  • Figure 1 shows the results of Table 3 in the examples described later.
  • Example 1 and FIG. 2 are Example 2.
  • the dispersed particles of the structure of the present invention in FIG. 1 have a larger number ratio of relatively coarse dispersed particles having a size of 0.3 m to 1 ⁇ m with respect to the total number of the dispersed particles. It has been. That is, the number ratio of the relatively coarse dispersed particles is 48% with respect to the total number of dispersed particles. That is, dispersed particles having a relatively large size and uniform size Can be said to be uniformly dispersed.
  • the number ratio of relatively coarse dispersed particles having a size of 0.3 m or more and 1 ⁇ m or less is the total number of dispersed particles. 20% of the existing number. That is, it can be said that dispersed particles of various sizes, such as the number ratio of relatively small dispersed particles, the small size force, and the large size are dispersed.
  • Dispersion particles having a size of 0.3 m or more when the number ratio of the relatively small dispersion particles is larger than that of the structure of the present invention in Fig. 2 or dispersion particles of various sizes are dispersed.
  • the ratio of the number of particles is less than 15% of the total number of dispersed particles, it becomes the same as conventional fine dispersion of dispersed particles.
  • the original soft PFZ force is easily recrystallized, and accordingly, the precipitation zone is also recrystallized to form coarse crystal grains.
  • the cube orientation also tends to develop. Therefore, as in the conventional case, although the average grain size of the crystal grains is small, so-called so-called mixed grains in which coarse recrystallized grains are mixed in part, and the uniformity and isotropy of the crystal grains are lost. Easy!
  • the dispersed particles to be analyzed and measured have a size (center of gravity diameter) of 0.05 m or more as observed by a TEM of 5000 to 15000 times. This is because the presence of dispersed particles of 0.05 m or more greatly affects the moldability as described above, and the dispersed particles of less than 0.05 m have a small influence. In addition, small dispersed particles of less than 0.05 / zm are excluded from the scope of the present invention, because they are subject to large variations in measurement due to this measurement, which is difficult to observe and measure even with TEM.
  • the particle size of the dispersed particles is determined with a transmission electron microscope (TEM) having a plate structure. More Specifically, the specimen at the center of the plate thickness and the upper surface of the rolled surface is mirror-polished, and the structure of the polished surface is 5000 to 15000 times TEM (for example, HF-2000 Field Emission Transmission Electron Microscope made by Hitachi Using a mirror, observe 10 fields of view with a size of about 10 / z mX about 15 m.
  • TEM transmission electron microscope
  • the number of dispersed particles having a size of 0.05 to 1 ⁇ m is counted and converted to the number per 300 ⁇ m 2 .
  • Each measured number of dispersed particles was calculated as an average value in the observation of the 10 fields of view.
  • the number of dispersed particles having a size of 0.3 m or more is set to the above-described dispersion of 0.05 to Lm. Similar to the number of particles. Then, the ratio (%) of the number of dispersed particles having a size of 0.3 / z m or more to the total number of dispersed particles having a size of 0.05 to 1 ⁇ m was determined.
  • the crystal grains of the aluminum alloy cold-rolled sheet are elongated in the rolling direction with an average aspect ratio of 2 or more compared with ordinary equiaxed grains.
  • thermal deformation at the time of coating heat treatment can be suppressed and the strength of the can after heat treatment can be ensured with respect to high-speed heat treatment that has been shortened at a higher temperature.
  • ironing strength is imparted, and formability such as DI molding is secured, and then specified by the present invention.
  • the strength of the can after heat treatment can be secured under the above-described component composition and the solid solution and precipitation state structure described later. This also suppresses thermal deformation during paint heat treatment.
  • the average aspect ratio of the crystal grains is less than 2, it is not much different from normal equiaxed grains, and the above effects are insufficient, so it is not possible to suppress thermal deformation during coating heat treatment and to ensure the strength of the can after heat treatment. .
  • the average aspect ratio of the crystal grains is preferably 2.1 or more.
  • the aspect ratio of the crystal grains is determined by the crystal grain structure of the hot-rolled sheet and the cold rolling rate in the process without intermediate annealing.
  • the upper limit of the average aspect ratio of the crystal grains is determined by the capability limit of the manufacturing process for producing elongated grains such as hot rolling or cold rolling, but the level is about 4.
  • the average external ratio of crystal grains is measured by upper surface observation (polarization observation) at the center in the thickness direction. After tempering (before bottle can molding), the center of the plate in the thickness direction and the upper surface of the rolled surface are subjected to mechanical polishing, electrolytic polishing, and anodizing treatment with Barker's solution, followed by polarization observation.
  • the crystal grain structure is polarized and observed from the upper surface of the central portion in the plate thickness direction of the plate, a difference in black and white appears due to a difference in crystal orientation.
  • the maximum length in the rolling direction and the maximum length in the plate width direction of each crystal grain are measured for the crystal grains in the field where the contour can be clearly observed.
  • the (maximum length in the rolling direction) Z (maximum length in the plate width direction) of each individual crystal grain is calculated as the aspect ratio.
  • X Using an optical microscope with a magnification of 100, the number of crystal grains to be measured is 100, and the average aspect ratio of the crystal grains is obtained from the average value of the aspect ratios of the crystal grains.
  • the average crystal grain size can be obtained by averaging the maximum length in the rolling direction of the individual crystal grains with the 100 measured crystal grains.
  • the A1 alloy cold-rolled sheet of the present invention can be produced without greatly changing the conventional soaking, hot-rolling and cold-rolling production processes.
  • the plate structure after hot rolling and cold rolling is the dispersed particle structure specified in the present invention, and the basic material properties (ear ratio, strength), formability, and ironing workability for bottle can molding
  • Homogeneous heat treatment (soaking) temperature is 550 ° C or higher, preferably 650 ° C or lower. If the soaking temperature is too low, too much time will be spent on homogeneity and productivity will be reduced, and if the soaking temperature is too high, the surface of the lump will swell, so set the soaking temperature in the above range. . More preferable average
  • the heat temperature is 580 ° C or higher (especially 590 ° C or higher) and 615 ° C or lower (especially 610 ° C or lower).
  • the soaking time is preferably as short as possible, for example, 6 hours or less, as long as the soot lump can be homogenized.
  • soaking time is as short as possible to improve the efficiency of soaking process.
  • the cooling rate after the soaking treatment inevitably exceeds the upper limit of 25 ° CZhr.
  • the dispersed particle structure defined in the present invention is not obtained, and dispersed particles having a relatively small number of dispersed particles or a particle having various sizes are dispersed as compared with the structure of the present invention shown in FIG.
  • the number ratio of dispersed particles having a size of 0.3 m or more is less than 15% with respect to the total number of dispersed particles. For this reason, it becomes the same as the conventional fine dispersion of dispersed particles.
  • the soaking process may be performed in a plurality of stages, but at least the cooling rate after the final soaking process is slow cooling like the above cooling rate.
  • Handling of the ingot after completion of the soaking may be performed by hot and rough rolling after cooling and reheating, or by hot rough rolling without cooling excessively.
  • the cooling rate from the soaking process to the hot rough rolling start temperature should be slow cooling like the above cooling rate.
  • the end temperature of hot rough rolling is preferably set to 420 ° C or higher. Further preferable end temperatures are 430 ° C or higher (especially 440 ° C or higher) and 470 ° C or lower (especially 460 ° C or lower).
  • the aluminum alloy sheet that has been subjected to the hot rough rolling is desirably subjected to hot finish rolling as quickly as possible. By rapidly performing hot finish rolling, it is possible to prevent recovery of strain accumulated in hot rough rolling, and it is possible to increase the strength of the cold-rolled sheet obtained thereafter.
  • the aluminum alloy sheet that has been subjected to hot rough rolling is preferably hot-rolled within 5 minutes, preferably within 3 minutes, for example.
  • the finishing temperature of hot finish rolling is preferably 310 to 350 ° C.
  • the hot finish rolling process is a process of finishing a sheet to a predetermined size. Since the structure after rolling is recrystallized by self-heating, the end temperature affects the recrystallized structure. Hot finishing By setting the end temperature of rolling to 310 ° C or higher, the final sheet structure is screened with a structure in which the average aspect ratio is 3 or more and stretched along with the subsequent cold rolling conditions. If the finishing temperature of hot finish rolling is less than 310 ° C, the average aspect ratio is unlikely to increase even if the cold rolling rate of the subsequent cold rolling is increased.
  • the final plate structure becomes a structure stretched in the rolling direction with an average aspect ratio of 3 or more, and coarse Mg Si or the like precipitates, and the dispersed particles defined in the present invention Pair
  • tandem hot rolling mill with 3 or more stands as the hot finishing mill.
  • the rolling rate per stand can be reduced, and strain can be accumulated while maintaining the surface properties of the hot-rolled sheet. Therefore, the strength of the cold-rolled sheet and its DI compact can be increased. It can be further increased.
  • the total rolling reduction of hot finish rolling is desirably 80% or more.
  • the final sheet structure is a structure that is elongated in the rolling direction with an average aspect ratio of S3 or more, and the dispersed particles defined in the present invention. Easy to organize. In addition, the strength of the cold rolled sheet and its DI compact can be increased.
  • the thickness of the alloy sheet after hot (finishing) rolling is preferably about 1.8 to 3 mm.
  • the plate thickness is preferably about 1.8 to 3 mm.
  • the plate thickness is set to 1.8 mm or more, it is possible to prevent the surface properties (seizure, rough skin, etc.) of the hot rolled plate and the plate thickness profile from being damaged.
  • the plate thickness is set to 3 mm or less, it is possible to prevent the rolling rate from becoming too high when manufacturing cold rolled plates (usually, plate thickness: about 0.28 to 0.35 mm). Can reduce the ear rate.
  • the sheet thickness after cold rolling is about 0.28 to 0.35 mm in terms of forming into a bottle can.
  • a tandem rolling machine in which two or more rolling stands are arranged in series.
  • a single rolling stand has a single stage and is repeatedly rolled (passed) to cold-roll to a predetermined thickness.
  • the number of passes (passing plates) can be reduced, and the rolling rate per pass can be increased.
  • the rolling mill is not limited to a tandem rolling mill as long as it can recover sufficiently by cold rolling and sufficiently generate subgrains.
  • finish annealing may be performed at a temperature lower than the recrystallization temperature. Finish annealing recovers the work structure and improves DI moldability and can bottom moldability.
  • the temperature of the finish annealing is preferably about 100 to 150 ° C, particularly about 115 to 150 ° C. By setting the temperature to 100 ° C or higher, the processed structure can be sufficiently recovered. On the other hand, by controlling the temperature to 150 ° C or less, excessive precipitation of solid solution elements can be prevented, and DI moldability and flange moldability can be further enhanced.
  • the finish annealing time is preferably 4 hours or less (particularly about 1 to 3 hours). By avoiding excessive annealing, excessive precipitation of solid solution elements can be prevented, and DI moldability can be further improved. Can be increased.
  • finish annealing is basically unnecessary because sub-grains can be generated at lower temperatures and continuously.
  • the total amount of other elements in both the inventive example and the comparative example is unavoidable impurity elements, Zr, Bi, Sn, Ga, V, Co, Ni, Ca, Contain 0.03% or more of Mo, Be, Pb, W in the total content of these elements!
  • the rate of temperature increase in soaking is the rate of temperature increase from 300 ° C to the soaking temperature (maximum temperature).
  • the cooling rate after the soaking is from the soaking temperature to a temperature range of 450 to 550 ° C (up to the starting temperature if the hot rough rolling starting temperature force is higher than 50 ° C). Show.
  • the obtained hot-rolled sheet was cold-rolled by a tandem rolling mill or a single rolling mill and commonly used to produce a plate material for a bottle can (cold-rolled sheet) having a final sheet thickness of 0.3 mm. Finish annealing (final annealing) after this cold rolling was not performed.
  • the aluminum plate was forcibly cooled using an aqueous emulsion solution so that the temperature of the plate did not rise above 250 ° C.
  • a test piece was taken from the plate material (coil) for bottle can after cold rolling, and the structure of the test piece was measured as described above (however, the TEM magnification was 10,000 times).
  • the number of dispersed particles having a size of ⁇ (individual ⁇ 300 m 2 ), the number ratio (%) of dispersed particles having a size of 0.3 / zm or more among these dispersed particles, and the average aspect ratio of crystal grains Each was investigated. These results are shown in Table 3 (continued from Table 2) and Table 5 (continued from Table 4).
  • the tensile strength and 0.2% resistance of the test piece were measured by a tensile test according to JIS Z 2201. Specimen shape It was prepared with ⁇ O IS No. 5 specimen, and the specimen was prepared so that the longitudinal direction of the specimen coincided with the rolling direction. The crosshead speed was 5 mmZ and the test was performed at a constant speed until the test piece broke.
  • test piece was simulated at 200 ° C by simulating a can coating baking process.
  • a blank was also collected from the plate material for the bottle can, and after applying a lubricant [DA Stuart, Nalco 6461], it was molded into a cup shape by a 40% deep drawing test using an Eriksen tester. investigated.
  • FIG. Fig. 3 is a developed view of a cup obtained by DI molding a plate for a bottle can body.
  • the heights of the ears (Tl, T2, T3, T4; referred to as minus ears) occurring in the 0 °, 90 °, 180 °, and 270 ° directions were measured.
  • Measure the height of the ears (Yl, Y2, Y3, Y4; called plus ears) that occur in the directions of °, 135 °, 225 °, and 315 °.
  • the heights Y1 to Y4 and Tl to T4 are the heights from the bottom of the cup. From each measured value, the average ear rate is calculated based on the following formula.
  • Average Ear Rate (%) [ ⁇ (Y1 + Y2 + Y3 + Y4) (T1 + T2 + T3 + T4) ⁇ / ⁇ 1/2 ⁇ ( ⁇ 1 + Y2 + Y3 + Y4 + T1 + T2 + T3 + T4) ⁇ ] X 100
  • the allowable range was + 0% to + 3.5%.
  • the neck formability of the plate material for bottle cans was evaluated.
  • a neck part is formed by applying a die neck force to the vicinity of the opening of the above-mentioned DI can body for bottle cans (good product without breakage) formed for iron moldability evaluation. It was.
  • the neck forming conditions were as follows: the outer diameter of the can body was 66.2 mm, the neck part was formed in four steps, and the uppermost neck outer diameter was 60.3 mm.
  • the shape of wrinkles after neck processing per 10,000 cans was determined, and the neck formability was evaluated.
  • the screw formability of the plate material for bottle cans was evaluated.
  • a two-piece bottle can was manufactured by providing a threaded part for attaching a screw cap on the outer periphery near the mouth of the neck part (good product without wrinkles) of the molded can after the neck processing, and the screw moldability was evaluated. .
  • the screw buckling strength is axial to the molded can (2-piece bottle can) molded up to the above threaded part.
  • Invention Examples 1 to 5 and 20 to 24 are excellent in ear rate. And it has excellent moldability required in each molding process of 2-piece bottle cans such as iron moldability, neck moldability, and screw moldability. In addition, the screw buckling strength is also excellent.
  • Invention Examples 1 to 5 in Table 3 are excellent in high-temperature characteristics in which the average aspect ratio of crystal grains is 3 or more and the resistance (strength) decrease after baking is small.
  • Comparative Examples 6 to 9 in Table 3 and Comparative Examples 25 to 28 in Table 5 are within the composition range of the present invention, but the cooling rate after soaking is too high, Over 25 ° CZhr. Therefore, the dispersed particle structure does not become the dispersion particle structure defined in the present invention, and the dispersed particles having a size of not less than 0 when the number ratio of the small dispersed particles is large or dispersed particles of various sizes are dispersed. Is less than 15% of the total number of dispersed particles.
  • Comparative Example 12 Mg is too high, and the deterioration of formability (particularly ironing workability) due to high work hardening is large.
  • Comparative Example 16 Si is too low and + ears are growing. In addition, the ironing ability is reduced due to the lack of ⁇ phase. In Comparative Example 17, Si is too high, and + ears due to remaining unrecrystallized crystals are growing. In addition, the caloric property is decreasing.
  • Comparative Example 18 Fe is too low and unrecrystallized remains. In addition, if the amount of crystallized material is small, the ironing ability is lowered.
  • Comparative Example 19 Fe is too high and + ears are growing. In addition, the amount of crystallized material increases too much, and the ironing workability deteriorates due to the promotion of crack propagation during processing.
  • Comparative Examples 10 to 19 in Table 3 are produced under the preferred production conditions with a cooling rate after soaking.
  • the alloy composition deviates from the composition of the present invention.
  • each forming process of a two-piece bottle can such as iron formability, neck formability, screw formability, etc.
  • Each formability required in is poor.
  • the screw buckling strength and high temperature characteristics are inferior.
  • the present invention can provide an aluminum alloy cold-rolled sheet for bottle cans having excellent neck part formability and thread formability. Therefore, it is suitable for severe and required characteristic applications such as a more compact two-piece bottle can that is excellent in formability and is required to have no strength reduction even when heat-treated with a thin wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

