WO2016063876A1 - 缶蓋用アルミニウム合金板 - Google Patents
缶蓋用アルミニウム合金板 Download PDFInfo
- Publication number
- WO2016063876A1 WO2016063876A1 PCT/JP2015/079587 JP2015079587W WO2016063876A1 WO 2016063876 A1 WO2016063876 A1 WO 2016063876A1 JP 2015079587 W JP2015079587 W JP 2015079587W WO 2016063876 A1 WO2016063876 A1 WO 2016063876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- solid solution
- rolling
- mass
- plate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the present invention relates to an aluminum alloy plate for a can lid, and relates to an aluminum alloy plate for an easy open can lid that combines high strength, excellent formability, and excellent can openability.
- the bottom and side walls are sealed at the bottomed cylindrical body (can body, can body) and the opening of this body part.
- a two-piece all-aluminum can having a disk-shaped lid (can lid, can end) on the upper surface is well known.
- the can body is made of AA to JIS 3000 (Al-Mn) aluminum alloy plate
- the can lid is made of AA to JIS 5000. (Al—Mg-based) aluminum alloy plates are widely used and widely used.
- the important characteristics required for a 5000 series aluminum alloy plate for can lids are: moldability that can withstand lid processing, pressure resistance that can withstand the internal pressure of a can after filling, and a tab that is normally and easily opened. Can be opened.
- these can lids that is, 5000 series aluminum alloy plates for can lids, are also required to have a thickness of about 0.2 mm.
- problems with such thinning include a decrease in pressure strength and a decrease in moldability.
- the decrease in the pressure strength can be compensated by increasing the material strength of the aluminum alloy plate.
- the formability decreases. For this reason, in order to reduce the thickness of the aluminum alloy plate for can lids, it is necessary to improve both strength and formability.
- Patent Document 1 in the structure control of a 5000 series aluminum alloy plate for can lids, the area occupancy ratio of subgrains in the internal structure of the plate is controlled to 3 to 30%, and the can lid is attached to the can body. It has been proposed to improve curling and tightening properties when tightening.
- the conventional 5000 series aluminum alloy plate for can lids still has a problem in improving the rivet formability when it is formed into a can lid, and the rivet formability decreases when the strength is increased when the thickness is reduced. In order to obtain excellent rivet formability, there is a problem that the material strength needs to be reduced.
- the can lid forming step will be described.
- a shell is formed by drawing, and then by conversion forming, rivet forming is performed by a press to form a convex portion for attaching a tab to the center of the shell.
- This rivet molding is composed of a bubble molding process for projecting the central portion of the can lid, and a button molding process for reducing the diameter of the projecting section (bubble) in 1 to 3 steps and making a sharp projection.
- a die having a V-shaped cutting edge is pressed to form the score 3 in FIGS. 2 and 3 which is the groove of the drinking mouth, and the formation of irregularities and characters to increase the rigidity of the panel I do.
- a tab formed separately is integrated with a convex portion processed at the center of the shell.
- An object of the present invention is to provide a technique capable of producing an aluminum alloy plate for can lids by cold rolling without intermediate annealing and excellent rivet formability and can openability.
- the gist of the aluminum alloy plate for can lids of the present invention for solving the above problems is as follows: Mg: 4.0 to 6.0 mass%, Fe: 0.10 to 0.50 mass%, Si: 0.05 to 0 .40% by mass, Mn: 0.01 to 0.50% by mass, Cu: 0.01 to 0.30% by mass, with the balance being Al and inevitable impurities, after cold rolling without intermediate annealing Thickness of an aluminum alloy plate that has been baked and coated, the Mg solid solution amount measured by a residue extraction method using hot phenol is 80% or more of the Mg content, and is parallel to the rolling surface.
- the subgrain area ratio measured by a transmission electron microscope at a magnification of 50,000 times as an organization of 0.05 mm (thickness 0.1 mm) region in both thickness directions from the center is 10% or more and 90% on average. It is the following.
- the aluminum alloy plate for can lids is made by dissolving Mg only by soaking of the ingot.
- a more specific method for producing the above-described aluminum alloy plate for can lids of the present invention includes Mg: 4.0 to 6.0 mass%, Fe: 0.10 to 0.50 mass%, Si: 0 0.05 to 0.40 mass%, Mn: 0.01 to 0.50 mass%, Cu: 0.01 to 0.30 mass%, the balance being Mg of an aluminum alloy ingot consisting of Al and inevitable impurities Is hot-rolled by hot rolling while suppressing the precipitation of the solid-solved Mg, and the hot-rolled plate is cold-rolled and cold-rolled without intermediate annealing.
- the solid solution amount of Mg measured by the residue extraction method using hot phenol is 80% or more of the Mg content, and in a plane parallel to the rolling surface , 0.05 mm in the thickness direction from the thickness center (thickness 0.1 As tissue area of m), 5 thousand times magnification transmission electron sub-grain area ratio measured by microscope on average more than 10%, preferably 90% or less.
- the structure and properties of the plate defined in the present invention are as follows: as an aluminum alloy plate for can lids, as a pre-coated aluminum alloy plate after coating and baking treatment on a cold-rolled plate, or molding this plate Stipulated as the structure and characteristics of the can lid. Moreover, the structure and the characteristic of the board after performing the heat processing on the specific conditions mentioned later which simulated the coating baking process to the said cold-rolled board may be sufficient.
- the present invention as an aluminum alloy plate for can lids, maintains the formability as a structure in which the subgrain area ratio is increased and the solid solution amount of Mg is increased while being baked and coated after cold rolling. Increase strength while remaining. As a result, the present invention can achieve both rivet formability and high strength, which were difficult to combine in the past.
- the present invention does not need to reduce the material strength in order to obtain rivet formability as in the prior art, and can have sufficient rivet formability despite having high material strength. For this reason, even when the plate thickness is reduced to about 0.2 mm, there can be provided an aluminum alloy plate for can lids which is not deficient in pressure-resistant strength after beverage filling and is excellent in rivet formability and can openability.
- the solid solution amount of Mg can be secured (controlled) by soaking under the conditions described later. That is, once Mg is solid-solved only by soaking, which is upstream of the plate manufacturing process, and the amount of Mg in the ingot is once secured, this is secured on the downstream side of subsequent hot rolling and cold rolling.
- the solid solution amount of Mg in the final cold-rolled sheet can be secured at a desired value (level). In other words, if Mg is dissolved only by soaking, the final amount of solid solution of Mg in the cold-rolled sheet is set to a desired value (level) without intermediate dissolution during intermediate rolling. It can be ensured, and intermediate annealing can be omitted.
- the subgrain area ratio of the cold rolled sheet can be controlled in the same manner as the cold rolling in which the intermediate annealing is performed. Therefore, in the present invention, by selecting a metallurgical means such as the subgrain area ratio and the solid solution amount of Mg, even if it is cold rolling without solid annealing, solid solution of Mg only by soaking, An aluminum alloy plate for can lids having both high material strength and sufficient rivet formability can be produced.
- Embodiments for carrying out the aluminum alloy plate for can lids according to the present invention will be described below.
- the aluminum alloy plate for can lids after being baked and coated, has the characteristics required for can lids, such as formability to withstand lid processing, pressure strength to withstand internal pressure after beverage filling, and normal and easy opening. It is necessary to satisfy the ability to open.
- the alloy composition of the aluminum alloy plate for can lids according to the present invention is also Mg: 4.0 to 6.0% by mass, Fe: 0.10 to 0.50 in order to satisfy this required characteristic from the viewpoint of the alloy composition.
- Si 0.05 to 0.40 mass%
- Mn 0.01 to 0.50 mass%
- Cu 0.01 to 0.30 mass%
- Mg 4.0 to 6.0% by mass Mg has the effect of improving the strength of the aluminum alloy plate.
- the content of Mg is less than 4.0% by mass, the strength of the aluminum alloy plate is insufficient, and the pressure resistance when formed into a can lid is insufficient.
- the Mg content exceeds 6.0% by mass, the strength of the aluminum alloy plate becomes excessive, and the formability, particularly the rivet formability, is lowered. Therefore, the content of Mg is Mg: 4.0 to 6.0% by mass.
- Mg solid solution solid solution concentration
- the Mg content in the above range is increased with the solid solution ratio as a reference (index) to increase the strength while maintaining the rivet formability.
- the Mg solid solution amount (Mg solid solution ratio) is less than 80% of the Mg content of the plate, the amount of Mg compounds (Mg precipitates) increases and the rivet formability decreases. Therefore, the solid solution amount (solid solution ratio) of Mg is 80% or more of the Mg content. The higher the solid solution amount (solid solution ratio) of Mg, the better.
- the upper limit is not particularly defined. However, in the process in which intermediate annealing is not performed, it is extremely high in the manufacturing method to control the Mg content to be higher than 88%. Have difficulty. Therefore, from the production limit, the upper limit of the solid solution amount (solid solution ratio) of Mg is preferably less than 88% of the Mg content.
- Fe 0.10 to 0.50 mass% Fe forms Al—Fe (—Mn) -based and Al—Fe (—Mn) -Si-based intermetallic compounds in an aluminum alloy plate to improve the tearability of the score part when it is molded into a can lid, and it can be opened. There is an effect of improving canability.
- the Fe content is less than 0.1% by mass, the tearability of the score part does not improve, and score derailment occurs when the can is opened (the crack propagates to other than the score part when the can is opened) and the opening force increases. Opening defects such as tab breakage are likely to occur.
- the Fe content exceeds 0.50% by mass, the number density and volume ratio of the intermetallic compound produced during casting or hot rolling in the aluminum alloy plate increase, and the rivet formability decreases. Therefore, the Fe content is set to 0.10 to 0.50 mass%.
- Si content is less than 0.05% by mass, the can opening property is not improved as in the case of Fe.
- the Si content exceeds 0.40% by mass, an intermetallic compound generated during casting or hot rolling in the aluminum alloy plate increases, and rivet formability decreases. Therefore, the Si content is 0.05 to 0.40 mass%.
- Mn 0.01 to 0.50 mass%
- Mn has the effect of improving the strength of the aluminum alloy sheet, and when the Al—Fe—Mn and Al—Fe—Mn—Si intermetallic compounds are formed in the aluminum alloy sheet and formed into a can lid. There is an effect of improving the tearability of the score part and improving the can openability.
- the content of Mn is less than 0.01% by mass, the effect of improving the strength of the aluminum alloy plate or the effect of improving the openability when formed into a can lid cannot be obtained.
- the content of Mn exceeds 0.50% by mass, an intermetallic compound generated during casting or hot rolling in the aluminum alloy plate increases, and the rivet formability decreases. Therefore, the Mn content is set to 0.01 to 0.50 mass%.
- Cu 0.01 to 0.30 mass%
- Cu has the effect of improving the strength of the aluminum alloy plate. Moreover, work hardening characteristics improve by making it dissolve. When the Cu content is less than 0.01% by mass, the solid solution amount is small, the balance between strength and formability is lowered, and rivet formability is not improved. On the other hand, when the Cu content exceeds 0.30% by mass, the strength of the aluminum alloy plate becomes excessive, and the rivet formability decreases. Therefore, the Cu content is set to 0.01 to 0.30 mass%.
- the aluminum alloy according to the present invention comprises the balance Al and inevitable impurities in addition to the essential components.
- Inevitable impurities are 0.3 mass% or less for Cr, 0.3 mass% or less for Zn, 0.1 mass% or less for Ti, 0.1 mass% or less for Zr, 0.1 mass% or less for B, etc. Are permitted within a range of 0.05% by mass or less. If the content of inevitable impurities is within this range, it does not affect the characteristics of the aluminum alloy sheet according to the present invention.
