WO2014129385A1 - 缶ボディ用アルミニウム合金板及びその製造方法 - Google Patents

缶ボディ用アルミニウム合金板及びその製造方法 Download PDF

Info

Publication number
WO2014129385A1
WO2014129385A1 PCT/JP2014/053395 JP2014053395W WO2014129385A1 WO 2014129385 A1 WO2014129385 A1 WO 2014129385A1 JP 2014053395 W JP2014053395 W JP 2014053395W WO 2014129385 A1 WO2014129385 A1 WO 2014129385A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
rolling
alloy plate
cold
temperature
Prior art date
Application number
PCT/JP2014/053395
Other languages
English (en)
French (fr)
Inventor
横井 洋
信吾 岩村
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to JP2015501421A priority Critical patent/JP6336434B2/ja
Priority to CN201480010295.9A priority patent/CN105008566B/zh
Publication of WO2014129385A1 publication Critical patent/WO2014129385A1/ja
Priority to HK16101131.0A priority patent/HK1213300A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy plate for a can body used as a material for a body portion of an aluminum can and a method for producing the same.
  • Some can bodies of aluminum beverage cans are formed by subjecting an aluminum alloy plate to DI (Drawing & Ironing) processing.
  • DI Drawing & Ironing
  • a 3000 series aluminum alloy having good formability in drawing and ironing is used.
  • the aluminum alloy plate of Patent Document 1 is rolled after being heated again after cooling the ingot after homogenization in the manufacturing process.
  • it is necessary to perform an additional heat treatment in the manufacturing process, and it is difficult to reduce the manufacturing cost.
  • the present invention has been made in view of such a background, and intends to provide an aluminum alloy plate for a can body that is high in strength and easy to manufacture.
  • Mg 1.0 to 1.5% (mass%, the same applies hereinafter)
  • Mn 0.8 to 1.2%
  • Cu 0.20 to 0.30%
  • Fe 0.20 to 0.60%
  • Si 0.20 to 0.40%
  • the conductivity is 37.0-40.0% IACS
  • the aluminum alloy plate for can bodies is characterized by satisfying the following relationship.
  • Mg 1.0 to 1.5% (mass%, the same applies hereinafter)
  • Mn 0.8 to 1.2%
  • Cu 0.20 to 0.30%
  • the hot-rolled sheet having a temperature of 80 ° C. or lower is cold-rolled to obtain an intermediate cold-rolled plate having a temperature of 140 ° C. or higher, Next, the intermediate cold-rolled sheet is held at a temperature of 120 ° C.
  • the final pass of the cold rolling is performed so that the reduction ratio is 48 to 56%, and the cold rolling sheet has a total reduction ratio of cold rolling of 87 to 90% and a temperature of 150 ° C. or higher.
  • the cold-rolled sheet is cooled to 80 ° C. at a cooling rate of 15 to 30 ° C./hour.
  • the aluminum alloy plate for can bodies has the specific chemical component, the conductivity in the specific range, and the aging characteristics in the specific range. Therefore, the aluminum alloy plate for can bodies has a formability equivalent to that of a conventional 3000 series aluminum alloy and has higher strength.
  • the aluminum alloy plate for a can body can be produced more easily, and an effect of further reducing the production cost can be expected.
  • FIG. 1 The perspective view of the redraw cup used for bottom wrinkle height measurement in Example 1.
  • FIG. 1 The wrinkle height measurement chart obtained by wrinkle height measurement in Example 1.
  • the aluminum alloy plate for can bodies will be described in detail below.
  • the can body aluminum alloy plate contains 1.0 to 1.5% Mg.
  • Mg dissolves in aluminum and has the effect of improving the strength of the aluminum alloy sheet by solid solution strengthening. Further, the coexistence of Mg, Cu, and Si makes it possible to finely precipitate the compound of Mg, Cu, and Si while the temperature is around 150 ° C. during the cold rolling.
  • the aluminum alloy plate tends to have higher strength due to precipitation strengthening due to these fine precipitates.
  • the aluminum alloy containing Mg is likely to increase the strength improvement by work hardening in cold working such as cold rolling and DI working. Therefore, the aluminum alloy plate can easily suppress drawing wrinkles and bottom wrinkles in DI processing. Moreover, the can body formed from the aluminum alloy plate is likely to have high strength in terms of can wall strength, that is, can barrel piercing strength and buckling strength.
  • Mg content is 1.0% or more in order to improve the strength of the aluminum alloy plate, and 1.2% or more is more preferable.
  • the Mg content is 1.0% or more, the strength of the aluminum alloy plate is sufficiently high, and the can body can be made thinner more easily. In this case, since work hardening at the time of DI processing is easily increased, it is easy to reduce the occurrence of drawing wrinkles and bottom wrinkles.
  • the strength of the aluminum alloy plate may be reduced. In this case, work hardening at the time of DI processing tends to be insufficient, and drawing wrinkles and bottom wrinkles are likely to occur.
  • work hardening at the time of cold working may be excessively increased.
  • the force applied to the aluminum alloy plate during DI processing may be excessively increased.
  • the aluminum alloy plate may break during DI processing or scoring may occur. It is done.
  • the amount of Mg that diffuses to the slab surface during the homogenization treatment increases. Therefore, the Mg oxide film formed on the surface of the slab is likely to be thick, and there is a risk of causing a decrease in surface quality such as generation of a flow mark. Furthermore, in this case, since the Mg 2 Si phase having a large potential difference from the matrix is likely to precipitate, the corrosion resistance of the aluminum alloy plate may be reduced.
  • the content of Mg is 1.0 to 1.5% from the viewpoint of achieving both improvement in strength and improvement in formability and corrosion resistance, and 1.2 to 1.5% is more preferable. preferable.
  • the can body aluminum alloy plate contains 0.8 to 1.2% of Mn.
  • Mn dissolves in aluminum and has the effect of increasing the strength of the aluminum alloy sheet by solid solution strengthening.
  • Mn has the effect
  • Mn coexists with Fe and Si to produce fine Al 6 (Mn, Fe) crystallized products and ⁇ -phase compounds (Al—Mn—Fe—Si system). It has the effect of preventing the aluminum alloy plate and the die from seizing.
  • the Mn content is 0.8% or more and more preferably 1.0% or more in order to easily obtain the strength improvement and seizure prevention effect of the aluminum alloy plate.
  • the strength of the aluminum alloy plate tends to be sufficiently high. Further, in this case, a sufficiently large amount of fine crystals of Al 6 (Mn, Fe) and ⁇ -phase compounds (Al—Mn—Fe—Si system) are generated. It can prevent more reliably that the board and the die are seized.
  • the strength of the aluminum alloy sheet may be reduced, and the effect of preventing seizure may be reduced.
  • the content of Mn is 1.2% or less in order to improve the formability in cold working such as DI working and to easily obtain the effect of delaying recovery after cold working.
  • Mn content is 1.2% or less, it becomes easy to sufficiently increase the solid solution amount of Mn in the aluminum alloy. For this reason, the aluminum alloy plate can easily suppress softening by delaying the recovery of the processed structure due to heating in the coating baking process or the like due to the effect of the solid solution Mn.
  • the content of Mn is 0.8 to 1.2% from the viewpoint of achieving both the strength improvement of the aluminum alloy sheet and the formability and softening suppressing effect during cold working, 1.0 to 1.2% is more preferable.
  • the can body aluminum alloy plate contains 0.20 to 0.30% of Cu.
  • Cu dissolves in aluminum and has the effect of improving the strength of the aluminum alloy sheet by solid solution strengthening.
  • Cu coexists with Mg, so that Al—Mg—Cu-based fine precipitates are generated while the temperature is around 150 ° C. due to heat generated during cold rolling.
  • the aluminum alloy plate tends to have higher strength due to precipitation strengthening due to these fine precipitates.
  • Cu has the effect
  • the Cu content is 0.20% or more from the viewpoint of improving the strength of the aluminum alloy plate.
  • the strength of the aluminum alloy plate can be sufficiently improved by solid solution strengthening or precipitation strengthening.
  • the strength improvement effect due to precipitation strengthening may be insufficient, and the strength of the aluminum alloy plate may be reduced.
  • the Cu content exceeds 0.30%, work hardening during cold working may be excessively increased. is there. For this reason, it is necessary to increase the force applied to the aluminum alloy plate during DI processing. In some cases, the aluminum alloy plate may break during DI processing or scoring may occur.
  • content of Cu exceeds 0.30%, there exists a possibility that the corrosion resistance of an aluminum alloy plate may fall.
  • the content of Cu is 0.20 to 0.30% from the viewpoint of improving both the strength of the aluminum alloy sheet and the control of work hardening and improving the corrosion resistance.
  • the can body aluminum alloy plate contains 0.25 to 0.60% Fe. Fe coexists with Mn and Si to produce fine crystals of Al 6 (Mn, Fe) and ⁇ -phase compounds (Al—Mn—Fe—Si system), and the above-mentioned aluminum during DI processing. It has the effect of preventing the alloy plate and the die from seizing.
  • the content of Fe is 0.25% or more and more preferably 0.40% or more in order to easily obtain the effect of preventing seizure and improve the moldability.
  • Fe is contained in an amount of 0.25% or more, a sufficiently large amount of the above-described fine crystallized Al 6 (Mn, Fe) or ⁇ -phase compound (Al—Mn—Fe—Si system) is generated. Therefore, it is possible to more reliably prevent seizure during DI processing.
  • the intermetallic compound described above is generated, it is easy to reduce the rolling direction ear (0-180 ° ear) when the aluminum alloy plate is pressed into a cup shape. As a result, it becomes easy to reduce troubles when the aluminum alloy plate after press processing or DI processing is conveyed to the next process. Further, when Fe is contained in an amount of 0.25% or more, it becomes easy to suppress the generation of wrinkles in the necking step.
  • the Fe content is less than 0.25%, the seizure prevention effect may be difficult to obtain. Moreover, in this case, the ears in the rolling direction become excessively large, which may cause troubles during conveyance due to this, and wrinkles may easily occur in the necking process. In addition, when the Fe content is less than 0.25%, it is necessary to use a high-purity metal for the production of the aluminum alloy plate, which may increase the cost.
  • the content of Fe is 0.60% or less from the viewpoint of controlling the above-described intermetallic compound.
  • the Fe content exceeds 0.60%, a coarse intermetallic compound is likely to be generated between Mn and Mn.
  • the intermetallic compound is not preferable because it can be a starting point of fracture during molding.
  • the content of Fe is 0.25 to 0.60% in order to satisfy all of the moldability, cost, and anti-seizure effect during DI processing, and 0.40% to 0.60%. More preferred.
  • the can body aluminum alloy plate contains 0.20 to 0.40% Si.
  • Si coexists with Mn and Fe to form an ⁇ -phase compound (Al—Mn—Fe—Si system), and has an action of preventing the aluminum alloy plate and the die from being seized during DI processing.
  • Si coexists with Mg and Cu, thereby precipitating a fine intermetallic compound while the temperature is around 150 ° C. during the cold rolling, and strengthening the aluminum alloy plate by precipitation strengthening. Has the effect of improving.
  • the Si content is 0.20% or more in order to improve the strength.
  • Si is contained in an amount of 0.20% or more, a sufficient amount of fine intermetallic compounds with Mg and Cu are precipitated, so that the strength of the aluminum alloy plate is easily improved.
  • the Si content is less than 0.20%, the above-described precipitation of intermetallic compounds may be insufficient, and the strength of the aluminum alloy plate may be reduced. Moreover, in this case, since it is necessary to use a high-purity metal for the production of the aluminum alloy plate, there is a risk of increasing the cost.
  • the higher the Si content the easier it is to obtain an anti-seizure effect.
  • an Al—Mn—Si phase having a grain size of 0.1 ⁇ m or more is likely to precipitate due to Ostwald growth.
  • strength of an aluminum alloy plate may fall.
  • the solid solution amount of Mn is likely to be lowered, so that the processed structure is likely to be recovered by heating such as baking, and the strength may be lowered during the can manufacturing process.