 Mn:0.7~1.5質量%、Mg:0.8~1.7質量%、Fe:0.1~0.7質量%、Si:0.05~0.5質量%、Cu:0.1~0.6質量%を含有し、残部がAl及び不可避的不純物からなる組成を有し、かつ、組織の5000~15000倍のTEMにより観察される0.05~1μmのサイズの分散粒子が300μm2当たりに50~400個存在し、かつ、これらの分散粒子の内で、0.3μm以上のサイズを有する分散粒子の個数割合が、分散粒子の前記全存在個数に対して15~70%の範囲にある。

Description

明 細 書
ネック部成形性に優れたボトル缶用アルミニウム合金冷延板およびそのァ ルミニゥム合金冷延板の製造方法
技術分野
[0001] 本発明は、ボトル缶 (飲料缶)の缶胴材として、ボトル缶のネック部成形性に優れた アルミニウム合金冷延板 (ボトル缶用素材板)に関するものである。なお、本発明で言 うアルミニウム合金冷延板とは、熱間圧延 冷間圧延を通じて圧延された圧延板 (冷 間圧延板)である。以下、アルミニウム合金を A1合金とも言う。
背景技術
[0002] アルミニウム系飲料缶としては、缶胴体と缶蓋 (缶エンド)とをシーミンダカ卩ェするこ とによって得られる 2ピースアルミニウム缶が多用されている。この 2ピース構造のアル ミニゥム缶においては、所定のアルミニウム板にカツビングおよび DI成形 (絞り加工、 しごき加工)等の缶体成形を施して胴体部を形成した後、この胴体部にネック加工を 施して胴体部の径に比べてエンド部の径を小さくしたもの(以下 2ピースアルミ缶とい う)が主流となっている。
[0003] このような 2ピースアルミ缶では、胴体部の径に対するエンド部の径の絞り比が比較 的小さ 、ため、ネック力卩ェが比較的容易であった。
[0004] 前記缶胴体用の冷間圧延板としては、従来から A1— Mg— Mn系合金である JIS30 04合金、 3104合金等の硬質板力広く用!/、られて!ヽる。この JIS3004合金、 3104合 金は、しごき加工性に優れており、強度を高めるために高圧延率で冷間圧延を施し た場合でも比較的良好な成形性を示すことから、 DI缶胴材として好適であるとされて いる。
[0005] 一方、近年、胴体部と口部とスクリューキャップを備えてなるボトル形状のアルミ-ゥ ム缶(以下ボトル缶と!/、う)のニーズが高まって!/、る。このようなボトル缶にぉ 、ては、 胴体部の直径に対する口部の直径の絞り比が前記 2ピースアルミ缶に比べて大きい ため、ネック加工の際にしわ (皺)や割れがより生じ易くなる。
[0006] このようなボトル缶として、主に、胴体部と底部とが各々異なる部材で形成されてな る 3ピース構造のボトル缶 (スクリューキャップを含む。以下、 3ピースボトル缶という)と 、胴体部と底部とがー体に形成されてなる 2ピース構造のボトル缶 (スクリューキャップ を含む。以下、 2ピースボトル缶という)とが挙げられる。
[0007] このうち 3ピースボトル缶は、一般に、前記従来の 2ピースアルミ缶の製造方法の一 部を適用して製造されている。すなわち、後述する特許文献 1や特許文献 2に開示さ れている通り、まず所定のアルミニウム板にカツビングおよび DI成形、ベーキング、ト リミング、印刷、ベーキング、ネッキング(トップ成形:ネック力卩ェ)が順次に施される。 ネック加工では、胴体部の底部側部分にネック部が形成され、次にネック部のエンド 部が開口されて口部が設けられる。そして、この口部の近傍の外周にはスクリューキ ヤップ取り付け用のネジ切り加工が施されてネジ部が形成される。その後口部と対向 する胴体部の一方の開口部を底部として形成するべぐこの開口部にフランジ加工 が施された後、底部材を卷締めして底部を形成して製造されて ヽる。
[0008] このような 3ピースボトル缶では、ネック加工の際に DI成形後の缶の底部にネック部 が形成されるため、胴体部の直径に対するネック部の直径の絞り比が大きなものでも 、比較的容易に形成することが可能である。
[0009] 一方、ボトル缶の製造コスト削減、リサイクル性の観点から、近年、前記した 3ピース ボトル缶に代わって、 2ピースボトル缶のニーズが次第に高まってきている。この 2ピ ースボトル缶では、一般に、従来の 2ピースアルミ缶の製造方法の多くが適用され、 特にダイネックカ卩ェや、スピンネックカ卩ェ等のネック加工がそのまま用いられて 、る。
[0010] この 2ピースボトル缶の製造方法は、後述する特許文献 1や特許文献 2に開示され ている通り、まず、ボトル缶の胴体部を形成するために所定のアルミニウム板 Aにカツ ビングと DI成形とを施して胴体部と底部とを形成する。次に、前記胴体部の開口部 近傍にダイネックカ卩ェまたはスピンネック力卩ェを施してネック部を形成し、その開口部 を口部とする。その後、この口部の近傍の外周にスクリューキャップ取り付け用のネジ 切り部を設けて、 2ピースボトル缶が製造されて 、る。
[0011] し力しながら、この 2ピースボトル缶では、ネック部を形成する際に、胴体部の開口 部近傍にダイネック加工またはスピンネック加工を施してネック部を形成するため、前 記月同体部の直径に対する口部の直径の絞り比を大きくして構成することが困難であ つた o
[0012] 前記した 3000系アルミニウム合金の硬質板を用いて、この 2ピースボトル缶のネッ ク部を形成する場合、このアルミニウム板が有する比較的硬い硬質性によって、前記 胴体部の直径に対する口部の直径の絞り比を大きくしてボトル缶を形成すると、しわ や割れが発生し易いという問題点があった。そのため、従来の 2ピースボトル缶では、 その絞り比を、 3ピースボトル缶が有する絞り比で形成することが困難であった。
[0013] この 2ピースボトル缶の課題に対して、従来から、 3000系アルミニウム合金板〖こお ける、 Fe、 Si、 Mnおよび Mgの含有量とベーキング後の耐カ(0. 2%耐カ)とを適正 な範囲に規制することによって、アルミニウム板の成形性、すなわち、 DI成形、ネック 加工等の成形性を向上させ、その結果として胴体部の直径に対する口部の直径の 絞り比を大きくすることが提案されて ヽる (特許文献 1参照)。
[0014] また、同様に、 3000系アルミニウム合金板における、 Fe、 Si、 Mn、 Mgおよび Cu の含有量とベーキング後の耐カ (0. 2%耐カ)とを適正な範囲に規制することによつ て、アルミニウム板の成形性、すなわち、 DI成形、ネック加工等の成形性を向上させ 、その結果として胴体部の直径に対する口部の直径の絞り比を大きくすることが提案 されている (特許文献 2参照)。
[0015] この他、缶への成形性向上のために、組織を制御することも、従来から多数提案さ れている。例えば、熱間圧延板の Mn固溶量及び結晶粒径を所定の範囲に制御し、 熱間圧延板の耳率を安定して— 3〜― 6%にし、これを、その後、中間焼鈍すること なく冷間圧延することによって、得られる冷間圧延板の耳率を安定して 0〜2%にする ことなども提案されて 、る (特許文献 3)。
特許文献 1:特開 2002— 256366号公報
特許文献 2:特開 2004 - 250790号公報
特許文献 3:特開 2003 - 342657号公報
発明の開示
発明が解決しょうとする課題
[0016] ただ、この 2ピースボトル缶も、近年では、ミニボトル缶などに、より小型化、小径化さ れる傾向にある。このようなミニボトル缶などの 2ピースボトル缶では、特に、レトルト処 理を行なうような内容物の場合に、キャップ卷締め後の密封性向上の要求が高まりつ つある。これに伴い、キャップの卷締め荷重が増加される力 この卷締め荷重の増加 に耐えうる缶体強度が要求される傾向にある。このため、缶材料側にも、より高強度 化が求められる。
[0017] しかし、前記従来の 3000系アルミニウム合金板における成分や、ベーキング後の 耐カ調整だけでは、缶材料側をより高強度化した場合に、ネック加工またはスピンネ ックカ卩ェによるネック部形成や、その後の口部の近傍の外周にスクリューキャップ取り 付け用のネジ切り成形部形成の際の、しわ (皺)や割れがより生じ易くなる傾向にある
[0018] また、缶に共通して求められる、使用メタル量の低減や軽量ィ匕などのコストダウンは 、例外なぐミニボトル缶などの 2ピースボトル缶にも求められており、この面からの、 缶材料側のより高強度化も不可避である。
[0019] 本発明は力かる問題点に鑑みてなされたものであって、より小型化した 2ピースボト ル缶でも、ネック部成形性ゃネジ切り成形性に優れたボトル缶用アルミニウム合金冷 延板およびこの冷延板の製造方法を提供することを目的とする。
課題を解決するための手段
[0020] この目的を達成するために、本発明のネック部成形性に優れたボトル缶用アルミ- ゥム合金冷延板の要旨は、 Mn: 0. 7〜1. 5% (質量0 /0、以下同じ)、 Mg : 0. 8〜1. 7%、 Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、 Cu: 0. 1〜0. 6%を含有し、残部力Α 1及び不可避的不純物からなる組成を有し、かつ、組織の 5000〜 15000倍の ΤΕΜ により観察される 0. 05〜1 111のサィズの分散粒子カ^300 1112当たりに50〜400 個存在し、かつ、これらの分散粒子の内で、 0. 3 m以上のサイズを有する分散粒 子の個数割合を、分散粒子の前記全存在個数に対して 15〜70%の範囲にあること とする。
[0021] また、この目的を達成するために、本発明のネック部成形性に優れたボトル缶用ァ ルミニゥム合金冷延板の製造方法の要旨は、上記要旨か、後述する好ましい態様の アルミニウム合金冷延板を得るに際し、铸塊を 550°C以上の温度で均質化熱処理後 、 450〜550°Cの温度範囲まで、 25°CZhr以下の冷却速度で徐冷し、熱間圧延お よび冷間圧延後の板組織の 5000〜15000倍の TEMにより観察される 0. 05〜1 μ mのサイズの分散粒子を 300 /z m2当たりに 50〜400個存在させ、かつ、これらの分 散粒子の内で、 0. 3 m以上のサイズを有する分散粒子の個数割合が、分散粒子 の前記全存在個数に対して 15〜70%の範囲とすることである。
発明の効果
[0022] ボトル缶の DI缶胴については、主として製造コストの低減、及び軽量化の目的から 、前記して通り、更なる薄肉化が求められている。この薄肉化を達成するためには、 座屈強度の低下をきたさな 、ように、材料であるアルミニウム合金冷延板の高強度化 を図る必要がある。また、薄肉化を達成するためには、更に、 DI成形時における耳率 が低いことが強く求められる。 DI成形時の耳率を低くすれば、 DI成形時の歩留まりを 高めることができ、さらには缶胴の耳切れに起因する缶胴破断を防止することができ る。
[0023] このため、前記した通り、従来から、耳率を高度に安定ィ匕させるために、ボトル缶の DI缶胴材料であるアルミニウム合金冷延板の組織を制御することが公知である。代 表的には、結晶粒径の微細化制御、 Mg Siなどの化合物の個数や大きさの制御、添
2
加元素のミクロ的偏析抑制、 Mnなどの合金元素の固溶量制御、キューブ方位の制 御、などである。
[0024] 本発明でも、アルミニウム合金冷延板組織中に存在する、分散粒子 (Mg Siなどの
2 化合物、析出物)の個数や大きさの制御を行なう点では、これら従来の組織の冶金的 な制御を踏襲する。
