WO2019066049A1 - 缶エンド用アルミニウム合金板及びその製造方法 - Google Patents

缶エンド用アルミニウム合金板及びその製造方法 Download PDF

Info

Publication number
WO2019066049A1
WO2019066049A1 PCT/JP2018/036514 JP2018036514W WO2019066049A1 WO 2019066049 A1 WO2019066049 A1 WO 2019066049A1 JP 2018036514 W JP2018036514 W JP 2018036514W WO 2019066049 A1 WO2019066049 A1 WO 2019066049A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy sheet
rolling
mass
organic resin
Prior art date
Application number
PCT/JP2018/036514
Other languages
English (en)
French (fr)
Inventor
亮太 森
峰光 岡田
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2019066049A1 publication Critical patent/WO2019066049A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D17/00Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions
    • B65D17/28Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions at lines or points of weakness
    • B65D17/34Arrangement or construction of pull or lift tabs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present disclosure relates to an aluminum alloy sheet for can ends and a method of manufacturing the same.
  • beverage cans and food cans made of metal such as aluminum or iron are beverage cans and food cans made of metal such as aluminum or iron.
  • the composition of the beverage can is, for example, a two-piece can consisting of a cylindrical body with a bottom and a disc-like can end for sealing the body. Further, as a configuration of the beverage can, for example, there is a three-piece can comprising a pair of can ends and a body which is a separate member.
  • Patent Document 1 discloses a can end aluminum alloy sheet having high pressure resistance.
  • the method of manufacturing the can end includes, for example, a shell process, a curl forming process, a rivet forming process, a scoring process and the like.
  • the shell process is a process of punching a disc-like shell from a can end aluminum alloy sheet and performing deep drawing on the shell.
  • the curling step is a step of curling the shell to enhance the tightness between the can end and the body.
  • the rivet forming step is a step of forming a rivet on the shell.
  • the rivet is the site for attaching the open tub to the shell.
  • the score processing step is a step of forming the spout in the shell.
  • the rivet forming step is a step of performing complex processing such as bubble forming, baton forming, and stake on the central portion of the shell.
  • Bubble molding is extrusion molding.
  • hemispherical projections are formed on the opposite surface of the shell by pressing the convex portion of the lower mold against one surface of the shell.
  • Baton molding is draw molding.
  • hemispherical projections formed by bubble molding are reduced in diameter in a plurality of stages.
  • the diameter reducing method is a method in which the hemispherical protrusion is sandwiched between the convex portion of the lower mold pressed against the inner surface of the can and the concave portion of the upper mold pressed against the outer surface of the can.
  • the hemispherical projections are finally reduced in diameter to the same extent as the size of the holes made in the tabs.
  • the diameter-reduced projections are compressed by the upper and lower molds to reduce the plate thickness. Also, bend the end of the protrusion strongly and fasten the tab to the protrusion.
  • cracks and cracks may occur in the can end aluminum alloy sheet.
  • the protrusions formed in the bubble forming and baton forming may be low, and the material may be insufficient at the time of compression in the stake process. In this case, the diameter of the rivet may be reduced, resulting in inability to attach the tab or insufficient fixing of the tab.
  • a can end aluminum alloy sheet having excellent formability it is preferable to provide a can end aluminum alloy sheet having excellent formability and a method for producing the same.
  • One aspect of the present disclosure is an aluminum alloy sheet for can ends, and the aluminum alloy sheet for can ends is Mg: 4.0 to 5.5 mass%, Mn: 0.20 to 0.50 mass%, Fe Aluminum alloy sheet containing 0.10 to 0.50 mass%, Si: 0.03 to 0.30 mass%, and Cu: 0.20 mass% or less, the balance being made of Al and unavoidable impurities
  • a steel ball of diameter 4.8 mm is pressed against the first surface with a load of 500 gf, and the steel ball is the first surface Rolling direction on
  • the coefficient of dynamic friction of the first surface when sliding at a speed of 60 mm / min in the vertical direction is 0.01 or more and 0.03 or less, and a steel ball with a diameter of 4.8 mm is applied to the second surface under a
  • the aluminum alloy sheet for can ends which is one aspect of the present disclosure is excellent in formability.
  • Another aspect of the present disclosure is a method for producing an aluminum alloy sheet for can ends, comprising Mg: 4.0 to 5.5% by mass, Mn: 0.20 to 0.50% by mass, Fe: 0.10.
  • a homogenizing heat treatment step of holding at 2 to 24 hours at ⁇ 540 ° C and a rough hot rolling step of obtaining hot rough rolled material under rough rough rolling of the aluminum alloy ingot under conditions that the end temperature is 460 to 540 ° C
  • a hot finish rolling step of hot finish rolling to obtain a hot finish rolled material under the condition that the finish temperature of the rough rough rolled material is 300 to 370 ° C., and the hot finish rolled material at room temperature to 150 ° C.
  • the surface of the organic resin film covering one surface of the aluminum alloy plate is a first surface
  • the surface of the organic resin film covering the other surface of the aluminum alloy plate is a second surface
  • the arithmetic average roughness Ra of the first and second surfaces in the direction perpendicular to the rolling direction is 0.50 ⁇ m. It is a manufacturing method of the aluminum alloy plate for can ends which is the following.
  • a can end aluminum alloy sheet having excellent formability can be produced.
  • SYMBOLS 1 Aluminum alloy plate for can ends, 1A ... 1st surface, 1B ... 2nd surface, 3 ... Lower mold, 5 ... Convex part, 7 ... Upper mold, 9 ... Recess, 11 ... Protrusion, 13 ... overhanging head Top part 15 contact end part 17 lower mold 19 convex part 20 upper mold 21 concave part 25 contact end
  • the aluminum alloy sheet for can ends of the present embodiment has an aluminum alloy sheet, and an organic resin film that covers one side and the other side of the aluminum alloy sheet.
  • the aluminum alloy sheet contains 4.0 to 5.5% by mass of Mg.
  • Mg imparts yield strength and tensile strength to the can end aluminum alloy sheet.
  • the content of Mg is 4.0% by mass or more, the yield strength and the tensile strength of the can end aluminum alloy sheet become high.
  • the content of Mg is 5.5% by mass or less, the hot workability of the aluminum alloy sheet is good, and a crack does not easily occur in the aluminum alloy sheet during hot rolling. As a result, the productivity of the can end aluminum alloy sheet is increased.
  • the aluminum alloy sheet for can ends of the present disclosure contains 0.20 to 0.50 mass% of Mn.
  • Mn imparts load resistance and tensile strength to the can end aluminum alloy sheet.
  • Mn crystallizes an Al—Mn (—Fe) based intermetallic compound in the aluminum alloy sheet for can ends. Therefore, even when the can end is thinned, the can openability of the can end is not easily reduced.
  • the yield strength and the tensile strength of the can end aluminum alloy sheet become high.
  • an Al-Mn (-Fe) system which becomes a propagation path of a crack when the can end made of the can end aluminum alloy sheet is opened.
  • the amount of crystallization of the intermetallic compound increases. Therefore, the force required to open the can end is reduced. As a result, when the can end is opened, it is possible to suppress derailment of the groove of the opened portion.
  • the amount of the Al—Mn (—Fe) -based intermetallic compound is unlikely to be excessive. Therefore, it can suppress that a crack propagates easily in the aluminum alloy sheet for can ends. As a result, during the rivet forming process and the stake process, it becomes difficult for the aluminum alloy sheet for can ends to be cracked.
  • the aluminum alloy sheet contains 0.10 to 0.50 mass% of Fe.
  • Fe is an unavoidable impurity element when using a regenerated raw material.
  • the content of Fe is 0.10% by mass or more, the purity of the base metal as the recycled material may not be increased, and the manufacturing cost of the can end aluminum alloy sheet can be reduced.
  • the content of Fe is 0.10% by mass or more, the usable amount of the regenerated raw material is increased, so that the environmental load can be reduced.
  • Al-Fe-based intermetallic compounds and Al-Mn-Fe-based intermetallic compounds in the aluminum alloy sheet are unlikely to become excessive. Therefore, it can suppress that a crack propagates easily in the aluminum alloy sheet for can ends. As a result, during the rivet forming process and the stake process, it becomes difficult for the aluminum alloy sheet for can ends to be cracked.
  • the aluminum alloy sheet for can ends of the present disclosure contains 0.03 to 0.30% by mass of Si.
  • Si is an unavoidable impurity element when using a regenerated raw material.
  • the content of Si is 0.03% by mass or more, it is not necessary to increase the purity of the reclaimed raw material, and the manufacturing cost of the can end aluminum alloy sheet can be reduced. Further, when the content of Si is 0.03% by mass or more, the usable amount of the regenerated raw material is increased, so that the environmental load can be reduced.
  • the aluminum alloy sheet for can ends of the present disclosure contains 0.20% by mass or less of Cu.
  • Cu imparts load resistance and tensile strength to the can end aluminum alloy sheet.
  • the content of Cu is 0.20% by mass or less, the amount of work hardening of the can end aluminum alloy sheet is difficult to increase. Therefore, the formability of the aluminum alloy sheet for can ends is high.
  • the content of Cu is 0.20 mass% or less, the aluminum alloy sheet for can ends becomes difficult to corrode.
  • the remainder of the aluminum alloy sheet is composed of Al and unavoidable impurities.
  • the content of Al is preferably 93% by mass or more.
  • the content of the unavoidable impurities is preferably 0.1% by mass or less.
  • the surface of the organic resin film covering one surface of the aluminum alloy sheet is made the first surface, and the aluminum alloy sheet
  • the surface of the organic resin film that covers the other surface of the film is called the second surface.
  • the first surface can be, for example, an inner surface that contacts the beverage after filling the beverage.
  • the second surface is the outer surface of the can.
  • FIG. 1 is a drawing showing a state in which the aluminum alloy sheet 1 for can ends is subjected to overhang forming.
  • the lower mold 3 and the upper mold 7 are used for the extrusion molding.
  • the lower mold 3 is provided with a convex portion 5.
  • the upper mold 7 is provided with a recess 9.
  • the lower mold 3 is pressed against the first surface 1A of the can end aluminum alloy sheet 1.
  • the upper mold 7 is pressed against the second surface 1B of the can end aluminum alloy sheet 1.
  • the protrusion 5 and the recess 9 form a protrusion 11 on the can end aluminum alloy plate 1.
  • the central portion of the projection 11 as viewed in the thickness direction is referred to as a overhanging top 13.
  • An end of a range where the first surface 1A and the convex portion 5 are in contact with each other is referred to as a contact end 15.
  • the load applied to the can end aluminum alloy plate 1 is dispersed because the frictional force between the convex portion 5 and the first surface 1A is small in the overhang forming.