  • the Si content exceeds 0.40% and the Mg content is higher, coarse crystallized products of the Mg 2 Si phase may be formed. When this coarse crystallized product is formed, it becomes difficult for the fine intermetallic compound of Si, Mg, and Cu to precipitate. This is not preferable because there is a risk of lowering strength and corrosion resistance.
  • the Si content is 0.20 to 0.40% in order to satisfy the strength, cost, anti-seizure effect and corrosion resistance of the aluminum alloy plate.
  • the aluminum alloy plate for can bodies has a conductivity of 37.0 to 40.0% IACS.
  • the electrical conductivity is a measured value used as an indicator of the solid solution amount of Mn, and the lower the electrical conductivity, the greater the solid solution amount of Mn.
  • the aluminum alloy sheet is easy to obtain an effect of improving the strength by solid solution strengthening of Mn by controlling the conductivity obtained by measuring at a temperature condition of 25 ° C. within the above specific range. It becomes easy to obtain the effect of preventing seizure due to precipitation.
  • the solid solution amount of Mn becomes insufficient, so that the strength of the aluminum alloy plate may be lowered.
  • the conductivity is less than 37.0% IACS, the solid solution amount of Mn increases, so that the strength of the aluminum alloy plate is improved, but the precipitation of the ⁇ -phase compound tends to be insufficient, and the seizure prevention effect. May be difficult to obtain.
  • the electrical conductivity can be controlled to the above specific range by adjusting, for example, the hot rolling start temperature and the cooling conditions until the hot rolling is started after the homogenization treatment.
  • the aluminum alloy plate preferably contains 10000 / mm 3 or less of 0.1-2.0 ⁇ m Al—Mn—Si based precipitates.
  • the Al—Mn—Si based precipitate has an action of accumulating dislocations during cold working. For this reason, the aluminum alloy plate contains Al—Mn—Si based precipitates controlled to the specific density and size, so that the strength can be easily improved by work hardening.
  • the size of Al-Mn-Si-based precipitates is less than 0.1 ⁇ m, the accumulation of dislocations is less likely to occur during cold rolling and cold working (press work, DI work, etc.), thus improving strength. Is difficult to obtain.
  • the size of the Al—Mn—Si-based precipitate is larger than 2.0 ⁇ m, the processed structure is likely to be recovered by heating in the can-making process, so that it is difficult to obtain the strength improvement effect.
  • the density of the Al—Mn—Si based precipitate exceeds 10,000 / mm 3 , the homogenization treatment is not sufficient, and the Al—Mn—Si based precipitate may be segregated. Therefore, it becomes difficult to obtain the anisotropy necessary for controlling the ear rate and the moldability in the can-making process described later.
  • Al—Mn—Si based precipitates are segregated, dislocations are accumulated in the cold working due to the interrelation between the compounds, but the precipitates in which dislocations are accumulated are densely arranged. , Sparsely arranged areas will coexist. Therefore, it is considered that the recovery of the processed structure due to heating becomes excessive, and it is difficult to obtain the strength improvement effect.
  • the said aluminum alloy plate for can bodies has the said specific aging characteristic.
  • the aging characteristic is a value used as an index of the strength improvement effect by precipitation strengthening, and is an index of the strength improvement effect mainly caused by precipitation of Al—Cu—Mg based precipitates.
  • the Al—Cu—Mg-based precipitates have a property that it is easy to obtain an effect of improving strength without changing the ear ratio in press working and without adding a step such as heat treatment. Therefore, the productivity of the aluminum alloy plate can be easily improved by using the precipitate.
  • the strength of the can body manufactured using the aluminum alloy plate can be further improved by various precipitates including the Al—Cu—Mg based precipitate.
  • the proof stress in the rolling direction of the aluminum alloy plate for a can body is 300 MPa or more.
  • various strengths such as can bottom pressure resistance, buckling strength, and can body piercing strength in a can body produced using the aluminum alloy plate can be further improved. As a result, it becomes easy to make the can body obtained thinner by using the aluminum alloy plate.
  • the aluminum alloy plate for a can body preferably has a work hardening index of 0.07 or more.
  • the value of work hardening index can be obtained by a tensile test in the rolling direction.
  • edge ratio R calculated from following formula (1) of the shaping
  • molding cup which carried out the drawing molding on the conditions which made the blank diameter 55mm and a drawing ratio was 1.67 is 4% or less. . R (M 45 ⁇ V 45 ) / ((M 45 + V 45 ) / 2) ⁇ 100 (1)
  • M 45 is a value calculated from the following formula (2)
  • V 45 is a value calculated from the following formula (3).
  • A is 45 ° (angle when the rolling direction is 0 °, the same applies hereinafter), B is 135 ° ear height, and C is 225 ° ear height. Yes, D is 315 ° ear height.
  • V 45 (E + F + G + H) / 4 (3)
  • E is the minimum height of the valley between the 45 ° direction and the 135 ° direction
  • F is the minimum height of the valley between the 135 ° direction and the 225 ° direction
  • G is the minimum height of the valley between the 225 ° direction and the 315 ° direction
  • H is the minimum height of the valley between the 315 ° direction and the 45 ° direction.
  • the size of the ear part formed after the aluminum alloy plate is pressed may become excessively large. If the size of the ear part is excessively large, various troubles in the can manufacturing process such as trouble during conveyance, insufficient trimming height after DI processing, or poor tightening due to variations in the flange part in the necking process may occur. It is possible to cause this, which is not preferable.
  • Ear ratio R can be controlled by the recrystallization state after hot rolling and the total rolling reduction of cold rolling.
  • recrystallization after hot rolling is insufficient, the rolling texture tends to remain.
  • the ear rate R tends to be excessive.
  • the higher one is preferable from a viewpoint of improving the intensity
  • an aluminum alloy having the above specific chemical component is cast to produce a slab.
  • a slab casting method a known method such as continuous casting or semi-continuous casting can be employed.
  • both rolling surfaces and both side surfaces of the slab are chamfered to remove the inhomogeneous portion of the slab surface layer.
  • the thickness of the heterogeneous portion varies depending on the chemical composition of the aluminum alloy, but is usually about 5 mm. If the heterogeneous part remains on the surface of the slab, it is not preferable because the remaining heterogeneous part may cause a reduction in surface quality or ear cracks during rolling.
  • the slab is subjected to homogenization treatment by heating at 600 to 620 ° C. for 1 to 24 hours.
  • additive elements such as Mn, Mg, Si, and Fe that are crystallized or segregated during casting of the slab are dissolved.
  • the Al 6 (Mn, Fe) crystallized product can be transformed into an ⁇ -phase compound (Al—Mn—Fe—Si-based compound) by homogenization treatment.
  • the ⁇ phase compound has a better anti-seizure effect than the Al 6 (Mn, Fe) crystallized product. Therefore, by performing the homogenization treatment at a temperature in the specific range, the image sticking prevention effect can be further improved.
  • the homogenization temperature is less than 600 ° C.
  • the homogenization is performed up to the center of the slab, so that the processing time becomes long and the productivity tends to decrease.
  • the temperature of the homogenization treatment exceeds 620 ° C.
  • eutectic melting may occur in a part of the slab, and the quality of the slab surface may be deteriorated.
  • the processing time of the homogenization process is less than 1 hour, the homogenization is not sufficiently performed, and there is a possibility that the strength of the obtained aluminum alloy plate is reduced and the effect of preventing seizure is reduced.
  • the homogenization treatment time is usually 10 hours or less, and the homogenization is sufficiently achieved. Even if the treatment time exceeds 24 hours, it is difficult to obtain an effect commensurate with it.
  • the slab After the homogenization treatment, the slab is cooled to 500 to 550 ° C. at a cooling rate of 40 ° C./hour or more, and then hot rough rolling is performed.
  • the hot rough rolling start temperature is less than 500 ° C.
  • precipitation of Al—Mn—Si compounds is promoted, so that the amount of Mn solid solution decreases and the strength of the resulting aluminum alloy sheet decreases. There is a fear.
  • the starting temperature of hot rough rolling exceeds 550 ° C., oxidation of Mg is promoted, so that the surface quality may be deteriorated.
  • precipitation of the Al—Mn—Si compound occurs also when the high temperature state after the homogenization treatment is continued for a long time.
  • the cooling rate is preferably set to 40 ° C./hour or more, and it is more preferable to start cooling as soon as possible after the homogenization treatment.
  • cooling means such as water cooling or shower cooling can be employed.
  • hot finish rolling is performed so that the outlet temperature is 330 to 360 ° C. to produce a hot rolled sheet.
  • the exit temperature of hot finish rolling is less than 330 ° C.
  • recrystallization may be insufficient.
  • the 45 ° ears may become too large or the ears may be torn off, which may cause a conveyance trouble.
  • an ear chip or the like may occur in the trimming process after DI processing, which may cause a decrease in productivity.
  • the delivery side temperature exceeds 360 ° C., a part of the material being hot rolled may adhere to the rolling roll. For this reason, there is a possibility that the surface quality of the hot-rolled sheet is deteriorated or the appearance is abnormal.
  • the hot finish rolling can be performed, for example, using a tandem hot rolling mill having three or more stands.
  • the rolling reduction in hot finish rolling is preferably 88 to 94%. If the rolling reduction is less than 88%, the amount of strain accumulated during hot finish rolling is small, and recrystallization after the rolling may be insufficient. On the other hand, when the rolling reduction exceeds 94%, a part of the material being hot rolled may adhere to the rolling roll, and the surface quality of the hot rolled sheet may be deteriorated or the appearance may be abnormal.
  • the hot-rolled sheet obtained in order to accurately control the temperature during cold rolling is cooled until the temperature becomes 80 ° C. or lower.
  • the cooling rate at this time is not particularly limited. However, if the cooling is excessively slow, it takes time until the next step, which may lead to deterioration in productivity. Therefore, it is desirable to cool using forced cooling means such as fan cooling.
  • the hot-rolled sheet having a temperature of 80 ° C. or lower is cold-rolled to produce an intermediate cold-rolled sheet having a temperature of 140 ° C. or higher.
  • the intermediate cold-rolled sheet contains an Al—Cu—Mg compound that precipitates during cold rolling.
  • the Al—Cu—Mg compound is a compound that is imparted with processing strain due to cold working and begins to precipitate in a state where the temperature is 90 ° C. or higher, and improves the strength of the aluminum alloy sheet obtained by precipitation strengthening. Has an effect.
  • the Al—Cu—Mg-based compound has a property of accumulating processing strain imparted by subsequent cold working, the strength of the resulting aluminum alloy sheet can be further improved.
  • the temperature of the intermediate cold-rolled sheet is 140 ° C. or higher.
  • the temperature of the intermediate cold-rolled sheet is 140 ° C. or higher, an Al—Cu—Mg compound can be precipitated.
  • the temperature of the intermediate cold-rolled plate exceeds 170 ° C., there is a possibility that recovery of the processed structure that leads to a decrease in strength occurs.
  • the Al—Cu—Mg-based compound can be sufficiently aged in the intermediate cold-rolled plate.
  • the time for holding the intermediate cold-rolled sheet at 120 ° C. or more exceeds 10 hours, it is over-aged, and the strength of the resulting aluminum alloy sheet may be reduced, and the productivity may be reduced. Absent.
  • the final cold rolling is performed on the obtained intermediate cold-rolled sheet so that the reduction ratio is 48 to 56%.
  • a cold-rolled sheet having a total rolling reduction of 87 to 90% and a temperature of 150 ° C. or higher is obtained.
  • the processing strain of the obtained aluminum alloy sheet can be recovered moderately, and the formability in the subsequent press working or DI working can be improved.