[0025] しかし、本発明では、分散粒子をできるだけ微細化させて分散させる、これら従来の 微細分散思想に対して、逆に、分散粒子をある程度粗大化させた上で、サイズを均 一化させ、一定量 (一定個数)存在させる。
[0026] 即ち、本発明者らは、分散粒子をある程度粗大化させた上でサイズを均一化させた 方が、従来の微細分散に比して、分散粒子のピン止め効果が薄らぎ、熱延板の状態 では、却って、均一で等方性を有する (方向性乃至異方性を持たない)結晶粒が得ら れ、耳率が向上することを知見した。
[0027] これに対して、従来通り、分散粒子を微細分散させた場合、分散粒子のピン止め効 果が強ぐ熱間圧延において、元の軟質の PFZ力 再結晶しやすくなり、これに応じ て、析出帯も再結晶して粗大な結晶粒を形成しやすくなる。また、キューブ方位も発 達しやすくなる。したがって、従来通り、分散粒子を微細分散させた場合、結晶粒の 平均粒径は細力べなるものの、粗大な再結晶粒が一部に混じる、謂わば混粒となって 、結晶粒の均一性や等方性が失われやすい。
[0028] この結果、耳率が低下し、より小型化した 2ピースボトル缶では、前記した、胴体部 の開口部近傍のダイネックカ卩ェまたはスピンネックカ卩ェによるネック部形成や、その 後の口部の近傍の外周にスクリューキャップ取り付け用のネジ切り成形部形成の際 の、しわ (皺)や割れがより生じ易くなる。
これに対して、本発明では、分散粒子をある程度粗大化させた上でサイズを均一化 させて、一定量存在させ、熱延板の状態で均一で等方性を有する (方向性乃至異方 性を持たな 、)結晶粒を得て、その後の冷延板の耳率を向上させる。
図面の簡単な説明
[0029] [図 1]本発明アルミニウム合金 (発明例 1)の分散粒子の存在状態を示す図面代用写 真である。
[図 2]本発明アルミニウム合金 (発明例 2)の分散粒子の存在状態を示す図面代用写 真である。
[図 3]板材を DI成形することによって得られるカップの展開図である。
発明を実施するための最良の形態
[0030] (A1合金冷延板組成)
先ず、本発明 A1合金冷延板の、 2ピースボトル缶用素材として必要な、強度や成形 性などの諸特性を満足する好ましい化学成分組成 (単位:質量%)について、各元素 の限定理由を含めて、以下に説明する。
[0031] 本発明の高温特性に優れたボトル缶用アルミニウム合金冷延板の組成は、 Mn: 0
. 7〜1. 5%、Mg : 0. 8〜1. 7%、Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、Cu: 0. 1
〜0. 6%を含有し、残部が A1及び不可避的不純物力もなる組成とする。
[0032] Mn: 0. 7〜1. 5%。
Mnは強度の向上に寄与し、さらには成形性の向上にも寄与する有効な元素であ る。特に、本発明のような 2ピースボトル缶用素材 (冷間圧延板)では、前記した、 DI 成形時のしごき加工や、ネック力卩ェ、ネジ切り加工などが行われるため、 Mnは極めて 重要となる。
[0033] より詳細には、 Mnは A1— Fe— Mn— Si系金属間化合物 相)などの種々の Mn 系金属間化合物を形成する。そして前記 α相が適正に分布しているほど、上記各加 ェ時の成形性乃至力卩工性を向上できる。また、アルミニウム板のしごき加工において は、通常エマルジョンタイプの潤滑剤が用いられている力 前記 α相の量が少ないと 、ェマルジヨンタイプの潤滑剤を使用しても潤滑性が不足し、ゴーリングと称される擦 り疵ゃ焼付きなどの外観不良が発生する虞がある。従って α相を生成し、しごき加工 時の表面疵を防止するためにも、 Mnは不可欠な元素である。
[0034] Mnの含有量が少な過ぎると、上記成形性乃至加工性向上効果が発揮されない。
このため、 Mnの含有量は 0. 7%以上、好ましくは 0. 8%以上、好ましくは 0. 85%以 上、さらに好ましくは 0. 9%以上である。
[0035] 一方、 Mnが過剰になると、 Mnと A1との初晶巨大金属化合物が晶出し、成形性が 低下する。それゆえ、 Mn含有量の上限は 1. 5%、好ましくは 1. 3%、さらに好ましく は 1. 1%、さらに好ましくは 1. 0%とする。
[0036] Mg : 0. 8〜1. 7%。
Mgは強度を向上できる点で有効である。さらには後述する Cuと共に含有させるこ とによって、本発明冷間圧延板を最終焼鈍 (仕上焼鈍ともいう。例えば、温度:100〜 150°C程度、時間: 1〜2時間程度の焼鈍)し、その後に製缶して力 ベーキング (焼 付印刷)する際に、軟ィ匕を抑制できる。即ち、 Mg及び Cuを両者含有すると、ベーキ ング (焼付印刷)を行う際に Al—Cu—Mgが析出するため、ベーキング時の軟ィ匕を抑 制できる。
[0037] Mgの含有量が少な過ぎると上記効果が発揮されない。このため、 Mgの含有量は 0 . 8%以上、好ましくは 0. 9%以上、さらに好ましくは 1. 0%以上とする。
[0038] 一方、 Mgが過剰になると加工硬化が生じやすくなるため、成形性が低下する。この ため、 Mg含有量の上限は 1. 7%、好ましくは 1. 6%、さらに好ましくは 1. 35%とす る。 [0039] なお、 Mgは Mnの析出量及び固溶量にも影響を与える。すなわち Mgが多いほど A1— Fe— Mn— Si系金属間化合物 相)の析出量が抑制されるため、 Mn固溶量 が多くなりやすい。このため、 Mn固溶量との関係で、 Mg含有量を決定することが好 ましい。
[0040] Fe : 0. 1〜0. 7%。
Feは結晶粒を微細化させる作用があり、さらには上述の A1— Fe— Mn— Si系金属 間化合物(α相)を生成するため、成形性の向上に寄与する。また Feは、 Mnの晶出 や析出を促進し、アルミニウム基地中の Mn固溶量や Mn系金属間化合物の分散状 態を制御する点でも有用である。一方、 Mnの存在下で Feが過剰になると、巨大な初 晶金属間化合物が発生しやすくなり、成形性を損なう虞がある。
[0041] 従って、 Feの含有量は、 Mnの含有量に応じて設定でき、 Feと Mnとの好ま 、質 量比(FeZMn)は、例えば、 0. 1〜0. 7の範囲、好ましくは 0. 2〜0. 6の範囲、さら に好ましくは 0. 3〜0. 5の範囲である。
[0042] なお、 Mnの含有量が上記範囲の場合、 Feの下限含有量は 0. 1%以上、好ましく は 0. 2%以上、さらに好ましくは 0. 3%以上とする。また、 Feの上限含有量は、 0. 7 %以下、好ましくは 0. 6%以下、さらに好ましくは 0. 5%以下である。
[0043] Si: 0. 05〜0. 5%。
Siは、 Mg Si金属間化合物や A1— Fe— Mn— Si系金属間化合物(ひ相)などの分
2
散粒子を生成させるために有用な元素である。これら分散粒子が本発明で規定する 適正さに分布している程、成形性を向上できる。
[0044] このため、 Siの含有量は 0. 05%以上、好ましくは 0. 1%以上、さらに好ましくは 0.
2%以上とする。一方、 Siが過剰になると、熱間仕上圧延時の再結晶が阻害され、 45
° の耳が増大し、成形性が低下する。このため、 Si含有量の上限は 0. 5%、好ましく は 0. 45%、さらに好ましくは 0. 4%とする。
[0045] Cu: 0. 1〜0. 6%。
Cuは、冷間圧延板の製缶時にベーキング (焼付印刷)を行うときに、 Al-Cu-Mg が析出するとともに、 Mgと共に含有させることによって、軟ィ匕を抑制できる。このため
、Cu含有の下限量は 0. 1%以上、好ましくは 0. 15%以上、さらに好ましくは 0. 2% 以上とする。一方、 Cuが過剰になると、時効硬化は容易に得られるものの、硬くなり すぎるために、成形性が低下し、さらには耐食性も劣化する。このため、 Cu含有の上 限量は 0. 6%、好ましくは 0. 5%、さらに好ましくは 0. 35%とする。
[0046] Cuの他に、同効の強度向上元素としては、 Cr、 Znなどが挙げられる。この点、 Cu に加えて、更に、 Cr、 Znの一種または二種を選択的に含有させることができる。
[0047] Cr: 0. 001〜0. 3%。
この際、 Crの含有量は、強度向上効果の発揮のためには、 0. 001%以上、好まし くは 0. 002%以上とする。一方、 Crが過剰になると、巨大晶出物が生成して成形性 が低下する。このため、 Cr含有量の上限は 0. 3%、好ましくは 0. 25%とする。
[0048] Zn: 0. 05〜: L . 0%。
また、 Znを含有させると、 Al— Mg— Zn系粒子が時効析出することによって強度を 向上できる。この効果を発揮させるためには、 Zn含有量は 0. 05%以上、好ましくは 0. 06%以上とする。一方、 Znが過剰になると耐食性が低下する。このため、 Zn含有 量の上限は 0. 5%、好ましくは 0. 45%とする。
[0049] Ti: 0. 005〜0. 2%。
Tiは結晶粒微細化元素である。この効果を発揮させた!/、時には選択的に含有させ る。その際の Tiの含有量は 0. 005%以上、好ましくは 0. 01%以上、さらに好ましく は 0. 015%以上とする。なお、 Tiが過剰になると、巨大な A1— Ti系金属間化合物が 晶出して成形性を阻害する。したがって、 Ti含有量の上限は 0. 2%、好ましくは 0. 1 %、さら〖こ好ましくは 0. 05%とする。
[0050] 前記 Tiは単独で含有させてもょ 、が、微量の Bと共に含有してもよ 、。 Bと併用する と、結晶粒の微細化効果がさらに向上する。このために選択的含有させる際の Bの含 有量は 0. 0001%以上、好ましくは 0. 0005%以上、さらに好ましくは 0. 0008%以 上とする。一方、 Bが過剰になると、 Ti—B系の粗大粒子が生成して成形性を低下さ せる。したがって、 B含有量の上限は 0. 05%、好ましくは 0. 01%、さらに好ましくは 0. 005%とする。
[0051] 以上記載した元素以外は不可避的不純物であり、上記板特性を阻害しないために 、含有量は基本的に少ない方が良いが、上記板特性を阻害しない範囲で、 JIS規格 などで記載された、 3000系アルミニウム合金の各元素の上限値程度までの含有は 許容される。
[0052] (分散粒子)
次ぎに、本発明 A1合金冷延板組織について、以下に説明する。
前記した通り、本発明では、アルミニウム合金冷延板組織中に存在する、分散粒子 〔Mg Si、 Al— Fe— Mn— Si系(ひ相)などの金属間化合物、析出物〕をある程度粗
2
大化させた上でサイズを均一化させ、一定量 (一定個数)存在させる。これによつて、 分散粒子のピン止め効果を和らげ、熱延板の状態で均一で等方性を有する (方向性 乃至異方性を持たない)結晶粒を得て、耳率を向上させる。
[0053] 具体的には、アルミニウム合金冷延板組織の 5000〜15000倍の TEMにより観察 される 0. 05〜1 111のサィズ(重心直径)の分散粒子を300 1112当たりに50〜400 個存在させる。そして、これらの分散粒子の内で、 0. 3 m以上のサイズを有する分 散粒子の個数割合を、分散粒子の前記全存在個数に対して 15〜70%の範囲とす る。この際、上記サイズを有する分散粒子の個数割合の下限は、好ましくは 20%以 上、より好ましくは 25%以上とし、範囲としては、 20〜70%の範囲、更には 25〜70 %の範囲とすることが好まし 、。