  • the frictional force between the convex portion 5 and the first surface 1A is unlikely to be excessively large, and in particular, it is difficult for the load to be concentrated on the contact end 15. Hard to reduce the thickness of the Therefore, it is possible to suppress the generation of a crack around the contact end 15 during molding, and the generation of a neck which becomes a starting point of the crack generation in the subsequent drawing and stake.
  • the first surface dynamic friction coefficient can be adjusted, for example, by the non-coated first surface roughness described later, the coated first surface roughness described later, the amount of wax, and the like. As the uncoated first surface roughness is increased, the first surface dynamic friction coefficient is increased. As the coated first surface roughness is increased, the first surface dynamic friction coefficient is increased. The smaller the amount of wax, the larger the first surface dynamic friction coefficient.
  • the second surface dynamic friction coefficient is 0.01 or more, the following effects are obtained.
  • the convex portion of the lower mold is pressed against the second surface to form a hemispherical protrusion on the first surface.
  • the second surface dynamic friction coefficient is 0.01 or more, the frictional force between the convex portion and the second surface is small, and thus the load applied to the can end aluminum alloy sheet tends to be dispersed. Therefore, it is difficult for stress to be concentrated on the overhanging top, and it is possible to suppress a reduction in thickness of the overhanging top. As a result, the plate thickness of the rivet after stake becomes thick.
  • FIG. 2 is a drawing showing a state in which draw forming is performed on the can end aluminum alloy sheet 1 after stretch forming.
  • the lower mold 17 and the upper mold 20 are used for drawing.
  • the lower mold 17 is provided with a convex portion 19.
  • the upper mold 20 is provided with a recess 21.
  • the lower mold 17 is pressed against the first surface 1A of the can end aluminum alloy sheet 1.
  • the upper mold 20 is pressed against the second surface 1B of the can end aluminum alloy sheet 1.
  • An end of a range in which the second surface 1B and the upper mold 20 are in contact with each other is referred to as a contact end 25.
  • the frictional force between the can end aluminum alloy plate 1 and the upper mold 20 is unlikely to be excessively large, and the load is concentrated around the contact end 25 It is difficult to reduce the thickness of the contact end 25. Therefore, it is possible to suppress the occurrence of a crack around the contact end 25 during forming, and the occurrence of a neck which becomes a starting point of the crack.
  • the second surface dynamic friction coefficient can be adjusted, for example, by the non-coated second surface roughness described later, the coated second surface roughness described later, the amount of wax, and the like. As the non-coated second surface roughness is increased, the second surface dynamic friction coefficient is increased. The second surface dynamic friction coefficient increases as the coated second surface roughness increases. The smaller the amount of wax, the larger the second surface dynamic friction coefficient.
  • the proof stress in the 0 ° direction with respect to the rolling direction the proof stress in the 45 ° direction with respect to the rolling direction, and 90 ° with respect to the rolling direction
  • the difference between the maximum value and the minimum value in the proof stress in the direction (hereinafter referred to as the three-direction proof stress difference) be 20 MPa or less.
  • the three-direction proof stress difference is 20 MPa or less, in the aluminum alloy sheet for can ends, it is possible to suppress concentration of deformation in the direction in which the proof stress is low in the stake process. Therefore, it is possible to suppress a situation in which the aluminum alloy sheet for the can end is broken or the rivet has an elliptical shape and the fixing of the tab becomes insufficient.
  • the yield strength in the 0 ° direction with respect to the rolling direction can be measured by conducting a tensile test in the 0 ° direction with respect to the rolling direction for the can end aluminum alloy sheet.
  • the yield strength in the 45 ° direction with respect to the rolling direction can be measured by performing a tensile test in the 45 ° direction with respect to the rolling direction for the can end aluminum alloy sheet.
  • the yield strength in the 90 ° direction with respect to the rolling direction can be measured by performing a tensile test in the 90 ° direction with respect to the rolling direction for the can end aluminum alloy sheet.
  • the three-direction proof stress difference can be adjusted, for example, by the finish temperature of hot rough rolling, the finish temperature of hot finish rolling, the finish temperature of cold rolling, the rolling reduction of cold rolling, or the like.
  • the higher the finish temperature of the hot finish rolling the smaller the three-direction yield strength difference.
  • the higher the cold rolling end temperature the smaller the three-direction proof stress difference.
  • the smaller the rolling reduction of cold rolling the smaller the three-direction proof stress difference.
  • R (AVE) When R (AVE) is 0.5 or more, the mold conformability of the shell is improved in drawing, and the protruding height of the projections is increased, so that the rivet diameter after the stake process is increased. Further, when R (AVE) is 0.5 or more, the following effects are exerted.
  • the diameter of the projections When the diameter of the projections is reduced in draw forming, the amount of reduction of the size of the projections in the circumferential direction becomes larger than the amount of reduction of the plate thickness. Since the amount of decrease in the size of the protrusion in the circumferential direction is large, the elastic deformation of the diameter reduction of the protrusion is reduced, and the return of the protrusion due to elastic deformation after unloading is reduced. As a result, since the protruding height of the protrusion is increased, the rivet diameter after the stake is increased.
  • the Rankford value R0 in the 0 ° direction with respect to the rolling direction is a value measured as follows. A tensile test is performed on the can end aluminum alloy sheet, and a plastic strain of 3% is introduced to the can end aluminum alloy sheet. The tensile direction is the 0 ° direction with respect to the rolling direction. At this time, strain in the width direction of the can end aluminum alloy plate is ⁇ w, and strain in the plate thickness direction of the can end aluminum alloy plate is ⁇ t. The Rankford value R0 in the 0 ° direction with respect to the rolling direction is ⁇ w / ⁇ t.
  • the Lankford value R45 in the 45 ° direction with respect to the rolling direction and the Lankford value R90 in the 90 ° direction with respect to the rolling direction can also be basically measured in the same manner as above.
  • a tensile test is performed on the aluminum alloy sheet for can ends in the 45 ° direction with respect to the rolling direction.
  • the aluminum alloy sheet for can ends is subjected to a tensile test in the 90 ° direction with respect to the rolling direction.
  • R (AVE) can be adjusted by, for example, the finish temperature of hot finish rolling. As the finish temperature of the hot finish rolling is higher, R (AVE) becomes larger.
  • (2-5) Surface roughness Ra In the state where the aluminum alloy sheet is not coated with the organic resin film, the arithmetic average roughness Ra of the first surface in the direction perpendicular to the rolling direction is hereinafter referred to as the non-coated first surface roughness. In the state where the aluminum alloy sheet is not coated with the organic resin film, the arithmetic average roughness Ra of the second surface in the direction perpendicular to the rolling direction is hereinafter referred to as the non-coated second surface roughness.
  • the non-coated first surface roughness and the non-coated second surface roughness may be, for example, values measured after removing the organic resin film from a can end aluminum alloy plate provided with the organic resin film, or organic It may be a value obtained by measuring an aluminum alloy plate before forming a resin film.
  • a method of removing the organic resin film for example, a method using sulfuric acid can be mentioned.
  • the arithmetic average roughness Ra of the first surface in the direction perpendicular to the rolling direction is hereinafter referred to as the coated first surface roughness.
  • the arithmetic average roughness Ra of the second surface in the direction perpendicular to the rolling direction is hereinafter referred to as the coated second surface roughness.
  • the non-coated first surface roughness and the non-coated second surface roughness are preferably 0.50 ⁇ m or less.
  • the coated first surface roughness and the coated second surface roughness are preferably 0.25 ⁇ m or less.
  • the non-coated first surface roughness is 0.50 ⁇ m or less, it is easy to make the coated first surface roughness 0.25 ⁇ m or less.
  • the non-coated second surface roughness is 0.50 ⁇ m or less, it is easy to set the coated second surface roughness to 0.25 ⁇ m or less.
  • the first surface dynamic friction coefficient can be reduced, and for example, the first surface dynamic friction coefficient can be 0.03 or less.
  • the second surface dynamic friction coefficient can be reduced, and for example, the second surface dynamic friction coefficient can be 0.03 or less.
  • the non-coated first surface roughness, the non-coated second surface roughness, the coated first surface roughness, and the coated second surface roughness may be adjusted, for example, by the surface roughness of a cold rolling roll, etc. it can.
  • the first surface of the aluminum alloy plate for can ends of the present disclosure preferably includes a wax of 30 mg / m 2 or more and 100 mg / m 2 or less.
  • the first surface dynamic friction coefficient can be reduced, and, for example, the first surface dynamic friction coefficient can be 0.03 or less.
  • the manufacturing cost of the can end aluminum alloy sheet can be reduced.
  • the amount of wax included in the first surface is 100 mg / m 2 or less, the amount of wax deposited on the mold can be reduced. As a result, the frequency of cleaning of the mold can be reduced, and the productivity of the can end aluminum alloy sheet can be improved.
  • the second surface of the aluminum alloy sheet for can ends of the present disclosure preferably includes a wax of 30 mg / m 2 or more and 100 mg / m 2 or less.
  • the second surface dynamic friction coefficient can be reduced, and for example, the second surface dynamic friction coefficient can be 0.03 or less.
  • the manufacturing cost of the can end aluminum alloy sheet can be reduced.
  • the amount of wax included in the second surface is 100 mg / m 2 or less, the amount of wax deposited on the mold can be reduced. As a result, the frequency of cleaning of the mold can be reduced, and the productivity of the can end aluminum alloy sheet can be improved.
  • wax examples include white petrolatum and paraffin wax.
  • the wax may spread uniformly on the first surface or the second surface, or a place where the wax is present and a place where the wax is not present may be mixed.
  • the aluminum alloy sheet for can end of the present disclosure can be produced, for example, by the following method.
  • the aluminum alloy is melted and cast in a conventional manner to obtain an aluminum alloy ingot.
  • the composition of the aluminum alloy ingot is, for example, the one described in the section "Composition of Aluminum Alloy Sheet for Can End" above.
  • the homogenization heat treatment is preferably performed at a temperature of 460 to 540 ° C. for 2 to 24 hours.