  • the temperature of the cold-rolled sheet obtained there is no problem in product characteristics up to at least 190 ° C., and the formability is further improved.
  • the total rolling reduction ratio of the cold-rolled sheet in the cold rolling within the specific range, work hardening can be sufficiently increased, and the strength of the aluminum alloy sheet can be improved.
  • the total rolling reduction is less than 87%, work hardening becomes insufficient, and the strength of the resulting aluminum alloy plate may be reduced.
  • the total rolling reduction exceeds 90%, the ear rate R may increase, which is not preferable.
  • the temperature after the final pass of the cold-rolled sheet can be controlled by the temperature of the intermediate cold-rolled sheet and the rolling reduction in the final pass of cold rolling. That is, when the rolling reduction is less than 48%, the processing heat generation becomes small, so the temperature of the cold-rolled sheet may be less than 150 ° C. On the other hand, when the rolling reduction exceeds 56%, the strain on the rolled surface after rolling becomes excessively large, resulting in the occurrence of sheet breakage, the occurrence of oil coating unevenness, or the plate passing during cup molding in the can manufacturing process. It may cause problems such as being caught.
  • the reduction ratio in the final pass of cold rolling is 48 to 56% in order to satisfy both the control of the temperature of the cold rolled sheet and the reduction of the rolling surface strain, and 50 to 54%. More preferred.
  • the cold rolled sheet is cooled to 80 ° C. at a cooling rate of 15 to 30 ° C./hour, whereby the aluminum alloy sheet for a can body can be obtained.
  • the Al—Cu—Mg-based compound can be aged and the work hardening of the aluminum alloy plate can be further increased. Further, in this case, since the recovery of the processed structure occurs, the moldability in the subsequent can manufacturing process can be further improved.
  • the cooling rate is less than 15 ° C./hour, the recovery of the processed structure tends to be excessive, and the resulting aluminum alloy sheet may be deteriorated in strength due to overaging.
  • the cooling rate exceeds 30 ° C./hour, the recovery of the processed structure tends to be insufficient, and the moldability may be reduced.
  • the aluminum alloy plate for can bodies produced by the above method is preferably supplied to the can making process without performing tension correction.
  • the can body aluminum alloy plate has a large work hardening that occurs during cold working due to the action of the Al—Cu—Mg compound or the like. Therefore, by performing tension correction before being supplied to the can manufacturing process, the strength of the material supplied to the press process or DI process may increase unintentionally, and wrinkles are likely to occur in these processes. There is.
  • Example 1 Examples of the aluminum alloy plate for can bodies will be described below.
  • slabs were produced by DC casting using aluminum alloys (alloys No. 1 to No. 9) containing chemical components shown in Table 1.
  • both rolled surfaces of the slab were chamfered by 10 mm, and both side surfaces were chamfered by 5 mm.
  • the slab was heated at 605 ° C. for 2 hours for homogenization.
  • the slab was cooled to 515 ° C. at a cooling rate of 45 ° C./hour, and this temperature was maintained for 2 hours to make the temperature of the entire slab uniform.
  • the hot rough rolling of the slab is started from a state where the temperature of the slab is 515 ° C. using a reverse rolling mill, and the hot rough rolling is performed in a state where the plate thickness is set to 30 mm by a plurality of rolling passes. Completed.
  • the temperature of the slab when hot rough rolling was completed was 465 ° C.
  • hot finish rolling was performed at a reduction rate of 92% using a 4-tandem hot finish rolling mill, thereby producing a hot rolled sheet having a thickness of 2.4 mm.
  • the exit temperature of the hot-rolled sheet was 340 ° C.
  • the intermediate cold-rolled sheet was held at a temperature of 120 ° C. or higher for 140 minutes. Thereafter, using a single rolling mill, from the state where the temperature of the intermediate cold-rolled sheet was 118 ° C., the final pass of the cold rolling was performed with a reduction rate of 53.4% to obtain a cold-rolled sheet.
  • the obtained cold-rolled sheet had a thickness of 0.27 mm and a temperature of 165 ° C. The total rolling reduction in cold rolling was 88.8%.
  • Table 2 shows the results of conducting conductivity measurements and evaluating aging characteristics for each test material obtained as described above.
  • the value of the tensile strength and proof stress of the rolling direction measured based on JISZ2241 was used for evaluation of an aging characteristic. Specifically, a material (intermediate cold-rolled sheet) immediately before the final pass of cold rolling is sampled and tensile strength ⁇ B (10) and proof stress ⁇ 0 when aging treatment is performed at a temperature of 150 ° C. for 10 hours. .2 (10) was measured. Similarly, the material immediately before the final pass of the cold rolling was collected, and the tensile strength ⁇ B (1) and the proof stress ⁇ 0.2 (1) when the material was aged at 150 ° C. for 1 hour were measured. .
  • Table 3 shows the mechanical properties and the ear ratio R of each test material evaluated by the following method.
  • n value was calculated from the tensile test result.
  • the n value is preferably 0.07 or more. Samples with an n value of less than 0.07 are underlined in Table 3.
  • ⁇ Ear rate R> A 55 mm diameter blank was taken from each test material, and was drawn into a cup shape under the conditions of a drawing ratio of 1.67.
  • the ear ratio R of this cup was calculated using the above formulas (1) to (3).
  • the ear rate R is preferably 4% or less.
  • the test materials with the ear rate R exceeding 4% are underlined in Table 3.
  • Table 3 shows the results of evaluation of can bottom pressure resistance, DI moldability, and flange moldability by the following methods using this test specimen.
  • the can bottom shape of the test specimen was 48 mm and the dome depth was 9.8 mm, and the can bottom pressure resistance was measured.
  • the bottom pressure resistance of the can is preferably 600 kPa or more.
  • the test materials with a can bottom pressure of less than 600 kPa are underlined in Table 3.
  • is a symbol indicating that all cans (100 cans) have been successfully molded and there is no appearance defect
  • indicates that all cans (100 cans) have been successfully molded but appearance defects have occurred.
  • Is a symbol indicating that 1 to 5 cans have been broken
  • x is a symbol indicating that 6 or more cans have been broken.
  • the DI moldability is preferably that all cans have been successfully molded and there is no appearance defect (indicated by ⁇ ).
  • the test materials in which appearance defects occurred (indicated by ⁇ ) or fractures occurred (indicated by ⁇ and ⁇ ) are shown underlined in Table 3.
  • Table 3 shows the results of evaluating the bottom wrinkle height using the redraw cup 1 by the following method.
  • FIG. 1 the wrinkle 12 of the chime portion 11 in each redraw cup 1 is measured using a roundness meter 2 (model EC-1010A manufactured by Mitutoyo Corporation) to obtain a wrinkle height measurement chart. It was.
  • An example of a wrinkle height measurement chart is shown in FIG. This chart is a circular coordinate centered on the point O, and has an angle in the circumferential direction and wrinkles 12 in the radial direction.
  • the adjacent peak 3 and valley 4 calculated by (the value of the distance 31 from the point O to the peak of the peak 3 -the value of the distance 41 from the point O to the peak of the valley 4).
  • the value to be obtained was defined as the wrinkle height H.
  • the wrinkle is calculated for each of the ridges 3 in the entire circumference of the height H chime unit 11, and of which the largest value as the maximum wrinkle height H max. Then, an average value of maximum wrinkle height H max calculated for each of the five cans made from the same test material are shown in Table 3 this value as the bottom wrinkle height H b.
  • the bottom wrinkle height Hb is preferably 200 ⁇ m or less.
  • the specimens with the bottom wrinkle height Hb exceeding 200 ⁇ m are underlined in Table 3.
  • test material No. 1-No. 3 is formed from an alloy (alloys No. 1 to No. 3) having the specific chemical component. Further, as known from Table 2, the test material No. 1-No. 3 indicates the conductivity in the specific range, and has the specific aging characteristic. Therefore, test material No. 1-No. 3 is excellent in mechanical properties and moldability, as well as in product properties of a test specimen prepared using the sample, as is known from Table 3. On the other hand, the test material No. 4 to No. No. 9 was inferior in mechanical properties and the like as shown in Table 3 because at least one additive element of the chemical component was outside the above-mentioned specific range as shown in Table 1.
  • Example 2 This example shows the alloy No. 1 in Example 1.
  • the aluminum alloy plates (test materials No. 11 to 23) shown in Table 5 and Table 6 were produced in order.
  • Table 5 shows the results of conducting the electrical conductivity measurement and the aging characteristics evaluation of each test material by the same method as in Example 1.
  • Table 6 shows the results of evaluating the mechanical properties and the like of each test material by the same method as in Example 1.
  • Test material No. 11-No. The manufacturing conditions (manufacturing conditions A to C) employed in No. 13 are included in the specific range. Further, as known from Table 5, the test material No. 11-No. Reference numeral 13 denotes the conductivity in the specific range, and has the specific aging characteristic. Therefore, test material No. 11-No. No. 13, as is known from Table 6, is excellent in mechanical properties and moldability, and also excellent in product characteristics of a test specimen prepared using the test material.
  • the aluminum alloy plate for a can body can be manufactured without performing an additional heat treatment step after homogenizing the slab. Therefore, the aluminum alloy plate for can bodies can be manufactured more easily, and the effect of reducing the manufacturing cost can be expected.
  • Test material No. No. 14 was produced using the production conditions included in the above specific range, but since the tensile correction was performed, work hardening occurred and the moldability was poor. This is considered to be because the correction force in tension correction was too large, and it is estimated that the moldability can be improved by adjusting the correction force.
  • Example 3 is an example of an aluminum alloy sheet prepared by performing heat treatment on the obtained hot-rolled sheet after hot finish rolling in Example 2. The manufacturing method in this example will be described below.
  • alloy no. 1 was used to produce a slab by DC casting.
  • both rolled surfaces of the slab were chamfered by 10 mm, and both side surfaces were chamfered by 5 mm.
  • the slab was heated at 605 ° C. for 2 hours for homogenization.
  • the slab was cooled to 530 ° C. at a cooling rate of 45 ° C./hour, and this temperature was maintained for 2 hours to make the temperature of the entire slab uniform.
  • the hot rough rolling of the slab is started from a state where the temperature of the slab is 530 ° C. using a reverse rolling mill, and the hot rough rolling is performed in a state where the plate thickness is set to 30 mm by a plurality of rolling passes. Completed.
  • the temperature of the slab when hot rough rolling was completed was 465 ° C.
  • hot finish rolling was performed using a 4-tandem hot finish rolling mill with a reduction rate of 91.3%. Thereby, a hot-rolled sheet having a thickness of 2.6 mm was produced.
  • the exit side temperature of the hot-rolled sheet was 335 ° C.
  • the intermediate cold-rolled sheet was held at a temperature of 120 ° C. or higher for 4.8 hours. Then, using a single rolling mill, the final pass of cold rolling was performed at a reduction rate of 53.4%, to obtain a cold rolled sheet.
  • the obtained cold-rolled sheet had a thickness of 0.27 mm and a temperature of 172 ° C. The total rolling reduction in cold rolling was 89.6%.
  • test material No. Table 7 shows the results of 24 electrical conductivity measurements and evaluation of aging characteristics.
  • test material No. Table 8 shows the results of evaluating 24 mechanical properties and the like.
  • the hot-rolled sheet after hot rolling is subjected to a heat treatment that is held at 300 ° C. or higher for 1 hour or longer to cool the hot-rolled sheet at a cooling rate of 40 ° C./hour or lower.
  • a test material excellent in mechanical properties and moldability can be obtained.
  • the product characteristic of the test body produced using the test material is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