[0054] 図 1、 2に本発明アルミニウム合金冷延板組織の、各 10000倍の TEM写真を各々 示す。図 1と 2とにおいて、白地のマトリックスに対して、分散した黒い粒子が分散粒 子 (Mg Siなどの化合物、析出物)である。図 1は後述する実施例における表 3の発
2
明例 1、図 2は発明例 2である。
[0055] この図 1と 2との比較において、図 1、 2とも、最小では 0. 05 μ m、最大では 1 μ mの サイズの分散粒子が 300 μ m2当たりに 50〜400個存在している点は同じである。た だ、図 1の方が、図 2に比して、各分散粒子が比較的粗大化した上で、均一に分散し ている。
[0056] 図 1の本発明組織の分散粒子は、前記分散粒子の全存在個数に対して、 0. 3 m 以上で 1 μ m以下のサイズを有する比較的粗大な分散粒子の個数割合が多くなつて いる。即ち、この比較的粗大な分散粒子の個数割合は、分散粒子の前記全存在個 数に対して 48%である。即ち、サイズが比較的大きぐかつサイズが揃った分散粒子 が均一に分散していると言える。
[0057] これに対して、図 2の本発明糸且織では、 0. 3 m以上で 1 μ m以下のサイズを有す る比較的粗大な分散粒子の個数割合は、分散粒子の前記全存在個数に対して 20 %である。即ち、比較的小さい分散粒子の個数割合も大きぐ小さいサイズ力も大き なサイズまでの、サイズがまちまちな分散粒子が分散して 、ると言える。
[0058] 図 2の本発明組織よりも、更に比較的小さい分散粒子の個数割合が大きくなつて、 あるいは、サイズがまちまちな分散粒子が分散して、 0. 3 m以上のサイズを有する 分散粒子の個数割合が、分散粒子の前記全存在個数に対して 15%を切った場合に は、従来の分散粒子の微細分散と同じとなる。この結果、熱間圧延において、元の軟 質の PFZ力 再結晶しやすくなり、これに応じて、析出帯も再結晶して粗大な結晶粒 を形成しやすくなる。また、キューブ方位も発達しやすくなる。したがって、従来と同様 、結晶粒の平均粒径は細力べなるものの、粗大な再結晶粒が一部に混じる、謂わば 混粒となって、結晶粒の均一性や等方性が失われやす!、。
[0059] このため、耳率が低下し、より小型化した 2ピースボトル缶では、前記した、胴体部 の開口部近傍のダイネックカ卩ェまたはスピンネックカ卩ェによるネック部形成や、その 後の口部の近傍の外周にスクリューキャップ取り付け用のネジ切り成形部形成の際 の、しわ (皺)や割れがより生じ易くなる。
[0060] これに対して、本発明では、上記した通り、分散粒子をある程度粗大化させた上で 、一定量 (一定個数)存在させ、熱延板の状態で均一で等方性を有する (方向性乃 至異方性を持たな 、)結晶粒を得て、その後の冷延板の耳率を向上させる。
[0061] ここで解析測定対象とする分散粒子は 5000〜15000倍の TEMにより観察される 0. 05 m以上のサイズ (重心直径)とする。 0. 05 m以上の分散粒子の存在が、 上記した通り、成形性に及ぼす影響度が大きぐ 0. 05 m未満の分散粒子は、その 影響度が小さいためである。また、 0. 05 /z m未満の小さな分散粒子は、 TEMによつ ても観察や測定もしにくぐ本測定による測定ばらつきも大きくなることから、本発明の 規定、測定対象からは外す。
[0062] (粒子サイズ、個数の測定)
分散粒子の粒子サイズは、板組織の透過型電子顕微鏡 (TEM)にて行なう。より具 体的には、板厚中央部、圧延面上面の試験材を鏡面研磨し、研磨面の組織を、 500 0〜 15000倍の TEM (例えば日立製作所製、 HF— 2000電界放射型透過電子顕 微鏡)により、約 10 /z mX約 15 m程度の大きさの各 10視野の組織を観察する。
[0063] この際、分散粒子相 (金属間化合物相)を明瞭に観察するため、反射電子像の観 察により観察する。白い像が A1であり、異なったコントラストで分散粒子相が明瞭にな る。これら分散粒子をトレースし、画像解析のソフトウェアとして、 MEDIACYBERNETI CS社製の Image-ProPlusを用いて、各分散粒子のサイズ (重心直径の平均値)を画像 解析により求める。
[0064] そして、 0. 05〜1 μ mのサイズの分散粒子の個数をカウントし、 300 μ m2当たりの 個数に換算する。この測定した分散粒子の各個数は、上記 10視野の観察における 平均値で算出した。
[0065] 更に、これらの 0. 05〜1 μ mのサイズの分散粒子の内で、 0. 3 m以上のサイズ を有する分散粒子の個数を、上記 0. 05〜: L mのサイズの分散粒子の個数と同様 に求めた。そして、この 0. 3 /z m以上のサイズを有する分散粒子の個数の、前記 0. 0 5〜1 μ mのサイズの分散粒子の全存在個数に対する割合(%)を求めた。
[0066] (結晶粒の平均アスペクト比)
アルミニウム合金冷延板の結晶粒を、通常の等軸粒ではなぐ平均アスペクト比が 2 以上の、圧延方向に伸長させたものにすることが好ましい。これによつて、より高温ィ匕 短時間化された高速化熱処理に対しての、塗装熱処理時の熱変形が抑制され、熱 処理後の缶強度も確保できる利点がある。即ち、アルミニウム合金冷延板の結晶粒を 圧延方向への伸長粒とすることによって、しごき力卩ェ性を付与して、 DIカ卩ェ等の成形 性を確保した上で、本発明で規定した、上記成分組成と、後述する固溶、析出状態 組織のもとで、熱処理後の缶強度を確保できる。これによつて、塗装熱処理時の熱変 形も抑制される。
[0067] 結晶粒の平均アスペクト比が 2未満では、通常の等軸粒と大差なくなり、上記効果 が不足するため、塗装熱処理時の熱変形抑制や、熱処理後の缶強度確保が達成で きない。この点で、結晶粒の圧延方向への伸長は大きいほど良ぐより好ましくは、結 晶粒の平均アスペクト比は 2. 1以上である。 [0068] 結晶粒のアスペクト比は、中間焼鈍を施さな 、工程では、熱延板の結晶粒組織と 冷間圧延率によって決まる。この点で、結晶粒の平均アスペクト比の上限は、熱間圧 延ゃ冷間圧延など、伸長粒とするための製造工程の能力限界力 決定されるが、そ のレベルは 4程度である。
[0069] (平均アスペクト比測定方法)
結晶粒の平均ァスぺ外比は、板厚方向中央部の上面観察 (偏光観察)によって測 定される。調質処理後 (ボトル缶成形前)の板の板厚方向中央部、圧延面上面を、機 械研磨、電解研磨、およびバーカー液による陽極酸ィ匕処理後、偏光観察によって行
[0070] 上記板の板厚方向中央部を上面から、結晶粒組織を偏光観察したとき、結晶方位 の違いによって白黒の違いがでる。この際の観察で、輪郭がはっきり観察できる、視 野内の結晶粒を対象に、個々の結晶粒の圧延方向の最大長さと、板幅方向の最大 長さを計測する。そして、この個々の結晶粒の (圧延方向の最大長さ) Z (板幅方向 の最大長さ)をアスペクト比として計算する。 X 100倍の光学顕微鏡の観察で、測定 する結晶粒を 100個として、それら結晶粒のアスペクト比の平均値によって、結晶粒 の平均アスペクト比を求める。なお、平均結晶粒径は、上記個々の結晶粒の圧延方 向の最大長さを、上記測定結晶粒 100個で平均化して求めることができる。
[0071] (製造方法)
本発明 A1合金冷延板は、従来の均熱、熱延、冷延の製造工程を大きく変えることな く製造が可能である。但し、熱間圧延および冷間圧延後の板組織を、本発明規定の 分散粒子組織とし、かつ、ボトル缶成形のための基本的な材料特性 (耳率、強度)や 成形性、しごき加工性を阻害せずに確保するためには、铸塊を 550°C以上の温度で 均質化熱処理後、 450〜550°Cの温度範囲まで、 25°CZhr以下の冷却速度で徐冷 する必要がある。
[0072] (均質化熱処理条件)
均質ィ匕熱処理 (均熱)温度は 550°C以上、好ましくは 650°C以下とする。均熱温度 が低すぎると、均質ィ匕に時間が力かり過ぎて生産性が低下し、均熱温度が高すぎると 、铸塊表面に膨れが生じるため、前記範囲に均熱温度を設定する。更に好ましい均 熱温度は、 580°C以上(特に 590°C以上)、 615°C以下(特に 610°C以下)である。
[0073] なお、均熱時間 (均質化時間)は、铸塊を均質ィ匕できれば短い程望ましぐ例えば 6 時間以下とするのが望ましい。本発明では、後述する通り、均熱処理後に徐冷する 必要があり、均熱処理後の冷却に時間を要する。したがって、均熱処理の生産性の 効率化のためにも均熱時間はできるだけ短 、方が好ま U、。
[0074] (均熱処理後の冷却条件)
前記した通り、熱間圧延および冷間圧延後の板組織を、本発明規定の分散粒子組 織とし、かつ、ボトル缶成形のための基本的な材料特性を確保するためには、铸塊を 前記条件で均熱処理後、 450〜550°Cの温度範囲まで、 25°CZhr以下の冷却速度 で徐冷する必要がある。このような徐冷を行なうためには、均熱処理された铸塊を均 熱炉内で炉冷することが好ま ヽ。
[0075] 均熱処理された铸塊を均熱炉外へ出す放冷や、ファンによる強制空冷では、均熱 処理後の冷却速度が、必然的に、上限の 25°CZhrを越える。このため、本発明規定 の分散粒子組織とはならず、前記図 2の本発明組織よりも、更に比較的小さい分散 粒子の個数割合が大きくなつて、あるいは、サイズがまちまちな分散粒子が分散して 、 0. 3 m以上のサイズを有する分散粒子の個数割合が、分散粒子の前記全存在 個数に対して 15%を切る。このため、従来の分散粒子の微細分散と同じとなる。
[0076] なお、均熱処理は、複数の段階に分けて行っても良いが、少なくとも、最終の均熱 処理後の冷却速度は、上記冷却速度のような徐冷とする。
[0077] (熱延開始条件)
均熱処理終了後の铸塊の取り扱いは、ー且冷却し、再加熱してから熱間粗圧延し てもよく、あるいは過度に冷却することなぐそのまま熱間粗圧延してもよい。但し、こ の場合でも、均熱処理後、熱間粗圧延開始温度までの冷却速度は、上記冷却速度 のような徐冷とする。
[0078] (熱間粗圧延条件)
熱延を、粗圧延と仕上げ圧延とに分けて、かつ連続して実施するに際し、熱間粗圧 延の終了温度が低くなり過ぎると、次工程の熱間仕上圧延で圧延温度が低くなつて エッジ割れが生じやすくなる。また、熱間粗圧延の終了温度が低くなり過ぎると、仕上 圧延時の自己熱不足による未再結晶の残存、あるいは、圧延荷重増大による表面品 質が低下する。このため、熱間粗圧延の終了温度は 420°C以上とすることが好ましい 。更に好ましい終了温度は 430°C以上(特に 440°C以上)、 470°C以下(特に 460°C 以下)である。
[0079] この熱間粗圧延の終了温度を 420〜480°C程度にしておくためには、熱間粗圧延 の開始温度を、例えば、 490〜550°C程度、好ましくは 495〜540°C程度、さらに好 ましくは 500〜530°C程度にしておくのが望ましい。前記開始温度を 550°C以下にし ておけば、熱間圧延板の表面酸ィ匕を防止することもできる。更には、再結晶粒の粗 大化を防止できるため、成形性をさらに高めることもできる。
[0080] 熱間粗圧延が終了したアルミニウム合金板は、連続的など、速やかに熱間仕上圧 延するのが望ましい。速やかに熱間仕上圧延することによって、熱間粗圧延で蓄積さ れた歪みが回復してしまうのを防止でき、その後に得られる冷間圧延板の強度を高 めることができる。熱間粗圧延が終了したアルミニウム合金板は、例えば、 5分以内、 好ましくは 3分以内に熱間仕上圧延することが好ま 、。