- Al alloy plate structure In the present invention, the alloy composition described above is used, and the structure of the aluminum alloy plate for can lids is increased in the subgrain area ratio and maintained in formability in the state of being baked and coated after cold rolling. Increase strength.
- a thickness of 0.05 mm (thickness 0.1 mm) in both thickness directions from the center of the thickness of the aluminum alloy plate for can lid after the baking coating treatment in a plane parallel to the rolling surface.
- the subgrain area ratio measured by a transmission electron microscope at a magnification of 50,000 times as the structure of the central region (hereinafter simply referred to as the center of the plate thickness) is 10% or more and 90% or less on average.
- the present invention can achieve both rivet formability and high strength, which were difficult to combine in the past. That is, as a characteristic of the aluminum alloy plate for can lids, both the 0.2% proof stress of the aluminum alloy plate for can lids after heat treatment simulating the paint baking process and the rivet formability of this plate should be at a high level. Can do.
- the limit overhang height can be set to high strength and high formability of 1.45 mm or more.
- the limit overhang height of the plate is 1.45 mm or more, the above-described protrusion (button) having a sufficient height can be formed even when the can lid is actually formed, and sufficient rivet formability can be obtained.
- this data is a 0.2% proof stress after heat treatment of 255 ° C. ⁇ 20 seconds simulating a paint baking process, and an evaluation of the rivet formability of this plate is a micro-extrusion test of ⁇ 6 mm. This is the relationship between the strength and the formability when the limit overhang height is set.
- Subgrains are small, irregularly shaped grains.
- a material (structure) introduced with dislocations by processing strain due to cold rolling, etc., is subjected to a given temperature, time, and stress. It is caused by progressing recovery to become a low energy structure.
- subgrains have a high density of dislocations such as dislocation cell walls and deformation bands by rearranging dislocations introduced by cold rolling and coalescence annihilation by heating such as baking coating. This occurs when the dislocation density in the region decreases and becomes a sharp boundary.
- the dislocation dense region has a high probability of coalescence and annihilation with newly moved dislocations, and the work hardening characteristics are deteriorated.
- the subgrain boundary is considered to prevent the movement of dislocations and improve the work hardening characteristics.
- the rivet formability which is biaxial overhang deformation, is improved because the uniform deformation ability is improved when the work hardening characteristics are improved.
- subgrains also have an effect of improving strength.
- this subgrain is formed in a crystal grain by a transmission electron microscope at a magnification of 50,000 times, and the outer edge shape as a boundary is sharp (clear and clear), and there is no dislocation inside. It can be identified as a single, independent or isolated small irregular grain. Therefore, the subgrain area ratio to be defined can be calculated as a ratio of the total measurement area of each subgrain to the observation visual field area of the transmission electron microscope.
- a grain that is in contact with or intersects with the dislocation dense region and whose boundary has a width and is difficult to identify as an independent small grain is not regarded as a subgrain and is not counted in the present invention.
- some or many of such grains are in contact with or intersect with the dislocation dense region, or have dislocations inside, and as a whole the boundary (outer edge) (Shape) is not sharp but has a width. Since such grains are difficult to identify as individual grains that are independent or isolated, they are not regarded as subgrains and are not counted.
- a series of these determination methods is collectively referred to as “subgrain area ratio measured by a transmission electron microscope with a magnification of 50,000 times”.
- such a subgrain area ratio in the center part of the thickness of the aluminum alloy plate for can lids is 10% or more and 90% or less on average.
- the subgrain area ratio is as small as less than 10% on average, the higher the strength of the plate, the more excellent rivet formability and high strength cannot be achieved. That is, even if the alloy composition is satisfied and the solid solution amount of the Mg is satisfied, the strength cannot be increased while maintaining the formability of the aluminum alloy plate for can lids.
- the larger the subgrain area ratio the better the rivet formability.
- the upper limit of the area ratio is 90% on average. Therefore, in the present invention, such a subgrain area ratio in the central portion of the thickness of the aluminum alloy plate for can lids is 10% or more and 90% or less on average.
- Patent Document 1 uses a tandem rolling mill in which rolling stands are arranged in series instead of a single rolling mill for cold rolling of a plate, and the temperature inevitably rises unless it is forcibly cooled, The temperature at the time of rolling becomes comparatively high, Mg precipitation proceeds, and the solid solution amount of Mg decreases. That is, the strength of the can lid aluminum alloy sheet cannot be increased while maintaining the formability, and the rivet formability when compared with the present invention at the same strength level is lowered.
- the structure and characteristics of the plate defined in the present invention described above are as follows.
- the aluminum after the cold-rolled plate (the plate after cold-rolling) is coated and baked as an aluminum alloy plate for a can lid It is the structure and characteristics of an alloy plate (pre-coated plate) or the structure and characteristics of a can lid formed with this plate.
- the plate after the heat treatment under the specific conditions described later was performed on the cold-rolled plate, which was not subjected to such painting or paint baking treatment, or formed into a can lid, simulating the paint baking treatment.
- the organization and characteristics of These structures and characteristics are the same or the structures and characteristics that can be considered to be the same or slightly the same if the conditions of the paint baking process and the heat treatment are the same.
- the production process itself of the aluminum alloy plate of the present invention includes, as usual, a casting process in which an aluminum alloy having the above composition is melted and cast to form an ingot, and a soaking process that homogenizes the ingot by heat treatment, It is manufactured by a hot rolling process in which a homogenized ingot is hot-rolled to form a hot-rolled sheet and a cold rolling process in which the hot-rolled sheet is cold-rolled without being annealed.
- the solid solution amount of Mg can be ensured by soaking, and only by soaking on the upstream side, the solid solution amount of Mg can be secured once, and once the Mg solid solution amount of the ingot is secured, the downstream side such as subsequent hot rolling and cold rolling
- the Mg solid solution amount of the final cold-rolled sheet can be ensured to a desired value (level) by preventing the secured Mg solid solution amount from being reduced by precipitation. That is, if Mg is dissolved only by soaking, the final amount of Mg dissolved in the cold-rolled sheet can be maintained at a desired value (level) without intermediate dissolution during cold rolling. And intermediate annealing can be omitted. And even in the cold rolling without performing the intermediate annealing, the subgrain area ratio of the cold-rolled sheet can be controlled as in the cold rolling in which the intermediate annealing is performed.
- a preferable method for producing a plate for this purpose first, soaking the aluminum alloy ingot having the above-described composition in a temperature range of more than 500 ° C. and not more than 550 ° C. for 1 hour or more in order to dissolve Mg. Do.
- hot rough rolling is performed at a steady speed of all passes of 25 m / min or more, and the temperature at which the rough rolled plate between the passes becomes minimum is 450 ° C. or more, and then the end temperature Is hot-finished and rolled into a hot-rolled sheet.
- the hot-rolled sheet is then subjected to cold rolling without intermediate annealing, the coiling temperature of the coil after the final cold rolling is 60 to 120 ° C., and the total rolling rate is 85% or more. Go to cold rolled sheet.
- an aluminum alloy is melted, and an aluminum alloy having the above composition is cast by a known semi-continuous casting method such as a DC casting method.
- Soaking process Next, after removing the area
- the homogenization heat treatment temperature is 500 ° C. or lower, or when the holding time is less than 1 hour, the solid solution amount of Mg decreases, and the solid solution amount of Mg defined in the present invention cannot be obtained. Moreover, the said homogenization effect falls and a mechanical characteristic and can openability fall.
- the homogenization heat treatment temperature exceeds 550 ° C., burning occurs during hot rolling.
- the upper limit of holding time is 20 hours, and even if it exceeds this, there is no big difference in the amount of Mg dissolved, and the productivity is lowered.
- Hot rolling After this homogenization heat treatment, the ingot is continuously cooled or cooled to a predetermined starting temperature, first hot rough rolled, and further hot finish rolled to hot-roll aluminum alloy having a predetermined thickness. A board. At this time, hot rolling is performed while suppressing the precipitation of Mg so as not to reduce the solid solution amount of Mg secured by soaking.
- the hot rough rolling is performed within 10 minutes.
- the steady speed of all the passes should be at least 25 m / min and between all the passes from the first pass to the last pass.
- the plate temperature is set to 450 ° C. or higher (the temperature at which the rough rolled plate is minimum between passes is set to 450 ° C. or higher).
- the speed is less than 25 m / min, the rolling time becomes long, the Mg—Si based compound is likely to precipitate, and the amount of solid solution Mg decreases.
- the plate temperature is less than 450 ° C.
- the Mg—Si based compound is likely to be precipitated, and the amount of dissolved Mg is reduced.
- the end temperature of hot rough rolling is less than 450 ° C.
- hot rolling is divided into rough rolling and finish rolling, and when these rolling are continuously performed, the end temperature of hot rough rolling is Since it becomes too low, the rolling temperature is lowered in the hot finish rolling in the next step, and edge cracking is likely to occur.
- hot finish rolling with an end temperature of preferably 300 to 360 ° C. or more is performed without delay or continuously in order to prevent precipitation of Mg—Si compounds, Use hot-rolled sheet.
- the finish temperature of hot finish rolling is less than 300 ° C., the rolling load increases and the productivity decreases.
- the finish temperature of hot finish rolling is increased, if this temperature exceeds 360 ° C., Mg—Si based compounds tend to precipitate and become solid. The amount of dissolved Mg decreases.
- Cold rolling The hot-rolled sheet is cold-rolled without being subjected to intermediate annealing before cold rolling or in the middle of passes.
- the rolling stands are single (one stand) or two or more tandem rolling mills arranged in series to perform cold rolling for the required number of passes (number of sheets).
- the cold rolling rate (total rolling rate) is 85% or more.
- the cold rolling rate (total rolling rate) is 85% or more, the dislocation density increases, and the subgrain area ratio after the baking coating treatment increases.
- the streaky dislocations are easily tangled (entangled and entangled), and a lot of dislocation dense regions such as forest dislocations, cell walls, and shear bands are formed.
- subsequent heat treatment such as baking coating, subgrains are formed from the dislocation dense region, and the subgrain area ratio within the range defined in the present invention can be obtained.
- the cold rolling rate is less than 85%, the accumulated strain due to rolling is insufficient, the dislocation dense region is reduced (insufficient), the subgrain area ratio after baking coating is reduced, and rivet formability is included. Formability is reduced.
- the material temperature (winding temperature around the coil) after the final cold rolling (after the final pass or the final stand exit side) shall be in the range of 60 to 120 ° C.
- the material temperature after this cold rolling exceeds 120 ° C. and is too high, the dislocation density of the cold rolled sheet is lowered, and the subgrain area ratio after the subsequent baking coating treatment does not become 10% or more.
- the material temperature after this cold rolling is too low, such as less than 60 ° C., the dislocation density of the cold rolled plate is too high, and recovery tends to be promoted during the baking coating process, and the strength is lowered.
- the aluminum alloy plate for can lids manufactured by the above process is subjected to a surface treatment such as chromate or zircon, applied with an organic resin such as epoxy resin, vinyl chloride sol or polyertel, and PMT (Peak Metal Temperature: The metal reached temperature is about 230 to 280 ° C., and is baked to form a pre-coated plate, which is then formed into a can lid.
- a surface treatment such as chromate or zircon
- an organic resin such as epoxy resin, vinyl chloride sol or polyertel, and PMT (Peak Metal Temperature:
- the metal reached temperature is about 230 to 280 ° C., and is baked to form a pre-coated plate, which is then formed into a can lid.
- the heat treatment simulating a paint baking process for evaluation of strength and rivet formability is one point of 255 ° C. ⁇ 20 seconds in order to have reproducibility from the range of the paint baking process. Selected.
- a blank material obtained by punching a blank aluminum alloy plate (pre-coated plate) that has been pre-painted and baked into a disk shape (blanking) is drawn with a press machine to curl the outer periphery.