 Mg:1.0~1.5%(質量%、以下同様)、Mn:0.8~1.2%、Cu:0.20~0.30%、Fe:0.25~0.60%、Si:0.20~0.40%を含有し、残部がAl及び不可避不純物からなる化学成分を有し、導電率が37.0~40.0%IACSである缶ボディ用アルミニウム合金板である。また、缶ボディ用アルミニウム合金板は、複数回パスの冷間圧延を経て製造されており、冷間圧延の最終パス直前における材料を150℃の温度で10時間時効処理したときの引張強さσB(10)及び耐力σ0.2(10)と、150℃の温度で1時間時効処理したときの引張強さσB(1)及び耐力σ0.2(1)とが、 σB(10)-σB(1)≧5(MPa)、σ0.2(10)-σ0.2(1)≧1(MPa) の関係を満たしている。

Description

缶ボディ用アルミニウム合金板及びその製造方法
 本発明は、アルミニウム缶の胴体部の材料として用いられる缶ボディ用アルミニウム合金板及びその製造方法に関する。
 アルミニウム製の飲料缶の缶ボディには、アルミニウム合金板にDI(Drawing & Ironing)加工を施すことにより成形されるものがある。DI加工により成形される缶ボディには、絞り加工やしごき加工における成形性の良好な3000系アルミニウム合金が使用されている。
 近年、材料の使用量低減や、輸送コストの低減、あるいはアルミニウム缶以外の飲料容器とのコスト競争力などの観点から、缶ボディの薄肉化が従来にも増して求められている。缶ボディの薄肉化を達成するためには、素材のアルミニウム合金板を高強度化する必要がある。このようなアルミニウム合金板としては、例えば特許文献1に記載されたアルミニウム合金板が提案されている。
特開2008-248289号公報
 しかしながら、特許文献1のアルミニウム合金板は、製造工程において、均質化処理後に鋳塊を冷却した後、再度加熱してから圧延を行っている。このように、従来の成分範囲を有する3000系アルミニウム合金を高強度化するためには、製造工程において追加の熱処理を行う必要があり、製造コストの低減が困難であった。
 本発明は、かかる背景に鑑みてなされたものであり、高強度かつ製造容易な缶ボディ用アルミニウム合金板を提供しようとするものである。
 本発明の一態様は、Mg:1.0~1.5%(質量%、以下同様)、Mn:0.8~1.2%、Cu:0.20~0.30%、Fe:0.25~0.60%、Si:0.20~0.40%を含有し、残部がAl及び不可避不純物からなる化学成分を有し、
 導電率が37.0~40.0%IACSであり、
 かつ、複数回パスの冷間圧延を経て製造されており、冷間圧延の最終パス直前における材料を150℃の温度で10時間時効処理したときの引張強さσB(10)及び耐力σ0.2(10)と、150℃の温度で1時間時効処理したときの引張強さσB(1)及び耐力σ0.2(1)とが、
 σB(10)-σB(1)≧5(MPa)、σ0.2(10)-σ0.2(1)≧1(MPa)
 の関係を満たすことを特徴とする缶ボディ用アルミニウム合金板にある。
 また、本発明の他の態様は、Mg:1.0~1.5%(質量%、以下同様)、Mn:0.8~1.2%、Cu:0.20~0.30%、Fe:0.25~0.60%、Si:0.20~0.40%を含有し、残部がAl及び不可避不純物からなる化学成分を有するスラブを作製し、
 該スラブの両圧延面及び両側面を面削し、
 その後、上記スラブを600~620℃で1~24時間加熱する均質化処理を行い、
 上記均質化処理後の上記スラブを40℃/時間以上の冷却速度で500~550℃まで冷却した後に熱間粗圧延を行い、
 次いで、出側温度が330~360℃となるように熱間仕上圧延を行って熱延板とし、
 該熱延板を40℃/時間以下の冷却速度で150℃まで冷却する処理または上記熱延板を300℃以上の温度で1時間以上保持する処理のいずれか一方を行い、
 その後、温度を80℃以下とした上記熱延板を冷間圧延して温度が140℃以上の中間冷延板とし、
 次いで、該中間冷延板を120℃以上の温度で2時間以上保持し、
 その後、冷間圧延の最終パスを圧下率48~56%となるように行い、冷間圧延の総圧下率が87~90%であり、かつ、温度が150℃以上である冷延板とし、
 該冷延板を冷却速度15~30℃/時間で80℃まで冷却することを特徴とする缶ボディ用アルミニウム合金板の製造方法にある。
 上記缶ボディ用アルミニウム合金板は、上記特定の化学成分と、上記特定の範囲の導電率と、上記特定の範囲の時効特性とを有している。そのため、上記缶ボディ用アルミニウム合金板は、従来の3000系アルミニウム合金と同等の成形性を有するとともに、より強度の高いものとなる。
 また、上記缶ボディ用アルミニウム合金板の製造方法を用いることにより、上記缶ボディ用アルミニウム合金板をより容易に製造でき、製造コストをより低減する効果も期待することができる。
実施例1における、ボトムしわ高さ測定に用いる再絞りカップの斜視図。 実施例1における、しわ高さ測定により得られるしわ高さ測定チャート。
 上記缶ボディ用アルミニウム合金板について、以下詳説する。
<Mg>
 上記缶ボディ用アルミニウム合金板は、1.0~1.5%のMgを含有している。Mgはアルミニウムに固溶し、固溶強化により上記アルミニウム合金板の強度を向上させる作用を有する。また、MgとCuやSiとが共存することにより、冷間圧延の途中において温度が150℃前後となっている間に、MgとCuやSiとの化合物を微細に析出させることができる。上記アルミニウム合金板は、これらの微細な析出物による析出強化のため、より強度の高いものとなりやすい。
 また、Mgを含有するアルミニウム合金は、冷間圧延やDI加工等の冷間加工における加工硬化による強度向上を大きくしやすいものとなる。そのため、上記アルミニウム合金板は、DI加工における絞りしわやボトムしわを抑制しやすいものとなる。また、上記アルミニウム合金板から形成した缶ボディは、缶壁強度、つまり缶胴突き刺し強度や座屈強度についても強度が高いものとなりやすい。
 Mgの含有量は、上記アルミニウム合金板の強度を向上させるため1.0%以上であり、1.2%以上がより好ましい。Mgの含有量が1.0%以上の場合には、上記アルミニウム合金板の強度が十分に高いものとなり、缶ボディの薄肉化をより容易に行うことができる。また、この場合には、DI加工の際の加工硬化を大きくしやすいため、絞りしわやボトムしわの発生を低減しやすくなる。
 Mgの含有量が1.0%未満の場合には、アルミニウム合金板の強度が低下するおそれがある。また、この場合には、DI加工の際の加工硬化が不十分となりやすく、絞りしわやボトムしわが発生しやすくなる場合がある。
 Mgの含有量は、多いほどアルミニウム合金板の強度を向上させやすくなるが、Mgの含有量が1.5%を超える場合には、アルミニウム合金板をカップ状にプレス加工する際の圧延方向の耳(0-180°耳)が過度に大きくなるおそれがある。そのため、プレス加工後やDI加工後の上記アルミニウム合金板を次工程に搬送する際に搬送トラブルが発生しやすくなるおそれがある。
 また、この場合には、冷間加工の際の加工硬化が過度に大きくなるおそれがある。そのため、例えばDI加工の際に上記アルミニウム合金板に加わる力が過度に大きくなるおそれがあり、場合によってはDI加工中に上記アルミニウム合金板が破断したり、スコアリングが発生したりすることが考えられる。
 また、この場合には、均質化処理の際にスラブ表面へ拡散するMgの量が増大する。そのため、スラブ表面に形成されるMg酸化皮膜が厚くなりやすく、フローマークの発生等の表面品質の低下を招来するおそれがある。さらに、この場合には、マトリクスとの電位差の大きいMgSi相が析出しやすくなるため、アルミニウム合金板の耐食性を低下させるおそれがある。
 以上のように、Mgの含有量は、強度の向上と、成形性や耐食性の向上とを両立させる観点から、1.0~1.5%であり、1.2~1.5%がより好ましい。
<Mn>
 上記缶ボディ用アルミニウム合金板は、0.8~1.2%のMnを含有している。Mnはアルミニウムに固溶し、固溶強化により上記アルミニウム合金板の強度を高める作用を有する。また、Mnは、塗装焼付け工程等における加熱により冷間加工の際に生成した加工組織が回復することを遅延させ、軟化を抑制する作用を有する。また、MnはFeやSiと共存することにより、Al(Mn,Fe)の微細な晶出物やα相化合物(Al-Mn-Fe-Si系)を生成し、DI加工の際に上記アルミニウム合金板とダイスとが焼き付くことを防止する作用を有する。
 Mnの含有量は、上記アルミニウム合金板の強度向上及び焼き付き防止効果を得やすくするため、0.8%以上であり、1.0%以上がより好ましい。Mnの含有量が0.8%以上の場合には、上記アルミニウム合金板の強度が十分に高いものとなりやすい。また、この場合には、Al(Mn,Fe)の微細な晶出物やα相化合物(Al-Mn-Fe-Si系)が十分多く生成されるため、DI加工の際に上記アルミニウム合金板とダイスとが焼き付くことをより確実に防止できる。
 Mnの含有量が0.8%未満の場合には、アルミニウム合金板の強度が低下するおそれがあるほか、焼き付き防止効果が低くなるおそれがある。
 Mnの含有量は、DI加工等の冷間加工における成形性を向上させるとともに、冷間加工後の回復を遅延させる効果を得やすくするため、1.2%以下である。Mnの含有量が1.2%以下の場合には、アルミニウム合金中のMnの固溶量を十分多くさせやすくなる。そのため、上記アルミニウム合金板は、固溶Mnの効果により塗装焼付け工程等における加熱による加工組織の回復を遅延させ、軟化を抑制しやすいものとなる。
 Mnの含有量が1.2%を越える場合には、Al(Mn,Fe)晶出物が粗大なものとなりやすく、DI加工における成形性や、DI加工の後工程であるネッキングやフランジ加工における成形性を低下させるおそれがある。また、この場合には、アルミニウム合金中にMnが過度に多く含まれるため、Mnがアルミニウム合金中に晶出あるいは析出しやすくなる。Mnの晶出物や析出物が増加すると、相対的にMnの固溶量が減少するため、冷間加工後の回復を遅延させる効果が不十分となる。そのため、空焼き時の回復サイトの増加が起こるおそれがあり、場合によっては製缶工程中に強度が低下することが考えられる。また、Mnの晶出や析出に伴って、Siや、固溶限の低いFeが晶出や析出しやすくなることが考えられ、アルミニウム合金板の強度の低下を招来するおそれがある。
 以上のように、Mnの含有量は、上記アルミニウム合金板の強度向上と、冷間加工時の成形性や軟化抑制効果との双方を両立させる観点から0.8~1.2%であり、1.0~1.2%がより好ましい。
<Cu>
 上記缶ボディ用アルミニウム合金板は、0.20~0.30%のCuを含有している。Cuはアルミニウムに固溶し、固溶強化により上記アルミニウム合金板の強度を向上させる作用を有する。また、CuはMgと共存することにより、冷間圧延時の加工発熱等により温度が150℃前後となっている間に、Al-Mg-Cu系の微細な析出物を生成する。上記アルミニウム合金板は、これらの微細な析出物による析出強化のため、より強度の高いものとなりやすい。また、Cuは、塗装焼付け工程等における加熱による加工組織の回復を遅延させ、軟化を抑制する作用を有する。
 Cuの含有量は、上記アルミニウム合金板の強度向上の観点から、0.20%以上である。この場合には、固溶強化や析出強化により、上記アルミニウム合金板の強度を十分に向上させることができる。