[0081] (熱間仕上圧延条件)
熱間仕上圧延の終了温度は 310〜350°Cとすることが好ましい。熱間仕上圧延ェ 程は、板を所定の寸法に仕上げる工程であり、圧延終了後の組織は自己発熱によつ て再結晶組織になるため、その終了温度は再結晶組織に影響を与える。熱間仕上 圧延の終了温度を 310°C以上とすることで、続く冷間圧延条件と併せて、最終板組 織を、平均アスペクト比が 3以上の圧延方向に伸長させた組織としゃすい。熱間仕上 圧延の終了温度が 310°C未満では、続く冷間圧延の冷延率を大きくしても、平均ァ スぺタト比が大きくなりにくい。
[0082] 一方、 350°Cを越えると、最終板組織を、平均アスペクト比が 3以上の圧延方向に 伸長させた組織とし、かつ、粗大な Mg Siなどが析出し、本発明規定の分散粒子組
2
織としに《なる。従って、熱間仕上圧延の終了温度の下限は 310°C以上、好ましく は 320°C以上とする。また、上限は 350°C以下、好ましくは、 340°C以下とする。
[0083] (熱間仕上圧延機の種類)
熱間仕上圧延機としては、スタンド数が 3以上のタンデム式熱間圧延機を使用する 。スタンド数を 3以上とすることによって、 1スタンドあたりの圧延率を小さくでき、熱延 板の表面性状を保ちつつ歪みを蓄積することができるため、冷間圧延板及びその DI 成形体の強度をさらに高めることができる。
[0084] (熱間仕上圧延の総圧延率)
熱間仕上圧延の総圧延率は 80%以上にするのが望ましい。総圧延率は 80%以上 とすることで、後述する冷間圧延と組み合わせて、最終板組織を、平均アスペクト比 力 S3以上の圧延方向に伸長させた組織とし、かつ、本発明規定の分散粒子組織とし やすい。また、冷間圧延板及びその DI成形体の強度を高めることができる。
[0085] (熱間圧延板の板厚)
熱間(仕上げ)圧延終了後の合金板の板厚は、 1. 8〜3mm程度とするのが望まし い。板厚を 1. 8mm以上とすることによって、熱間圧延板の表面性状 (焼付き、肌荒 れなど)や板厚プロフィールの悪ィ匕を防止できる。一方、板厚が 3mm以下とすること によって、冷間圧延板 (通常、板厚: 0. 28〜0. 35mm程度)を製造する際の圧延率 が高くなりすぎるのを防止でき、 DI成形後の耳率を抑制できる。
[0086] (冷間圧延)
冷間圧延工程では、中間焼鈍することなぐ複数のパス数による謂わば直通で圧延 し、合計の圧延率を 77〜90%にするのが望ましい。中間焼鈍することなぐ合計の 圧延率を 77%以上とすることによって、最終板組織を、結晶粒の平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、かつ、本発明規定の分散粒子組織とする ことができる。また、缶の耐圧強度をより高めることができる。中間焼鈍を入れた場合 、あるいは、合計の圧延率が低い場合、等軸粒になりやすぐ伸長粒になりにくい。
[0087] 一方、圧延率が 90%を超えると、結晶粒の平均アスペクト比は大きくできるものの、 DI成形時の 45° 耳が大きくなり過ぎ、また強度が強くなり過ぎるために、 DI成形時 にカツビング割れや缶底割れが生じる可能性が高い。
[0088] 冷間圧延後の板厚は、ボトル缶への成形上、 0. 28-0. 35mm程度とする。
[0089] なお、冷間圧延工程では、圧延スタンドが 2段以上直列に配置された、タンデム圧 延機を使用することが望ましい。このようなタンデム圧延機を使用することにより、圧延 スタンドが 1段で、繰り返しパス (通板)を行なって所定板厚まで冷延するシングルの 圧延機と比して、同じ合計冷延率でも、パス (通板)回数が少なくて済み、 1回の通板 における圧延率を高くすることができる。
[0090] したがって、最終板組織を、結晶粒の平均アスペクト比が 3以上の圧延方向に伸長 させた組織が得やすくなる。
[0091] また、従来のように、シングルの圧延機を用いた冷間圧延後に、仕上げ焼鈍を施す 場合に比して、より低温で、かつ連続的に回復を生じさせ、サブグレインを生成するこ とができる。但し、このように、冷間圧延により回復を生じさせて十分にサブグレインを 生成することができるものであれば、圧延機はタンデム圧延機に限定されるものでは ない。
[0092] 但し、タンデム圧延機による冷延では、 1回の通板における圧延率が高くなるため に、 1回の通板における発熱量が高くなる。この発熱量が高くなり過ぎた場合、分散 粒子の粒子サイズが粗大化する可能性がある。
[0093] このため、タンデム圧延機による冷延では、冷間圧延工程における冷間圧延直後 のアルミニウム板の温度が最も上昇する際に、アルミニウム板を強制的に冷却し、冷 間圧延後のアルミニウム板の温度が 200°Cを超える温度に上昇しないようにすること が好ましい。
[0094] このような冷間圧延時のアルミニウム板の強制的な冷却手段としては、通常使用さ れる水を含まな ヽ圧延油を、水溶性油や水溶性潤滑剤などのェマルジヨンタイプに 変えて、このェマルジヨン水溶液を用い、潤滑性能を低下させずに、冷却性能を強化 させることが好ましい。
[0095] 冷間圧延後は、必要に応じて、再結晶温度よりも低い温度で仕上焼鈍 (最終焼鈍) を行ってもよい。仕上焼鈍を行うと加工組織が回復し、 DI成形性や缶底成形性が向 上する。仕上焼鈍の温度は、例えば、 100〜150°C程度、特に 115〜150°C程度に するのが望ましい。温度を 100°C以上とすることによって、加工組織を充分に回復さ せることができる。一方、温度が 150°C以下とすることによって、固溶元素の過剰な析 出を防止でき、 DI成形性やフランジ成形性をさらに高めることができる。
[0096] 仕上焼鈍の時間は、 4時間以下 (特に 1〜3時間程度)とするのが望ましい。長すぎ る焼鈍を避けることによって、固溶元素の過剰な析出を防止でき、 DI成形性をさらに 高めることができる。
[0097] 但し、前記したタンデム圧延機による冷延では、より低温で、かつ連続的に回復を 生じさせ、サブグレインを生成することができるために、仕上焼鈍が基本的には不要 である。
[0098] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範 囲に包含される。
実施例
[0099] アルミ地金の他に缶材スクラップなども溶解原料として用いて、下記表 1に示す A〜 Nの成分組成 (発明例: A〜D、比較例: E〜N)の A1合金の溶湯を溶解し、 DC铸造 法にて板厚 600mm、幅 2100mmの铸塊を製造した。なお、表 1において「一」で示 す元素含有量は検出限界以下であることを示す。
[0100] この铸塊には、表 1に示す通り、発明例、比較例ともに、その他元素の総量として、 不可避的な不純物元素、 Zr、 Bi, Sn、 Ga、 V、 Co、 Ni、 Ca、 Mo、 Be、 Pb、 Wを、こ れらの元素の含有量の総和で 0. 03%以上含んで!/、る。
[0101] これら成分組成の铸塊を表 2、 4に示す条件に従って、均熱処理を行なった。ここで 、均熱処理の昇温速度は 300°Cから均熱温度 (最高温度)までの昇温速度を指す。 また、均熱処理後の冷却速度は、前記均熱温度から、 450〜550°Cの温度範囲まで の(熱間粗圧延開始温度力 50°Cより高ければ、その開始温度までの)冷却速度を 示す。
[0102] 全発明例および比較例において、均熱処理後に 25°CZhr以下の冷却速度で徐 冷している例は、均熱処理された铸塊を均熱炉内で炉冷している。一方、均熱処理 後に 25°CZhrを越える冷却速度で冷却している比較例は、均熱処理された铸塊を 均熱炉外へ出す放冷を行なっている。
[0103] この均熱処理後に、熱間粗圧延として、スタンド数が 1個のリバース熱間粗圧延機、 熱間仕上圧延機として、スタンド数が 4個のタンデム式熱間圧延機を使用して、熱間 圧延を行なった。その際、熱間粗圧延終了後に熱間仕上圧延を開始する時間は 3分 以内とした。そして、共通して熱間仕上圧延後の板厚を 2. 5mmとしたアルミニウム合 金熱間圧延板を製造した。
[0104] 得られた熱間圧延板を、タンデム圧延機またはシングル圧延機で冷間圧延し、共 通して、最終板厚 0. 3mmのボトル缶用板材 (冷間圧延板)を製造した。この冷間圧 延後の仕上焼鈍 (最終焼鈍)は行なわなかった。
[0105] 表 2の例は全て、中間焼鈍することなくロールスタンドが 2段のタンデム圧延機により
1回のみの通板で冷間圧延した。表 4の例は全て、ロールスタンドが 1段のシングル 圧延機で 4回通板し、最終焼鈍として 150°C X 1時間の焼鈍を行った。
[0106] この際、タンデム圧延機による冷延では (表 2の例は全て)、冷間圧延直後のアルミ
-ゥム板の温度が 250°Cを超える温度に上昇しないように、ェマルジヨン水溶液を用 い、アルミニウム板を強制的に冷却した。
[0107] 冷延後のボトル缶用板材 (コイル)から試験片を採取し、試験片の組織として、各々 前記した測定方法(但し TEMの倍率は 10000倍)で、 0. 05〜1 /ζ πιのサイズの分 散粒子個数 (個 Ζ300 m2)、これらの分散粒子の内で 0. 3 /z m以上のサイズを有 する分散粒子の個数割合 (%)、結晶粒の平均アスペクト比、を各々調査した。これら の結果を表 3 (表 2の続き)、表 5 (表 4の続き)に示す。
[0108] (機械的特性)
上記試験片の引張強度、 0. 2%耐カを、 JIS Z 2201にしたがった引張試験によ り測定した。試験片形状 ίお IS 5号試験片で行い、試験片長手方向が圧延方向と一 致するように作製した。また、クロスヘッド速度は 5mmZ分で、試験片が破断するま で一定の速度で行った。
[0109] また、試験片の高温特性として、試験片を缶塗装焼き付け処理を模擬した 200°C
X 20分間熱処理した時の 0. 2%耐カ(ABO. 2%耐カ)を各々測定し、上記室温で の試験片の 0. 2%耐力と比較して、この熱処理後の耐力の低下量(Δ耐カ)を調査 した。これらの結果も表 3 (表 2の続き)、表 5 (表 4の続き)に示す。
[0110] 更に、ボトル缶用板材が基本的に満たすべき成形性として、耳率と、 2ピースボトル 缶の各成形工程で要求される各成形性を測定、評価した。これらの結果も表 3に示 す。 [0111] (耳率)
耳率は、このボトル缶用板材カもブランクを採取し、潤滑油 [D. A. Stuart社製、 ナルコ 6461]を塗布した上で、エリクセン試験機によって、 40%深絞り試験、カップ 状に成形して調査した。試験条件は、ブランクの直径 =66. 7mm,ポンチの直径 = 40mm,ダイス側肩部の Rを 2. Omm、ポンチの肩 R= 3. Omm、しわ押さえ圧 =40 Okgfで行なった。
[0112] このように得られたカップの開口周縁部の 8方向(圧延方向を 0° として、 0° 方向、 45° 方向、 90° 方向、 135° 方向、 180° 方向、 225° 方向、 270° 方向、及び 3 15° 方向)に生じる山谷の形状を測定し、平均耳率を算出した。