  • the temperature of the homogenization heat treatment is 460 ° C. or more, the time required for the aluminum alloy ingot to homogenize can be shortened. As a result, the productivity of the can end aluminum alloy sheet is improved.
  • the temperature of homogenization heat processing is 540 degrees C or less, it can suppress that the eutectic compound formed at the process of casting melts. Therefore, the deterioration of the surface property of the aluminum alloy ingot can be suppressed. As a result, streak defects are less likely to occur in the aluminum alloy ingot in the subsequent rolling process, and the appearance of the final product is improved.
  • the time of the homogenization heat treatment is 2 hours or more, the effect of the homogenization is high, the solid solution amount of the additive element is increased, and the strength of the can end aluminum alloy sheet is increased.
  • the time of the homogenization heat treatment is 24 hours or less, the productivity of the can end aluminum alloy sheet is improved.
  • the time of homogenization heat processing is 24 hours or less, the oxidation of the aluminum alloy ingot surface can be suppressed. Therefore, defects do not easily occur on the rolled surface of the aluminum alloy sheet, and the surface quality of the can end aluminum alloy sheet is improved.
  • the aluminum alloy ingot is subjected to hot rough rolling to obtain a hot rough rolled material.
  • the termination temperature of hot rough rolling is preferably 460 to 540.degree.
  • the finish temperature of hot rough rolling is 460 ° C. or more, the load required for rolling can be suppressed.
  • finish temperature of hot rough rolling is 460 degreeC or more, the rolling-down amount for every 1 pass can be increased, and productivity of the aluminum alloy plate for can ends improves.
  • the finish temperature of the hot rough rolling is 540 ° C. or less, the eutectic compound is difficult to melt, and the surface properties of the can end aluminum alloy sheet become good.
  • the hot rough rolled material is subjected to hot finish rolling to obtain a hot finished rolled material.
  • the end temperature of the hot finish rolling is preferably 300 to 370.degree.
  • the finish temperature of the hot finish rolling is 300 ° C. or more, it is easy to obtain a recrystallized structure in the hot finish rolled material at the finish time of the hot rolling.
  • the Rankford values R0, R45, and R90 increase, and the value of R (AVE) increases. For example, even when manufacturing an aluminum alloy sheet for can ends by performing a step of cold rolling to a product thickness without intermediate annealing for a hot finish rolled material, the Lankford value R0, R45 for each production lot, Variation of R90 can be suppressed.
  • the finish temperature of the hot finish rolling is 300 ° C. or higher, the substantial degree of cold working can be reduced, and edge cracking of the aluminum alloy sheet becomes difficult to occur during cold rolling. As a result, the productivity of the aluminum alloy sheet is improved.
  • the finish temperature of the hot finish rolling is 300 ° C. or more, the formability of the aluminum alloy sheet is improved.
  • the hot finish rolling material is cold-rolled to obtain an aluminum alloy sheet having a thickness of a product.
  • the thickness of the product is, for example, 0.20 to 0.25 mm.
  • the rolling reduction of cold rolling is preferably 60 to 93%.
  • the rolling reduction of cold rolling is 60% or more, work hardening of the material is likely to proceed, and it becomes easy to secure the pressure resistance required of the aluminum alloy plate as a can end.
  • the rolling reduction of cold rolling is 93% or less, variation in anisotropy of strength of the aluminum alloy sheet can be suppressed. Therefore, the three-direction proof stress difference can be suppressed.
  • Cold rolling is preferably performed in a temperature range of room temperature (20 to 25 ° C.) to 180 ° C., and more preferably in a temperature range of room temperature to 150 ° C.
  • the cold rolling temperature is 180 ° C. or less, it is possible to suppress a surface defect called oil stain which is caused by the rolling oil sticking to the surface of the aluminum alloy plate. Therefore, the appearance quality of the final product is improved.
  • the cold rolling temperature is 150 ° C. or less, the appearance quality of the final product is further improved.
  • the rolling reduction in cold rolling after intermediate annealing is preferably set to 60 to 93%.
  • an organic resin film is applied and baked on one side and the other side of the aluminum alloy sheet.
  • the ultimate temperature of the aluminum alloy sheet at the time of baking (hereinafter referred to as the finish temperature of coating baking) is preferably 200 to 300.degree.
  • the material of the organic resin film include epoxy resins and vinyl chloride resins.
  • the baking finish temperature is 200 ° C. or more, the coating performance of the organic resin film is improved.
  • the baking finish temperature is 300 ° C. or less, recovery of the aluminum alloy sheet can be suppressed. Therefore, the material strength of the aluminum alloy sheet for can ends becomes high, and it becomes easy to secure the pressure resistance required of the aluminum alloy sheet for can ends as a can end.
  • a wax composed of an organic matter is applied to the surface of the organic resin film.
  • Example (4-1) Production of Aluminum Alloy Plate for Can End There are A1 to A4 and B1 to B9 shown in Table 1 as a method of producing an aluminum alloy plate for can end.
  • an aluminum alloy sheet having a composition shown in Table 1 was melted and formed into a block by a semi-continuous casting method to obtain an aluminum alloy ingot.
  • the obtained aluminum alloy ingot was subjected to homogenization heat treatment at a temperature of 500 ° C. for 4 hours.
  • the remainder of each aluminum alloy sheet is Al and unavoidable impurities.
  • Hot rolling consists of hot rough rolling and hot finish rolling.
  • the aluminum alloy ingot was hot rough rolled to obtain a hot rough rolled material.
  • Hot rough rolling ended at 470 ° C.
  • the hot finish rolling step the hot rough rolled material is hot finish rolled to obtain a hot finished rolled material.
  • the finish temperature of the hot finish rolling is the temperature shown in Table 1.
  • the hot finish rolled material was subjected to cold rolling at a rolling reduction shown in Table 1 to obtain an aluminum alloy sheet with a thickness of 0.235 mm.
  • the work roll with a large surface roughness was used at the time of the last pass of cold rolling.
  • the work roll having a large surface roughness is a work roll immediately after the surface has been roughened.
  • the organic resin film is made of an epoxy resin.
  • the method of measuring the first surface dynamic friction coefficient is as follows.
  • the sliding length was 10 mm.
  • an inner surface is a surface which touches a drink after a drink filling among both surfaces of the aluminum alloy plate for can ends.
  • the measuring method of a 2nd surface dynamic friction coefficient is as follows. When the steel ball of diameter 4.8 mm is pressed against the outer surface (second surface) with a load of 500 gf and the steel ball is slid on the outer surface at a speed of 60 mm / min in the direction perpendicular to the rolling direction , 2nd surface dynamic friction coefficient. The sliding length was 10 mm.
  • an outer surface is a surface opposite to an inner surface among both surfaces of the aluminum alloy plate for can ends.
  • the measurement results of the first surface dynamic friction coefficient are shown in the “inner surface” column of the “dynamic friction coefficients” in Table 2. Moreover, the measurement result of a 2nd surface dynamic friction coefficient is shown in the row
  • R (AVE) represented by the above equation (1) was calculated using the measured Rankford values R0, R45, and R90.
  • the calculated R (AVE) is shown in Table 2 above.
  • (iv) Surface roughness Ra Surface roughness Ra of the inner surface and the outer surface of the aluminum alloy plate for can ends in the state by which the aluminum alloy plate was coat
  • the surface roughness Ra is an arithmetic mean roughness Ra defined in JIS B 0601-2001.
  • the measurement results are shown in the column "Ra (coated)" in Table 2 above.
  • Measuring device Contact-type surface roughness measuring machine (SURFCOM 130A, manufactured by Tokyo Seimitsu Co., Ltd.) Contact diameter: 2 ⁇ m Scanning direction of stylus: Direction perpendicular to rolling direction Measurement length: 4.00 mm Measuring speed: 0.3 mm / s Cutoff value ⁇ c: 0.8 mm Further, the organic resin film and the wax were removed from the aluminum alloy sheet for can ends by a method of sulfuric acid film removal. Thereafter, the surface roughness Ra of the inner surface and the outer surface of the can end aluminum alloy sheet in a state where the aluminum alloy sheet is not covered with the organic resin film was measured. The measurement conditions are the same as the measurement conditions for the can end aluminum alloy sheet in a state where the aluminum alloy sheet is coated with the organic resin film. The measurement results are shown in the “Ra (non-coated)” column in Table 2 above.
  • Rivet Formability A 204 diameter shell was formed from an aluminum alloy sheet for can ends. The shell was subjected to a rivet forming process and a stake to form a rivet.
  • the lower mold used in the extrusion molding is a ball-head mold provided with a ball-head-shaped convex portion with a diameter of 10 mm (R: 5.0 mm). In the extrusion forming, the lower mold was pressed against the outer surface of the can end aluminum alloy sheet.
  • the drawing was performed using an upper mold having a recess of 7 mm in diameter (R: 3.5 mm) and a lower mold having a protrusion of 4 mm in diameter (R: 2.0 mm).
  • the stake was set so that the gap between the lower mold and the upper mold was 0.10 mm.
  • the rivet formability of the can end aluminum alloy plate is evaluated as ⁇ , and in the case where it corresponds to any of (A) to (C), The rivet formability of the can end aluminum alloy sheet was evaluated as x.
  • the evaluation results are shown in the column of “Rivet forming test” in Table 2 above.
  • a crack or a constriction occurs in stretch forming or draw forming.
  • B The rivet diameter after forming differs by 0.3 mm or more between the rolling direction and the rolling vertical direction.
  • C The rivet diameter after forming does not reach 4.2 mm in any of the rolling direction and the rolling vertical direction.
  • the evaluation result of the rivet formability was ⁇ .
  • the evaluation result of rivet formability was x.
  • the surface roughness Ra, the first surface dynamic friction coefficient and the second surface dynamic friction coefficient of the inner surface and the outer surface of the can end aluminum alloy plate in the state not covered with the coating make the can end by draw forming in the rivet forming process. There was a necking in the aluminum alloy sheet. As a result, the evaluation result of rivet formability was x.
  • the rivet diameter in the rolling perpendicular direction was 0.4 mm smaller than the rivet diameter in the rolling direction since the three-direction proof stress difference is large.
  • the evaluation result of rivet formability was x.
  • the evaluation result of the rivet formability was x since there is a large amount of Si.
  • the evaluation result of the rivet formability was x.
  • each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component.
  • part of the configuration of each of the above embodiments may be omitted.
  • at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments.
  • all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.
  • this indication can also be realized with various forms, such as a product which uses the aluminum alloy sheet for can ends concerned, a shell, etc.