 Cuの含有量が0.20%未満の場合には、析出強化による強度向上効果が不十分となるおそれがあり、アルミニウム合金板の強度が低くなるおそれがある。
 Cuの含有量は、多いほどアルミニウム合金板の強度を向上させやすくなるが、Cuの含有量が0.30%を超える場合には、冷間加工の際の加工硬化が過度に大きくなるおそれがある。そのため、DI加工の際にアルミニウム合金板に加える力を大きくする必要が生じ、場合によってはDI加工中にアルミニウム合金板が破断したり、スコアリングが発生したりすることが考えられる。また、Cuの含有量が0.30%を超える場合には、アルミニウム合金板の耐食性が低下するおそれがある。
 以上のように、Cuの含有量は、上記アルミニウム合金板の強度向上と加工硬化の制御との双方を両立させるとともに、耐食性を向上させる観点から0.20~0.30%である。
<Fe>
 上記缶ボディ用アルミニウム合金板は、0.25~0.60%のFeを含有している。Feは、MnやSiと共存することにより、Al(Mn,Fe)の微細な晶出物やα相化合物(Al-Mn-Fe-Si系)を生成し、DI加工の際に上記アルミニウム合金板とダイスとが焼き付くことを防止する作用を有する。
 Feの含有量は、焼き付き防止効果を得やすくするとともに成形性を向上させるため、0.25%以上であり、0.40%以上がより好ましい。Feが0.25%以上含有されている場合には、上述したAl(Mn,Fe)の微細な晶出物やα相化合物(Al-Mn-Fe-Si系)が十分多く生成されるため、DI加工の際の焼き付きをより確実に防止することができる。また、上述した金属間化合物が生成されることにより、上記アルミニウム合金板をカップ状にプレス加工する際の圧延方向の耳(0-180°耳)を小さくしやすくなる。その結果、プレス加工後やDI加工後の上記アルミニウム合金板を次工程に搬送する際のトラブルを低減しやすくなる。また、Feが0.25%以上含有されている場合には、ネッキング工程におけるしわの発生を抑制しやすくなる。
 Feの含有量が0.25%未満の場合には、焼き付き防止効果が得られにくくなるおそれがある。また、この場合には、圧延方向の耳が過度に大きくなり、これに起因する搬送時のトラブルが起こりやすくなるおそれがあるほか、ネッキング工程においてしわが発生しやすくなるおそれがある。また、Feの含有量が0.25%未満の場合には、アルミニウム合金板の製造に用いる地金に純度の高いものを用いる必要が生じるため、コストアップを招くおそれがある。
 また、Feの含有量は、上述した金属間化合物の制御の観点から0.60%以下である。Feの含有量が0.60%を超える場合には、Mnとの間に粗大な金属間化合物が生成されやすくなる。当該金属間化合物は、成形加工の際に破断の起点となり得るため、好ましくない。
 このように、Feの含有量は、DI加工時の成形性やコスト、焼き付き防止効果のいずれも満足させるため、0.25~0.60%であり、0.40%~0.60%がより好ましい。
<Si>
 上記缶ボディ用アルミニウム合金板は、0.20~0.40%のSiを含有している。Siは、MnやFeと共存することによりα相化合物(Al-Mn-Fe-Si系)を生成し、DI加工の際に上記アルミニウム合金板とダイスとが焼き付くことを防止する作用を有する。また、Siは、MgやCuと共存することにより、冷間圧延の途中において温度が150℃前後となっている間に微細な金属間化合物を析出させ、析出強化により上記アルミニウム合金板の強度を向上させる作用を有する。
 Siの含有量は、強度を向上させるため0.20%以上である。Siが0.20%以上含有されている場合には、MgやCuとの微細な金属間化合物が十分多く析出するため、上記アルミニウム合金板の強度を向上させやすくなる。
 Siの含有量が0.20%未満の場合には、上述した金属間化合物の析出が不十分となるおそれがあり、アルミニウム合金板の強度が低下するおそれがある。また、この場合には、アルミニウム合金板の製造に用いる地金に純度の高いものを用いる必要が生じるため、コストアップを招くおそれがある。
 また、Siの含有量は、多いほど焼き付き防止効果を得やすくなるが、0.40%を超える場合には、オストワルド成長により粒径0.1μm以上のAl-Mn-Si相が析出しやすくなる。これに伴い、SiとMgやCuとの微細な金属間化合物の析出が不十分となるおそれがあり、アルミニウム合金板の強度が低下するおそれがある。また、この場合には、Mnの固溶量も低下しやすくなるため、空焼き等の加熱による加工組織の回復が起こりやすくなり、製缶工程中に強度が低下するおそれがある。
 また、Siの含有量が0.40%を超える場合において、さらにMgの含有量が多い場合には、MgSi相の粗大な晶出物が形成されるおそれがある。この粗大な晶出物が形成されると、SiとMgやCuとの微細な金属間化合物が析出しにくくなる。これにより、強度低下や耐食性の低下を招来するおそれがあるため、好ましくない。このように、Siの含有量は、上記アルミニウム合金板の強度、コスト、焼き付き防止効果や耐食性のいずれも満足させるため、0.20~0.40%である。
<導電率>
 また、上記缶ボディ用アルミニウム合金板は、導電率が37.0~40.0%IACSである。導電率はMnの固溶量の指標として利用される測定値であり、導電率が低いほどMnの固溶量が多くなることを示す。上記アルミニウム合金板は、25℃の温度条件で測定して得られる導電率を上記特定の範囲に制御することにより、Mnの固溶強化による強度向上効果を得やすく、かつ、α相化合物等の析出による焼き付き防止効果を得やすいものとなる。
 導電率が40.0%IACSを超える場合には、Mnの固溶量が不十分となるため、アルミニウム合金板の強度が低下するおそれがある。一方、導電率が37.0%IACS未満の場合には、Mnの固溶量が多くなるため、アルミニウム合金板の強度は向上するものの、α相化合物の析出が不十分となりやすく、焼き付き防止効果を得にくくなるおそれがある。
 導電率は、例えば、熱間圧延の開始温度や、均質化処理の後、熱間圧延を開始するまでの冷却条件を調節することにより上記特定の範囲に制御することができる。
 また、導電率が上記特定の範囲である場合には、さらにAl-Mn-Si系析出物の密度及びサイズを制御することにより、より大きな強度向上効果を得ることができる。すなわち、上記アルミニウム合金板は、0.1~2.0μmのAl-Mn-Si系析出物が10000個/mm以下含まれていることが好ましい。Al-Mn-Si系析出物は、冷間加工の際に転位を蓄積する作用を有する。そのため、上記アルミニウム合金板は、上記特定の密度及びサイズに制御されたAl-Mn-Si系析出物を含むことにより、加工硬化によって強度をより向上させやすくなる。
 Al-Mn-Si系析出物のサイズが0.1μm未満の場合には、冷間圧延や冷間加工(プレス加工、DI加工等)の際に転位の蓄積が起こりにくくなるため、強度向上効果が得られにくくなる。一方、Al-Mn-Si系析出物のサイズが2.0μmより大きい場合には、製缶工程における加熱により加工組織の回復が起こりやすくなるため、強度向上効果が得られにくくなる。
 また、Al-Mn-Si系析出物の密度が10000個/mmを超える場合には、均質化処理が十分でなく、Al-Mn-Si系析出物が偏析している可能性がある。そのため、後述する耳率の制御や製缶工程における成形性の制御のために必要な異方性が得られにくくなる。また、Al-Mn-Si系析出物が偏析している場合には、化合物の相互関係により冷間加工における転位の蓄積はなされるものの、転位が蓄積された析出物が密に配置された領域と、疎に配置された領域とが混在することとなる。そのため、加熱による加工組織の回復が過大なものとなることが考えられ、強度向上効果が得られにくくなるおそれがある。
<時効特性>
 また、上記缶ボディ用アルミニウム合金板は、上記特定の時効特性を有している。上記時効特性は、析出強化による強度向上効果の指標として用いられる値であり、主としてAl-Cu-Mg系析出物の析出に起因する強度向上効果の指標である。Al-Cu-Mg系析出物は、プレス加工における耳率の変化を伴わず、また、熱処理等の工程を追加することなく強度向上効果を得やすい性質を有する。そのため、当該析出物を利用することにより上記アルミニウム合金板の生産性を容易に向上させることができる。
 冷間圧延の最終パス直前における材料を150℃の温度で10時間時効処理したときの引張強さσB(10)及び耐力σ0.2(10)と、150℃の温度で1時間時効処理したときの引張強さσB(1)及び耐力σ0.2(1)とが、
 σB(10)-σB(1)≧5(MPa)、σ0.2(10)-σ0.2(1)≧1(MPa)
の関係を満たす場合には、Al-Cu-Mg系析出物を含めた種々の析出物によって、上記アルミニウム合金板を用いて製造された缶ボディの強度をより向上させることができる。
 また、上記缶ボディ用アルミニウム合金板は、圧延方向における耐力が300MPa以上であることが好ましい。この場合には、上記アルミニウム合金板を用いて作製した缶ボディにおける缶底耐圧や座屈強度、缶胴突き刺し強度等の各種強度をより向上させることができる。その結果、上記アルミニウム合金板を用いることにより、得られる缶ボディをより薄肉化することが容易となる。
 また、上記缶ボディ用アルミニウム合金板は、加工硬化指数が0.07以上であることが好ましい。加工硬化指数の値は、圧延方向における引張試験により得ることができる。加工硬化指数が0.07以上の場合には、上記アルミニウム合金板を用いて缶ボディを製造する際のしわ(プレス加工時の口部しわ、DI加工時の口部しわ及び缶底部しわ)の発生をより低減することができる。
 すなわち、この場合には、冷間加工における加工硬化が大きくなるため、材料強度の低い状態で冷間加工を開始することができる。冷間加工により発生するしわは、材料とダイス等の加工具との間に生じる力により材料が座屈することが原因となる場合が多く、材料強度が低いほど発生しにくくなる。そのため、加工硬化指数を0.07以上とすることにより、強度の低い状態で冷間加工を行うことができ、しわの発生をより低減することができる。
 また、ブランク径が55mmであり、かつ、絞り比を1.67とした条件で絞り成形を行った成形カップの下記式(1)より算出される耳率Rが4%以下であることが好ましい。
  R=(M45-V45)/((M45+V45)/2)×100 ・・・(1)
 上記式(1)において、M45は下記式(2)より算出される値であり、V45は下記式(3)より算出される値である。
  M45=(A+B+C+D)/4  ・・・・(2)
 上記式(2)において、Aは45°(圧延方向を0°としたときの角度、以下同様)耳高さであり、Bは135°耳高さであり、Cは225°耳高さであり、Dは315°耳高さである。
  V45=(E+F+G+H)/4  ・・・(3)
 上記式(3)において、Eは45°方向と135°方向との間の谷の最小高さであり、Fは135°方向と225°方向との間の谷の最小高さであり、Gは225°方向と315°方向との間の谷の最小高さであり、Hは315°方向と45°方向との間の谷の最小高さである。
 耳率Rが4%を超える場合には、アルミニウム合金板をプレス加工した後に形成される耳部の大きさが過度に大きくなる場合がある。耳部の大きさが過度に大きいと、搬送中のトラブルや、DI加工後のトリミング高さ不足、あるいはネッキング工程におけるフランジ部のばらつきに起因する巻き締め不良等、製缶工程における種々のトラブルの原因となることが考えられ、好ましくない。