[0113] 平均耳率の算出方法は、図 3に基づいて説明する。図 3は、ボトル缶胴用板材を DI 成形することによって得られるカップの展開図である。この展開図では、圧延方向を 0 ° として、 0° 、 90° 、 180° 、及び 270° 方向に生じる耳の高さ(Tl, T2, T3, T4 ;マイナス耳と称する)を測定し、 45° 、 135° 、 225° 、及び 315° 方向に生じる耳 の高さ(Yl, Y2, Y3, Y4 ;プラス耳と称する)を測定する。なお各高さ Y1〜Y4, Tl 〜T4は、カップの底部からの高さである。そして各測定値から、次式に基づいて平均 耳率を算出する。
平均耳率(%) = [{ (Y1 +Y2+Y3+Y4) (T1 +T2+T3+T4) }/{ 1/2 Χ (Υ 1 +Y2+Y3+Y4+T1 +T2+T3+T4) }] X 100
[0114] なお本発明の対象としている冷間圧延板では、平均耳率を 0近くにした場合、 4つ のプラス耳(Υ1〜Υ4)並びに 90° 方向及び 270° 方向の 2つのマイナス耳(図 3の Τ2、Τ4)の発達は抑制されるものの、 0° 方向及び 180° 方向の 2つのマイナス耳( 図 3の Tl、 Τ3)の発達は抑制されにくい。そして単に平均耳率の絶対値を小さくした 場合には、例えば、平均耳率を 2〜2% (絶対値では 2%以下)にした場合には、 平均耳率を 2以上 0%未満としても、マイナス耳(図 3の Tl、 Τ3)の抑制が不十分 なために、絞り成形のシヮ押さえ圧力 この 2つのマイナス耳(図 3の Tl、 Τ3)に集中 し、耳立ち、耳切れなどが発生して生産に不具合が生じるのに対して、平均耳率を 0 〜2% (プラス側)にした場合には、残りの 2つのマイナス耳(図 3の Tl、 Τ3)も十分に 抑制できるために、耳切れに起因する缶胴破壊を防止できる。なお、本発明におい ては、 +0%〜+ 3. 5%を許容範囲とした。
[0115] (しごき成形性)
ボトル缶用板材のしごき成形性を評価した。前記ボトル缶用板材から、直径 160m mのブランクを打ち抜き、カップ径 92mmのカップを成形し、再絞り加工、しごき加工 、及びトリミングにより、製缶速度 300缶 Z分の速さで、ボトル缶用 DI缶胴(内径 66m πι φ、高さが 170mm、側壁板厚 115 ;ζ ΐη、側壁先端部板厚 190 m、最終第 3しご き率 40%)を製造した。成形缶 5万缶当たりの破断 (胴割れ)の発生個数を求め、しご き成形性を評価した。
[0116] 5万缶の成形缶に、破断が全く発生しなかったものを◎ (極めて良好)、破断力 缶 以下であったものを〇(良好)、破断が 5缶以上を X (不合格)として評価した。
[0117] (ネック成形性)
ボトル缶用板材のネック成形性を評価した。しごき成形性評価のために成形した上 記ボトル缶用 DI缶胴 (破断の無い良品)の、開口部近傍にダイネック力卩ェを施してネ ック部を形成し、その開口部を口部とした。ネック成形条件は、缶胴外径 66. 2mm, ネック部を 4段で形成し、最上部のネック外径 60. 3mmとした。成形缶 1万缶当たり のネック加工後のしわ発生具合を求め、ネック成形性を評価した。
[0118] 100缶の成形缶をネック成形したとき、ネック部のしわ発生を評価し、しわ発生が 0〜 1缶であったものを〇(合格)、 2缶以上は X (不合格)として評価した。
[0119] (ネジ成形性)
ボトル缶用板材のネジ成形性を評価した。ネック加工後の上記成形缶のネック部( しわの無い良品)の口部近傍の外周に、スクリューキャップ取り付け用のネジ切り部を 設けて、 2ピースボトル缶を製造し、ネジ成形性を評価した。
[0120] 9000缶の上記ネック部成形缶のネジ切り部について、全て形状精度が良ぐ部分 的な形状不良の発生が全く見られな力つたものを◎ (極めて良好)、形状不良の発生 力 缶以下であったものを〇(良好)、形状不良の発生が 2缶を超えたものを X (不合 格)として評価した。
[0121] (ネジ座屈強度)
ネジ座屈強度は、上記ネジ切り部までを成形した成形缶(2ピースボトル缶)に軸方 向の圧縮荷重を負荷し、ネジ部が座屈したときの荷重を n (サンプル数) = 10で測定 して、その平均値とした。なお、このネジ座屈強度は、 1500N以上であれば実用上 問題がない。
[0122] 表 3、 5から明らかなように、タンデム圧延機で冷間圧延し、表 3の発明例 1〜5、表 5 の発明例 20〜24は、本発明成分組成を有し、 0. 05〜1 μ mのサイズの分散粒子個 数、 0. 3 m以上のサイズを有する分散粒子の個数割合が本発明規定を満足する 組織を有する。
[0123] この結果、発明例 1〜5、 20〜24は、耳率に優れている。そして、しごき成形性、ネ ック成形性、ネジ成形性などの 2ピースボトル缶の各成形工程で要求される各成形性 に優れている。また、その上でネジ座屈強度にも優れている。
[0124] また、特に、表 3の発明例 1〜5は、結晶粒の平均アスペクト比が 3以上であり、ベー キング後の耐カ(強度)低下が少なぐ高温特性に優れている。
[0125] これに対して、表 3の比較例 6〜9、表 5の比較例 25〜28は、本発明成分組成範囲 内ではあるものの、均熱処理後の冷却速度が大き過ぎて、上限の 25°CZhrを越える 。このため、本発明規定の分散粒子組織とはならず、小さい分散粒子の個数割合が 大きくなつて、あるいは、サイズがまちまちな分散粒子が分散して、 0. 以上のサ ィズを有する分散粒子の個数割合が、分散粒子の前記全存在個数に対して 15%を 切っている。
[0126] 表 3の比較例 10は、 Mnが高すぎ、巨大晶出物が生成し、本発明規定の分散粒子 組織とはならない。このため、ボトル缶成形時の割れ多発に繋がっている。比較例 11 は Mnが低すぎ、座屈強度が不足している。
比較例 12は Mgが高すぎ、高加工硬化による成形性低下(とくにしごき加工性)が大 きい。
比較例 13は Mgが低すぎ、座屈強度が不足して 、る。
比較例 14は Cuが高すぎ、加工性が低下している。
比較例 15は Cuが低すぎ、座屈強度が不足して!/、る。
比較例 16は Siが低すぎ、 +耳が大きくなつている。また、 α相の不足によりしごき加 ェ性が低下している。 比較例 17は Siが高すぎ、未再結晶の残存による +耳が大きくなつている。また、カロ ェ性が低下している。
比較例 18は Feが低すぎ、未再結晶が残存している。また晶出物も少なぐいずれに してもしごきカ卩ェ性が低下して 、る。
比較例 19は Feが高すぎ、 +耳が大きくなつている。また晶出物が増えすぎ、加工時 における亀裂伝播の促進により、しごき加工性が低下している。
[0127] この結果、これらの比較例は、耳率が劣り、しごき成形性、ネック成形性、ネジ成形 性などの 2ピースボトル缶の各成形工程で要求される各成形性やネジ座屈強度も劣 つている。
[0128] 表 3の比較例 10〜19は、均熱処理後の冷却速度好ましい製造条件で製造されて いる。しかし、合金組成が本発明成分組成から外れる。このため、本発明規定の分散 粒子組織力ゝら外れるか、本発明規定の分散粒子組織となっていても、しごき成形性、 ネック成形性、ネジ成形性などの 2ピースボトル缶の各成形工程で要求される各成形 性が劣っている。また、ネジ座屈強度や高温特性なども劣っている。
[0129] 以上の結果から、本発明の各要件の臨界的な意義が分かる。
[0130] [表 1]
区 略 Al合金の化学成分 (質 も 、 但し B は ppm 、 残部 Ai) 口
Si Fe Cu Mn Mg Cr Zn Τι ■Β * その 他元素 の総量 発 A 0.25 0.44 0,21 0.88 0.88 ― ― ― ― 0.03 明 0.26 0.43 0.20 0.91 1, 05 0, 03 0.19 0.03 0 0.03 例 C 0.25 0.42 0, 2 0.9 0.9 0.03 0.2 0.02 10 0, 04
D 0,3 0.45 0, I 1.3 1 ― ― 0.02 10 0.05
E 0.4 0.5 0.4 1.6 1 ― 0.01 40 0.04
F 0.2 0.4 0.2 0.6 1 ― 0.01 40 0.04 比 G 0.1 0.2 0: 3 1 1.8 0.03 30 0.03
H 0, 1 0,2 0.2 1 0.7 ― 0.03 30 0.03 較 I 0.3 0.4 0.7 1.1 0.9 ― 0.02 30 0.03
J 0.1.2 0.45 0.03 1.05 0.97 ― ― 0.02 30 0.03 例 κ 0.03 0.5 0.4 0.9 1 ― ― 0.03 30 0.03
L 0.6 0.4 0.4 0, 95 1,05 ― ― 0.03 30 0.03
M 0.3 0.05 1.2 1.1 ― ■ ― 0.02 30 0.03
N 0.2 0.8 0.33 0.99 L2 ― ― 0, 02 30 0.03
* その他元素: Zr 、 Bi、 Sn、 Ga、 V 、 Co、 Ni、 Ca、 Mo、 Be, Pb、 W の総量 2]
均熱 ¾¾理 熱間飽圧延 熱間仕上げ圧延 冷間圧延 分 均熟 冷却 終了 板厚 圧延機 冷延 の種類
。c 。C/ hr 。C %
〔〕0132
23 610 2 14 504 461 92 341 2. 5 タンテ 86 610 6 22 511 442 92 335 2. 5 タンテ ム 86 明 24 610 4 15 501 451 921 321 2. 5 タンテ'ム 86 略号 22 610 4 512 469 92 332 2. 5 タンテ'ム 86 例 23 610
¾表合金略号 4 14 549 483 92 340 2. 5 タンテ、'ム 86
6 A P速昇 610 40 502 459 92 342 2. 5 タンテ"ム 86
7 B 444444 22244 /233度温9290020453 7111 610 39 505 453 92 321 2. 5 タン ム 86 比 8 C Γ 610 35 514 471 92 333 2. 5 タンテ'、ム 86
9 D 610 28 548 480 339 2. 5 ンテ 'ム 86
10 610 15 503 462 342 2. 5 タンテ'ム 86
11 610 14 489 443 335 タン ム 86 保時
610 14 477 441 334 2. 5 タンテ'ム 86 持間 h
13 H 610 15 496 488 320 2. 5 タン ム 86 14 I 610 13 497 465 315 2. 5 タンテ'、ム 86 15 J 610 13 474 459 92 326 2. 5 タンテ'ム 86 例 16 κ 610 14 505 468 92 304 2. 5 タン ム 86 17 610 14 P 4温開83 442 92 321 2. 5 タンテ"ム 86
610 14 492始度 466 92 327 2. 5 タン ム 86
19 610 14 496 471 92 324 2. 5 タンテ'ム 86 度了
総 H %
加率 9 99999
222 222
Figure imgf000028_0001
Figure imgf000029_0001
]
Figure imgf000030_0001
産業上の利用可能性
以上説明したように、本発明は、ネック部成形性ゃネジ切り成形性に優れたボトル 缶用アルミニウム合金冷延板を提供できる。したがって、成形性に優れ、しかも薄肉 で熱処理されても強度低下が無いことが求められるような、より小型化した 2ピースボ トル缶のような、厳 、要求特性用途に好適である。