- a sealing compound is applied to the curled portion to make a shell.
- the following molding is performed as conversion molding.
- rivet forming is performed to form a protrusion for attaching a tab to the center of the shell.
- This rivet molding is composed of a bubble molding process for projecting the central portion of the can lid, and a button molding process for reducing the diameter of the projecting section (bubble) in 1 to 3 steps and making a sharp projection.
- FIGS. 2 and 3 which is a groove of the drinking mouth, and to form irregularities and letters for increasing the rigidity of the panel.
- a tab formed separately is caulked and integrated with the convex portion processed at the center of the shell (this is called a stake process).
- a plan view of this integrated can lid is shown in FIG. Then, the can lid is wrapped and sealed in the opening of an aluminum alloy can body that is separately DI-molded and filled with contents (beverage, food) from the opening.
- Example aluminum alloy plate No. 1 shown in Table 1.
- Each aluminum alloy having a composition of 1 to 26 was cast by a semi-continuous casting method (DC), and an ingot (slab) whose surface layer was faced was produced in common with each example.
- DC semi-continuous casting method
- an ingot slab whose surface layer was faced was produced in common with each example.
- various conditions in hot rolling and cold rolling of this ingot were changed, and the solid solution amount and subgrain area of Mg in the state where the baking coating treatment was performed after the cold rolling. I made a separate rate.
- the manufacturing conditions common to each example were as follows. That is, in each example, after performing a homogenization heat treatment of 520 ° C. ⁇ 4 hours, hot rough rolling is started at a temperature of 520 ° C., and the end temperature of the hot rough rolling is set to 450 ° C. or more. After the hot rough rolling, hot finish rolling was started immediately to obtain a hot rolled plate having a plate thickness of 1.2 to 4.3 mm. And this hot-rolled sheet is used for a can lid having a plate thickness of 0.215 mm by using tandem cold rolling with two rolling stands without performing any intermediate annealing after hot rolling or between cold rolling passes. A cold rolled sheet was created.
- Mg solid solution amount solid solution amount (solid solution ratio) of the test material was measured as follows. That is, first, after putting phenol into a decomposition flask and heating, the sample taken from each test plate (plate thickness center part) to be measured is transferred to this decomposition flask and heated and decomposed with hot phenol. To do. Next, it is filtered using a membrane filter having a mesh (collected particle diameter) of 0.1 ⁇ m, and the filtrate is introduced into an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer, which is atomized with a nebulizer and made into a small mist. Only Mg was blown into the plasma, and the solid solution amount of Mg was measured.
- ICP Inductively Coupled Plasma
- the subgrain area ratio was measured with a transmission electron microscope at a magnification of 50,000 times for the structure at the center of each plate thickness in the plane parallel to the rolling surface of the test material, and the average value corresponding to the number of measurement fields It calculated in.
- the specimen is mechanically polished to 0.05 mm (thickness 0.1 mm) in both thickness directions from the center of the plate thickness, and then from the center of the plate thickness by a twin jet electrolytic polishing method.
- a thin film having a thickness of 100 nm was formed, and this thin film was photographed with a transmission electron microscope (TEM) at four magnifications at a magnification of 50,000 times.
- TEM transmission electron microscope
- Transfer only the subgrains from the photographed image to a transparent film measure the total area of the subgrains within the photographing range using the image analysis software Image-Pro Plus, and calculate the area ratio with respect to the visual field area (photographing area) Calculation was performed using an average of 4 fields of view.
- the subgrain is a grain surrounded by a sharp boundary having no width, and the boundary (outer edge shape) as a whole is not sharp but has a width. Grains that were difficult to identify as isolated small grains were not considered subgrains and were not counted.
- a JIS No. 5 tensile test piece was prepared from the specimen so that the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was performed according to JIS-Z2241, and a 0.2% yield strength was obtained. An appropriate range of 0.2% proof stress is 300 MPa or more, and within this range, even a thin can lid satisfies the compressive strength.
- the rivet formability was evaluated by a test simulating the bubble process. That is, a ⁇ 6 mm minute overhang test was performed on the specimen, and the limit overhang height at which no necking or cracking occurred was obtained. As the 0.2% yield strength increases, the limit overhang height usually decreases. Therefore, when the 0.2% yield strength is in the range of 310 to 330 MPa, the limit overhang height exceeds 1.60 mm and the 0.2% yield strength is 330 MPa. Over the range of 360 MPa or less and the limit overhang height is 1. When the 0.2% proof stress is over 50 MPa at 50 mm or more, the limit overhang height is set to 1.45 mm or more as an appropriate range. If the limit overhang height of the aluminum alloy plate is more than 1.45 mm, a button having a sufficient height can be formed during actual forming.
- FIG. 2 is a plan view of the can lid used in the can open test.
- FIG. 3 is a cross-sectional view of the score 3 of the can lid used in the can open test.
- FIG. 4A is a schematic view of a can opening load measuring machine for measuring a load at the time of opening the can, and is a perspective view thereof.
- FIG. 4B is a schematic cross-sectional view of the vicinity of the can lid 1 when measured by the can opening load measuring device 5.
- FIG. 4C is a schematic front view showing the direction of the can lid 1 when the can lid 1 is installed in the can opening load measuring device 5.
- the can lid 1 is placed on the can opening load measuring machine 5 so that the tab 4 is located above the score 3 with respect to the score 3 (FIG. 4C).
- a hook 6 is hooked on the tab 4 of the can lid 1 to form a hook 7 (FIG. 4B).
- the latch 6 was pulled in the horizontal direction to apply a 3N tensile load, and the latch 6 was stationary in that state, and then the can lid 1 was rotated in the X direction.
- the load was measured with a load cell, and the highest load was taken as the can open load.
- the appropriate range of the can opening load was 25 N or less.
- the component composition is within the range of the invention, the hot rough rolling is completed within 10 minutes as a preferable steady speed, and the minimum temperature of the rough rolled sheet between the passes and the finish rolling
- the finishing temperature is also manufactured under preferable manufacturing conditions such as the total rolling rate and coiling temperature in cold rolling.
- the solid solution amount ratio of Mg is 80% or more, and the center part of the plate thickness has the structure shown in FIG. 1 and the subgrain area ratio measured by a transmission electron microscope with a magnification of 50,000 times is obtained.
- the average is 10% or more and 90% or less. That is, these invention examples have a structure in which the subgrain area ratio is increased as the structure of the aluminum alloy plate for can lids.
- FIG. 1 is an example of Invention Example 1.
- the inventive examples 1 to 10 have an appropriate 0.2% yield strength and can open load, and excellent rivet formability. That is, the strength is increased while maintaining the moldability, and both the rivet moldability and the strength increase can be achieved.
- the limit bulge height exceeds 1.60 mm
- the limit bulge height is 1
- the limit overhang height is 1.45 mm or more, which is high strength and high formability. Therefore, no.
- the aluminum alloy plate of 1 to 10 has a thin thickness of 0.215 mm, but can be suitably used as an easy open can lid.
- any one of the component composition, the solid solution amount ratio of Mg, and the subgrain area ratio as the structure of the central portion of the plate thickness is not within the specified range of the present invention. Any of 2% yield strength, can open load, and rivet formability does not satisfy the appropriate values.
- No. No. 11 is produced under preferable production conditions because the Mg content is insufficient below the lower limit, and the Mg solid solution ratio is satisfied, and the subgrain area ratio of the structure at the center of the plate thickness is satisfied, but 0.2% Yield is too low.
- No. No. 12 is produced under preferable production conditions because the Mg content is excessive beyond the upper limit and satisfies the Mg solid solution ratio and the subgrain area ratio of the structure at the center of the plate thickness.
- the% yield strength exceeds 360 MPa, it does not exceed the limit overhang height of 1.45 mm, which is the same as that of the above invention example, the rivet formability is inferior, and the opening load is relatively large.
- No. No. 13 is produced under preferable production conditions because the Fe content is insufficient below the lower limit, and satisfies the Mg solid solution ratio and the subgrain area ratio of the structure at the center of the plate thickness. It is too big and its openability is low. No. No. No.
- the Fe content is excessive beyond the upper limit and satisfies the Mg solid solution ratio and the subgrain area ratio of the structure at the center of the plate thickness.
- the limit overhang height is not more than 1.60 mm, which is the same as the above invention example, and the rivet formability is poor.
- No. No. 15 since the Si content is insufficient below the lower limit, it is manufactured under preferable manufacturing conditions, and satisfies the solid solution amount ratio of Mg and the subgrain area ratio of the structure at the center of the plate thickness, but the can opening load is It is too big and its openability is low. No. No. No.
- the limit overhang height is not more than 1.45 mm, which is the same as the above invention example, and the rivet formability is inferior.
- No. No. 19 does not contain Cu, is manufactured under preferable manufacturing conditions, satisfies the subgrain area ratio of the structure at the center of the plate thickness, but has a 0.2% proof stress in the range of 310 to 330 MPa.
- the limit overhang height is not more than 1.60 mm, and rivet formability is poor.
- the limit overhang height is not more than 1.45 mm, which is the same as the above-described invention example, and the rivet formability is inferior.
- the limit overhang height is not more than 1.50 mm, which is the same as the above-described invention example, and the rivet formability is low.
- the alloy composition is within the range of the present invention, the finish rolling finish temperature is too high, Mg-Si based compounds are likely to precipitate, Mg precipitation cannot be suppressed, and the Mg solid solution ratio Is too little.
- the limit overhang height is not more than 1.60 mm, which is the same as the above-described invention example, and the rivet formability is low.
- the alloy composition is within the scope of the present invention, the total rolling rate in cold rolling is too low and the subgrain area rate is too low. As a result, when the 0.2% proof stress exceeds 330 MPa and is less than or equal to 360 MPa, the limit overhang height is not more than 1.50 mm, which is the same as the above invention example, the rivet formability is inferior, and the high rivet formability is high. It cannot be combined with high strength.
- No. No. 25 although the alloy composition is within the range of the present invention, the final coiling temperature in cold rolling is too low, the dislocation density of the cold rolled sheet is too high, and recovery is promoted during the baking coating process to 0.2%. The proof strength is too low to combine high rivet formability and high strength. No. No. No.
- the alloy composition is within the range of the present invention, the final coiling temperature of cold rolling is too high, and the solid solution ratio of Mg and the subgrain area ratio are too low beyond the lower limit.
- the limit overhang height is not more than 1.50 mm, which is the same as the above invention example, the rivet formability is inferior, and the high rivet formability is high. It cannot be combined with high strength.