Abstract

本開示の缶エンド用アルミニウム合金板は、Mg:4.0~5.5質量%、Mn:0.20~0.50質量%、Fe:0.10~0.50質量%、Si:0.03~0.30質量%、及びCu:0.20質量%以下を含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金板と、アルミニウム合金板の両面を被覆する有機樹脂皮膜とを有する。缶エンド用アルミニウム合金板において、アルミニウム合金板の一方の面及び他方の面をそれぞれ被覆する有機樹脂皮膜の表面を第1面、第2面としたとき、第1面及び第2面の動摩擦係数が0.01以上0.03以下である。圧延方向に対して0°方向、45°方向、90°方向での耐力における最大値と最小値との差が20MPa以下である。ランクフォード値R0と、ランクフォード値R45と、ランクフォード値R90とから算出されるR(AVE)が0.5以上である。

Description

缶エンド用アルミニウム合金板及びその製造方法 関連出願の相互参照
 本国際出願は、2017年9月28日に日本国特許庁に出願された日本国特許出願第2017-188625号に基づく優先権を主張するものであり、日本国特許出願第2017-188625号の全内容を本国際出願に参照により援用する。
 本開示は缶エンド用アルミニウム合金板及びその製造方法に関する。
 飲料用途、食品用途に使用される包装容器の形態の1つとして、アルミニウムや鉄等の金属で作られた飲料缶及び食品缶がある。飲料缶の構成として、例えば、底がある円筒状の胴部と、この胴部を封止するための円盤状の缶エンドとから成る2ピース缶がある。また、飲料缶の構成として、例えば、一対の缶エンドと、別部材である胴部とから成る3ピース缶がある。
 いずれの缶においても、缶エンドとして、強度、成形性、耐食性の観点から、アルミニウム合金板、特にAl-Mg系合金から成る板が用いられている。特許文献1には、耐圧性能が高い缶エンド用アルミニウム合金板が開示されている。
 缶エンドの製造方法は、例えば、シェル工程、カール成形工程、リベット成形工程、スコア加工工程等を含む。シェル工程は、缶エンド用アルミニウム合金板から円盤状のシェルを打ち抜き、シェルに深絞り成形を行う工程である。カール成形工程は、缶エンドと胴部との巻締性を高めるためにシェルにカール成形を行う工程である。リベット成形工程は、シェルにリベットを成形する工程である。リベットは、シェルに開缶用のタブを取り付ける部位である。スコア加工工程は、シェルに飲み口を成形する工程である。
 リベット成形工程は、より詳しくは、シェルの中央部分に、バブル成形、バトン成形、ステイク等の複雑な加工を行う工程である。バブル成形は張出成形である。バブル成形では、シェルの一方の面に下金型の凸部を押し付けることで、シェルの反対の面に半球状の突起を形成する。
 バトン成形は絞り成形である。バトン成形では、バブル成形により形成された半球状の突起を、複数段階に分けて縮径する。縮径する方法は、缶内面側に押し当てられた下金型の凸部と、缶外面側に押し当てられた上金型の凹部とで半球状の突起を挟み込む方法である。バトン成形では、半球状の突起を、最終的に、タブに空けられた孔の大きさと同程度になるまで縮径する。
 ステイク工程では、縮径された突起を上下の金型にて圧縮し、板厚を減少させる。また、突起の端部を強く曲げ、突起にタブを留める。
特開2010-53367号公報
 リベット成形工程において、缶エンド用アルミニウム合金板に割れや亀裂が発生することがある。
 また、バブル成形及びバトン成形において形成される突起が低くなり、ステイク工程にて圧縮する際の材料が不足することがある。この場合、リベットの径が小さくなり、結果として、タブを取り付けることができなかったり、タブの固定が不十分になったりすることがある。
 本開示の一局面では、成形性に優れる缶エンド用アルミニウム合金板及びその製造方法を提供することが好ましい。
 本開示の一局面は、缶エンド用アルミニウム合金板であって、缶エンド用アルミニウム合金板は、Mg:4.0~5.5質量%、Mn:0.20~0.50質量%、Fe:0.10~0.50質量%、Si:0.03~0.30質量%、及びCu:0.20質量%以下を含有し、残部がAlおよび不可避的不純物から構成されたアルミニウム合金板と、アルミニウム合金板の一方及び他方の両面をそれぞれ被覆する有機樹脂皮膜とを有し、缶エンド用アルミニウム合金板において、アルミニウム合金板の一方の面を被覆する有機樹脂皮膜の表面を第1面とし、アルミニウム合金板の他方の面を被覆する有機樹脂皮膜の表面を第2面としたとき、直径4.8mmの鋼球を500gfの荷重で前記第1面に押し付け、鋼球を第1面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの第1面の動摩擦係数が0.01以上0.03以下であり、直径4.8mmの鋼球を500gfの荷重で前記第2面に押し付け、鋼球を第2面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの第2面の動摩擦係数が0.01以上0.03以下であり、缶エンド用アルミニウム合金板において、圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とにおける最大値と最小値との差が20MPa以下であり、圧延方向に対して0°方向でのランクフォード値R0と、圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90とから、下記式(1)で算出されるR(AVE)が0.50以上である。
Figure JPOXMLDOC01-appb-M000003
 本開示の一局面である缶エンド用アルミニウム合金板は、成形性に優れる。
 本開示の別の局面は、缶エンド用アルミニウム合金板の製造方法であって、Mg:4.0~5.5質量%、Mn:0.20~0.50質量%、Fe:0.10~0.50質量%、Si:0.03~0.30質量%、及びCu:0.20質量%以下を含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金鋳塊を、460~540℃で2~24時間保持する均質化熱処理工程と、アルミニウム合金鋳塊を終了温度が460~540℃である条件で熱間粗圧延して熱間粗圧延材を得る熱間粗圧延工程と、熱間粗圧延材を終了温度が300~370℃である条件で熱間仕上げ圧延して熱間仕上げ圧延材を得る熱間仕上げ圧延工程と、熱間仕上げ圧延材を室温以上150℃以下の温度にて圧下率60~93%で圧延してアルミニウム合金板を得る冷間圧延工程と、アルミニウム合金板の一方及び他方の両面に有機樹脂皮膜を形成し、200~300℃で焼付ける有機樹脂皮膜形成工程と、アルミニウム合金の一方及び他方の両面に形成した有機樹脂皮膜の表面にワックスを塗布するワックス塗布工程と、を含み、缶エンド用アルミニウム合金板では、圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とにおける最大値と最小値との差が20MPa以下であり、圧延方向に対して0°方向でのランクフォード値R0と、圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90とから、下記式(1)で算出されるR(AVE)が0.5以上であり、缶エンド用アルミニウム合金板において、アルミニウム合金板の一方の面を被覆する有機樹脂皮膜の表面を第1面とし、アルミニウム合金板の他方の面を被覆する有機樹脂皮膜の表面を第2面としたとき、アルミニウム合金板の一方及び他方の両面が有機樹脂皮膜により被覆されていない状態において、圧延方向に垂直な方向での第1面及び第2面の算術平均粗さRaが0.50μm以下である缶エンド用アルミニウム合金板の製造方法である。
Figure JPOXMLDOC01-appb-M000004
 本開示の別の局面である缶エンド用アルミニウム合金板の製造方法によれば、成形性に優れた缶エンド用アルミニウム合金板を製造できる。
張出成形下死点における金型及び材料の断面を表す模式図である。 絞り成形下死点における金型及び材料の断面を表す模式図である。
1…缶エンド用アルミニウム合金板、1A…第1面、1B…第2面、3…下金型、5…凸部、7…上金型、9…凹部、11…突起、13…張出頭頂部、15…接触端部、17…下金型、19…凸部、20…上金型、21…凹部、25…接触端部
 本開示の例示的な実施形態について図面を参照しながら説明する。
 本実施形態の缶エンド用アルミニウム合金板は、アルミニウム合金板と、アルミニウム合金板の一方及び他方の両面を被覆する有機樹脂皮膜とを有する。
 1.アルミニウム合金板の組成
 本開示の缶エンド用アルミニウム合金板において、アルミニウム合金板は、4.0~5.5質量%のMgを含む。Mgは、缶エンド用アルミニウム合金板に耐力及び引張強さを付与する。Mgの含有量が4.0質量%以上であることにより、缶エンド用アルミニウム合金板の耐力及び引張強さが高くなる。Mgの含有量が5.5質量%以下であることにより、アルミニウム合金板の熱間加工性が良好であり、熱間圧延時にアルミニウム合金板に割れが生じ難い。その結果、缶エンド用アルミニウム合金板の生産性が高くなる。
 本開示の缶エンド用アルミニウム合金板において、アルミニウム合金板は、0.20~0.50質量%のMnを含む。Mnは、缶エンド用アルミニウム合金板に、耐力及び引張強さを付与する。また、Mnは、缶エンド用アルミニウム合金板中にAl-Mn(-Fe)系金属間化合物を晶出させる。そのため、缶エンドが薄肉化した場合でも、缶エンドの開缶性が低下し難い。
 Mnの含有量が0.20質量%以上であることにより、缶エンド用アルミニウム合金板の耐力及び引張強さが高くなる。また、Mnの含有量が0.20質量%以上であることにより、缶エンド用アルミニウム合金板から作製された缶エンドを開缶する際の亀裂の進展経路となるAl-Mn(-Fe)系金属間化合物の晶出量が増す。そのため、缶エンドの開缶に必要な力が小さくなる。その結果、缶エンドの開缶のとき、開缶部の溝を脱線してしまうことを抑制できる。