Claims

請求の範囲
[1] Mn : 0. 7〜1. 5質量%、 Mg : 0. 8〜1. 7質量%、 Fe : 0. 1〜0. 7質量%、 Si : 0.
05〜0. 5質量%、Cu : 0. 1〜0. 6質量%を含有し、残部が A1及び不可避的不純物 力らなる糸且成を有し、かつ、糸且織の 5000〜15000倍の TEMにより観察される 0. 05 〜1 μ mのサイズの分散粒子が 300 μ m2当たりに 50〜400個存在し、かつ、これら の分散粒子の内で、 0. 3 m以上のサイズを有する分散粒子の個数割合が、分散 粒子の前記全存在個数に対して 15〜70%の範囲にあることを特徴とするネック部成 形性に優れたボトル缶用アルミニウム合金冷延板。
[2] 前記冷延板の結晶粒組織を、板厚方向中央部の上面観察による結晶粒の平均ァ スぺタト比が 3以上の圧延方向に伸長させた組織とした請求項 1に記載のネック部成 形性に優れたボトル缶用アルミニウム合金冷延板。
[3] 前記アルミニウム合金冷延板が、更に、 Cr : 0. 001-0. 3質量%、 Zn : 0. 05- 1.
0質量%から選択された一種または二種を含有する請求項 1または 2に記載のネック 部成形性に優れたボトル缶用アルミニウム合金冷延板。
[4] 前記アルミニウム合金冷延板が、更に、 0. 005-0. 2質量%の Tiを単独で、又は 0. 0001〜0. 05質量%の と併せて含有する請求項 1乃至 3のいずれ力 1項に記 載のネック部成形性に優れたボトル缶用アルミニウム合金冷延板。
[5] 前記請求項 1乃至 4のいずれかのアルミニウム合金冷延板を得るに際し、铸塊を 55 0°C以上の温度で均質化熱処理後、 450〜550°Cの温度範囲まで、 25°CZhr以下 の冷却速度で徐冷し、熱間圧延および冷間圧延後の板組織の 5000〜 15000倍の TEMにより観察される 0. 05〜1 μ mのサイズの分散粒子を 300 μ m2当たりに 50〜 400個存在させ、かつ、これらの分散粒子の内で、 0. 3 m以上のサイズを有する分 散粒子の個数割合を、分散粒子の前記全存在個数に対して 15〜70%の範囲とす ることを特徴とするネック部成形性に優れたボトル缶用アルミニウム合金冷延板の製 造方法。
[6] 前記冷間圧延が、途中で焼鈍することなぐ最終の板厚まで冷間圧延するものであ る請求項 5に記載のネック部成形性に優れたボトル缶用アルミニウム合金冷延板の 製造方法。
PCT/JP2006/318241 2005-11-02 2006-09-14 ネック部成形性に優れたボトル缶用アルミニウム合金冷延板およびそのアルミニウム合金冷延板の製造方法 WO2007052416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002625098A CA2625098A1 (en) 2005-11-02 2006-09-14 Cold-rolled aluminum alloy sheet for bottles excellent in formability in forming neck and method of manufacturing the same
US12/090,879 US20080302454A1 (en) 2005-11-02 2006-09-14 Cold-Rolled Aluminum Alloy Sheet for Bottle Can with Excellent Neck Part Formability and Process for Producing the Cold-Rolled Aluminum Alloy Sheet
EP06797959A EP1944384A4 (en) 2005-11-02 2006-09-14 COLD-ROLLED ALUMINUM ALLOY SHEET FOR BOTTLE BOX WITH EXCELLENT SEMI-SHAPING CAPACITY AND METHOD FOR PRODUCING THE COLD-ROLLED ALUMINUM ALLOY SHEET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005319864A JP3913260B1 (ja) 2005-11-02 2005-11-02 ネック部成形性に優れたボトル缶用アルミニウム合金冷延板
JP2005-319864 2005-11-02