- the present invention in order to obtain rivet formability as in the prior art, it is not necessary to reduce the material strength, and it is possible to have sufficient rivet formability despite having high material strength. For this reason, even when the plate thickness is reduced to about 0.2 mm, there can be provided an aluminum alloy plate for can lids which is not deficient in pressure-resistant strength after beverage filling and is excellent in rivet formability and can openability. For this reason, the can lid thickness is reduced in thickness and strength, and it is optimal for an aluminum alloy plate used for a can lid that requires high rivet formability and high strength under more severe use conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
Abstract
Mgの固溶量とサブグレイン面積率を特定の範囲とし、飲料充填後の耐圧強度に不足がなく、リベット成形性及び開缶性にも優れさせ、板厚を0.2mm程度に薄肉化した5000系アルミニウム合金板を、中間焼鈍しない冷延にて製造する。
Description
本発明は、缶蓋用アルミニウム合金板に関し、高強度と優れた成形性、及び優れた開缶性を兼備したイージーオープン缶蓋用アルミニウム合金板に関する。
現在、飲料、食品用途に汎用される包装容器の1つとして、底と側壁が一体構造の有底円筒状の胴部(缶胴、キャンボディ)と、この胴部の開口部に封止されて上面となる円板状の蓋部(缶蓋、キャンエンド)とからなる2ピースのオールアルミ缶が周知である。
このようなアルミ缶の材料として、各々に要求される強度、成形性などの違いから、缶胴にはAA乃至JIS3000系(Al-Mn系)のアルミニウム合金板、缶蓋にはAA乃至JIS5000系(Al-Mg系)のアルミニウム合金板などが使い分けられて、汎用されている。
このうち、缶蓋用5000系アルミニウム合金板に求められる重要な特性として、蓋加工に耐える成形性と、飲料充填後の缶の内圧に耐える耐圧強度、装着したタブによって正常かつ簡単に蓋が開けられるための開缶性などがあげられる。
近年、缶の低コスト化の観点から、これら缶蓋、すなわち缶蓋用5000系アルミニウム合金板も、板厚を0.2mm程度に薄肉化することが求められている。このような薄肉化に対する課題としては、耐圧強度の低下、成形性の低下などが挙げられる。このうち、耐圧強度の低下は、アルミニウム合金板の材料強度を高くすることで補うことができるが、このような高強度化に伴って、成形性が低下するという問題が生じる。このため、缶蓋用アルミニウム合金板を薄肉化するには、強度と成形性とを共に向上させることが必要である。
缶蓋用5000系アルミニウム合金板を薄肉化しても、材料強度を保ったまま成形性を向上させる技術として、従来から、金属間化合物(開缶性、成形性)、結晶粒径(成形性)、サブグレインあるいは集合組織などの組織制御などが種々行われてきた。
例えば、特許文献1には、缶蓋用5000系アルミニウム合金板の前記組織制御のうち、板の内部組織におけるサブグレインの面積占有率を3乃至30%に制御して、缶蓋を缶胴に巻き締める際の、カーリング性及び巻き締め性を向上させることが提案されている。
また、通常は、組織制御や特性向上のために、熱延後あるいは冷間圧延の途中で、中間焼鈍を行うが、大量に生産される薄板では、製造コストに対する中間焼鈍の占める割合も大きい。このため、この中間焼鈍を行わずに冷間圧延し、低コストで缶蓋用5000系アルミニウム合金板を、組織制御して製造することも、例えば、特許文献2など、数多く提案されている。
ただ、従来の缶蓋用5000系アルミニウム合金板には、缶蓋に成形する際のリベット成形性の向上には未だ課題があり、薄肉化した場合に高強度化すると、リベット成形性が低下し、優れたリベット成形性を得るには材料強度を低下させる必要がある、という課題があった。
ここで、缶蓋成形工程について説明する。まず、素材を円板形状に打ち抜いた後に、絞り加工でシェルを成形し、次にコンバージョン成形にて、プレス機で、シェルの中央にタブを取り付けるための凸部を形成するリベット成形を行う。
このリベット成形は、缶蓋中央部を張り出させるバブル成形工程と、この張出部(バブル)を1~3工程で縮径しつつ急峻な突起とするボタン成形工程とで構成される。
このリベット成形後に、断面がV字形の刃先をした金型を押し付けて、飲み口部の溝である、図2、3のスコア3の成形や、パネルの剛性を高めるための凹凸や文字の成形を行う。その後、ステイク工程として、シェルの中央に加工した凸部に、別途成形したタブをかしめて一体化する。
このリベット成形は、缶蓋中央部を張り出させるバブル成形工程と、この張出部(バブル)を1~3工程で縮径しつつ急峻な突起とするボタン成形工程とで構成される。
このリベット成形後に、断面がV字形の刃先をした金型を押し付けて、飲み口部の溝である、図2、3のスコア3の成形や、パネルの剛性を高めるための凹凸や文字の成形を行う。その後、ステイク工程として、シェルの中央に加工した凸部に、別途成形したタブをかしめて一体化する。
この際、タブを正常に固定するためには、ステイク後のリベット径の大きさを確保する必要があり、そのため、ボタン成形工程終了後の突起(ボタン)高さを十分に高く成形できるリベット成形性が素材に求められる。
これに対して、前記特許文献1のようにサブグレインの面積占有率を3乃至30%に制御した素材板であっても、高強度化すると、前記リベット成形性が低下し、優れたリベット成形性を得るには、材料強度を低下させる必要があった。すなわち、優れたリベット成形性と高強度とを両立させることには未だ限界があった。
しかも、このリベット成形性と高強度化との両立を、前記特許文献2などの中間焼鈍を行わない冷間圧延により、低コストの製造方法で実現することも、未だ課題として残されていた。
このような課題に対して、本発明は、高い材料強度を有するにも関わらず、十分なリベット成形性を有することができ、薄肉化した場合でも、飲料充填後の耐圧強度に不足がなく、リベット成形性及び開缶性にも優れ、中間焼鈍を行わない冷間圧延によっても缶蓋用アルミニウム合金板を製造できる技術を提供することを目的とする。
前記課題を解決するための本発明缶蓋用アルミニウム合金板の要旨は、Mg:4.0~6.0質量%、Fe:0.10~0.50質量%、Si:0.05~0.40質量%、Mn:0.01~0.50質量%、Cu:0.01~0.30質量%を含有し、残部がAl及び不可避不純物からなり、中間焼鈍を行わない冷間圧延後に焼付塗装処理されたアルミニウム合金板であって、熱フェノールによる残渣抽出法で測定されたMgの固溶量が、前記Mg含有量の80%以上であり、圧延面と平行な面における、板厚中心から両厚さ方向に0.05mm(厚さ0.1mm)の領域の組織として、5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率が平均で10%以上、90%以下であることである。
上記要旨において、前記缶蓋用アルミニウム合金板が、鋳塊の均熱処理によってのみMgを固溶させたものであることが好ましい。
すなわち、より具体的な前記した本発明の缶蓋用アルミニウム合金板の製造方法としては、Mg:4.0~6.0質量%、Fe:0.10~0.50質量%、Si:0.05~0.40質量%、Mn:0.01~0.50質量%、Cu:0.01~0.30質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金鋳塊のMgを均熱処理によってのみ固溶させるとともに、この固溶させたMgの析出を抑制しつつ熱間圧延を行って熱延板とし、この熱延板を中間焼鈍を行わずに冷間圧延して冷延板とし、この冷延板を焼付塗装処理した状態にて、熱フェノールによる残渣抽出法で測定されたMgの固溶量を前記Mg含有量の80%以上とし、圧延面と平行な面における、板厚中心から両厚さ方向に0.05mm(厚さ0.1mm)の領域の組織として、5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率を平均で10%以上、90%以下とすることが好ましい。
上記のように本発明で規定する板の組織と特性は、缶蓋用アルミニウム合金板として、冷延板に塗装および塗装焼付け処理を施した後のプレコートアルミニウム合金板として、あるいは、この板を成形した缶蓋の組織と特性として規定している。また、前記冷延板に、塗装焼付け処理を模擬した、後述する特定条件での熱処理を施した後の板の組織と特性であっても良い。
本発明は、缶蓋用アルミニウム合金板として、冷間圧延後に焼付塗装処理された状態にて、サブグレイン面積率を増加させるとともに、Mgの固溶量を増加させた組織として、成形性を保ったまま高強度化する。これによって、本発明は、従来は兼備させることが困難であった、リベット成形性と高強度化とを両立させることができる。
したがって、本発明は、従来のように、リベット成形性を得るために、材料強度を低下させる必要が無く、高い材料強度を有するにも関わらず、十分なリベット成形性を有することができる。このため、板厚を0.2mm程度に薄肉化した場合でも、飲料充填後の耐圧強度に不足がなく、リベット成形性及び開缶性にも優れた缶蓋用アルミニウム合金板を提供できる。
しかも、Mgの固溶量は、後述する条件の均熱処理によって確保(制御)できる。すなわち、板の製造工程の上流側である均熱処理によってのみMgを固溶させて、鋳塊のMg固溶量を一旦確保すれば、続く熱延や冷延などの下流側で、この確保したMg固溶量を析出によって減らさないようにしてやることによって、最終の冷延板のMgの固溶量を所望の値(レベル)に確保できる。言い換えると、均熱処理によってのみMgを固溶させれば、冷延途中の中間焼鈍などでMgを固溶させずとも、最終の冷延板のMgの固溶量を所望の値(レベル)に確保でき、中間焼鈍を省略することが可能となる。
そして、この中間焼鈍を行わない冷間圧延でも、中間焼鈍を行う冷間圧延と同様に、冷延板のサブグレイン面積率を制御することができる。したがって、本発明では、サブグレイン面積率とMgの固溶量という冶金的な手段を選択することによって、均熱処理によってのみMgを固溶させ、中間焼鈍を行わない冷間圧延であっても、高い材料強度と十分なリベット成形性とを兼備する缶蓋用アルミニウム合金板を製造することができる。
本発明に係る缶蓋用アルミニウム合金板を実施するための形態について、以下に説明する。
(アルミニウム合金組成)
缶蓋用アルミニウム合金板は、前記した通り、焼付塗装処理した状態にて、缶蓋に求められる特性として、蓋加工に耐える成形性、飲料充填後の内圧に耐える耐圧強度、正常かつ簡単に開けられるための開缶性を満たす必要がある。
缶蓋用アルミニウム合金板は、前記した通り、焼付塗装処理した状態にて、缶蓋に求められる特性として、蓋加工に耐える成形性、飲料充填後の内圧に耐える耐圧強度、正常かつ簡単に開けられるための開缶性を満たす必要がある。
したがって、本発明に係る缶蓋用アルミニウム合金板の合金組成も、この要求特性を合金組成面から満たすために、Mg:4.0~6.0質量%、Fe:0.10~0.50質量%、Si:0.05~0.40質量%、Mn:0.01~0.50質量%、Cu:0.01~0.30質量%を含有し、残部がAl及び不可避不純物からなるものとする。以下に、含有する各元素の意義につき、順に説明する。
Mg:4.0~6.0質量%
Mgは、アルミニウム合金板の強度を向上させる効果がある。Mgの含有量が4.0質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形したときの耐圧強度が不足する。一方、Mgの含有量が6.0質量%を超える場合、アルミニウム合金板の強度が過剰となって、成形性、特にリベット成形性が低下する。従って、Mgの含有量はMg:4.0~6.0質量%とする。
Mgは、アルミニウム合金板の強度を向上させる効果がある。Mgの含有量が4.0質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形したときの耐圧強度が不足する。一方、Mgの含有量が6.0質量%を超える場合、アルミニウム合金板の強度が過剰となって、成形性、特にリベット成形性が低下する。従って、Mgの含有量はMg:4.0~6.0質量%とする。
Mgの固溶量(固溶濃度)
更に、Mgは、母相に固溶すると、大きな格子ひずみを生じるため、加工硬化特性が向上する。一方、Mgの固溶量が減ると、固溶していないMgは、Mg2SiもしくはMg2Al3の化合物として存在し、この化合物は、リベット成形時の割れやくびれの原因となって、リベット成形性を低下させる。
更に、Mgは、母相に固溶すると、大きな格子ひずみを生じるため、加工硬化特性が向上する。一方、Mgの固溶量が減ると、固溶していないMgは、Mg2SiもしくはMg2Al3の化合物として存在し、この化合物は、リベット成形時の割れやくびれの原因となって、リベット成形性を低下させる。