 耳率Rは、熱間圧延後の再結晶状態及び冷間圧延の総圧下率により制御することができる。熱間圧延後の再結晶が不十分な場合は、圧延集合組織が残存しやすくなる。この場合には、その後の冷間圧延により圧延集合組織がさらに成長するため、耳率Rが過大となりやすい。また、冷間圧延の総圧下率は、アルミニウム合金板の強度を向上させる観点からは高い方が好ましいが、総圧下率を過度に高くすると耳率Rが過大となるおそれがある。
 次に、上記缶ボディ用アルミニウム合金板の製造方法について詳説する。まず、上記特定の化学成分を有するアルミニウム合金を鋳造し、スラブを作製する。スラブの鋳造方法としては、連続鋳造や半連続鋳造等の公知の方法を採用することができる。
 次いで、上記スラブの両圧延面及び両側面を面削し、スラブ表層の不均質部を除去する。不均質部の厚みはアルミニウム合金の化学成分によって変化するが、通常は5mm程度である。不均質部がスラブ表面に残留する場合には、残留した不均質部が原因となって表面品質の低下や圧延時の耳割れが起こるおそれがあるため、好ましくない。
 その後、上記スラブを600~620℃で1~24時間加熱する均質化処理を行う。均質化処理を行うことにより、スラブの鋳造時に晶出あるいは偏析したMn、Mg、Si、Fe等の添加元素を固溶させる。また、均質化処理により、Al(Mn,Fe)晶出物をα相化合物(Al-Mn-Fe-Si系化合物)へ変態させることができる。α相化合物は、Al(Mn,Fe)晶出物に比べてより優れた焼き付き防止効果を有する。そのため、上記特定の範囲の温度で均質化処理を行うことにより、焼き付き防止効果をより向上させることができる。添加元素を固溶させ、α相化合物を生成させるためには、均質化処理を高温かつ長時間行うことが好ましい。
 均質化処理の温度が600℃未満の場合には、スラブの中心部まで均質化を行うために処理時間が長くなり、生産性が低下しやすくなる。一方、均質化処理の温度が620℃を超える場合には、スラブの一部に共晶融解が生じるおそれがあり、スラブ表面の品質が低下するおそれがある。また、均質化処理の処理時間が1時間未満の場合には、均質化が十分になされず、得られるアルミニウム合金板の強度低下や焼き付き防止効果の低下等を招来するおそれがある。均質化処理の処理時間は、通常10時間以下で均質化が十分なされた状態となり、24時間を越えて行ってもそれに見合った効果を得ることが難しい。
 均質化処理の後、上記スラブを40℃/時間以上の冷却速度で500~550℃まで冷却した後に熱間粗圧延を行う。熱間粗圧延の開始温度が500℃未満の場合には、Al-Mn-Si系化合物の析出が促進されるため、Mnの固溶量が減少し、得られるアルミニウム合金板の強度が低下するおそれがある。一方、熱間粗圧延の開始温度が550℃を超える場合には、Mgの酸化が促進されるため、表面品質の低下を招来するおそれがある。また、Al-Mn-Si系化合物の析出は、均質化処理後の高温状態が長時間継続されることによっても起こる。そのため、冷却速度を40℃/時間以上とすることが好ましく、均質化処理後にできるだけ早く冷却を開始することがより好ましい。なお、冷却速度を40℃/時間以上とするためには、水冷やシャワー冷却等の冷却手段を採用することができる。
 熱間粗圧延の後、出側温度が330~360℃となるように熱間仕上圧延を行って熱延板を作製する。熱間仕上圧延の出側温度が330℃未満の場合には、再結晶が不十分となるおそれがある。これにより、得られるアルミニウム合金板をプレス加工した際に45°耳が大きくなりすぎたり、耳がちぎれたりするおそれがあり、搬送トラブルの原因となるおそれがある。また、この場合には、DI加工後のトリミング工程において耳欠け等が発生するおそれがあり、生産性の低下を招来するおそれがある。一方、出側温度が360℃を超える場合には、熱延中の素材の一部が圧延ロールに凝着するおそれがある。そのため、熱延板の表面品質の低下や、外観異常が起こるおそれがある。
 なお、熱間仕上圧延は、例えば、3スタンド以上のタンデム式熱間圧延機を用いて行うことができる。この場合には、熱間仕上圧延における圧下率を88~94%とすることが好ましい。該圧下率が88%未満の場合には、熱間仕上圧延中に蓄積されるひずみ量が少なく、圧延終了後の再結晶が不十分となるおそれがある。一方、上記圧下率が94%を超える場合には、熱延中の素材の一部が圧延ロールに凝着するおそれがあり、熱延板の表面品質の低下や外観異常が起こるおそれがある。
 次いで、熱延板を40℃/時間以下の冷却速度で150℃まで冷却する処理または熱延板を300℃以上の温度で1時間以上保持する処理のいずれか一方を行う。これらの処理は、いずれも、熱延板を再結晶させる作用を有している。つまり、熱延板を40℃/時間以下の冷却速度で150℃まで冷却する処理または熱延板を300℃以上の温度で1時間以上保持する処理のいずれの処理を選択しても、熱延板を十分に再結晶させることができ、耳率Rが上記特定の範囲に入るよう制御しやすくなる。上述のいずれの処理も行われない場合には、熱延板の再結晶が不十分となり、耳率Rの制御が困難となるおそれがある。
 上述のいずれかの処理を行った後、冷間圧延時の温度制御を的確に行うために得られた熱延板を温度が80℃以下となるまで冷却する。この時の冷却速度は特に制限されるものではないが、過度に冷却が遅くなると、次の工程までの時間を要するため生産性の悪化を招来するおそれがある。従ってファン冷却などの強制的な冷却手段を用いて冷却することが望ましい。
 その後、温度を80℃以下とした上記熱延板を冷間圧延して温度が140℃以上の中間冷延板を作製する。これにより、上記中間冷延板は、冷間圧延中に析出するAl-Cu-Mg系化合物を含むものとなる。Al-Cu-Mg系化合物は、冷間加工による加工ひずみが付与され、かつ、温度が90℃以上である状態で析出し始める化合物であり、析出強化により得られるアルミニウム合金板の強度を向上させる作用を有する。さらに、Al-Cu-Mg系化合物は、その後の冷間加工によって付与される加工ひずみを蓄積する性質を有するため、得られるアルミニウム合金板の強度をより向上させることができる。
 Al-Cu-Mg系化合物を上記中間冷延板中に十分に析出させるためには、中間冷延板の温度が140℃以上となるように冷間圧延の途中パスを設定することが好ましい。中間冷延板の温度が140℃以上であれば、Al-Cu-Mg系化合物を析出させることができる。中間冷延板の温度が170℃を超える場合には、強度低下につながる加工組織の回復が起こるおそれがある。
 次いで、得られた中間冷延板を120℃以上の温度で2時間以上保持することにより、中間冷延板中にAl-Cu-Mg系化合物を十分に時効析出させることができる。上記中間冷延板を120℃以上に保持する時間が10時間を超える場合には、過時効となり、得られるアルミニウム合金板の強度が低下するおそれがあるほか、生産性の低下を招くため、好ましくない。
 その後、得られた中間冷延板に対して、冷間圧延の最終パスを圧下率48~56%となるように行う。これにより、冷間圧延の総圧下率が87~90%であり、かつ、温度が150℃以上である冷延板を得る。該冷延板の温度を150℃以上とすることにより、得られるアルミニウム合金板の加工ひずみを適度に回復させ、その後のプレス加工やDI加工等における成形性を向上させることができる。得られる冷延板の温度に上限はないが、少なくとも190℃までは製品特性上の問題は生じず、成形性がより向上する。
 また、冷間圧延における上記冷延板の総圧下率を上記特定の範囲とすることにより、加工硬化を十分大きくすることができ、上記アルミニウム合金板の強度を向上させることができる。総圧下率が87%未満の場合には、加工硬化が不十分となり、得られるアルミニウム合金板の強度が低下するおそれがある。一方、総圧下率が90%を超える場合には、耳率Rが増加するおそれがあるため、好ましくない。
 上記冷延板は、上記中間冷延板の温度及び冷間圧延の最終パスにおける圧下率により最終パス後の温度を制御することができる。すなわち、圧下率が48%未満の場合には、加工発熱が小さくなるため、冷延板の温度が150℃未満となるおそれがある。一方、圧下率が56%を超える場合には、圧延後の圧延面のひずみが過度に大きくなり、板切れの発生や、塗油ムラの発生、あるいは製缶工程におけるカップ成形時の通板で引っ掛かるなどの問題の原因となるおそれがある。
 このように、冷間圧延の最終パスにおける圧下率は、上記冷延板の温度の制御と、圧延面ひずみの低減との双方を満足させるため、48~56%であり、50~54%がより好ましい。
 その後、上記冷延板を冷却速度15~30℃/時間で80℃まで冷却することにより、上記缶ボディ用アルミニウム合金板を得ることができる。上記冷延板の冷却を上述の条件にて行うことにより、Al-Cu-Mg系化合物を時効析出させ、上記アルミニウム合金板の加工硬化をより大きくすることができる。また、この場合には、加工組織の回復が起こるため、その後の製缶工程における成形性をより向上させることができる。冷却速度が15℃/時間未満の場合には、加工組織の回復が過剰となりやすく、また、過時効となるため得られるアルミニウム合金板の強度が低下するおそれがある。一方、冷却速度が30℃/時間を超える場合には、加工組織の回復が不十分となりやすく、成形性が低下するおそれがある。
 以上の方法により製造された上記缶ボディ用アルミニウム合金板は、引張矯正を行わずに製缶工程へ供給されることが好ましい。上記缶ボディ用アルミニウム合金板は、上述したように、Al-Cu-Mg系化合物等の作用により、冷間加工の際に起こる加工硬化が大きなものとなる。そのため、製缶工程に供給される前に引張矯正を行うことにより、プレス加工やDI加工に供給する素材の強度が意図せず高くなるおそれがあり、これらの工程においてしわが発生しやすくなるおそれがある。
(実施例1)
 上記缶ボディ用アルミニウム合金板の実施例について、以下説明する。
<スラブ作製>
 まず、DC鋳造により表1に示す化学成分を含有するアルミニウム合金(合金No.1~No.9)を用いてスラブを作製した。次いで、該スラブの両圧延面を10mm面削し、両側面を5mm面削した。その後、上記スラブを605℃で2時間加熱して均質化処理を行った。均質化処理の後、上記スラブを45℃/時間の冷却速度で515℃まで冷却し、この温度を2時間保持してスラブ全体の温度を均一化させた。
<熱間圧延>
 次いで、スラブの温度が515℃である状態からリバース式の圧延機を用いて上記スラブの熱間粗圧延を開始し、複数回の圧延パスにより板厚を30mmとした状態で熱間粗圧延を完了した。熱間粗圧延完了時の上記スラブの温度は465℃であった。熱間粗圧延の後、4タンデムの熱間仕上圧延機を用いて、圧下率を92%として熱間仕上圧延を行った、これにより、板厚2.4mmの熱延板を作製した。熱延板の出側温度は340℃であった。
<冷間圧延>
 上述のようにして得られた熱延板を25℃/時間の冷却速度で150℃まで冷却した後、さらにファン冷却により55℃まで冷却した。その後、シングル圧延機を用いた2パスの冷間圧延を行って中間冷延板を得た。得られた中間冷延板の板厚は0.58mmであり、温度は155℃であった。
 次いで、上記中間冷延板を、温度が120℃以上の状態に140分間保持した。その後、シングル圧延機を用いて、上記中間冷延板の温度が118℃の状態から、圧下率53.4%として冷間圧延の最終パスを行い、冷延板を得た。得られた冷延板は、板厚が0.27mmであり、温度が165℃であった。また、冷間圧延における総圧下率は88.8%であった。