 Mnの含有量が0.50質量%以下であることにより、Al-Mn(-Fe)系金属間化合物の量が過多になり難い。そのため、缶エンド用アルミニウム合金板において亀裂が容易に伝播してしまうことを抑制できる。その結果、リベット成形工程及びステイク工程の際に、缶エンド用アルミニウム合金板に割れが発生し難くなる。
 本開示の缶エンド用アルミニウム合金板において、アルミニウム合金板は、0.10~0.50質量%のFeを含む。Feは、再生原料を使用する場合の不可避的な不純物元素である。Feの含有量が0.10質量%以上であることにより、再生原料である地金の純度を高めなくてもよく、缶エンド用アルミニウム合金板の製造コストを低減できる。また、Feの含有量が0.10質量%以上であることにより、再生原料の使用可能量が増加するので、環境負荷を低減できる。
 Feの含有量が0.50質量%以下であることにより、アルミニウム合金板中のAl-Fe系金属間化合物、Al-Mn-Fe系金属間化合物が過多になり難い。そのため、缶エンド用アルミニウム合金板において亀裂が容易に伝播してしまうことを抑制できる。その結果、リベット成形工程及びステイク工程の際に、缶エンド用アルミニウム合金板に割れが発生し難くなる。
 本開示の缶エンド用アルミニウム合金板は、0.03~0.30質量%のSiを含む。Siは、再生原料を使用する場合の不可避的な不純物元素である。Siの含有量が0.03質量%以上であることにより、再生原料である地金の純度を高めなくてもよく、缶エンド用アルミニウム合金板の製造コストを低減できる。また、Siの含有量が0.03質量%以上であることにより、再生原料の使用可能量が増加するので、環境負荷を低減できる。
 Siの含有量が0.30質量%以下であることにより、粗大なMgSiの晶出を抑制できる。そのため、缶エンド用アルミニウム合金板におけるMgの固溶量が増加する。
 本開示の缶エンド用アルミニウム合金板において、アルミニウム合金板は、0.20質量%以下のCuを含む。Cuは、缶エンド用アルミニウム合金板に、耐力及び引張強さを付与する。Cuの含有量が0.20質量%以下であることにより、缶エンド用アルミニウム合金板の加工硬化量が増大し難い。そのため、缶エンド用アルミニウム合金板の成形性が高い。また、Cuの含有量が0.20質量%以下であることにより、缶エンド用アルミニウム合金板が腐食し難くなる。
 本開示の缶エンド用アルミニウム合金板において、アルミニウム合金板の残部は、Al及び不可避的不純物から構成される。Alの含有量は、93質量%以上であることが好ましい。不可避的不純物の含有量は、0.1質量%以下であることが好ましい。
 2.缶エンド用アルミニウム合金板の物性
 (2-1)第1面動摩擦係数
 缶エンド用アルミニウム合金板において、アルミニウム合金板の一方の面を被覆する有機樹脂皮膜の表面を第1面とし、アルミニウム合金板の他方の面を被覆する有機樹脂皮膜の表面を第2面とする。第1面は、例えば、飲料充填後に飲料と触れる内面とすることができる。その場合、第2面は、缶における外側の面となる。
 直径4.8mmの鋼球を500gfの荷重で第1面に押し付け、鋼球を第1面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの第1面の動摩擦係数(以下、第1面動摩擦係数とする)は0.01以上0.03以下であることが好ましい。
 第1面動摩擦係数が0.01以上である場合、以下の効果を奏する。この効果を図1に基づき説明する。図1は、缶エンド用アルミニウム合金板1に対し、張出成形を行っている状態を表す図面である。張出成形には、下金型3と、上金型7とを用いる。下金型3は凸部5を備える。上金型7は凹部9を備える。
 下金型3は、缶エンド用アルミニウム合金板1の第1面1Aに押し当てられる。上金型7は、缶エンド用アルミニウム合金板1の第2面1Bに押し当てられる。凸部5と凹部9とは、缶エンド用アルミニウム合金板1に突起11を形成する。突起11における、板厚方向から見た中央部を張出頭頂部13とする。第1面1Aと凸部5とが接触している範囲の端部を、接触端部15とする。
 第1面動摩擦係数が0.01以上である場合、張出成形において、凸部5と第1面1Aとの摩擦力が小さいため、缶エンド用アルミニウム合金板1に負荷される荷重が分散しやすい。そのため、張出頭頂部13に応力が集中し難く、張出頭頂部13における板厚減少を抑制できる。その結果、ステイク後のリベットの板厚が厚くなる。
 第1面動摩擦係数が0.03以下である場合、凸部5と第1面1Aとの摩擦力が過度に大きくなり難く、特に、接触端部15に荷重が集中し難く、接触端部15の板厚が減少し難い。そのため、成形中に接触端部15周辺に亀裂が発生したり、その後の絞り成形及びステイクでの亀裂発生の起点となるくびれが発生したりすることを抑制できる。
 第1面動摩擦係数は、例えば、後述する無被覆第1面粗さ、後述する有被覆第1面粗さ、ワックスの量等により調整することができる。無被覆第1面粗さを大きくするほど、第1面動摩擦係数が大きくなる。有被覆第1面粗さを大きくするほど、第1面動摩擦係数が大きくなる。ワックスの量を少なくするほど、第1面動摩擦係数が大きくなる。
 (2-2)第2面動摩擦係数
 直径4.8mmの鋼球を500gfの荷重で第2面に押し付け、鋼球を第2面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの第2面の動摩擦係数(以下、第2面動摩擦係数とする)は0.01以上0.03以下であることが好ましい。
 第2面動摩擦係数が0.01以上である場合、以下の効果を奏する。張出成形において、第2面に下金型の凸部を押し付け、第1面に半球状の突起を形成することを想定する。第2面動摩擦係数が0.01以上である場合、凸部と第2面との摩擦力が小さいため、缶エンド用アルミニウム合金板に負荷される荷重が分散しやすい。そのため、張出頭頂部に応力が集中し難く、張出頭頂部における板厚減少を抑制できる。その結果、ステイク後のリベットの板厚が厚くなる。
 第2面動摩擦係数が0.03以下である場合、以下の効果を奏する。この効果を図2に基づき説明する。図2は、張出成形後の缶エンド用アルミニウム合金板1に対し、絞り成形を行っている状態を表す図面である。絞り成形には、下金型17と、上金型20とを用いる。下金型17は凸部19を備える。上金型20は凹部21を備える。
 下金型17は、缶エンド用アルミニウム合金板1の第1面1Aに押し当てられる。上金型20は、缶エンド用アルミニウム合金板1の第2面1Bに押し当てられる。第2面1Bと上金型20とが接触している範囲の端部を、接触端部25とする。
 第2面動摩擦係数が0.03以下である場合、絞り成形において、缶エンド用アルミニウム合金板1と上金型20との摩擦力が過度に大きくなり難く、接触端部25周辺に荷重が集中し難く、接触端部25の板厚が減少し難い。そのため、成形中に接触端部25周辺に亀裂が発生したり、亀裂発生の起点となるくびれが発生したりすることを抑制できる。
 第2面動摩擦係数は、例えば、後述する無被覆第2面粗さ、後述する有被覆第2面粗さ、ワックスの量等により調整することができる。無被覆第2面粗さを大きくするほど、第2面動摩擦係数が大きくなる。有被覆第2面粗さを大きくするほど、第2面動摩擦係数が大きくなる。ワックスの量を少なくするほど、第2面動摩擦係数が大きくなる。
 (2-3)3方向の耐力
 缶エンド用アルミニウム合金板において、圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とにおける最大値と最小値との差(以下では、3方向耐力差とする)が20MPa以下であることが好ましい。
 3方向耐力差が20MPa以下である場合、缶エンド用アルミニウム合金板において、ステイク工程において耐力が低い方向に変形が集中することを抑制できる。そのため、缶エンド用アルミニウム合金板が割れたり、リベットが楕円形状となってタブの固定が不十分になったりする事態を抑制できる。
 圧延方向に対して0°方向での耐力は、缶エンド用アルミニウム合金板について、圧延方向に対して0°方向での引張試験を行うにより測定できる。圧延方向に対して45°方向での耐力は、缶エンド用アルミニウム合金板について、圧延方向に対して45°方向での引張試験を行うことにより測定できる。圧延方向に対して90°方向での耐力は、缶エンド用アルミニウム合金板について、圧延方向に対して90°方向での引張試験を行うことにより測定できる。
 3方向耐力差は、例えば、熱間粗圧延の終了温度、熱間仕上げ圧延の終了温度、冷間圧延の終了温度、冷間圧延の圧下率等により調整することができる。熱間仕上げ圧延の終了温度が高いほど、3方向耐力差は小さくなる。冷間圧延の終了温度が高いほど、3方向耐力差は小さくなる。冷間圧延の圧下率が小さいほど、3方向耐力差は小さくなる。
 (2-4)ランクフォード値
 缶エンド用アルミニウム合金板において、圧延方向に対して0°方向でのランクフォード値R0と、圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90とから、下記式(1)で算出される値をR(AVE)とする。R(AVE)は0.5以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000005
 R(AVE)が0.5以上である場合、絞り成形においてシェルの型馴染み性が良くなり、突起の張出し高さが高くなるため、ステイク工程後のリベット径が大きくなる。また、R(AVE)が0.5以上である場合、以下の作用を奏する。絞り成形において突起が縮径される際に、周方向での突起の寸法の減少量が、板厚の減少量に対して大きくなる。周方向での突起の寸法の減少量が大きいため、突起の縮径の弾性変形分が小さくなり、除荷後の突起の弾性変形による戻りが小さくなる。その結果、突起の張出し高さが大きくなるため、ステイク後のリベット径は大きくなる。