したがって、本発明では、前記範囲で含有するMgについて、その固溶量を、固溶割合を基準(指標)として、高めて、リベット成形性を保ったまま、高強度化する。Mgの固溶量(Mgの固溶割合)が、前記板のMg含有量の80%未満であると、Mgの化合物(Mgの析出物)が多くなり、リベット成形性が低下する。従って、Mgの固溶量(固溶割合)は、前記Mg含有量の80%以上とする。なお、このMgの固溶量(固溶割合)は高いほど良く、その上限は特に定めないが、中間焼鈍を行わない工程では、Mg含有量の88%以上に高く制御することは製法上極めて困難である。したがって、製造限界からすると、Mgの固溶量(固溶割合)の上限は、好ましくはMg含有量の88%未満である。
Fe:0.10~0.50質量%
Feは、アルミニウム合金板中にAl-Fe(-Mn)系、Al-Fe(-Mn)-Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Feの含有量が0.1質量%未満の場合、スコア部の引裂き性が向上せず、開缶時にスコア脱線(開缶時にスコア部以外に亀裂が伝播すること)や開缶力の増大によるタブ折れといった開缶不良が生じ易くなる。一方、Feの含有量が0.50質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物の数密度や体積率が大きくなり、リベット成形性が低下する。従って、Feの含有量は0.10~0.50質量%とする。
Feは、アルミニウム合金板中にAl-Fe(-Mn)系、Al-Fe(-Mn)-Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Feの含有量が0.1質量%未満の場合、スコア部の引裂き性が向上せず、開缶時にスコア脱線(開缶時にスコア部以外に亀裂が伝播すること)や開缶力の増大によるタブ折れといった開缶不良が生じ易くなる。一方、Feの含有量が0.50質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物の数密度や体積率が大きくなり、リベット成形性が低下する。従って、Feの含有量は0.10~0.50質量%とする。
Si:0.05~0.40質量%
Siは、アルミニウム合金板中にMg-Si系、Al-Fe(-Mn)-Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Siの含有量が0.05質量%未満の場合、Feと同様に開缶性が向上しない。また、アルミニウム合金板の原材料に使用するアルミニウム地金の必要純度が高くなるため、コストが増大する。一方、Siの含有量が0.40質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、リベット成形性が低下する。従って、Siの含有量は0.05~0.40質量%とする。
Siは、アルミニウム合金板中にMg-Si系、Al-Fe(-Mn)-Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Siの含有量が0.05質量%未満の場合、Feと同様に開缶性が向上しない。また、アルミニウム合金板の原材料に使用するアルミニウム地金の必要純度が高くなるため、コストが増大する。一方、Siの含有量が0.40質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、リベット成形性が低下する。従って、Siの含有量は0.05~0.40質量%とする。
Mn:0.01~0.50質量%
Mnは、アルミニウム合金板の強度を向上させる効果があるとともに、アルミニウム合金板中にAl-Fe-Mn系、Al-Fe-Mn-Si系金属間化合物を形成させ、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Mnの含有量が0.01質量%未満の場合、アルミニウム合金板の強度向上効果や缶蓋に成形したときの開缶性向上効果が得られない。一方、Mnの含有量が0.50質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、リベット成形性が低下する。従って、Mnの含有量は0.01~0.50質量%とする。
Mnは、アルミニウム合金板の強度を向上させる効果があるとともに、アルミニウム合金板中にAl-Fe-Mn系、Al-Fe-Mn-Si系金属間化合物を形成させ、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。Mnの含有量が0.01質量%未満の場合、アルミニウム合金板の強度向上効果や缶蓋に成形したときの開缶性向上効果が得られない。一方、Mnの含有量が0.50質量%を超える場合、アルミニウム合金板中の鋳造や熱延時に生成する金属間化合物が多くなり、リベット成形性が低下する。従って、Mnの含有量は0.01~0.50質量%とする。
Cu:0.01~0.30質量%
Cuは、アルミニウム合金板の強度を向上させる効果がある。また、固溶させることにより、加工硬化特性が向上する。Cuの含有量が0.01質量%末満の場合、母相への固溶量が少なく、強度と成形性のバランスが低下し、リベット成形性が向上しない。一方、Cuの含有量が0.30質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Cuの含有量は0.01~0.30質量%とする。
Cuは、アルミニウム合金板の強度を向上させる効果がある。また、固溶させることにより、加工硬化特性が向上する。Cuの含有量が0.01質量%末満の場合、母相への固溶量が少なく、強度と成形性のバランスが低下し、リベット成形性が向上しない。一方、Cuの含有量が0.30質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Cuの含有量は0.01~0.30質量%とする。
不可避不純物
本発明に係るアルミニウム合金は、前記必須成分以外に、残部Alと不可避不純物とからなる。不可避不純物は、Crが0.3質量%以下、Znが0.3質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下、その他の元素が各々0.05質量%以下の範囲内で許容される。不可避不純物の含有量がこの範囲内であれば、本発明に係るアルミニウム合金板の特性に影響しない。
本発明に係るアルミニウム合金は、前記必須成分以外に、残部Alと不可避不純物とからなる。不可避不純物は、Crが0.3質量%以下、Znが0.3質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下、その他の元素が各々0.05質量%以下の範囲内で許容される。不可避不純物の含有量がこの範囲内であれば、本発明に係るアルミニウム合金板の特性に影響しない。
(アルミニウム合金板の組織)
本発明では、前記した合金組成とした上で、この缶蓋用アルミニウム合金板の組織として、冷間圧延後に焼付塗装処理された状態にて、サブグレイン面積率を増加させ、成形性を保ったまま高強度化する。
本発明では、前記した合金組成とした上で、この缶蓋用アルミニウム合金板の組織として、冷間圧延後に焼付塗装処理された状態にて、サブグレイン面積率を増加させ、成形性を保ったまま高強度化する。
このために、前記焼付塗装処理された後の缶蓋用アルミニウム合金板の、圧延面と平行な面における、板厚中心から両厚さ方向に0.05mm(厚さ0.1mm)の板厚中心部の領域(以下、単に板厚中心部と言う)の組織として、5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率が平均で10%以上、90%以下であることとする。
これによって、本発明は、従来は兼備させることが困難であった、リベット成形性と高強度化とを両立させることができる。すなわち、缶蓋用アルミニウム合金板の特性として、塗装焼付け処理を模擬した熱処理後の缶蓋用アルミニウム合金板の0.2%耐力と、この板のリベット成形性とを、共に高いレベルとすることができる。
より具体的には、後述する実施例の通り、0.2%耐力が360MPa超でも限界張出高さを1.45mm以上というレベルの高強度、高成形性とすることができる。ここで、板の限界張出高さが1.45mm以上であれば、缶蓋の実成形時にも十分な高さの前記した突起(ボタン)を成形することができ、十分なリベット成形性を有している。
なお、このデータは、後述する実施例の通り、塗装焼付け処理を模擬した255℃×20秒の熱処理後の0.2%耐力と、この板のリベット成形性の評価をφ6mmの微小張出試験を行った際の限界張出高さとした場合の、強度と成形性との関係である。
サブグレイン
以下に、サブグレインの規定につき具体的に説明する。
サブグレインは、亜結晶とも称され、小さな不定形の粒であり、冷延などにより加工歪を与えられて転位を導入された材料(組織)が、与えられた温度、時間、応力のもと、エネルギーの低い構造になろうと回復を進めることによって生じる。
以下に、サブグレインの規定につき具体的に説明する。
サブグレインは、亜結晶とも称され、小さな不定形の粒であり、冷延などにより加工歪を与えられて転位を導入された材料(組織)が、与えられた温度、時間、応力のもと、エネルギーの低い構造になろうと回復を進めることによって生じる。
すなわち、缶蓋用アルミニウム合金板の場合、サブグレインは、冷延によって導入された転位が、焼付け塗装などの加熱によって、合体消滅と再配列することにより、転位セル壁や変形帯などの転位密集領域の転位密度が減少して、シャープな境界になることで生じる。前記転位密集領域は、新たに移動してきた転位と合体消滅する確率が高く、加工硬化特性が低下するが、サブグレインの境界は転位の移動を妨げ、加工硬化特性が向上すると考えられる。加工硬化特性が向上すると均一変形能が向上するため、二軸張出変形であるリベット成形性が向上すると考えられる。また、サブグレインは、リベット成形性の向上効果の他に、強度の向上効果もある。
このサブグレインは、図1に示す通り、5万倍の倍率の透過型電子顕微鏡により、結晶粒の中に出来る、その境界である外縁形状がシャープ(鮮明で明確)な、内部に転位の全くない、独立あるいは孤立した小さな一つ一つの不定形の粒として識別できる。したがって、この透過型電子顕微鏡の観察視野面積に対する、個々のサブグレインの計測面積の総計の割合として、規定するサブグレイン面積率を算出することができる。
これに対して、前記転位密集領域と接するか交わっており、その境界が幅を持っており、独立した小さな粒として識別できにくい粒は、本発明では、サブグレインとは見なさず、カウントしない。このような粒は、具体的には、図1に示すような、その一部か多くの部分が、前記転位密集領域と接するか交わっているか、内部に転位があり、全体としてその境界(外縁形状)がシャープでなく幅を持っている粒である。このような粒は、独立あるいは孤立した小さな一つ一つの粒として識別できにくいので、サブグレインとは見なさず、カウントしない。これら一連の求め方を総称して、本発明では「5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率」と称している。
本発明では、缶蓋用アルミニウム合金板の板厚中心部における、このようなサブグレイン面積率を平均で10%以上、90%以下であることとする。
このサブグレイン面積率が平均で10%未満と小さいと、板が高強度となるほど、優れたリベット成形性と高強度とを両立することができない。すなわち、前記合金組成を満たし、前記Mgの固溶量の規定を満たしたとしても、缶蓋用アルミニウム合金板の成形性を保ったまま高強度化できない。
サブグレイン面積率は大きいほどリベット成形性が向上するが、実際の製造限界から、その面積率の上限を平均で90%とする。
したがって、本発明では、缶蓋用アルミニウム合金板の板厚中心部における、このようなサブグレイン面積率を平均で10%以上、90%以下であることとする。
サブグレイン面積率は大きいほどリベット成形性が向上するが、実際の製造限界から、その面積率の上限を平均で90%とする。
したがって、本発明では、缶蓋用アルミニウム合金板の板厚中心部における、このようなサブグレイン面積率を平均で10%以上、90%以下であることとする。
ちなみに、前記特許文献1は、本発明の缶蓋用アルミニウム合金板と、合金組成やサブグレインの面積率(面積占有率)は重複するものの、その製造条件の違いから、Mgの固溶量が低くなる。前記特許文献1は、板の冷間圧延に、シングル圧延機ではなく、圧延スタンドが直列に並ぶタンデム圧延機を使用しており、強制的に冷却しない限り、必然的に温度が上昇して、圧延時の温度が比較的高温となって、Mgの析出が進み、Mgの固溶量が少なくなる。すなわち、缶蓋用アルミニウム合金板の成形性を保ったまま高強度化できずに、本発明とは、同じ強度レベルで比較した場合の、リベット成形性が低下する。
以上説明した、本発明で規定する板の組織そして特性は、前記した通り、缶蓋用アルミニウム合金板として、冷延板(冷延後の板)に塗装および塗装焼付け処理を施した後のアルミニウム合金板(プレコート板)の組織と特性か、この板を成形した缶蓋の組織と特性である。また、このような塗装や塗装焼付け処理を施さずとも、あるいは缶蓋に成形せずとも、冷延板に、塗装焼付け処理を模擬した、後述する特定条件での熱処理を施した後の、板の組織と特性であっても良い。これらの組織と特性とは、前記塗装焼付け処理と前記熱処理との条件が同じであれば、同じか、あるいは僅差により同じと見なすことができる組織と特性となる。
(製造方法)
次に、本発明における缶蓋用アルミニウム合金板の製造方法を説明する。