<仕上げ>
 その後、上記冷延板を22℃/時間の冷却速度で80℃まで冷却し、引張矯正を行うことなく圧延油の洗浄及びリオイル油の塗布を行い、表2及び表3に示すアルミニウム合金板(試験材No.1~No.9)を得た。なお、リオイル油の塗布は静電塗布により行い、その塗布量は100mg/mであった。
Figure JPOXMLDOC01-appb-T000001
 上述のようにして得られた各試験材について、導電率測定及び時効特性の評価を行った結果を表2に示す。なお、時効特性の評価には、JIS Z2241に準拠して測定した圧延方向の引張強さ及び耐力の値を用いた。具体的には、冷間圧延の最終パス直前における材料(中間冷延板)を採取し、これを150℃の温度で10時間時効処理したときの引張強さσB(10)及び耐力σ0.2(10)を測定した。同様に、冷間圧延の最終パス直前における材料を採取し、これを150℃の温度で1時間時効処理したときの引張強さσB(1)及び耐力σ0.2(1)を測定した。そして、σB(10)とσB(1)との差及びσ0.2(10)とσ0.2(1)との差を算出した。また、導電率測定は、導電率測定器(フェルスター社製「シグマテスト2.069」)を用いて行い、測定時の試験材の温度は25℃とした。
Figure JPOXMLDOC01-appb-T000002
 表3に、以下の方法により評価した各試験材の機械的特性及び耳率Rを示した。
<機械的特性>
 JIS Z2241に準拠して圧延方向の引張試験を行い、各試験材の引張強さσ及び耐力σ0.2を測定した。耐力σ0.2の値は300MPa以上であることが好ましい。耐力σ0.2が300MPa未満となる試験材については、表3において下線を付して示した。
 また、この引張試験結果から加工硬化指数(n値)を算出した。n値は0.07以上であることが好ましい。n値が0.07未満となる試料については、表3において下線を付して示した。
<耳率R>
 各試験材から55mm径のブランクを採取し、絞り比を1.67とした条件で絞り成形を行ってカップ状に成形した。このカップの耳率Rを上記式(1)~式(3)を用いて算出した。耳率Rは4%以下であることが好ましい。耳率Rが4%を超える試験材については、表3において下線を付して示した。
 次に、各試験材からDI缶を成形し、205℃で10分の空焼きを施して缶状の試験体を作製した。この試験体を用いて、以下の方法により缶底耐圧、DI成形性、フランジ成形性の評価を行った結果を表3に示した。
<缶底耐圧>
 上記試験体(DI缶)の缶底形状を缶底接地径が48mm、ドーム深さが9.8mmとし、このときの缶底耐圧を測定した。缶底耐圧は600kPa以上であることが好ましい。缶底耐圧が600kPa未満となる試験材については、表3において下線を付して示した。
<DI成形性>
 上記試験体を壁厚0.105mm狙いで100缶ずつ製缶し、その時の製缶成功率と外観の目視観察により評価した。なお、表3中、◎は全缶(100缶)成形が成功して外観不良のないことを示す記号であり、○は全缶(100缶)成形が成功したが外観不良が生じたことを示す記号であり、△は1~5缶破断したことを示す記号であり、×は6缶以上破断したことを示す記号である。DI成形性は、全缶成形が成功して外観不良のないこと(◎にて表示)が好ましい。外観不良が生じたり(○にて表示)、破断が起こった(△及び×にて表示)試験材については、表3において下線を付して示した。
<フランジ成形性>
 上記試験体を100缶ずつ成形した後、耳部のトリミングを行い、204径までスムースダイネック成形を行った。その後、開口端部にフランジ厚が157μm、フランジ幅が2.4mmとなるフランジを形成し、フランジ端部の割れの有無を目視観察により評価した。なお、表3中、○は全缶(100缶)成功してフランジ割れのないものを示し、×は1缶以上フランジ割れが発生したものを示す。フランジ成形性は、全缶成形が成功してフランジ割れのないこと(○にて表示)が好ましい。フランジ割れが発生した(×にて表示)試験材については、表3において下線を付して示した。
 次に、図1に示すDI加工途中の再絞りカップ1(ドーム成形無し)を各試験材から5缶ずつ作製した。この再絞りカップ1を用いて、以下の方法によりボトムしわ高さの評価を行った結果を表3に示した。
<ボトムしわ高さ>
 図1に示すように、真円度計2(株式会社ミツトヨ製、型式EC-1010A)を用いて個々の再絞りカップ1におけるチャイム部11のしわ12を測定し、しわ高さ測定チャートを得た。しわ高さ測定チャートの一例を図2に示す。このチャートは、点Oを中心とした円座標であり、周方向に角度を、径方向にしわ12の凹凸をとったものである。得られたチャートにおいて、隣り合う山部3と谷部4について、(点Oから山部3の頂点までの距離31の値-点Oから谷部4の頂点までの距離41の値)により算出される値をしわ高さHとした。このしわ高さHをチャイム部11の全周における各々の山部3について算出し、そのうち最大の値を最大しわ高さHmaxとした。そして、同一の試験材から作製した5缶のそれぞれについて求めた最大しわ高さHmaxの平均値を算出し、この値をボトムしわ高さHとして表3に示した。ボトムしわ高さHは、200μm以下であることが好ましい。ボトムしわ高さHが200μmを超える試験体については、表3において下線を付して示した。
Figure JPOXMLDOC01-appb-T000003
 表1より知られるように、試験材No.1~No.3は、上記特定の化学成分を有する合金(合金No.1~No.3)から形成されている。また、表2より知られるように試験材No.1~No.3は上記特定の範囲の導電率を示し、かつ、上記特定の時効特性を備えている。そのため、試験材No.1~No.3は、表3より知られるように、機械的特性や成形性に優れるとともに、当該試料を用いて作製した試験体の製品特性が優れたものとなる。一方、試験材No.4~No.9は、表1に示すように、化学成分のうち少なくとも1つの添加元素が上記特定の範囲外となっているため、表3に示すように機械的特性等において劣る点があった。
(実施例2)
 本例は、実施例1における合金No.1を用いてスラブを作製した後、製造条件を種々変更して上記缶ボディ用アルミニウム合金板を作製した例である。すなわち、本例においては、実施例1の製造条件に替えて表4に示す種々の製造条件(製造条件A~M)を用いてスラブ作製、熱間圧延、冷間圧延及び仕上げの各工程を順次行い、表5及び表6に示すアルミニウム合金板(試験材No.11~23)を作製した。
Figure JPOXMLDOC01-appb-T000004
 実施例1と同様の方法により、各試験材の導電率測定及び時効特性の評価を行った結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例1と同様の方法により、各試験材の機械的特性等を評価した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 試験材No.11~No.13において採用した製造条件(製造条件A~C)は、上記特定の範囲に含まれている。また、表5より知られるように試験材No.11~No.13は上記特定の範囲の導電率を示し、かつ、上記特定の時効特性を備えている。そのため、試験材No.11~No.13は、表6より知られるように、機械的特性や成形性に優れるとともに、当該試験材を用いて作製した試験体の製品特性が優れたものとなる。
 また、本例の製造方法によれば、スラブに均質化処理を行った後、追加の熱処理工程を行うことなく上記缶ボディ用アルミニウム合金板を製造することができる。そのため、上記缶ボディ用アルミニウム合金板をより容易に製造できるとともに、製造コストをより低減する効果も期待することができる。
 試験材No.14は、上記特定の範囲に含まれる製造条件を用いて作製したものであるが、引張矯正を行ったため、加工硬化が起こり、成形性に劣るものとなった。これは、引張矯正における矯正力が大きすぎたためと考えられ、矯正力を調節することにより成形性の改善が可能と推測される。
 試験材No.15~No.23は、表4に示すように、製造条件の各項目のうち少なくとも1つの項目が上記特定の範囲外となっているため、表6に示すように機械的特性等において劣る点があった。
(実施例3)
 本例は、実施例2における熱間仕上圧延の後、得られた熱延板に熱処理を行って作成したアルミニウム合金板の例である。本例における製造方法を以下に説明する。
<スラブ作製>
 まず、実施例1における合金No.1を用いてDC鋳造によりスラブを作製した。次いで、該スラブの両圧延面を10mm面削し、両側面を5mm面削した。その後、上記スラブを605℃で2時間加熱して均質化処理を行った。均質化処理の後、上記スラブを45℃/時間の冷却速度で530℃まで冷却し、この温度を2時間保持してスラブ全体の温度を均一化させた。
<熱間圧延>
 次いで、スラブの温度が530℃である状態からリバース式の圧延機を用いて上記スラブの熱間粗圧延を開始し、複数回の圧延パスにより板厚を30mmとした状態で熱間粗圧延を完了した。熱間粗圧延完了時の上記スラブの温度は465℃であった。熱間粗圧延の後、4タンデムの熱間仕上圧延機を用いて、圧下率を91.3%として熱間仕上圧延を行った。これにより、板厚2.6mmの熱延板を作製した。熱延板の出側温度は335℃であった。
<冷間圧延前の熱処理>
 上述のようにして得られた熱延板に対し、330℃の温度で2時間保持する熱処理を行った後、ファン冷却により75℃まで冷却した。その後、シングル圧延機を用いた2パスの冷間圧延を行って中間冷延板を得た。得られた中間冷延板の板厚は0.58mmであり、温度は160℃であった。
 次いで、上記中間冷延板を、温度が120℃以上の状態に4.8時間保持した。その後、シングル圧延機を用いて、圧下率53.4%として冷間圧延の最終パスを行い、冷延板を得た。得られた冷延板は、板厚が0.27mmであり、温度が172℃であった。また、冷間圧延における総圧下率は89.6%であった。
<仕上げ>
 その後、上記冷延板を24℃/時間の冷却速度で80℃まで冷却し、引張矯正を行うことなく圧延油の洗浄及びリオイル油の塗布を行い、表7及び表8に示すアルミニウム合金板(試験材No.24)を得た。なお、リオイル油の塗布は静電塗布により行い、その塗布量は100mg/mであった。
 実施例1と同様の方法により、試験材No.24の導電率測定及び時効特性の評価を行った結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例1と同様の方法により、試験材No.24の機械的特性等を評価した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表7及び表8より知られるように、熱間圧延後の熱延板に対して300℃以上で1時間以上保持する熱処理を行うことにより、熱延板を40℃/時間以下の冷却速度で150℃まで冷却する場合と同様に、機械的特性や成形性に優れた試験材を得ることができる。また、当該試験材を用いて作製した試験体の製品特性が優れたものとなる。
 なお、本例において示した300℃以上かつ1時間以上の熱処理は、熱間圧延後から冷間圧延前のいずれの時点で行ってもよい。すなわち、例えば40℃/時間超えの冷却速度で熱延板が冷却された後に、熱延板を再度加熱して上記熱処理を行ってもよく、熱延板の作製直後に上記熱処理を行ってもよい。