 圧延方向に対して0°方向でのランクフォード値R0は、以下のように測定される値である。缶エンド用アルミニウム合金板に対して引張試験を行い、缶エンド用アルミニウム合金板に3%の塑性ひずみを導入する。引張方向は、圧延方向に対して0°方向である。このとき、缶エンド用アルミニウム合金板の幅方向の歪みをεwとし、缶エンド用アルミニウム合金板の板厚方向の歪みをεtとする。圧延方向に対して0°方向でのランクフォード値R0は、εw/εtである。
 圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90も、基本的には上と同様に測定することができる。ただし、圧延方向に対して45°方向でのランクフォード値R45を測定する場合は、缶エンド用アルミニウム合金板について圧延方向に対して45°方向に引張試験を行う。また、圧延方向に対して90°方向でのランクフォード値R90を測定する場合は、缶エンド用アルミニウム合金板について圧延方向に対して90°方向に引張試験をする。
 R(AVE)は、例えば、熱間仕上げ圧延の終了温度等により調整することができる。熱間仕上げ圧延の終了温度が高いほど、R(AVE)は大きくなる。
 (2-5)表面粗さRa
 アルミニウム合金板が有機樹脂皮膜により被覆されていない状態において、圧延方向に垂直な方向での第1面の算術平均粗さRaを、以下では無被覆第1面粗さとする。アルミニウム合金板が有機樹脂皮膜により被覆されていない状態において、圧延方向に垂直な方向での第2面の算術平均粗さRaを、以下では無被覆第2面粗さとする。
 無被覆第1面粗さ及び無被覆第2面粗さは、例えば、有機樹脂皮膜を備える缶エンド用アルミニウム合金板から、有機樹脂皮膜を除去した後に測定した値であってもよいし、有機樹脂皮膜を形成する前のアルミニウム合金板を測定した値であってもよい。有機樹脂皮膜を除去する方法として、例えば、硫酸を用いる方法が挙げられる。
 アルミニウム合金板が有機樹脂皮膜により被覆されている状態において、圧延方向に垂直な方向での第1面の算術平均粗さRaを、以下では有被覆第1面粗さとする。アルミニウム合金板が有機樹脂皮膜により被覆されている状態において、圧延方向に垂直な方向での第2面の算術平均粗さRaを、以下では有被覆第2面粗さとする。
 無被覆第1面粗さ及び無被覆第2面粗さは、0.50μm以下であることが好ましい。
 有被覆第1面粗さ及び有被覆第2面粗さは、0.25μm以下であることが好ましい。
 無被覆第1面粗さが0.50μm以下である場合、有被覆第1面粗さを0.25μm以下とすることが容易である。無被覆第2面粗さが0.50μm以下である場合、有被覆第2面粗さを0.25μm以下とすることが容易である。
 有被覆第1面粗さが0.25μm以下である場合、第1面動摩擦係数を小さくすることができ、例えば、第1面動摩擦係数を0.03以下とすることができる。有被覆第2面粗さが0.25μm以下である場合、第2面動摩擦係数を小さくすることができ、例えば、第2面動摩擦係数を0.03以下とすることができる。
 無被覆第1面粗さ、無被覆第2面粗さ、有被覆第1面粗さ、及び有被覆第2面粗さは、例えば、冷間圧延ロールの表面粗さ等により調整することができる。冷間圧延ロールの表面粗さが小さいほど、無被覆第1面粗さ、無被覆第2面粗さ、有被覆第1面粗さ、及び有被覆第2面粗さは小さくなる。
 (2-6)ワックスの量
 本開示の缶エンド用アルミニウム合金板の第1面は、30mg/m以上100mg/m以下のワックスを備えることが好ましい。第1面が30mg/m以上のワックスを備える場合、第1面動摩擦係数を小さくすることができ、例えば、第1面動摩擦係数を0.03以下とすることができる。
 第1面が備えるワックスの量が100mg/m以下である場合、缶エンド用アルミニウム合金板の製造コストを低減できる。また、第1面が備えるワックスの量が100mg/m以下である場合、金型に堆積するワックスの量を低減できる。その結果、金型の清掃頻度を少なくすることができ、缶エンド用アルミニウム合金板の生産性が向上する。
 本開示の缶エンド用アルミニウム合金板の第2面は、30mg/m以上100mg/m以下のワックスを備えることが好ましい。第2面が30mg/m以上のワックスを備える場合、第2面動摩擦係数を小さくすることができ、例えば、第2面動摩擦係数を0.03以下とすることができる。
 第2面が備えるワックスの量が100mg/m以下である場合、缶エンド用アルミニウム合金板の製造コストを低減できる。また、第2面が備えるワックスの量が100mg/m以下である場合、金型に堆積するワックスの量を低減できる。その結果、金型の清掃頻度を少なくすることができ、缶エンド用アルミニウム合金板の生産性が向上する。
 ワックスとして、例えば、白色ワセリン、パラフィンワックス等が挙げられる。ワックスは、第1面又は第2面において均一に広がっていてもよいし、ワックスが存在する場所と存在しない場所とが混在していてもよい。
 3.缶エンド用アルミニウム合金板の製造方法
 本開示の缶エンド用アルミニウム合金板は、例えば、以下の方法で製造できる。アルミニウム合金を、常法に従って、溶解、鋳造し、アルミニウム合金鋳塊を得る。アルミニウム合金鋳塊の組成は、例えば、前記「缶エンド用アルミニウム合金板の組成」の項で述べたものである。
 次に、アルミニウム合金鋳塊を均質化熱処理する。均質化熱処理は、460~540℃の温度で2~24時間行うことが好ましい。均質化熱処理の温度が460℃以上である場合、アルミニウム合金鋳塊が均質化するまでに要する時間を短縮することができる。その結果、缶エンド用アルミニウム合金板の生産性が向上する。
 均質化熱処理の温度が540℃以下である場合、鋳造の工程で形成された共晶化合物が融解してしまうことを抑制できる。そのため、アルミニウム合金鋳塊の表面性状の悪化を抑制できる。その結果、後の圧延工程にてアルミニウム合金鋳塊に筋状欠陥が発生し難くなり、最終製品の外観が向上する。
 均質化熱処理の時間が2時間以上である場合、均質化の効果が高く、添加元素の固溶量が増し、缶エンド用アルミニウム合金板の強度が高くなる。均質化熱処理の時間が24時間以下である場合、缶エンド用アルミニウム合金板の生産性が向上する。また、均質化熱処理の時間が24時間以下である場合、アルミニウム合金鋳塊表面の酸化を抑制することができる。そのため、アルミニウム合金板の圧延面に欠陥が生じ難く、缶エンド用アルミニウム合金板の面質が向上する。
 均質化熱処理後、アルミニウム合金鋳塊に熱間粗圧延を行い、熱間粗圧延材を得る。熱間粗圧延の終了温度は460~540℃が好ましい。熱間粗圧延の終了温度が460℃以上である場合、圧延に必要な荷重を抑制できる。また、熱間粗圧延の終了温度が460℃以上である場合、1パスごとの圧下量を多くすることができ、缶エンド用アルミニウム合金板の生産性が向上する。熱間粗圧延の終了温度が540℃以下である場合、共晶化合物が融解し難く、缶エンド用アルミニウム合金板の表面性状が良好になる。
 熱間粗圧延に続いて熱間粗圧延材に熱間仕上げ圧延を行い、熱間仕上げ圧延材を得る。熱間仕上げ圧延の終了温度は300~370℃が好ましい。熱間仕上げ圧延の終了温度が300℃以上の場合、熱間圧延終了時点で熱間仕上げ圧延材において再結晶組織を得やすくなる。その結果、ランクフォード値R0、R45、R90がそれぞれ大きくなり、R(AVE)の値が大きくなる。例えば、熱間仕上げ圧延材について、中間焼鈍せず、製品板厚まで冷間圧延する工程を行うことにより缶エンド用アルミニウム合金板を製造する場合でも、製造ロット毎のランクフォード値R0、R45、R90のばらつきを抑制できる。
 また、熱間仕上げ圧延の終了温度が300℃以上の場合、実質的な冷間加工度を低くすることができ、冷間圧延中にアルミニウム合金板の耳割れが生じ難くなる。その結果、アルミニウム合金板の生産性が向上する。また、熱間仕上げ圧延の終了温度が300℃以上の場合、アルミニウム合金板の成形性が向上する。
 熱間仕上げ圧延の終了温度が370℃以下の場合、圧延面と圧延ロールとの摩擦によって酸化皮膜がロールに凝集し、圧延面に筋状の欠陥が生じる現象を抑制できる。
 その後、熱間仕上げ圧延材に冷間圧延を行い、製品の板厚を有するアルミニウム合金板を得る。製品の板厚は、例えば、0.20~0.25mmである。冷間圧延の圧下率は、60~93%が好ましい。冷間圧延の圧下率が60%以上である場合、材料の加工硬化が進行しやすく、アルミニウム合金板ついて缶エンドとして要求される耐圧強度を確保することが容易になる。冷間圧延の圧下率が93%以下である場合、アルミニウム合金板の強度の異方性のばらつきを抑制できる。そのため、3方向耐力差を抑制できる。
 冷間圧延は、室温(20~25℃)以上180℃以下の温度範囲で行うことが好ましく、室温以上150℃以下の温度範囲で行うことが一層好ましい。冷間圧延温度が180℃以下である場合、圧延油がアルミニウム合金板の表面に焼付くことで生じる、オイルステンと呼ばれる表面欠陥を抑制できる。そのため、最終製品の外観品質が向上する。冷間圧延温度が150℃以下である場合、最終製品の外観品質が一層向上する。
 なお、冷間圧延の前、または冷間圧延の途中で必要に応じて、熱間仕上げ圧延材に中間焼鈍を行ってもよい。中間焼鈍を行う場合には、中間焼鈍後の冷間圧延における圧下率を、60~93%とすることが好ましい。
 冷間圧延の後、アルミニウム合金板の一方及び他方の両面に有機樹脂皮膜を塗装し、焼付ける。焼付けにおけるアルミニウム合金板の到達温度(以下では塗装焼付け到達温度とする)は200~300℃が好ましい。有機樹脂皮膜の材料として、例えば、エポキシ系樹脂、塩化ビニル系樹脂等が挙げられる。
 塗装焼付け到達温度が200℃以上である場合、有機樹脂皮膜の塗膜性能が向上する。塗装焼付け到達温度が300℃以下である場合、アルミニウム合金板の回復を抑制することができる。そのため、缶エンド用アルミニウム合金板の材料強度が高くなり、缶エンド用アルミニウム合金板について缶エンドとして要求される耐圧強度を確保することが容易になる。