本発明のアルミニウム合金板の製造工程自体は、常法のように、前記組成のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を熱処理により均質化する均熱処理工程と、均質化した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程によって製造される。
次に、本発明における缶蓋用アルミニウム合金板の製造方法を説明する。
本発明のアルミニウム合金板の製造工程自体は、常法のように、前記組成のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を熱処理により均質化する均熱処理工程と、均質化した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程によって製造される。
但し、本発明では、サブグレイン面積率とMgの固溶量という冶金的な手段を選択しているので、均熱処理によってのみMgを固溶させ、中間焼鈍を行わない冷間圧延であっても、高い材料強度と十分なリベット成形性とを兼備する缶蓋用アルミニウム合金板を製造することができる。
Mgの固溶量は均熱処理によって確保でき、上流側である均熱処理によってのみMgを固溶させて、鋳塊のMg固溶量を一旦確保すれば、続く熱延や冷延などの下流側で、この確保したMg固溶量を析出によって減らさないようにしてやることによって、最終の冷延板のMgの固溶量を所望の値(レベル)に確保できる。すなわち、均熱処理によってのみMgを固溶させれば、冷延途中の中間焼鈍などでMgを固溶させずとも、最終の冷延板のMgの固溶量を所望の値(レベル)に確保でき、中間焼鈍を省略することが可能となる。そして、この中間焼鈍を行わない冷間圧延でも、中間焼鈍を行う冷間圧延と同様に、冷延板のサブグレイン面積率を制御することができる。
このための好ましい板の製造方法としては、先ず、前記した組成のアルミニウム合金鋳塊を、Mgを固溶させるため、500℃を超え、550℃以下の温度範囲で1時間以上保持する均熱処理を行う。次に、この均熱処理後に、全てのパスの定常速度を25m/分以上とし、かつ、パス間における粗圧延板が最低となる温度を450℃以上とした熱間粗圧延を行い、次いで終了温度を300~360℃の範囲とした熱間仕上圧延を行って熱延板とする。そして、この熱延板を、中間焼鈍を行わずに、かつ、最終の冷間圧延後のコイルへの巻き取り温度を60~120℃とし、総圧延率を85%以上とした冷間圧延を行って冷延板とする。
以下に、各製造工程ごとの各々好ましい条件と、その意義について説明する。
まず、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により、前記組成のアルミニウム合金を鋳造する。
まず、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により、前記組成のアルミニウム合金を鋳造する。
均熱処理:
次に、この鋳塊表層の不均一な組織となる領域を面削にて除去した後、均熱処理(均質化熱処理)を施す。この均熱処理によってのみMgを固溶させて、本発明で規定した前記Mgの固溶量とする。また、内部応力を除去し、鋳造時に偏析した溶質元素を均質化し、鋳造時に晶出した金属間化合物を拡散固溶させて、組織を均質化する。このために、均質化熱処理は500℃を超え、550℃以下の温度範囲で1時間以上保持する条件範囲から、必要とするMgの固溶量に応じて選択する。
次に、この鋳塊表層の不均一な組織となる領域を面削にて除去した後、均熱処理(均質化熱処理)を施す。この均熱処理によってのみMgを固溶させて、本発明で規定した前記Mgの固溶量とする。また、内部応力を除去し、鋳造時に偏析した溶質元素を均質化し、鋳造時に晶出した金属間化合物を拡散固溶させて、組織を均質化する。このために、均質化熱処理は500℃を超え、550℃以下の温度範囲で1時間以上保持する条件範囲から、必要とするMgの固溶量に応じて選択する。
均質化熱処理温度が500℃以下の場合又は保持時間が1時間未満の場合、Mgの固溶量が減り、本発明で規定した前記Mgの固溶量とすることができない。また前記均質化効果が低下して、機械的な特性や開缶性が低下する。また、均質化熱処理温度が550℃を超える場合、熱間圧延時にバーニングが生じる。また、保持時間の上限は20時間であり、これを超えても、Mgの固溶量に大差なく、生産性が低下する。
熱間圧延:
この均質化熱処理後、鋳塊を冷却することなく続けて、あるいは所定の開始温度まで冷却して、まず熱間粗圧延し、さらに熱間仕上圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。この際、均熱処理によって確保したMgの固溶量を減らさないように、Mgの析出を抑えて、熱間圧延を行う。
この均質化熱処理後、鋳塊を冷却することなく続けて、あるいは所定の開始温度まで冷却して、まず熱間粗圧延し、さらに熱間仕上圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。この際、均熱処理によって確保したMgの固溶量を減らさないように、Mgの析出を抑えて、熱間圧延を行う。
このために、熱間粗圧延は10分以内で行うことが好ましく、このため、全てのパスの定常速度を最低でも25m/分以上とし、かつ、最初のパスから最終のパスのすべてのパス間での板温度を450℃以上とする(パス間における粗圧延板が最低となる温度を450℃以上とする)。
これらのパスのうち、1パスでも、25m/分未満の速度となると、圧延時間が長くなって、Mg-Si系の化合物が析出しやすくなり、固溶Mg量が低下する。
また、これらのパスのうち、1パスでも、板温度が450℃未満となると、Mg-Si系の化合物が析出しやすくなり、固溶Mg量が低下する。
また、熱間粗圧延の終了温度が450℃未満となると、熱延を粗圧延と仕上げ圧延とに分けて、かつ、これらの圧延を連続して実施するに際し、熱間粗圧延の終了温度が低くなり過ぎて、次工程の熱間仕上圧延で圧延温度が低くなって、エッジ割れが生じやすくなる。
これらのパスのうち、1パスでも、25m/分未満の速度となると、圧延時間が長くなって、Mg-Si系の化合物が析出しやすくなり、固溶Mg量が低下する。
また、これらのパスのうち、1パスでも、板温度が450℃未満となると、Mg-Si系の化合物が析出しやすくなり、固溶Mg量が低下する。
また、熱間粗圧延の終了温度が450℃未満となると、熱延を粗圧延と仕上げ圧延とに分けて、かつ、これらの圧延を連続して実施するに際し、熱間粗圧延の終了温度が低くなり過ぎて、次工程の熱間仕上圧延で圧延温度が低くなって、エッジ割れが生じやすくなる。
この熱間粗圧延に続いて、終了温度を、好ましくは300~360℃以上とした熱間仕上圧延を、Mg-Si系の化合物析出防止のために、遅滞なく、あるいは連続的に行って、熱延板とする。熱間仕上圧延の終了温度が300℃未満では、圧延荷重が高くなって生産性が低下する。一方、加工組織を多く残さず再結晶組織とするために、熱間仕上圧延の終了温度を高くした場合、この温度が360℃を超えると、Mg-Si系の化合物が析出しやすくなって固溶Mg量が低下する。
冷間圧延:
前記熱間圧延板を、冷間圧延の前や、パス間などの途中で、中間焼鈍を行わずに、冷間圧延する。この冷間圧延は、圧延スタンドがシングル(1スタンド)か、2スタンド以上直列に配置されたタンデム圧延機で、必要なパス数(通板数)の冷延を行う。
前記熱間圧延板を、冷間圧延の前や、パス間などの途中で、中間焼鈍を行わずに、冷間圧延する。この冷間圧延は、圧延スタンドがシングル(1スタンド)か、2スタンド以上直列に配置されたタンデム圧延機で、必要なパス数(通板数)の冷延を行う。
冷間圧延率(総圧延率)は85%以上とする。冷間圧延率(総圧延率)が85%以上で、転位密度が高くなり、焼付塗装処理後のサブグレイン面積率が増す。転位を導入することにより、前記筋状の転位がタングル(もつれ、からみ)しやすくなり、林立転位やセル壁やせん断帯などの転位密集領域が多く形成される。そして、その後の焼付け塗装などの熱処理により、転位密集領域からサブグレインが形成され、本発明で規定する範囲のサブグレイン面積率とできる。
一方、冷間圧延率が85%未満の場合、圧延による蓄積歪みが不足し、転位密集領域が少なくなり(不足して)、焼付け塗装後のサブグレイン面積率も減少し、リベット成形性を含む成形性が低下する。
一方、冷間圧延率が85%未満の場合、圧延による蓄積歪みが不足し、転位密集領域が少なくなり(不足して)、焼付け塗装後のサブグレイン面積率も減少し、リベット成形性を含む成形性が低下する。
また、最終の冷延後(最終パス後あるいは最終スタンド出側)の材料温度(コイルへの巻取り温度)は60~120℃の範囲とする。この冷延後の材料温度が120℃を超えて高すぎると、冷延板の転位密度が低下して、その後の焼付塗装処理後のサブグレイン面積率が10%以上にならない。一方、この冷延後の材料温度が60℃未満と低すぎると、冷延板の転位密度が高すぎて、焼付塗装処理中に回復が促進しやすくなり、強度が低下する。
以上の工程で製造した缶蓋用アルミニウム合金板は、クロメート系やジルコン系などの表面処理を施し、エポキシ系樹脂や塩ビゾル系、ポリエルテル系などの有機塗料を塗布し、PMT(Peak Metal Temperature:メタル到達温度)が230~280℃程度で、塗装焼付け処理して、プレコート板とされた後、缶蓋へと成形される。本発明で、強度とリベット成形性の評価のための、塗装焼付け処理を模擬した、前記熱処理は、この塗装焼付け処理条件範囲より、再現性を持たせるために255℃×20秒のワンポイントとして選択している。
(缶蓋の作製方法)
素材アルミニウム合金板(冷延板)から缶蓋を作製する公知の方法の一例を以下に説明する。
素材アルミニウム合金板(冷延板)から缶蓋を作製する公知の方法の一例を以下に説明する。
前記したように、予め塗装および焼付塗装処理された素材アルミニウム合金板(プレコート板)を円板形状に打ち抜いた(ブランキング加工)ブランク材を、プレス機で絞り加工し、外周部のカール加工を施した後、カール部にシール用のコンパウンドを塗布して、シェルを作る。
この後、コンバージョン成形として、以下の成形を行う。プレス機で、シェルの中央にタブを取り付けるための凸部を形成するリベット成形を行う。このリベット成形は、缶蓋中央部を張り出させるバブル成形工程と、この張出部(バブル)を1~3工程で縮径しつつ急峻な突起とするボタン成形工程とで構成される。
この後、コンバージョン成形として、以下の成形を行う。プレス機で、シェルの中央にタブを取り付けるための凸部を形成するリベット成形を行う。このリベット成形は、缶蓋中央部を張り出させるバブル成形工程と、この張出部(バブル)を1~3工程で縮径しつつ急峻な突起とするボタン成形工程とで構成される。
次に、断面がV字形の刃先をした金型を押し付けて、飲み口部の溝である、図2、3のスコア3の成形、パネルの剛性を高めるための凹凸や文字の成形を行う。
更に、シェルの中央に加工した凸部に、別途成形したタブをかしめて一体化する(これをステイク工程という)。この一体化した缶蓋の平面図を図2に示す。
そして、別途DI成形され、開口部から内容物(飲料、食品)が充填されたアルミニウム合金製の缶胴の開口部に、この缶蓋を巻き締めて封止される。
更に、シェルの中央に加工した凸部に、別途成形したタブをかしめて一体化する(これをステイク工程という)。この一体化した缶蓋の平面図を図2に示す。
そして、別途DI成形され、開口部から内容物(飲料、食品)が充填されたアルミニウム合金製の缶胴の開口部に、この缶蓋を巻き締めて封止される。
以上、本発明を実施するための形態について述べたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
(供試材アルミニウム合金板)
表1に示す、No.1~26の組成の各アルミニウム合金を半連続鋳造法(DC)にて鋳造し、各例とも共通して、表層を面削した鋳塊(スラブ)を作製した。そして、表1に示す通り、この鋳塊の熱間圧延、冷間圧延での諸条件を変えて、前記冷間圧延後に焼付塗装処理された状態での、Mgの固溶量とサブグレイン面積率とを作り分けた。
表1に示す、No.1~26の組成の各アルミニウム合金を半連続鋳造法(DC)にて鋳造し、各例とも共通して、表層を面削した鋳塊(スラブ)を作製した。そして、表1に示す通り、この鋳塊の熱間圧延、冷間圧延での諸条件を変えて、前記冷間圧延後に焼付塗装処理された状態での、Mgの固溶量とサブグレイン面積率とを作り分けた。
各例とも共通する製造条件は以下の通りとした。すなわち、各例とも共通して、520℃×4時間の均質化熱処理を施した後、この520℃の温度で熱間粗圧延を開始し、この熱間粗圧延の終了温度を450℃以上とし、熱間粗圧延終了後に、直ちに熱間仕上圧延を開始し、板厚1.2~4.3mmの熱間圧延板とした。そして、この熱延板を、熱延後あるいは冷延のパス間で中間焼鈍を一切行わずに、圧延スタンド数が2基のタンデム冷間圧延を用いて、板厚0.215mmの缶蓋用冷延板を作成した。
この際、表1に示すように、前記熱間粗圧延における定常速度やパス間における粗圧延板の最低温度、冷延における総圧延率と、最終の冷延後(最終圧延機出側)の材料温度(コイルへの巻取り温度)を潤滑油やクーラントの量などの制御により種々変えて、Mgの固溶量やサブグレイン面積率を制御した。
そして、このように製造した、表1のNo.1~26のアルミニウム合金板を、塗装・焼付け工程を模擬した、共通して、オイルバスによる255℃×20秒の熱処理を施したものを、以下の組織や特性の測定、評価のための供試材とした。