Claims (5)

  1.  Mg:1.0~1.5%(質量%、以下同様)、Mn:0.8~1.2%、Cu:0.20~0.30%、Fe:0.25~0.60%、Si:0.20~0.40%を含有し、残部がAl及び不可避不純物からなる化学成分を有し、
     導電率が37.0~40.0%IACSであり、
     かつ、複数回パスの冷間圧延を経て製造されており、冷間圧延の最終パス直前における材料を150℃の温度で10時間時効処理したときの引張強さσB(10)及び耐力σ0.2(10)と、150℃の温度で1時間時効処理したときの引張強さσB(1)及び耐力σ0.2(1)とが、
     σB(10)-σB(1)≧5(MPa)、σ0.2(10)-σ0.2(1)≧1(MPa)
     の関係を満たすことを特徴とする缶ボディ用アルミニウム合金板。
  2.  請求項1に記載の缶ボディ用アルミニウム合金板において、圧延方向における耐力が300MPa以上であることを特徴とする缶ボディ用アルミニウム合金板。
  3.  請求項1または2に記載の缶ボディ用アルミニウム合金板において、加工硬化指数が0.07以上であることを特徴とする缶ボディ用アルミニウム合金板。
  4.  請求項1~3のいずれか1項に記載の缶ボディ用アルミニウム合金板において、ブランク径が55mmであり、かつ、絞り比を1.67とした条件で絞り成形を行った成形カップの下記式(1)より算出される耳率Rが4%以下であることを特徴とする缶ボディ用アルミニウム合金板。
      R=(M45-V45)/((M45+V45)/2)×100 ・・・(1)
    (上記式(1)において、M45は下記式(2)より算出される値であり、V45は下記式(3)より算出される値である。
      M45=(A+B+C+D)/4  ・・・・(2)
    上記式(2)において、Aは45°(圧延方向を0°としたときの角度、以下同様)耳高さであり、Bは135°耳高さであり、Cは225°耳高さであり、Dは315°耳高さである。
      V45=(E+F+G+H)/4  ・・・(3)
    上記式(3)において、Eは45°方向と135°方向との間の谷の最小高さであり、Fは135°方向と225°方向との間の谷の最小高さであり、Gは225°方向と315°方向との間の谷の最小高さであり、Hは315°方向と45°方向との間の谷の最小高さである。)
  5.  Mg:1.0~1.5%(質量%、以下同様)、Mn:0.8~1.2%、Cu:0.20~0.30%、Fe:0.25~0.60%、Si:0.20~0.40%を含有し、残部がAl及び不可避不純物からなる化学成分を有するスラブを作製し、
     該スラブの両圧延面及び両側面を面削し、
     その後、上記スラブを600~620℃で1~24時間加熱する均質化処理を行い、
     上記均質化処理後の上記スラブを40℃/時間以上の冷却速度で500~550℃まで冷却した後に熱間粗圧延を行い、
     次いで、出側温度が330~360℃となるように熱間仕上圧延を行って熱延板とし、
     該熱延板を40℃/時間以下の冷却速度で150℃まで冷却する処理または上記熱延板を300℃以上の温度で1時間以上保持する処理のいずれか一方を行い、
     その後、温度を80℃以下とした上記熱延板を冷間圧延して温度が140℃以上の中間冷延板とし、
     次いで、該中間冷延板を120℃以上の温度で2時間以上保持し、
     その後、冷間圧延の最終パスを圧下率48~56%となるように行い、冷間圧延の総圧下率が87~90%であり、かつ、温度が150℃以上である冷延板とし、
     該冷延板を冷却速度15~30℃/時間で80℃まで冷却することを特徴とする缶ボディ用アルミニウム合金板の製造方法。
PCT/JP2014/053395 2013-02-25 2014-02-14 缶ボディ用アルミニウム合金板及びその製造方法 WO2014129385A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015501421A JP6336434B2 (ja) 2013-02-25 2014-02-14 缶ボディ用アルミニウム合金板及びその製造方法
CN201480010295.9A CN105008566B (zh) 2013-02-25 2014-02-14 罐体用铝合金板及其制造方法
HK16101131.0A HK1213300A1 (zh) 2013-02-25 2016-02-01 罐體用鋁合金板及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013034543 2013-02-25
JP2013-034543 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014129385A1 true WO2014129385A1 (ja) 2014-08-28

Family

ID=51391179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053395 WO2014129385A1 (ja) 2013-02-25 2014-02-14 缶ボディ用アルミニウム合金板及びその製造方法

Country Status (4)

Country Link
JP (1) JP6336434B2 (ja)
CN (1) CN105008566B (ja)
HK (1) HK1213300A1 (ja)
WO (1) WO2014129385A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003927A1 (ja) * 2016-06-29 2018-01-04 株式会社Uacj アルミニウム合金板及びその製造方法
US20210292878A1 (en) * 2015-12-25 2021-09-23 Uacj Corporation Aluminum alloy sheet for can body, and process for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196128A (zh) * 2016-05-02 2019-01-11 诺维尔里斯公司 具有增强的可成形性的铝合金以及相关方法
CN106311744B (zh) * 2016-08-18 2018-03-16 广西南南铝加工有限公司 一种减少铝卷表面黑条生产方法
JP6405014B1 (ja) * 2017-09-20 2018-10-17 株式会社Uacj ボトル缶胴用アルミニウム合金板及びその製造方法
CN108531791B (zh) * 2018-05-11 2020-06-02 中车青岛四方机车车辆股份有限公司 一种5系铝合金板材及其制备方法和应用
JP7262947B2 (ja) * 2018-08-30 2023-04-24 堺アルミ株式会社 Al-Mg―Si系合金板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263253A (ja) * 2003-03-03 2004-09-24 Furukawa Sky Kk 缶胴用アルミニウム合金硬質板およびその製造方法
JP2006207006A (ja) * 2005-01-31 2006-08-10 Furukawa Sky Kk アルミニウム合金板の製造方法
JP2006265700A (ja) * 2005-03-25 2006-10-05 Kobe Steel Ltd 高温特性に優れたボトル缶用アルミニウム合金板
JP2006291326A (ja) * 2005-04-14 2006-10-26 Furukawa Sky Kk 飲料缶胴用アルミニウム合金板およびその製造方法
JP2007051307A (ja) * 2005-08-15 2007-03-01 Furukawa Sky Kk ボトムしわ性が良好なキャンボディ用アルミニウム合金板およびその製造方法
JP2008240099A (ja) * 2007-03-28 2008-10-09 Kobe Steel Ltd 包装容器用アルミニウム合金板およびその製造方法
JP2008274319A (ja) * 2007-04-26 2008-11-13 Furukawa Sky Kk 飲料缶胴用アルミニウム合金板の製造方法
JP2009242830A (ja) * 2008-03-28 2009-10-22 Kobe Steel Ltd ボトル缶用アルミニウム合金板およびその製造方法
JP2012167333A (ja) * 2011-02-15 2012-09-06 Sumitomo Light Metal Ind Ltd 缶ボディ用アルミニウム合金板およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263253A (ja) * 2003-03-03 2004-09-24 Furukawa Sky Kk 缶胴用アルミニウム合金硬質板およびその製造方法
JP2006207006A (ja) * 2005-01-31 2006-08-10 Furukawa Sky Kk アルミニウム合金板の製造方法
JP2006265700A (ja) * 2005-03-25 2006-10-05 Kobe Steel Ltd 高温特性に優れたボトル缶用アルミニウム合金板
JP2006291326A (ja) * 2005-04-14 2006-10-26 Furukawa Sky Kk 飲料缶胴用アルミニウム合金板およびその製造方法
JP2007051307A (ja) * 2005-08-15 2007-03-01 Furukawa Sky Kk ボトムしわ性が良好なキャンボディ用アルミニウム合金板およびその製造方法
JP2008240099A (ja) * 2007-03-28 2008-10-09 Kobe Steel Ltd 包装容器用アルミニウム合金板およびその製造方法
JP2008274319A (ja) * 2007-04-26 2008-11-13 Furukawa Sky Kk 飲料缶胴用アルミニウム合金板の製造方法
JP2009242830A (ja) * 2008-03-28 2009-10-22 Kobe Steel Ltd ボトル缶用アルミニウム合金板およびその製造方法
JP2012167333A (ja) * 2011-02-15 2012-09-06 Sumitomo Light Metal Ind Ltd 缶ボディ用アルミニウム合金板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210292878A1 (en) * 2015-12-25 2021-09-23 Uacj Corporation Aluminum alloy sheet for can body, and process for producing the same
WO2018003927A1 (ja) * 2016-06-29 2018-01-04 株式会社Uacj アルミニウム合金板及びその製造方法

Also Published As

Publication number Publication date
CN105008566A (zh) 2015-10-28
HK1213300A1 (zh) 2016-06-30
CN105008566B (zh) 2017-07-25
JP6336434B2 (ja) 2018-06-06
JPWO2014129385A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6336434B2 (ja) 缶ボディ用アルミニウム合金板及びその製造方法
JP3913260B1 (ja) ネック部成形性に優れたボトル缶用アルミニウム合金冷延板
JP4019082B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金板
JP6326485B2 (ja) Dr缶ボディ用アルミニウム合金板及びその製造方法
JP4019083B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP6850635B2 (ja) ボトム成形性およびボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法
JP5568031B2 (ja) ボトル缶用アルミニウム合金冷延板
JP4791072B2 (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
WO2017110869A1 (ja) 缶ボディ用アルミニウム合金板及びその製造方法
JP2007277694A (ja) 陽圧缶蓋用アルミニウム合金塗装板およびその製造方法
JP2004244701A (ja) 缶胴用アルミニウム合金冷間圧延板およびその素材として用いられるアルミニウム合金熱間圧延板
JP2006283113A (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP6912886B2 (ja) 飲料缶胴用アルミニウム合金板及びその製造方法
JP3550259B2 (ja) 高速しごき成形性の優れたdi缶胴用アルミニウム合金板およびその製造方法
JP7138396B2 (ja) 缶胴体用アルミニウム合金板及びその製造方法
JP4771726B2 (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP6684568B2 (ja) 異方性とネック成形性に優れた飲料缶ボディ用または飲料ボトル缶ボディ用アルミニウム合金板の製造方法
JP4467443B2 (ja) アルミニウム合金板の製造方法
JP4846457B2 (ja) 曲げ加工性に優れたキャップ用アルミニウム合金板の製造方法
JP4019084B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP6435268B2 (ja) 缶エンド用アルミニウム合金板及びその製造方法
WO2016063876A1 (ja) 缶蓋用アルミニウム合金板
JP5080150B2 (ja) 開栓性、耳率に優れた高強度キャップ用アルミニウム合金板の製造方法
JP2002322530A (ja) 容器用アルミニウム箔およびその製造方法
JP2007100182A (ja) キャップ用アルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754345

Country of ref document: EP

Kind code of ref document: A1