 また有機樹脂皮膜を塗装した後、缶エンド用アルミニウム合金板の表面の潤滑性を確保するため、例えば、有機樹脂皮膜表面に有機物で構成されたワックスを塗布する。なお、有機樹脂皮膜を形成するための塗料中にワックスを配合してもよい。その場合、ワックスの一部は、有機樹脂皮膜の表面に存在する。
 4.実施例
 (4-1)缶エンド用アルミニウム合金板の製造
 缶エンド用アルミニウム合金板の製造方法として、表1に示すA1~A4、B1~B9がある。それぞれの製造方法において、表1に示す組成のアルミニウム合金板を溶解し、半連続鋳造法にて造塊し、アルミニウム合金鋳塊を得た。得られたアルミニウム合金鋳塊に対し500℃の温度で4時間の均質化熱処理を行った。各アルミニウム合金板の残部はAlおよび不可避的不純物である。
Figure JPOXMLDOC01-appb-T000006
 次に、アルミニウム合金鋳塊に熱間圧延を施した。熱間圧延は、熱間粗圧延と、熱間仕上げ圧延とから成る。熱間粗圧延工程では、アルミニウム合金鋳塊を熱間粗圧延して熱間粗圧延材を得た。熱間粗圧延は、470℃で終了した。熱間仕上げ圧延工程では、熱間粗圧延材を熱間仕上げ圧延して熱間仕上げ圧延材を得た。熱間仕上げ圧延の終了温度は、表1に示す温度である。
 熱間圧延の後、熱間仕上げ圧延材に対して、表1に示す圧下率で冷間圧延を施し、厚さ0.235mmのアルミニウム合金板を得た。なお、B2の製造方法でのみ、冷間圧延の最終パス時に、表面粗さが大きいワークロールを使用した。この表面粗さが大きいワークロールは、表面を粗く研磨した直後のワークロールである。
 冷間圧延の後、アルミニウム合金板(冷間圧延板)の一方及び他方の両面に連続処理ラインで溶剤塗料を塗布した。次に、最高到達温度が250℃となるよう制御して冷間圧延板に塗装焼付処理を施した。その結果、冷間圧延板の両面が有機樹脂皮膜で被覆された。この有機樹脂皮膜はエポキシ系樹脂から成る。
 塗装焼付処理後、有機樹脂皮膜の表面に、融解させたワックスをロールにて所定量塗布した。このワックスは白色ワセリンである。以上の工程により、缶エンド用アルミニウム合金板が完成した。
 (4-2)缶エンド用アルミニウム合金板の評価
  (i) 第1面動摩擦係数及び第2面動摩擦係数
 製造した缶エンド用アルミニウム合金板のそれぞれについて、第1面動摩擦係数及び第2面動摩擦係数を測定した。
 第1面動摩擦係数の測定方法は以下のとおりである。直径4.8mmの鋼球を500gfの荷重で内面(第1面)に押し付け、鋼球を内面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの内面の動摩擦係数を、第1面動摩擦係数とした。摺動長さは10mmとした。なお、内面とは、缶エンド用アルミニウム合金板の両面のうち、飲料充填後に飲料と触れる面である。
 第2面動摩擦係数の測定方法は以下のとおりである。直径4.8mmの鋼球を500gfの荷重で外面(第2面)に押し付け、鋼球を外面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの外面の動摩擦係数を、第2面動摩擦係数とした。摺動長さは10mmとした。なお、外面とは、缶エンド用アルミニウム合金板の両面のうち、内面とは反対の面である。
 第1面動摩擦係数の測定結果を表2における「動摩擦係数」のうち「内面」の列に示す。また、第2面動摩擦係数の測定結果を表2における「動摩擦係数」のうち「外面」の列に示す。
Figure JPOXMLDOC01-appb-T000007
 (ii) 3方向の耐力
 缶エンド用アルミニウム合金板から、硫酸脱膜の方法により、有機樹脂皮膜及びワックスを除去した。次に、缶エンド用アルミニウム合金板から、標点間距離50mm、平行部幅25mmの引張試験片を成形した。この引張試験片について、圧延方向に対して0°、45°、90°方向に引張試験を行い、圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とを測定した。そして、それらの測定結果に基づき、3方向耐力差を算出した。算出した3方向耐力差を上記表2に示す。
 (iii)ランクフォード値
 缶エンド用アルミニウム合金板から、硫酸脱膜の方法により、有機樹脂被膜及びワックスを除去した。次に、缶エンド用アルミニウム合金板から、標点間距離50mm、平行部幅25mmの引張試験片を成形した。この引張試験片について引張試験を行い、ランクフォード値R0、R45、R90を測定した。測定方法は上述したとおりである。引張試験は、JIS Z 2241-2011に準拠した。引張試験では、市販の引張試験装置(島津製作所製 オートグラフAG-50kND)を用いた。引張試験片の形状は、JIS5号で定義された形状である。
 次に、測定したランクフォード値R0、R45、R90を用いて、前記式(1)で表されるR(AVE)を算出した。算出したR(AVE)を上記表2に示す。
 (iv)表面粗さRa
 アルミニウム合金板が有機樹脂皮膜により被覆されている状態の缶エンド用アルミニウム合金板の内面及び外面の表面粗さRaを、以下の条件で測定した。表面粗さRaは、JIS B 0601-2001に定義される算術平均粗さRaである。測定結果を上記表2における「Ra(有被覆)」の列に示す。
 測定装置:触針式の表面粗さ測定機(株式会社東京精密社製 SURFCOM 130A)
 触針径:2μm
 触針の走査方向:圧延方向に垂直な方向
 測定長:4.00mm
 測定速度:0.3mm/s
 カットオフ値λc:0.8mm
 また、缶エンド用アルミニウム合金板から、硫酸脱膜の方法により、有機樹脂皮膜及びワックスを除去した。その後、アルミニウム合金板が有機樹脂皮膜により被覆されていない状態の缶エンド用アルミニウム合金板の内面及び外面の表面粗さRaを測定した。測定条件は、アルミニウム合金板が有機樹脂皮膜により被覆されている状態の缶エンド用アルミニウム合金板の測定条件と同様である。測定結果を上記表2における「Ra(無被覆)」の列に示す。
 (v)ワックスの量
 缶エンド用アルミニウム合金板から、圧延方向での寸法が300mmであり、圧延垂直方向での寸法が210mmである試験片を切り出した。試験片の質量を、電子天秤(METTLER TLEDO製 AE240)にて秤量した。
 その後、試験片の両面のうち、ワックスの量を測定する面をヘキサンにて洗浄した。洗浄により、ワックスは除去される。その後、試験片の質量を再度秤量した。洗浄の前後における試験片の質量変化量と、試験片の面積とから、単位面積当たりのワックスの量を算出した。算出したワックスの量を上記表2に示す。
 (vi)リベット成形性
 缶エンド用アルミニウム合金板から、204径のシェルを成形した。このシェルに対し、リベット成形工程、ステイクを行い、リベットを成形した。張出成形において使用した下金型は、直径10mm(R:5.0mm)の球頭型の凸部を備える球頭金型である。張出成形では下金型を缶エンド用アルミニウム合金板の外面に押し当てた。
 絞り成形は、直径7mm(R:3.5mm)の凹部を有する上金型と、直径4mm(R:2.0mm)の凸部を有する下金型とを用いて行った。ステイクは、下金型と上金型との隙間が0.10mmとなるように設定した。
 以下の(イ)~(ハ)のいずれにも該当しない場合は、缶エンド用アルミニウム合金板のリベット成形性を○と評価し、(イ)~(ハ)のいずれかに該当する場合は、缶エンド用アルミニウム合金板のリベット成形性を×と評価した。評価結果を上記表2における「リベット成形試験」の列に示す。
 (イ)張出成形又は絞り成形にて、亀裂又はくびれが生じる。
 (ロ)成形後のリベット径が、圧延方向と圧延垂直方向とで、0.3mm以上異なる。
 (ハ)成形後のリベット径が、圧延方向と圧延垂直方向とのうちのいずれかで4.2mmに及ばない。
 表2に示すように、製造方法A1~A4で製造した缶エンド用アルミニウム合金板では、リベット成形性の評価結果が○であった。
 製造方法B1で製造した缶エンド用アルミニウム合金板では、ワックスの量が少なく、第1面動摩擦係数及び第2面動摩擦係数が大きいため、リベット成形工程中の絞り成形にてくびれが発生した。その結果、リベット成形性の評価結果が×であった。
 製造方法B2で製造した缶エンド用アルミニウム合金板では、アルミニウム合金板が有機樹脂皮膜により被覆されている状態の缶エンド用アルミニウム合金板の内面及び外面の表面粗さRa、アルミニウム合金板が有機樹脂皮膜により被覆されていない状態の缶エンド用アルミニウム合金板の内面及び外面の表面粗さRa、第1面動摩擦係数及び第2面動摩擦係数が大きいため、リベット成形工程中の絞り成形にて缶エンド用アルミニウム合金板にくびれが発生した。その結果、リベット成形性の評価結果が×であった。
 製造方法B3で製造した缶エンド用アルミニウム合金板では、3方向耐力差が大きいため、圧延方向のリベット径に対して、圧延垂直方向のリベット径が0.4mm小さくなった。その結果、リベット成形性の評価結果が×であった。
 製造方法B4で製造した缶エンド用アルミニウム合金板では、R(AVE)が小さいため、バトン成形後の突起が低くなり、リベット径が4.3mmに満たなかった。その結果、リベット成形性の評価結果が×であった。
 製造方法B5で製造した缶エンド用アルミニウム合金板では、Mgが多いため、仕上げ圧延にて割れが発生した。そのため、リベット成形性を評価できなかった。
 製造方法B6で製造した缶エンド用アルミニウム合金板では、Mnが多いため、リベット成形性の評価結果が×であった。
 製造方法B7で製造した缶エンド用アルミニウム合金板では、Siが多いため、リベット成形性の評価結果が×であった。
 製造方法B8で製造した缶エンド用アルミニウム合金板では、Cuが多いため、リベット成形性の評価結果が×であった。
 5.他の実施形態
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
 (1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
 (2)上述した缶エンド用アルミニウム合金板の他、当該缶エンド用アルミニウム合金板を構成要素とする製品、シェル等、種々の形態で本開示を実現することもできる。

Claims (3)

  1.  缶エンド用アルミニウム合金板であって、
     前記缶エンド用アルミニウム合金板は、Mg:4.0~5.5質量%、Mn:0.20~0.50質量%、Fe:0.10~0.50質量%、Si:0.03~0.30質量%、及びCu:0.20質量%以下を含有し、残部がAlおよび不可避的不純物から構成されたアルミニウム合金板と、
     前記アルミニウム合金板の一方及び他方の両面を被覆する有機樹脂皮膜と、を有し、
     前記缶エンド用アルミニウム合金板において、前記アルミニウム合金板の一方の面を被覆する前記有機樹脂皮膜の表面を第1面とし、前記アルミニウム合金板の他方の面を被覆する前記有機樹脂皮膜の表面を第2面としたとき、直径4.8mmの鋼球を500gfの荷重で前記第1面に押し付け、前記鋼球を前記第1面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの前記第1面の動摩擦係数が0.01以上0.03以下であり、
     直径4.8mmの鋼球を500gfの荷重で前記第2面に押し付け、前記鋼球を前記第2面上で圧延方向に垂直な方向に60mm/minの速度ですべらせたときの前記第2面の動摩擦係数が0.01以上0.03以下であり、
     前記缶エンド用アルミニウム合金板において、圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とにおける最大値と最小値との差が20MPa以下であり、
     前記缶エンド用アルミニウム合金板において、圧延方向に対して0°方向でのランクフォード値R0と、圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90とから、下記式(1)で算出されるR(AVE)が0.5以上である、缶エンド用アルミニウム合金板。
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1に記載の缶エンド用アルミニウム合金板であって、
     前記アルミニウム合金板が前記有機樹脂皮膜により被覆されていない状態において、圧延方向に垂直な方向での前記第1面及び前記第2面の算術平均粗さRaが0.50μm以下であり、
     前記アルミニウム合金板が前記有機樹脂皮膜により被覆されている状態において、圧延方向に垂直な方向での前記第1面及び前記第2面の算術平均粗さRaが0.25μm以下であり、
     前記第1面及び前記第2面は、それぞれ、30mg/m以上100mg/m以下のワックスを備える、缶エンド用アルミニウム合金板。
  3.  缶エンド用アルミニウム合金板の製造方法であって、
     Mg:4.0~5.5質量%、Mn:0.20~0.50質量%、Fe:0.10~0.50質量%、Si:0.03~0.30質量%、及びCu:0.20質量%以下を含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金鋳塊を、460~540℃で2~24時間保持する均質化熱処理工程と、
     前記アルミニウム合金鋳塊を終了温度が460~540℃である条件で熱間粗圧延して熱間粗圧延材を得る熱間粗圧延工程と、
     前記熱間粗圧延材を終了温度が300~370℃である条件で熱間仕上げ圧延して熱間仕上げ圧延材を得る熱間仕上げ圧延工程と、
     前記熱間仕上げ圧延材を室温以上150℃以下の温度にて圧下率60~93%で圧延してアルミニウム合金板を得る冷間圧延工程と、
     前記アルミニウム合金板の一方及び他方の両面に有機樹脂皮膜を形成し、200~300℃で焼付ける有機樹脂皮膜形成工程と、
     前記アルミニウム合金の一方及び他方の両面に形成した前記有機樹脂皮膜の表面にワックスを塗布するワックス塗布工程と、
     を含み、
     前記缶エンド用アルミニウム合金板では、
      圧延方向に対して0°方向での耐力と、圧延方向に対して45°方向での耐力と、圧延方向に対して90°方向での耐力とにおける最大値と最小値との差が20MPa以下であり、
      圧延方向に対して0°方向でのランクフォード値R0と、圧延方向に対して45°方向でのランクフォード値R45と、圧延方向に対して90°方向でのランクフォード値R90とから、下記式(1)で算出されるR(AVE)が0.5以上であり、
      前記缶エンド用アルミニウム合金板において、前記アルミニウム合金板の一方の面を被覆する前記有機樹脂皮膜の表面を第1面とし、前記アルミニウム合金板の他方の面を被覆する前記有機樹脂皮膜の表面を第2面としたとき、前記アルミニウム合金板の一方及び他方の両面が前記有機樹脂皮膜により被覆されていない状態において、圧延方向に垂直な方向での前記第1面及び前記第2面の算術平均粗さRaが0.50μm以下である缶エンド用アルミニウム合金板の製造方法。
    Figure JPOXMLDOC01-appb-M000002
     
PCT/JP2018/036514 2017-09-28 2018-09-28 缶エンド用アルミニウム合金板及びその製造方法 WO2019066049A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188625A JP2019065316A (ja) 2017-09-28 2017-09-28 缶エンド用アルミニウム合金板及びその製造方法
JP2017-188625 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019066049A1 true WO2019066049A1 (ja) 2019-04-04

Family

ID=65903007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036514 WO2019066049A1 (ja) 2017-09-28 2018-09-28 缶エンド用アルミニウム合金板及びその製造方法

Country Status (2)

Country Link
JP (1) JP2019065316A (ja)
WO (1) WO2019066049A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150412A1 (en) * 2020-01-23 2021-07-29 Novelis Inc. Engineered can body stock and can end stock and methods for making and using same
JP7475459B2 (ja) 2020-01-23 2024-04-26 ノベリス・インコーポレイテッド 細工を施した缶胴材及び缶蓋材ならびにその作製方法及び使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164347A (ja) * 1999-12-06 2001-06-19 Sky Alum Co Ltd 缶蓋用アルミニウム合金硬質板およびその製造方法
JP2002347170A (ja) * 2001-03-19 2002-12-04 Toyo Seikan Kaisha Ltd 自己潤滑性を有する樹脂被覆金属板及びその製造方法、並びに金属缶及び缶蓋
JP2006051984A (ja) * 2004-08-12 2006-02-23 Toyo Seikan Kaisha Ltd アルミニウム製蓋
JP2009221567A (ja) * 2008-03-18 2009-10-01 Furukawa-Sky Aluminum Corp 陽圧塗装缶蓋用アルミニウム合金板およびその製造方法
WO2015119021A1 (ja) * 2014-02-06 2015-08-13 株式会社神戸製鋼所 缶蓋用アルミニウム合金板およびその製造方法
WO2015125791A1 (ja) * 2014-02-18 2015-08-27 株式会社神戸製鋼所 缶蓋用アルミニウム合金板
WO2016063876A1 (ja) * 2014-10-20 2016-04-28 株式会社神戸製鋼所 缶蓋用アルミニウム合金板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164347A (ja) * 1999-12-06 2001-06-19 Sky Alum Co Ltd 缶蓋用アルミニウム合金硬質板およびその製造方法
JP2002347170A (ja) * 2001-03-19 2002-12-04 Toyo Seikan Kaisha Ltd 自己潤滑性を有する樹脂被覆金属板及びその製造方法、並びに金属缶及び缶蓋
JP2006051984A (ja) * 2004-08-12 2006-02-23 Toyo Seikan Kaisha Ltd アルミニウム製蓋
JP2009221567A (ja) * 2008-03-18 2009-10-01 Furukawa-Sky Aluminum Corp 陽圧塗装缶蓋用アルミニウム合金板およびその製造方法
WO2015119021A1 (ja) * 2014-02-06 2015-08-13 株式会社神戸製鋼所 缶蓋用アルミニウム合金板およびその製造方法
WO2015125791A1 (ja) * 2014-02-18 2015-08-27 株式会社神戸製鋼所 缶蓋用アルミニウム合金板
WO2016063876A1 (ja) * 2014-10-20 2016-04-28 株式会社神戸製鋼所 缶蓋用アルミニウム合金板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150412A1 (en) * 2020-01-23 2021-07-29 Novelis Inc. Engineered can body stock and can end stock and methods for making and using same
JP2023511262A (ja) * 2020-01-23 2023-03-17 ノベリス・インコーポレイテッド 細工を施した缶胴材及び缶蓋材ならびにその作製方法及び使用方法
JP7475459B2 (ja) 2020-01-23 2024-04-26 ノベリス・インコーポレイテッド 細工を施した缶胴材及び缶蓋材ならびにその作製方法及び使用方法

Also Published As

Publication number Publication date
JP2019065316A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP6210896B2 (ja) 缶蓋用アルミニウム合金板およびその製造方法
JP2006265700A (ja) 高温特性に優れたボトル缶用アルミニウム合金板
JP5675447B2 (ja) 樹脂被覆缶胴用アルミニウム合金板およびその製造方法
JP4829988B2 (ja) 包装容器蓋用アルミニウム合金板
JP2010053367A (ja) 缶エンド用アルミニウム合金板およびその製造方法
WO2019066049A1 (ja) 缶エンド用アルミニウム合金板及びその製造方法
WO2019058935A1 (ja) ボトル缶胴用アルミニウム合金板及びその製造方法
JP2016141886A (ja) 缶蓋用アルミニウム合金板
JP4943714B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板
JP4460406B2 (ja) ボトル缶用アルミニウム合金板及びその製造方法
JP2004183035A (ja) ネジ付アルミ缶胴用アルミニウム合金板
JP6435268B2 (ja) 缶エンド用アルミニウム合金板及びその製造方法
JP4771726B2 (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP4019084B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP2006299330A (ja) ボトル缶胴用アルミニウム合金板
JP2016180175A (ja) 製缶後の光沢性に優れた樹脂被覆絞りしごき缶用アルミニウム合金板および絞りしごき缶用樹脂被覆アルミニウム合金板
JP4995494B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板及びその製造方法
JP6372984B2 (ja) 耐流通ピンホール性に優れる缶ボディ用アルミニウム合金板の製造方法
JP4291642B2 (ja) 包装容器蓋用アルミニウム合金板の製造方法
JP4393949B2 (ja) 広口ボトル缶キャップ用高強度アルミニウム合金板
JP2022114208A (ja) 缶蓋用アルミニウム合金塗装板
JP6033192B2 (ja) 負圧缶蓋用アルミニウム合金板
JP2006077296A (ja) 突き刺し強度の優れたボトル缶用アルミニウム合金板
JP2005226120A (ja) 包装容器エンド用アルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862141

Country of ref document: EP

Kind code of ref document: A1