そして、このように製造した、表1のNo.1~26のアルミニウム合金板を、塗装・焼付け工程を模擬した、共通して、オイルバスによる255℃×20秒の熱処理を施したものを、以下の組織や特性の測定、評価のための供試材とした。
(Mg固溶量)
前記供試材のMg固溶量(固溶割合)を、以下の要領で測定した。
すなわち、先ず、分解フラスコにフェノールを入れて加熱した後、測定対象となる前記各供試板(板厚中心部)から採取した試料を、この分解フラスコに移し入れて、熱フェノールにより、加熱分解する。次に、メッシュ(捕集粒子径)が0.1μm孔のメンブレンフィルターを用いてろ過し、ろ液をICP(Inductively Coupled Plasma)発光分光分析装置内に導入し、ネブライザーで霧状にして小さなミストのみプラズマ内に吹き込み、Mgの固溶量を測定した。なお、ろ液に0.1μm未満の析出物が含まれていたとしても、前記霧状にした際に大きなミストとして分析されずに排出されるため、分析値には0.1μm未満の析出物も含まれない。そして、このMgの固溶量の、この板のMg含有量に対する割合(%)を計算した。この結果を表1に示す。
前記供試材のMg固溶量(固溶割合)を、以下の要領で測定した。
すなわち、先ず、分解フラスコにフェノールを入れて加熱した後、測定対象となる前記各供試板(板厚中心部)から採取した試料を、この分解フラスコに移し入れて、熱フェノールにより、加熱分解する。次に、メッシュ(捕集粒子径)が0.1μm孔のメンブレンフィルターを用いてろ過し、ろ液をICP(Inductively Coupled Plasma)発光分光分析装置内に導入し、ネブライザーで霧状にして小さなミストのみプラズマ内に吹き込み、Mgの固溶量を測定した。なお、ろ液に0.1μm未満の析出物が含まれていたとしても、前記霧状にした際に大きなミストとして分析されずに排出されるため、分析値には0.1μm未満の析出物も含まれない。そして、このMgの固溶量の、この板のMg含有量に対する割合(%)を計算した。この結果を表1に示す。
(サブグレイン面積率)
前記供試材の圧延面と平行な面における、各板厚中心部の組織について、5万倍の倍率の透過型電子顕微鏡によりサブグレイン面積率を測定して、測定視野数に応じた平均値にて算出した。
前記供試材の圧延面と平行な面における、各板厚中心部の組織について、5万倍の倍率の透過型電子顕微鏡によりサブグレイン面積率を測定して、測定視野数に応じた平均値にて算出した。
具体的には、前記供試材を機械研磨して、板厚中心から両厚さ方向に0.05mm(厚さ0.1mm)とした後、ツインジェット式電解研磨法にて板厚中心から厚さ100nmの薄膜にし、この薄膜を透過型電子顕微鏡(TEM)にて、5万倍の倍率で4視野撮影した。透明のフィルムに撮影画像からサブグレインのみを転写し、画像解析ソフトImage-Pro Plusを用いて撮影範囲内のサブグレインの総面積を測定し、視野面積(撮影面積)に対する、面積率を、前記4視野の平均で算出した。
この際、前記した通り、ここで、サブグレインとは、幅を持たないシャープな境界で囲まれている粒とし、全体としてその境界(外縁形状)がシャープでなく幅を持っており、独立あるいは孤立した小さな一つ一つの粒として識別できにくい粒は、サブグレインとは見なさず、カウントしなかった。
(0.2%耐力)
前記供試材を、引張方向が圧延方向と平行になるようにJIS-5号引張試験片を作製した。この試験片を用い、JIS-Z2241に準じて引張試験を行い、0.2%耐力を求めた。0.2%耐力の適正範囲は300MPa以上であり、この範囲であれば、薄肉化された缶蓋であっても耐圧強度を満足する。
前記供試材を、引張方向が圧延方向と平行になるようにJIS-5号引張試験片を作製した。この試験片を用い、JIS-Z2241に準じて引張試験を行い、0.2%耐力を求めた。0.2%耐力の適正範囲は300MPa以上であり、この範囲であれば、薄肉化された缶蓋であっても耐圧強度を満足する。
(リベット成形性)
リベット成形性は、前記バブル工程を模擬した試験にてリベット成形性を評価した。すなわち、前記供試材に対し、φ6mmの微小張出試験を行い、くびれや割れが発生しない限界張出高さを求めた。0.2%耐力が高くなるほど通常は限界張出高さが低下するので、0.2%耐力が310~330MPaの範囲では限界張出高さを1.60mm超、0.2%耐力が330MPaを超え、360MPa以下の範囲では限界張出高さを1 .50mm以上、0.2%耐力が360MPa超では限界張出高さを1.45mm以上を適正範囲とした。アルミニウム合金板の限界張出高さが1.45mm超であれば、実成形時に十分な高さのボタンを成形することができる。
リベット成形性は、前記バブル工程を模擬した試験にてリベット成形性を評価した。すなわち、前記供試材に対し、φ6mmの微小張出試験を行い、くびれや割れが発生しない限界張出高さを求めた。0.2%耐力が高くなるほど通常は限界張出高さが低下するので、0.2%耐力が310~330MPaの範囲では限界張出高さを1.60mm超、0.2%耐力が330MPaを超え、360MPa以下の範囲では限界張出高さを1 .50mm以上、0.2%耐力が360MPa超では限界張出高さを1.45mm以上を適正範囲とした。アルミニウム合金板の限界張出高さが1.45mm超であれば、実成形時に十分な高さのボタンを成形することができる。
(開缶荷重)
前記供試材を、204径フルフォーム・エンド金型にてシェル成型、コンバージョン成形、タブのステイクを行った後に、開缶試験を行った。
図2は、開缶試験に用いた缶蓋の平面図である。
図3は、開缶試験に用いた缶蓋のスコア3の断面図である。
図4Aは、開缶時の荷重を測定する開缶荷重測定機の概要図であり、その斜視図である。
図4Bは、開缶荷重測定機5の測定時の缶蓋1付近の断面模式図である。
図4Cは、開缶荷重測定機5に缶蓋1を設置するときの缶蓋1の向きを示す正面模式図である。
前記供試材を、204径フルフォーム・エンド金型にてシェル成型、コンバージョン成形、タブのステイクを行った後に、開缶試験を行った。
図2は、開缶試験に用いた缶蓋の平面図である。
図3は、開缶試験に用いた缶蓋のスコア3の断面図である。
図4Aは、開缶時の荷重を測定する開缶荷重測定機の概要図であり、その斜視図である。
図4Bは、開缶荷重測定機5の測定時の缶蓋1付近の断面模式図である。
図4Cは、開缶荷重測定機5に缶蓋1を設置するときの缶蓋1の向きを示す正面模式図である。
缶蓋1をスコア3に対してタブ4が上方となるように、開缶荷重測定機5に缶蓋1を設置する(図4C)。缶蓋1のタブ4に掛止具6を引っ掛けて、掛止部7とする(図4B)。掛止具6を水平方向へ引っ張って3Nの引張荷重を負荷し、その状態で掛止具6を静止させた後、缶蓋1をX方向に回転させた。ロードセルにて荷重を測定し、最も高い荷重を開缶荷重とした。開缶荷重の適正範囲は25N以下とした。
表1に示すように、本発明の規定範囲内のNo.1~10の発明例は、成分組成が発明範囲内であり、熱間粗圧延は、好ましい定常速度とされて10分以内で終了し、かつ、パス間における粗圧延板の最低温度や仕上げ圧延の終了温度も、そして、冷延における総圧延率や巻き取り温度など、全て好ましい製造条件で製造されている。
このため、Mgの固溶量割合が80%以上であり、板厚中心部は、図1に示す組織となって、5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率が平均で10%以上、90%以下である。すなわち、これら発明例は缶蓋用アルミニウム合金板の組織として、サブグレイン面積率を増加させた組織としている。因みに、この図1は発明例1の例である。
この結果、No.1~10の発明例は、表1に示すように、0.2%耐力及び開缶荷重が適正で、リベット成形性が優れる。すなわち、成形性を保ったまま高強度化させており、リベット成形性と高強度化とを両立させることができている。
具体的には、0.2%耐力が310~330MPaの範囲では限界張出高さを1.60mm超、0.2%耐力が330MPaを超え、360MPa以下の範囲では限界張出高さを1.50mm以上、0.2%耐力が360MPa超でも限界張出高さを1.45mm以上というレベルの高強度、高成形性とすることができている。
従って、No.1~10のアルミニウム合金板は、肉厚が0.215mmと薄いが、イージーオープン缶蓋用として好適に使用し得る。
従って、No.1~10のアルミニウム合金板は、肉厚が0.215mmと薄いが、イージーオープン缶蓋用として好適に使用し得る。
一方、表1のNo.11~26の比較例は、成分組成、Mgの固溶量割合、板厚中心部の組織としてのサブグレイン面積率、のいずれかが本発明の規定範囲内でなく、下記のとおり、0.2%耐力、開缶荷重及びリベット成形性のいずれかが適正値を満たさない。
No.11は、Mg含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶割合は満たし、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が低すぎる。
No.12は、Mg含有量が上限を超えて過剰なため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が360MPaを超えた範囲での、前記発明例並みの限界張出高さ1.45mm超にはならず、リベット成形性が劣り、開缶荷重も比較的大きい。
No.13は、Fe含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、開缶荷重が大きすぎて、開缶性が低い。
No.14は、Fe含有量が上限を超えて過剰なため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.15は、Si含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、開缶荷重が大きすぎて、開缶性が低い。
No.16は、Si含有量が上限を超えて過剰なため、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、Mgの固溶量割合が低く、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.17は、Mn含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が低すぎ、開缶荷重も大きすぎ、開缶性が低い。
No.18は、Mn含有量が上限を超えて過剰なため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が360MPaを超えた範囲での、前記発明例並みの限界張出高さ1.45mm超にはならず、リベット成形性が劣る。
No.19は、Cuを含有せず、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.20は、Cu含有量が上現を超えて過剰なため、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が360MPaを超えた範囲での、前記発明例並みの限界張出高さ1.45mm超にはならず、リベット成形性が劣る。
No.13は、Fe含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、開缶荷重が大きすぎて、開缶性が低い。
No.14は、Fe含有量が上限を超えて過剰なため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.15は、Si含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、開缶荷重が大きすぎて、開缶性が低い。
No.16は、Si含有量が上限を超えて過剰なため、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、Mgの固溶量割合が低く、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.17は、Mn含有量が下限未満で不足するため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が低すぎ、開缶荷重も大きすぎ、開缶性が低い。
No.18は、Mn含有量が上限を超えて過剰なため、好ましい製造条件で製造され、Mgの固溶量割合や、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が360MPaを超えた範囲での、前記発明例並みの限界張出高さ1.45mm超にはならず、リベット成形性が劣る。
No.19は、Cuを含有せず、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が劣る。
No.20は、Cu含有量が上現を超えて過剰なため、好ましい製造条件で製造され、板厚中心部の組織のサブグレイン面積率を満たしているものの、0.2%耐力が360MPaを超えた範囲での、前記発明例並みの限界張出高さ1.45mm超にはならず、リベット成形性が劣る。
No.21は、合金組成は本発明範囲内であるものの、熱間粗圧延の定常速度が遅すぎて、Mgの析出を抑制できず、Mgの固溶量割合が少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が低い。
No.22は、合金組成は本発明範囲内であるものの、パス間における粗圧延板の最低温度が450℃未満となっており、Mg-Si系の化合物が析出しやすくなり、Mgの析出を抑制できず、Mgの固溶量割合が少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が低い。