Publications (1)

Publication Number Publication Date
WO2007052416A1 true WO2007052416A1 (ja) 2007-05-10

Family

ID=38005574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318241 WO2007052416A1 (ja) 2005-11-02 2006-09-14 ネック部成形性に優れたボトル缶用アルミニウム合金冷延板およびそのアルミニウム合金冷延板の製造方法

Country Status (7)

Country Link
US (1) US20080302454A1 (ja)
EP (1) EP1944384A4 (ja)
JP (1) JP3913260B1 (ja)
KR (1) KR20080058453A (ja)
CN (1) CN101268207A (ja)
CA (1) CA2625098A1 (ja)
WO (1) WO2007052416A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043582A1 (ja) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 ボトル缶用アルミニウム合金冷延板
CN102703776A (zh) * 2012-06-08 2012-10-03 中铝瑞闽铝板带有限公司 Led电视机用铝合金基材及其生产方法
WO2020045537A1 (ja) * 2018-08-31 2020-03-05 株式会社Uacj アルミニウム合金板

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254874A (ja) * 2006-03-24 2007-10-04 Kobe Steel Ltd 包装容器用アルミニウム合金板およびその製造方法
JP5449693B2 (ja) * 2008-03-28 2014-03-19 株式会社神戸製鋼所 ボトル缶用アルミニウム合金冷間圧延板およびその製造方法
CN101956104A (zh) * 2010-06-04 2011-01-26 上海华篷防爆科技有限公司 一种新型抑爆材料
CN103140592B (zh) * 2010-09-16 2015-07-15 株式会社Uacj 成形包装体材料
US8855982B2 (en) * 2012-02-06 2014-10-07 Sumitomo Heavy Industries, Ltd. Analysis device and simulation method
CN102634703B (zh) * 2012-05-08 2014-06-18 王季庄 一种抑爆材料的制备方法
WO2014013931A1 (ja) * 2012-07-17 2014-01-23 日本軽金属株式会社 ペリクル用支持枠の製造方法、ペリクル用支持枠、及びペリクル
US9192973B1 (en) 2013-03-13 2015-11-24 Meier Tool & Engineering, Inc. Drawing process for titanium
EP2859966A1 (en) 2013-10-08 2015-04-15 Ardagh MP Group Netherlands B.V. Shaped metcal container and a method for making a shaped metal container
JP6326485B2 (ja) * 2014-03-20 2018-05-16 株式会社Uacj Dr缶ボディ用アルミニウム合金板及びその製造方法
CN103898374B (zh) * 2014-03-26 2016-08-24 安徽家园铝业有限公司 一种建筑用铝合金型材及其制备方法
CN107723632B (zh) * 2014-04-30 2021-03-19 美铝美国公司 具有高可成形性的铝板和所述铝板制成的铝容器
JP2016020531A (ja) * 2014-07-14 2016-02-04 三菱アルミニウム株式会社 Di成形性、ネック成形性、および耳率に優れる缶ボディ用アルミニウム合金板の製造方法
JP5841646B1 (ja) * 2014-09-10 2016-01-13 株式会社神戸製鋼所 缶胴用アルミニウム合金板
CA2959416C (en) 2014-09-12 2020-07-07 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same
JP2018502993A (ja) * 2014-12-19 2018-02-01 ノベリス・インコーポレイテッドNovelis Inc. アルミニウムボトルの高速生産に適したアルミニウム合金及びその製造方法
ES2734736T3 (es) 2015-03-13 2019-12-11 Novelis Inc Aleaciones de aluminio para productos de envasado altamente conformados y métodos de fabricación de las mismas
CN108368570B (zh) * 2015-12-25 2021-02-12 株式会社Uacj 罐体用铝合金板及其制造方法
CA3011463C (en) * 2016-01-14 2020-07-07 Arconic Inc. Methods for producing forged products and other worked products
AU2017261184B2 (en) * 2016-05-02 2019-09-05 Novelis Inc. Aluminum alloys with enhanced formability and associated methods
US20180251878A1 (en) * 2017-03-03 2018-09-06 Novelis Inc. High-strength, corrosion resistant aluminum alloys for use as fin stock and methods of making the same
CN111910111A (zh) * 2020-08-13 2020-11-10 中铝瑞闽股份有限公司 一种减薄拉深罐身用铝镁锰铜合金板材的制备方法
CN114635067B (zh) * 2022-01-11 2023-03-21 山东宏桥新型材料有限公司 铝合金材料及其制备方法、易拉罐罐体材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634049A (ja) * 1986-06-23 1988-01-09 Furukawa Alum Co Ltd 器物用Al合金板の製造方法
JP2003342657A (ja) * 2002-03-20 2003-12-03 Kobe Steel Ltd アルミニウム系熱間圧延板及びそれを用いた缶胴用板材
JP2004183035A (ja) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd ネジ付アルミ缶胴用アルミニウム合金板
JP2005048288A (ja) * 2003-07-11 2005-02-24 Mitsubishi Alum Co Ltd ボトム部の形状の安定性及び強度に優れるボトル缶用アルミニウム合金板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224141A (ja) * 1982-06-21 1983-12-26 Sumitomo Light Metal Ind Ltd 成形用アルミニウム合金冷延板の製造方法
ES524111A0 (es) * 1982-07-15 1984-11-01 Continental Group Procedimiento para fabricar material de banda de aleacion de aluminio apropiado para la fabricacion de articulos embutidos y adelgazados en las paredes
JPH02270929A (ja) * 1989-04-10 1990-11-06 Kobe Steel Ltd スプリングバックの小さいアルミニウム合金押出材およびその製造法
US6004409A (en) * 1997-01-24 1999-12-21 Kaiser Aluminum & Chemical Corporation Production of high quality machinable tolling plate using brazing sheet scrap
JP3657738B2 (ja) * 1997-05-12 2005-06-08 古河スカイ株式会社 耳率の低いキャンボディ用アルミニウム合金板の製造方法
US6231809B1 (en) * 1998-02-20 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
WO2000015859A1 (fr) * 1998-09-10 2000-03-23 Kabushiki Kaisha Kobe Seiko Sho FEUILLE EN ALLIAGE Al-Mg-Si
JP3897926B2 (ja) * 1999-02-01 2007-03-28 株式会社神戸製鋼所 成形性に優れたアルミニウム合金板の製造方法
JP2002256366A (ja) * 2001-02-27 2002-09-11 Kobe Steel Ltd ボトル缶用アルミニウム板
JP4088257B2 (ja) * 2003-01-31 2008-05-21 株式会社神戸製鋼所 ボトル缶用アルミニウム合金板
JP4499369B2 (ja) * 2003-03-27 2010-07-07 株式会社神戸製鋼所 リジングマークの発生が抑制されており表面性状に優れたAl−Mg−Si系合金板
JP4328242B2 (ja) * 2004-02-26 2009-09-09 株式会社神戸製鋼所 リジングマーク特性に優れたアルミニウム合金板
JP4704720B2 (ja) * 2004-10-08 2011-06-22 株式会社神戸製鋼所 高温疲労特性に優れた耐熱性Al基合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634049A (ja) * 1986-06-23 1988-01-09 Furukawa Alum Co Ltd 器物用Al合金板の製造方法
JP2003342657A (ja) * 2002-03-20 2003-12-03 Kobe Steel Ltd アルミニウム系熱間圧延板及びそれを用いた缶胴用板材
JP2004183035A (ja) * 2002-12-02 2004-07-02 Sumitomo Light Metal Ind Ltd ネジ付アルミ缶胴用アルミニウム合金板
JP2005048288A (ja) * 2003-07-11 2005-02-24 Mitsubishi Alum Co Ltd ボトム部の形状の安定性及び強度に優れるボトル缶用アルミニウム合金板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1944384A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043582A1 (ja) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 ボトル缶用アルミニウム合金冷延板
JP2012092431A (ja) * 2010-09-30 2012-05-17 Kobe Steel Ltd ボトル缶用アルミニウム合金冷延板
AU2011309067B2 (en) * 2010-09-30 2015-08-20 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can
CN102703776A (zh) * 2012-06-08 2012-10-03 中铝瑞闽铝板带有限公司 Led电视机用铝合金基材及其生产方法
WO2020045537A1 (ja) * 2018-08-31 2020-03-05 株式会社Uacj アルミニウム合金板
JPWO2020045537A1 (ja) * 2018-08-31 2021-08-26 株式会社Uacj アルミニウム合金板
JP7138179B2 (ja) 2018-08-31 2022-09-15 株式会社Uacj アルミニウム合金板
US11920221B2 (en) 2018-08-31 2024-03-05 Uacj Corporation Aluminum alloy sheet

Also Published As

Publication number Publication date
JP2007126706A (ja) 2007-05-24
EP1944384A4 (en) 2009-10-28
KR20080058453A (ko) 2008-06-25
US20080302454A1 (en) 2008-12-11
JP3913260B1 (ja) 2007-05-09
EP1944384A1 (en) 2008-07-16
CA2625098A1 (en) 2007-05-10
CN101268207A (zh) 2008-09-17

Similar Documents

Publication Publication Date Title
JP3913260B1 (ja) ネック部成形性に優れたボトル缶用アルミニウム合金冷延板
JP4019082B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金板
KR100953799B1 (ko) 고온 특성이 우수한 보틀캔용 알루미늄 합금판
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
WO2012043582A1 (ja) ボトル缶用アルミニウム合金冷延板
JP4019083B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP5568031B2 (ja) ボトル缶用アルミニウム合金冷延板
WO2014129385A1 (ja) 缶ボディ用アルミニウム合金板及びその製造方法
JP6792463B2 (ja) 成形用アルミニウム合金軟質箔
JP6912886B2 (ja) 飲料缶胴用アルミニウム合金板及びその製造方法
JP3838504B2 (ja) パネル成形用アルミニウム合金板およびその製造方法
JP4943714B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板
JP4908805B2 (ja) 高強度キャップ用アルミニウム合金の製造方法
JP4019084B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP5080150B2 (ja) 開栓性、耳率に優れた高強度キャップ用アルミニウム合金板の製造方法
JP4995494B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板及びその製造方法
JP2007327082A (ja) 曲げ加工性に優れたキャップ用アルミニウム合金板およびその製造方法
JP2006097076A (ja) ボトル缶用アルミニウム合金板およびその製造方法
JP7426243B2 (ja) ボトル缶胴用アルミニウム合金板
JP4393949B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板
JP4699850B2 (ja) キャップ用アルミニウム合金およびその製造方法
JP2005320577A (ja) 広口ボトル缶キャップ用アルミニウム合金板
JP2007100182A (ja) キャップ用アルミニウム合金板およびその製造方法
JP2021055161A (ja) 缶胴用アルミニウム合金板
JPH07197175A (ja) 耐圧強度に優れたキャップ用アルミニウム合金板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034377.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797959

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2625098

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12090879

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087010486

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE