明 細 書
捲縮糸およびその製造方法ならびに繊維構造体
技術分野
[0001] 本発明は、脂肪族ポリエステル榭脂と熱可塑性ポリアミド榭脂よりなり、繊維表面積 に対する脂肪族ポリエステル榭脂の露出面積比率が極めて小さい合成繊維力 構 成される捲縮糸に関するものである。
背景技術
[0002] 最近、地球的規模での環境に対する意識向上に伴い、自然環境の中で分解する 繊維素材の開発が切望されている。例えば、従来の汎用プラスチックは石油資源を 主原料としていることから、石油資源が将来枯渴すること、また石油資源の大量消費 により生じる地球温暖化が大きな問題として採り上げられている。
[0003] このため近年では脂肪族ポリエステル等、様々なプラスチックや繊維の研究 ·開発 が活発化している。その中でも微生物により分解されるプラスチック、即ち生分解性 プラスチックを用いた繊維に注目が集まって 、る。
[0004] また、二酸ィ匕炭素を大気中から取り込み成長する植物資源を原料とすることで、二 酸ィ匕炭素の循環により地球温暖化を抑制できることが期待できるとともに、資源枯渴 の問題も解決できる可能性がある。そのため、植物資源を出発点とするプラスチック、 すなわちバイオマス利用のプラスチックに注目が集まっている。
[0005] これまで、バイオマス利用の生分解性プラスチックは、力学特性や耐熱性が低 、と ともに、製造コストが高いといった課題があり、汎用プラスチックとして使われることは なかった。一方、近年では力学特性や耐熱性が比較的高ぐ製造コストの低い生分 解性のプラスチックとして、でんぷんの発酵で得られる乳酸を原料としたポリ乳酸が脚 光を浴びている。
[0006] ポリ乳酸に代表される脂肪族ポリエステル榭脂は、例えば手術用縫合糸として医療 分野で古くから用いられてきたが、最近は量産技術の向上により価格面においても 他の汎用プラスチックと競争できるまでになつた。そのため、繊維としての商品開発も 活発化してきている。
[0007] ポリ乳酸等の脂肪族ポリエステル繊維の開発は、生分解性を活かした農業資材や 土木資材等が先行しているが、それに続く大型の用途として衣料用途、カーテン、力 一ペット等のインテリア用途、車両内装用途、産業資材用途への応用も期待されてい る。し力しながら、衣料用途や産業資材用途に適応する場合には、脂肪族ポリエステ ル、特にポリ乳酸の耐摩耗性の低さが大きな問題となる。例えば、ポリ乳酸繊維を衣 料用途に用いた場合には、擦過等により容易に色移りが生じたり、酷い場合には繊 維がフィブリルィ匕して白ぼけしたり、皮膚に過度の刺激を与えたりする等、実用上の 耐久性に乏しいことがわ力つてきている。また、自動車内装用、特に強い擦過を受け るカーペット等に用いた場合には、ポリ乳酸の毛倒れが容易に生じるとともに、削れ が起こり、酷い場合には穴が開くこともある。また、脂肪族ポリエステル (特にポリ乳酸 )は加水分解が生じやすいこともあり、上記の様なフィブリル化や削れは経時的に酷 くなる傾向にあり、製品寿命が短 、と 、つたことがわ力つてきて!、る。
[0008] ポリ乳酸の耐摩耗性を改善する方法としては、例えば加水分解を抑制する方法が あり、例えばポリ乳酸の水分率をできるだけ抑制することで、繊維の製造工程での加 水分解を抑制する方法や、モノカルポジイミドィ匕合物を添加して耐加水分解性を向 上させる方法がある。し力しながら、いずれの方法も経時的なポリ乳酸の脆ィ匕を抑制 すると 、う点では耐摩耗性の低下は抑えられて 、るものの、 、ずれもポリ乳酸の「フィ ブリルィ匕しゃすい」という特性を変えるものではなぐ初期の耐摩耗性は従来品となん ら変わらないものであることが判明している。
[0009] また、耐摩耗性を大幅に改善する方法として、脂肪酸ビスアミド等の滑剤を添加し て繊維表面の摩擦係数を低下せしめることで、摩耗を抑制させる方法がある。しかし ながら、これらの繊維は与えられる力が小さい場合には有効である力 例えば、カー ペットの様に強い踏込力が力かる場合には、繊維間凝着を十分に抑制することがで きないため、ポリ乳酸の破壊が生じてしまい、用途が限定されるものであった。
[0010] また、ポリアミドと脂肪族ポリエステルとのブレンドにより、榭脂組成物の力学特性を 向上させる技術が開示されている(特許文献 1)。特許文献 1に記載の方法によれば
、ポリアミドの補強効果により強度等の力学特性や耐熱性、耐摩耗性が向上するとあ る力 該方法ではポリアミドのブレンド比が 5〜40%と少量成分であるために、脂肪族
ポリエステルが海成分を形成し、さらに脂肪族ポリエステルとポリアミドが非相溶であ るため、これらの相の界面の接着性が劣るため、外力により容易に界面で剥離し、フ イブリル化して白ぼけし、摩耗速度も速 、と 、う問題があることが判明して 、る。
[0011] また、ポリアミド中にポリエステルを微分散させることで、ポリアミド繊維の配向抑制を 行い、高伸度化させる技術が開示されている(特許文献 2)。該ポリマーァロイ繊維に することで、仮撚加工時に低伸度のポリアミド未延伸糸と混繊すると、捲縮糸に高い 膨らみを与えることが可能となる。しかしながら、該ポリマーァロイ繊維は仮撚カ卩ェ時 の鞘糸には適しているが、本発明の目的であるエアスタッファ捲縮糸の製造に用い た場合には、むしろ繊維の配向が不十分なためにエアスタッファ捲縮装置内での熱 収縮が十分でなぐ 3次元捲縮ィヒせずに捲縮伸長率の低 ヽ捲縮糸しか得られな!/ヽも のであった。
[0012] また、鞘成分に耐摩耗性の高いポリアミドを配置することによって、耐摩耗性を改善 した複合繊維が開示されている(特許文献 3)。この技術により、繊維の削れを大幅に 抑制することができる。しカゝしながら、複合繊維とした場合には、高次加工工程、ある いは製品使用時にぉ 、て、外力が接着性の弱 、芯成分と鞘成分の界面 (以下芯鞘 界面と記載する)に集中し、芯鞘界面が剥離して外観変化(白ボケする)を起こすとい う新たな問題を生じることがわ力 ている。一旦、芯鞘界面の剥離が生じると、繊維の 長手方向へと界面剥離が伝播し、白い筋状の欠点が散見されるものとなる。これは特 に外観が重視される用途に用いる場合に欠点となる。また、芯鞘界面の剥離が生じ ると、芯成分と鞘成分の摩耗によって鞘成分が割れ (以下鞘割れと記載する)、さらに はフイブリルィ匕へと発展するという問題があった。
[0013] 特許文献 3には鞘成分として特定厚さの熱可塑性ポリアミドを有することにより、耐 摩耗性を向上させた複合繊維が開示されている。該複合繊維は衣料用途などの比 較的低い擦過しか受けない用途では効果を発揮する。し力しながら、カーペット等の 強い外力が断続的に加わる用途では、容易に界面剥離を生じて外観変化が起こり 易いものであった。また特許文献 3には該複合繊維を用いてなる捲縮糸(仮撚加工 糸)について開示されているが、複合繊維からなる捲縮糸は、未捲縮糸よりも芯鞘界 面の剥離が生じ易いことが判明した。さらに、その耐剥離性は脂肪族ポリエステルの
経時変化によって悪ィ匕する傾向にあり、鞘成分としてポリアミドを配置した複合繊維 は、耐摩耗性には優れるものの、耐剥離性は不十分であり、製品の外観変化が起こ りやす 、と 、う欠点を有して 、た。
特許文献 1:特開 2003 - 238775号公報 (第 3頁)
特許文献 2:特開 2005— 206961号公報 (第 3頁)
特許文献 3:特開 2004— 36035号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0014] 本発明は、上記課題を解決し、耐摩耗性に優れるとともに、染色後の審美性に優 れた肪族ポリエステル榭脂と熱可塑性ポリアミド榭脂よりなる合成繊維力も構成される 捲縮糸、および繊維構造体を提供することを課題とする。
課題を解決するための手段
[0015] 上記課題は、脂肪族ポリエステル榭脂 (A)と、熱可塑性ポリアミド榭脂 (B)よりなり、 繊維表面積に対する脂肪族ポリエステル榭脂 (A)の露出面積の比率が 5%以下で ある合成繊維であって、該合成繊維力も構成されたマルチフィラメントに捲縮が付与 されていることを特徴とする捲縮糸、および該捲縮糸を少なくとも一部に含むことを特 徴とする繊維構造体によって達成することができる。
発明の効果
[0016] 本発明により耐摩耗性が格段に向上し、高品位の繊維構造体を与え得る、一般衣 料用途や産業資材用途に最適な合成繊維および繊維構造体を提供することができ る。
図面の簡単な説明
[0017] [図 1]本発明のポリマーァロイ繊維の海島構造を説明するための透過型電子顕微鏡 ( TEM)写真である。
[図 2]本発明の捲縮糸(実施例 1)の繊維表層の走査電子顕微鏡 (SEM)写真である [図 3]捲縮糸の繊維表層に形成される筋状溝のアスペクト比を説明するための概略
図である。
[図 4]本発明の BCFヤーンの一態様をマルチフィラメントの状態で黒紙の上に置き上 面から観察した繊維の形状の写真である。
[図 5]本発明の BCFヤーンの一態様を単繊維にばらして黒紙の上に置き、上面から 観察した繊維の形状の写真である。
[図 6]本発明のポリマーァロイ系合成繊維カゝら構成される捲縮糸を製造するために好 ましく用いられる直接紡糸 '延伸'捲縮加工装置の概略図である。
[図 7]本発明の製造方法において、口金の孔深度、吐出孔のスリット長さ、スリット幅、 吐出孔径を説明するための概略図である。
[図 8]本発明の製造方法において、冷却開始点を説明するための概略図である。
[図 9]本発明の芯鞘型複合繊維 (芯成分:脂肪族ポリエステル榭脂)から構成される 捲縮糸を製造するために好ましく用いられる直接紡糸 ·延伸 ·捲縮加工装置の概略 図である。
[図 10]本発明の芯鞘型複合繊維の断面形状の好ましい例を示す模式図である。
[図 11]溶融粘度と相対粘度の関係を説明する図である。
[図 12]本発明の方法で使用する口金の一態様を示す縦断面模式図である。
[図 13]本発明の実施例 52で使用した仮撚加工を施す装置の一態様を示す概略図 である。
[図 14]本発明の芯鞘型複合繊維 (芯成分:ポリマーァロイ)から構成される捲縮糸を 製造するために好ましく用いられる直接紡糸 ·延伸 ·捲縮加工装置の概略図である。 符号の説明
1 :紡糸ホッパー
2 : 2軸押出混練機
3 :紡糸ブロック
4 :紡糸パック
5 :紡糸口金
6:環状チムニー (糸条冷却装置)
:給油装置 1
:給油装置 2
:ストレッチローノレ
1:第 1加熱ロール(1FR) :第 2加熱ロール( 1DR) :第 3加熱ロール(2DR) :エアジェットスタッファ装置 :冷却ロール
:張力測定検知器
:引取ローノレ
:交絡ノズル
:卷取機
:冷却風吹出面
、 65:芯成分ホッパー 、 66:鞘成分ホッパー :芯成分側の 1軸押出混練機 :鞘成分側の 1軸押出混練機 、 69:紡糸ブロック 、 70:芯成分側のギヤポンプ 、 71:鞘成分側のギヤポンプ 、 72:紡糸パック
、 73:紡糸口金
、 74:ュニフロー冷却装置 、 75:糸条
、 76:給油装置
、 77:第 1ロール
、 78:第 2ロール
、 79:第 3ロール
36、 80:第 4ロール
37、 81:捲縮ノス、ノレ
38、 82:冷却ロール
39、 83:第 6ロール
40、 84:第 7ローノレ
41、 85:チーズパッケージ
42、 86:卷取機
43:芯成分
44:鞘成分
45:口金 1(芯成分、鞘成分別々の流路を有する口金)
46:口金 2 (吐出直前の口金)
47:交絡ノズル
48:延伸糸チーズ
49、 51、 52、 55、 61:糸道ガイド
50:糸条
53:供給ロール
54:第 1ヒーター
56:冷却板
57 :3軸ツイスター
58:延伸ロール
59:第 2ヒーター
60:デリべリローノレ
62:交絡ノズル
63:糸道ガイド
64:仮撚加工糸
67:芯成分側の 2軸押出混練機
68:鞘成分側の 2軸押出混練機
発明を実施するための最良の形態
[0019] 本発明で ヽぅ脂肪族ポリエステル榭脂 (A) (以下「成分 A」と記す場合もある)とは、 脂肪族アルキル鎖がエステル結合で連結されたポリマーのことを ヽぅ。本発明で用い られる脂肪族ポリエステル榭脂 (A)としては、結晶性であることが好ましぐ融点が 15 0〜230°Cであることがより好ましい。また、本発明で用いられる脂肪族ポリエステル 榭脂 (A)の種類としては、例えばポリ乳酸、ポリヒドロキシプチレート、ポリブチレンサ クシネート、ポリダリコール酸、ポリ力プロラタトン等が挙げられる。このうち、脂肪族ポリ エステルの中でも融点が高ぐかつ熱安定性に優れることから、ポリ乳酸が最も好まし い。
[0020] 上記ポリ乳酸は、—(O— CHCH -CO) を繰り返し単位とするポリマーであり、
3 n
乳酸ゃラクチド等の乳酸のオリゴマーを重合したものをいう。乳酸には D 乳酸と L 乳酸の 2種類の光学異性体が存在するため、その重合体も D体のみ力もなるポリ(D —乳酸)と L体のみ力もなるポリ(L 乳酸)および両者力もなるポリ乳酸がある。ポリ 乳酸中の D 乳酸、あるいは L 乳酸の光学純度は、それらが低くなるとともに結晶 性が低下し、融点降下が大きくなる。融点は繊維の耐熱性を維持するために 150°C 以上であることが好ましぐ 160°Cであることがより好ましい。さらに好ましくは 170°C 以上、特に好ましくは 180°C以上である。
[0021] ただし、上記のように 2種類の光学異性体のポリマーが単純に混合している系とは 別に、前記 2種類の光学異性体のポリマーをブレンドして繊維に成形した後、 140°C 以上の高温熱処理を施してラセミ結晶を形成させたステレオコンプレックスにすると、 融点を 220〜230°Cまで高めることができ、好ましい。この場合、「成分 A」は、ポリ 乳酸)とポリ(D乳酸)の混合物を指し、そのブレンド比は 40Z60〜60Z40であると、 ステレオコンプレックス結晶の比率を高めることができ、最良である。また、該ステレオ コンプレックス結晶を溶融紡糸で効率的に形成させるために、結晶核剤を添加するこ とが好ましい。結晶核剤としてはタルク、層状粘土鉱物の他、ポリ乳酸との相溶性が 高いステアリン酸や 12—ヒドロキシステアリン酸、ステアリン酸アミドゃォレイン酸アミド 、エル力酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ェ チレンビスォレイン酸アミド、ステアリン酸プチル、ステアリン酸モノグリセリド、ステアリ ン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸鉛等が適
用できる。
[0022] また、ポリ乳酸中には低分子量残留物として残存ラクチドが存在するが、これら低分 子量残留物は、延伸や嵩高加工工程での加熱ヒーター汚れや染色加工工程での染 め斑等の染色異常を誘発する原因となる場合がある。また、繊維や繊維成型品の加 水分解を促進し、耐久性を低下させる場合がある。そのため、ポリ乳酸中の残存ラタ チド量は好ましくは 0. 3重量%以下、より好ましくは 0. 1重量%以下、さらに好ましく は 0. 03重量%以下である。
[0023] また、成分 Aは、例えばポリ乳酸の性質を損なわな 、範囲で、乳酸以外の成分を共 重合したものであってもよい。共重合する成分としては、ポリエチレングリコールなど のポリアルキレンエーテルグリコール、ポリブチレンサクシネートゃポリグリコール酸な どの脂肪族ポリエステル、ポリエチレンイソフタレートなどの芳香族ポリエステル、およ びヒドロキシカルボン酸、ラタトン、ジカルボン酸、ジオールなどのエステル結合形成 性の単量体が挙げられる。この中でも、熱可塑性ポリアミド榭脂(B) (以下「成分 B」と 記す場合もある)との相溶性力 いポリアルキレンエーテルグリコールが好ましい。こ のような共重合成分の共重合割合は融点降下による耐熱性低下を損なわない範囲 で、ポリ乳酸に対して 0. 1〜10モル%であることが好ましい。
[0024] 成分 Aには、さらに改質剤として粒子、着色顔料、結晶核剤、難燃剤、可塑剤、帯 電防止剤、抗酸化剤、紫外線吸収剤や、滑剤等を添加してもよい。着色顔料として はカーボンブラック、酸化チタン、酸化亜鉛、硫酸バリウム、酸化鉄などの無機顔料 の他、シァニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソ インドリノン系、キノフタロン系、キノクリドン系、チォインディゴ系などの有機顔料等を 使用することができる。同様に、炭酸カルシウムやシリカ、チッ化ケィ素、クレー、タル ク、カオリン、ジルコニウム酸などの各種無機粒子や架橋高分子粒子、各種金属粒 子などの粒子類などの改質剤も使用することができる。さらに、ワックス類、シリコーン オイル、各種界面活性剤、各種フッ素榭脂類、ポリフエ-レンスルフイド類、ポリアミド 類、エチレン'アタリレート共重合体、メチルメタタリレート重合体等のポリアタリレート 類、各種ゴム類、アイオノマー類、ポリウレタン類およびその他熱可塑性エラストマ一 類などのポリマなどを少量含有することができる。
前記成分 Aに好ましく用いられる滑剤としては、脂肪酸アミドおよび Zまたは脂肪酸 エステルが挙げられる。脂肪酸アミドとしては、例えば、ラウリン酸アミド、パルミチン酸 アミド、ステアリン酸アミド、エル力酸アミド、ベへニン酸アミド、メチロールステアリン酸 アミド、メチロールべへニン酸アミド、ジメチトール油アミド、ジマチルラウリン酸アミド、 ジメチルステアリン酸アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、芳香族 系ビスアミド等の 1分子中にアミド結合を 2つ有する化合物を指し、例えば、メチレンビ スカプリル酸アミド、メチレンビス力プリン酸アミド、メチレンビスラウリン酸アミド、メチレ ンビスミリスチン酸アミド、メチレンビスパルミチン酸アミド、メチレンビスステアリン酸ァ ミド、メチレンビスイソステアリン酸アミド、メチレンビスべへ-ン酸アミド、メチレンビス ォレイン酸アミド、メチレンビスエル力酸アミド、エチレンビス力プリル酸アミド、ェチレ ンビス力プリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスミリスチン酸アミド、 エチレンビスノ ノレミチン酸アミド、エチレンビスステアリン酸アミド、エチレンビスイソス テアリン酸アミド、エチレンビスべへ-ン酸アミド、エチレンビスォレイン酸アミド、ェチ レンビスエノレカ酸アミド、ブチレンビスステアリン酸アミド、ブチレンビスべへ-ン酸アミ ド、ブチレンビスォレイン酸アミド、ブチレンビスエル力酸アミド、へキサメチレンビスス テアリン酸アミド、へキサメチレンビスべへ-ン酸アミド、へキサメチレンビスォレイン酸 アミド、へキサメチレンビスエル力酸アミド、 m—キシリレンビスステアリン酸アミド、 m— キシリレンビス一 12—ヒドロキシステアリン酸アミド、 p—キシリレンビスステアリン酸アミ ド、 p—フエ二レンビスステアリン酸アミド、 p—フエ二レンビスステアリン酸アミド、 N, N ,—ジステアリルアジピン酸アミド、 N, N,—ジステアリルセバシン酸アミド、 N, N,— ジォレイルアジピン酸アミド、 N, N,—ジォレイルセバシン酸アミド、 N, N,—ジステア リルイソフタル酸アミド、 N, N,一ジステアリルテレフタル酸アミド、メチレンビスヒドロキ システアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、ブチレンビスヒドロキ システアリン酸アミドおよびへキサメチレンビスヒドロキシステアリン酸アミド等が挙げら れ、その他、アルキル置換型の脂肪酸モノアミドとして、飽和脂肪酸モノアミドゃ不飽 和脂肪酸モノアミド等のアミド水素をアルキル基で置き換えた構造の化合物を指した ものとして、例えば、 N—ラウリルラウリン酸アミド、 N—パルミチルパルミチン酸アミド、 N—ステアリルステアリン酸アミド、 N—べへ-ルベへニン酸アミド、 N—ォレイルォレ
イン酸アミド、 N—ステアリルォレイン酸アミド、 N—ォレイルステアリン酸アミド、 N—ス テアリルエル力酸アミド、 N—ォレイルパルミチン酸アミド等が挙げられる。該アルキル 基は、その構造中にヒドロキシル基等の置換基が導入されていても良ぐ例えば、メ チロールステアリン酸アミド、メチロールべへニン酸アミド、 N—ステアリル— 12—ヒド ロキシステアリン酸アミド、 N—ォレイル 12ヒドロキシステアリン酸アミド等も、本発明の アルキル置換型の脂肪酸モノアミドに含むものとする。
[0026] 脂肪酸エステルとしては、例えば、ラウリン酸セチルエステル、ラウリン酸フエナシル エステル、ミリスチン酸セシルエステル、ミリスチン酸フエナシルエステル、パルミチン 酸イソプロピリデンエステル、パルミチン酸ドデシルエステル、パルミチン酸テトラドデ シルエステル、パルミチン酸ペンタデシルエステル、パルミチン酸ォクタデシルエステ ル、パルミチン酸セシルエステル、パルミチン酸フエ-ルエステル、パルミチン酸フエ ナシルエステル、ステアリン酸、セシルエステル、ベへ-ン酸ェチルエステル等の脂 肪族モノカルボン酸エステル類;モノラウリン酸ダリコール、モノパルミチン酸ダリコ一 ル、モノステアリン酸グリコール等のエチレングリコールのモノエステル類、ジラウリン 酸グリコール、ジパルミチン酸グリコール、ジステアリン酸グリコール等のグリコールの ジエステル類、 ;モノラウリン酸グリセリンエステル、モノミスチリン酸グリセリンエステル 、モノパルミチン酸グリセリンエステル、モノステアリン酸グリセリンエステル等のグリセ リンのモノエステル類;ジラウリン酸グリセリンエステル、ジミスチリン酸グリセリンエステ ル、ジパルミチン酸グリセリンエステル、ジステアリン酸グリセリンエステル等のグリセリ ンのジエステル類;トリラウリン酸グリセリンエステル、トリミスチリン酸グリセリンエステル
、トリパルミチン酸グリセリンエステル、トリステアリン酸グリセリンエステル、パルミトジォ レイン、パルミトジステアリンおよびォレオジステアリン等のグリセリンのトリエステル類 等が挙げられる。
[0027] これら化合物の中でも、脂肪酸ビスアミドゃアルキル置換型の脂肪酸モノアミドを用 いることが好ましい。脂肪酸ビスアミドゃアルキル置換型の脂肪酸モノアミドは、一般 の脂肪酸モノアミドに比べてアミドの反応性が低 、ために溶融成形時にぉ 、てポリ乳 酸との反応が起こり難ぐさらに高分子量のものが多いために耐熱性が高ぐ溶融成 形で昇華しにくいため滑剤としての機能を損なうことなぐ優れた滑り性を発揮する。
特に、脂肪酸ビスアミドは、アミドの反応性がさらに低いため、より好ましく用いること ができ、エチレンビスステアリン酸アミドが、さらに好ましい。
[0028] また、 2種以上の脂肪酸アミドと脂肪酸エステルを用いてもよぐまた脂肪酸アミドと 脂肪酸エステルを併用してもょ 、。
[0029] 脂肪酸アミドおよび Zまたは脂肪酸エステルの含有量は、上記特性を発揮するた めに繊維重量に対して 0. 1重量%以上にすることが必要である。また、含有量が多 すぎると繊維の機械的物性が低下したり、黄味を帯びて染色したときに色調が悪くな つたりする場合があるので、含有量は 5重量%以下が好ましい。より好ましい該脂肪 酸アミドおよび Zまたは脂肪酸エステルの含有量は、 0. 2〜4重量%、さらに好ましく は 0. 3〜3重量%である。
[0030] また、ポリ乳酸重合体の分子量は、耐摩耗性を高めるためには高!、方が好ま ヽが 、分子量が高すぎると、溶融紡糸での成形性や延伸性が低下する傾向にある。重量 平均分子量は耐摩耗性を保持するために 8万以上であることが好ましぐ 10万以上 力 り好ましい。さらに好ましくは 12万以上である。また、分子量が 35万を越えると、 前記したように延伸性が低下するため、結果として分子配向性が悪くなり繊維強度が 低下することがある。そのため、重量平均分子量は 35万以下が好ましぐ 30万以下 力 り好ましい。さらに好ましくは 25万以下である。上記重量平均分子量はゲルパー ミエーシヨンクロマトグラフィー(GPC)で測定し、ポリスチレン換算で求めた値である。
[0031] 本発明の成分 Aに好ましく用いられるポリ乳酸の製造方法は、特に限定されないが 、具体的には、乳酸を有機溶媒および触媒の存在下、そのまま脱水縮合する直接脱 水縮合法 (特開平 6— 65360号公報参照。)、少なくとも 2種類のホモポリマーを重合 触媒の存在下、共重合並びにエステル交換反応させる方法 (特開平 7— 173266号 公報参照。)、さらには、乳酸を一旦脱水し、環状二量体とした後に、開環重合する 間接重合法 (米国特許第 2, 703, 316号明細書参照。)が挙げられる。
[0032] 本発明で用いられる熱可塑性ポリアミド榭脂 (B)とは、アミド結合を有するポリマー のことをいうが、本発明で用いられる熱可塑性ポリアミド榭脂(B)の種類としては、例 えばポリカプラミド (ナイロン 6)やポリテトラメチレンアジパミド(ナイロン 46)、ポリへキ サメチレンアジパミド (ナイロン 66)、ポリゥンデカンアミド (ナイロン 11)、ポリドデカン
アミド(ナイロン 12)、ポリへキサメチレンセバカミド(ナイロン 610)、ポリペンタメチレン セバカミド(ナイロン 510)等を挙げることができる。この中でも、原料コストの面ではナ ィロン 6が好ましぐ成分 Aとの相溶性を高くして界面接着性を高めるためには、ポリ アミドのメチレン鎖長は長い方がよぐその点でナイロン 11やナイロン 12、ナイロン 61 0、ナイロン 510が好ましい。また、環境負荷低減素材を提供するという点で、非石油 由来の原料であるセバシン酸をモノマーとしたナイロン 610やナイロン 510も好ましい 。また、ポリアミドはホモポリマーであっても共重合ポリマーであってもよい。また成分 Bには、粒子、難燃剤、帯電防止剤や、成分 Aに好ましく用いられる上記滑剤等を添 カロしても良い。なお、熱可塑性ポリアミドの溶液粘度は、ナイロン 6やナイロン 610等 の場合は、後述する 98%硫酸溶液を用いて測定し、ナイロン 11の固有粘度はメタク レゾール溶液を用いて測定する等、公知の方法で測定することができる。
[0033] また、一般に脂肪族ポリエステルは、融点を有する場合、その融点は通常 200°C以 下であるなど、耐熱性が高いとはいえず、溶融貯留時 250°Cを越えると急激に物性 が悪ィ匕する傾向にある。そのため、ブレンドする熱可塑性ポリアミド榭脂(B)は、融点 力 150〜250°Cであることが好ましぐ 150〜225°Cがより好ましい。さらに好ましくは 150〜205°Cである。ただし、捲縮糸の耐熱性を考慮し、熱可塑性ポリアミド榭脂(B )の融点は、脂肪族ポリエステル (A)よりも高いことが好ましい。該熱可塑性ポリアミド 榭脂は前記したように、共重合ポリマーであってもよいが、結晶性が低下すると耐摩 耗性も低下する傾向にあるため、結晶性であることが好ましい。
[0034] なお、本発明にお 、て結晶性の有無は、示差走査熱量計 (DSC)測定にぉ 、て融 解ピークを観測できれば、そのポリマーが結晶性であると判断できる。また、結晶性 は高いほど好ましぐその指標として DSCでの結晶融解ピーク熱量の大きさで判断 することができる。結晶融解ピーク熱量 ΔΗは、好ましくは 30jZg、より好ましくは 40J んさらに好ましくは 60jZgである。
[0035] 本発明の捲縮糸は、上記の脂肪族ポリエステル榭脂 (A)と熱可塑性ポリアミド榭脂
(B)よりなり、繊維表面において脂肪族ポリエステル榭脂 (A)がほとんど露出してい ない合成繊維よりなり、繊維表面積に対する脂肪族ポリエステル榭脂 (A)の露出面 積の比率が 5%以下であることが好ま 、。このような繊維表面形態をとる構造として
は、 (1)「脂肪族ポリエステル榭脂 (A)が島成分を形成し、熱可塑性ポリアミド榭脂 (B )が海成分を形成した海島構造をしているポリマーァロイ系合成繊維」、若しくは (2)「 芯成分が脂肪族ポリエステル榭脂 (A)、または脂肪族ポリエステル榭脂 (A)と熱可 塑性ポリアミド榭脂 (B)とのポリマーァロイよりなり、鞘成分が熱可塑性ポリアミド榭脂 ( B)よりなる芯鞘型複合繊維」の(1)、 (2)の 、ずれかによつて達成することができる。 これら(1)および(2)の好まし 、態様にっ 、て、以下に記載する。
[0036] まず、好ま 、態様のひとつである「脂肪族ポリエステル榭脂 (A)が島成分を形成 し、熱可塑性ポリアミド榭脂 (B)が海成分を形成した海島構造をして ヽるポリマーァロ ィ系合成繊維」について説明する。
[0037] 本発明にお 、て、成分 Aと成分 Bとをブレンドしてポリマーァロイとした合成繊維の 場合、ブレンド比率は特に限定されないが、成分 Aを島成分、成分 Bを海成分とする 海島構造とするポリマーァロイにするためには、成分 AZ成分 Bのブレンド比率 (重量 %)を 5Z95〜55Z45の範囲とすることが好ましい。また、成分 Aの比率を高める場 合には成分 Aの溶融粘度 η aを高くする必要があり、成分 Bの比率を高くする場合に は成分 Bの溶融粘度 7? bを高くする必要がある。
[0038] また、ポリマーァロイ系合成繊維の場合にぉ ヽては、成分 Aを島成分、成分 Bを海 成分にしたポリマーァロイとすることが必要である。そのため、成分 Aと成分 Bのブレン ド比率は成分 Bの比率を高めるほど容易になることから、より好ましくは 10Z90〜45 Ζ55、さらに好ましくは 15Ζ85〜40Ζ60、最も好ましくは 20,80〜35,65である 。また、溶融粘度の比( 7? bZ 7? a)は 0. 1〜2の範囲にすることが好ましい。より好まし くは 0. 15〜: L . 5、さらに好ましくは 0. 2〜1である。なお、溶融粘度 r?の測定方法は 詳細後述するが、測定温度は紡糸温度と同一の温度で、剪断速度 1216sec _1で測 定したときの値である。
[0039] 本発明のポリマーァロイ系合成繊維において、成分 Aと成分 Bが均一にブレンドさ れていることが重要である力 ここで、均一にブレンドされているとは以下の状態をい うものである。すなわち、該合成繊維の横断面スライスを透過型電子顕微鏡 (TEM) ( 4万倍)により観察すると、図 1に示す様に連続したマトリックス成分 (黒色部分)を海 成分、略円形状を成して分散した成分(白色部分)を島成分とするいわゆる海島構造
を採っており、し力ゝも島成分を構成する成分 Aのドメインサイズが直径換算(ドメインを 円と仮定し、ドメインの面積力も換算される直径)で 0. 001〜2 /ζ πιまで小さくなつて いる状態をいうものである。島成分のドメインサイズを前記範囲とすることで、繊維の 耐摩耗性を飛躍的に向上させることができる。なお、ポリマーァロイ系合成繊維にお ける脂肪族ポリエステル榭脂 (Α)の露出面積の比率は、上記の ΤΕΜ画像を繊維外 周全てにおいて観察し、繊維表面に露出している白色部 (脂肪族ポリエステル榭脂) の露出長と繊維外周長をそれぞれ測定し、その長さの比を求めることで算出できる。
[0040] また、海成分を構成する成分 Βとの接着性は、ドメインサイズが小さ ヽほど界面での 応力集中が分散されるため向上するが、一方、ドメインサイズがある一定以下のサイ ズになると初期摩耗性が低下する傾向にある。そのため、島ドメインのサイズは 0. 00 5〜1. 5 111カ^好ましく、 0. 02〜: L 0 m力 ^より好まし!/ヽ。また、捲縮糸の光沢感を 制御するためには、さらにドメイン径を特定の範囲にすることが好ましい。該ドメイン径 が可視光の波長範囲(0. 4〜0. 8 111)ぉょびその波長の175波長(0. 08〜0. 1 6 /z m)までをカバーすることで、繊維内部で適度な光散乱を生じ、しっとりとした審美 性の高い光沢感とすることができる。美しい光沢感を表現するには、ドメイン径は 0. 0 8〜0. 8 /z mの範囲にすることが好ましい。
[0041] なお、本発明での上記ドメインサイズとは、実施例の G項にて後述するように捲縮糸 1試料あたり 100個のドメインにつ!/、て計測し、ドメイン径の最も大きい 10個および最 も小さい 10個の値を除 、た 80個の分布を指す。
[0042] また、本発明の捲縮糸を構成する素材がポリマーァロイ系合成繊維である場合は、 1分子鎖中に脂肪族ポリエステルブロックとポリアミドブロックが交互に存在するブロッ ク共重合体とは異なり、脂肪族ポリエステル分子鎖 (成分 A)と、ポリアミド分子鎖 (成 分 B)は実質的に独立に存在していることが重要である。この状態の違いは、配合前 後の熱可塑性ポリアミド榭脂の融点降下、すなわちポリマーァロイ中の熱可塑性ポリ アミド榭脂由来の融点が配合前の熱可塑性ポリアミド榭脂の融点力 どの程度降下 したかを観測することにより見積もることができる。熱可塑性ポリアミド榭脂の融点降下 力 S3°C以下であれば、脂肪族ポリエステルとポリアミドはほとんど共重合されておらず (エステル アミド交換がほとんど起こっておらず)、実質的に脂肪族ポリエステル分
子鎖とポリアミド分子鎖は独立に存在するポリマーァロイの状態である。また、繊維表 層は実質的に海成分である熱可塑性ポリアミド榭脂であるため、前記の熱可塑性ポリ アミド榭脂が本来有する特性が反映され、耐摩耗性が飛躍的に向上する。したがつ て、本発明では配合されたポリアミドの融点降下は 2°C以下であることが好ま 、。
[0043] 本発明の捲縮糸を構成する素材がポリマーァロイ系合成繊維である場合は、脂肪 族ポリエステル榭脂が島成分を、熱可塑性ポリアミド榭脂が海成分を形成した海島構 造を形成している。また、島成分のドメインサイズを制御することで、耐摩耗性を飛躍 的に向上させるとともに、高級感のある光沢を発現させるものである。
[0044] ここで、前述した様に脂肪族ポリエステルとポリアミドは通常ほとんど反応しな ヽ(ェ ステル—アミド交換がほとんど起こらない)ため、前記二者のポリマーの界面接着性 はそのままではそれほど高くはない。そこで、さらに相溶化剤(以下「成分 C」と記す場 合もある)を添加して界面接着性を飛躍的に向上させることで、耐摩耗性を向上させ ることができる。成分 Cは、成分 Aと成分 Bとの界面接着性を向上させるものであれば 特に限定されるものではないが、一分子中に二個以上の活性水素反応性基を有す る化合物であると、界面接着性を飛躍的に向上でき、好ましい。一分子中にニ個以 上の活性水素反応性基を有する化合物を成分 Aおよび Zまたは成分 Bに添加して 溶融ブレンドして紡糸を行うことで、該化合物が成分 Aと成分 Bの ヽずれの成分とも 反応して架橋構造をとるため、界面剥離を抑制できるのである。
[0045] ここで、活性水素反応性基とは、ポリ乳酸榭脂ゃ熱可塑性ポリアミド榭脂の末端に 存在する COOH末端基や OH末端基、 NH末端基との反応性を有するもので、例
2
えばグリシジル基、ォキサゾリン基、カルポジイミド基、アジリジン基、イミド基、イソシァ ナート基、無水マレイン酸基などが好ましく用いられる。また、本発明の捲縮糸の製 法である溶融紡糸では 250°C以下と比較的低温で成形を行うため、低温反応性に 優れたものが選択される。上記反応性基の中でもグリシジル基、ォキサゾリン基、カル ポジイミド基、酸無水物基 (無水マレイン酸力 生成する基 (無水マレイン酸基と記す 場合もある)等)が好ましく用いられ、特にグリシジル基やカルポジイミド基が好ましく 用いられる。上記反応性基は二個以上であれば相溶化剤としての役割を満たすこと ができる。一方、一分子中に 20個を越えて反応性基を有すると、紡糸時に過度に増
粘して曳糸性が低下する傾向にあるので、一分子中の活性水素反応性基の数は二 個以上、 20個以下が好ましい。より好ましくは 10個以下、さらに好ましくは 3個以下で ある。また、一分子中の反応性基の種類は複数のものを含んでいても構わない。また 、上記した活性水素反応性基を二個以上有する化合物は、重量平均分子量で 250 〜30, 000の分子量を持つものであると、溶融成形時の耐熱性、分散性に優れるた め好ましい。より好ましくは 250〜20, 000である。
[0046] また、これらの反応性基を有する化合物として、重合体の主鎖に反応性基を有する 側鎖をグラフト共重合した共重合体であると、 1分子の中に多数の官能基を導入する ことが可能となる事に加え、一般に融点等の熱的性質も安定となるため好ましい。こ の反応性基がグラフトされる主鎖となる重合体は任意に選択することが可能であるが 、合成のし易さ力もポリエステル系重合体、ポリアタリレート、ポリメチルメタアタリレート 、ポリ(アルキル)メタアタリレートなどのアタリレート系重合体、ポリスチレン系重合体、 ポリオレフイン系重合体などの群力 適宜選択することができる。
[0047] 本発明に用いることのできる成分 Cのうち、グリシジル基を有する化合物としては、 例えばグリシジル基を持つ化合物をモノマー単位とした重合体や、主鎖となる重合体 に対してグリシジル基がグラフト共重合されている化合物、更にはポリエーテルュ-ッ トの末端にグリシジル基を有するものが挙げられる。上述したグリシジル基を持つモノ マー単位としては、グリシジルアタリレート、グリシジルメタアタリレートなどが挙げられ る。また、これらモノマー単位の他に、長鎖アルキルアタリレートなどを共重合して、グ リシジル基の反応性を制御することもできる。また、グリシジル基を持つ化合物をモノ マー単位とした重合体や、主鎖となる重合体の平均分子量は 250〜30, 000の範囲 であると高濃度添加を行った際の溶融粘度の上昇を抑制することができ好まし、。重 量平均分子量は 250〜20, 000の範囲であるとより好ましい。また、この他、トリアジ ン環にグリシジルユニットを二個以上有する化合物も耐熱性が高 、ため好ま 、。例
(MADGIC)等が好ましく用いられる。
[0048] また、ォキサゾリン基、カルポジイミド基、アジリジン基、イミド基、イソシアナ一ト基、 無水マレイン酸基についても同様である。上記の中でも、カルポジイミド基を有するも
のが極めて低温反応性に優れており、より好ましい。例えば、カルポジイミドィ匕合物の 例としては、ジフエ二ノレカノレボジイミド、ジ一シクロへキシノレカノレボジイミド、ジ一 2, 6 ージメチルフエ-ルカルボジイミド、ジイソプロピルカルボジイミド、ジォクチルデシル カルボジイミド、ジー o トルィルカルボジイミド、ジー p トルィルカルボジイミド、ジー p -トロフエ-ルカルボジイミド、ジ—p ァミノフエ-ルカルボジイミド、ジ—p ヒド 口キシフヱ-ルカルボジイミド、ジ—p—クロルフエ-ルカルボジイミド、ジ o クロル フエ-ルカルボジイミド、ジー 3, 4 ジクロルフヱ-ルカルボジイミド、ジー 2, 5 ジク ロルフェ-ルカルボジイミド、 p フエ-レン—ビス— o トルィルカルボジイミド、 p— フエ二レン ビス ジシクロへキシノレカノレボジイミド、 p フエ二レン ビスージー p— クロルフエ-ルカルボジイミド、 2, 6, 2' , 6' —テトライソプロピルジフエ-ルカルボ ジイミド、へキサメチレン ビスーシクロへキシルカルボジイミド、エチレン ビスージ フエ-ルカルボジイミド、エチレン ビス ジーシクロへキシルカルボジイミド、 N, N' ージ—o トリィルカルボジイミド、 N, —ジフエ-ルカルボジイミド、 N, —ジォ クチルデシルカルポジイミド、 N, ?^ージー2, 6 ジメチルフエ-ルカルボジイミド、 N トリィル一 Ν'—シクロへキシルカルボジイミド、 Ν, Ν'—ジ一 2, 6 ジイソプロピ ルフエ-ルカルボジイミド、 Ν, —ジー 2, 6 ジー tert ブチルフエ-ルカルボ ジイミド、 N トルィル— Ν'—フエ-ルカルボジイミド、 Ν, Ν'—ジ— ρ -トロフエ- ルカルボジイミド、 Ν, Ν'—ジ一 ρ ァミノフエ-ルカルボジイミド、 Ν, Ν'—ジ一 ρ ヒ ドロキシフエ-ルカルボジイミド、 Ν, Ν,—ジ―シクロへキシルカルボジイミド、 Ν, N' ージー ρ トルィルカルボジイミド、 Ν, N' ベンジルカルボジイミド、 Ν ォクタデ シルー —フエ-ルカルボジイミド、 Ν べンジルー —フエ-ルカルボジイミド 、Ν—ォクタデシルー N' —トリルカルボジイミド、 Ν シクロへキシル N' —トリル カルボジイミド、 Ν—フエ-ルー N' トリルカルボジイミド、 Ν べンジルー N' トリ ルカルボジイミド、 Ν, N' —ジ ο ェチルフエ-ルカルボジイミド、 Ν, N' —ジ—ρ ェチルフエ-ルカルボジイミド、 Ν, N' —ジ—ο イソプロピルフエ-ルカルボジィ ミド、 Ν, N' —ジ— ρ—イソプロピルフエ-ルカルボジイミド、 Ν, N' —ジ— ο—イソ ブチルフエ-ルカルボジイミド、 Ν, N' —ジ—ρ—イソブチルフエ-ルカルボジイミド 、N, N' —ジ 2, 6 ジェチルフエ-ルカルボジイミド、 Ν, N' —ジー2 ェチル
—6—イソプロピルフエ-ルカルボジイミド、 N, N' —ジ一 2—イソブチル 6—イソ プロピルフエ-ルカルボジイミド、 N, N' —ジ—2, 4, 6 トリメチルフエ-ルカルボ ジイミド、 N, N' —ジ— 2, 4, 6 トリイソプロピルフエ-ルカルボジイミド、 N, N' - ジ一 2, 4, 6 トリイソブチルフエニルカルボジイミドなどのモノまたはジカルボジイミド 化合物、ポリ(1, 6 へキサメチレンカルボジイミド)、ポリ(4, 4' —メチレンビスシク 口へキシルカルボジイミド)、ポリ(1, 3 シクロへキシレンカルボジイミド)、ポリ(1, 4 -シクロへキシレンカルボジイミド)、ポリ(4, 4' -ジフエ-ルメタンカルボジイミド)、 ポリ(3, 3' —ジメチル一 4, 4' —ジフエ-ルメタンカルボジイミド)、ポリ(ナフチレン カルボジイミド)、ポリ(p フエ-レンカルボジイミド)、ポリ(m—フエ-レンカルボジイミ ド)、ポリ(トリルカルポジイミド)、ポリ(ジイソプロピルカルポジイミド)、ポリ(メチルージ イソプロピルフエ-レンカルボジイミド)、ポリ(トリェチルフエ-レンカルボジイミド)、ポ リ(トリイソプロピルフエ-レンカルポジイミド)などのポリカルポジイミドなどが挙げられ る。中でも N, Ν'—ジ一 2, 6 ジイソプロピルフエニルカルボジイミド、 2, 6, 2' , 6 ' ーテトライソプロピルジフエ-ルカルボジイミドの重合体が好まし!/、。
[0049] また、二個以上の活性水素反応性基は同じ反応性基であっても、異なるものであつ てもよいが、反応性を制御するためには同じ反応性基であることが好ましい。
[0050] また、成分 Cとして用いる化合物には、上記の活性水素反応性基を有するものの他 に、ポリアルキレンエーテルグリコールが特異的に耐摩耗性を向上させるので好まし い。該化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポ リブチレングリコール等が挙げられる力 中でも耐熱性、分散性、価格の点で分子量 400〜20, 000のポリエチレングリコーノレ力好まし!/ヽ。より好ましく ίま分子量 600〜6, 000のポリエチレングリコールである。また、該化合物の両末端をグリシジル基に変性 したものであれば、より好ましい。また、前記の活性水素反応性基を二個以上有する 化合物と併用することも好ましい。
[0051] また、成分 Cとして用いる化合物は、本発明の合成繊維を製造する上で 200〜250 °Cにて繊維に溶融成形されるのが通常であるため、それに耐え得る高い耐熱性が要 求される。そのため、熱重量 (TG)測定による 200°C到達点の熱減量率が 3%以下で あることが好ましい。熱減量率が 3%を越えると、紡糸時に熱分解物がブリードアウト
して紡糸口金や紡糸装置を汚すために、紡糸性が低下するとともに、熱分解ガスの 発煙により、作業環境を悪化させる傾向にある点が問題となる場合がある。より好まし くは熱減量率 2%以下、さらに好ましくは 1%以下である。なお、 200°C熱減量率は熱 重量 (TG)測定にて窒素雰囲気下、常温(10〜30°C)から 10°CZ分の速度で 300 °Cまで昇温し、 200°C時点での減量率を求めたものである。
[0052] 成分 Cの添加量は、使用する化合物の反応性基の単位重量当たりの当量、溶融時 の分散性や反応性、島成分のドメインの大きさ、成分 Aと成分 Bのブレンド比により適 宜決めることができる。界面剥離抑制の点では成分 A、成分 Bおよび成分 Cの合計量 (100重量%)に対し、 0. 005重量%以上とすることが好ましい。より好ましくは 0. 02 重量%以上、さらに好ましくは 0. 1重量%以上である。成分 Cの添加量が少なすぎる と、 2成分間の界面への拡散、反応量が少なぐ界面接着性の向上効果が限定的と なることがある。一方、成分 Cが繊維の基材となる成分 Aおよび成分 Bの特性や、製 糸性を阻害することなく性能を発揮させるためには、成分 Cの添加量は 5重量%以下 が好ましぐ 3重量%以下がより好ましい。さらに好ましくは 1重量%以下である。
[0053] 上記のごとぐ成分 Cを添加することで、脂肪族ポリエステルの末端カルボキシル基 を封鎖でき、脂肪族ポリエステルの耐加水分解性を高めることができる。自己触媒作 用を有する末端カルボキシル基の濃度は低い方がよぐ脂肪族ポリエステル中のトー タルカルボキシル末端基濃度は、好ましくは 15当量 Zton以下であり、より好ましくは 10当量 Zton以下、さらに好ましくは 0〜7当量 Ztonである。
[0054] さらに、上記反応性基を有する化合物の反応を促進する目的で、カルボン酸の金 属塩、特に金属をアルカリ金属、アルカリ土類金属とした触媒を添加すると、反応効 率を高めることができ好ましい。その中でも、乳酸ナトリウム、乳酸カルシウム、乳酸マ グネシゥムなどの乳酸をベースとした触媒を用いることが好ましい。その他、触媒添加 による榭脂の耐熱性低下を防止する目的で、ステアリン酸金属塩などの比較的分子 量の大きな触媒を単独または併用することもできる。なお、該触媒の添加量は、分散 性、反応性を制御する上で、合成繊維に対して 5〜2000ppm添加することが好まし より好ましく ίま 10〜: L000ppm、さら【こ好ましく ίま 20〜500ppmである。
[0055] また、本発明の捲縮糸にはタルク、ソルビトール誘導体、リン酸エステル金属塩、塩
基性無機アルミニウム化合物、メラミンィ匕合物塩力も選ばれる少なくとも 1種の結晶核 剤を含有していることが好ましい。該結晶核剤は、主として脂肪族ポリエステル榭脂(
A)、その中でもポリ乳酸に対して有効性の高い結晶核剤である。該結晶核剤の添加 により、捲縮がへたり難い堅牢性に優れた捲縮糸とすることができる。
[0056] 結晶核剤として用いるタルクとしては、繊維の力学特性を維持しつつ、高い結晶化 特性を示すものとして、タルクの平均粒子径 D 力 μ m以下で、かつ粒子径 10 μ m
50
以上のタルク力 タルク全量に対して 0〜4. 5体積%以下であることが好ましい。タル クの平均粒子径 D を 5 μ m以下にすることで、比表面積の増大により結晶核剤とし
50
ての効果が飛躍的に向上する。そのため、タルクの粒子径は 4 m以下が好ましぐ 3 μ m以下がより好ましい。最も好ましくは 1. 5 μ m以下である。なお、タルクの平均 粒子径 D の下限は特に限定されるものではないが、粒子径が小さくなると凝集性が
50
高くなり、ポリマー中への分散性が悪くなるため 0. 2 m以上であることが好ましい。 また、粒子径 10 μ m以上のタルクは、タルク全量に対して 4. 5体積%以下であること が好ましい。粗大タルクが含有していると、紡糸性が低下するだけでなぐ繊維の力 学特性も低下する傾向にある。そのため、粒子径 10 mを越えるタルクの含有量は タルク全量に対し、より好ましくは 0〜3体積%、さらに好ましくは 0〜2体積%、最も好 ましくは 0体積%である。
[0057] なお、上記(1)及び(2)項に記載のタルクの粒子径は (株)島津製作所製 SALD— 2000Jを用い、レーザー回折法で測定された粒度分布から求めた値である。
[0058] また、結晶核剤に好ましく用いられるソルビトール誘導体としては、ビスべンジリデン ソルビトール、ビス(p—メチルベンジリデン)ソルビトール、ビス(p—ェチルベンジリデ ン)ソルビトール、ビス(p -クロルべンジリデン)ソルビトール、ビス(p -ブロムべンジリ デン)ソルビトール、さらに前記ソルビトール誘導体をィ匕学修飾したソルビトール誘導 体がある。
[0059] また、リン酸エステル金属塩や塩基性無機アルミニウム化合物としては、特開 2003
— 192883号公報に記載の化合物が好適に用いられる。
[0060] また、メラミンィ匕合物としては、メラミン、メラミンのァミノ基の水素をアルキル基、アル ケニル基、フエニル基で置換した置換メラミンィ匕合物(特開平 9— 143238号公報)、
メラミンのァミノ基の水素をヒドロキシアルキル基、ヒドロキシアルキル (ォキサアルキル
) n基、アミノアルキル基で置換した置換メラミンィ匕合物(特開平 5— 202157号公報) 、メラム、メレム、メロン、メトンなどのメラミンの脱アンモニア縮合物、ベンゾグアナミン 、ァセトグアナミンなどのグアナミン類などが使用できる。また、メラミン化合物塩として は、有機酸塩や無機酸塩が挙げられる。有機酸塩としては、イソシァヌル酸塩、ギ酸 、酢酸、シユウ酸、マロン酸、乳酸、クェン酸などのカルボン酸塩、安息香酸、イソフタ ル酸、テレフタル酸などの芳香族カルボン酸塩などが挙げられる。これらの有機酸塩 は、 1種又は 2種類以上のものを混合して使用することもできる。これらの有機酸塩の 中では、メラミンシァヌレートが最も好ましい。メラミンシァヌレートは、シリカ、アルミナ 、酸ィ匕アンチモンなどの金属酸ィ匕物ゾルで表面処理したもの(特開平 7— 224049号 公報)、ポリビュルアルコールやセルロースエーテル類で表面処理したもの(特開平 5 -310716号公報)、 HLB1〜8の非イオン性界面活性剤で表面処理したもの(特開 平 6— 157820号公報)も使用できる。メラミンィ匕合物と有機酸とのモル比は特に制限 されな 、が、塩化合物中には塩を形成して!/、な 、フリーのメラミン化合物や有機酸を 含まな 、ことが好ま 、。メラミンィ匕合物の有機酸塩の製造方法は特に制限されな ヽ が、一般にはメラミンィ匕合物と有機酸を水中で混合反応させ、その後水を濾過又は 留去して、乾燥することにより結晶性粉末として得ることができる。無機酸塩としては、 塩酸塩、硝酸塩、硫酸塩、ピロ硫酸塩、メタンスルホン酸、エタンスルホン酸などのァ ルキルスルホン酸塩、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸などのァ ルキルベンゼンスルホン酸塩、スルファミン酸塩、リン酸塩、ピロリン酸塩、ポリリン酸 塩、ホスホン酸塩、フエ-ルホスホン酸塩、アルキルホスホン酸塩、亜リン酸塩、ホウ 酸塩、タングステン酸塩などが挙げられる。これらの無機酸塩の中では、ポリリン酸メ ラミン、ポリリン酸メラミン'メラム'メレム複塩、パラトルエンスルホン酸塩が好ましい。メ ラミンィ匕合物と無機酸とのモル比は特に制限されないが、塩ィ匕合物中には塩を形成 して!/ヽな 、フリーのメラミンィ匕合物や無機酸を含まな 、ことが好まし!/、。メラミンィ匕合物 の無機酸塩の製造方法は特に制限されないが、一般にはメラミンィ匕合物と無機酸を 水中で混合反応させ、その後水を濾過又は留去して、乾燥することにより結晶性粉 末として得ることができる。またピロリン酸塩やポリリン酸塩の製造方法は、例えば米
国特許第 3, 920, 796号明細書、特開平 10— 81691号公報、特開平 10— 30608 1号公報などに記載されて 、る。
[0061] 結晶核剤の添加量は繊維の力学特性と逆相関の関係にあることから、脂肪族ポリ エステル (A)に対して添力卩量を 0. 01〜2重量%にすることが好ましい。添加量が 0. 01重量%以上であれば、エアジェットスタッファ装置から出た後の冷却工程で脂肪 族ポリエステルが速やかに結晶化するため、捲縮堅牢度に優れた捲縮糸とすること ができる。また、添加量を 2重量%以下とすることで、力学特性の低下を抑制しつつ、 捲縮堅牢度に優れた捲縮糸とすることができる。結晶核剤の添加量は、より好ましく は 0. 05-1. 5重量%、さらに好ましくは 0. 2〜1重量%である。
[0062] また、本発明の捲縮糸には耐光堅牢性を高くするために Cu塩、 K塩、 Mn塩、 Cr 塩、タン-ン等を添加することが好ましい。特に Culや KIがポリアミド榭脂の耐光性向 上に効果的である。添加する化合物は 1種又は複数種を併用してもよい。添加量は 熱可塑性ポリアミド榭脂(B)に対して 0. 001〜0. 5重量%であればよぐより好ましく は 0. 005〜0. 2重量0 /0、さらに好ましくは 0. 01〜0. 1重量0 /0である。
[0063] また、本発明の捲縮糸の繊維表面には、繊維軸方向に伸びた筋状溝が形成され ていることが好ましい。該筋状溝とは、図 2のように繊維表面に存在する凹状の溝で あって、繊維軸方向にほぼ平行 (繊維軸に対して 10° 以内の角度)で伸びている。 この筋状溝により、繊維表面において溝の中に入射した光が適度に散乱 ·吸収し、し つとりとした審美性の高い光沢を与えることができる。この筋状溝の巾は、散乱を効果 的に生じさせるために 0. 01〜1 /ζ πιであること力 S好ましく、 0. 05〜0. 9 mがより好 ましぐ 0. 08〜0. 8 mがさらに好ましい。また、この筋状溝のアスペクト比(筋状溝 の長軸長さ Z筋状溝の巾)は、概ね 3〜50の範囲であれば耐摩耗性を損なうことなく 、良好な光沢感を与える。筋状溝は電子顕微鏡 (SEM)での観察により捉えることが できる。 SEM像において、筋状溝の巾は通常 5, 000倍、必要に応じて 1, 000-10 , 000倍に拡大した写真より、筋状溝の巾の最大値をその筋状溝の巾と定義し、 10 個の筋状溝の巾につ 、て測定を行 、その平均値を本発明の筋状溝の巾とする。ま た、上記 10個の筋状溝について、筋状溝の両端を直線で結び、その直線距離を筋 状溝の長軸長さとし、それぞれの筋状溝についてアスペクト比を求めた(図 3参照)。
さらに、この筋状溝の数は、 SEM像において 10 m X lO mの範囲で 1個〜 500 個の範囲とすることで、耐摩耗性を損なうことなぐ良好な光沢を呈するので好ましい 。より好ましくは 3〜40個、さらに好ましくは 5〜30個である。
[0064] また、本発明の捲縮糸は工程通過性や製品の力学的強度を高く保っために強度 は lcNZdtex以上であることが好ましぐ 1. 5cNZdtex以上がより好ましい。さらに 好ましくは 2cNZdtex以上、特に好ましくは 3cNZdtex以上である。このような強度 を有するエアスタッファ捲縮糸(以下、「BCFヤーン」と記載)は、後述する溶融紡糸 · 延伸 ·嵩高法により製造することが可能である。また、破断伸度は 15〜70%であると 、繊維製品にする際の工程通過性が良好であり好ましい。より好ましくは 20〜65%、 さらに好ましくは 30〜55%である。このような伸度を有する捲縮糸は、後述する溶融 紡糸 ·延伸 '嵩高法により製造することが可能である。この際に、上記範囲の破断伸 度をも備えた高性能の捲縮糸とするという観点から、強度を 4cNZdtex以下とするこ とも好ましい場合がある。
[0065] また、捲縮糸の沸騰水収縮率は 0〜15%であれば繊維および繊維製品の寸法安 定性が良好であり好ましい。より好ましくは 0〜12%、さらに好ましくは 0〜8%、最も 好ましくは 0〜3. 5%である。
[0066] また、従来の脂肪族ポリエステルとポリアミドとのポリマーァロイ繊維は、ポリマー間 の界面張力により、溶融紡糸時に吐出孔直下でバラス効果と呼ばれる吐出孔径の 1 . 5〜: L0倍もの直径を有する膨らみが発生する。このため、紡糸での細化変形過程 で太細が出やすぐ糸切れが生じたり、糸斑等の品質に問題が生じたりする場合があ つた。本発明の繊維は、後述するようにポリマーの種類、溶融粘度の最適設計、口金 吐出線速度の制御、口金直下での冷却条件の最適化、紡糸速度の制御により、バラ ス効果を最小限にするとともに、バラスによる膨らみが生じても、伸長流動領域を口金 面にできるだけ近ぐかつ速やかに(吐出されてから、細化変形が完了するまでの距 離を短く)することで安定的に繊維を形成することに成功した。そのため、糸長手方向 の糸斑も小さいものである。本発明の捲縮糸は、工程通過性や染色後の染め斑を抑 制するために糸斑(ウスター斑、 U%、 Normal値)は 2%以下が好ましぐ 1. 5%以 下がより好ましい。さらに好ましくは 1%以下である。
[0067] 本発明の捲縮糸は、後述するエアジェットスタッファ装置を用いて得た「BCFヤーン 」(BCF : bulked continuous filament)であることが好ましい。 BCFヤーンとは、加熱流 体 (乾燥空気等)の乱流効果を用いてフィラメントに不規則なもつれループ状の捲縮 形態を有するもので、詳しくは日本繊維機械学会編集の「フィラメント加工技術マニュ アル(下巻)」の第 1章(25〜39頁)にその形態にっ 、て詳述されて 、る。 BCFヤー ンの態様の例を図 4および図 5の繊維の形状の写真にて説明する。図 4は本発明の BCFヤーンの一態様をマルチフィラメントの状態で黒紙の上に置いて観察した写真 であり、図 5は図 4のマルチフィラメントを単繊維に分けて黒紙の上に置いて観察した 写真である。図 4から明らかなように、単繊維のループがランダムな方向に形成されて おり、 2本以上の単繊維が絡み合った捲縮形態を有する。また図 5から明らかなように 、単繊維が有するループの振幅、周期は不規則である。この様に、 BCFヤーンは単 繊維がそれぞれ不規則な方向にループ状に屈曲しており、ループの振幅が不規則 であり、周期性がなぐ該単繊維同士が絡み合つている形態を有する。また、過度な 折れ曲がり部分を有さず、バルキー性が高いだけでなぐ仮撚加工糸などと比較して 、残留トルクが小さい特徴も有することから、捲縮糸あるいは捲縮糸を用いてなる繊 維製品が擦過された際に、外力がそれぞれの単繊維に分散されやすぐ外力に対す る変形が起こりにくい。
[0068] 本発明の捲縮糸において、沸騰水処理後の捲縮伸長率が 3〜30%であることが好 ましぐより好ましくは 5〜30%、さらに好ましくは 8〜30%、特に好ましくは 12〜30% である。ここで、沸騰水処理後の捲縮伸長率の測定は次のとおりに行う。
[0069] 環境温度 25± 5°C、相対湿度 60± 10%の雰囲気中に 20時間以上放置されたパ ッケージ (捲縮糸卷取ドラムまたはボビン)から解舒した捲縮糸を、無荷重状態で 30 分間沸騰水で浸漬処理する。処理した後、前記環境下にて 1昼夜 (約 24時間)風乾 し、これを沸騰水処理後の捲縮糸の試料として使用する。この試料に 1. 8mg/dtex の初荷重をかけ、 30秒経過した後に、試料長 50cm (L1)にマーキングをする。次い で、初荷重の代わりに 90mg/dtexの測定荷重をかけて 30秒経過後に、試料長(L 2)を測定する。そして下式により、沸騰水処理後の捲縮伸長率 (%)を求める。
[0070] 捲縮伸長率 (%) = [ (L2-L1) /L1] X 100。
[0071] 力かる捲縮糸の沸騰水処理後の捲縮伸長率が 3%より低いと、捲縮発現が十分で なぐバルキー性に乏しぐ例えばカーペット等にしたときにボリューム感のないものに なってしまうことがある。一方、沸騰水処理後の捲縮伸長率が 30%より大きい捲縮糸 を製造することは困難であり、該捲縮伸長率を 30%を越えて高めようとすると、捲縮 糸の強度が著しく低下したり、捲縮の斑や糸の太さ斑等を招いたりしてしまうことがあ る。
[0072] 本発明の捲縮糸は、染色や嵩高加工処理等の布帛構造体にするための加工工程 、あるいは製品にした後の長期使用において、捲縮がへたり難ぐ製品の外観が長 期に渡って保持されることが好ましい。このため、捲縮の堅牢度の指標である 2mgZ dtex荷重下での沸騰水処理後の捲縮伸長率 (以下、「拘束荷重下伸長率」と記載) 力 S2%以上であることが好ましい。拘束荷重下伸長率はより好ましくは 3%以上であり 、さらに好ましくは 5%以上である。上限については特に制限はないが、本発明の技 術においては 15%程度にまで高くすることが限界である。なお、拘束荷重下伸長率 は、実施例に記載の方法で測定することができる。
[0073] 本発明の捲縮糸を構成するポリマーァロイ系合成繊維の断面形状は、丸断面、中 空断面、多孔中空断面、三葉断面等の多葉断面、扁平断面、 W断面、 X断面その他 の異形断面についても自由に選択することが可能である力 捲縮糸のバルキー性を 高めてボリューム感のある繊維構造体にするためには、異形度 (DlZD2) l. 2〜7 の異形断面にすることが好ましい。異形断面糸の異形度は、高いほどボリューム感の ある繊維構造体とすることができるが、一方で、異形度が過度に高いと繊維の曲げ剛 性が高くなり、柔軟性の低下、繊維の割れ (フイブリル化)の発生、ギラツキのある光 沢が発生する等の問題がある場合がある。そのため、異形度は 1. 3〜5. 5の範囲が より好ましぐ 1. 5〜3. 5の範囲がさらに好ましい。
[0074] 本発明の好ましい態様のひとつであるポリマーァロイ系合成繊維力も構成される捲 縮糸の製造方法は特に限定されるものではないが、例えば図 6に示す直接紡糸 -延 伸 ·捲縮加工装置を用いて以下の様な方法を採用することができる。
[0075] すなわち、前記した脂肪族ポリエステル榭脂 (A)および熱可塑性ポリアミド榭脂 (B )の組み合わせにお!/、て、成分 Aと成分 Bとのブレンド比率(重量%)を 5Z95〜55
Z45の範囲とするとともに、溶融粘度の比(r? bZ a)を 0. 1〜2の範囲にすること が好ましい。このとき、成分 Aのブレンド比率が前記ブレンド範囲の下限に近ぐ例え ば成分 A比率が 5〜 15重量%の場合では、溶融粘度の比を 0. 8〜2と高くすればよ いが、成分 Aのブレンド比率が上限に近ぐ例えば成分 A比率が 45〜55重量%の場 合には、溶融粘度の比を 0. 1〜0. 3、すなわち熱可塑性ポリアミド榭脂 (成分 B)の 溶融粘度を、脂肪族ポリエステル榭脂 (成分 A)の 1Z10〜3Z10まで低くする必要 がある。これは、本願発明のポリマーァロイ繊維力もなる捲縮糸の形態が、脂肪族ポ リエステル榭脂 (A)が島成分を形成した海島構造糸とするためである。なお、上記範 囲の中で成分 A比率が 15〜45重量%の範囲であれば、溶融粘度の比を 0. 2〜1の 範囲に設定することで脂肪族ポリエステルを島成分にすることができる。なお、上記 の溶融粘度の比( 7? bZ r? a)を算出するときの溶融粘度 r?は、紡糸温度と同じ温度 で、剪断速度 1216sec_1で測定したときの値を用いる。
[0076] 次に、上記ポリマー特性およびブレンド比率の組み合わせにて、 2軸混練機等を用 いてー且ペレット化するか、もしくは混練と連続して溶融紡糸を行い、ポリマーァロイ を繊維化する。相溶化剤 (成分 C)の添加タイミングは、成分 Aと成分 Bの混練時に合 わせて添加すればよぐ添加方法は、相溶化剤をそのまま混練機に供給して成分 A 、成分 Bとともに同時混練してもよいし、成分 Cを高濃度に含有したマスターペレットを 予め作成しておき、それを成分 Aおよび成分 Bのペレットと混合して 2軸混練機に供 給してもよい。なお、予めマスターペレツトイ匕する場合には、相溶化剤の反応をできる だけ抑制することが肝要であるため、成型温度を下げることができる成分 Aにて作成 しておくのが好ましい。なお、相溶化剤の反応をできるだけ抑制しておく理由は、該 相溶化剤が反応系の場合、反応性基が一方成分に偏って反応することを極力防ぐ ためである。
[0077] 溶融押出における混練時のジャケット温度は、熱可塑性ポリアミド (成分 B)の融点( 以下 Tmbと記載)を基準に、 Tmb + 3°C〜Tmb + 30°Cで行い、剪断速度を 300〜9 800sec_1とすることが好ま 、。この範囲のジャケット温度および剪断速度とすること で、繊維としたときに本発明のドメイン径を達成することができると共に、着色のない ポリマーァロイ繊維となる。ジャケット温度がこの範囲を超えたり、剪断速度が 10000
sec—1を越えて剪断発熱が生じたりすると、ポリマーの着色により、得られる捲縮糸の 用途が限定されてしまうことがある。
[0078] 同様に、上記の海島構造を壊さず、かつ着色を防止するために、紡糸温度もできる だけ低温で行うことが好ましく、 Tmb + 3°C〜Tmb + 40°Cに設定することが好まし!/ヽ 。ょり好ましぃ紡糸温度は1¾11)+ 3°〇〜1¾11)+ 30°〇、さらに好ましくは Tmb + 3°C〜 Tmb + 20°Cである。
[0079] また、紡糸パック内での島ドメインの再凝集を抑制してドメイン径を制御するために 、ハイメッシュの濾層( # 100〜 # 200)やポーラスメタル、濾過径の小さ!/、不織布フ ィルター(濾過径 5〜30 μ m)、パック内ブレンドミキサー(スタティックミキサーやハイ ミキサー)を組み込んでもよい。特に口金から吐出する直前に濾過径 20 m以下の 不織布フィルターにて再分散させることがドメイン径の制御に極めて有効であり、好ま しい。
[0080] さらに、脂肪族ポリエステルとポリアミドとのポリマーブレンド物は非相溶系であり、溶 融体は弾性項の強い挙動を示し、バラス効果による膨らみが大きくなる傾向にある。 そのため口金吐出孔での吐出線速度は、バラス効果による糸条の膨らみを抑制する とともに、安定して伸長 '細化させて紡糸調子を向上させるために 0. 02〜0. 4m/ 禾少とすること力 S好ましく、 0. 03〜0. 3m/禾少とすること力より好ましく、 0. 04〜0. 2m Z秒とすることがさらに好ましい。吐出孔深度を大きくすることも、バラスの抑制に有 効である。ここで、吐出孔深度とは図 7 (a)に示すように導入孔下端から吐出面までの 長さを指す。また、丸孔の場合の吐出孔深度は、図 7 (b)に示すように絞り部下端か ら吐出面までの長さを指す。吐出孔深度は好ましくは 0. 3〜5mmであり、より好まし くは 0. 4〜5mmであり、さらに好ましくは 0. 5〜5mmである。
[0081] また、吐出糸条は伸長流動領域を口金面にできるだけ近ぐかつ速やかに(吐出さ れてから、細化変形が完了するまでの距離を短く)することが必要である。そのため、 吐出糸条の冷却開始点はより口金面に近い方が好ましぐ口金面から実質的に鉛直 下方 0. 01-0. 15mの位置力も冷却を開始することが好ましい。なお、実質的に鉛 直下方の冷却開始点とは、紡出部を拡大した図 8に示すように、冷却風吹出面の上 端力も水平に線 aを引き、口金面からは下方に垂線 bを引き、線 aと線 bとの交点 cを意
味し、垂線 b上の口金面 dから cまでの距離 cdが 0. 01-0. 15mであることが好まし い、ということを意味している。冷却開始点は、より好ましくは口金面力 実質的に鉛 直下方 0. 01〜0. 12m、さらに好ましくは口金面から実質的に鉛直下方 0. 01〜0. 08mである。
[0082] また、その冷却方法は、一方向から冷却するュ-フロータイプのチムニ一でも、糸 条の内側力 外側へ、もしくは糸条の外側から内側へ冷却風を当てる環状チムニ一 でもよいが、好ましくは糸条の内側から外側へ冷却する環状チムニ一が、均一かつ 急速冷却できる点で好ましい。この際に、マルチフィラメントに実質的に直交する方 向から、マルチフィラメントに気体を当てて冷却することが望ましい。ここにおいて、実 質的に直行する方向とは、図 8に示すように冷却風の流線が線 bに対してほぼ垂直( 傾き 70〜110° )であることを意味する。なお、冷却風に用いられる気体について特 に制限は無いが、常温で安定な (反応性が極めて低い)、アルゴン、ヘリウムなどの 希ガスや、窒素、あるいは空気が好ましく用いられ、この中でも安価に供給できる窒 素、あるいは空気が特に好ましく用いられる。
[0083] また、このときの冷却風の速度は、 0. 3〜lmZ秒が好ましぐ 0. 4〜0. 8mZ秒が より好ましい。また、冷却風の温度は、糸条を急冷するために低い方が好ましいが、 エアコンディショニングのコストとの兼ね合いから、 15〜25°Cにすることが現実的であ り好ましい。上記のように、特定のポリマー組み合わせにより本発明の海島構造が形 成され、さらに紡糸温度の制御により海島構造を壊すことなく吐出させることができ、 さらに口金吐出孔での吐出線速度の制御や、冷却方法およびその条件を制御する ことにより、はじめて本発明のポリマーァロイ繊維を安定して紡出'引き取ることができ る。また、紡出したマルチフィラメントは公知の紡糸仕上げ剤にて被覆する力 このと きの付着量は、糸に対し、純油分として 0. 3〜3重量% (油剤成分:水または低粘度 鉱物油 = 10: 90の場合は、糸に対してェマルジヨンを 3〜30重量%)付着させる。
[0084] また、紡糸速度は 500〜5000mZ分で引取り、一且卷き取るか、連続して延伸'嵩 高加工を行う。ただし、ポリマーァロイ系合成繊維は未延伸の状態で放置すると配向 緩和が生じやすぐ未延伸パッケージ間で延伸 ·嵩高加工するまでの時間差があると 、容易に繊維の強伸度特性や熱収縮特性、捲縮伸長率のバラツキが生じる。そのた
め、 1工程で紡糸、延伸、嵩高加工までを行う直接紡糸延伸嵩高加工法を採用する ことが好ましい。
[0085] 延伸は、 1段もしくは 2、 3段で行えばいが、 2cNZdtex以上の高い強度が要求さ れる場合には、 2段以上で延伸することが好ましい。図 6は紡出して力も連続して 2段 延伸'捲縮力卩ェを行う装置の概略図である力 この場合、 1FRを 500〜5000mZ分 で引取り、同時に 1FRを 50〜100°C程度に加熱し、 1FR (単ホットロール)〜 1DR( タンデムロール)間で 1段目の延伸を行い、次いで 1DR〜2DR (タンデムロール)間 で 2段目の延伸を行う。このとき、 2段目の延伸を行うときの延伸温度(図 6の 1DR温 度)は、 1FRよりも少なくとも 20°C以上高くすることが、工程安定性を向上させる上で 肝要である。そのため、 1FR温度を 50〜100°Cとした場合には、 1DR温度は 70〜1 30°Cの範囲で、かつ 1FR温度 + 20°C以上に設定すればよい。また、 1FR〜延伸後 の最終延伸ロール(図 6の場合、 2DR)間の倍率は、最終延伸ロール出口でサンプリ ングした延伸糸の破断伸度が 15〜65%になるように調整すればよい。好ましくは 20 〜60%である。ここで、破断伸度を上記範囲とするための手段としては、予めポリマ 一の吐出量、紡糸速度、および各ロール間の延伸倍率と、最終延伸ロール出口でサ ンプリングした延伸糸の破断伸度との関係を PLC (プログラマブルコントローラー)に 記録させ、自動的に延伸倍率を調整させることや、最終延伸ロール出口で延伸糸を サンプリングし、サンプリングした延伸糸の破断伸度が上記範囲よりも低い場合には 、延伸倍率を低く設定し、破断伸度が高い場合には延伸倍率を高く設定して破断伸 度を調節する方法により、該延伸糸の破断伸度が 15〜65%の範囲になる様に調整 して延伸倍率を決定することなどが挙げられる。
[0086] 上記の延伸温度および延伸倍率に設定することで、工程安定性が高ぐかつ高強 度で糸斑 (ウスター斑 U%)の小さい延伸糸とすることができる。さらに最終延伸ロー ル温度を、脂肪族ポリエステル榭脂 (成分 A)の融点(以下、 Tmaと記載)を基準に T ma— 30°C〜Tma+ 30°Cとして熱セットすることで、所望の熱収縮率の延伸糸とする ことができる。また、このように高い温度で熱セットし、さらに次工程で高温嵩高加工を 施すことにより、捲縮糸の繊維表面に微細な筋状溝を形成させることが可能となる。 その結果、製品にしっとりとした審美性の高い光沢を与えることができる。嵩高加工に
は、エアジェットスタッファ装置を用い、該装置のノズル温度を最終延伸ロール温度よ りも 5〜: L00°C高い温度で捲縮力卩ェを行う。
[0087] なお、エアジェットスタッファ装置については、 日本繊維機械学会が編集した「フイラ メント加工技術マニュアル(下巻)」の第 1章(25〜39頁)に詳細が記載されて 、る。 すなわち、 BCFカーペット用捲縮糸の製造に汎用的に用いられている捲縮加工装 置であり、エアジェットの乱流効果を用いてフィラメントに不規則なもつれループ状の 嵩高性を付与する装置である。装置例としては上記のフィラメント加工技術マ-ユア ルの図 1 · 16〜1 · 30に装置態様例がいくつか記載されており、マルチフィラメントの 繊度、構成単フィラメントの繊度や異形度、糸の剛性等に合わせて適宜選択すれば よい。
[0088] ここで、沸騰水処理後の捲縮伸長率を低くしたい場合には該ノズル温度を低くし、 捲縮伸長率を高くしたい場合にはノズル温度を高くしてやればよい。ただし、該ノズ ル温度を Tmbより高く設定すると、工程通過性が急激に悪ィ匕するので、ノズル温度 の上限は Tmb + 10°Cである。また、ノズルに導入する加熱流体は、乾燥エアーや乾 燥窒素、スチームを含むエアー等、特に限定されるものではないが、熱効率、ラン二 ングコストの点力 スチームを含む加熱エアーを用いることが好まし 、。
[0089] エアジェットスタッファ装置に通して 3次元捲縮が付与された糸条は、引き続いて冷 却ドラムに当てて急冷し、捲縮の構造固定を行う。この後、捲縮糸条に適度な張力を 加えて捲縮の均一性を高め、最終延伸ロールの周速度よりも 10〜30%低い速度で 巻き取り、パッケージとする。このときの最終延伸ロール(図 6では 2DR)〜卷取機間 のリラックス率は、捲縮糸に過度な張力が力からない様に卷取張力 0. 05〜0. 12cN Zdtexの範囲になる様に調整すればよぐ捲縮伸長率の高いものはリラックス率 20 〜30%で、捲縮伸長率が低いものはリラックス率 10〜20%で巻き取る。
[0090] 次に、もう一つの好ま 、態様である「芯成分が脂肪族ポリエステル榭脂 (A)、また は脂肪族ポリエステル榭脂 (A)と熱可塑性ポリアミド榭脂 (B)とのポリマーァロイより なり、鞘成分が熱可塑性ポリアミド榭脂 (B)よりなる芯鞘型複合繊維」について説明 する。
[0091] 芯鞘型複合繊維において、高い外力が断続的に加わるカーペット用途にも展開で
きる程、複合界面の剥離を抑制するためには、特定の繊維構造を有することが必要 である。
[0092] 本発明者らが芯鞘型複合繊維における芯鞘界面の剥離現象について鋭意検討を 行った結果、捲縮糸の耐剥離性を高めるには、芯成分、鞘成分のそれぞれにおける 非晶相の配向度が低ぐかつ芯成分、鞘成分のそれぞれにおける結晶化度が高い、 すなわち、芯成分、鞘成分の各成分において、結晶相と無配向な非晶相の 2相構造 を有することにより、耐剥離性を格段に向上できることを見出した。まず、捲縮糸にお V、て耐剥離性が低くなりやす 、要因にっ 、て検討した結果、芯鞘界面に隣接する芯 成分と鞘成分の分子配向が、界面以外の領域に比べて高くなりやすいことを掴んだ 。芯鞘界面に隣接する各成分の分子配向が高いことで、芯鞘界面に残留応力を有し 易ぐ外力が加わると、それをきっかけに応力が開放されながら界面剥離が成長する ことが判明した。
[0093] 芯鞘型複合繊維の芯鞘界面に隣接する芯成分と鞘成分の分子配向が、他の領域 に比べて高くなる要因については定かではないが、恐らく捲縮加工において、芯、鞘 各成分が熱収縮する際に、芯鞘界面において無理な歪みが加わるためであると推定 している。つまり繊維の熱収縮は、芯成分、鞘成分、それぞれにおける非晶相の分子 配向が緩和することによって起こる力 このとき芯成分と鞘成分が互いに異なる成分 からなる芯鞘型複合繊維の場合、両成分は熱収縮特性に差を有する。この熱収縮特 性の差によって、各成分は、自己の熱収縮を他の成分によって抑制されたり、あるい は促進される。また、芯鞘界面に隣接する、芯成分と鞘成分の分子鎖は、熱収縮を 互いの成分へと伝達する際に無理な歪みを受け、結果として十分に分子配向が緩 和されずに、配向が不安定な状態で残存してしまうものと推定される。このような不安 定な配向状態の分子鎖が、配向緩和しょうとする分子運動によって、芯鞘界面には 残留応力が発生する。そして外力が加わると、それをきっかけに応力が開放されなが ら界面剥離が成長するのである。
[0094] 仮撚加工糸や機械捲縮糸などの捲縮糸にお ヽては、前記した芯鞘界面に隣接す る芯成分と鞘成分の分子配向が高くなりやすぐ芯鞘界面に残留応力が発生して界 面剥離し易い場合がある。一方で、芯鞘型複合繊維を用いてなるマルチフィラメント
を BCFヤーンとした場合には、前記したような他の加工とは異なり、芯鞘界面の残留 応力の発生を大幅に抑制し、界面剥離が起こりにくい内部構造をとりやすいことを見 出した。この理由については必ずしも明確ではないが、エアジェットスタッファによる 捲縮加工では、加熱流体の乱流効果によって、それぞれの単繊維の芯成分と鞘成 分とを熱可塑性ポリアミド榭脂(B)の融点 (Tmb)近傍まで均一かつ短時間で加熱で き、同時に無張力状態で熱収縮せしめ、かつ即座に冷却ロールで急冷されることに より、芯鞘界面に隣接する領域においても非晶相の分子配向を十分に緩和せしめる ことができ、各成分の熱収縮特性の差による履歴が残り難いためと推定している。
[0095] また芯鞘界面の残留応力は、染色などの高次加工工程や、製品使用時における 経時変化において、芯鞘界面に隣接する芯成分、鞘成分の配向状態の不安定な分 子鎖が、配向緩和する際にも蓄えられる。特に芯成分に脂肪族ポリエステル (A)を用 いた場合は、熱に晒された場合はもとより、経時変化によっても非晶相の分子配向が 緩和し易い。このため芯鞘界面に残留応力が発生し易ぐ界面剥離し易い。すなわ ち捲縮糸の芯成分、鞘成分、それぞれの非晶相の分子配向が低いほど、耐剥離性 が優れるため好ましい。そしてさらに、芯成分、鞘成分に結晶相が多く存在するほど 、非晶相の分子鎖の緩和運動は拘束されるため、耐剥離性に優れたものとなり、好ま しい。
[0096] 捲縮糸の繊維構造は、捲縮糸の糸物性に密接に関わっており、本発明の芯鞘型 複合繊維からなる捲縮糸は、特定の強度、沸収、単繊維繊度とすることによって達成 される。
[0097] 捲縮糸の強度は、繊維内部の非晶相の配向度が高いほど高くなる傾向にある。そ して通常の単成分力 なる捲縮糸であれば、強度は工程通過性や、製品使用時の 耐久性の点で、高いほど好ましいが、本発明の芯鞘型複合繊維を用いてなる捲縮糸 は、非晶相の配向度が低いほど耐剥離性に優れることから、強度が 3cNZdtex以下 であることが好ましい。本発明の捲縮糸の強度を 3cNZdtex以下とすることにより、 繊維内部の非晶相の配向度が十分に低いものとなり、芯鞘界面に残留応力が生じ 難ぐ耐剥離性に優れた捲縮糸となるため好ましい。より耐剥離性に優れた捲縮糸と なる点で、強度は 2. 8cNZdtex以下であることが好ましぐ 2. 6cNZdtex以下であ
ることがより好ましぐ 2. 4cNZdtex以下であることがさらに好ましい。一方で、強度 があまりに低いと、製糸性や、高次加工工程通過性、製品としての耐久性に劣る場 合がある。このため強度は 1. 5cNZdtex以上であることが必要であり、 1. 7cN/dt ex以上であることが好ましぐ 1. 9cNZdtex以上であることより好ましぐ 2. lcN/d tex以上であることがさらに好ましい。なお、強度は実施例にて示す手法により測定 することができる。
[0098] 沸騰水処理によって、非晶相の分子配向が緩和され、繊維は収縮する。そしてこの とき繊維中に存在する結晶相は拘束点として作用し、非晶相の緩和を抑制する。つ まり捲縮糸の沸騰水収縮率 (以下、「沸収」と記載)は、繊維内部の非晶相の配向度 が低ぐ結晶化度が高いほど低くなる。すなわち本発明の捲縮糸は沸収が低いほど 、繊維内部の非晶相の配向度が低ぐかつ結晶化度が高いため、芯鞘界面に残留 応力が生じ難ぐ耐剥離性に優れるため好ましい。
[0099] 沸収は実施例にて示す手法によって測定することができ、フリーな状態で捲縮糸を 沸騰水処理する前 ·後での糸の長さ変化を測定することによって算出できる。本発明 の捲縮糸は沸収が 6%以下であることが好ましい。より耐剥離性に優れた捲縮糸とな る点で、沸収は 5%以下であることがより好ましぐ 4%以下であることがさらに好ましく 、 3%以下であることが特に好ましい。沸収は低いほど好ましぐ 0〜2%であることが 最も好ま U、。沸収は理想的には 0%であってもよ 、。
[0100] また本発明の芯鞘型複合繊維は、単繊維繊度が 5〜40dtexであることが好ましい 。単繊維繊度力 Odtex以下であることにより、捲縮カ卩ェ工程において、繊維が速や かに加熱され、単繊維の横断面内が均一加熱されるため、芯鞘界面に隣接する芯 成分、鞘成分の分子鎖において無理な歪みが力かりにくぐ芯鞘界面に残留応力が 生じ難くなる。すなわち、耐剥離性に優れる。また同時に結晶化も起こりやすいため、 繊維構造が固定化されて、染色工程後や、経時変化後においても耐剥離性が長期 に渡って維持できるため好ましい。より非晶相の分子配向が低ぐかつ結晶化度の高 い、すなわち耐剥離性に優れた捲縮糸となる点で、単繊維繊度は細いほど好ましぐ 38dtex以下であることが好ましぐ 35dtex以下であることがより好ましぐ 33dtex以 下であることがさらに好ましぐ 30dtex以下であることが特に好ましい。しかし一方で
、単繊維繊度が過度に細いと、捲縮処理において結晶相とランダムな非晶相の 2相 構造を形成し易いものの、後に捲縮を伸ばす工程で加わるストレッチ張力や、捲縮 糸を巻き取る工程で加わる卷取張力、あるいは高次カ卩ェ工程で加わる張力によって 、捲縮糸が再び伸長されて、芯鞘界面に無理な歪みが生じ易い。このため単繊維繊 度は 5dtex以上であることが好ましい。より好ましくは 6dtex以上であり、さらに好まし くは 8dtex以上である。本発明では、上記のように、芯成分が脂肪族ポリエステル榭 脂 (A)からなり、鞘成分が熱可塑性ポリアミド榭脂 (B)からなる芯鞘型複合繊維から 構成される捲縮糸において不可避であった剥離の問題を、強度: 1. 5〜3cNZdtex 、単繊維繊度: 5〜40dtex、沸収: 6%以下とすることにより、初めて達成できたもの である。
[0101] 本発明の芯鞘型複合繊維は、芯成分が脂肪族ポリエステル榭脂 (A) (以下、「成分 AJとも記載)、または脂肪族ポリエステル榭脂 (A)と熱可塑性ポリアミド榭脂 (B) (以 下、「成分 B」とも記載)とのポリマーァロイよりなる。本発明においては、前記の 2成分 が芯成分の 90重量%以上を構成することが好ましぐ 93重量%以上であることがより 好ましぐ 95重量%以上であることがさらに好ましい。
[0102] 本発明の芯鞘型複合繊維にお!、て、芯成分に脂肪族ポリエステル榭脂 (A)と熱可 塑性ポリアミド榭脂(B)とのポリマーァロイとすることにより、成分 Aおよび成分 Bは相 互に入り組んだいわゆる海島、あるいは海海構造をとることで、鞘成分と芯成分との 芯鞘界面の剥離が抑えられ、耐摩耗性が十分に高い繊維となり好ましい。また芯成 分に用いる成分 Bと鞘成分に用いる成分 Bとは同一であっても異なって 、てもよ 、。 また、芯鞘型複合繊維の成分 Aの含有量を 20重量%以上としても、耐摩耗性、耐熱 性が高い繊維が得られる。
[0103] ここで、芯成分を構成する熱可塑性ポリアミド榭脂 (B)は、海を形成することが好ま しい。さらに芯成分のポリマーァロイ中の脂肪族ポリエステル榭脂 (A)の比率を高め るためには、溶融紡糸時における脂肪族ポリエステル (A)の溶融粘度を熱可塑性ポ リアミド (B)よりも高くすることが肝要である。
[0104] 本発明の芯鞘型複合繊維の芯成分を構成する、成分 Aと成分 Bとのブレンド比率( 重量比)は、成分 AZ成分 B = 95Z5〜20Z80であることが好ましい。芯成分に成
分 Bを有し、少なくとも芯鞘界面の一部に成分 Bが存在することにより、芯鞘界面での 接着性が向上して界面剥離を抑えることができるため、好ましい。芯鞘型複合繊維の 場合、芯鞘界面での剥離が生じるとフイブリルィ匕しゃすくなる。ー且フイブリルィ匕が始 まると、繊維の摩耗速度が急激に速くなる。このため、繊維の耐摩耗性を高くするた めには芯鞘界面の剥離を無くすことが重要である。芯成分において成分 Bを多く含 むほど、本発明にて好ましいとされる、後述のポリマーァロイ構造 (a)あるいは (c)の 構造となりやすぐ繊維の耐摩耗性が優れるため好ましい。このため芯成分における 成分 Bのブレンド比率が高いことが好ましい。しかし一方で、本発明の芯鞘型複合繊 維は環境負荷を低減する性能を兼ね備えた素材であるためには、できるだけ植物由 来の成分 Aを多く含むことが好ましぐすなわち成分 Bの比率を低くすることが好まし い。芯鞘界面の接着性が向上して耐摩耗性に優れ、かつ環境負荷が低い素材であ る、この両方を満たすために、成分 AZ成分 Bは 80Z20〜25Z75であることがより 好ましく、 70/30〜30/70であること力 Sさらに好ましく、 60/40〜35/65であるこ とが特に好ましい。
[0105] 本発明の芯成分における成分 ΑΖ成分 Βのブレンド比率 (重量比)については、溶 融紡糸に供する際の成分 Αと成分 Βの重量比率により算出することができる。しかし ながら製造時の成分 Aと成分 Bのブレンド比率 (重量比)が不明である場合には、簡 易的に下記式を用いて算出することもできる。すなわち、本発明の芯鞘型複合繊維 の芯成分は成分 Aと成分 Bとその他の少量成分を含むことがあるが、かかる場合であ つても、芯成分が実質的に成分 Aと成分 Bの 2成分のみ力 なるものとみなすことがで き、成分 AZ成分 Bのブレンド比率 (重量比)を算出することができる。まず、芯鞘型 複合繊維横断面スライスを透過型電子顕微鏡 (TEM)にて 4万倍で観察し、芯成分 を構成する成分 Aの総面積 (Aa)と成分 Bの総面積 (Ab)とを求める。成分 Aの比重 を 1. 26、成分 Bの比重を 1. 14として、下記の式を用いて算出した。
[0106] 成分八7成分 = (八& 1. 26) / (Ab X l. 14)。
[0107] また、横断面において鞘成分と、芯成分との境界線が判別しにくい場合は、横断面 において、最外層に存在する成分 Aと外接し、成分 Aを内部のみ含む繊維横断面と 相似形の図形を境界線として、鞘成分と芯成分とを判別した。
[0108] また芯成分の単繊維横断面におけるポリマーァロイ構造として、下記の(a)〜(c)が 挙げられ、いずれのポリマーァロイ構造であっても、芯成分中の成分 Bと、鞘成分の 成分 Bとの間で相互作用する効果によって良好な耐摩耗性が発現する。但しその中 でも芯成分の成分 Bと鞘成分の成分 Bが連続相を形成し、耐摩耗性が飛躍的に優れ る繊維となる点で、芯成分のポリマーァロイ構造は(a)または (c)であることが好ましく 、(a)であることが特に好ましい。
[0109] (a)成分 Aが島成分、成分 Bが海成分 (海島構造)
(b)成分 Bが島成分、成分 Aが海成分 (海島構造)
(c)成分 Aと成分 Bがともに海成分 (海海構造)。
[0110] ここで、本発明の芯成分を構成する好ましいポリマーァロイ構造 (a)である「成分 A が島成分、成分 Bが海成分の海島構造」について、図 1の TEM写真を用いて説明す る。図 1では染色された成分が、熱可塑性ポリアミド榭脂 (B)を示し、染色されていな い成分が、脂肪族ポリエステル榭脂 (A)を示している。図 1のように、連続した領域で ある成分 Bにより、成分 Aが複数の略円形領域に分離されている構造を (a)成分 Aが 島成分、成分 Bが海成分の海島構造であると定義する。なお、島成分である成分 A の内部に、成分 Bが島成分 (略円形を呈する)として存在する、いわゆる海島湖構造 も、本発明の海島構造に含むものとする。ポリマーァロイ構造 (b)である「成分 Aが海 成分、成分 Bが島成分の海島構造」は、連続した領域である成分 Aにより、成分 Bが 複数の略円形領域に分割された構造である。また本発明のポリマーァロイ構造 ( で ある「成分 A、成分 Bともに海成分の海海構造」とは、成分 A、成分 Bが共に略円形を 呈しておらず、島成分と海成分の判別が付かな ヽ構造であると定義する。
[0111] 芯成分のポリマーァロイ構造は、前記した成分 Aと成分 Bのブレンド比率 (重量比) や、後述する成分 Aの溶融粘度( 7? a)と、成分 Bの溶融粘度( η b)との粘度比と密接 に関わっており、それぞれを適切な範囲とすることによって芯成分のァロイ構造を制 御できる。
[0112] また、特に好ま 、ポリマーァロイ構造である(a)の構造とするには、成分 Aの溶融 粘度 7? aを高くし、成分 Bの溶融粘度 7? bを低くすることが好ましい。これはポリマーァ ロイ構造が成分 Aと、成分 Bの溶融粘度のバランスに影響されるためである。ポリマー
ァロイ構造は、溶融状態で剪断変形を与えられた時に形成されるが、剪断変形によ つて生じる剪断応力が最も低くなる構造が形成されやすい。これは系全体のェネル ギーレベルが低くなり、安定であるためである。これは、剪断が直に加えられる成分で ある海成分は溶融粘度が低い成分で形成されやすぐ逆に溶融粘度の高い成分は 島成分を形成し易いことを意味する。すなわち、本発明にて、特に好ましいポリマー ァロイ構造である(a)とするには、溶融粘度の比( r? bZ r? a)が小さいことが好ましぐ 2以下であることが好ましぐ 1. 5以下であることがより好ましぐ 1以下であることがさ らに好ましい。但し、あまりに溶融粘度の比が小さくなると、島成分の直径が粗大化す る傾向にあるため、溶融粘度の比( r? bZ r? a)は 0. 10以上であることが好ましぐ 0. 15以上であることがより好ましぐ 0. 20以上であることがさらに好ましい。なお、溶融 粘度 7?の測定方法の詳細については後述するが、測定温度 240°C、剪断速度 121 6sec_1で測定したときの溶融粘度を意味している。
[0113] 本発明の芯鞘型複合繊維の芯成分が海島構造を呈する場合、島成分の直径は 0.
001-2 μ mであることが好ましい。島成分の直径の上限を 2 μ mとすることで、成分 Aと成分 Bとで形成される界面の面積が飛躍的に増加し、繊維の耐摩耗性が飛躍的 に向上するため好ましい。一方、島成分の直径があまりに小さいと、成分 Aと成分 Bが 分子レベル相溶化して結晶性を阻害し合い、繊維の耐摩耗性、耐熱性、染色堅牢 度が低下することがある。この点から島成分の直径の下限は 0. 001以上であることが 好ましい。これらのことから島成分の直径は 0. 005〜1 111カ 子ましく、 0. 01〜0. 8 /z mがより好ましい。さらに好ましくは 0. 02〜0. である。
[0114] なお、本発明での島成分の直径とは、実施例にて詳述するように、該芯鞘型複合 繊維の横断面スライスを透過型電子顕微鏡 (TEM) (4万倍)により観察し、芯鞘型複 合繊維 1試料あたり 100個の島について島成分の直径を計測した(島を円と仮定し、 島の面積カゝら換算される直径を島成分の直径とした)。該島成分の直径分布を上記 範囲とすることにより、繊維の耐摩耗性、耐熱性、染色堅牢度が向上する。
[0115] また、本発明の芯鞘型複合繊維の芯成分を構成する素材はポリマーァロイである ため、 1分子鎖中に脂肪族ポリエステルブロックとポリアミドブロックが交互に存在する ブロック共重合体とは異なり、脂肪族ポリエステル分子鎖 (成分 A)と、ポリアミド分子
鎖 (成分 B)は実質的に独立に存在していることが重要である。この状態の違いは、配 合前後の熱可塑性ポリアミド榭脂の融点降下、すなわちポリマーァロイ中の熱可塑性 ポリアミド榭脂由来の融点が配合前の熱可塑性ポリアミド榭脂の融点力もどの程度降 下したかを観測することにより見積もることができる。熱可塑性ポリアミド榭脂の融点降 下が 3°C以下であれば、脂肪族ポリエステルとポリアミドはほとんど共重合されておら ず (エステル アミド交換がほとんど起こっておらず)、実質的に脂肪族ポリエステル 分子鎖とポリアミド分子鎖は独立に存在するポリマーァロイの状態である。
[0116] このように成分 Aと成分 Bが実質的に独立して存在していることによって、鞘成分を 形成する熱可塑性ポリアミド榭脂 (B)と、芯成分を形成する熱可塑性ポリアミド榭脂 ( B)とが相互作用を起こしやすぐ鞘成分と芯成分の界面の接着性が向上するため好 ましい。これにより鞘成分である熱可塑性ポリアミド榭脂 (B)が本来有する特性が、繊 維の特性へ反映されて耐摩耗性が飛躍的に向上する。したがって、本発明では熱可 塑性ポリアミド (B)の融点降下は 2°C以下であることが好ましい。また、鞘成分と芯成 分の界面における接着性を高まる点で、芯成分に用いる熱可塑性ポリアミド榭脂 (B) と、鞘成分に用いる熱可塑性ポリアミド榭脂(B)は同種類のモノマーを主たる繰り返 し単位とするポリアミドであることが好ましい。例えば、ナイロン 6と、ナイロン 6を主体と する共重合ポリアミド、あるいはナイロン 6とナイロン 610との組み合わせである。同様 に、該 2成分の融点が近いほど、溶融紡糸時にそれぞれのポリマーが熱劣化を起こ しにくい紡糸温度を選定することができ、得られる繊維が耐摩耗性に優れるため好ま しい。このため、芯成分と鞘成分それぞれに用いる熱可塑性ポリアミド榭脂の融点差 は、 30°C以下であることが好ましぐ 20°C以下であることがより好ましぐ 10°C以下で あることがさらに好ましい。
[0117] また、芯成分のポリマーァロイ中の島成分は、それぞれ繊維軸方向に筋状に細長 い形態であることが好ましい。島成分が筋状であることにより、一つの島成分が海成 分と接着している複合界面の面積が大きくなり、フィブリルィ匕を抑制できるため好まし い。また島成分が細長い筋を形成することで、強度が高くなるメリットがある。島成分 が筋状である場合、繊維軸方向に完全に平行であることが最も好ましいが、本発明 においては繊維軸から 5° 以下傾斜したものは、繊維軸方向に筋状に細長い形態で
あると定義する。
[0118] 本発明の芯鞘型複合繊維は、成分 Aの含有量 (繊維総重量に対する成分 Aの重 量%)が高いほど、環境負荷低減素材となることから、成分 Aの含有量が高いことが 好ましい。成分 Aの含有量は、 20重量%以上であることが好ましぐ 30重量%以上で あることがより好ましぐ 40重量%以上であることがさらに好ましい。一方で、耐剥離 性、耐摩耗性、捲縮の堅牢度が優れる点で、成分 Aの含有量は 80重量%以下であ ることが好ましぐ 75重量%以下であることがより好ましぐ 70重量%以下であること 力 Sさらに好ましい。成分 Aの含有量 (繊維総重量に対する成分 Aの重量%)は、実施 例に記載の手法により算出することができる。すなわち、芯鞘型複合繊維から構成さ れる捲縮糸から、成分 Aのみを溶出した後の繊維の重量と、もとの捲縮糸の重量の 差を成分 Aの重量と見なし、該重量の差を、もとの捲縮糸の重量で除することにより 算出する。
[0119] また、芯鞘型複合繊維の場合、鞘成分が熱可塑性ポリアミド榭脂 (B)からなることが 必要である。鞘成分として熱可塑性ポリアミド (B)を有することで、繊維表面積に対す る脂肪族ポリエステル榭脂 (A)の露出面積の比率が実質ゼロとなるため、耐摩耗性 が飛躍的に向上し好ましい。なお、鞘成分に成分 Bをより多く含むことにより、耐摩耗 性、耐熱性に優れた素材となるため、成分 Bが鞘成分の 90重量%以上を構成するこ と力 子ましく、 93重量%以上であることがより好ましぐ 95重量%以上であることがさら に好ましい。
[0120] 熱可塑性ポリアミド榭脂(B)は前記したように、共重合ポリマーであってもよ!/、が、本 発明の芯鞘型複合繊維は結晶相を多く含むほど、高次加工工程、あるいは製品使 用時の経時変化などによっても、非晶相の配向緩和を抑制することができ、芯鞘界 面に残留応力が生じ難ぐ耐剥離性に優れるため好ましい。このため熱可塑性ポリア ミド榭脂(B)は結晶性が高いほど好ましいことから、結晶融解ピーク熱量 ΔΗは、 10J Zg以上であることが好ましぐ 20jZg以上であることがより好ましぐ 30jZg以上で あることがさらに好ましい。
[0121] 本発明の脂肪族ポリエステル榭脂 (A)と、熱可塑性ポリアミド榭脂 (B)はほとんど反 応しないため、前記二者のポリマーで形成される芯鞘界面の接着性を高めることを目
的として、前記した相溶化剤 (成分 C)を添加することも好ましい。特に一分子中に二 個以上の活性水素反応性基を有する化合物を、成分 Aおよび Zまたは成分 Bに添 カロして溶融ブレンドして紡糸を行うことで、該化合物が成分 Aと成分 Bの 、ずれの成 分とも反応して架橋構造をとるため、芯鞘界面の剥離現象を抑制でき、より好ましい。
[0122] また、成分 Bと成分 Cの融点が近いほど、溶融紡糸時にそれぞれのポリマーが熱劣 化を起こしにく 、紡糸温度を選定することができ、得られる繊維が耐摩耗性に優れる ため好ましい。このため、成分 Bと成分 Cの融点の差は 30°C以下であることが好ましく 、 20°C以下であることがより好ましぐ 10°C以下であることがさらに好ましい。
[0123] 成分 Cの添加量は、使用する化合物の反応性基の単位重量当たりの当量、溶融時 の分散性や反応性、成分 Aの含有量により適宜決めることができるが、芯鞘界面の 剥離を抑制する点では成分 A、成分 Bおよび成分 Cの合計量に対し、 0. 005重量% 以上とすることが好ましい。より好ましくは 0. 02重量%以上、さらに好ましくは 0. 1重 量%以上である。成分 Cの添加量が少なすぎると、芯鞘界面における反応量が少な ぐ芯鞘界面の接着性を向上させる効果が限定的となることがある。一方、成分じが 繊維の基材となる成分 Aおよび成分 Bの特性や、製糸性を阻害することなく性能を発 揮させるためには、成分 Cの添加量は 5重量%以下が好ましぐ 3重量%以下がより 好ましい。さらに好ましくは 1重量%以下である。
[0124] さらに、上記反応性基を有する化合物の反応を促進する目的で、カルボン酸の金 属塩、特に金属をアルカリ金属、アルカリ土類金属とした触媒を添加すると、反応効 率を高めることができ好ましい。その中でも、乳酸ナトリウム、乳酸カルシウム、乳酸マ グネシゥムなどの乳酸をベースとした触媒を用いることが好ましい。その他、触媒添加 による榭脂の耐熱性低下を防止する目的で、ステアリン酸金属塩などの比較的分子 量の大きな触媒を単独または併用することもできる。なお、該触媒の添加量は、分散 性、反応性を制御する上で、合成繊維に対して 5〜2000ppm添加することが好まし より好ましく ίま 10〜: LOOOppm、さら【こ好ましく ίま 20〜500ppmである 本発明の芯鞘型複合繊維は芯鞘比率 (重量比)が: LOZ90〜65Z35であることが 好ましい。ただし、芯成分の比率が高いほど芯鞘界面の面積は増加し、芯成分の比 率が高いと、結晶性が低く経時変化を起こしやすい成分 Aを多く含むことになるため
、芯鞘界面に残留応力が生じ易ぐ耐剥離性が悪ィ匕する傾向にある。そのため、耐 剥離性を高めるためには芯成分の単位体積当たりの芯鞘界面の面積が大きいことが 好ましぐこの観点で芯成分の比率は低いことが好ましい。さらに鞘成分の比率が増 えることにより、捲縮の堅牢度が高くなるメリットもある。このため芯鞘比は上記範囲で あること力 S好ましく、 10/90〜50/50であること力 Sより好ましく、 10/90〜45/55 であることがさらに好ましい。
[0125] 本発明における芯鞘比とは、溶融紡糸に供する際の芯成分と鞘成分の重量の和を 100と見なし、それに対する芯成分、鞘成分、それぞれの比率を計算することにより 算出できる。しかしながら製造時の芯成分と鞘成分の重量比率が不明である場合に は、簡易的に下記式を用いて算出することもできる。すなわち、本発明の芯鞘型複合 繊維の芯成分は成分 Aとその他の少量成分を含むことがあり、鞘成分は成分 Bとその 他の少量成分を含むことがあるが、力かる場合であっても、芯成分が実質的に成分 A のみからなり、鞘成分が成分 Bのみ力もなるものとみなすことができ、芯成分と鞘成分 の重量比として芯鞘比を算出することができる。まず、捲縮糸の横断面スライスを透 過型電子顕微鏡 (TEM)にて 4千倍で観察し、芯成分を構成する領域の総面積 (Aa )と、鞘成分を構成する領域の総面積 (Ab)とを求める。そして成分 Aの比重を 1. 26 、成分 Bの比重を 1. 14として、下記の式を用いて算出する。
芯鞘比 = 芯成分の重量比率 Z鞘成分の重量比率
芯成分の重量比率 = [ (Aa X 1. 26) Z (Aa X 1. 26 + Ab X 1. 14) ] X 100 鞘成分の重量比率 = [ (Ab X l. 14) / (Aa X l. 26+Ab X l. 14) ] X 100。
[0126] 本発明の芯鞘型複合繊維の横断面形状は、丸型、 Y型、多葉型、多角形型、扁平 型、中空型などの多種多様の断面形状を取ることができる。またマルチフィラメントで ある場合、それぞれの単繊維の断面形状は同一であっても異なっていてもよい。本 発明の芯鞘型複合繊維の単繊維の横断面形状の一態様について図 10に例示する 。図 10において各々 42は成分 A、 43は成分 Bを示す。図 10には丸形、 Y型、多様 型の各態様が図示されている。本発明の芯鞘型複合繊維の横断面形状は具体的に は Y型、多葉型、扁平型であることが好ましぐ Y型あるいは扁平型であることがさらに 好ましい。
[0127] 本発明の芯鞘型複合繊維は、単繊維の異形度 (D3ZD4)が 1. 3〜4であることが 好ましい。単繊維の異形度が高いほど、繊維の表面積が大きくなるため、捲縮加工 工程において繊維が速やかに加熱され、繊維の横断面内が均一加熱されるため、 芯鞘界面に隣接する芯成分、鞘成分の分子鎖において無理な歪みが力かりに《、 耐剥離性に優れるものとなるため好ましい。このため単繊維の異形度は 1. 3以上で あることが好ましぐ 1. 5以上であることがより好ましぐ 1. 8以上であることがさらに好 ましぐ 2. 0以上であることが特に好ましい。しかし一方で、異形度が過度に高いと、 断面形状が鋭角部を有し易くなり、該鋭角部に外力が集中して耐摩耗性が悪化する 場合がある。また芯成分を長手方向に均一に、鞘成分で被覆することが難しくなる製 造工程上の問題もある。これらの点を抑制する点で、異形度は 4以下であることが好 ましぐ 3. 8以下であることがより好ましぐ 3. 5以下であることがさらに好ましぐ 3. 3 以下であることが特に好まし 、。
[0128] 単繊維の異形度は、単繊維の横断面について TEMを用いて実施例の方法で観 察し、横断面の外接円の直径 D3と、内接円の直径 D4の比 (D3ZD4)として定義す る。異形断面が概ね線対称性、点対称性を保持すると判断される場合、内接円とは 単繊維の横断面において輪郭をなす曲線に内接する円であり、外接円とは単繊維 の横断面において輪郭をなす曲線に外接する円である。異形断面が線対称性、点 対称性を全く保持しな!、形状であると判断される場合には、単繊維の輪郭をなす曲 線と少なくとも 2点で内接し、繊維の内部にのみ存在して内接円の円周と、単繊維の 輪郭をなす曲線とが交差しない範囲においてとりうる最大の半径を有する円を内接 円とする。外接円は単繊維の輪郭を示す曲線において少なくとも 2点で外接し、単繊 維の横断面の外部にのみ存在し、外接円の円周と単繊維の輪郭が交差しない範囲 においてとりうる最小の半径を有する円を外接円とする。異形度の算出においては異 なる箇所を切削して得た横断面 10力所について異形度を算出して平均化して求め た。
[0129] 本発明の芯鞘型複合繊維は、芯成分の異形度 (D1ZD2)が 1. 3〜4であることが 好ましい。芯成分の異形度が高いほど、芯成分の単位体積当たりの芯鞘界面の面積 が大きくなり、耐剥離性に優れたものとなるため好ましい。このため芯成分の異形度
は 1. 3以上であることが好ましぐ 1. 5以上であることがより好ましぐ 1. 8以上である ことがさらに好ましく、 2以上であることが特に好ましい。一方、芯成分の異形度が大き すぎると、単繊維の横断面内、長手方向内において、鞘成分を均一に被覆させること が難くなつて、耐剥離性が悪ィ匕する場合がある。このため、芯成分の異形度は 4以下 であることが好ましぐ 3. 8以下であることがより好ましぐ 3. 5以下であることがさらに 好ましぐ 3. 3以下であることが特に好ましい。なお、本発明の芯成分の異形度は、 上記の単繊維の異形度と同様にして芯鞘複合界面を断面形状に見たてて測定する
[0130] 本発明において好ましい捲縮糸の断面形状を図 10に例示する。捲縮糸を構成す る単繊維の芯成分の横断面形状については任意であるが、芯鞘界面の接着性が高 まり、捲縮糸の芯成分の比率、しいては成分 Aの含有量が多くとも耐剥離性に優れる 点で、芯成分の断面形状は、単繊維の断面形状と相似形であることが好ましい。ここ で相似形とは、数学的に厳密な相似を意味するものではなぐ例えば単繊維の断面 形状が Y型であり、芯成分の断面形状が Y型であり、両者の異形度が異なる場合で あっても、相似形と見なすものとする。勿論本発明の芯鞘型複合繊維は図 10の断面 形状に限定されるものではない。なお本発明の芯鞘型複合繊維の芯成分の数につ いては任意であり、単繊維が内部に 1個の芯成分を有してもよいし、複数個の芯成分 を有してもよい。単繊維の横断面の輪郭がなす形状の重心と、芯成分の輪郭がなす 形状の重心が同一であっても、異なっていてもよいが、繊維表面が均一に鞘成分で 被覆されているほど耐摩耗性に優れるため、単繊維の輪郭がなす形状の重心と、芯 成分の輪郭がなす形状の重心は同一であることが好ましい。またマルチフィラメントに おいて、それぞれの単繊維の横断面において芯成分の輪郭がなす形状は、同一で あっても異なって ヽてもよ ヽ。
[0131] また本発明の芯鞘型複合繊維は、単繊維の横断面において複数の芯成分が存在 する、いわゆる海島複合型繊維を用いてなる芯鞘型複合繊維であると、芯成分の単 位体積当たりの芯鞘界面の面積が大きくなり、耐剥離性が良好となるため好ましい。 このため芯成分は 3島以上であることが好ましぐ 9島以上であることがより好ましぐ 2 4島以上であることがさらに好ましい。
[0132] 本発明の芯鞘型複合繊維は、耐摩耗性に優れた繊維となる点で、繊維長手方向 全てにおいて繊維表面が実質的に鞘成分で構成されてなり、特に成分 Aが繊維表 面に露出していないことが好ましい。本発明の芯鞘型複合繊維は耐剥離性に優れ、 かつ繊維表面が実質的に鞘成分で被覆されていることによって、耐摩耗性が飛躍的 に向上するのである。そして、耐摩耗性、耐剥離性を高めるには、繊維の横断面の 全てにおいて鞘成分が厚いことが好ましぐ鞘成分の厚さの最小値は 0. 以上 であることが好ましい。 0. 7 m以上であることがより好ましぐ 1 m以上であることが さらに好ましい。また、紡糸工程において、芯成分にポリマーァロイを用いた場合に は、バラス効果を抑制でき工程通過性が高くなるという製法上のメリットもある。一方で 、あまり鞘の厚みが厚 、と繊維総重量に対する脂肪族ポリエステル榭脂 (A)の比率 が少なくなり、環境負荷低減素材を提供する目的カゝら外れてしまう場合がある。この ため鞘成分の厚みは 10 μ m以下であることが好ましぐ 7 μ m以下であることがより好 ましぐ 5 m以下であることがさらにより好ましい。なお、鞘成分の厚さの最小値を厚 くするためには、芯鞘比率、単糸繊度、単繊維の異形度は前記範囲とすることが好ま しぐ成分 Aと成分 Bの溶融粘度比、紡糸温度は後述の範囲とすることが好ましい。
[0133] 本発明の芯鞘型複合繊維は結晶化度が高いほど、すなわち結晶相を多数含むほ ど、芯成分、鞘成分の非晶相の配向緩和運動を抑制し易ぐ耐剥離性に優れた捲縮 糸となるため好ましい。さらに結晶化度が高いほど耐摩耗性、耐熱性、染色や捲縮の 堅牢性などにも優れるものとなるため好ましい。本発明における結晶化度は、昇温速 度 16°CZ分で測定した示差熱量曲線の融解ピークの熱容量の総和により評価する ことができ、該融解ピークの熱容量の総和力 50jZg以上であることが好ましぐより 好ましくは 60jZg以上であり、さらに好ましくは 70jZg以上である。このような融解ピ ークを示すために、成分 A、成分 Bとして結晶性の高いポリマーを用いることが好適で ある。また後述するように、各成分の結晶化を促すベぐ延伸倍率や、延伸後の熱処 理温度、および捲縮加工工程における捲縮ノズル温度などの製造条件を調整するこ とが好ましい。
[0134] 本発明の芯鞘型複合繊維は、捲縮糸のバルキー性に優れるほど、製品品位に優 れる点で、捲縮糸のバルキー性の指標である沸騰水処理後の捲縮伸長率が高 、こ
とが好ましい。このため沸騰水処理後の捲縮伸長率が 5%以上であることが好ましぐ 10%以上がより好ましぐ 15%以上が特に好ましい。沸騰水処理後の捲縮伸長率の 上限については、特に制限されるものではないが、あまりに高いと、単繊維に折れ曲 力 Sり部を有し易ぐ耐剥離性が悪ィ匕する場合がある。この点で、沸騰水処理後の伸長 率は 35%以下であることが好ましぐ 33%以下であることがより好ましぐ 30%以下で あることが特に好ましい。
[0135] 本発明の芯鞘型複合繊維は、染色工程や高次加工工程、あるいは繊維構造体と した後の長期使用において、捲縮がへたり難く(捲縮の堅牢度が高く)、製品のボリュ 一ム感が長期に渡って維持されることが好ましい。このため、捲縮の堅牢度の指標で ある、 2mgZdtex荷重下で沸騰水処理した後の捲縮伸長率 (以下、 2mgZdtex荷 重下で沸騰水処理した後の捲縮伸長率のことを、単に「拘束荷重下伸長率」と記載 することがある)が 2%以上であることが好ましい。より好ましくは 3%以上であり、さら により好ましくは 5%以上であり、特に好ましくは 7%以上である。上限については特 に制限はないが、例えばチーズ染色カ卩ェをする時に巻き締まってしまい、パッケージ の端面で染色の濃淡斑がおこるなどの悪影響を抑制するという点で 30%以下である ことが好ましい。拘束荷重下伸長率は、実施例にて示す方法で測定することができる
[0136] また、本発明の芯鞘型複合繊維の伸度は 15〜70%であると、繊維製品にする際 の工程通過性が良好であり好ましい。このような伸度を有する捲縮糸は後述する製 造方法にぉ 、て、延伸倍率を好まし 、範囲とすることで製造することが可能である。 より好ましくは 20〜60%であり、さらに好ましくは 30〜50%である。
[0137] 本発明の芯鞘型複合繊維の糸斑は小さいことが好ましい。糸斑を小さくすることで 、擦過を受けた際に外力が局部に集中することを抑制することが可能となり、耐剥離 性を高められるため好ましい。このため糸斑の指標である糸斑 (ウスター U%) (Nor mal)は 2. 5%以下が好ましぐ 2. 0%以下がより好ましぐ 1. 5以下がさらに好ましく 、 1. 0以下が特に好ましい。従来の脂肪族ポリエステルとポリアミドとの単純ポリマー ァロイ繊維と比較して、本発明の芯鞘型複合繊維は繊維の表面に鞘成分を有するた め、バラスが抑制されて細化挙動が安定ィ匕し、糸斑が小さぐ耐摩耗性に優れるとい
うメリットもある。また、糸斑を低減するには、溶融粘度比が本発明にて好ましい範囲 にある成分 Aと成分 Bを選定し、紡糸線の細化挙動を安定ィ匕させたり、溶融紡糸、延 伸、捲縮処理を 1段階で連続的に施すことにより、未延伸糸を経時変化させずに直 接延伸、捲縮処理することなどにより、糸斑を低減できる。
[0138] 本発明の好ましい態様のひとつである芯鞘型複合繊維から構成される捲縮糸の製 造方法は特に限定されるものではないが、例えば図 9に示す直接紡糸 ·延伸 *捲縮 加工装置を用いて以下の様な方法を採用することができる。
[0139] 使用する熱可塑性ポリアミド榭脂 (B)として、その溶融粘度( 7? b)を高くすることによ つて、延伸後の熱処理、および捲縮カ卩ェ工程において、単繊維間での融着を起こさ せることなく繊維の温度を熱可塑性ポリアミド榭脂 (B)の融点 (Tmb)近傍まで高める ことができる。これにより、熱可塑性ポリアミド榭脂 (B)中の非晶相の分子鎖は、結晶 化する分子鎖と、配向緩和してランダムな配置となる分子鎖との 2極ィヒが進行し、耐 剥離性に優れるため好ましい。一方で、紡糸工程において芯鞘複合異常を抑制し、 鞘成分を繊維横断面、繊維の長手方向において均一に被覆させる観点で、熱可塑 性ポリアミド榭脂(B)の溶融粘度( 7? b)は適度な高さに抑えることが好ま 、。以上の ことから、熱可塑性ポリアミド榭脂(B)の溶融粘度( 7? b)は 10〜300Pa' sec_1である ことが好ましぐ 20〜250Pa' sec_1であることがより好ましぐ 30〜200Pa' sec_1で あることがさらに好ましい。
[0140] 脂肪族ポリエステル榭脂 (A)と、熱可塑性ポリアミド榭脂 (B)との単純芯鞘型複合 繊維の場合は、溶融紡糸工程において芯成分と鞘成分とを均一に分子配向させるこ とによって、後の延伸工程でもそれぞれの成分が均一に延伸され、捲縮加工時に芯 成分と鞘成分の熱収縮特性に差を生じ難ぐ芯鞘界面に隣接する分子鎖に無理な 歪みが力かり難くなつて耐剥離性が向上する。芯成分、鞘成分の分子配向は伸長変 形においてそれぞれの成分に加わる応力によって支配されるため、脂肪族ポリエス テル榭脂 (A)の溶融粘度( r? a)と、熱可塑性ポリアミド榭脂 (B)の溶融粘度( 7? b)と が近いことが好ましぐ成分 Aと成分 Bの溶融粘度の比である溶融粘度比( 7? bZ r? a )が 0. 2〜2であることが好ましい。より好ましくは、 0. 4〜1. 7であり、さらに好ましく は 0. 6〜1. 4である。
[0141] ここで本発明における溶融粘度 r? a、 r? bは、捲縮糸に用いるポリマーの温度 240 °C、剪断速度 1216seC _1における溶融粘度 (Pa ' sec)であり、実施例にて記載の手 法により測定することができる。また捲縮糸に用いる成分 A、成分 Bを入手することが 出来ない場合は、捲縮糸中の成分 Aの相対粘度( 7? ra)、捲縮糸中の成分 Bの相対 粘度(r? rb)を測定することにより、簡便的に 7? a、 r? bを求めることができる。図 11の プロットに示すように、 η raと 7? a、 7? rbと η bは、それぞれ下記式の関係にある。 成分 Aの溶液粘度と溶融粘度の関係
log ( a) =4. 3049 X log ( r? ra)
成分 Bの溶液粘度と溶融粘度の関係
log ( r? b) = 5. 2705 X log rb)。
[0142] ここで相対粘度とは実施例にて示す手法により測定することができる。すなわちォス トワルド粘度計を用い、成分 Aは o—クロ口フエノール溶液、成分 Bは硫酸溶液を用い 、それぞれ特定の濃度、温度、時間で溶解させた溶液と、各成分を溶解させない溶 媒との滴下時間の比により表されるものであり、溶液粘度を示す指標である。
[0143] また、芯成分に脂肪族ポリエステル (A)と熱可塑性ポリアミド榭脂 (B)をブレンドし たポリマーァロイを用いる場合には、それぞれのポリマーを別々に計量しながら成分 Bの融点 (Tmb)〜成分 Bの融点 (Tmb) +40°Cで、 2軸押出混練機または 1軸押出 混練機を用いて混練し、一旦ポリマーァロイ樹脂を製造する。このとき島成分の直径 を制御し易いことから、 2軸押出混練機を用いることが好ましい。そしてポリマーァロイ 構造と、島成分の直径を制御する手法としては、前記 2成分 (成分 Aと成分 B)のブレ ンド比、溶融粘度比を前記した範囲で調整し、剪断速度 200〜20,
滞留 時間 0. 5〜30分の範囲で混練することで制御できる。特に島成分の直径を小さくす る方法としては、上記範囲で混練温度が低い方がよぐ剪断速度が高い方がよぐ滞 留時間が短い方が良い。繊維の芯成分を構成する成分 Aと成分 Bを含んでなるポリ マーァロイ樹脂は、紡糸機とは別の押出混練機にて予め調整したものを乾燥した後 に用いても、紡糸機に付帯する押出混練機で紡糸時に連続的に調整しても良い。ま た予め調整して用いる場合には、芯成分に用いるポリマーァロイ全てが予め調整さ れたチップであってもよく、成分 Aまたは成分 Bを高濃度で混練したマスターチップを
調整し、該マスターチップと成分 Aおよび Zまたは成分 Bをチップブレンドして用いて もよい。成分 Aと成分 Bをより均一に分散させ易ぐかつ成分 Aの熱劣化を抑制し易い ことから、紡糸機に付帯する 1軸混練機および Zまたは 2軸押出混練機で、成分 Aと 成分 Bのポリマーァロイを連続的に調整して紡糸パックに供給する方法を用いること も好ましく用いられる。
[0144] 図 9に示す直接紡糸 '延伸'捲縮加工装置を用い、脂肪族ポリエステル榭脂 (A)、 また脂肪族ポリエステル榭脂 (A)と熱可塑性ポリアミド榭脂 (B)とのポリマーァロイを 芯成分とし、熱可塑性ポリアミド榭脂 (B)を鞘成分とし、芯鞘比率 (重量比) 65Z35 〜10Z90で口金吐出孔にて合流させて吐出させるに際し、溶融粘度比( 7? bZ r? a )が 0. 2〜2範囲となる組み合わせとし、紡糸温度を熱可塑性ポリアミド榭脂 (B)の融 点 Tmbに対し、 Tmb〜Tmb + 30°Cとし、口金吐出孔での吐出線速度を l〜20mZ 分として紡出糸を形成し、該紡出糸を口金面力も鉛直下方 0. 01〜0. 15mを冷却 開始点とし、口金面の鉛直方向に直交する方向から風速 0. 3〜lmZ秒、風温 15〜 25°Cの気体で冷却したマルチフィラメントを、総合延伸倍率 2〜5倍で、 2段階で延 伸した後、捲縮加工を施すに際し、 1段目の延伸ロールを 50〜90°Cとし、 2段目の 延伸ロールを 90〜150°Cとし、延伸後の最終ロール温度を 160〜220°Cとして熱セ ットし、エアジヱットスタッファ捲縮加工装置に供給するに際し、該装置のノズル温度 を延伸後の最終ロール温度よりも 5〜100°C高い温度として捲縮加工を行って捲縮 糸を形成し、冷却ドラムに当てて引取り、延伸後の最終ロールより 10〜30%低い速 度で巻き取る方法である。
[0145] すなわち、ポリ L乳酸などの脂肪族ポリエステル榭脂 (成分 A)またはポリマーァロイ
(成分 Aと成分 Bのブレンド)と、ナイロン 6などの熱可塑性ポリアミド榭脂 (成分 B)をそ れぞれ乾燥して、成分 Aの水分率が 10〜: LOOppm、成分 Bの水分率が 100〜500p pmであるものを予め調整しておく。そして成分 Aと成分 Bを、別々の 2軸押出混練機 または 1軸押出混練機により溶融させた後、芯鞘比 (重量比) 65Z35〜: LOZ90で別 々のギヤポンプで計量した後、紡糸パック内部に配置した口金として、口金を図 12 のごとく組み合わせ、成分 Aと成分 Bを合流させて吐出させることにより紡出糸を得る 。なお、前記の成分 Aと成分 B力 なるポリマーァロイ榭脂を芯成分として用いた場合
には、ポリマーァロイ中の島成分 (成分 A)の再凝集を抑制するために、芯成分の濾 層にはハイメッシュの濾層( # 100〜 # 200)やポーラスメタル、濾過径の小さ!/、不織 布フィルター(濾過径 5〜30 μ m)、パック内ブレンドミキサー(スタティックミキサーや ハイミキサー)を組み込む等の工夫が必要である。また、ポリマーァロイ中の脂肪族ポ リエステルルとポリアミドは非相溶系であり、
、挙動を示すため
、紡出後にバラスと呼ばれる膨らみが発生し、細化 ·変形を不安定にさせる傾向があ る。本発明の鞘成分であるポリアミド (成分 B)にはバラスを抑制する効果があり、成分 Bの溶融粘度、鞘成分の厚みを前記した範囲で調整することが有効である。またバラ スを抑制する方法としては、紡糸温度を高くして伸長粘度を下げたり、紡糸口金の吐 出孔径を大きくし、吐出線速度(吐出孔の最終絞り部のポリマー流速)を低下せしめ たり、吐出孔長と孔径の比である LZDを長くする方法、吐出糸条を急冷する方法等 が有効である。図 12は本発明の方法で使用する口金の一態様を示す縦断面模式図 であり、口金は吐出直前の口金である口金 2 (46)と口金 2の直前にあり芯成分、鞘成 分に別々の流路を有する口金 1 (45)を組み合わせて構成されている。
[0146] 成分 A、成分 Bを混練機で溶融させる際に、成分 Aを成分 Aの融点 (Tma)〜成分 Aの融点 (Tma) +40°Cの温度で溶融させることが好ましぐ例えば成分 Aが融点 17 0°Cのポリ乳酸である場合、 170〜210°Cの範囲で成分 Aを溶融させることが好まし い。前記の範囲で成分 Aを溶融させることにより、耐熱性の低い成分 Aの加水分解を 抑制でき、成分 Aの長手方向における粘度斑が生じ難くなり、紡糸性が良好となり、 得られる繊維が均一性に優れるため好ましい。また成分 Bは、成分 Bの融点 (Tmb) 〜成分 Bの融点 (Tmb) +40°Cの温度で、溶融させることが好ましぐ例えば成分 B が融点 225°Cのナイロン 6である場合、 225〜265°Cの範囲で溶融させることが好ま しい。前記の範囲で成分 Bを溶融させることにより、成分 Bのゲル化や着色を抑制で きるため好ましい。
[0147] 紡糸温度は成分 B (ポリアミド)の融点により決めることができ、最適な範囲は成分 B の融点 Tmb〜Tmb + 30°C (例えば、成分 Bの融点 Tmbが 225°Cの場合は 225〜2 55°C)である。但し成分 Aの耐熱性はあまり高くなぐ溶融貯留時 250°Cを越えると急 激に物性が悪ィ匕する傾向にある。このため前記したように、鞘成分として融点が 250
°C以下の熱可塑性ポリアミド榭脂(B)を選択し、紡糸温度は 260°C以下とすることが 好ましい。
[0148] 口金吐出孔での吐出線速度は l〜20mZ分であることが好ましい。吐出線速度を
20mZ分以下とすることによって、単繊維の断面内に均一に剪断応力を与えること ができ、芯成分と鞘成分の分子鎖を均一に配向させることができ、その後の捲縮カロ ェにおける熱収縮において芯鞘界面に無理な歪みが加わりにくぐ耐剥離性に優れ た捲縮糸となるため好ましい。また吐出線速度を lmZ分以上とすることにより、紡糸 線の急激な細化を抑制することが可能であり、製糸性、あるいは捲縮糸の均一性が 良好となるため好ましい。吐出線速度は 2〜15mZ分とすることがより好ましぐ 3〜1 2mZ秒とすることがさらに好ましい。なお、本発明における吐出線速度は、図 12の ポリマー吐出直前の口金 2 (46)について、吐出孔面積、総吐出量、孔数から下記式 を用いて計算する。紡糸口金の孔形状が孔間で異なる場合、すべての孔の吐出面 積の平均値を算出し、その面積に最も近い孔の吐出面積を用いて下記式にて吐出 線速度を算出する。
[0149] 図 7は吐出孔の深度、孔径、スリット長さ、スリット幅を説明する口金縦断面図および 吐出孔の模式図であり、 Y孔、多葉孔、扁平孔における、スリット長さとスリット幅が (a) 異形孔の右図、吐出孔の模式図で示されている。
[0150] 吐出線速度 (mZ分) =QZHZ /o ZAZlOO
Q:総吐出量 (gZ分)
H:ホール数
P:溶融密度 (gZ分)
P = 1. 08 X繊維総重量に対する成分 Aの含有量 (wt%)ZlOO+ l. 00 X (1 繊維総重量に対する成分 Aの含有量 (wt%) Z100)
A:吐出面積 (cm2)。
[0151] 例えば、口金孔形状力 孔の場合(図 7 (a)異形孔参照)には、 A (cm2) = 3 Xスリ ット幅 (cm) Xスリット長さ(cm) + (スリットで囲まれた真ん中の三角形)の式で吐出面 積を計算できるが、スリット幅力 Sスリット長に比べ、無視できる位小さい場合には、(スリ ットで囲まれた真ん中の三角形)の面積を無視して、 A(cm2) = 3 Xスリット幅(cm) X
スリット長さ(cm)の式で吐出面積を計算してもよい。
[0152] また、口金吐出孔での孔直径 (D)と吐出孔深度 (L)の比である、 LZDを 0. 6〜: LO とすることが好ましい。 LZDを 10以下とすることにより、芯成分が繊維の中心に配置 されやすくなり、耐剥離性に優れた捲縮糸となるため好ましい。また LZDを 0. 6以上 とすることにより、それぞれの孔に芯成分、鞘成分が均一に分配され、芯鞘比が単繊 維間で均一となるため、マルチフィラメントを構成するすべての繊維が均一に耐剥離 性に優れるため好ましい。 LZDは 0. 7〜8であることがより好ましぐ 0. 8〜6である ことがさらに好ましぐ 0. 9〜4であることが特に好ましい。本発明における吐出孔深 度とは、図 7に示した口金縦断面図における吐出孔深度を指すものであり、孔形状が 吐出孔の形状と同形状に保たれた部分の長さであって、ポリマーを吐出する際の流 速を制御する部分である。また吐出孔が丸穴である場合、孔径とは図 7に示した吐出 孔模式図において丸孔の直径を指すものである。なお、吐出孔が丸孔でない場合、 吐出線速度の説明にて記載した方法により、吐出面積 A (cm2)を計算し、該吐出面 積を円と見なした場合の直径を孔径とした。
[0153] 口金にて成分 Aと成分 Bを合流させて吐出するとき、芯鞘比や、成分 Aと成分 Bの 溶融粘度比、成分 Bの溶融粘度、口金吐出孔での吐出線速度を上記範囲内とする ことにより、紡糸、延伸工程において、芯成分と鞘成分の分子配向を均一に配向させ 易くなり、かつ繊維の長手方向に鞘成分を均一に被覆させることができるため好まし い。
[0154] また、口金面力も鉛直下方 0. 01-0. 15mを冷却開始点とすることが好ましい。冷 却開始点を 0. 15m以下とすることで、紡糸線が急冷されることとなり、芯成分と鞘成 分とを均一に分子配向させ易いため好ましい。また冷却開始点を 0. 01m以上とする ことにより、口金面が冷えて紡出糸が未溶融のポリマーを含んで吐出不良を招くなど の不具合を生じ難くなり、製造工程の通過性が高くなるため好ましい。このため冷却 開始点は 0. 02-0. 13mであることがより好ましぐ 0. 03-0. 12mであることがさら に好ましい。また口金面の温度が低くならないように、口金面の周囲にリングヒーター を配置し、口金面を積極的に加熱する手法も好まし ヽ。
[0155] 冷却風は、口金面の温度が低くならないように、口金面の鉛直方向に直交する方
向から、風速 0. 3〜lmZ秒として、風温 15〜25°Cとして、紡出糸に吹き当てること が好ましい。
[0156] また本発明の繊維は未延伸糸の状態、あるいは延伸糸で放置すると配向緩和が生 じやすぐ未延伸糸パッケージ間で延伸するまでの時間差があると、あるいは延伸糸 ノ ッケージ間で捲縮加工するまでの時間差があると、特に配向緩和を生じ易 ヽ芯成 分の非晶相の分子配向が先に緩和して、芯成分と鞘成分の熱収縮特性の差が大き くなつてしまって、結果として捲縮加工して得た捲縮糸の芯鞘界面において残留応 力を生じ易い傾向にある。このため、紡糸、延伸、捲縮処理を 1段階で連続的に行う 、直接紡糸 '延伸'捲縮加工を施すことが好ましい。すなわち、紡出糸を引取ロール にて引き取った後、巻き取ることなく連続的に延伸、熱処理した後、直接捲縮加工を 施すことが好ましい。
[0157] 紡出糸を引き取ることにより、未延伸糸を得、該未延伸糸を延伸して得た延伸糸に 、捲縮処理するが、本発明の芯鞘型複合繊維の耐剥離性を高めるためには、捲縮 処理において、芯鞘界面に無理な歪みを生じさせずに、結晶相、ランダムな非晶相 の 2極ィ匕した繊維構造を形成させることが重要である。これには捲縮処理に供する前 の延伸糸において、両成分を均一に高配向化させることが好ましいことから、低い紡 糸速度で得た未延伸糸に延伸を施し、延伸工程で繊維の分子配向を高めることが 好ま 、。これは紡糸速度を高めて溶融状態で芯成分と鞘成分の分子鎖を配向させ ようとすると、各成分の分子配向度に差を生じ易ぐ両成分の分子配向を均一化しに くいためである。溶融状態では成分 Aと成分 Bの溶融粘度比に応じて各成分に加わ る応力が決まり、紡糸速度が高い、すなわち紡糸張力が高いプロセスほど、各成分 に加わる応力差が大きくなつてしまう。このため紡糸速度を低くし、未延伸糸中の芯 成分、鞘成分の配向度を均一化することが好ましい。紡糸速度の最適値は、成分 A と成分 Bとの溶融粘度比、および芯鞘比により異なるが、紡糸速度を 3000mZ分以 下とすることにより紡糸張力を低く保つことができ、未延伸糸中の芯成分、鞘成分の 分子配向度を均一化できるため好ましい。一方で、紡糸速度を 300mZ分以上とす ることにより、紡糸張力が適度に高いものとなり、紡糸線の糸揺れが抑制され、細化 挙動が安定ィ匕するため好まし 、。紡糸速度は 350〜2500mZ分であることがより好
ましく、 400〜2000m/分であること力さらに好ましく、 450〜1500m/分であること が特に好ましい。
[0158] 芯成分と鞘成分の分子配向が低い未延伸糸を、後の延伸工程において分子配向 させる力 このとき延伸を 2段階以上で段階的に施し、かつ延伸温度を段階的に高め ることにより、芯成分と鞘成分の分子配向を均一に高めることができるため好ましい。
[0159] そして延伸後の最終ロールにて 160〜220°Cで熱セットすることが極めて重要であ る。熱セット温度を極限まで高め、分子鎖の運動性を高めることにより、脂肪族ポリエ ステル (A)、熱可塑性ポリアミド榭脂 (B)、それぞれにおける非晶相の分子鎖を、結 晶化する分子鎖と、配向緩和してランダムな配置となる分子鎖との、 2極化させること ができるため好ま 、。さらに上記の温度範囲は脂肪族ポリエステルの融点 Tma近 傍であることから、最終ロール上にて芯成分の一部が溶融し、熱セット前までに蓄え られた芯鞘界面の歪みが解放され、得られる捲縮糸の耐剥離性が飛躍的に高まるの である。より好ましくは 170°C以上、さらに好ましくは 180°C以上である。一方で、最終 ロールの温度を 220°C以下とすることで、鞘成分の溶融により単繊維の断面が変形 し、芯成分が表面に露出してしまうという不具合を回避できるため好ましい。より好ま しくは、 210°C以下、さらに好ましくは 200°C以下である。そして最終ロールで上記範 囲にて熱セットを施した後、即座にノズル内に供糸する、すなわち予熱効果によって 、捲縮ノズル内における糸温度を熱可塑性ポリアミド榭脂(B)の融点 (Tmb)近傍ま で短時間で加熱でき、同時に無張力状態で熱収縮せしめることができるため、結果と して芯成分、鞘成分ともに、結晶相とランダムな非晶相の 2相構造を有する捲縮糸が 得られ、これにより初めて芯鞘界面における歪みや残留応力の発生を抑制し、耐剥 離性を格段に向上できるのである。捲縮ノズル内における糸温度を高くするために、 最終ロール力ゝら捲縮ノズルまでの距離を短くする手法や、繊維を保温ボックスで保温 する手法や、非接触ヒーターで加熱する手法も好適に用いられる。
[0160] なお、本発明の芯鞘型複合繊維力 なる捲縮糸のバルキー性の指標である「沸騰 水処理後の捲縮伸長率」、あるいは捲縮の堅牢度の指標である「拘束荷重下伸長率 」をコントロールする上でも最終ロール温度は重要であり、最終ロール温度を高くする ほど、沸騰水処理後の捲縮伸長率、拘束荷重下伸長率を高くできる。本発明にて耐
剥離性に優れる捲縮糸を得ることを目的として、必要とされる範囲の強度を有するも のとするには、総合延伸倍率、延伸ロールの温度、延伸後の最終ロールの温度、捲 縮ノズルの温度を好ましいとされる範囲で調整し、捲縮加工において、非晶相の分 子配向を十分に緩和せしめることが好ましい。また本発明の芯鞘型複合繊維の沸収 を必要とされる範囲とするには、延伸後の最終ロールの温度、捲縮ノズルの温度を好 ましい範囲で調整し、その後冷却ドラムに当てて引き取った後、延伸後の最終ロール より低 、速度で巻き取ることが好ま 、。
[0161] 例えば、延伸を 2段階で施す場合、 1段目の延伸ロールを 50〜90°Cとし、 2段目の 延伸ロールを 90〜150°Cとし、延伸後の最終ロールを 160〜220°Cとして熱セットす ることが好ましい。より好ましくは、 1段目の延伸ロールは 60〜80°C、 2段目の延伸口 ールは 100〜140°C、延伸後の最終ロールは 170〜210°Cである。
[0162] また延伸を 3段階で施す場合、 1段目の延伸ロールを 50〜90°Cとし、 2段目の延伸 ロールを 90〜130°Cとし、 3段目の延伸ロールを 130〜160°Cとし、延伸後の最終口 ールを 160〜220°Cとすること力好ましい。より好ましくは、 1段目の延伸ロールを 60 〜80°Cとし、 2段目の延伸ロールを 100〜120°Cとし、 3段目の延伸ロールを 140〜 150°Cとし、延伸後の最終ロールを 170〜210°Cである。
[0163] そして総合延伸倍率を 2〜5倍として、分子配向を適度に高めることによって、捲縮 ノズル内で熱収縮を即座に完了させることができ、芯鞘界面に無理な歪みが加わつ た履歴が残存し難く好ましい。また上記のごとく適度な延伸倍率で延伸することによ つて芯成分、鞘成分の結晶化をも促進でき、耐剥離性をより長期に渡って維持できる 捲縮糸となり、かつ捲縮の堅牢度をも高められるため好ましい。総合延伸倍率は 2. 5 〜4. 5倍であることがより好ましぐ 2. 8〜4. 3倍であることがさらに好ましい。本発明 の総合延伸倍率は 1段目の延伸ロールと、延伸後の最終ロールとの速度比によって 定義され、下記式によって算出することができる。
総合延伸倍率 = [延伸後の最終ロールの速度 (mZ分) ] Z[l段目の延伸ロール の速度 (mZ分) ]。
[0164] 延伸後の最終ロールにて熱セットされた延伸糸は、エアジェットスタッファ捲縮カロェ 装置内のノズルにて捲縮を付与されることが好ま ヽ。本発明にて好ま ヽとされる
捲縮形態である BCFヤーンを形成する、捲縮加工装置としては、通常の加熱流体加 ェ処理を施す捲縮付与装置を用いればよぐ例えば、ジェットノズルタイプ、ジェットス タツファタイブ、さらにあるいはギヤ方式など各種の捲縮付与方法が採用される。高 Vヽ捲縮付与とその顕在化を達成するためにはジェットノズル方式が好ましく、例えば 米国特許第 3, 781, 949号明細書に記載の捲縮ノズルなどが好ましく使用される。 捲縮糸の耐剥離性を高めるためには、捲縮ノズル内における糸温度を高くして、そ れぞれの単繊維の芯成分と鞘成分を均一かつ即座に高温状態へと昇温して、熱収 縮させることが好ましぐ捲縮ノズルの温度を延伸後の最終ロール温度よりも 5〜: LOO °C高くすることが好ましい。
[0165] 本発明にお 、て、延伸工程、捲縮力卩ェを別工程で行う場合には、捲縮ノズルに供 糸する前に、熱ロールや熱プレートなどの熱源により延伸糸に再度、熱処理を施すこ とが極めて有効である。再熱処理を行うことにより、捲縮ノズル内における糸温度を高 くし易くなり、前記したように、芯成分と鞘成分の熱収縮特性の差の履歴が、芯鞘界 面に残存し難くなるため好ましい。再熱処理の温度は 160〜220°Cとすることが好ま しぐ 170〜210°Cとすることがより好ましぐ 180〜200°Cとすることが特に好ましい。
[0166] また捲縮を付与した後に、冷却ドラムに当てて引取ことにより、捲縮糸の繊維構造を 固定ィ匕することができ、沸収を低くできるため好ましい。冷却ドラムと捲縮糸が接触し ている長さ (接触長)が長いほど、より繊維構造を固定ィ匕でき、その後の巻き取り工程 、あるいは高次カ卩ェ工程において、捲縮糸に歪みが加わっても捲縮糸の繊維構造 が再度変化し難ぐ沸収を低く保てるため好ましい。接触長は 20cm以上であることが 好ましぐ 30cm以上であることがより好ましぐ 40cm以上であることがさらに好ましい
[0167] 冷却ドラムに当てて引取った後、延伸後の最終ロールより低い速度で捲縮糸に過 度な歪みを加えな 、ようにして巻き取ることが好ま 、。冷却ドラムの温度は通常 20 〜35°Cである。このとき卷取速度が最終ロールの速度の 10〜30%低い場合、これ により冷却ドラムにより固定化された繊維構造を、再度変化させることが無ぐ沸収を 低い状態に保つことができ、芯鞘界面に残留応力を生じ難いため耐剥離性に優れた 捲縮糸となるため好まし 、。
[0168] また冷却ドラムと卷取機の間において、適度な張力でストレッチすることにより、捲縮 の偏りやムラを抑えられ、均一性を高められるため好ましい。例えば冷却ドラムと、卷 取機の間に 2つのロールを配置し、ロール間の速度差によって張力をカ卩える方法を 採用することができる。このとき張力が過度に高いと捲縮がへたる場合があるため、ス トレツチする張力は 0. 02〜0. 2cN/dtexとすること力 子ましく、 0. 04〜0. 15cN/d texであることがより好まし!/ヽ。
[0169] また、捲縮糸を卷取機で巻き取る前、巻き取った後の任意の段階で、交絡処理を 施すことが好ましい。交絡処理の回数、処理圧力は、捲縮糸の CF値が 5〜30となる ように調整すればよいが、延伸工程前で施した交絡は、延伸によって解かれることが あるため、巻き取り直前で施すことが好ましい。また、巻き取り直前の糸条は低張力下 にあるため、低圧力の圧空で交絡がかかり易い。このため、捲縮糸に無理な歪みが 加わらず、耐剥離性を向上できるため好ましい。処理圧空は 0. 05-0. 5MPaであ ることが好ましい。高速気流による交絡処理を施すことにより、均一熱処理が容易とな るため熱処理時間を短縮することができる。
[0170] 一方、エアジェットスタッファ捲縮力卩ェに限定されず、仮撚カ卩ェによって捲縮力卩ェを 施すこともできる。この場合、解撚後に加熱しながら高リラックス処理を行う加工 (ブレ リア加工)を施すことで、結晶相と無配向化した非晶相の 2相構造を形成せしめること ができ、耐剥離性を向上し易いため好ましい。
[0171] 力べして得られた捲縮糸は繊維構造体に使用することができる。さらには得られた 捲縮糸を常法によりカーペットに加工し、自動車内装用のカーペットとして使用するこ とがでさる。
[0172] 本発明の捲縮糸の形態は、長繊維のままであってもよいし、得られた捲縮糸を、適 度な長さに切断して短繊維として扱ってもよい。
[0173] なお、捲縮糸が長繊維の場合には交絡処理が施され、 CF値が 3〜30の範囲にあ ることが好ましい。ここで CF値とは実施例に記載の手法で測定することができ、交絡 の掛かり度合いを表す指標である。 CF値を 3以上とすることで、捲縮糸の収束性が 高まり、単繊維間で生ずる摩擦力を低減できるため、製糸や高次加工時、製品として 使用する場合に、無理な歪みを加えにくぐ耐剥離性に優れる好ましい。 CF値は 5以
上がより好ましぐ 7以上がさらに好ましい。一方で CF値が高すぎると、単繊維同士が 拘束されすぎて、捲縮性が抑えられたり(沸騰水処理後の捲縮伸長率が低くなる)、 熱を加えてバルタアップする工程 (例えば、染色処理や、沸水処理や、スチーム処理 )において、捲縮にムラが出たりするなどの悪影響を回避出来る点で、 CF値は 30以 下に抑えることが好ましい。より好ましくは 25以下であり、さらにより好ましくは 20以下 である。
[0174] また、本発明の捲縮糸のトータル繊度 (マルチフィラメントとしての繊度)については 特に制限はないが、捲縮ノズル内部で捲縮糸が滞在する時間を長くし易い点で、ト 一タル繊度は 3000dtex以下とすることが好ましぐ 2500dtex以下であることがより 好ましぐ 2000dtex以下とすることがさらに好ましい。またカーペットに外力が加わつ た場合のパイル倒れを抑制し易くする点で、トータル繊度は 500dtex以上とすること が好ましぐ 600dtex以上とすることがより好ましぐ 700dtex以上とすることがさらに 好ましい。
[0175] なお、捲縮糸を構成する単繊維の本数 (フィラメント数)は本発明の単繊維繊度の 範囲となるように自由に選択することができる。
[0176] また、本発明の捲縮糸を繊維構造体として用いる場合には、織物、編物、不織布、 パイル、綿等に適用でき、他の繊維を含んでいてもよい。例えば、天然繊維、再生繊 維、半合成繊維、合成繊維との引き揃え、撚糸、混繊であってもよい。他の繊維とし ては、木綿、麻、羊毛、絹などの天然繊維や、レーヨン、キュプラなどの再生繊維、ァ セテートなどの半合成繊維、ナイロン、ポリエステル (ポリエチレンテレフタレート、ポリ ブチレンテレフタレート等)、ポリアクリロ-トルおよびポリ塩ィ匕ビニルなどの合成繊維 などが適用できる。
[0177] また、本発明の捲縮糸を用いた繊維構造体の用途としては、耐摩耗性が要求され る衣料、例えばアウトドアウェアやゴルフウエア、アスレチックウェア、スキーウエア、ス ノーボードウェアおよびそれらのパンツ等のスポーツウエア、ブルゾン等のカジュアル ウェア、コート、防寒服およびレインウェア等の婦人 '紳士用アウターがある。また、長 時間使用による耐久性や湿老化特性に優れたものが要求される用途として、ュ-フ オーム、掛布団や敷布団、肌掛け布団、こたつ布団、座布団、ベビー布団、毛布等
の布団類や枕、クッション等の側地やカバー、マットレスやベッドパッド、病院用、医 療用、ホテル用およびべビー用のシーツ等、さらには寝袋、揺りかごおよびべビーカ 一等のカバー等の寝装資材用途があり、これらにも好ましく用いることができる。また
、 自動車用の内装資材にも好適に用いることができ、その中でも、高い耐摩耗性と湿 老化特性が要求される自動車用カーペットに用いることが最適である。なお、これら 用途に限定されるものではなぐ例えば農業用の防草シートや建築資材用の防水シ ート等に用いてもよい。ここで、本発明における好ましい繊維構造体の用途である自 動車用カーペットは、その加工形態は限定されるものではなぐ例えば、段通、ウィル トン、ダブルフェイス、ァキスミンスター等の織りカーペットや、タフティング、フックドラ グ等の刺繍カーペットや、ボンデッド、電着、コード等の接着力一ペットや、ニット、ラッ セル等の編みカーペットや、ニードルパンチ等の圧縮カーペットに代表されるノィル をもつカーペット、あるいはその組み合わせを用いることができる。より低コストでボリ ユーム感に富むカーペットを得るためには、少なくともパイル繊維糸である表糸と、こ の表糸をタフトした基布と、この基布の裏に張り付けたバッキング材カゝら構成されるタ フティングカーペットとすることが好まし 、。
実施例
[0178] 以下、本発明を、実施例を用いて詳細に説明する。なお、実施例中の測定方法は 以下の方法を用いた。
[0179] A.脂肪族ポリエステルの重量平均分子量
試料 (脂肪族ポリエステルポリマー)のクロ口ホルム溶液にテトラヒドロフランを混合し 測定溶液とした。これをゲルパーミエーシヨンクロマトグラフィー(GPC)で測定し、ポリ スチレン換算で重量平均分子量を求めた。なお、繊維中の脂肪族ポリエステルの重 量平均分子量を測定する場合には、試料をクロ口ホルムに溶かし、ポリアミド残渣を 濾過して取り除き、該クロロホルム溶液を乾化して脂肪族ポリエステルを取り出して測 定を行った。
GPC装置: Waters2690
カラム: Shodex GPC K— 805L (8mmID * 300mmL) 2本連結して使用 溶媒:クロ口ホルム(和光、 HPLC用)
温度: 40°C
流速: lmlZ分
試料濃度: 10mg,4ml
濾過:マイシヨリディスク 0. 5 μ -TOSOH
注入量: 200 /z l
検出器:示差屈折計 RI (Waters 2410)
スタンダード:ポリスチレン (濃度:サンプル 0. 15mgZ溶媒 lml)
測定時間: 40分
[0180] B.ポリ乳酸の残存ラクチド量
試料 (ポリ乳酸ポリマー) lgをジクロロメタン 20mlに溶解し、この溶液にアセトン 5ml を添加した。さらにシクロへキサンで定容して析出させ、島津社製 GC17Aを用いて 液体クロマトグラフにより分析し、絶対検量線にてラクチド量を求めた。なお、繊維中 のポリ乳酸の場合は、予めポリ乳酸とポリアミドのブレンド比率を後述する TEM像か ら求め、上記ラクチド量をブレンド比率により補正して求めた。
[0181] C.カルボキシル基末端濃度
精秤した試料(下記方法で抽出した脂肪族ポリエステルポリマー)を o—タレゾール ( 水分 5%)に溶解し、この溶液にジクロロメタンを適量添カロした後、 0. 02規定の KOH メタノール溶液にて滴定することにより求めた。この時、乳酸の環状 2量体であるラタ チド等のオリゴマーが加水分解し、カルボキシル基末端を生じるため、ポリマーの力 ルボキシル基末端およびモノマー由来のカルボキシル基末端、オリゴマー由来の力 ルポキシル基末端の全てを合計したカルボキシル基末端濃度を求めた。なお、ポリ マーァロイ繊維 (合成繊維)や芯鞘型複合繊維から脂肪族ポリエステルを抽出する方 法は特に限定されな!ヽが、本発明にお ヽてはクロ口ホルムを用いて脂肪族ポリエステ ルを溶解、濾過してポリアミドを取り除き、濾過液を乾化させて抽出した。
[0182] D.熱可塑性ポリアミドの硫酸相対粘度および固有粘度
ナイロン 6の相対粘度は、 0. OlgZmLの 98%硫酸溶液を調製し 25°Cで測定した 。ナイロン 11の固有粘度は 0. 5重量%のメタタレゾール溶液を調整し 20°Cで測定し
[0183] E.脂肪族ポリエステルの相対粘度
脂肪族ポリエステルの相対粘度は、 0. OlgZmLの o—クロ口フエノール溶液を調 製し 25°Cで測定した。
[0184] F.ポリマーの融点、結晶融解熱量
パーキンエルマ一社製示差走査型熱量計 DSC— 7型を用い、試料 20mgを昇温 速度 10°CZ分にて測定して得た融解吸熱曲線の極値を与える温度を融点 (°C)とし た。また、該極値を形成するピークとベースラインとで囲まれる面積 (結晶融解ピーク 面積)から、ポリマーの結晶融解熱量 AH CiZg)を求めた。
[0185] また、原料ポリマーを入手出来ない場合は、繊維の示差熱量曲線を持って、元ポリ マーの融点を判別する。繊維の示差熱量曲線の融解ピークがどの成分に帰属する かについては下記の方法より判別する。まず、捲縮糸(繊維 1:成分 A、成分 Bを含む 捲縮糸)を試料とし、上記と同じ測定条件で DSC測定を行い、示差熱量曲線 1を得 た。次に、芯鞘型複合繊維 (繊維 1)中の成分 Aを溶媒 (クロ口ホルム)にて除去し、得 られた繊維を水洗し、 24時間室温にて真空乾燥した後の繊維 (繊維 2 :成分 Bを含む 繊維)について、上記と同条件にて DSC測定を行い、示差熱量曲線 2を得た。示差 熱量曲線 1と 2を比較して、消失した融解ピークを成分 Aの融解ピークであると判断し 、示差熱量曲線 1から融点を求めた。
[0186] 次に、芯鞘型複合繊維 (繊維 1)中の鞘成分中の成分 Bを、溶媒 (硫酸溶液)にて除 去し、得られた繊維を水洗し、 24時間室温にて真空乾燥した後の繊維 (繊維 3 :成分 Aと成分 Bを含む繊維)について、上記と同条件により DSC測定を行って示差熱量 曲線 3を得た。示唆熱量曲線 1、 2、 3を比較することにより、鞘成分中の成分 Bの融 点を判別した。このとき繊維 3を得るために、実質的に鞘成分の成分 Bのみを除去す る溶媒処理条件 (溶媒温度、浸漬時間)を予め決定した。すなわち、芯鞘型複合繊 維を一定温度の溶媒 (硫酸溶液)に、一定時間浸した後、取り出して、得られた繊維 を水洗し、 24時間室温にて真空乾燥する。この繊維について、光学顕微鏡で繊維側 面を観察し、鞘成分が除去されているかどうか確認する。複数の溶媒処理条件 (溶媒 温度、浸漬時間)について上記操作を繰り返し、実質的に鞘成分の成分 Bのみを除 去する溶媒処理条件を予め決定した。
[0187] G.捲縮糸の示差熱量曲線の融解ピークの熱容量の総和
本発明の芯鞘型複合繊維を試料とし、 F項と同じ条件で示差熱量曲線を得た。示 差熱量曲線に存在する吸熱側に極値を示すピークを融解ピークと判断し、それぞれ の融解ピークの面積力 求められる熱容量を積算して熱容量の総和とした。
[0188] H.溶融粘度 η
東洋精機 (株)社製キヤピログラフ IBを用い、チッソ雰囲気下において測定温度を 紡糸温度と同じに設定し、剪断速度 1216sec _1で脂肪族ポリエステル榭脂および熱 可塑性ポリアミド榭脂それぞれの溶融粘度の測定をした。測定は 3回行い平均値を 溶融粘度とした。芯鞘型複合繊維の場合は融点が 240°C以下の榭脂については温 度 240°Cで、融点が 240°C以上の榭脂の場合には融点 + 20°Cで測定した。
[0189] I.捲縮糸の繊維表面積に対する脂肪族ポリエステル榭脂の露出面積の比率およ び島ドメインのサイズおよびブレンド比率
捲縮糸を構成する単繊維 1本を抜き出し、繊維軸と垂直の方向 (繊維横断面方向) に超薄切片を切り出し、該切片のポリアミド成分をリンタングステン酸にて金属染色し 、 4万倍の透過型電子顕微鏡 (TEM)にて繊維外周全体のブレンド状態を観察'撮 影した。この撮影画像から繊維外周長を測定し、さらに繊維表面に露出している白色 部 (脂肪族ポリエステル榭脂)の露出長全てを測定し、繊維外周長に対する合計の 白色部露出長より、脂肪族ポリエステル榭脂の露出面積の比率を求めた。また、該 T EM撮影画像を三谷商事 (株)の画像解析ソフト「WinROOF」を用い、島ドメイン (非 染色部)のサイズとしてドメインを円と仮定し、ドメインの面積カゝら換算される直径 (直 径換算)(2r)をドメインサイズとした。なお、計測するドメイン数は 1試料あたり 100個 とし、ドメイン径の最も大きい 10個および最も小さい 10個の値を除 、た 80個のドメィ ン径につ 、て分布を求めた。
[0190] なお、繊維における成分 Aと成分 Bのブレンド比率は、上記の TEM像(5. 93 X 4.
65 μ m)から求められる断面積比を、各成分の比重により補正して重量比として求め た。ここで、本実施例での各成分の比重は、ポリ乳酸: 1. 24、ナイロン 6 : 1. 14、ナイ ロン 11 : 1. 04、ナイロン 610 : 1. 08、ナイロン 6Z66共重合ポリマー: 1. 14を用い
TEM装置:日立社製 H - 71 OOFA型
条件:加速電圧 100kVo
[0191] J.捲縮糸の表面形態
捲縮糸を構成する単繊維 1本を抜き出し、ニコンインステック (株)社製の電子顕微 鏡 ESEM— 2700にて倍率 5, 000倍で繊維表面状態を観察'撮影した。この撮影画 像を三谷商事 (株)の画像解析ソフト「WinROOF」を用い、任意の 10個の筋状溝の 巾(最大巾)を測定し、その平均値を筋状溝の巾とした。また、各々の筋状溝の長さを 測定し、ァスぺ外比 (筋状溝の長さ Z筋状溝の巾)を求めた。筋状溝の個数は、繊 維表面中の任意の 10 m X 10 mに存在する個数をカウントした。
[0192] K.相溶化剤の熱減量率
SII社製 EXSTAR6000シリーズの TGZDTA6200を用い、試料(成分 C)約 10 mgを秤量し、昇温速度 10°CZ分にて測定した熱減量曲線の 200±0. 5°C点の減 量率を求めた。
[0193] L.芯鞘比率
溶融紡糸に供する際の、芯成分 (成分 Aからなる)の重量と、鞘成分 (成分 Bからな る)の重量とを、それぞれ計量し、芯成分と鞘成分の重量の和を 100と見なし、それ に対する芯成分、鞘成分、それぞれの重量比率を計算することにより算出した。
[0194] 製造時の芯成分と鞘成分の重量比率が不明である場合には、簡易的に下記式を 用いて算出することもできる。すなわち、本発明の捲縮糸の芯成分は成分 Aとその他 の少量成分を含むことがあり、鞘成分は成分 Bとその他の少量成分を含むことがある 力 力かる場合であっても、芯成分が実質的に成分 Aのみ力 なり、鞘成分が成分 B のみ力もなるものとみなすことができ、芯成分と鞘成分の重量比として芯鞘比を算出 することができる。
[0195] まず、捲縮糸の横断面スライスを作製し、該スライスのポリアミド成分をリンタンダス テン酸にて金属染色し、透過型電子顕微鏡 (TEM)にて 4千倍で捲縮糸の横断面を 観察'撮影した。このとき染色されていない領域を成分 Aと判断し、染色されている領 域を成分 Bと判断することにより、芯鞘界面を判別し、三谷商事 (株)の画像解析ソフ KWinROOF」にて画像解析することにより、芯成分を構成する領域の総面積 (Aa)
と、鞘成分を構成する領域の総面積 (Ab)とを求めた。そして成分 Aの比重を 1. 26、 成分 Bの比重を 1. 14として、下記の式を用いて算出した。
芯鞘比 = 芯成分の重量比率 Z鞘成分の重量比率
芯成分の重量比率 = [ (Aa X 1.26) Z (Aa X 1.26 + Ab X 1.14) ] X 100
鞘成分の重量比率 = [ (Ab X I.14) / (Aa X 1.26+ Ab X 1.14) ] X 100
TEM装置:日立社製 H - 71 OOFA型
条件:加速電圧 lOOkV
[0196] M.芯鞘型複合繊維中の芯成分 (ポリマーァロイ)構造の同定
芯鞘型複合繊維の繊維軸と垂直の方向に超薄切片を切り出し、該切片のポリアミド 成分をリンタングステン酸にて金属染色し、 4万倍の透過型電子顕微鏡 (TEM)にて ポリマーァロイ構造を観察'撮影した。このとき島成分が染色されていない場合をポリ マーァロイ構造 (a)と判定し、島成分が染色されて 1、る場合をポリマーァロイ構造 (b) であると判定し、島成分と海成分が判別できな ヽ (それぞれの成分が略円形を呈して おらず、島と海の判別ができな 、)場合をポリマーァロイ構造 (c)であると同定した。
[0197] TEM装置:日立社製 H—7100FA型
条件:加速電圧 100kVo
[0198] N.芯鞘型複合繊維中の芯成分 (ポリマーァロイ)の島成分の直径の測定
M項において、ポリマーァロイ構造が(a)または (b)と判定された場合、同様にして 撮影した画像を、三谷商事 (株)の画像解析ソフト「WinROOF」を用い、島成分を円 と仮定し、島成分の面積力 換算される直径を島成分の直径として計測した。なお、 測定する島数は 1試料あたり 100個とし、その分布を島成分の直径分布とした。
[0199] O.芯鞘型複合繊維中の芯成分 (ポリマーァロイ)中の成分 AZ成分 Bのブレンド比 率 (重量比)
溶融紡糸に供する際の成分 Aと成分 Bの重量をそれぞれ計量し、成分 Aと成分 Bの ブレンド比率により算出した。
[0200] 製造工程において、成分 Aと成分 Bをそれぞれ計量することが困難な場合、芯鞘型 複合繊維から、成分 AZ成分 Bのブレンド比率 (重量比)を算出した。本発明の芯鞘 型複合繊維の芯成分は成分 Aと成分 Bとその他の少量成分を含むことがあるが、か
力る場合、芯成分が実質的に成分 Aと成分 Bの 2成分のみ力 なるものとみなして、 成分 AZ成分 Bのブレンド比率 (重量比)を算出することができる。 O項において撮影 した画像を用い、三谷商事 (株)の画像解析ソフト「WinROOF」を用い、芯成分を構 成する成分 Aの総面積 (Aa)と成分 Bの総面積 (Ab)とを求め、成分 Aの比重を 1. 26 、成分 Bの比重を 1. 14として、下記の式を用いて算出した。
[0201] 成分 AZ成分 B = (Aa X 1.26) Z (Ab X 1.14)
このとき横断面において鞘成分と、芯成分との境界線が判別しにくい場合は、横断 面において、最外層に存在する成分 Aと外接し、成分 Aを内部のみ含む繊維横断面 と相似形の図形を境界線として、鞘成分と芯成分とを判別した。
[0202] P.鞘成分の厚さの最小値
Lの項にぉ 、て示した、捲縮糸の横断面の観察方法に準じて撮影した画像を用い 、該断面に内において、最も鞘成分の厚さが小さい部分についてし、厚さを計測する 。捲縮糸の横断面スライスを採取する部分をランダムに変更して、 10枚の撮影画像 を採取し、それぞれについて上記計測を行い、平均値を鞘成分の厚さの最小値とし た。
[0203] Q.脂肪族ポリエステル榭脂 (A)の含有量
10gの芯鞘型複合繊維を取り出し、その重量 (W1)を秤量して試料とした。該試料 を 25°Cのクロ口ホルム 500mlに 24時間浸して、成分 Aを完全に溶脱処理した。溶脱 処理後の芯鞘型複合繊維を水洗し、 25°Cで 24時間乾燥した後、繊維の重量 (W2) を秤量した。 Wl、 W2を用いて、成分 Aの含有量を下記の式にて算出した。
成分 Aの含有量(重量%) = (W1 -W2) X 100/W1
[0204] R.繊度
検尺機にて 100mの捲縮糸をかせ状に測長し、糸長 100mの捲縮糸の重量を測定 し、該重量を 100倍することにより繊度 (dtex)を求めた。測定は 3回行い、その平均 値を繊度 (dtex)とした。また、単繊維繊度 (dtex)は繊度をフィラメント数で除すること により求めた。
[0205] S.強度および伸度
試料 (捲縮糸)をオリエンテック (株)社製テンシロン (TENSILON) UCT- 100で J
IS L1013 (ィ匕学繊維フィラメント糸試験方法、 1998年)に示される定速伸長条件で 測定した。掴み間隔 (試料長)は 200mmとした。なお、破断伸度は S— S曲線におけ る最大強力を示した点の伸び力 求めた。
[0206] T.沸騰水収縮率 (沸収)
試料 (捲縮糸)を沸騰水に 15分間浸積し、浸積前後の寸法変化力も次式により求 めた。
沸騰水収縮率 (%) = [ (L -L ) /L ] X 100
0 1 0
L:試料をかせ取りし、初荷重 0. 088cNZdtex下で測定したかせ長。
0
L: LOを測定したかせを無荷重の状態で沸騰水処理し、風乾後、初荷重 0. 088cN Zdtex下で測定される力せ長。
[0207] U.糸斑 U%
試料(捲縮糸)を Zellweger uster社製 UT4— CXZMを用い、糸速度: 200mZ 分、測定時間: 1分間で U% (Normal)を測定した。
[0208] V.沸騰水処理後の捲縮伸長率
環境温度 25± 5°C、相対湿度 60 ± 10%の雰囲気中に 20時間以上放置されたパ ッケージ (捲縮糸卷取ドラムまたはボビン)から解舒した捲縮糸を、無荷重状態で 30 分間沸騰水で浸漬処理する。処理した後、前記環境下にて 1昼夜 (約 24時間)風乾 し、これを沸騰水処理後の捲縮糸の試料として使用する。この試料に 1. 8mg/dtex の初荷重をかけ、 30秒経過した後に、試料長 50cm (L1)にマーキングをする。次い で、初荷重の代わりに 90mg/dtexの測定荷重をかけて 30秒経過後に、試料長(L 2)を測定する。そして下式により、沸騰水処理後の捲縮伸長率 (%)を求める。
捲縮伸長率 (%) = [ (L2— LI) ZL1] X 100。
[0209] W.拘束荷重下での沸騰水処理後の捲縮伸長率 (拘束荷重下伸長率)
沸騰水処理する際に、捲縮糸に 2mgZdteXの荷重を吊り下げた状態で処理する 以外は、 M項と同様にして捲縮伸長率を求め、その値を拘束荷重下伸長率とした。
[0210] X. CF値
JIS L1013 (ィ匕学繊維フィラメント糸試験方法) 7. 13の交絡度に示される条件で 測定した。試験回数は 50回とし、交絡長の平均値 L (mm)から下式より CF値 (Cohe
rence Factor)を求めた。
CF値 = 1000/L
[0211] Y.異形度
試料 (捲縮糸)の断面を切り出し、単繊維横断面の外接円の直径 D1と、単糸横断 面の内接円の直径 D2から次式により求めた。
異形度 = D1ZD2。
[0212] Z.芯鞘型複合繊維の異形度
L項にぉ 、て示した、捲縮糸の横断面の観察方法に準じて撮影した画像を用いて
、捲縮糸の横断面の外接円の直径 D1と、単繊維横断面の内接円の直径 D2から次 式により求めた。また、同様にして芯部の異形度についても芯部の横断面の外接円 の直径 D3と、内接円の直径 D4から次式により求めた。
異形度 = D1ZD2
異形度 = D3ZD4
[0213] AA.延伸糸の耐摩耗性評価
一定回転速度で回転するローラーにサンドペーパー(P600番)を巻き付けて固定 し、図 3に示す様に延伸糸の片端を壁に固定し、他端に荷重をかけ、一定速度で延 伸糸をトラバースさせながら、ローラーを回転させてサンドペーパーで延伸糸を削り、 延伸糸が切断するまでのローラー回転数を測定した。以下に測定条件を示す。
[0214] 回転体直径: 80mm
糸の接触長: 62. 8mm
糸の接触角: 90°
ローラー回転数: 160rpm
トラバース幅: 10mm
トラバース速度: 3回
測定荷重: 0. 06cN/dtexo
[0215] BB.捲縮糸の耐摩耗性
安藤鉄工所製のトワイン摩耗試験機を用い、 P600番サンドペーパーをローラーに 巻き付け、以下の条件にてローラーを回転させて糸切断までのローラー回転数を測
定した。
回転体直径: 40mm
糸の接触長: 110mm
ローラー回転数: 200rpm
測定荷重: 0. 4cN/dtex
[0216] CC.結晶核剤の平均粒子径 D50及び 10 μ m以上の結晶核剤の含有率
島津製作所製 SALD— 2000Jを用い、レーザー回折法により結晶核剤の平均粒 子径 D50 ( μ m)を測定した。また、得られた粒度分布から 10 μ m以上の結晶核剤の 体積%を求めた。
[0217] DD.製糸性の評価
100kgのチーズパッケージを得るに際し、糸切れが起こった回数により製糸性の評 価を行った。評価は優れる(二重丸)、良好 (〇)、可 (△)、不可(X )の 4段階で評価 した。
二重丸:糸切れ無し
〇:糸切れ 1〜5回
△:糸切れ 6〜10回
X:糸切れ 11以上
[0218] EE.カーペットの耐摩耗性 (摩耗減量率)
捲縮糸に S撚、 Z撚をかけて 2本合わせて撚糸した後の卷取糸をチーズパッケージ 形態にて含金染料("ィルガランレッド 4GL" [チバガイギ社製])を 0. 6%owf、浴比 1 : 50、 pH = 7にて 98°C X 60分処理して染色した。さらに水洗し、 50°C X 24時間熱 風乾燥して染色した撚糸を得た。該撚糸を表糸として PPスパンボンド不織布にタフ ティングした後、基布の裏にノッキング材を塗布して乾燥し、タフティングカーペットを 得た(目付 1200gZm2)。
[0219] 前記タフティングカーペットを直径 120mmの円形状に切り出し、中央に 6mmの穴 を空けて試験片とした。該試験片の重量 W0を測定した後、 ASTM D 1175 (199 4)に規定されるテーバー摩耗試験機 (Rotary Abaster)に表面を上にして取り付 け、 H # 18摩耗綸、圧縮荷重 lkgf (9. 8N)、試料ホルダ回転速度 70rpm、摩耗回
数 5500回の摩耗試験を行い、摩耗試験後の試料重量 W1を測定した。これらの測 定値と下記の式を用いて摩耗減量率を算出した。
摩耗減量率(%) = (W0-W1) X 100/ (W2 XA1/A0)
WO:測定前の円形カーペットの重量 (g)
W1:測定後の円形カーペットの重量 (g)
W2:カーペットの目付(gZm2)
AO :円形カーペットの全面積 (m2)
A1:摩耗輪が接触する部分の全面積 (m2)。
[0220] FF.カーペットの触感 (柔軟性)および外観 (光沢感)
含金染料 (ィルガランレッド 4GL [チバガイギ社製])を 0. 6%owf、浴比 1 : 50 (カー ペットとして)、 pH = 7にて 98°C X 60分処理して染色した。該染色カーペットを手の ひらで押したときの触感 (柔軟性)および太陽光の下で目視して光沢感ゃ光沢斑を 確認し、触感、外観それぞれについて 4段階評価した。
二重丸 ·極めて優れている
〇· · ·優れている
△ · · ·従来品と同等
X · · ·従来品より劣っている
[0221] GG.芯鞘型複合繊維の芯鞘複合界面の耐剥離性
捲縮糸からなる筒編地を作製し、該筒編みを含金染料 ("ィルガランレッド 4GL" [チ バガイギ社製])を 0. 6%owf、浴比 1 : 50 (筒編地として)、 pH = 7にて 98°C X 60分 処理して染色した。染色後、水洗し、 50°C24時間熱風乾燥して染色後の筒編地を 得た。染色後の筒編地から 50 X 100mmの短冊を切り出して試料とし、スコット形耐 揉摩擦試験機(SCOTT TYPE CREASE -FLEX ABRATION TESTER, (株)大栄科学精器製作所社製、型式: CF— 10N)を用い、試験回数 1000回、チヤ ック間隔 0mm、摩擦ストローク 45mm、押圧荷重 0. 5kgで揉摩擦を施した後、該試 料を取り出し、揉摩擦を加えた部分の外観変化を下記の基準にて評価した。そして 同一の丸編みについて、 5回の測定を行い、それぞれの評価の合計点により、総合 評価を決定した。
[0222] <評価基準 >
5点:外観に変化なし
4点:部分的に淡色化が見られる
3点:淡色化が見られ、部分的に毛玉が見られる。
2点:白化が見られ、毛玉が多発している。
1点:白化が見られ、毛玉が多発しており、試料の穴あきも見られる。
[0223] <総合評価 >
二重丸 (優れる): 21〜25点
〇(良好) :16〜20点
△ (可) :11〜15点
X (劣る) :5〜10点。
[0224] HH.カーペットの摩耗減量率
JIS L 1096 : 1999 8. 17. 3 テーバー形法に準じて、 H— 18摩耗輪を使用し
、左右一対のそれぞれの摩耗輪に lkgf (9. 8N)の荷重をかけて所定回転数回転し てカーペットを摩耗させた後、その未摩耗部分と摩耗部分 (JIS L 1096 : 1999 図
20参照)との目付から摩耗減量率 (%)を下記式にて算出した。
摩耗減量率(%) = [ (未摩耗部分のパイル目付 摩耗部分のパイル目付) Z摩耗部 分のパイル目付] X I 00
回転数は、 300回と 5500回の 2条件とした。
[0225] II.湿熱老化後の摩耗減量率
温度 50°C、湿度 95%雰囲気下にて 1200時間処理した後のカーペットに対して、 上記 HH項と同様にして摩耗減量率を求めた。但し回転数は 1000回とした。
[0226] JJ.カーペット(ラインマット)の耐熱性
三浦プレス製作所製 300tプレス機にて成型温度 150°Cにてプレスして外観変化を 評価した。
◎:変化なし。
〇:若干のアタリ有り。
X:パイルの融着が発生。
[0227] KK.発色性
染色糸を用いたカーペットを目視し、次の基準により評価した。
◎:特に優れている。
〇:優れている。
△:他の合成繊維と比べ差が見られない。
[0228] LL.カーシート布帛の強力
JIS L 1096 : 1999 8. 12. 1 Α法 (ストリップ法)のラベルドストリップ法により、 雰囲気温度 20°Cにてタテ方向及びョコ方向のそれぞれについて、試験片を 3枚ず つ採取し、幅の両側から糸を取り除いて幅 30mmとし、定速緊張型(島津製作所製 オートグラフ(AG— G) )の試験機にて、つかみ間隔 150mm、引張速度 200mmZ minで試験したときの破断強力を測定し、 6枚の平均値を算出した。
[0229] MM. 90°C雰囲気中のカーシート布帛の強力保持率
雰囲気温度を 90°Cに変更した以外は上記 LL項と同様にして布帛の強力を測定し 、次式により強力保持率を算出した。
布帛強力保持率(%) = (90°C雰囲気での強力 Z20°C雰囲気での強力) X 100
[0230] NN.カーシート布帛の摩耗減量
JIS L 1096 : 1999 8. 17. 3 テーバー形法に準じて、 H— 18摩耗輪を使用し 、左右一対のそれぞれの摩耗輪に 0. 5kgf (4. 9N)の荷重をかけて 3000回回転し て摩耗させた後、布帛の質量の減少量を測定した。
[0231] [製造例 1] (ポリ乳酸の製造)
光学純度 99. 8%の L乳酸力も製造したラクチドを、ビス(2—ェチルへキサノエート )スズ触媒 (ラクチド対触媒モル比 = 10000: 1)存在させてチッソ雰囲気下 180°Cで 240分間重合を行い、ポリ乳酸 P1を得た。得られたポリ乳酸の重量平均分子量は 23 . 3万であった。また、残留しているラクチド量は 0. 12重量%であった。
[0232] [製造例 2] (ポリカルポジイミドを 10重量%含有したポリ乳酸の製造)
P1と日清紡 (株)製ポリカルポジイミド" LA— 1"を乾燥した後、 P1: LA— 1 = 90: 1 0 (重量比)となるように 2軸混練押出機に供給し、シリンダー温度 200°Cで混練して L A- 1を 10重量%含有したポリ乳酸 P2を得た。得られたポリ乳酸の残留ラクチド量は
0. 14重量%であった。
[0233] [製造例 3] (ポリ乳酸の製造)
光学純度 99. 8%の L乳酸力も製造したラクチドを、ビス(2—ェチルへキサノエート )スズ触媒 (ラクチド対触媒モル比 = 10000: 1)存在させてチッソ雰囲気下 180°Cで 150分間重合を行い、ポリ乳酸 P3を得た。得られたポリ乳酸の重量平均分子量は 15 万であった。また、残留しているラクチド量は 0. 10重量%であった。
[0234] [製造例 4] (ポリ乳酸 (P4)の製造)
光学純度 99. 5%の L乳酸力も製造したラクチドを、ビス(2—ェチルへキサノエート )スズ触媒 (ラクチド対触媒モル比 = 10000 : 1)を存在させてチッソ雰囲気下 180°C で 220分間重合を行 、、ポリ乳酸 (P4)を得た。得られたポリ乳酸 (P4)の重量平均 分子量は 21万であった。また、残留しているラクチド量は 0. 13重量%であった。ポリ マー(P4)の融点は 170°C、融解ピークの熱容量が 45jZg、溶融粘度は 200Pa' se 相対粘度 3. 42であった。
[0235] [製造例 5] (ポリ乳酸 (P5)の製造)
光学純度 99. 5%の L乳酸力も製造したラクチドを、ビス(2—ェチルへキサノエート )スズ触媒 (ラクチド対触媒モル比 = 10000 : 1)を存在させてチッソ雰囲気下 180°C で 350分間重合を行 、、ポリ乳酸 (P5)を得た。得られたポリ乳酸 (P5)の重量平均 分子量は 26万であった。また、残留しているラクチド量は 0. 14重量%であった。ポリ マー(P5)の融点は 170°C、融点ピークの熱容量 45jZgあった。溶融粘度は 300Pa •sec—1であった。相対粘度 3. 76であった。
[0236] [製造例 6] (ポリ乳酸 (P6)の製造)
光学純度 99. 5%の L乳酸力も製造したラクチドを、ビス(2—ェチルへキサノエート )スズ触媒 (ラクチド対触媒モル比 = 10000 : 1)を存在させてチッソ雰囲気下 180°C で 150分間重合を行 、、ポリ乳酸 (P6)を得た。得られたポリ乳酸 (P6)の重量平均 分子量は 15万であった。また、残留しているラクチド量は 0. 10重量%であった。ポリ マー(P6)の融点は 170°C、融解ピークの熱容量 48jZg、溶融粘度は 120Pa' sec_ \相対粘度 3. 04であった。
[0237] [製造例 7] (ポリ乳酸 (P7)の製造)
光学純度 99. 5%の L乳酸力 製造したラクチドと、光学純度 99. 5%の D乳酸から 製造したラクチドと、ビス(2—ェチルへキサノエート)スズ触媒 (L乳酸ラクチド: D乳酸 ラクチド:触媒モル比 = 8900: 1100: 1)とを存在させてチッソ雰囲気下 180°Cで 22 0分間重合を行い、ポリ乳酸 (P7)を得た。得られたポリ乳酸 (P7)の重量平均分子量 は 21万であった。また、残留しているラクチド量は 0. 12重量%であった。ポリマー 7)の融点は 130°C、融解ピークの熱容量 38jZg、溶融粘度は 200Pa' sec_1であつ た。相対粘度 3. 42であった。
[0238] [製造例 8] (ポリカルポジイミドを 10重量%含有したポリ乳酸 (P8)の製造)
P4と成分 C (日清紡 (株)製ポリカルポジイミド" LA—1")を乾燥した後、 P4 :LA— 1 = 90 : 10 (重量比)となるように 2軸混練押出機に供給し、シリンダー温度 200°Cで混 練して LA— 1を 10重量%含有したポリ乳酸 (P8)を得た。得られたポリ乳酸 (P8)の 残留ラクチド量は 0. 15重量%であった。ポリマー(P8)の融点は 170°C、融解ピーク の熱容量が 4 jZg、溶融粘度は 190Pa' sec_1、相対粘度 3. 38であった。
[0239] [製造例 9] (MADGICを 10重量%含有したポリ乳酸 (P9)の製造)
P4と成分 C (四国化成 (株)製モノアリルジグリシジルイソシァヌル酸(以下、 MADG ICと称する) )を乾燥した後、 P4: MADGIC = 90 : 10 (重量比)となるように 2軸混練 押出機に供給し、シリンダー温度 200°Cで混練して MADGICを 10重量%含有した ポリ乳酸 (P9)を得た。得られたポリ乳酸 (P9)の残留ラクチド量は 0. 15重量%であ つた。ポリマー(P9)の融点は 170°C、融解ピークの熱容量が 4 jZg、溶融粘度は 1 90Pa,sec_1、相対粘度 3. 38であった。
[0240] [製造例 10] (エチレンーグリシジルアタリレートを主鎖とし、ポリメチルメタタリレート 力 Sグラフト化されたィ匕合物を 10重量%含有したポリ乳酸 (P10)の製造)
P4と成分 C (日本油脂 (株)製"モディパー A4200" (以下"モディパー"と略記する) )を乾燥した後、 P4: "モディパー" = 80: 20 (重量比)となるように 2軸混練押出機に 供給し、シリンダー温度 200°Cで混練して"モディパー"を 20重量%含有したポリ乳 酸 (P10)を得た。得られたポリ乳酸 (P10)の残留ラクチド量は 0. 15重量%であった 。ポリマー(P10)の融点は 170°C、融解ピークの熱容量が 4 jZg、溶融粘度は 190 Pa- sec—1、相対粘度 3. 38であった。
(実施例 1)
成分 Aとしてポリ乳酸 PI (融点 177°C)、成分 Bとして硫酸相対粘度 2. 15のナイ口 ン 6 (融点 225°C)をそれぞれ乾燥して成分 Aの水分率を 50〜: LOOppm、成分 Bの水 分率を 100〜300ppmに調整し、ブレンド比(重量比) PlZナイロン 6 = 30/70で チップブレンドし、図 6に示す 2軸混練機を備えた紡糸装置の紡糸ホッパー 1に仕込 み、 2軸押出混練機 2に導き、紡糸ブロック 3にて溶融ポリマーを計量 '排出し、内蔵 された紡糸パック 4に溶融ポリマーを導き、紡糸口金 5から紡出した。口金は以下に 記載する Y型孔を用いた。このとき、口金面下 3cmの位置に吹出孔上端がくるように 環状チムニー 6 (冷却長 30cm)を設置して糸条 7を冷却固化し、給油装置 8および給 油装置 9により 2段給油した。さらにストレッチロール 10を介して第 1加熱ロール 11 ( 以下、 1FRと記載)の温度を 60°Cとして紡糸速度 700mZ分にて引き取った後、第 2 加熱ロール 12 (以下、 1DRと記載)の温度を 120°Cとして 1890mZ分にて 1段目の 延伸(延伸倍率: 2. 7倍)を行い、さらに第 3加熱ロール 13 (以下、 2DRと記載)の温 度を 157°Cとして 2590mZ分にて 2段目の延伸(延伸倍率: 1. 37倍)を行い、連続 してエアスタッファ装置 14にてノズル温度 220°Cで加熱圧空処理して捲縮力卩ェを行 い、 3次元捲縮を形成し、冷却ドラム 15に当てて引取った後、張力測定検知器 16を 介して引取ロール 17にて引取り、交絡ノズル 18にて交絡をかけながら卷取張力 120 g (0. 08cNZdtex)、卷取速度 2200mZ分(2DR速度に対し、 15%低い速度)で 卷取機 19にて巻き取った。得られたポリ乳酸捲縮糸は、 1500デシテックス、 96フイラ メントであった。溶融紡糸条件は以下のとおりである。なお、下記条件における口金 孔内の吐出線速度は 0. 184mZ秒である。また、 2DR出口でサンプリングした延伸 糸の破断伸度は 35%であった。
•2軸押出機温度: 225°C
•混練時剪断速度:約 2000sec_1
•紡糸温度 :240°C
.濾層:46 #、ホワイトモランダムサンド充填
•フィルター: 20 μ m不織布フィルター(ダイナロイ)
•口金:スリット幅 0. 14mm,スリット長 0. 7mm、孔深度 0. 6mm
•吐出量: 330gZ分(1パック 1糸条、 96フィラメント)
•冷却:冷却風温度 19°C、風速 0. 55m/
•油剤:ポリエーテル系油剤 15、低粘度鉱物油 85の割合で混合した油剤を糸に対し て 10%付着(純油分として 1. 5%owf)。
[0242] 捲縮糸は約 100kgサンプリングしたが紡糸、延伸、嵩高加工の全ての工程におい て糸切れ、単糸流れ等は発生せず、極めて安定していた。
[0243] 得られた繊維の横断面の TEM観察を行ったところ、均一に分散した海島構造をと つており、繊維表面積に対するポリ乳酸の露出面積の比率は 1. 5%であった。また、 島ドメインサイズは直径換算で 0. 03-0. 3 mであった。また、該糸断面の切片を アルカリエッチングしてポリ乳酸を溶解除去して観察したところ、島成分が欠落してお り、ポリ乳酸が島成分を形成していることが確認された。また、繊維表面には図 2に示 す筋状溝が形成されており、その筋状溝の巾の平均は 0. 26 ^ m,アスペクト比(筋 状溝の長さ Z筋状溝の巾)は 20であった。また、得られた繊維の引張強度は 2. 8cN Zdtex、残留伸度 :48%、沸騰水収縮率 : 2. 8%、糸斑1;% : 0. 8%、捲縮伸長率: 12%、異形度: 2. 5と良好な繊維物性を示した。また、 DSCでの融点は 175°C近傍 (ポリ乳酸)および 225°C近傍けィロン 6)と、各成分起因の融解ピークが観測された 。また、該繊維力も抽出されたポリ乳酸のカルボキシル基末端濃度は 18当量 Zton であった。さらに摩耗試験による糸切断回転数は 101回であり、良好な耐摩耗性を示 した。さらに該捲縮糸を用いてカーペットを作成して評価したところ、摩耗減量率は 2 5. 5%であり、カーペットとしても良好な耐摩耗性を示した。また、手触りはソフトで適 度な腰があり、しっとりとしたシルキー調の光沢を有するカーペットであった。
[0244] (実施例 2)
P1Z成分 Bのブレンド比を 10Z90とした以外は、実施例 1と同様にして BCFヤー ンを得た。実施例 2の製糸性は実施例 1と同様、極めて安定していた。得られた繊維 の横断面の TEM観察を行ったところ、均一に分散した海島構造をとつており、繊維 表面積に対するポリ乳酸の露出面積の比率は 0. 1%であった。また、島ドメインサイ ズは直径換算で 0. 01〜0. 15 mと実施例 1よりも島成分の分散径が小さ力つた。 また、該糸断面の切片をアルカリエッチングしてポリ乳酸を溶解除去し観察したところ
、島成分が欠落しており、ポリ乳酸が島成分を形成していることが確認された。
[0245] また、得られた繊維の異形度は 2. 4であり、繊維物性も良好であった。また、 DSC での融点は 175°C近傍 (ポリ乳酸)および 225°C近傍 (ナイロン 6)と、各成分起因の 融解ピークが観測された。得られたマルチフィラメントの摩耗試験による糸切断回転 数は 185回であり、実施例 1よりも優れていた。
[0246] さらに該捲縮糸を用いてカーペットを作成して評価したところ、実施例 1よりも耐摩 耗性に優れており、風合いもソフト感のあるものが得られた。ただし、光沢感は実施例 1よりもやや鈍いものであった。
[0247] (実施例 3)
P1Z成分 Bのブレンド比を 40Z60とした以外は、実施例 1と同様にして BCFヤー ンを得た。実施例 3の製糸性は実施例 1と同様、極めて安定していた。得られた繊維 の横断面の TEM観察を行ったところ、均一に分散した海島構造をとつており、繊維 表面積に対するポリ乳酸の露出面積の比率は 3. 2%であった。また、島ドメインサイ ズは直径換算で 0. 03-0. 8 /z mと実施例 1よりも島成分の分散径が大きいものであ つた。該捲縮糸を用いてカーペットを作成して評価したところ、実施例 1の方が耐摩 耗性に優れたものであった力 触感、外観ともに従来品よりも優れたものであった。
[0248] (実施例 4)
P1Z成分 Bのブレンド比を 5Z95とした以外は、実施例 1と同様にして BCFヤーン を得た。実施例 4の製糸性は実施例 1と同様、極めて安定していた。得られた繊維の 横断面の TEM観察を行ったところ、均一に分散した海島構造をとつており、繊維表 面積に対するポリ乳酸の露出面積の比率は 0%であった。また、島ドメインサイズは 直径換算で 0. 01〜0.: L mと島成分の分散径が極めて小さぐ島の数も少ないも のであった。また、該捲縮糸の繊維表面には筋状溝がほとんど形成されていなかつ た。該捲縮糸を用いてカーペットを作成して評価したところ、実施例 1と同様、柔軟性 の高い触感に優れたものであった力 光沢感は従来品と同等であった。
[0249] (実施例 5)
成分 Bとして硫酸相対粘度 2. 05のナイロン 6 (融点 225°C)を用い、 PlZ成分 Bの ブレンド比を 47Z53とした以外は実施例 1と同様にして BCFヤーンを得た。実施例
5は口金直下でのバラス効果により吐出流の膨らみがやや大きいものであった。また 、捲縮糸 100kgのサンプリングを行った際に、糸切れが 2回起こっており、実施例 1対 比、やや製糸性が劣るものであった。得られた繊維の横断面の TEM観察を行ったと ころ、均一に分散した海島構造をとつており、繊維表面積に対するポリ乳酸の露出面 積の比率は 5. 0%であった。また、島ドメインサイズは直径換算で 0. 03〜0. 8 m と島成分の分散径は実施例 1対比、やや大きいものであった。該捲縮糸を用いて力 一ペットを作成して評価したところ、耐摩耗性は実施例 1の方が優れたものであった。 また、触感はやや粗硬感のあるものであった力 しっとりとしたシルキー調の光沢を有 していた。
[0250] (比較例 1)
成分 A (ポリ乳酸 P1)のみとした以外は、実施例 1と同様にして BCFヤーンを得た。 比較例 1の製糸性は実施例 1と同様、安定していた。得られた捲縮糸は摩耗試験に よる糸切断回転数が 9回であり、耐摩耗性が極めて劣っていた。また、該捲縮糸を用 いてカーペットを作成して評価したところ、摩耗減量率が 89%であり、かなり用途が 限定されるレベルであった。
[0251] (実施例 6)
成分 Aとしてポリ乳酸 P3 (融点 178°C)を用い、以下の紡糸条件に変更した以外は 、実施例 1と同様にして BCFヤーンを得た。
• 2軸混練機の剪断速度:約 280sec_1
'濾層構成: Φ 1mmのガラスビーズ充填
'濾過フィルター: 200 #金網フィルター
実施例 6は口金直下での細化点が安定せず、吐出流がやや不安定であった。また 、捲縮糸 100kgのサンプリングを行った際に、糸切れが 3回起こっており、実施例 1対 比、やや製糸性が劣るものであった。得られた繊維の横断面の TEM観察を行ったと ころ、海島構造をとつてはいる力 繊維表面積に対するポリ乳酸の露出面積の比率 は 1. 9%であった。また、島ドメインサイズは直径換算で 0. 3〜2. 5 /z mと島成分の 分散径が大きぐかつ分布の広いものであった。また糸斑を示すウスター斑1;%が 2. 1%と高ぐ糸長手方向に太さ斑があることがわ力つた。該捲縮糸を用いてカーペット
を作成して評価したところ、実施例 1と対比して、摩耗減量率が約 2倍であった。また 、触感は部分的に粗硬感のあるものであり、光沢感も従来品と同等レベルであった。
[0252] (比較例 2)
成分 Aとしてポリ乳酸 P3 (融点 178°C)、成分 Bとして硫酸相対粘度 2. 90のナイ口 ン 6 (融点 225°C)を用いた以外は実施例 1と同様にして BCFヤーンを得た。比較例 2は、口金直下でのバラス効果により極めて大きい膨らみが生じ、そのために細化点 が上下に変動する脈動現象が生じ、不安定な状態であった。また、捲縮糸 100kgの サンプリングを行った際に糸切れが 17回と頻繁に起こっており、製糸性がかなり悪い ものであった。また、得られた繊維の横断面の TEM観察を行ったところ、海島構造を とってはいる力 島成分が染まっていた。そこで、アルカリエッチングによりポリ乳酸を 溶出すると、島成分のみが極細糸として残ったことから、ポリ乳酸が海成分を形成し ていることがわ力つた。また、該捲縮糸は強度が 1. lcNZdtexと低ぐ糸斑 U%も 4 . 5%と極めて悪いものであった。該捲縮糸を用いてカーペットを作成して評価したと ころ、摩耗減量率は 87%と、ポリ乳酸単独(比較例 1)と同等レベルであり、かなり用 途が限定されるものであった。
[0253] [表 1]
(実施例 7)
成分 Bとして固有粘度 1. 45のナイロン 11を用いた以外は、実施例 1と同様にして B
CFヤーンを得た。実施例 7の製糸性は実施例 1と同様、極めて安定していた。得ら れた繊維の横断面の TEM観察を行ったところ、均一に分散した海島構造をとつてお り、繊維表面積に対するポリ乳酸の露出面積の比率は 0. 9%であった。島ドメインサ ィズは直径換算で 0. 05-0. 5 mであった。また、該糸断面の切片をアルカリエツ チングしてポリ乳酸を溶解除去し観察したところ、島成分が欠落しており、ポリ乳酸が 島成分を形成して ヽることが確認された。
[0255] さらに該捲縮糸を用いてカーペットを作成して評価したところ、実施例 1よりも嵩高 性が高く高品位であり、かつ耐摩耗性も優れていた。また、触感、外観ともに実施例 1 と同様、極めて優れていた。
[0256] (実施例 8)
成分 Bとして硫酸相対粘度 2. 15のナイロン 610 (融点 225°C)を用いた以外は、実 施例 1と同様にして BCFヤーンを得た。実施例 8の製糸性は実施例 1と同様、極めて 安定していた。得られた繊維の横断面の TEM観察を行ったところ、均一に分散した 海島構造をとつており、繊維表面積に対するポリ乳酸の露出面積の比率は 1. 2%で あった。島ドメインサイズは直径換算で 0. 03-0. であった。また、該糸断面の 切片をアルカリエッチングしてポリ乳酸を溶解除去し観察したところ、島成分が欠落し ており、ポリ乳酸が島成分を形成していることが確認された。さらに該捲縮糸を用いて カーペットを作成して評価したところ、実施例 1と同様に触感、外観ともに優れたもの であった。
[0257] (実施例 9)
成分 Bとして、 ε一力プロラタタム Ζへキサメチレンジアンモ-ゥムアジペート(66塩 ) = 85Ζ 15の重量比で重合した Ν6ΖΝ66共重合ナイロン (融点 198°C)を用 ヽた 以外は、実施例 1と同様にして BCFヤーンを得た。実施例 9の製糸性は実施例 1と同 様、極めて安定していた。得られた繊維の横断面の TEM観察を行ったところ、均一 に分散した海島構造をとつており、繊維表面積に対するポリ乳酸の露出面積の比率 は 1. 4%であった。島ドメインサイズは直径換算で 0. 03〜0. 26 mであった。また 、該糸断面の切片をアルカリエッチングしてポリ乳酸を溶解除去し観察したところ、島 成分が欠落しており、ポリ乳酸が島成分を形成していることが確認された。さらに該捲
縮糸を用いてカーペットを作成して評価したところ、実施例 1よりも嵩高性が高いもの であった。また、触感、外観ともに実施例 1と同様、極めて優れていた。
[0258] (実施例 10)
相溶化剤 (成分 C)を含んだポリ乳酸 P2 (ポリカルポジイミド" LA— 1": 10重量%) を用い、ブレンド比を P1Z成分 BZP2 = 20Z70Z10 (成分 Aと成分 Bの合計量に 対する成分 Cの濃度: 1. 0重量%)とした以外は、実施例 1と同様にして BCFヤーン を用いた。実施例 10の製糸性は実施例 1と同様、極めて安定していた。得られた繊 維の横断面の TEM観察を行ったところ、均一に分散した海島構造をとつており、繊 維表面積に対するポリ乳酸の露出面積の比率は 1. 1%であった。島ドメインサイズは 直径換算で 0. 03-0. であった。さらに該捲縮糸を用いてカーペットを作成し て評価したところ、実施例 1よりも耐摩耗性に優れているとともに、触感、外観ともに実 施例 1と同様、極めて優れていた。
[0259] (比較例 3)
紡糸温度を 270°C (Tmb+45°C)として溶融紡糸した以外は、実施例 1と同様にし て BCFヤーンを得た。なお、該紡糸温度での成分 Aの溶融粘度は 35Pa'sであり、 成分8の溶融粘度は28?& ' 5でぁった(7? 1)77} & = 0. 8)。比較例 3は口金直下での バラス効果により膨らみが発生し、吐出流がやや不安定であった。また、捲縮糸 100 kgのサンプリングを行った際に、糸切れが 5回起こっており、実施例 1対比、やや製 糸性が劣るものであった。得られた繊維の横断面の TEM観察を行ったところ、部分 的に海島構造が逆転している部分や、島が連結してなる共連続構造をとる部分が共 存していた。また強度が 1. 4cNZdtexと実施例 1対比、約半分であると共に、糸斑 を示すウスター斑 U%が 2. 2%と高いものであった。該捲縮糸を用いてカーペットを 作成して評価したところ、摩耗減量率が 76. 5%と極めて悪ぐ光沢感も従来品より劣 るものであった。
[0260] (比較例 4)
口金を変更し、スリット巾 0. 43mm、スリット長 2. 15mm,孔深度 0. 6mmの Y孔と した以外は、実施例 3と同様にして製糸を行った。口金直下での膨らみは発生しなか つたが、細化が安定せずに製糸することができな力つた。なお、比較例 4の口金孔内
の吐出線速度は 0. 0195mZ秒である。
[0261] (比較例 5)
口金を変更し、スリット巾 0. 09mm,スリット長 0. 45mm,孔深度 0. 6mmの Y孔と した以外は、実施例 3と同様にして製糸を行った。比較例 5は、口金直下でのバラス 効果により極めて大き!/、膨らみが生じ、そのために細化点が上下に変動する脈動現 象が生じて製糸することができな力つた。
[0262] [表 2]
環状チムニーでの冷却風速を 0. lmZ秒とした以外は、実施例 1と同様にして BC Fヤーンを得た。実施例 11は口金直下でのバラス効果により膨らみが生じ、若干の 脈動現象が生じた。そのため、 100kgのサンプリングで 2回の糸切れが生じた。得ら れた捲縮糸は強度が 1. 3cNZdtexと実施例 1対比、約半分であると共に、糸斑を
示すウスター斑 U%が 3. 3%と高いものであった。該捲縮糸を用いてカーペットを作 成して評価したところ、摩耗減量率が 46. 8%とやや悪いものであり、触感にもやや 粗硬感があるものであつたが、シルキー調の光沢感を有しており、外観は良好であつ た。
[0264] (実施例 12)
吐出量を 277gZ分とし、 2DR速度を 2173mZ分にて 2段目の延伸(延伸倍率: 1 . 15倍)を行い、卷取速度を 1847mZ分(2DR速度に対し、 15%低い速度)とした 以外は、実施例 1と同様にして BCFヤーンを得た。 2DR出口でサンプリングした延伸 糸の破断伸度は 76%であった。得られた捲縮糸は強度が 1. 8cNZdtexと実施例 1 対比、約 64%の強度であり、糸斑を示すウスター斑 U%が 1. 6%とやや高いもので あった。該捲縮糸を用いてカーペットを作成して評価したところ、摩耗減量率が 41. 1 %とやや悪 、ものであつたが、用途限定すれば使えるレベルであった。
[0265] (実施例 13)
2DRでのセット温度を 130°Cとした以外は、実施例 1と同様にして BCFヤーンを得 た。実施例 13の製糸性は実施例 1と同様、極めて安定していた。得られた繊維の横 断面の TEM観察を行ったところ、均一に分散した海島構造をとつており、繊維表面 積に対するポリ乳酸の露出面積の比率は 1. 5%であった。島ドメインサイズは直径換 算で 0. 03-0. 3 /z mと実施例 1と同等レベルであった力 該捲縮糸の繊維表面に は筋状溝がほとんど形成されていなカゝつた。また、捲縮伸長率も実施例 1の半分以下 であった。該捲縮糸を用いてカーペットを作成して評価したところ、従来品よりは優れ た触感を有するものの、光沢感は従来品と同等のものであった。
[0266] (実施例 14)
2DRでのセット温度を 110°Cとした以外は、実施例 1と同様にして BCFヤーンを得 た。実施例 14の製糸性は実施例 1と同様に安定していた。得られた繊維は捲縮伸長 率が 2. 5%と捲縮発現があまりないものであった。また、沸騰水収縮率が 11. 1%と 高ぐ実施例 1の方が寸法安定性に優れたものであった。該捲縮糸を用いてカーぺッ トを作成して評価したところ、触感、光沢感共に従来品と同等のものであった。
[0267] (実施例 15)
口金を変更し、直径 0. 62mm,孔深度 1. Ommの丸孔とした以外は、実施例 13と 同様にして BCFヤーンを得た。実施例 15の製糸性は実施例 1と同様、極めて安定し ていた。得られた繊維の横断面はほぼ真円(異形度 1. 0)であり、横断面の TEM観 察を行ったところ、均一に分散した海島構造をとつており、繊維表面積に対するポリ 乳酸の露出面積の比率は 1. 7%であった。島ドメインサイズは直径換算で 0. 03〜0 . 3 mと実施例 1と同等レベルであった。該捲縮糸を用いてカーペットを作成して評 価したところ、実施例 1と同様に優れた触感を有するものの、光沢感は実施例 1の方 が優れていた。
[0268] (実施例 16)
エアジェットスタッファ装置にてノズル温度 150°Cで加熱圧空処理した以外は、実 施例 1と同様にして BCFヤーンを得た。該捲縮糸は捲縮伸長率が 2. 7%と低ぐ捲 縮発現があまりな 、ものであった。該捲縮糸を用いてカーペットを作成して評価したと ころ、光沢感は優れているものの、触感はやや粗硬感のあるものであった。
[0269] [表 3]
(実施例 17)
ポリ乳酸 PI (成分 A)に対して日本タルク (株)社製のタルク" SG— 2000" (平均粒 子径 D50 : 0. 98 ^ m, 10 m以上の粒子: 0体積%)を 1重量% (繊維全体に対して 0. 3重量%)ドライブレンドした以外は実施例 1と同様にして BCFヤーンを得た。実 施例 17の製糸性は実施例 1と同様、極めて安定していた。また、該捲縮糸は実施例
1に対して約 1. 4倍の拘束荷重下伸長率を示し、捲縮堅牢性が高いものであった。
[0271] (実施例 18)
ポリ乳酸 P1 (成分 A)に対して日産化学工業 (株)社製のメラミンシァヌレード' MC 600" (平均粒子径 1. 6 /ζ πι、 10 111以上の粒子:0体積%)を1重量%(繊維全 体に対して 0. 3重量0 /0)ドライブレンドした以外は実施例 1と同様にして BCFヤーン を得た。実施例 18の製糸性は実施例 1と同様、極めて安定していた。また、該捲縮 糸は実施例 1に対して約 1. 8倍の拘束荷重下伸長率を示し、捲縮堅牢性が極めて 高いものであった。
[0272] (実施例 19)
ナイロン 6 (成分 Β)に対して沃化銅および沃化カリウムをそれぞれ 0. 03重量% (繊 維全体に対してそれぞれ 0. 021重量%)ドライブレンドした以外は実施例 1と同様に して BCFヤーンを得た。
さらに実施例 1で得られた捲縮糸、および実施例 19の捲縮糸をカセ取りし、スガ試験 機 (株)製の UVオートフェードメーター(タイプ: U48AU)を用いて以下の条件にて 耐光性試験を行い、耐光性試験前'後の強度から強度保持率を求めた。その結果、 実施例 1の捲縮糸の強度保持率が 5 %であるのに対し、実施例 19の捲縮糸の強度 保持率は 91 %と極めて耐光性に優れた捲縮糸であった。
[0273] <UV処理条件 >
UV照射時間 : lOOhrs
ブラックパネル温度: 83°C
缶内温度 :64± 3°C
缶内湿度 :缶内温度に対し、相対湿度 50± 5%
強度保持率(%) =UV処理後の強度(cNZdtex) ZUV処理前の強度(cNZdtex ) X 100
[0274] [表 4]
表 4
[0275] (実施例 20)
図 9に示す、芯成分、鞘成分それぞれについて 1軸混練機を備えた紡糸延伸連続 捲縮付与装置を用い、溶融紡糸、延伸、熱処理、捲縮処理を連続的に施し、 BCFャ ーンを得た。
[0276] 図 9に示した芯成分ホッパー 21に、成分 A (P4)を投入し、鞘成分ホッパー 22には 成分 B (N6— 1 融点 225°C、融点ピークの熱容量 79jZg、相対粘度 2. 59、溶融 粘度 150Pa' sec _1)を投入し、成分 Aと成分 Bを、それぞれ 1軸押出混練機 23、 24 にて別々に溶融および混練して紡糸ブロック 25に導き、ギヤポンプ 26、 27にてそれ
ぞれのポリマーを計量、排出し、内蔵された紡糸パック 28に導き、三葉断面用の細 孔を 96ホール有する、紡糸口金 29から紡出した。この時、芯鞘比 = 60Z40 (重量 比)となるように、芯成分、鞘成分のギヤポンプ 26、 27の回転数を選定した。そしてュ 二フロー冷却装置 30で糸条 31を冷却固化し、給油装置 32により給油した。さらに第 1ロール 33で引き取った後、第 2ロール 34の速度を第 1ロール 33の速度の 1. 02倍 の速度として未延伸糸にストレッチを加えた後、第 2ロール 34と第 3ロール 35の速度 比により延伸を施し、第 3ロール 35で熱処理を施し、第 3ロール 35と第 4ロール 36の 速度比により再度延伸を施し、第 4ロール 36で再度熱処理を施し、第 4ロール 36と冷 却ロール (冷却ドラム) 38との間で糸条をリラックス (オーバーフィード)させながらカロ 熱流体を用いる捲縮ノズル 37にてエアースタッファ捲縮を付与し、冷却ロール (冷却 ドラム) 38の表面において捲縮糸を冷却して構造固定し、第 6ロール 39、第 7ロール 40の間で捲縮を伸ばさない程度の張力(0. 08cNZdtex、繊度は卷取った捲縮糸 の繊度を用いる)をかけ、第 7ロール 40と卷取機 42の間で交絡ノズル 47にて交絡を 付与し、捲縮を伸ばさない程度の張力(0. 08cN/dtex,繊度は卷取った捲縮糸の 繊度を用いる)をかけて巻き取ることにより、紡糸、延伸、熱処理、捲縮処理を 1段階 で施した 1920デシテックス 96フィラメントの BCFヤーンを得た(チーズパッケージ 41 )を得た。約 100kgサンプリングしたが糸切れ、単繊維流れ等は発生せず、製糸は極 めて安定していた。実施例 20の結果を表 5に示す。
なお溶融紡糸、延伸、熱処理、捲縮処理条件は以下のとおりである。
'混練機温度: 230°C
'紡糸温度: 245°C
.濾層: 30 #モランダムサンド充填
•フィルター: 20 μ m不織布フィルター
•口金 2 (ポリマー吐出直前の口金):スリット幅 0. 15mm,スリット長 1. 5mm、孔数 9 6
•口金 1 (図 12の模式図 45の口金。 口金 2の直前にあり芯成分、鞘成分に別々の流 路を有するもの):
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長さ 1. 2mm、 1フィラメントに対して孔数 1 '吐出量: 498. 6gZ分(1パック 1糸条、 96フィラメント)
•冷却:冷却長 lmのュニフロー使用。冷却風温度 20°C、風速 0. 5mZ秒、冷却開始 位置は口金面下 0. lm
•油剤:脂肪酸エステル 10%濃度エマルジョン油剤を糸に対して 10%付着
•第 1ロール温度:25°C
'第 2ロール温度: 70°C
•第 3ロール温度: 135°C
•第 4ロール温度: 190°C
•冷却ロール温度: 25°C
'第 6ロール温度: 25°C
•第 7ロール温度: 25°C
•加熱蒸気処理温度: 230°C
•第 1ロール速度: 840mZ分( =第 2ロール速度 Z 1. 02)
•第 2ロール速度: 857mZ分
•第 3ロール速度: 2400mZ分
•第 4ロール速度: 3000mZ分
•冷却ロール速度: 80mZ分
•第 6ロール速度: 2550mZ分
•第 7ロール速度: 2600mZ分
'卷取速度: 2550mZ分
'総合延伸倍率: 3. 5倍 (第 2〜第 3ロール: 2. 8倍、第 3〜第 4ロール: 1. 25倍)。 · 交絡圧空: 0. 2MPa
得られた BCFヤーンは、単繊維が不規則な方向にループ状に屈曲してたるみを形 成し、単繊維が絡み合つている捲縮形態を有していた。強度は 2. 3cN/dtex,沸 収は 2. 2%、単繊維繊度は 20dtexであった。また捲縮伸長率 25%、拘束荷重下伸 長率 13%と、優れた捲縮特性を示し、へたり難い捲縮を有する捲縮糸であった。そし て該捲縮糸を用いて筒編地、カーペットを作製したところ、いずれもボリューム感がぁ
り、ソフトなタツチで、審美性のある光沢を呈し、風合いに優れていた。
[0278] 得られた捲縮糸からなる筒編地にて耐剥離性評価した結果、外観変化は全く無ぐ 優れた耐剥離性を示した。また、得られた捲縮糸を用いてなるカーペットの耐摩耗試 験を行った結果、摩耗減量率は 10%と優れた耐摩耗性を有しており、摩耗後のカー ペット地において、捲縮糸の白化、および鞘割れは観察されな力つた。
[0279] 得られた捲縮糸の単繊維の横断面を TEM観察した結果、芯成分は単繊維の中心 に位置しており、鞘成分の厚みの最小値は 3. O /z mであり、芯成分はすべて鞘成分 で被覆されて 、た。すなわち繊維表面積に対するポリ乳酸の露出面積の比率は 0% であった。そして単繊維の異形度は 3. 0、芯成分の異形度は 3. 0であった。また得ら れた捲縮糸の DSCでの融点は 169°C (成分 Aに由来するピーク)および 224°C (成 分 Bに由来するピーク)と、各成分起因の融解ピークが観測され、それぞれの融解ピ ークの熱容量の総和は 72jZgであり、十分な結晶性を示した。
[0280] (比較例 6)
実施例 20において、成分 Bを用いず、口金を変更した以外は、実施例 20と同一条 件にて成分 Aのみ力もなる BCFヤーンを得ようと試みた力 第 4ロール 36、捲縮ノズ ル 37において単繊維融着が激しぐ製糸不可能であった。そこで、第 3ロール 35温 度、第 4ロール 36温度、捲縮ノズル 37温度を変更して比較例 6の捲縮糸を得た (この とき第 6ロール 39速度、第 7ロール 40速度、卷取速度は実施例 20で示した張力の範 囲に収まるよう変更した。また単繊維繊度が 20dtexとなるように、吐出量を調整した) 。製糸性は不良であり、 100kgのサンプリングで 15回の糸切れが起こった。比較例 6 の結果を表 5に、比較例 6の口金スペック、第 3ロール 35温度、第 4ロール 36温度、 捲縮ノズル 37温度、第 6ロール 39速度、第 7ロール 40速度、卷取速度を下記に示す
'比較例 6の口金 2 :芯成分 スリット幅 0. 12mm、スリット長 1. 2mm、 1フィラメントに 対して孔数 1 (鞘成分の流路はなし)
•比較例 6の第 3ロール温度: 90°C
•比較例 6の第 4ロール温度: 110°C
•比較例 6の捲縮ノズル温度: 150°C
•第 6ロール速度: 2650mZ分
•第 7ロール速度: 2660mZ分
•比較例 6の卷取速度: 2670mZ分
実施例 20と比較例 6から、本発明の捲縮糸は鞘成分を有することで耐摩耗性、捲 縮特性に優れた捲縮糸となることがわかる。比較例 6は耐剥離性試験において、鞘 成分を有さないため、芯鞘界面の剥離現象は観察されな力つたが、捲縮糸の削れ、 フィブリル化が散見され、全ての試験において穴が空いた部分が観察された。また比 較例 6の捲縮糸は、融着部が散見され、強度が 1. 2cNZdtexと低ぐ筒編地、カー ペットを作製する工程にぉ 、て糸切れが多発した。また捲縮糸中には配向度の高 ヽ 分子鎖が残存して沸収が 10%と高いため、該捲縮糸の耐剥離性、耐摩耗性、捲縮 特性は経時的に悪ィ匕するものであった。
(実施例 21〜22、比較例 7〜8)
実施例 20において、第 4ロール 36温度を変更した以外は、実施例 20と同様にして 、実施例 21〜22、比較例 7〜8の捲縮糸を得た (このとき第 6ロール 39速度、第 7口 ール 40速度、卷取速度は実施例 20で示した張力となるよう調整した)。実施例 21、 2 2は問題となるレベルではないが糸切れがそれぞれ 1回おこった。比較例 7、 8の製糸 性は不良であり、それぞれの糸切れは比較例 7は 11回、比較例 8は 13回であった。 実施例 21〜22、比較例 7〜8の結果を表 5に示す。実施例 21〜22、比較例 7〜8の 紡糸条件を下記する。
'第 4ロール温度
実施例 21 : 160°C
実施例 22 : 220°C
比較例 7: 150°C
比較例 8 : 225°C
実施例 20〜22、比較例 7〜8を比較するとわ力るように、延伸後の最終ロールの熱 処理温度 160〜220°Cを採用することにより、本発明にて好ましいとされる強度、沸 収を有する捲縮糸となり、耐剥離性に優れる捲縮糸を生産性良く得ることができる。こ れは、上記の好ましい製造条件を採用することにより、延伸後の最終ロール上で芯成
分を部分溶融させた効果や、捲縮ノズル内において繊維が即座に高温状態になる 効果が相乗的に働き、芯成分と鞘成分の熱収縮特性の差による影響を受けずに、芯 成分と鞘成分において、結晶相とランダムな非晶相の 2相構造を形成できたためと考 えられる。なお比較例 8の捲縮糸は、最終ロール上での熱処理によって、鞘成分が 部分溶融して、断面形状に乱れが生じ、鞘成分の一部は薄くなつてしまっていた。
[0282] また実施例 20〜22を比較するとわ力るように、本発明にてより好ましいとされる製 造方法を採用することにより、捲縮特性にも優れた捲縮糸となった。このため実施例 2 0の捲縮糸力もなる筒編地、カーペットは、実施例 21〜22と比較して優れた風合い を呈するものであった。
[0283] [表 5]
表 5
[0284] (実施例 23〜24、比較例 9〜: LO)
実施例 20において、総合延伸倍率を変更した以外は、実施例 20と同様にして、実 施例 23〜24、比較例 9〜10の捲縮糸を得た (第 1〜3ロール速度は下記の倍率とな る様に変更し、第 1ロール 33速度は第 2ロール 34速度を 1. 02で除した値とした)。 実施例 23〜24では問題となるレベルではないが、糸切れがそれぞれ 1回起こった。 比較例 9〜: L0の製糸性は不良であり、比較例 9では糸切れが 12回、比較例 10では 糸切れが 14回、観察された。実施例 23〜24、比較例 9〜 10の結果を表 6に示す。 実施例 23〜24、比較 9〜10の紡糸条件を下記する。
•総合延伸倍率
実施例 23 : 2. 1倍 (第 2〜第 3ロール: 1. 68倍、第 3〜第 4ロール: 1. 25倍) 実施例 24 :4. 9倍(第 2〜第 3ロール: 3. 92倍、第 3〜第 4ロール: 1. 25倍) 比較例 9 : 1. 9倍 (第 2〜第 3ロール: 1. 52倍、第 3〜第 4ロール: 1. 25倍) 比較例 10 : 5. 1倍(第 2〜第 3ロール: 4. 08倍、第 3〜第 4ロール: 1. 25倍) 実施例 20、 23〜24、比較例 9〜: L0を比較するとわ力るように、総合延伸倍率 2〜5 倍を採用することにより、本発明の捲縮糸となり、耐剥離性に優れる捲縮糸となること がわかる。上記の総合延伸倍率で延伸を施すことにより、紡糸速度を適正な範囲に 抑えることができ、延伸糸の芯成分と鞘成分とを均一に配向させることができる。この ため、捲縮加工において、芯成分と鞘成分との熱収縮特性の差が生じ難ぐ芯鞘界 面に隣接する分子鎖に無理な歪みが生じないためと考えられる。そして実施例 20は 、実施例 23〜24と比べて、より好ましい繊維構造 (強度、沸収)を有するため、耐剥 離性にも優れた捲縮糸であった。
[0285] [表 6]
表 6
(実施例 25〜27、比較例 11〜12)
実施例 20において、口金の孔数を変更した以外は、実施例 20と同様にして、実施 例 25〜27、比較例 11〜 12の捲縮糸を得た。問題となるレベルではないが、実施例 25、実施例 26ともに糸切れが 1回起こった。比較例 11〜12は製糸性が不良であり、 比較例 11では糸切れが 11回、比較例 12では糸切れが 12回起こった。実施例 25〜 27、比較例 11〜 12の結果を表 7に示す。実施例 25〜27、比較 11〜12の紡糸条
件を下記する。
•口金孔数
実施例 25 : 320
実施例 26 : 72
実施例 27 : 50
比較例 11 : 480
比較例 12 : 45。
[0287] 実施例 20、 25〜27、比較例 11〜12を比較するとわ力るように、本発明にて好まし いとされる単繊維繊度の捲縮糸とすることにより、耐剥離性に優れた捲縮糸となる。こ れは、単繊維繊度 40dtex以下とすることにより、捲縮カ卩ェ工程において、芯成分と 鞘成分が速やかに加熱され、芯鞘界面に無理な歪みを加えずに、結晶相とランダム な非晶相との 2相構造を形成できたためと考えられる。また単繊維繊度を 5dtex以上 とすることによって、捲縮処理後に糸に加わる張力によって捲縮糸が伸長され、芯鞘 界面に歪みを生じる悪影響を回避でき、耐剥離性を向上できたと考えられる。 また 実施例 25、 27の捲縮糸からなる筒編地や、カーペットと比較して、実施例 20からな る筒編地やカーペットは、ボリューム感に優れ、ボリューム感が長期に渡って維持さ れるものであった。すなわち、単繊維繊度 5〜40dtexの捲縮糸とすることにより、捲 縮の堅牢度も高い捲縮糸となった。
[0288] [表 7]
表 7
(実施例 28〜31)
実施例 20において、成分 A、成分 Bとして用いる樹脂を変更した以外は、実施例 2 0と同様にして、実施例 28〜31の捲縮糸を得た。実施例 28、 29では糸切れは確認 されな力 た。実施例 30、 31では問題となるレベルではないがそれぞれ糸切れが 1 回起こった。実施例 28〜29の結果を表 8に示す。実施例 28〜31で用いた榭脂を下 記する。
•芯成分、鞘成分に用いた榭脂
実施例 28 :成分 A=P4、成分 B=N6— 2 (融点 225°C、融点ピークの熱容量 77JZ
g、相対粘度 2. 95、溶融粘度 300Pa' sec _1)
実施例 29 :成分 A=P4、成分 B=N6— 3 (融点 225°C、融点ピークの熱容量 78JZ g、相対粘度 2. 10、溶融粘度 50Pa' sec _1)
実施例 30 :成分 A=P5、成分 B=N6— 3
実施例 31:成分 A=P6、成分 B=N6— 2
実施例 20、 28〜31を比較するとわ力るように、本発明に用いる成分 Aと成分 Bの 溶融粘度比を本発明にて好ましいと範囲とすることにより、耐剥離性に優れた捲縮糸 となることがわかる。本発明にて好ましいとされる溶融粘度比とすることにより、溶融紡 糸工程において、芯成分と鞘成分へ力かる応力を均一にすることが可能となり、未延 伸糸の芯成分と鞘成分との分子配向の差がほとんどないため、延伸工程において芯 成分と鞘成分を均一に配向させることができ、捲縮加工における各成分の熱収縮特 性の差が小さくなり、芯鞘界面に隣接する分子鎖が無理な歪みを受けにくくなるため と考えられる。
[0290] また実施例 28〜31の捲縮糸力もなる筒編地や、カーペットと比較して、実施例 20 力もなる筒編地やカーペットは、耐剥離性に優れる。また鞘割れが起こって芯成分が むき出しになることが無ぐ耐摩耗性にも優れることがわかる。
[0291] [表 8]
表 8
(実施例 32〜36)
実施例 20において、芯鞘比(重量比)を変更した以外は実施例 20と同様にして実 施例 32〜36の捲縮糸を得た。実施例 32〜36の結果を表 5に、それぞれにおける芯 鞘比を下記に示す。
•実施例 32:芯成分/鞘成分 = 20Z80
•実施例 33:芯成分 Z鞘成分 = 30Z70
•実施例 34:芯成分 Z鞘成分 = 60/40
•実施例 35:芯成分 Z鞘成分 = 70Z30
•実施例 36:芯成分 Z鞘成分 = 80Z20。
[0293] 実施例 20、 32〜36からわ力るように、本発明にて好ましいとされる芯鞘比を採用 することにより、耐剥離性がより優れた捲縮糸を得ることができる。これは好ましい芯 鞘比を採用することによって、芯成分の単位体積当たりの芯鞘界面の面積が大きくな るためと考えられる。そして芯鞘界面の剥離を抑制できるため、摩耗時に芯成分が剥 き出しになって削れてしまうことが無ぐより耐摩耗性に優れた捲縮糸なつた。さらに 実施例 20の捲縮糸は、実施例 32〜36と比較して耐剥離性、堅牢度の高い捲縮を 有し、ノ レキー性、柔軟性が長期に渡って維持されるものとなった。
[0294] [表 9]
表 9
(実施例 37〜41)
実施例 20において、口金を変更して、単繊維の異形度と芯成分の異形度を変更し た以外は、実施例 20と同様にして実施例 36〜41の BCFヤーンを得た。実施例 37 〜41の結果を表 10に、それぞれにおける口金スペックを下記に示す。
'実施例 37の口金 2 :スリット幅 0. 3mm、スリット長 1. 5mm、孔数 96
•実施例 37の口金 1 :
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長 0. 6mm、 1フィラメントに対して孔数 1
•実施例 38の口金 2 :スリット幅 0. 15mm、スリット長 2. 25mm、孔数 96 •実施例 38の口金 1 :
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長 1. 8mm、 1フィラメントに対して孔数 1 •実施例 39の口金 2 :スリット幅 0. 25mm、スリット長 0. 75mm,孔数 96
•実施例 39の口金 1 :
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長 0. 48mm、 1フィラメントに対して孔数 1 •実施例 40の口金 2 :スリット幅 0. 15mm、スリット長 2. 70mm、孔数 96
•実施例 40の口金 1 :
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長 2. 16mm、 1フィラメントに対して孔数 1。
•実施例 41の口金 2 :口金孔径 0. 6mm、吐出孔長 0. 6mm、孔数 96
•実施例 41の口金 1 :
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 孔径 0. 6mm,吐出孔長 0. 6mm, 1フィラメントに対して孔数 1。
[0296] 実施例 20、 37〜41からわ力るように、単繊維の異形度が高いことにより、捲縮ノズ ル内において単繊維が均一に加熱され、芯成分と鞘成分の両成分において結晶相 とランダムな非晶相との 2極ィ匕し易くなり、加えて芯成分と鞘成分の接着面積も大きく なるため耐剥離性に優れた捲縮糸となることがわかる。
[0297] ただし実施例 38、 40と比較して、実施例 20、 37、 39、 41の方が耐摩耗性に優れ るものであった。すなわち単繊維の異形度を本発明にて好ましい範囲とすることによ り、鞘成分を均一に被覆させ易くなり(鞘成分の厚みの最小値が大きい)、かつ単繊 維の断面が過度な鋭角部を有さないため、耐剥離性、耐摩耗性に優れた捲縮糸とな つた o
[0298] [表 10]
表 1 0
[0299] (実施例 42〜44)
実施例 36において、芯成分ホッパーに供給するチップを変更した以外は、実施例 36と同様にして実施例 42〜44の BCFヤーンを得た。実施例 42〜44の結果を表 11 に、それぞれにおける芯成分ホッパーに供給したチップを下記に示す。
.実施例 42の芯成分のチップ: P4/P8 = 90/10 (重量比)チップブレンド •実施例 43の芯成分のチップ: P4ZP9 = 90/10 (重量比)チップブレンド
.実施例 44の芯成分のチップ: P4/P10 = 90/10 (重量比)チップブレンド。
[0300] 実施例 36、 42〜44からわ力るように、捲縮糸が成分 C (相溶化剤)を含有すること
により、芯鞘界面の接着性が高まり、耐剥離性、耐摩耗性に優れた捲縮糸となること がわカゝる。
[0301] (実施例 45)
実施例 36において、鞘成分ホッパーに供給するチップを変更した以外は、実施例
36と同様にして、実施例 45の BCFヤーンを得た。実施例 45の結果を表 11に、鞘成 分ホッパーに供給したチップを下記に示す。
[0302] ·実施例 45の鞘成分のチップ: N6— 1/N6~4 = 80/20 (重量比)チップブレン ド、
N6—4 :乾燥した N6— 1と、滑剤(日本油脂 (株)製 製品名アルフロー H— 50L (エチレンビスステアリン酸アミド、以下、 EBAと称する)とを、 N6— 1 :EBA= 90 : 10 (重量比)となるように 2軸混練押出機に供給し、シリンダー温度 220°Cで混練して得 た EBAを 10重量%含有したナイロン 6。該ポリマーの融点は 225°C、融解ピークの 熱容量が 81jZg、相対粘度 2. 59、溶融粘度 150Pa' sec_1であった。
[0303] 実施例 36、 45からわ力るように、捲縮糸が EBA (滑剤)を含有することにより、繊維 表面の平滑性が増すことにより、外力が繊維に伝達し難くなり、耐剥離性、耐摩耗性 に優れた捲縮糸となることがわかる。
[0304] [表 11]
表
(実施例 46〜50)
実施例 20において、成分 Α、成分 Βとして用いるチップを変更した以外は実施例 2 0と同様にして実施例 46〜50の BCFヤーンを得た。なお実施例 49においては実施 例 20と同一紡糸温度では紡糸ができな力つたため、紡糸温度 270°Cで実施した。実 施例 46〜50の結果を表 12に、それぞれにおける成分 A、成分 Bを下記に示す。 •実施例 46:成分 AZ成分 B = P4/N 11
•実施例 47:成分 AZ成分 B = P4/ (N6/N66)
•実施例 48:成分 AZ成分 B = P4/N610
•実施例 49:成分 AZ成分 B = P4/N66
•実施例 50:成分 AZ成分 B = P7/N6— 1
Nil :ナイロン 11、溶融粘度 150Pa'sec_1、融点 185°C、融解ピーク熱容量 42J
/ g
N6/N66:ナイロン 6とナイロン 66のモノマーが、モル比 80Z20で共重合されたナ ィロン、相対粘度 2. 59、融点 200°C、融解ピーク熱量 50jZg、溶融粘度 150Pa' se c
N610 :ナイロン 610、相対粘度 2. 59、融点 225°C、融解熱量ピーク 68jZg、溶融 粘度 150Pa' sec_1
N66 :ナイロン 66、相対粘度 2. 59、融点 260°C、融解熱量ピーク 73jZg、溶融粘 度 150Pa,sec_1
実施例 20、実施例 46〜48からわ力るように、本発明にて結晶性が高い成分 Bを鞘 成分とすることにより、より捲縮加工時によって鞘成分が結晶化が促進され、耐剥離 性に優れた捲縮糸となることがわかる。また捲縮糸の結晶性が高いほど、捲縮の堅 牢度が高くなり、筒編地やカーペットのバルキー性や柔軟性が長期に渡って維持さ れる、風合いに優れたものであった。
[0306] 実施例 20と実施例 49〜50からわ力るように、本発明にて好ま 、範囲の融点を有 する成分 A、成分 Bを用いることにより、成分 Aが熱劣化して粘度低下することにより、 成分 Aの内部に粘度斑が生じることを抑制でき、耐剥離性に優れた捲縮糸となること がわかる。成分 Aの内部に粘度斑が無いことにより、紡糸'延伸工程で芯成分と鞘成 分とを均一に配向させ易ぐ捲縮加工において芯成分と鞘成分の熱収縮特性の差が 生じ難い。結果として沸収の低い捲縮糸となるため、耐剥離性に優れた捲縮糸となる
[0307] また、実施例 20は実施例 49〜50と比較して、芯成分を繊維の横断面において中 心部に配置しており、本発明にて好ましいとされるポリマーで芯成分、鞘成分で構成 することにより、繊維表面を均一に鞘成分で被覆できるため(すなわち鞘成分の厚み の最小値が大きい)、耐摩耗性にも優れたものとなった。
[0308] さらに、実施例 20は実施例 49〜50と比較して捲縮糸の結晶性が高いため、捲縮 の堅牢度が高ぐ筒編地やカーペットのバルキー性や柔軟性が長期に渡って維持さ れる、風合いに優れたものであった。
[0309] (実施例 51)
実施例 20において、紡糸温度を 270°Cとした以外は実施例 20と同様にして、実施 例 51の BCFヤーンを得た。紡糸性はあまり良いとは言えず、 100kgの紡糸で、 10回 糸切れが発生した。
[0310] 実施例 20と実施例 51を比較するとわ力るように、本発明にて好ましいとされる紡糸 温度を採用することにより、成分 Aの熱劣化を抑制でき、製糸性が向上できることが ゎカゝる。
[0311] また成分 Aの熱劣化による粘度斑を抑えるほど、紡糸'延伸工程で芯成分と鞘成分 とを均一に配向させ易ぐ捲縮加工において芯成分と鞘成分の熱収縮特性の差が生 じ難い。この結果として沸収の低い捲縮糸となるため、耐剥離性に優れた捲縮糸とな る。
[0312] さらに、成分 Aの熱劣化を抑えることで、芯成分を繊維の横断面において中心部に 配置させることができ、繊維表面を均一に鞘成分で被覆させることができるため(鞘成 分の厚みの最小値が大きい)、耐摩耗性にも優れる捲縮糸となった。
[0313] [表 12]
表 1 2
[0314] (実施例 52)
実施例 36において、紡糸延伸連続熱処理装置すなわち熱処理後にエアスタッファ 捲縮加工を施さずに、巻き取る装置を用いた以外は、実施例 36と同様にして、未捲 縮の延伸糸を得た。延伸糸作製条件を下記に示す。
[0315] 延伸糸作製条件
'混練機温度: 230°C
'紡糸温度: 245°C
.濾層: 30 #モランダムサンド充填
•フィルター: 20 μ m不織布フィルター
•口金 2 (ポリマー吐出直前の口金):スリット幅 0. 15mm,スリット長 1. 5mm、孔数 9 6
•口金 1 (図 12の模式図 45の口金。口金 2の直前にあり芯成分、鞘成分に別々の流 路を有するもの):
鞘成分 孔径 0. 5mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 3
芯成分 スリット幅 0. 12mm、スリット長 1. 2mm、 1フィラメントに対して孔数 1 '吐出量: 498. 6gZ分(1パック 1糸条、 96フィラメント)
•芯鞘比:芯成分 Z鞘成分 = 80/20
•冷却:冷却長 lmのュニフロー使用。冷却風温度 20°C、風速 0. 5mZ秒、冷却開始 位置は口金面下 0. lm
•油剤:脂肪酸エステル 10%濃度エマルジョン油剤を糸に対して 10%付着
•第 1ロール温度:25°C
'第 2ロール温度: 70°C
•第 3ロール温度: 135°C
•第 4ロール温度: 190°C
•第 7ロール温度: 25°C
•第 1ロール速度: 840mZ分( =第 2ロール速度 Z 1. 02)
•第 2ロール速度: 857mZ分
•第 3ロール速度: 2400mZ分
•第 4ロール速度: 3000mZ分
•第 7ロール速度: 2900mZ分
'卷取速度: 2860mZ分
'総合延伸倍率: 3. 5倍 (第 2〜第 3ロール: 2. 8倍、第 3〜第 4ロール: 1. 25倍) '交絡ノズル圧空: 0. 2MPa
得られた延伸糸にっ 、て、図 13に示す仮撚加工装置を用いて仮撚加工 (ブレリア 加工)を施した。すなわち延伸糸チーズ 48から解舒した延伸糸 50を糸道ガイド 49、 51、 52を経て供給ロール 53で引き取った後、第 1ヒーター 54により加熱して撚りを熱 セットし、糸道ガイド 55を経て冷却板 56にて冷却する。その後 3軸ツイスター 57によ
り解撚し、延伸ロール 58にて引き取る。ついで、第 2ヒーター 59により加熱し、デリべ リロール 60、糸道ガイド 61を経て、交絡ノズル 62で交絡を施したのち、糸道ガイド 63 を経て仮撚カ卩ェ糸 64を巻き取る。このとき延伸倍率を 1. 05倍(=延伸ロール 58の 速度 Z供給ロール 53の速度)、第 1ヒーター 54の温度を 180°C、第 2ヒーター 59の 温度を 200。C、 3軸ツイスター 57 (ウレタンディスク)の DZY比(=ウレタンディスクの 周速度 Z延伸ロール 58の速度)を 1. 7、オーバーフィード率([{延伸ロール 58の速 度 デリベリーロール 60の速度 }Z延伸ロール 58の速度] X 100)を 15%、デリベリ 一ロール 60の速度を 600mZ分、交絡ノズルの圧空を 0. 2MPaとして延伸仮撚カロ ェを実施した。このとき問題となるレベルではないが、 100kgの仮撚カ卩ェ糸を得る際 に糸切れが 3回発生した。得られた仮撚加工糸は沸騰水処理後の捲縮伸長率 20% 、強度 2. 4cNZdtex、単繊維繊度 20dtex、沸収 6%、伸度 45%、鞘成分の厚みの 最小値は 0. 8 m、 CF値は 13であった。実施例 52の仮撚加工糸の耐剥離性評価 においては、淡色化、白化、毛玉の発生が見られた力 加わる外力の小さい、衣料 用途などに限定すれば使用できるものであった (耐剥離性の総合評価は△ (可)総合 評価 12点)。実施例 52の仮撚加工糸は単繊維のループに方向性があり、残留トルク もある捲縮形態であった力 実施例 36の BCFヤーンの方力 よりループの方向性、 振幅が不規則である単繊維で構成されており、残留トルクも無い捲縮糸であった。す なわち本発明にて好ましいとされる捲縮形態を有する BCFヤーンとすることにより、 捲縮糸に加えられた外力を分散させることが可能となり、耐剥離性に優れた捲縮糸と なった。
(比較例 13)
実施例 52にお ヽて得られた延伸糸につ!ヽて、図 13に示す仮撚加工装置を用い、 下記に示す条件で仮撚加工 (ウーリー加工)を施した以外は実施例 52と同様にして 仮撚加工糸を得た。すなわち延伸糸チーズ 48から解舒した延伸糸 50を糸道ガイド 4 9、 51、 52を経て供給ロール 53で引き取った後、第 1ヒーター 54により加熱して撚り を熱セットし、糸道ガイド 55を経て冷却板 56にて冷却する。その後 3軸ツイスター 57 により解撚し、延伸ロール 58にて引き取る。ついで、第 2ヒーター 59を糸道力も外し て(非加熱)デリベリロール 60に通し、糸道ガイド 61を経て、交絡ノズル 62で交絡を
施したのち、糸道ガイド 63を経て仮撚カ卩ェ糸 64を巻き取る。このとき延伸倍率を 1. 0 5倍(=延伸ロール 58の速度 Z供給ロール 53の速度)、第 1ヒーター 54の温度を 18 0°C、 3軸ツイスター 57 (ウレタンディスク)の DZY比(=ウレタンディスクの周速度 Z 延伸ロール 58の速度)を 1. 7、延伸ロール 58の速度およびデリベリーロール 60の速 度を 600mZ分、交絡ノズルの圧空を 0. 2MPaとして延伸仮撚カ卩ェを実施した。こ のとき問題となるレベルではないが、 100kgの仮撚カ卩ェ糸を得る際に糸切れが 3回 発生した。得られた仮撚加工糸は沸騰水処理後の捲縮伸長率 25%と良好な嵩高性 を有する捲縮糸であり、強度 3. 7cNZdtex、伸度 28%、沸収 13%であった。比較 例 13の仮撚加工糸の耐剥離性評価においては、白化、毛玉が著しぐ試料の穴あき が観察されるなど外観変化し易い捲縮糸であり、耐剥離性の点で実用性に乏しい繊 維であった (耐剥離性の総合評価は X (不可)総合評価 5点)。実施例 52と比較例 1 3を比較するとわ力るように、解撚後に加熱しながら高リラックス処理を行う加工 (ブレ リア加工)を施すことにより、非晶部の配向度を低くし、結晶化を促すことにより、強度 、沸収が共に低い仮撚加工糸とすることでも、耐剥離性が向上することがわかる。
[0317] (実施例 53)
成分 Aとしてポリ乳酸 P4 (融点 170°C、溶融粘度 200Pa' sec_ 1)、また、芯成分に ブレンドする成分 Bとして硫酸相対粘度 2. 15のナイロン 6 (N6— 5、融点 225°C、溶 融粘度 60Pa' sec—1)、鞘成分に用いる成分 Bとして硫酸相対粘度 2. 60のナイロン 6 (N6— 6、融点 225°C、溶融粘度 150Pa' sec_1)、をそれぞれ乾燥して水分率を 50 〜100ppmに調整した。
[0318] 紡糸機として、図 14に示す 2軸混練機を備えた紡糸連続捲縮付与装置を用い、溶 融紡糸、延伸、熱処理、捲縮処理を連続的に施し、エアースタッファ捲縮糸を得た。
[0319] 図 14に示した芯成分ホッパー 65に、成分 A(P4)Z成分 B (N— 1)をブレンド比 = 40Z60(重量比)となるように別々に計量してチップブレンドして投入し、鞘成分ホッ パー 66には成分 Β (Ν— 2)を投入し、成分 Αと成分 Βのブレンドポリマー及び成分 Β をそれぞれ 2軸押出混練機 67、 68にて別々に溶融および混練して紡糸ブロック 69 に導き、ギヤポンプ 70、 71にてそれぞれのポリマーを計量、排出し、内蔵された紡糸 パック 72に導き、三葉断面用口金の細孔を 120ホール有する、紡糸口金 73から紡
出した。この時、芯成分 Z鞘成分の複合比 = 80Z20 (重量比)となるように、芯成分 、鞘成分のギヤポンプの回転数を選定した (芯鞘型複合繊維は総重量に対して成分 Αを 32重量%含有して 、る)。そしてュ-フロー冷却装置 74で糸条 75を冷却固化し 、給油装置 76により給油した。さらに第 1ロール 77で引き取った後、第 2ロール 78、 第 3ロール 79の速度比により延伸を施し、第 3ロール 79で熱処理を施し、第 3ロール 79、第 4ロール 80の速度比によりさらに延伸を施し、第 4ロール 80で再度熱処理を 施し、第 4ロールと冷却ロールとの間で糸条をリラックスさせながら加熱流体を用いる 捲縮処理ノズル 81にてエアースタッファ捲縮を付与し、冷却ロール 82の表面におい て捲縮糸を室温に冷却して構造固定し、第 6ロール 83、第 7ロール 84の間で捲縮を 伸ばさない程度の張力(0. 05-0. lOcNZdtex、繊度は卷取った捲縮糸の繊度を 用いる)をかけながらストレッチし、卷取機 86で巻き取ることにより、紡糸、延伸、熱処 理、捲縮処理を 1段階で施した 1800デシテックス 120フィラメントのエアースタッファ 捲縮糸を得た (チーズパッケージ 85)を得た。約 100kgサンプリングしたが糸切れ、 単糸流れ等は発生せず、製糸は極めて安定していた。実施例 53の結果を表 13に示 す。
なお溶融紡糸、延伸、熱処理、捲縮処理条件は以下のとおりである。
'混練機温度: 230°C
'紡糸温度: 240°C
.濾層: 30 #モランダムサンド充填
•フィルター: 20 μ m不織布フィルター
•口金:スリット幅 0. 15mm,スリット長 1. 5mm、孔数 120
•口金 2 (ポリマー吐出直前の口金):スリット幅 0. 15mm,スリット長 1. 5mm、孔数 1 20
•口金 1 (図 12の模式図 45の口金。 口金 2の直前にあり芯成分、鞘成分に別々の流 路を有するもの):
鞘成分 孔径 0. 4mm,吐出孔長 0. 5mm, 1フィラメントに対して孔数 4
芯成分 スリット幅 0. 08mm、スリット長 1. 2mm、 1フィラメントに対して孔数 1
•吐出量: 360gZ分(1パック 1糸条、 120フィラメント)
•冷却:冷却長 lmのュニフロー使用。冷却風温度 20°C、風速 0. 5mZ秒、冷却開始 位置は口金面下 0. lm
•油剤:脂肪酸エステル 10%濃度エマルジョン油剤を糸に対して 10%付着
•第 1ロール温度:25°C
'第 2ロール温度: 75°C
•第 3ロール温度: 140°C
•第 4ロール温度: 190°C
•冷却ロール温度: 25°C
'第 6ロール温度: 25°C
•第 7ロール温度: 25°C
•加熱蒸気処理温度: 225°C
'第 1口ール速度: 690mZ分
•第 2ロール速度: 700mZ分
•第 3ロール速度: 1750mZ分
•第 4ロール速度: 2800mZ分
•冷却ロール速度: 80mZ分
•第 6ロール速度: 2000mZ分
•第 7ロール速度: 2040mZ分
'卷取速度: 2000mZ分
得られたエアースタッファ捲縮糸の横断面の TEM観察を行ったところ、均一に分 散した海島構造をとつており、島成分の直径は 0. 05-0. 30 /z mであった。また非 染色成分が島成分を形成していることから、成分 Aが島、成分 Bが海の海島構造 (ポ リマーァロイ構造 a)であった。また捲縮伸長率 25%、拘束荷重下伸長率 19%と、優 れた捲縮特性を示し、へたり難い捲縮を有する捲縮糸であった。そして該捲縮糸を 用いてカーペットを作製して耐摩耗試験を行った結果、摩耗減量率 10%と優れた耐 摩耗性を示した。また該捲縮糸の丸編を作製してアイロン耐熱性の評価を行った結 果、全く外観変化はなく優れた耐熱性を示した。該捲縮糸の DSCでの融点は 170°C 近傍 (成分 Aに由来するピーク)および 225°C近傍 (成分 Bに由来するピーク)と、各
成分起因の融解ピークが観測され、それぞれの融解ピークの熱容量の総和は 7 JZ gであり、十分な結晶性を示した。
[0321] (実施例 54〜57)
実施例 53において、芯成分のホッパーに充填する成分 Aと成分 Bのブレンド比率 を、変更した以外は実施例 53と同様にして実施例 54〜57のエアースタッファ捲縮糸 を得た。実施例 54〜57の結果を表 13に、それぞれにおける成分 Aと成分 Bのプレン ド比率 (重量比)を下記に示す。
•実施例 54:成分 AZ成分 B = 20/80
•実施例 55:成分 AZ成分 B = 55Z45
•実施例 56:成分 AZ成分 B = 70/30
•実施例 57:成分 AZ成分 B = 90Z10
実施例 54〜57から、本発明の芯鞘型複合繊維の捲縮糸は芯成分として成分 Bを 有することで芯成分の成分 B、鞘成分の成分 Bの相互作用によって芯鞘界面の接着 性が高まり、優れた耐摩耗性を示す。また芯成分の成分 A、成分 Bのブレンド比率を 本発明にて好ましいとされる範囲とすることによって、芯成分のポリマーァロイ構造、 島成分の直径を好ま 、範囲とすることができ、耐摩耗性に優れたエアースタッファ 捲縮糸を得ることができる。そしてへたり難い捲縮を有することから、カーペットとした 時の嵩高性に代表される品位が長期使用においても維持でき、また耐摩耗性の老 ィ匕も無 、カーペットを得ることができる。
[0322] [表 13]
表 1 3
*ポリマーァロイ構造を以下の a~cとして判別した
a:島成分が成分 A、海成分が成分 B
b :島成分が成分 B、海成分が成分 A
。:成分 、成分 Bともに海成分 (海海構造)
[0323] (実施例 58〜60)
実施例 53において、芯成分と鞘成分の複合比を変更し、得られる延伸糸の鞘成分 の厚みを変更した以外は、実施例 53と同様にして実施例 58〜60のエアースタッファ 捲縮糸を得た。
[0324] 実施例 58〜59については糸切れ無く製糸性が優れていたのに対し、実施例 60は 100kgの紡糸において糸切れが 2回発生した。実施例 58〜60の結果を表 14に、そ れぞれにおける芯成分と鞘成分の複合比 (重量比)を下記に示す。
•実施例 58 :芯成分 Z鞘成分 =85715
•実施例 59:芯成分 Z鞘成分 = 90Z10
•実施例 60:芯成分 Z鞘成分 = 95Z5
実施例 53 (表 13)、実施例 58〜60 (表 14)を比較するとわ力るように、鞘成分の厚 みが厚いほど捲縮伸長率が高ぐ拘束荷重下伸長率が高ぐかつ耐摩耗性に優れる 捲縮糸を得ることができる。また鞘成分が厚いほど、耐摩耗性に優れるだけでなぐ 拘束荷重下伸長率の高い、すなわち捲縮がへたり難い高品位な捲縮糸となる。
[表 14]
表 1 4
*ポリマ一ァロイ構造を以下の a~Cとして判別した
a :島成分が成分 A、海成分が成分 B
b :島成分が成分 B、海成分が成分 A
c :成分 A、成分 Bともに海成分 (海海構造)
(実施例 61〜65)
実施例 53において、第 4ロールの温度を変更した以外は実施例 53と同様にして、 紡糸、延伸、熱処理、捲縮処理を施し、エアースタッファ捲縮糸を得た。実施例 5361 〜64については紡出糸のバラスの発生も小さく、糸切れもな 紡糸は安定を極めた
1S 実施例 65については第 4ロール上で若干の糸揺れが発生して糸切れが 1回起こ つた。実施例 61〜65の結果を表 15に示す。また実施例 61〜65における第 4ロール の温度について下記に示す。
'実施例 61 第 4口 -ルの温度 = 140°C
'実施例 62第 4口 -ルの温度 = 150°C
'実施例 63 第 4口 -ルの温度 = 175°C
'実施例 64第 4口 -ルの温度 = 200°C
'実施例 65 第 4ロ -ルの温度 = 210°C
実施例 53 (表 13)および実施例 62〜63 (表 15)と、実施例 61、 65 (表 15)とを比 較すると、本発明において好ましいとされる捲縮伸長率とすることによって、耐摩耗性 が飛躍的に向上することがわかる。実施例 53、 62〜63の捲縮糸は適度な捲縮伸長 率を有する捲縮糸であるため、外力により摩耗された際に捲縮糸が倒れにくぐかつ 単糸間に適度な屈曲や絡合を有するため、外力がそれぞれの単糸に分散されて優 れた耐摩耗性を示した。
[表 15]
表 1 5
*ポリマ一ァロイ構造を以下の a〜cとして判別した
a :島成分が成分 A、海成分が成分 B
b :島成分が成分 B、海成分が成分 A
c:成分 A、成分 Bともに海成分 (海海構造)
(実施例 66〜68)
実施例 53において、使用する口金孔のスペックを変更し、得られるエアースタッフ ァ捲縮糸の異形度を変更した以外は、実施例 53と同様にして、紡糸、延伸、熱処理 、捲縮処理を施して実施例 66〜68のエアースタッファ捲縮糸を得た。実施例 66〜6 8の結果を表 16に示す。また実施例 66〜68にて使用した口金孔スペックを下記に 示す。
'実施例 66
口金 2 (ポリマー吐出直前の口金):スリット幅 0. 20mm、スリット幅 0. 8mm、孔数 12
0
•実施例 67
口金 2 (ポリマー吐出直前の口金):スリット長 0. 18mm、スリット幅 1. Omm、孔数 12 0
•実施例 68
口金 2 (ポリマー吐出直前の口金):スリット長 0. 12mm、スリット幅 1. 8mm、孔数 12 0
実施例 53 (表 13)、実施例 66〜68を比較してわ力るように、本発明において異形 度が高いエアースタッファ捲縮糸とすることにより、耐摩耗性に優れるものとなる。す なわち本発明にお 、て捲縮糸の異形度が高 、ほど、紡糸工程にぉ 、て島成分の直 径が微細化され易ぐ島が均一に分散したポリマーァロイ構造を有するため芯成分の 成分 AZ成分 Bと、鞘成分の成分 Bとの界面での接着性が高くなり、フィブリル化の無 ぃ耐摩耗性に優れた捲縮糸となった。さらに異形度の高い捲縮糸とすることで、へた り難い捲縮糸となり、長期使用においても耐摩耗性が低下しない捲縮糸となった。
[表 16]
表 1 6
*ポリマ一ァロイ構造を以下の a〜cとして判別した
a:島成分が成分 A、海成分が成分 B
b :島成分が成分 B、海成分が成分 A
<= :成分 、成分 Bともに海成分 (海海構造)
(実施例 69)
(紡糸 ·延伸 'けん縮加工)
成分 Aとして、ポリ乳酸 P4及び、成分 Bとして、ナイロン 6 (溶融粘度 580poise、融 点 225°C)とをェクストルダ一にて混練質量比(ポリ乳酸:ナイロン) 30 : 70、混練温度
230°Cで混練し、紡糸機に供給した。
[0331] 紡糸機における紡糸温度は 230°Cとし、紡糸パック中でメッシュサイズ 20 μ mの金 属不織布フィルターで濾過した後、 Y型孔を有する孔数 54の口金を通じて糸条を吐 出した。
[0332] 口金から吐出された紡糸糸条は、チムニ一風により冷却固化した後、低粘度鉱物 油で希釈した 25質量%の油剤液を付与した後、引取ロール (ネルソンタイプロール、 回転速度 700mZ分、ロール温度 65°C)に捲回した。
[0333] 糸条を卷き取ることなく引き続いて、第 1延伸ロール (ネルソンタイプロール、回転速 度 600mZ分、ロール温度 110°C)に捲回することにより 1段目の延伸を行った。更に 糸条を卷き取ることなく引き続いて、第 2延伸ロール (ネルソンタイプロール、回転速 度 1800mZ分、ロール温度 150°C)に捲回することにより 2段目の延伸を行った。
[0334] 糸条を卷き取ることなく引き続いて、延伸糸条をけん縮加工装置に導き、 170°C、 0 . 8MPaの加熱圧空によってけん縮カ卩ェし、回転移送装置上に噴出させ、冷却した。 次に、プラグ状のけん縮糸の塊を 2個 1対のセパレートロールにてストレッチをかけ、 塊を解した。該けん縮糸に交絡処理を施し、チーズ状に巻き取り、 2000dtex-94fi 1のけん縮糸を得た。
[0335] 得られたけん縮糸から繊維におけるポリ乳酸樹脂とナイロン 6との被覆関係を観察 したところ、水酸ィ匕ナトリウム水溶液処理により島構造が溶出して海構造が残存して いたことから、ポリ乳酸樹脂が島構造、ナイロン 6が海構造を形成していることを確認 した。
[0336] また、島構造のドメインサイズは、 25〜400nm (平均 180nm)あった。
[0337] また、 Y型繊維断面の異形度は 1. 34であった。
[0338] (撚糸)
上記けん縮糸に下撚りとして S撚りを 160回 Zmかけ、さらに 2本合糸し、上撚りとし て Z撚りを 160回 Zm力 4ナ、 105°Cにて熱セットを施した。
[0339] (染色)
ナイロン 6が被覆成分を形成して ヽたことから、含金染料にてナイロン 6を染色すベ ぐ次の様にして染色処理を行った。
[0340] 染色釜に浴比 1: 15の染色浴を準備し、含金染料として IRGALAN (R) Black RBLNを 2. 0%owf、染色助剤として、酢酸を 0. 5g/U硫安を 0. 5gZl添カ卩し、当 該染色浴に前記撚糸を入れ、 90°Cで 20分間、染色処理を施した。
[0341] (基布)
ポリ乳酸 P4から単繊維繊度 5. 5dtex目付 lOOgZm2のスパンボンド不織布を得て 、カーペットの基布とした。
[0342] (タフティング)
前記撚糸を前記基布に、 1Z8ゲージ、ステッチ 6. 8個 Zmmでタフトし、ノィル目 付 700gZm2の自動車オプションマット用のループカーペットを得た。
[0343] 得られたカーペットの摩耗減量率は 300回転摩耗において 3. 5%、 5500回転摩 耗において 33. 3%、湿熱老化後の摩耗減量率は 5. 2%であり、良好な耐摩耗性を 示した。また、得られたオプションマット用カーペットは、深みのある優れた発色を呈し ていた。
[0344] (実施例 70)
(紡糸 '延伸 ·けん縮加工)
実施例 69と同様にして紡糸 '延伸 ·けん縮加工を行った。
[0345] (撚糸)
実施例 69と同様にして撚糸を行った。
[0346] (染色)
実施例 69と同様にして染色を行った。
[0347] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0348] (タフティング)
前記撚糸を前記基布に、 1Z8ゲージ、ステッチ 7. 5個 Zmmでタフトし、パイルの 先端をカットして、パイル長 10mm、パイル目付 llOOgZm2の自動車オプションマツ ト用のサキソニーカーペットを得た。
[0349] 得られたオプションマット用カーペットの摩耗減量率は 300回転摩耗において 2. 2 %、 5500回転摩耗において 20. 8%、湿熱老化後の摩耗減量率性は 3. 1%であり
、良好な耐摩耗性を示した。また、得られたオプションマット用カーペットは、深みの ある優れた発色を呈して 、た。
[0350] (実施例 71)
(紡糸 '延伸 ·けん縮加工)
ポリマーの総吐出量および口金の孔数を変更した以外は実施例 69と同様にして紡 糸 ·延伸 ·けん縮加工を行 、、 1450dtex— 54filのけん縮糸を得た。
[0351] 得られたけん縮糸から繊維におけるポリ乳酸樹脂とナイロン 6との被覆関係を観察 したところ、水酸ィ匕ナトリウム水溶液処理により島構造が溶出して海構造が残存して いたことから、ポリ乳酸樹脂が島構造、ナイロン 6が海構造を形成していることを確認 した。
[0352] また、島構造のドメインサイズは、 25〜400nm (平均 200nm)であった。
[0353] また、 Y型繊維断面の異形度は 1. 34であった。
[0354] (撚糸)
撚糸は施さな力つた。
[0355] (染色)
ナイロン 6が被覆成分を形成していたことから、ナイロン 6を染色すベぐ実施例 69 と同様にして染色を行った。
[0356] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0357] (タフティング)
前記けん縮糸を前記基布に、 1Z10ゲージ、ステッチ 12個 Zmm、でタフトし、パイ ルの先端をカットして、パイル長 6mm、パイル目付 450gZm2の自動車ラインマット 用のベロアカーペットを得た。
[0358] 得られたカーペットの摩耗減量率は 300回転摩耗において 2. 6%、湿熱老化後の 摩耗減量率は 4. 2%であり、良好な耐摩耗性を示した。また、得られたカーペットは 、深みのある優れた発色を呈していた。また、得られたカーペットの耐熱性は、熱によ る融着もなく良好であった。
[0359] (比較例 16)
(紡糸 '延伸 ·けん縮加工)
ポリ乳酸とナイロンとの混練質量比を 100: 0とした以外は実施例 69と同様にして、 けん縮糸を得た。
[0360] (撚糸)
実施例 69と同様にして撚糸を行った。
[0361] (染色)
ポリ乳酸樹脂が 100質量%であることから、分散染料にてポリ乳酸榭脂を染色すベ ぐ次の様にして染色処理を行った。
[0362] 染色釜に浴比 1 : 15の染色浴を準備し、分散染料として Disperse Yellow KT— 1、 Disperse Red KT— 1、 Disperse Blue KT— 1を総染料濃度で 5%owf、染 色助剤として、酢酸を 0. 5gZl、ニツカサンソルト RM— 340 (日華化学 (株)製)を 0 . 5gZl添加し、当該染色浴に前記撚糸を入れ、 110°Cで 30分間、染色処理を施し た。
[0363] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0364] (タフティング)
実施例 69と同様にしてタフトし、ノィル目付 700gZm2のループカーペットを得た。
[0365] 得られたカーペットの摩耗減量率は 300回転摩耗において 6. 3%、 5500回転摩 耗において 95. 2%、湿熱老化後の摩耗減量率は 25. 2%であり、いずれも実施例 6 9と比べ劣るものであった。
[0366] (比較例 17)
(紡糸 '延伸 ·けん縮加工)
ポリ乳酸とナイロンとの混練質量比を 70: 30とした以外は実施例 69と同様にして、 けん縮糸を得た。
[0367] 得られたけん縮糸から繊維におけるポリ乳酸樹脂とナイロン 6との被覆関係を観察 したところ、水酸ィ匕ナトリウム水溶液処理により海構造が溶出して島構造が残存して いたことから、ポリ乳酸樹脂が海構造、ナイロン 6が島構造を形成していることを確認 した。
[0368] (撚糸)
実施例 69と同様にして撚糸を行った。
[0369] (染色)
ポリ乳酸樹脂が被覆成分を形成して ヽたことから、分散染料にてポリ乳酸榭脂を染 色すベぐ比較例 16と同様にして染色を行った。
[0370] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0371] (タフティング)
前記撚糸を前記基布に、 1Z8ゲージ、ステッチ 7. 5個 Zmmでタフトし、パイルの 先端をカットして、パイル長 10mm、パイル目付 llOOgZm2のサキソニーカーペット を得た。
[0372] 得られたカーペットの摩耗減量率は 300回転摩耗において 3. 2%、 5500回転摩 耗において 75. 1%、湿熱老化後の摩耗減量率は 18. 8%であり、実施例 70と比べ 劣るものであった。
[0373] (比較例 18)
(紡糸 '延伸 ·けん縮加工)
ポリ乳酸とナイロンとの混練質量比を 100: 0とした以外は実施例 69と同様にして、 けん縮糸を得た。
[0374] (撚糸)
実施例 69と同様にして撚糸を行った。
[0375] (染色)
ポリ乳酸樹脂が 100質量%であることから、分散染料にてポリ乳酸榭脂を染色すベ ぐ比較例 16と同様にして染色を行った。
[0376] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0377] (タフティング)
前記撚糸を前記基布に、 1Z8ゲージ、ステッチ 7. 5個 Zmmでタフトし、パイルの 先端をカットして、パイル長 10mm、パイル目付 llOOgZm2のサキソニーカーペット
を得た。
[0378] 得られたカーペットの摩耗減量率は 300回転摩耗において 2. 4%、 5500回転摩 耗において 85. 6%、湿熱老化後の摩耗減量率は 19. 9%であり、実施例 70と比べ 劣るものであった。
[0379] (比較例 19)
(紡糸 '延伸 ·けん縮加工)
ポリマーの総吐出量および口金の孔数を変更し、ポリ乳酸とナイロンとの混練質量 比率を 70: 30とした以外は実施例 69と同様にして紡糸 ·延伸 ·けん縮加工を行 ヽ、 1 450dtex- 54filのけん縮糸を得た。
[0380] 得られたけん縮糸から繊維におけるポリ乳酸樹脂とナイロン 6との被覆関係を観察 したところ、水酸ィ匕ナトリウム水溶液処理により海構造が溶出して島構造が残存して いたことから、ポリ乳酸樹脂が海構造、ナイロン 6が島構造を形成していることを確認 した。
[0381] (撚糸)
撚糸は施さな力つた。
[0382] (染色)
ポリ乳酸樹脂が被覆成分を形成して ヽたことから、分散染料にてポリ乳酸榭脂を染 色すベぐ比較例 16と同様にして染色を行った。
[0383] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0384] (タフティング)
前記けん縮糸を前記基布に、 1Z10ゲージ、ステッチ 12個 Zmmでタフトし、パイ ルの先端をカットして、パイル長 6mm、パイル目付 450gZm2のべロアカーペットを 得た。
[0385] 得られたカーペットの摩耗減量率は 300回転摩耗において 40. 2%、湿熱老化後 の摩耗減量率は 50. 3%であり、実施例 71と比べ劣るものであった。また、得られた カーペットの耐熱性はその試験においてパイルの融着が発生し、実施例 71と比べ劣 るものであった。
[0386] (比較例 20)
(紡糸 '延伸 ·けん縮加工)
ポリマーの総吐出量および口金を変更し、ポリ乳酸とナイロンとの混練質量比を 10 0: 0とした以外は実施例 69と同様にして紡糸 ·延伸 ·けん縮加工を行 ヽ、 1450dtex 54f ilのけん縮糸を得た。
[0387] (撚糸)
撚糸は施さな力つた。
[0388] (染色)
ポリ乳酸樹脂が 100質量%であることから、分散染料にてポリ乳酸榭脂を染色すベ ぐ比較例 16と同様にして染色を行った。
[0389] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0390] (タフティング)
前記けん縮糸を前記基布に、 1Z10ゲージ、ステッチ 12個 Zmmでタフトし、パイ ルの先端をカットして、パイル長 6mm、パイル目付 450gZm2のべロアカーペットを 得た。
[0391] 得られたカーペットの摩耗減量率は 300回転摩耗において 43. 4%、湿熱老化後 の摩耗減量率は 70. 2%であり、実施例 71と比べ劣るものであった。
[0392] また、得られたカーペットの耐熱性はその試験にぉ 、てパイルの融着が発生し、実 施例 71と比べ劣るものであつた。
[0393] (比較例 21)
(紡糸 '延伸 ·けん縮加工)
ポリマーの総吐出量および口金を変更し、ポリ乳酸とナイロンとの混練質量比を 0: 100とした以外は実施例 69と同様にして紡糸 ·延伸 'けん縮力卩ェを行い、 1560dtex 96filのけん縮糸を得た。
[0394] (撚糸)
上記けん縮糸に下撚りとして S撚りを 140回 Zmかけ、さらに 2本合糸し、上撚りとし て Z撚りを 140回 Zm力 4ナ、 125°Cにて熱セットを施した。
[0395] (染色)
ナイロン 6を染色すベぐ実施例 69と同様にして染色を行った。
[0396] (基布)
実施例 69と同様のものをカーペットの基布とした。
[0397] (タフティング)
前記撚糸を前記基布に、 1Z10ゲージ、ステッチ 8. 5個 Zmmでタフトし、パイルの 先端をカットして、パイル長 10mm、パイル目付 llOOgZm2のサキソニーカーペット を得た。
[0398] 得られたカーペットの摩耗減量率は 300回転摩耗において 1. 0%、 5500回転摩 耗において 9. 2%、湿熱老化後の摩耗減量率は 2. 1%であり、良好な耐摩耗性を 示した。また、得られたカーペットは、発色性が実施例と比べ劣るものであった。
[0399] [表 17]
表 17
PLA:ポリ乳酸
N6:ナイロン 6
[0400] (実施例 72)
(紡糸'延伸)
成分 Aとして、ポリ乳酸 P4及び、成分 Bとして、ナイロン 6 (溶融粘度 580poise、融 点 225°C)とをェクストルダ一にて混練質量比(ポリ乳酸:ナイロン) 30 : 70、混練温度 230°Cで混練し、紡糸機に供給した。
[0401] 紡糸機における紡糸温度は 230°Cとし、紡糸パック中でメッシュサイズ 20 μ mの金 属不織布フィルターで濾過した後、丸型孔を有する孔数 26の口金を通じて糸条を吐 出した。
[0402] 紡糸速度 2000mZ分にて、 252dtex— 26filの未延伸糸を巻き取り、その後、縦 型延伸機を用いて、延伸倍率 3. 0倍、延伸温度 90°C、セット温度 130°Cの条件で一 段延伸を施し、 84dtex— 26filの延伸糸を得た。
[0403] 得られた延伸糸から繊維におけるポリ乳酸樹脂とナイロン 6との被覆関係を観察し たところ、水酸ィ匕ナトリウム水溶液処理により島構造が溶出して海構造が残存してい たことから、ポリ乳酸樹脂が島構造、ナイロン 6が海構造を形成していることを確認し た。
[0404] また、島構造のドメインサイズは、 15〜200nm (平均 lOOnm)であった。
[0405] (合糸'編み)
得られた延伸糸を 4本合糸して、カーシート用にダブルジャージを作成した。
[0406] (染色)
ナイロン 6が被覆成分を形成して ヽたことから、含金染料にてナイロン 6を染色すベ ぐ次の様にして染色処理を行った。
[0407] 染色釜に浴比 1: 15の染色浴を準備し、含金染料として IRGALAN (R) Black RBLNを 2. 0%owf、染色助剤として、酢酸を 0. 5g/U硫安を 0. 5gZl添カ卩し、当 該染色浴に前記撚糸を入れ、 90°Cで 20分間、染色処理を施した。
[0408] 得られたカーシートは実用上問題のない強力を有しており、又、 90°C雰囲気中で の強力保持率も 67. 9%と実用上問題なぐ耐摩耗性も良好であった。
[0409] (実施例 73)
(紡糸'延伸)
ポリ乳酸とナイロンとの混練質量比(ポリ乳酸:ナイロン)を 20: 80とした以外は実施 例 72と同様にして 84dtex - 26f ilの延伸糸を得た。
[0410] 得られた延伸糸から繊維におけるポリ乳酸樹脂とナイロン 6との海島関係を観察し たところ、水酸ィ匕ナトリウム水溶液処理により島構造が溶出して海構造が残存してい たことから、ポリ乳酸樹脂が島構造、ナイロン 6が海構造を形成していることを確認し た。
[0411] (合糸'編み)
得られた延伸糸を 4本合糸して、カーシート用にダブルジャージを作成した。
[0412] (染色)
ナイロン 6が被覆成分を形成して ヽたことから、含金染料にてナイロン 6を染色すベ ぐ実施例 72と同様にして染色を行った。
[0413] 得られた布帛は実用上問題のない強力を有しており、又、 90°C雰囲気中での強力 保持率も 75. 8%と実用上問題なぐ耐帛摩耗性も良好であった。
[0414] (比較例 22)
(紡糸'延伸)
ポリ乳酸とナイロンとの混練質量比(ポリ乳酸:ナイロン)を 70: 30とした以外は実施 例 72と同様にして 84dtex - 26f ilの延伸糸を得た。
[0415] 得られた延伸糸から繊維におけるポリ乳酸樹脂とナイロン 6との海島関係を観察し たところ、水酸ィ匕ナトリウム水溶液処理により海構造が溶出して海構造が残存してい たことから、ポリ乳酸樹脂が海構造、ナイロン 6が島構造を形成していることを確認し た。
[0416] (合糸'編み)
得られた延伸糸を 4本合糸して、実施例 72と同様にダブルジャージを作成した。
[0417] (染色)
ポリ乳酸樹脂が被覆成分を形成して ヽたことから、分散染料にてポリ乳酸榭脂を染 色すベぐ比較例 16と同様にして染色を行った。
[0418] 得られた布帛は、 90°C雰囲気中での強力保持率が 29. 3%と低ぐ耐摩耗性も実 施例 72と比較すると劣り、実用上の使用が困難な結果となった。
[0419] (比較例 23)
(紡糸'延伸)
ポリ乳酸とナイロンとの混練質量比を 100: 0とした以外は実施例 72と同様にして、 延伸糸を得た。
[0420] (合糸'編み)
得られた延伸糸を 4本合糸して、実施例 72と同様にダブルジャージを作成。
[0421] (染色)
ポリ乳酸樹脂が 100質量%であることから、分散染料にてポリ乳酸榭脂を染色すベ ぐ比較例 16と同様にして染色を行った。
[0422] 得られた布帛は、 90°C雰囲気中での強力保持率が 25. 6%と低ぐ耐摩耗性も実 施例 72と比較すると劣り、実用上の使用が困難な結果となった。
[0423] [表 18]
本発明により、耐摩耗性に優れるとともに、染色後の審美性に優れた肪族ポリエス テル樹脂と熱可塑性ポリアミド榭脂よりなる合成繊維カゝら構成される捲縮糸、および 繊維構造体を提供することができ、一般衣料用途や産業資材用途に最適な合成繊 維および繊維構造体を提供することができる。