No.23は、合金組成は本発明範囲内であるものの、仕上げ圧延の終了温度が高過ぎて、Mg-Si系の化合物が析出しやすくなり、Mgの析出を抑制できず、Mgの固溶量割合が少なすぎる。この結果、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が低い。
No.24は、合金組成は本発明範囲内であるものの、冷延における総圧延率が低すぎて、サブグレイン面積率が少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が劣り、高いリベット成形性と高強度とを兼備できていない。
No.25は、合金組成は本発明範囲内であるものの、冷延における最終巻き取り温度が低すぎ、冷延板の転位密度が高すぎて、焼付塗装処理中に回復が促進して0.2%耐力が低すぎ、高いリベット成形性と高強度とを兼備できていない。
No.26は、合金組成は本発明範囲内であるものの、冷間圧延の最終巻き取り温度が高すぎ、Mgの固溶割合やサブグレイン面積率が下限を外れて少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が劣り、高いリベット成形性と高強度とを兼備できていない。
No.22は、合金組成は本発明範囲内であるものの、パス間における粗圧延板の最低温度が450℃未満となっており、Mg-Si系の化合物が析出しやすくなり、Mgの析出を抑制できず、Mgの固溶量割合が少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が低い。
No.23は、合金組成は本発明範囲内であるものの、仕上げ圧延の終了温度が高過ぎて、Mg-Si系の化合物が析出しやすくなり、Mgの析出を抑制できず、Mgの固溶量割合が少なすぎる。この結果、0.2%耐力が310~330MPaの範囲での、前記発明例並みの限界張出高さ1.60mm超にはならず、リベット成形性が低い。
No.24は、合金組成は本発明範囲内であるものの、冷延における総圧延率が低すぎて、サブグレイン面積率が少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が劣り、高いリベット成形性と高強度とを兼備できていない。
No.25は、合金組成は本発明範囲内であるものの、冷延における最終巻き取り温度が低すぎ、冷延板の転位密度が高すぎて、焼付塗装処理中に回復が促進して0.2%耐力が低すぎ、高いリベット成形性と高強度とを兼備できていない。
No.26は、合金組成は本発明範囲内であるものの、冷間圧延の最終巻き取り温度が高すぎ、Mgの固溶割合やサブグレイン面積率が下限を外れて少なすぎる。この結果、0.2%耐力が330MPaを超え、360MPa以下の範囲での、前記発明例並みの限界張出高さ1.50mm以上にはならず、リベット成形性が劣り、高いリベット成形性と高強度とを兼備できていない。
以上の結果から、高いリベット成形性と高強度とを兼備するための、本発明の各要件や好ましい製造条件の意義が裏付けられる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2014年10月20日出願の日本特許出願(特願2014-213737)、2015年8月20日出願の日本特許出願(特願2015-162561)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2014年10月20日出願の日本特許出願(特願2014-213737)、2015年8月20日出願の日本特許出願(特願2015-162561)に基づくものであり、その内容はここに参照として取り込まれる。
以上、本発明は、従来のように、リベット成形性を得るために、材料強度を低下させる必要が無く、高い材料強度を有するにも関わらず、十分なリベット成形性を有することができる。このため、板厚を0.2mm程度に薄肉化した場合でも、飲料充填後の耐圧強度に不足がなく、リベット成形性及び開缶性にも優れた缶蓋用アルミニウム合金板を提供できる。
このため、缶蓋厚さが薄肉化、高強度化され、より厳しい使用条件での高いリベット成形性と高強度とが要求される缶蓋に用いられるアルミニウム合金板に最適である。
このため、缶蓋厚さが薄肉化、高強度化され、より厳しい使用条件での高いリベット成形性と高強度とが要求される缶蓋に用いられるアルミニウム合金板に最適である。
1 缶蓋
2 リベット部
3 スコア
4 タブ
5 開缶荷重測定機
6 掛止具
7 掛止部
2 リベット部
3 スコア
4 タブ
5 開缶荷重測定機
6 掛止具
7 掛止部
Claims (2)
- Mg:4.0~6.0質量%、Fe:0.10~0.50質量%、Si:0.05~0.40質量%、Mn:0.01~0.50質量%、Cu:0.01~0.30質量%を含有し、残部がAl及び不可避不純物からなり、中間焼鈍を行わない冷間圧延後に焼付塗装処理されたアルミニウム合金板であって、熱フェノールによる残渣抽出法で測定されたMgの固溶量が、前記Mg含有量の80%以上であり、圧延面と平行な面における、板厚中心から両厚さ方向に0.05mm(厚さ0.1mm)の領域の組織として、5万倍の倍率の透過型電子顕微鏡により測定されたサブグレイン面積率が平均で10%以上、90%以下であることを特徴とする缶蓋用アルミニウム合金板。
- 前記缶蓋用アルミニウム合金板が、鋳塊の均熱処理によってのみMgを固溶させたものである、請求項1に記載の缶蓋用アルミニウム合金板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580055191.4A CN106795594A (zh) | 2014-10-20 | 2015-10-20 | 罐盖用铝合金板 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014213737 | 2014-10-20 | ||
JP2014-213737 | 2014-10-20 | ||
JP2015162561A JP2016079501A (ja) | 2014-10-20 | 2015-08-20 | 缶蓋用アルミニウム合金板 |
JP2015-162561 | 2015-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063876A1 true WO2016063876A1 (ja) | 2016-04-28 |
Family
ID=55760909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079587 WO2016063876A1 (ja) | 2014-10-20 | 2015-10-20 | 缶蓋用アルミニウム合金板 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016063876A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3395707A1 (de) | 2017-04-26 | 2018-10-31 | Hydro Aluminium Rolled Products GmbH | Getränkedose aus einheitlicher aluminiumlegierung |
WO2019066049A1 (ja) * | 2017-09-28 | 2019-04-04 | 株式会社Uacj | 缶エンド用アルミニウム合金板及びその製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277694A (ja) * | 2006-04-12 | 2007-10-25 | Furukawa Sky Kk | 陽圧缶蓋用アルミニウム合金塗装板およびその製造方法 |
JP2009221567A (ja) * | 2008-03-18 | 2009-10-01 | Furukawa-Sky Aluminum Corp | 陽圧塗装缶蓋用アルミニウム合金板およびその製造方法 |
JP2011052290A (ja) * | 2009-09-03 | 2011-03-17 | Sumitomo Light Metal Ind Ltd | 缶エンド用アルミニウム合金板及びその製造方法。 |
WO2012070391A1 (ja) * | 2010-11-26 | 2012-05-31 | 住友軽金属工業株式会社 | 陽圧缶蓋用アルミニウム合金塗装板およびその製造方法 |
WO2015125791A1 (ja) * | 2014-02-18 | 2015-08-27 | 株式会社神戸製鋼所 | 缶蓋用アルミニウム合金板 |
-
2015
- 2015-10-20 WO PCT/JP2015/079587 patent/WO2016063876A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277694A (ja) * | 2006-04-12 | 2007-10-25 | Furukawa Sky Kk | 陽圧缶蓋用アルミニウム合金塗装板およびその製造方法 |
JP2009221567A (ja) * | 2008-03-18 | 2009-10-01 | Furukawa-Sky Aluminum Corp | 陽圧塗装缶蓋用アルミニウム合金板およびその製造方法 |
JP2011052290A (ja) * | 2009-09-03 | 2011-03-17 | Sumitomo Light Metal Ind Ltd | 缶エンド用アルミニウム合金板及びその製造方法。 |
WO2012070391A1 (ja) * | 2010-11-26 | 2012-05-31 | 住友軽金属工業株式会社 | 陽圧缶蓋用アルミニウム合金塗装板およびその製造方法 |
WO2015125791A1 (ja) * | 2014-02-18 | 2015-08-27 | 株式会社神戸製鋼所 | 缶蓋用アルミニウム合金板 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3395707A1 (de) | 2017-04-26 | 2018-10-31 | Hydro Aluminium Rolled Products GmbH | Getränkedose aus einheitlicher aluminiumlegierung |
WO2019066049A1 (ja) * | 2017-09-28 | 2019-04-04 | 株式会社Uacj | 缶エンド用アルミニウム合金板及びその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3913260B1 (ja) | ネック部成形性に優れたボトル缶用アルミニウム合金冷延板 | |
WO2012043582A1 (ja) | ボトル缶用アルミニウム合金冷延板 | |
JP6210896B2 (ja) | 缶蓋用アルミニウム合金板およびその製造方法 | |
WO2013118611A1 (ja) | Di缶胴用アルミニウム合金板 | |
US9546411B2 (en) | Aluminum-alloy sheet and method for producing the same | |
JP5568031B2 (ja) | ボトル缶用アルミニウム合金冷延板 | |
WO2014129385A1 (ja) | 缶ボディ用アルミニウム合金板及びその製造方法 | |
WO2015155911A1 (ja) | 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板およびその製造方法 | |
WO2015125791A1 (ja) | 缶蓋用アルミニウム合金板 | |
JP2016141886A (ja) | 缶蓋用アルミニウム合金板 | |
WO2016063876A1 (ja) | 缶蓋用アルミニウム合金板 | |
JP2016079502A (ja) | 缶蓋用アルミニウム合金板 | |
JP2016079501A (ja) | 缶蓋用アルミニウム合金板 | |
JP6289152B2 (ja) | 缶蓋用アルミニウム合金板 | |
JP2016079503A (ja) | 缶蓋用アルミニウム合金板 | |
WO2017065137A1 (ja) | 缶蓋用アルミニウム合金板 | |
JP2007224380A (ja) | 広口ボトル缶キャップ用高強度アルミニウム合金板 | |
JP2022114208A (ja) | 缶蓋用アルミニウム合金塗装板 | |
JP2017066430A (ja) | 缶蓋用アルミニウム合金板 | |
JP6289153B2 (ja) | 缶蓋用アルミニウム合金板 | |
JP2002322530A (ja) | 容器用アルミニウム箔およびその製造方法 | |
JP7549563B2 (ja) | タブ用アルミニウム合金塗装板 | |
JP2017206765A (ja) | 缶蓋用アルミニウム合金板 | |
JP2017203201A (ja) | 缶蓋用アルミニウム合金板 | |
JP6033192B2 (ja) | 負圧缶蓋用アルミニウム合金板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15852633 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15852633 Country of ref document: EP Kind code of ref document: A1 |