WO2007043376A1 - 変調装置、変調方法、復調装置、及び復調方法 - Google Patents

変調装置、変調方法、復調装置、及び復調方法 Download PDF

Info

Publication number
WO2007043376A1
WO2007043376A1 PCT/JP2006/319669 JP2006319669W WO2007043376A1 WO 2007043376 A1 WO2007043376 A1 WO 2007043376A1 JP 2006319669 W JP2006319669 W JP 2006319669W WO 2007043376 A1 WO2007043376 A1 WO 2007043376A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
masker
modulation
frequency
acoustic
Prior art date
Application number
PCT/JP2006/319669
Other languages
English (en)
French (fr)
Inventor
Hosei Matsuoka
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to US12/066,836 priority Critical patent/US8498860B2/en
Priority to EP06811017A priority patent/EP1947793A4/en
Publication of WO2007043376A1 publication Critical patent/WO2007043376A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control

Definitions

  • Modulation device modulation method, demodulation device, and demodulation method
  • the present invention relates to a sound wave information communication technique for transmitting information by sound waves.
  • Patent Document 1 Japanese Patent Document 1
  • a frequency masking threshold is calculated using a psychoacoustic model, and a spread signal that is spread over the entire frequency band by multiplying a transmission signal by a spreading code sequence is set to a masking threshold value or less. In such a way, they are superimposed.
  • Patent Document 1 International Publication No. 02/45286 Pamphlet
  • Patent Document 1 In the method described in Patent Document 1, it is necessary to increase the spreading gain of a spreading code in order to extract a transmission signal from speech 'music'. However, the amount of information that can be transmitted is reduced by increasing the spreading gain. If the transmission signal level is suppressed to a level that cannot actually be perceived by human hearing, the method described in Patent Document 1 can transmit information of only a few bits per second.
  • the present invention has been made to solve the above-described problems, and is not unpleasant to human hearing. Based on the level, information is transmitted by an audible sound wave and the bit rate of the transmission information is It is an object to improve.
  • the modulation device includes a modulation unit that generates a modulation signal by modulating a carrier wave in an audible sound band with a baseband signal, and a masker sound that makes the modulation signal difficult to hear when transmitted together with the modulation signal. It is characterized by comprising a masker sound generating means for generating an output masker signal and an acoustic signal generating means for generating an acoustic signal by adding the masker signal to the modulation signal.
  • the modulation means modulates an audible sound band carrier wave with a baseband signal to generate a modulation signal
  • the masker sound generation means is transmitted together with the modulation signal.
  • a signal generation step for generating a masker signal that is output as a masker sound that makes the modulated signal difficult to hear.
  • an acoustic signal generating means that adds a masker signal to the modulated signal to generate an acoustic signal.
  • the modulation means modulates the audible sound band carrier wave with the baseband signal to generate the modulation signal, so that the information contained in the baseband signal is converted into the audible sound wave. It can be put in a state where transmission is possible at a higher bit rate.
  • the masker sound generating means generates a masker signal that is output as a masker sound that makes it difficult to hear the modulated signal when transmitted along with the modulated signal, and the acoustic signal generating means converts the masker signal into a modulated signal.
  • an audible sound wave for transmitting information can be transmitted in a state where it is difficult to hear by a masker sound of a masker signal. That is, it is not unpleasant to human hearing, and based on the level, information can be transmitted with an audible sound wave and the bit rate of transmitted information can be improved.
  • the masker tone generation means comprises each masker signal inserted into the modulation signal as a sine wave, and at least some of the continuous masker tone frequencies of each masker tone have a predetermined pattern. It is also preferable to select the frequency of the masker signal so that
  • the modulation device converts the amplitude of the carrier wave in the audible sound band into the spectral envelope of the acoustic signal. And a modulation means for generating a modulated signal by modulating the carrier wave with a baseband signal, and an acoustic signal for generating a synthesized acoustic signal by replacing the frequency band component of the carrier wave in the acoustic signal with the modulated signal generated by the modulation means And a signal generating means.
  • the modulation unit adjusts the amplitude of the carrier wave in the audible sound band to the vector envelope of the acoustic signal and modulates the carrier wave with the baseband signal to generate a modulation signal;
  • the acoustic signal generation means includes an acoustic signal generation step of generating a synthesized acoustic signal in which a component of a frequency band of a carrier wave in the acoustic signal is replaced with a modulation signal generated in the modulation step.
  • the modulation means matches the amplitude of the carrier wave in the audible sound band with the spectral envelope of the acoustic signal and modulates the carrier wave with the baseband signal to generate the modulated signal.
  • a signal corresponding to an audible sound wave that produces a sound based on the sound is generated, and information contained in the baseband signal can be transmitted at a higher bit rate by the audible sound wave.
  • the acoustic signal generation means replaces the frequency band of the carrier wave with the modulation signal to generate a synthesized acoustic signal, so that the sound can be produced based on the acoustic signal and the bit rate of the transmission information can be further improved to transmit the information.
  • the modulation means preferably amplifies the power of the spectrum of the frequency to the threshold when there is a frequency that does not satisfy the predetermined threshold based on the audible level in the spectrum envelope of the acoustic signal. Masashi.
  • the demodulating device of the present invention duplicates a signal frame of a transmission signal modulated by a frequency multiplexing method and connects a plurality of signal frames including the duplicated signal frame and the transmitted signal frame. And a demodulating means for demodulating the signal frame by performing a Fourier transform on the plurality of signal frames connected by the connecting means, and detecting a carrier frequency shift of the transmission signal in the plurality of signal frames Fourier-transformed by the demodulating means. The transmission signal based on the detection means and the deviation of the carrier frequency detected by the detection means. And a correction means for correcting the carrier frequency.
  • the concatenating means duplicates the signal frame of the transmission signal modulated by the frequency multiplexing method, and concatenates a plurality of signal frames including the duplicated signal frame and the transmitted signal frame.
  • a demodulating step for demodulating the signal frame by Fourier transforming the plurality of signal frames concatenated in the concatenating step, and a plurality of signal frames in which the detecting means is Fourier transformed in the demodulating step.
  • Detecting means for detecting a shift in the carrier frequency of the transmission signal and correction means for correcting the carrier frequency of the transmission signal based on the shift in the carrier frequency detected in the detection step.
  • the concatenating means duplicates the signal frame of the transmission signal modulated by the frequency multiplexing method, and Fourier transforms the plurality of concatenated signal frames.
  • the width of the signal orthogonal frequency can be reduced. That is, the frequency resolution can be improved.
  • the detection means can accurately detect the shift of the carrier frequency of the transmission signal in the Fourier transformed signal frame, and the carrier frequency can be corrected by the correction means.
  • the demodulation device of the present invention demodulates an acoustic signal including a modulation signal and a masker signal that is output as a masker sound that makes the modulation signal difficult to hear when transmitted together with the modulation signal.
  • An apparatus comprising: removal means for removing a masker signal from an acoustic signal; and demodulation means for demodulating the acoustic signal from which the masker signal has been removed by the removal means.
  • a signal included in a modulation signal can be extracted from an acoustic signal including the modulation signal and a masker signal.
  • the demodulator of the present invention comprises a modulation signal and a masker output as a masker sound that is composed of a frequency associated with the frequency band of the carrier wave and makes it difficult to hear the modulation signal when transmitted together with the modulation signal.
  • a demodulator for demodulating an acoustic signal including a single signal, storage means for storing the frequency band of the carrier wave and the frequency of the masker signal in association with each other, and a Fourier transform of the masker signal to generate a masker sound.
  • the detecting means for detecting the frequency, the frequency of the masker signal detected by the detecting means and the frequency stored in association with the storing means
  • a demodulating means for demodulating the acoustic signal in a band.
  • the frequency band of the carrier wave and the frequency of the masker sound are stored in association with each other, and the detection means detects the frequency of the masker signal, so that the frequency band of the carrier wave is grasped. Can provide necessary information. Therefore, the demodulation means demodulates the acoustic signal in the frequency band stored in association with the frequency of the masker signal detected by the detection means and the storage means, so that the demodulation can be performed accurately.
  • the present invention it is not unpleasant for human hearing! Based on the level, it is possible to transmit information with an audible sound wave and to improve the bit rate of the transmitted information.
  • FIG. 1 is a configuration diagram of an acoustic signal transmission system according to a first embodiment.
  • FIG. 2 is a configuration diagram of an acoustic signal receiving system according to the first embodiment.
  • FIG. 3 is a configuration diagram of a modulation device according to the first embodiment.
  • FIG. 5 is a flowchart of a modulation method according to the first embodiment.
  • FIG. 6 is a configuration diagram of a demodulation device according to the first embodiment.
  • FIG. 7 is a configuration diagram of an acoustic signal transmission system according to a second embodiment.
  • FIG. 8 is a configuration diagram of a modulation device according to a second embodiment.
  • FIG. 9 is a diagram for explaining a modulation method according to the second embodiment.
  • FIG. 10 is an example of a frequency utilization arrangement of a transmission acoustic signal output from a modulation apparatus according to a second embodiment.
  • FIG. 11 is a flowchart of a modulation method according to the second embodiment.
  • FIG. 12 is a configuration diagram of a demodulation device according to a second embodiment.
  • FIG. 13 is a configuration diagram of a modulation device according to a third embodiment.
  • FIG. 14 is an example of a frequency utilization arrangement of transmission acoustic signals output from the modulation apparatus according to the third embodiment.
  • FIG. 15 is a configuration diagram of a demodulating device according to a third embodiment.
  • FIG. 16 is a diagram for explaining a demodulation method according to the third embodiment.
  • FIG. 17 is a diagram for explaining a demodulation method according to the third embodiment.
  • Synthesized sound signal 41—SZP converter, 42... carrier wave, 43 guard time signal generator, 44 masker sound generator, 45 frame sync signal generator, 46—DZA converter, 47 ⁇ Pilot signal ⁇ Acoustic signal generation unit, 101 AZD conversion unit, 102 ⁇ Frame synchronization unit, 103 ⁇ ⁇ ⁇ Masker sound ⁇ Guard time removal unit, ⁇ 104 ⁇ Carrier wave, 105 PZS conversion unit, 106 ... Bandpass filter, 107 ... Frame synchronization signal, 108-OFDM modulation signal, 109 ... Phase correction unit, llO OFDM frame concatenation unit, 111 ... Subcarrier selection unit, 11 2 ... Demodulation unit, 113 ... Storage unit 114 ... detection unit, 115 ... guard time removal unit, 116 ... demodulation unit, RSI, RS2 "'acoustic signal transmission system, TS1, TS2"' acoustic signal transmission system.
  • the system of the first to third embodiments according to the present invention is a sound wave information communication system for transmitting information by an audible sound wave.
  • first to third embodiments will be described with reference to the drawings.
  • FIG. 1 shows a configuration diagram of the acoustic signal transmission system TS1 according to the first embodiment
  • FIG. 2 shows a configuration diagram of the acoustic signal reception system RS1 according to the first embodiment.
  • the sound wave information communication system according to the present embodiment includes the acoustic signal transmission system TS1 and the acoustic signal reception system RS1 shown in FIGS.
  • the acoustic signal transmission system TS1 outputs a transmission data signal 1T including information to be transmitted on the sound wave 7.
  • the acoustic signal receiving system RS1 receives the sound wave 7 output from the acoustic signal transmission system TS1, and extracts the transmission data signal 1T from the sound wave 7.
  • the acoustic signal transmission system TS1 audiblely transmits an error correction coding device 2 that encodes the transmission data signal IT with an error correction code, and an encoded transmission signal 3 (baseband signal) that is encoded with the error correction code. It includes a modulation device 4A that converts a transmission acoustic signal 5A (acoustic signal), which is a band acoustic signal, and a speaker 6 that reproduces the transmission acoustic signal 5A as an audible sound wave 7.
  • a modulation device 4A that converts a transmission acoustic signal 5A (acoustic signal), which is a band acoustic signal
  • a speaker 6 that reproduces the transmission acoustic signal 5A as an audible sound wave 7.
  • the acoustic signal receiving system RS 1 receives a sound wave 7 and generates a received acoustic signal 9 A (acoustic signal) that is an acoustic signal, and demodulates the received acoustic signal 9 A to generate a received transmission signal 11.
  • a demodulating device 10A that extracts data and an error correction decoding device 12 that corrects errors in the received transmission signal 11 and outputs a transmission data signal 1R are configured.
  • FIG. 2 shows a configuration diagram of the modulation device 4A according to the first embodiment.
  • the modulation device 4A includes an S / P conversion unit 41, a modulation unit 51 (modulation unit), a guard time signal generation unit 43, a masker sound generation unit 44 (masker sound generation unit), and an acoustic signal generation unit 52 (acoustic signal). Generating means), a frame synchronization signal generating unit 45, and a DZA converting unit 46.
  • the SZP conversion unit 41 receives the encoded transmission signal 3 and converts the encoded transmission signal 3 of a single bit stream into a parallel bit stream.
  • the SZP conversion unit 41 outputs the converted parallel bit stream to the modulation unit 51.
  • Modulation section 51 modulates carrier wave 42 of each frequency with each parallel transmission bit of the input parallel bit stream, and synthesizes the modulated carrier wave 42 signal to form a signal frame (modulated signal).
  • the modulation unit 51 modulates using the OFDM modulation method. That is, the frequency of the carrier 42 (carrier frequency) is an orthogonal frequency that is orthogonal to each other. Further, the transport wave 42 is a sound wave in the audible sound band.
  • the modulation unit 51 assigns each parallel transmission bit as a spectrum coefficient of each carrier wave frequency, and modulates the carrier wave 42 by performing an inverse Fourier transform. Then, the modulation unit 51 combines the modulated carrier waves 42 of each frequency to form a signal frame. Modulation section 51 outputs the formed signal frame to guard time signal generation section 43.
  • the guard time signal generation unit 43 duplicates a rear section of the input signal frame and performs duplication.
  • the manufactured rear section is connected to the front of the signal frame as a guard time signal.
  • This guard time signal can avoid multipath interference such as reflected waves.
  • the guard time signal generation unit 43 outputs the signal frame and the generated guard time signal to the masker sound generation unit 44.
  • the masker sound generation unit 44 generates a masker signal.
  • a masker signal is a signal that is output as a masker sound of a signal frame and a guard time signal when transmitted as a sound wave 7 together with a signal frame and a guard time signal.
  • the masker sound is a sound that makes it difficult for humans to hear by masking the sound when the signal frame and guard time signal are transmitted.
  • the masker tone generator 44 selects a sine wave of at least one frequency as a masker tone and generates a masker signal.
  • the masker sound generator 44 selects the frequency of the masker signal so that the frequency of at least a part of the continuous masker sounds of each masker sound has a predetermined pattern. More specifically, the masker sound generator 44 selects the frequency of the masker sound to be inserted so that a series of melody is formed when each masker sound included in each signal frame is transmitted.
  • the masker tone generation unit 44 may synthesize a plurality of sine waves to generate a masker tone, and change the tone of the masker tone. Further, the masker sound generation unit 44 selects a frequency or a frequency pattern associated with the frequency band of the carrier wave 42 as the frequency of the masker sound. That is, the generated masker signal includes information indicating the frequency band of the carrier wave 42.
  • the masker sound generation unit 44 outputs the generated masker signal, signal frame, and guard time signal to the acoustic signal generation unit 52.
  • the acoustic signal generator 52 adds a masker signal to the signal frame to generate an acoustic signal.
  • the acoustic signal generation unit 52 adds a masker signal to the front of the guard time signal and the rear of the signal frame to generate an acoustic signal. That is, the acoustic signal generation unit 52 generates an acoustic signal in which the masker signal is inserted.
  • the acoustic signal generation unit 52 first fades out the front signal frame in front of the masker sound section to prevent the masker sound, the guard time, and the signal frame from being discontinuous in phase. An acoustic signal is generated so that it fades in. Then, at the end of the masker sound, the acoustic signal generator 52 fades out the masker sound and fades in the guard time. Generate an acoustic signal.
  • the acoustic signal generating unit 52 generates a fade-out signal that fades out the front signal frame by copying the front of the front signal frame and connecting the replicas behind.
  • the acoustic signal generation unit 52 generates a fade-in signal that fades in the guard time by generating the guard time long in advance.
  • the acoustic signal generation unit 52 outputs the generated acoustic signal to the frame synchronization signal generation unit 45.
  • the frame synchronization signal generation unit 45 generates a frame synchronization signal and adds it to the acoustic signal.
  • the frame synchronization signal is a signal for specifying the location of each of the signal frame, guard time signal, and masker signal included in the acoustic signal on the receiving side.
  • the frame synchronization signal is a PN (pseudo noise) signal modulated with an M-sequence code.
  • the frame synchronization signal generation unit 45 outputs the acoustic signal with the frame synchronization signal added to the DZA conversion unit 46.
  • the DZA conversion unit 46 converts the acoustic signal into an analog signal and outputs the analog signal to the speech force 6 as the transmission acoustic signal 5A.
  • FIG. 4 shows an example of frequency use of the signal frame, guard time signal, masker signal, and frame synchronization signal included in the transmission acoustic signal 5A.
  • the beginning of the frame sync signal should be coincident with the start point of a masker note.
  • the spread spectrum frame sync signal is transmitted in the low frequency range with a lot of environmental noise.
  • the masker, guard time, and signal frame are transmitted in the high frequency range. That is, the frame synchronization signal is transmitted in a frequency band different from the frequency band for transmitting the signal frame, the guard time, and the masker signal.
  • FIG. 5 is a flowchart of the modulation method according to the first embodiment.
  • the encoded transmission signal 3 is also converted into a parallel bit stream by the SZP converter 41 (S11). Then, each carrier wave 42 is modulated (inverse Fourier transform) by the modulation unit 51 with each parallel transmission bit of the parallel bit stream, and the modulated carrier waves 42 are combined to form a signal frame (S12).
  • the rear section of the formed signal frame is duplicated by the guard time signal generation unit 43 and connected in front to generate a guard time signal (S13). Guard time is generated Then, the masker signal power is generated by the masker sound generator 44 (S14). The generated masker signal force is added to the front of the guard time and the rear of the signal frame by the acoustic signal generation unit 52 to generate an acoustic signal (S15).
  • a PN (pseudo noise) signal modulated by the M-sequence code is generated by the frame synchronization signal generation unit 45 and added to the acoustic signal as a frame synchronization signal (S16).
  • the acoustic signal force generated in this way is converted to an analog signal by the DZA conversion unit 46 and output as a transmission acoustic signal 5A.
  • the transmission acoustic signal 5A output in this way is output as a sound wave 7 from the speaker 6, and plays a masker sound based on the masker signal and propagates the signal in space.
  • the sound wave 7 is received by the microphone 8.
  • the sound wave 7 received by the microphone 8 is output as a received acoustic signal 9A to the demodulator 10A.
  • FIG. 6 shows a configuration diagram of the demodulator 10A according to the first embodiment.
  • the demodulator 10A includes an AZD conversion unit 101, a frame synchronization unit 102, a masker sound / guard time removal unit 103 (removal unit), a demodulation unit 112 (demodulation unit), a storage unit 113 (storage unit), and a detection unit 114 (detection). Means) and a PZS converter 105.
  • the AZD conversion unit 101 samples the received acoustic signal 9A and converts it into a digital signal.
  • the AZD conversion unit 101 outputs the converted digital signal to the frame synchronization unit 102.
  • Frame synchronization section 102 correlates the input digital signal with the PN signal modulated by the M-sequence code while shifting by one sample and several samples, and recognizes the point with the highest correlation value as the frame synchronization point. Divide into frame units. The frame synchronization unit 102 outputs the divided signal divided into frame units to the masker sound guard time removal unit 103.
  • the masking tone 'guard time removal unit 103 removes the masker signal and the guard time from the divided signal for each divided frame, and extracts a signal frame.
  • the masker one-tone guard time removal unit 103 outputs the extracted signal frame to the demodulation unit 112.
  • the masker tone guard time removal unit 103 outputs the masker signal removed from the signal frame to the detection unit 114.
  • the demodulator 112 demodulates the signal frame with each carrier wave 104. Input to demodulator 112 When signal frames having different frequency bands of the carrier wave 104 are mixed, the demodulation unit 112 demodulates corresponding to the frequency band of the carrier wave 104. In other words, the demodulation unit 112 selects the frequency band of the carrier wave 104 to be demodulated using the functions of the storage unit 113 and the detection unit 114.
  • the storage unit 113 stores the frequency band of the carrier wave 104 and the frequency of the masker signal in association with each other.
  • the frequency of the masker signal may be a specific masker signal included in the acoustic signal, or may be a frequency pattern constituting a series of melodies.
  • the storage unit 113 stores the frequency band A of the carrier wave 104 and the frequency a of the masker signal in association with each other.
  • the storage unit 113 stores the frequency band B of the carrier wave 104 and the frequency pattern information b indicating the frequency pattern of the masker signal in association with each other.
  • the detection unit 114 performs a Fourier transform on the masker signal input from the masker sound guard time removal unit 103 to detect the frequency of the masker signal.
  • the detection unit 114 outputs information indicating the frequency of the detected masker signal to the demodulation unit 112.
  • the demodulation unit 112 When receiving information indicating the frequency of the masker signal, the demodulation unit 112 receives the frequency of the carrier signal 104 to be demodulated based on the frequency of the input masker signal and the frequency band stored in association with the storage unit 113. Determine the band. Then, the demodulation unit 112 determines and demodulates the signal frame with the carrier 104 in the frequency band.
  • the demodulation unit 112 demodulates, for example, by the OFDM demodulation method, the signal frame is Fourier-transformed.
  • Demodulation section 112 outputs the spectral coefficient of each carrier 104 obtained by demodulation to PZS conversion section 105.
  • PZS conversion section 105 extracts parallel transmission bits from the input spectral coefficients.
  • the P / S conversion unit 105 converts the extracted parallel transmission bits into a single bit stream and outputs it as a received transmission signal 11.
  • the demodulator 10A configured as described above operates as follows. First, when the received acoustic signal 9A is input, the received acoustic signal 9A is converted into a digital signal by the AZD conversion unit 101. The converted digital signal power is divided into frames by the frame synchronization unit 102. The divided signal is removed from the masker signal and guard time signal for each frame by the masker sound guard time removal unit 103, and a signal frame is extracted. It is. The removed masker signal is Fourier transformed by the detection unit 114 to detect the frequency of the masker sound.
  • Each of the extracted signal frames is demodulated by the demodulation unit 112 using the carrier 104 in the frequency band stored by the storage unit 113 in association with the detected frequency of the masker sound.
  • the PZS converter 105 also extracts parallel transmission bits from the spectral coefficient power of the carrier wave 104 obtained by demodulation.
  • the extracted parallel transmission bits are converted into a single bit stream by the PZS conversion unit 105 to generate a reception transmission signal 11.
  • the modulation unit 51 generates a signal frame by modulating the carrier wave 42 in the audible sound band with the parallel transmission bit 3, so that it is included in the parallel transmission bit by the audible sound wave. Information can be transmitted at a higher bit rate.
  • the masker sound generation unit 44 generates a masker signal that is output as a masker sound for listening to the transmission sound of the signal frame
  • the acoustic signal generation unit 52 adds the masker signal to the signal frame to generate an acoustic signal. Since the signal is generated, it is possible to transmit an audible sound wave that transmits information in a state in which it is difficult to hear. That is, it is possible to transmit information with an audible sound wave based on a level that is not unpleasant to human hearing and to improve the bit rate of the transmitted information.
  • the masker tone generation unit 44 configures each masker signal inserted into the modulation signal as a sine wave, and at least a part of the continuous masker tone frequency of each masker tone has a predetermined frequency. It is also preferable to select the masker signal frequency to be a pattern. By doing so, it is possible to maintain the bit rate of the transmission information and to select the sound pattern played by a masker sound during the transmission of the acoustic signal.
  • the masker sound generator 44 is selected during the transmission of the acoustic signal by selecting the frequency of the masker sound so that a series of melodies are generated when each masker sound included in each signal frame is transmitted. You can play melodies.
  • the masker sound 'guard time removing unit 103 removes the received modulation signal force masker signal divided into frames, extracts a signal frame, and demodulates the signal. Since 112 demodulates the signal frame, the acoustic signal power including the signal frame and the masker signal can also extract information contained in the signal frame.
  • the storage unit 113 stores the frequency band of the carrier wave 104 and the frequency of the masker sound in association with each other, and the detection unit 114 detects the frequency of the masker signal. It is possible to provide information necessary for grasping. Therefore, the demodulating unit 112 demodulates the acoustic signal by using the frequency of the masker signal detected by the detecting unit 114 and the frequency band stored in association with the storing unit 113, so that demodulation can be performed accurately.
  • the sound wave information transmission system is a system for transmitting information by reproducing a transmission signal from the power in parallel with voice and music.
  • the sound wave information transmission system of the present embodiment includes an acoustic signal transmission system and an acoustic signal reception system.
  • FIG. 7 shows a configuration diagram of an acoustic signal transmission system TS2 according to the second embodiment.
  • the acoustic signal transmission system TS2 of this embodiment includes an error correction coding device 2, a modulation device 4B, and a speaker 6.
  • the input signal of the modulation device 4B includes an audio signal 13 such as voice or music in addition to the encoded transmission signal 3.
  • the difference between the acoustic signal transmission system TS2 according to the present embodiment and the acoustic signal transmission system TS1 according to the first embodiment is that a modulation device 4B is provided instead of the modulation device 4A, and the modulation device 4B inputs the acoustic signal 13 It is a point.
  • the acoustic signal receiving system of the present embodiment has the same configuration as the acoustic signal receiving system RS1 of the first embodiment, and includes a demodulating device 10B instead of the demodulating device 10A.
  • the modulation device 4B converts the encoded transmission signal 3 so that it can be transmitted as an acoustic signal, synthesizes it with the acoustic signal 13, and outputs a synthesized acoustic signal 14B.
  • the synthesized acoustic signal 14B is received as the received acoustic signal 9B by the microphone 8 of the acoustic signal receiving system.
  • Demodulation apparatus 10B extracts received transmission signal 11 from received acoustic signal 9B. Subsequently, the modulation device 4B and the demodulation device 10B will be described in detail.
  • FIG. 8 shows a configuration diagram of a modulation device 4B according to the second embodiment.
  • Modulator 4B includes S / P converter 41, spectrum envelope amplitude adjuster 47, modulator 53 (modulator), guard time signal A generation unit 43, a frame synchronization signal generation unit 45, a bandpass filter 48, an acoustic signal generation unit 54 (acoustic signal generation means), and a DZA conversion unit 46 are configured.
  • the functions of the SZP conversion unit 41, the guard time signal generation unit 43, the frame synchronization signal generation unit 45, and the DZA conversion unit 46 are the same as those included in the modulation device 4A according to the first embodiment, and thus description thereof is omitted.
  • the spectrum envelope amplitude adjustment unit 47 receives the acoustic signal 13 and performs Fourier transform on the input acoustic signal to calculate the spectral envelope of the acoustic signal 13. That is, the spectrum envelope amplitude adjustment unit 47 calculates the amplitude of each frequency of the acoustic signal 13. Then, the vector envelope amplitude adjustment unit 47 outputs the calculation result of the spectrum envelope to the modulation unit 53. Further, the spectrum envelope amplitude adjustment unit 47 outputs the input acoustic signal 13 to the bandpass filter 48.
  • Modulation section 53 adds transmission bits known in the reception side (demodulation apparatus 10 B) in parallel as pilot signal 49 to the parallel bit stream input from SZP conversion section 41. Next, based on the spectrum envelope calculation result output from the spectrum envelope amplitude adjustment unit 47, the modulation unit 53 applies the amplitude of each frequency of the acoustic signal 13 to each bit of the parallel transmission bits including the pilot signal 49. Information is added correspondingly. Then, the modulation unit 53 modulates the carrier wave 42 with each transmission bit to which the amplitude information of the acoustic signal 13 is added.
  • the modulation unit 53 matches the amplitude of each carrier wave 42 with the spectrum envelope of the acoustic signal 13 and modulates each carrier wave 42 with each bit of the parallel transmission bits including the pilot signal 49.
  • the modulation unit 53 modulates using the OFDM modulation method. That is, the modulation unit 53 uses orthogonal frequencies that are orthogonal to each other as the frequency of the carrier wave 42, assigns a vector envelope and parallel transmission bits as spectral coefficients of each carrier frequency, and performs modulation by inverse Fourier transform.
  • the modulation unit 53 when the spectrum envelope indicated by the calculation result includes a frequency that does not satisfy a predetermined threshold value based on the audible level, the modulation unit 53 amplifies the spectrum power of that frequency to the threshold value.
  • the threshold is set, for example, below the audible level or below the allowable range.
  • the modulation unit 53 combines the modulated signals of the carrier waves 42 to form a signal frame. Modulation section 53 outputs the formed signal frame to guard time signal generation section 43.
  • the band-pass filter 48 removes the frequency band component of the carrier wave 42 from the input acoustic signal 13 and outputs it to the acoustic signal generation unit 54.
  • the acoustic signal generation unit 54 superimposes the frame signal output from the frame synchronization signal generation unit 45, the guard time signal, the frame synchronization signal, and the acoustic signal 13 output from the bandpass filter 48.
  • a synthetic acoustic signal 14B is generated. That is, the acoustic signal generation unit 54 generates the composite acoustic signal 14B by replacing the frequency band component of the carrier wave 42 in the acoustic signal 13 with the modulation signal.
  • the acoustic signal generation unit 54 outputs the generated synthesized acoustic signal 14B to the DZA conversion unit 46.
  • FIG. 8 (a) shows an example of the spectrum of the acoustic signal 13.
  • the bandpass filter 48 removes the frequency band D component of the carrier wave 42 from the acoustic signal 13 shown in FIG. 8 (a).
  • the solid line portion indicates the acoustic signal 13 from which the component of the frequency band D is removed, and the dotted line indicates the frequency band D from which the component is removed.
  • the modulation unit 53 matches the amplitude of each carrier 42 with the spectrum envelope, and modulates each carrier 42 to generate a modulated signal 42F.
  • the acoustic signal generation unit 54 superimposes the modulated signal 42F and the acoustic signal 13 from which the frequency band D component has been removed to generate a combined modulated signal 14B.
  • FIG. 10 shows an example of frequency usage of the signal frame, guard time signal, masker signal, and frame synchronization signal included in the synthesized acoustic signal 14B.
  • the start of the frame sync signal should be coincident with the start time of the guard time.
  • the spread spectrum frame synchronization signal is transmitted in the low frequency range where the acoustic signal 13 component remains.
  • the guard time and signal frame are transmitted in the high frequency range. That is, the frame synchronization signal is transmitted in a frequency band different from the frequency band for transmitting the signal frame and the guard time.
  • FIG. 11 is a flowchart of the modulation method according to the second embodiment.
  • the encoded transmission signal 3 is also converted into a parallel bit stream by the SZP conversion unit 41 (S21). Further, the spectrum envelope force of the acoustic signal 13 is calculated by the vector envelope amplitude adjusting unit 47 (S22). Acoustic signal below threshold 1 When there is a frequency of 3, the power of the corresponding frequency is amplified by the modulation unit 53 (S23).
  • the amplitude information 1S pilot signal 49 of each frequency of the acoustic signal 13 indicated in the calculation result of the spectral envelope is added in correspondence with each bit of the parallel transmission bits.
  • the carrier wave 42 is modulated by each transmission bit to which the amplitude information of the acoustic signal 13 is added. That is, the amplitude of the carrier wave 42 is adjusted by the modulation unit 53 in accordance with the spectrum envelope of the acoustic signal 13, and each carrier wave 42 is modulated (inverse Fourier transform) by each transmission bit. Then, the modulated signal of each carrier wave 42 is combined to form a signal frame (S24).
  • the rear section of the formed signal frame is duplicated by the guard time signal generation unit 43 and connected in front to generate a guard time signal (S25).
  • a PN (pseudo noise) signal modulated by the M-sequence code is generated by the frame synchronization signal generation unit 45 and added to the signal frame as a frame synchronization signal (S26).
  • the acoustic signal 13 from which the frequency band of the carrier wave 42 has been deleted and the signal frame are superimposed by the acoustic signal generation unit 54 to generate a synthesized acoustic signal (S27).
  • the generated synthesized sound signal 14B force is converted into an analog signal by the DZA converter 46 and output (S28).
  • the synthesized acoustic signal 14B output in this way is output as a sound wave 7 from the speaker 6, plays a melody based on the acoustic signal 13, and propagates the signal through the space. Then, the sound wave 7 is received by the microphone 8 included in the acoustic signal receiving system. The sound wave 7 received by the microphone 8 is output to the demodulator 10B as a received acoustic signal 9B.
  • FIG. 12 shows a configuration diagram of the demodulator 10 B according to the second embodiment.
  • the demodulation device 10B includes an AZD conversion unit 101, a bandpass filter 106, a frame synchronization unit 102, a guard time removal unit 115, a demodulation unit 112, a phase correction unit 109, and a PZS conversion unit 105.
  • the AZD conversion unit 101, the frame synchronization unit 102, and the PZS conversion unit 105 have the same functions as those included in the demodulator 10A according to the first embodiment described above, and thus description thereof is omitted.
  • the bandpass filter 106 receives the digital signal output by the AZD conversion unit 101, and divides the input digital signal into a band having a frame synchronization signal component and a band having a signal frame component.
  • a signal in a band having a frame synchronization signal component is referred to as a frame synchronization signal 107
  • a signal in a band having a signal frame component is referred to as an OFDM modulation signal 108.
  • Bandpass filter 106 outputs frame synchronization signal 107 and OFDM modulated signal 108 to frame synchronization section 102, respectively.
  • Frame synchronization section 102 obtains a correlation with a PN signal modulated with an M-sequence code while shifting frame synchronization signal 107 by one sample and several samples, and recognizes a point having the highest correlation value as a frame synchronization point. . Then, frame synchronization section 102 divides OFDM modulated signal 108 into frame units according to the recognized frame synchronization point. Frame synchronization section 102 outputs the divided OFDM modulated signal 108 to guard time removal section 115.
  • the guard time removing unit 115 removes the guard time for each divided frame and extracts a signal frame.
  • the guard time removal unit 115 outputs the extracted signal frame to the demodulation unit 116.
  • Demodulation section 116 demodulates the extracted signal frame with each carrier 104.
  • the demodulator 1 16 performs Fourier transform on the signal frame and demodulates the signal frame using the OFDM demodulation method.
  • Phase correction section 109 extracts a pilot signal from demodulated carrier wave 104. Then, the phase correction unit 109 detects the signal change of the pilot signal by comparing the spectrum coefficient of the extracted pilot signal with the spectrum coefficient of the known pilot signal 49. Then, the phase correction unit 109 corrects the signal of the other carrier 104 based on the detected signal change. The phase correction unit 109 outputs the corrected signal to the PZS conversion unit 105.
  • PZS conversion section 105 extracts parallel transmission bits from the input signal. Then, the P / S conversion unit 105 converts the extracted parallel transmission bits into a single bit stream and outputs it as a received transmission signal 11.
  • the demodulator 10B configured as described above operates as follows. First, when the received acoustic signal 9B is input, the received acoustic signal 9B is converted into a digital signal by the AZD conversion unit 101. The converted digital signal is converted to frame sync signal 107 and OFDM modulation. The signal 108 is divided by the band pass filter 106. The OFDM modulation signal 108 is divided into frame units by the frame synchronization unit 102 based on the frame synchronization signal 107. The guard time removing unit 115 removes the guard time signal for each frame from the divided digital signal, and a signal frame is extracted.
  • Each extracted signal frame is demodulated by demodulation section 116 using carrier 104.
  • the pilot signal is extracted from the demodulated signal frame by the phase correction unit 109, and the signal of the other carrier 104 is also corrected for the changing force between the extracted pilot signal and the known pilot signal 49.
  • parallel transmission bits are extracted from the spectral coefficient of the carrier wave 104 by the PZS conversion unit 105.
  • the extracted parallel transmission bits are converted into a single bit stream by the P / S conversion unit 105, and the reception transmission signal 11 is generated.
  • the modulation unit 53 matches the amplitude of the carrier wave 42 in the audible sound band with the spectrum envelope of the acoustic signal 13, and modulates the carrier wave 42 with the baseband signal to generate a modulation signal. Therefore, an audible sound wave that produces a sound based on the acoustic signal 13 is generated, and a signal included in the baseband signal can be transmitted at a higher bit rate by the audible sound wave.
  • the acoustic signal generation unit 54 replaces the frequency band of the carrier wave 42 with the modulation signal to generate a synthesized acoustic signal, so that the sound based on the acoustic signal 13 can be played and the transmission information bit rate can be improved to transmit information. .
  • the modulation unit 53 when there is a frequency that does not satisfy a predetermined threshold value based on the audible level in the spectrum envelope of the acoustic signal 13, the modulation unit 53 amplifies the power of the spectrum of the frequency to the threshold value. It is possible to improve the S / N ratio of the transmission signal without generating unpleasant sound.
  • the phase correction unit 109 corrects the signal by estimating the change in the signal of the carrier wave 42 modulated by a known signal (for example, a pilot signal) and estimating the change in the signal of the other carrier 42. Changes in the amplitude or phase of the signal that occur during signal propagation can be corrected. Therefore, errors in signal identification due to signal changes can be reduced.
  • the modulation device 4A modulates the specific carrier wave 42 included in the signal frame with the pilot signal 49, and the demodulation device 10B detects the change in the signal of the specific carrier wave 42 to another carrier wave 42. Suppose you want to correct the signal.
  • the sound wave information transmission system is a system for transmitting a transmission signal and a masker sound in parallel with voice and music and reproducing and transmitting from a speaker as in the second embodiment.
  • this sound wave information transmission system corrects a small deviation in sampling frequency between the transmission side and the reception side on the reception side.
  • the sound wave information transmission system includes an acoustic signal transmission system (transmission side) and an acoustic signal reception system (reception side), similarly to the sound wave information transmission system of the second embodiment. Is done.
  • the modulation device 4C of the present embodiment converts the encoded transmission signal 3 so that it can be transmitted as a sound wave, synthesizes it with the acoustic signal 13, and outputs a synthesized acoustic signal 14B.
  • the demodulator 10C extracts the received transmission signal 11 from the received acoustic signal 9C.
  • the acoustic signal transmission system of the present embodiment has the same configuration as the acoustic signal transmission system RS2 of the second embodiment, and includes a modulation device 4C instead of the modulation device 4B.
  • the acoustic signal receiving system of the present embodiment has the same configuration as the acoustic signal receiving system of the second embodiment, and includes a demodulating device 10C instead of the demodulating device 10B. Subsequently, the modulation device 4C and the demodulation device 10C will be described in detail.
  • FIG. 13 shows the configuration of the modulation device 4C according to the third embodiment.
  • the modulation device 4C includes an S / P conversion unit 41, a spectrum envelope amplitude adjustment unit 47, a modulation unit 53, a guard time signal generation unit 43, a masker sound generation unit 44, an acoustic signal generation unit 52, a frame synchronization signal generation unit 45, A band-pass filter 48, an acoustic signal generation unit 54, and a DZA conversion unit 46 are provided. These components are the same as the components included in the modulators 4B and 4C of the first and second embodiments. Since these functions are provided, detailed description of each component will be omitted.
  • the encoded transmission signal 3 is input to the SZP conversion unit 41 and converted into a single bit stream encoded signal transmission signal 3 force S parallel bit stream.
  • a pilot signal 49 is added in parallel to the converted parallel bit stream by the modulation unit 53.
  • the acoustic signal 13 is input by the spectral envelope amplitude adjusting unit 47, and the spectral envelope is calculated.
  • each carrier 42 is adjusted according to the spectral envelope of the acoustic signal 13 and each bit of the parallel transmission bits including the pilot signal 49 is adjusted.
  • the carrier wave 42 is modulated by the modulation unit 53.
  • the modulated signal of each carrier 42 is combined by the modulation unit 53 to form a signal frame.
  • the rear section of the signal frame is duplicated by the guard time signal generation unit 43 and connected as a guard time signal in front of the signal frame.
  • a masker tone masking signal for masking the signal frame and the guard time signal is generated by the masker tone generator 44.
  • the generated masker signal is added by the acoustic signal generator 52 in front of the guard time signal and behind the signal frame. Then, it is generated by the frame synchronization signal power frame synchronization signal generating unit 45 for specifying the location of the signal frame, guard time signal, and masker signal on the receiving side, and is added to the signal frame.
  • the component of the carrier frequency band is removed from the acoustic signal 13 input by the spectrum envelope amplitude adjusting unit 47 by the band pass filter 48.
  • the acoustic signal 13 from which the frequency band of the carrier wave 42 has been removed, the signal frame, the guard time signal, the masker signal, and the force acoustic signal generation unit 54 are superimposed to generate a synthesized acoustic signal.
  • the generated synthesized acoustic signal 14C is converted into an analog signal by the DZA converter 46 and output.
  • FIG. 12 shows an example of the frequency utilization arrangement of the signal frame, guard time signal, masker signal, frame synchronization signal, and acoustic signal 13 included in the synthesized acoustic signal 14C thus generated.
  • the frame synchronization signal is transmitted in a frequency band different from that of the carrier wave 42. In other words, a spectrum spread frame in the low frequency range where the components of the acoustic signal 13 remain. Transmit synchronization signal.
  • a masker tone forms a melody using both low and high frequencies.
  • the guard time and the signal frame are transmitted in the high sound range.
  • the head of the frame sync signal should be the same as the head of the masker note.
  • a masker sound may be inserted at an arbitrary location in a band different from the carrier frequency band.
  • the guard time signal and the previous signal frame are adjacent to each other, and the phase of the guard time signal and the phase of the previous signal frame are discontinuous. Therefore, a masker sound is inserted in the vicinity of the boundary between the previous signal frame and the guard time signal so as to mask the phase discontinuous portion or the force for smoothing the phase discontinuous portion.
  • FIG. 15 shows the configuration of the demodulator 10 C according to the third embodiment.
  • the demodulation device 10C is a device that demodulates the received acoustic signal 9C modulated by the frequency multiplexing method.
  • the received acoustic signal 9C is a signal modulated by the OFDM modulation method.
  • the demodulator 10C includes an AZD conversion unit 101, a bandpass filter 106, a frame synchronization unit 102, a masker 'guard time removal unit 103, an OFDM frame connection unit 110 (connection means), a demodulation unit 116, and a subcarrier selection unit 111. (Detection means and correction means), a phase correction unit 109, and a PZS conversion unit 105.
  • the components included in the demodulation devices 10A and 10C have the same function in the demodulation device 10C.
  • FIGS. 16 and 17 are diagrams for explaining the demodulation method according to the third embodiment.
  • Fig. 16 (a) shows the combined signal of the masker signal, guard time signal, and OFDM modulation signal.
  • the masker's guard time removal unit 103 removes the masker signal and the guard time signal from the combined signal power shown in FIG. 16 (a), and extracts a signal frame.
  • Figure 16 (b) shows one signal frame.
  • the masker tone 'guard time removal unit 103 outputs the extracted signal frame to the OFDM frame concatenation unit.
  • the OFDM frame concatenation unit 110 duplicates the signal frame, and concatenates the duplicated signal frames. For example, the OFDM frame concatenation unit 110 duplicates one signal frame into four as shown in FIG. 16 (c) and concatenates the four signal frames. OFDM frame series The concatenating unit 110 outputs the concatenated signal frames to the demodulating unit 116.
  • FIG. 17 (a) shows the signal spectrum when the signal frames are Fourier transformed one by one as in the conventional case.
  • the horizontal axis indicates the frequency, and the bold scale indicates the frequency of the carrier wave 42 in the modulation device 4C.
  • Fig. 17 (a) shows the ideal signal spectrum when the frequency of the carrier 104 that identified the signal spectrum (the center frequency of the signal spectrum in Fig. 17) matches each frequency of the carrier 42. Shown in a).
  • Fig. 17 (b) shows the signal spectrum when Fourier transform is applied to a signal frame that is duplicated and connected in four.
  • the fine line on the horizontal axis indicates the frequency of the carrier 104 that identifies the signal spectrum.
  • FIG. 17 (b) shows an ideal signal spectrum when the frequency of the carrier 104 that identifies the signal spectrum matches the frequency of the carrier 42, as in FIG. 17 (a).
  • the frequency resolution in Fig. 17 (b) is four times the frequency resolution in Fig. 17 (a).
  • the frequency resolution can be increased by duplicating signal frames and connecting them to increase the Fourier transform target time.
  • Fig. 17 (c) shows the signal spectrum when four signal frames that are duplicated and concatenated are subjected to Fourier transform, and the frequency of the carrier 104 that identifies the signal spectrum deviates from the frequency of the carrier 42. Indicates. In this case, the frequency resolution is high, so the shifted signal The orthogonal frequency identifying the vector does not interfere with the orthogonal frequency corresponding to the adjacent signal. Therefore, each signal spectrum can be identified.
  • the frequency resolution can be increased by performing Fourier transform on a plurality of signal frames obtained by duplicating signal frames. Since the frequency resolution is high, each signal spectrum can be identified even when the frequency of the carrier 104 for identifying the signal spectrum is shifted.
  • subcarrier selecting section 111 detects the frequency shift of carrier 104 in the demodulated signal spectrum (transmission signal), and the signal spectrum based on the detected frequency shift of carrier 104.
  • the frequency of the carrier wave 104 is corrected. That is, when the subcarrier selection unit 111 detects a shift in the frequency of the carrier wave 104 in the signal spectrum, the subcarrier selection unit 111 corrects the frequency force of the carrier wave 104 to the closest frequency of the carrier wave 42. Since the frequency shift of the carrier wave 104 of the signal spectrum differs for each frequency, it is preferable to correct for each signal spectrum.
  • the subcarrier selection unit 111 performs correction by estimating the ratio of deviation from the frequency shift of some of the carrier waves 104. This method is effective because the frequency shift of the carrier 104 often increases or decreases at a certain rate from the frequency of the carrier wave 42. By this method, larger frequency shifts and Doppler shifts can be corrected.
  • the demodulator 10B configured as described above operates as follows.
  • the received acoustic signal 9B is converted into a digital signal by the AZD conversion unit 101.
  • the converted digital signal power is divided into a frame synchronization signal 107 and an OFDM modulation signal 108 by a band pass filter 106.
  • the OFDM modulation signal 108 is divided into frames by the frame synchronization unit 102 based on the frame synchronization signal 107. From the divided digital signal, the masker and guard time signal is removed for each frame by the masker sound guard time removing unit 103, and a signal frame is extracted.
  • the extracted signal frame force is duplicated and concatenated by the OFDM frame concatenation unit 110.
  • a plurality of concatenated signal frames are demodulated by the demodulation unit 116.
  • Demodulated signal Is corrected by the frequency force subcarrier selection unit 111 of the carrier 104 of the signal spectrum.
  • the pilot signal is extracted from the demodulated signal frame by the phase correction unit 109, and the phase of the other carrier wave 104 is corrected for the changing power of the pilot signal.
  • the parallel transmission bits of the spectral coefficient power of the carrier wave 104 are extracted by the PZS conversion unit 105.
  • the extracted parallel transmission bits are converted into a single bit stream by the P / S conversion unit 105, and the reception transmission signal 11 is generated.
  • the modulation unit 53 matches the amplitude of the carrier wave 104 with the spectrum envelope of the acoustic signal 13 and modulates the carrier wave 104 with the encoded transmission signal 3 to generate a signal frame.
  • an audible sound wave that produces a sound based on an acoustic signal is generated, and a signal included in the baseband signal is transmitted by the audible sound wave at a higher bit rate.
  • the masker sound generation unit 44 generates a masker signal that is output as a masker sound that makes it difficult to hear the sound during transmission of the signal frame and adds it to the signal frame.
  • the composite acoustic signal is generated by replacing the frequency band component of the carrier wave 104 with the modulation signal (signal frame), it is possible to transmit the audible sound wave including information in a state that it is difficult to hear by the masker sound of the masker signal. The That is, it is possible to transmit information with an audible sound wave based on a level that is not unpleasant to human hearing and improve the bit rate of the transmitted information.
  • the plurality of signal frames duplicated and concatenated by the OFDM frame concatenating unit 110 are Fourier-transformed.
  • the frequency range can be narrowed. That is, the frequency resolution can be improved.
  • the subcarrier selection unit 111 can accurately detect the frequency shift of the carrier wave 104 of the transmission signal in the Fourier-transformed signal frame and correct the frequency of the carrier wave 104.
  • the present invention uses a sound wave information communication technology for transmitting information by sound waves, and uses human sound. Based on the level, information is transmitted with an audible sound wave and the bit rate of the transmitted information is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transmitters (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 本発明の変調装置は、可聴音帯域の搬送波42を符号化伝送信号3で変調して変調信号を生成する変調部51と、変調信号と共に伝送される際に変調信号を聞こえにくくするマスカー音として出力されるマスカー信号を生成するマスカー音生成部44と、変調信号にマスカー信号を挿入して音響信号を生成する音響信号生成部52と、を備えることを特徴とする。

Description

明 細 書
変調装置、変調方法、復調装置、及び復調方法
技術分野
[0001] 本発明は、音波で情報を伝達する音波情報通信技術に関するものである。
背景技術
[0002] 音波を用いて情報を伝達する通信技術には、超音波を用いるものと可聴音波を用 いるものがある。 2つの音波のうち可聴音波を利用することにより次のような利点があ る。まず、現在市販されているスピーカ及びマイクロフォン等を用いて通信を行うこと ができることである。また、音波の伝搬は媒質の粘性による吸収減衰が生じる為、この 吸収減衰は周波数に比例して大きくなる。よって、可聴音波の方が超音波よりも減衰 は小さくなり、可聴音波の方が超音波よりも通信距離を長くすることができる。
[0003] しかし、可聴音波で通信する場合は、伝送信号の音が人間に聞こえるため、人間に とっては不快な騒音が発生することとなる。そこで、伝送信号をスペクトル拡散して音 声又は音楽に重畳する技術がある(下記の特許文献 1を参照)。この特許文献 1に記 載された技術では、心理音響モデルを用いて周波数マスキング閾値を計算し、伝送 信号に拡散符号系列を乗算して全周波数帯に拡散させた拡散信号をマスキング閾 値以下になるようにして重畳して 、る。
特許文献 1:国際公開第 02/45286号パンフレット
発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献 1に記載の方法では、音声'音楽から伝送信号を抽出するため拡散 符号の拡散利得を高くする必要がある。しかし、拡散利得を高くすることにより伝送で きる情報量が少なくなる。実際に人間の聴覚に知覚できないレベルに伝送信号のレ ベルを抑えると、上記特許文献 1に記載の方法では 1秒間で数ビット程度しか情報を 伝送できない。
[0005] 本発明は、上記問題点を解消するためになされたものであり、人間の聴覚に不快 でな 、レベルに基づ 、た可聴音波で情報を伝送すると共に伝送情報のビットレート を向上させることを課題とする。
課題を解決するための手段
[0006] 本発明の変調装置は、可聴音帯域の搬送波をベースバンド信号で変調して変調 信号を生成する変調手段と、変調信号と共に伝送される際に変調信号を聞こえにくく するマスカ一音として出力されるマスカ一信号を生成するマスカ一音生成手段と、変 調信号にマスカ一信号を付加して音響信号を生成する音響信号生成手段と、を備え ることを特徴とする。
[0007] 本発明の変調方法は、変調手段が、可聴音帯域の搬送波をベースバンド信号で 変調して変調信号を生成する変調ステップと、マスカ一音生成手段が、変調信号と 共に伝送される際に変調信号を聞こえにくくするマスカ一音として出力されるマスカ 一信号を生成するマスカ一音生成ステップと、音響信号生成手段が、変調信号にマ スカー信号を付加して音響信号を生成する音響信号生成ステップと、を備えることを 特徴とする。
[0008] 本発明の変調装置及び変調方法では、変調手段が、可聴音帯域の搬送波をべ一 スバンド信号で変調して変調信号を生成するので、ベースバンド信号に含まれる情 報を可聴音波に乗せてより高いビットレートで伝送可能な状態とすることができる。そ して、変調信号と共に伝送される際に変調信号を聞こえにくくするマスカ一音として 出力されるマスカ一信号をマスカ一音生成手段が生成し、音響信号生成手段が変 調信号にマスカ一信号を付加して音響信号を生成するので、情報を伝送する可聴音 波をマスカ一信号のマスカ一音によって聞こえにくい状態で伝送することができる。 すなわち、人間の聴覚に不快でな 、レベルにもとづ 、た可聴音波で情報を伝送する と共に伝送情報のビットレートを向上させることができる。
[0009] また、マスカ一音生成手段は、変調信号に挿入された各マスカ一信号を正弦波で 構成し、各マスカ一音のうち少なくとも一部の連続したマスカ一音の周波数が所定の パターンとなるようにマスカ一信号の周波数を選択することも好まし 、。
[0010] このようにすることにより、伝送情報のビットレートを維持すると共に、音響信号の伝 送中にマスカ一音によって奏でる音のパターンを選択することができる。
[0011] 本発明の変調装置は、可聴音帯域の搬送波の振幅を音響信号のスペクトル包絡 に合わせると共に搬送波をベースバンド信号で変調して変調信号を生成する変調手 段と、音響信号における搬送波の周波数帯域の成分を変調手段が生成した変調信 号と置き換えた合成音響信号を生成する音響信号生成手段と、を備えることを特徴と する。
[0012] 本発明の変調方法は、変調手段が、可聴音帯域の搬送波の振幅を音響信号のス ベクトル包絡に合わせると共に搬送波をベースバンド信号で変調して変調信号を生 成する変調ステップと、音響信号生成手段が、音響信号における搬送波の周波数帯 域の成分を変調ステップにおいて生成した変調信号と置き換えた合成音響信号を生 成する音響信号生成ステップと、を備えることを特徴とする。
[0013] 本発明の変調装置及び変調方法では、変調手段が可聴音帯域の搬送波の振幅を 音響信号のスペクトル包絡に合わせると共に搬送波をベースバンド信号で変調して 変調信号を生成するので、音響信号に基づく音を奏でる可聴音波に対応する信号 を生成すると共に可聴音波によってベースバンド信号に含まれる情報をより高いビッ トレートで伝送可能な状態とすることとなる。そして音響信号生成手段が搬送波の周 波数帯域を変調信号と置き換えて合成音響信号を生成するので、音響信号に基づく 音を奏でると共に伝送情報のビットレートをより向上させて情報を伝送することができ る。
[0014] また、変調手段は、音響信号のスペクトル包絡にぉ 、て可聴レベルに基づく所定の 閾値に満たな 、周波数がある場合に、該周波数のスペクトルのパワーを閾値まで増 幅することも好まし ヽ。
[0015] このようにすることにより、伝送中に不快な音を発生することなく伝送信号の SN比を 向上させることができる。
[0016] 本発明の復調装置は、周波数多重方式により変調された伝送信号の信号フレーム を複製し、複製した信号フレームと伝送された信号フレームとを含む複数の信号フレ ームを連結する連結手段と、連結手段によって連結された複数の信号フレームをフ 一リエ変換して信号フレームを復調する復調手段と、復調手段によってフーリエ変換 された複数の信号フレームにおける伝送信号の搬送波周波数のずれを検出する検 出手段と、検出手段によって検出された搬送波周波数のずれに基づいて伝送信号 の搬送波周波数を補正する補正手段と、を備えることを特徴とする。
[0017] 本発明の復調方法は、連結手段が、周波数多重方式により変調された伝送信号の 信号フレームを複製し、複製した信号フレームと伝送された信号フレームとを含む複 数の信号フレームを連結する連結ステップと、復調手段が、連結ステップにおいて連 結された複数の信号フレームをフーリエ変換して信号フレームを復調する復調ステツ プと、検出手段が、復調ステップにおいてフーリエ変換された複数の信号フレームに おける伝送信号の搬送波周波数のずれを検出する検出手段と、補正手段が、検出 ステップにおいて検出された搬送波周波数のずれに基づいて伝送信号の搬送波周 波数を補正する補正手段と、を備えることを特徴とする。
[0018] 本発明の復調装置及び復調方法によれば、連結手段が周波数多重方式により変 調された伝送信号の信号フレームを複製して、複数連結した信号フレームをフーリエ 変換するので、復調に用いる信号直交周波数の幅を狭くすることができる。すなわち 、周波数分解能を向上させることができる。周波数分解能が向上したことにより、検出 手段がフーリエ変換された信号フレームにおける伝送信号の搬送波周波数のずれを 的確に検出し、補正手段によって搬送周波数を補正することができる。
[0019] 本発明の復調装置は、変調信号と、変調信号と共に伝送される際に変調信号を聞 こえにくくするマスカ一音として出力されるマスカ一信号と、を含む音響信号を復調す る復調装置であって、音響信号からマスカ一信号を除去する除去手段と、除去手段 によってマスカ一信号が除去された音響信号を復調する復調手段と、を備えることを 特徴とする。
[0020] 本発明の復調装置によれば、変調信号とマスカ一信号とを含む音響信号から変調 信号に含まれる信号を抽出することができる。
[0021] 本発明の復調装置は、変調信号と、搬送波の周波数帯域と関連付けられた周波数 で構成され変調信号と共に伝送される際に変調信号を聞こえにくくするマスカ一音と して出力されるマスカ一信号と、を含む音響信号を復調する復調装置であって、搬送 波の周波数帯域とマスカ一信号の周波数とを関連付けて格納する格納手段と、マス カー信号をフーリエ変換してマスカ一音の周波数を検出する検出手段と、検出手段 が検出したマスカ一信号の周波数と格納手段によって関連付けて格納された周波数 帯域にお 1ヽて音響信号を復調する復調手段と、を備えることを特徴とする。
[0022] 本発明の復調装置によれば、搬送波の周波数帯域とマスカ一音の周波数とを関連 付けて格納し、検出手段がマスカ一信号の周波数を検出するので、搬送波の周波数 帯域を把握するために必要な情報を提供することができる。よって、復調手段が、検 出手段が検出したマスカ一信号の周波数と格納手段によって関連付けて格納された 周波数帯域にぉ 、て音響信号を復調するので、的確に復調を行うことができる。 発明の効果
[0023] 本発明によれば、人間の聴覚に不快でな!、レベルに基づ 、た可聴音波で情報を 伝送すると共に伝送情報のビットレートを向上させることができる。
図面の簡単な説明
[0024] [図 1]第 1実施形態に係る音響信号送信システムの構成図である。
[図 2]第 1実施形態に係る音響信号受信システムの構成図である。
[図 3]第 1実施形態に係る変調装置の構成図である。
圆 4]第 1実施形態に係る変調装置カゝら出力される送信音響信号の周波数利用例で ある。
[図 5]第 1実施形態に係る変調方法のフローチャートである。
[図 6]第 1実施形態に係る復調装置の構成図である。
[図 7]第 2実施形態に係る音響信号送信システムの構成図である。
[図 8]第 2実施形態に係る変調装置の構成図である。
[図 9]第 2実施形態に係る変調方法を説明するための図である。
[図 10]第 2実施形態に係る変調装置カゝら出力される送信音響信号の周波数利用配 置の例である。
[図 11]第 2実施形態に係る変調方法のフローチャートである。
[図 12]第 2実施形態に係る復調装置の構成図である。
[図 13]第 3実施形態に係る変調装置の構成図である。
[図 14]第 3実施形態に係る変調装置カゝら出力される送信音響信号の周波数利用配 置の例である。
[図 15]第 3実施形態に係る復調装置の構成図である。 [図 16]第 3実施形態に係る復調方法を説明するための図である。
[図 17]第 3実施形態に係る復調方法を説明するための図である。
符号の説明
[0025] 1Τ···伝送データ信号、 1R…伝送データ信号、 2…誤り訂正符号装置、 3…符号化 伝送信号、 4A〜4C…変調装置、 5A…送信音響信号、 6…スピーカ、 7…音波、 8— マイクロフォン、 9A〜9C…受信音響信号、 10A〜: LOC…復調装置、 11···受信伝送 信号、 12···誤り訂正復号装置、 13···音響信号、 14B, 14C…合成音響信号、 41— SZP変換部、 42…搬送波、 43···ガード時間信号生成部、 44···マスカ一音生成部 、 45···フレーム同期信号生成部、 46—DZA変換部、 47···スペクトル包絡振幅調 整部、 48…バンドパスフィルタ、 49···パイロット信号、 51···変調部、 52···音響信号 生成部、 53···変調部、 54···音響信号生成部、 101 AZD変換部、 102···フレー ム同期部、 103…マスカ一音 ·ガード時間除去部、 104…搬送波、 105 PZS変換 部、 106…バンドパスフィルタ、 107…フレーム同期信号、 108—OFDM変調信号、 109···位相補正部、 llO OFDMフレーム連結部、 111…サブキャリア選択部、 11 2…復調部、 113···格納部、 114…検出部、 115…ガード時間除去部、 116…復調 部、 RSI, RS2"'音響信号送信システム、 TS1, TS2"'音響信号送信システム。 発明を実施するための最良の形態
[0026] 本発明に係る第 1〜第 3実施形態のシステムは、可聴音の音波で情報を伝達する 音波情報通信システムである。以下、図面を参照しながら第 1〜第 3実施形態につい て説明する。
[0027] (第 1実施形態)
図 1に第 1実施形態に係る音響信号送信システム TS1の構成図を示し、図 2に第 1 実施形態に係る音響信号受信システム RS1の構成図を示す。本実施形態の音波情 報通信システムは、図 1、 2に示す音響信号送信システム TS1と音響信号受信システ ム RS1とを備えて構成される。本実施形態の音波情報通信システムにおいて、音響 信号送信システム TS1が、伝達する情報を含む伝送データ信号 1Tを音波 7に乗せ て出力する。そして、音響信号受信システム RS1が、音響信号送信システム TS1か ら出力された音波 7を受信して、音波 7から伝送データ信号 1Tを抽出する。 [0028] 音響信号送信システム TS1は、伝送データ信号 ITを誤り訂正符号で符号化する 誤り訂正符号装置 2と、誤り訂正符号で符号化された符号化伝送信号 3 (ベースバン ド信号)を可聴音帯域の音響信号である送信音響信号 5A (音響信号)に変換する変 調装置 4Aと、送信音響信号 5Aを可聴音の音波 7として再生するスピーカ 6と、を備 えて構成される。
[0029] 音響信号受信システム RS 1は、音波 7を受信して音響信号である受信音響信号 9 A (音響信号)を生成するマイクロフォン 8と、受信音響信号 9Aを復調して受信伝送 信号 11を抽出する復調装置 10Aと、受信伝送信号 11の誤りを訂正して伝送データ 信号 1Rを出力する誤り訂正復号装置 12と、を備えて構成される。
[0030] 以下、本実施形態に係る変調装置 4A及び復調装置 10Aについて詳細に説明す る。
[0031] 図 2に、第 1実施形態に係る変調装置 4Aの構成図を示す。変調装置 4Aは、 S/P 変換部 41、変調部 51 (変調手段)、ガード時間信号生成部 43、マスカ一音生成部 4 4 (マスカ一音生成手段)、音響信号生成部 52 (音響信号生成手段)、フレーム同期 信号生成部 45、及び DZA変換部 46を備えて構成される。
[0032] SZP変換部 41は、符号化伝送信号 3を入力して、シングルビットストリームの符号 化伝送信号 3をパラレルビットストリームに変換する。 SZP変換部 41は、変換したパ ラレルビットストリームを変調部 51へ出力する。
[0033] 変調部 51は、入力したパラレルビットストリームの各パラレル伝送ビットで各周波数 の搬送波 42を変調し、変調した搬送波 42の信号を合成し、信号フレーム (変調信号 )を形成する。変調部 51は、 OFDM変調方式を用いて変調する。すなわち、搬送波 4 2の周波数 (搬送波周波数)は、互いに直交関係にある直交周波数である。また、搬 送波 42は、可聴音帯域の音波である。変調部 51は、各パラレル伝送ビットを各搬送 波周波数のスペクトル係数として割り当てて、逆フーリエ変換をすることで搬送波 42 の変調を行う。そして、変調部 51は、変調した各周波数の搬送波 42を合成して、信 号フレームを形成する。変調部 51は、形成した信号フレームをガード時間信号生成 部 43へ出力する。
[0034] ガード時間信号生成部 43では、入力した信号フレームの後方区間を複製して、複 製した後方区間をガード時間信号として信号フレームの前方に連結させる。このガー ド時間信号によって反射波等のマルチパス干渉を回避することができる。ガード時間 信号生成部 43は、信号フレーム及び生成したガード時間信号をマスカ一音生成部 4 4へ出力する。
[0035] マスカ一音生成部 44は、マスカ一信号を生成する。マスカ一信号とは、信号フレー ムおよびガード時間信号と共に音波 7として伝送した場合に、信号フレーム及びガー ド時間信号のマスカ一音として出力される信号である。マスカ一音は、信号フレーム 及びガード時間信号が伝送される際の音をマスキングして人間に聞こえにくくする音 である。マスカ一音生成部 44は、マスカ一音として少なくとも 1つの周波数の正弦波 を選択してマスカ一信号を生成する。
[0036] また、マスカ一音生成部 44は、各マスカ一音のうち少なくとも一部の連続したマスカ 一音の周波数が所定のパターンとなるようにマスカ一信号の周波数を選択する。より 具体的には、マスカ一音生成部 44は、各信号フレームに含まれる各マスカ一音が伝 送される際に一連のメロディとなるように、挿入するマスカ一音の周波数を選択する。 マスカ一音生成部 44は、複数の正弦波を合成してマスカ一音を生成し、マスカ一音 の音色を変化させてもよい。更に、マスカ一音生成部 44は、マスカ一音の周波数とし て、搬送波 42の周波数帯域と関連付けられた周波数又は周波数パターンが選択さ れる。すなわち、生成されたマスカ一信号は、搬送波 42の周波数帯域を示す情報を 含むこととなる。マスカ一音生成部 44は、生成したマスカ一信号、信号フレーム、及 びガード時間信号を音響信号生成部 52へ出力する。
[0037] 音響信号生成部 52は、信号フレームにマスカ一信号を付加して音響信号を生成 する。音響信号生成部 52は、ガード時間信号の前方および信号フレームの後方に マスカ一信号を付加して音響信号を生成する。つまり、音響信号生成部 52は、マス カー信号が挿入された音響信号を生成する。また、音響信号生成部 52は、マスカ一 音とガード時間および信号フレームが位相不連続になるのを防ぐために、マスカ一音 区間の前方では、まず前方の信号フレームをフェードアウトさせ、マスカ一音をフエ一 ドインさせるように音響信号を生成する。そして、音響信号生成部 52は、マスカ一音 の終端では、マスカ一音をフェードアウトさせ、ガード時間をフェードインさせるように 音響信号を生成する。
[0038] より具体的には、音響信号生成部 52は、前方信号フレームの前方を複製して複製 を後方に連結して、前方信号フレームをフェードアウトさせるフェードアウト信号を生 成する。また、音響信号生成部 52は、あらかじめガード時間を長く生成して、ガード 時間をフェードインさせるフェードイン信号を生成する。音響信号生成部 52は、生成 した音響信号をフレーム同期信号生成部 45へ出力する。
[0039] フレーム同期信号生成部 45は、フレーム同期信号を生成して音響信号に付加する 。フレーム同期信号は、音響信号に含まれる信号フレーム、ガード時間信号、及びマ スカー信号のそれぞれの場所を受信側で特定するための信号である。具体的には、 フレーム同期信号は、 M系列符号で変調した PN (疑似ノイズ)信号である。フレーム 同期信号生成部 45は、フレーム同期信号を付加した音響信号を DZA変換部 46へ 出力する。
[0040] DZA変換部 46は、音響信号をアナログ信号に変換し、送信音響信号 5Aとしてス ピー力 6へ出力する。
[0041] 図 4に、送信音響信号 5Aに含まれる信号フレーム、ガード時間信号、マスカ一信 号、フレーム同期信号の周波数利用例を示す。フレーム同期信号の先頭は、マスカ 一音の開始ポイントと一致させる。スペクトル拡散したフレーム同期信号は、環境雑 音の多い低音域で伝送される。マスカ一音、ガード時間、及び信号フレームは、高音 域で伝送される。すなわち、フレーム同期信号は、信号フレーム、ガード時間及びマ スカー信号を伝送する周波数帯とは異なる周波数帯で伝送する。
[0042] 引き続いて、変調装置 4Aにおける変調方法について図 5を参照しながら説明する 。図 5は、第 1実施形態に係る変調方法のフローチャートである。
[0043] まず、符号化伝送信号 3が、 SZP変換部 41によってシングルビットストリームカもパ ラレルビットストリームに変換される(S 11)。すると、各搬送波 42が、パラレルビットスト リームの各パラレル伝送ビットで変調部 51によって変調 (逆フーリエ変換)され、変調 された各搬送波 42が合成されて信号フレームが形成される(S 12)。
[0044] 形成された信号フレームの後方区間が、ガード時間信号生成部 43によって複製さ れて前方に連結され、ガード時間信号が生成される(S13)。ガード時間が生成され ると、マスカ一信号力 マスカ一音生成部 44によって生成される(S 14)。生成された マスカ一信号力 音響信号生成部 52によってガード時間の前方および信号フレーム の後方に付加され、音響信号が生成される (S15)。
[0045] 音響信号が生成されると、 M系列符号で変調した PN (疑似ノイズ)信号が、フレー ム同期信号生成部 45によって生成され、フレーム同期信号として音響信号に付加さ れる(S16)。このように生成した音響信号力 DZA変換部 46によってアナログ信号 に変換され、送信音響信号 5Aとして出力される。
[0046] このようにして出力された送信音響信号 5Aは、スピーカ 6から音波 7として出力され 、マスカ一信号に基づくマスカ一音カ ロディを奏でると共に空間を信号が伝搬する 。そして、音波 7がマイクロフォン 8によって受信される。マイクロフォン 8によって受信 された音波 7は、受信音響信号 9Aとして復調装置 10Aへ出力される。
[0047] 次に復調装置 10Aについて説明する。図 6に、第 1実施形態に係る復調装置 10A の構成図を示す。復調装置 10Aは、 AZD変換部 101、フレーム同期部 102、マス カー音 ·ガード時間除去部 103 (除去手段)、復調部 112 (復調手段)、格納部 113 ( 格納手段)、検出部 114 (検出手段)、及び PZS変換部 105を備えて構成される。
[0048] AZD変換部 101は、受信音響信号 9Aをサンプリングし、デジタル信号に変換す る。 AZD変換部 101は、変換したデジタル信号をフレーム同期部 102へ出力する。
[0049] フレーム同期部 102は、入力したデジタル信号を 1サンプルおよび数サンプルずつ ずらしながら M系列符号で変調した PN信号との相関をとり、相関値の最も高いポイン トをフレーム同期ポイントと認識し、フレーム単位に分割する。フレーム同期部 102は 、フレーム単位に分割した分割信号をマスカ一音'ガード時間除去部 103へ出力す る。
[0050] マスカ一音'ガード時間除去部 103は、分割されたフレームごとにマスカ一信号及 びガード時間を分割信号から除去し、信号フレームを抽出する。マスカ一音'ガード 時間除去部 103は、抽出した信号フレームを復調部 112へ出力する。マスカ一音'ガ ード時間除去部 103は、信号フレームから除去したマスカ一信号を検出部 114へ出 力する。
[0051] 復調部 112は、信号フレームを各搬送波 104で復調する。復調部 112に入力され る信号フレームにおいて、搬送波 104の周波数帯が異なる信号フレームが混在する 場合、復調部 112は、それぞれの搬送波 104の周波数帯に対応して復調する。すな わち、復調部 112は、格納部 113及び検出部 114の機能を利用して復調する搬送 波 104の周波数帯を選択する。
[0052] 格納部 113は、搬送波 104の周波数帯とマスカ一信号の周波数とを関連付けて格 納している。マスカ一信号の周波数は、音響信号に含まれる特定のマスカ一信号で もよいし、一連のメロディを構成する周波数パターンでもよい。例えば、格納部 113は 、搬送波 104の周波数帯 Aとマスカ一信号の周波数 aとを関連付けて格納する。また 、例えば格納部 113は、搬送波 104の周波数帯 Bとマスカ一信号の周波数パターン を示す周波数パターン情報 bとを関連付けて格納する。
[0053] 検出部 114は、マスカ一音'ガード時間除去部 103から入力したマスカ一信号をフ 一リエ変換してマスカ一信号の周波数を検出する。検出部 114は、検出したマスカ一 信号の周波数を示す情報を復調部 112へ出力する。
[0054] 復調部 112は、マスカ一信号の周波数を示す情報を入力すると、入力したマスカ一 信号の周波数と格納部 113によって関連付けて格納された周波数帯に基づいて、復 調する搬送波 104の周波数帯を決定する。そして、復調部 112は、決定して周波数 帯の搬送波 104で信号フレームを復調する。
[0055] 復調部 112が、例えば、 OFDM復調方式で復調する場合は、信号フレームをフー リエ変換する。復調部 112は復調により得た各搬送波 104のスペクトル係数を PZS 変換部 105へ出力する。
[0056] PZS変換部 105は、入力したスペクトル係数からパラレル伝送ビットを抽出する。
そして、 P/S変換部 105は、抽出したパラレル伝送ビットをシングルビットストリーム に変換し、受信伝送信号 11として出力する。
[0057] 以上のように構成された復調装置 10Aは、以下のように動作する。まず、受信音響 信号 9Aが入力されると、受信音響信号 9Aが AZD変換部 101によってデジタル信 号に変換される。変換されたデジタル信号力 フレーム同期部 102によってフレーム 単位に分割される。分割された信号が、マスカ一音'ガード時間除去部 103によって フレームごとにマスカ一信号及びガード時間信号が除去され、信号フレームが抽出さ れる。また、除去されたマスカ一信号は、検出部 114によってフーリエ変換され、マス カー音の周波数が検出される。
[0058] 検出したマスカ一音の周波数と関連付けて格納部 113によって格納された周波数 帯の搬送波 104で、抽出されたそれぞれの信号フレームが復調部 112によって復調 される。復調により得られた搬送波 104のスペクトル係数力もパラレル伝送ビットが P ZS変換部 105によって抽出される。抽出されたパラレル伝送ビットは、シングルビッ トストリームに PZS変換部 105によって変換されて受信伝送信号 11が生成される。
[0059] 引き続いて、第 1実施形態に係る変調装置 4A及び変調方法、並びに、復調装置 1 OA及び復調方法につ 、ての作用効果にっ 、て説明する。
[0060] 上記変調装置 4A及び変調方法では、変調部 51が、可聴音帯域の搬送波 42をパ ラレル伝送ビット 3で変調して信号フレームを生成するので、可聴音波によってパラレ ル伝送ビットに含まれる情報をより高いビットレートで伝送可能な状態とすることがで きる。そして、マスカ一音生成部 44が信号フレームの伝送音を聞こえに《するマス カー音として出力されるマスカ一信号を生成し、音響信号生成部 52が信号フレーム にマスカ一信号を付加して音響信号を生成するので、情報を伝送する可聴音波を聞 こえにくい状態で伝送することができる。すなわち、人間の聴覚に不快でないレベル にもとづいた可聴音波で情報を伝送すると共に伝送情報のビットレートを向上させる ことができる。
[0061] また、マスカ一音生成部 44は、変調信号に挿入された各マスカ一信号を正弦波で 構成し、各マスカ一音のうち少なくとも一部の連続したマスカ一音の周波数が所定の パターンとなるようにマスカ一信号の周波数を選択することも好ま 、。このようにする ことにより、伝送情報のビットレートを維持すると共に、音響信号の伝送中にマスカ一 音によって奏でる音のパターンを選択することができる。特に、マスカ一音生成部 44 力 各信号フレームに含まれる各マスカ一音が伝送される際に一連のメロディとなる ように、マスカ一音の周波数を選択することにより、音響信号の伝送中にメロディを奏 でることができる。
[0062] 上記復調装置 10Aでは、マスカ一音 'ガード時間除去部 103が、フレーム単位に 分割された受信変調信号力 マスカ一信号を除去し信号フレームを抽出し、復調部 112が信号フレームを復調するので、信号フレームとマスカ一信号とを含む音響信 号力も信号フレームに含まれる情報を抽出することができる。
[0063] 上記復調装置 10Aでは、搬送波 104の周波数帯域とマスカ一音の周波数とを関連 付けて格納部 113が格納し、検出部 114がマスカ一信号の周波数を検出するので、 搬送波の周波数帯域を把握するために必要な情報を提供することができる。よって、 復調部 112が、検出部 114が検出したマスカ一信号の周波数と格納部 113によって 関連付けて格納された周波数帯域にぉ 、て音響信号を復調するので、的確に復調 を行うことができる。
[0064] (第 2実施形態)
本実施形態に係る音波情報伝送システムは、音声,音楽と並列に伝送信号をスピ 一力から再生させて情報を伝送するシステムである。本実施形態の音波情報伝送シ ステムは、音響信号送信システムと音響信号受信システムとを備えて構成される。図 7に、第 2実施形態に係る音響信号送信システム TS2の構成図を示す。
[0065] 本実施形態の音響信号送信システム TS2は、誤り訂正符号装置 2、変調装置 4B、 及びスピーカ 6を備えて構成される。変調装置 4Bの入力信号は、符号化伝送信号 3 に加えて音声または音楽等の音響信号 13がある。本実施形態に係る音響信号送信 システム TS2と第 1実施形態に係る音響信号送信システム TS1との相違点は、変調 装置 4Aに換えて変調装置 4Bを備え、変調装置 4Bが音響信号 13を入力する点であ る。
[0066] 本実施形態の音響信号受信システムは、第 1実施形態の音響信号受信システム R S1と同様な構成であり、復調装置 10Aに換えて復調装置 10Bを備える。
[0067] 変調装置 4Bは、符号化伝送信号 3を音響信号として伝送できるように変換し、音響 信号 13と合成して合成音響信号 14Bを出力する。合成音響信号 14Bは、音響信号 受信システムのマイクロフォン 8によって受信音響信号 9Bとして受信される。復調装 置 10Bは、受信音響信号 9Bから受信伝送信号 11を抽出する。引き続いて、変調装 置 4Bと復調装置 10Bとについて詳細に説明する。
[0068] 図 8に、第 2実施形態に係る変調装置 4Bの構成図を示す。変調装置 4Bは、 S/P 変換部 41、スペクトル包絡振幅調整部 47、変調部 53 (変調手段)、ガード時間信号 生成部 43、フレーム同期信号生成部 45、バンドパスフィルタ 48、音響信号生成部 5 4 (音響信号生成手段)、及び DZA変換部 46を備えて構成される。 SZP変換部 41 、ガード時間信号生成部 43、フレーム同期信号生成部 45、及び DZA変換部 46が 有する機能は、第 1実施形態に係る変調装置 4Aに含まれる部分と同様なので説明 を省略する。
[0069] スペクトル包絡振幅調整部 47は、音響信号 13を入力として、入力した音響信号を フーリエ変換し、音響信号 13のスペクトル包絡を計算する。すなわち、スペクトル包 絡振幅調整部 47は、音響信号 13の各周波数における振幅を計算する。そして、ス ベクトル包絡振幅調整部 47は、スペクトル包絡の計算結果を変調部 53へ出力する。 また、スペクトル包絡振幅調整部 47は、入力した音響信号 13をバンドパスフィルタ 4 8へ出力する。
[0070] 変調部 53は、 SZP変換部 41から入力したパラレルビットストリームに受信側 (復調 装置 10B)で既知の伝送ビットをパイロット信号 49としてパラレルに付加する。次に、 変調部 53は、スペクトル包絡振幅調整部 47から出力されたスペクトル包絡の計算結 果に基づいて、パイロット信号 49を含めたパラレル伝送ビットの各ビットに、音響信号 13の各周波数の振幅情報をそれぞれ対応させて付加する。そして、変調部 53は、 音響信号 13の振幅情報が付加された各伝送ビットで搬送波 42を変調する。
[0071] このようにして、変調部 53は、各搬送波 42の振幅を音響信号 13のスペクトル包絡 に合わせると共に、パイロット信号 49を含めたパラレル伝送ビットの各ビットで各搬送 波 42を変調する。変調部 53は、 OFDM変調方式を用いて変調する。すなわち、変 調部 53は、搬送波 42の周波数として互いに直交関係にある直交周波数を用い、ス ベクトル包絡とパラレル伝送ビットを各搬送波周波数のスペクトル係数として割り当て 、逆フーリエ変換することで変調する。
[0072] また、変調部 53は、計算結果が示すスペクトル包絡にお!、て可聴レベルに基づく 所定の閾値に満たない周波数がある場合に、その周波数のスペクトルのパワーを閾 値まで増幅する。閾値は、例えば、可聴レベル以下又は許容範囲の値以下に設定さ れる。変調部 53は、変調した各搬送波 42の信号を合成し、信号フレームを形成する 。変調部 53は、形成した信号フレームをガード時間信号生成部 43へ出力する。 [0073] バンドパスフィルタ 48は、入力した音響信号 13における搬送波 42の周波数帯域の 成分を除去して音響信号生成部 54へ出力する。
[0074] 音響信号生成部 54は、フレーム同期信号生成部 45から出力されるフレーム信号と ガード時間信号とフレーム同期信号と、バンドパスフィルタ 48から出力される音響信 号 13と、を重畳して合成音響信号 14Bを生成する。すなわち、音響信号生成部 54 は、音響信号 13における搬送波 42の周波数帯域の成分を変調信号と置き換えて合 成音響信号 14Bを生成することとなる。音響信号生成部 54は、生成した合成音響信 号 14Bを DZA変換部 46へ出力する。
[0075] 合成音響信号の生成方法について図 8を参照してより詳細に説明する。図 8 (a)は 、音響信号 13のスペクトルの例を示す。バンドパスフィルタ 48は、図 8 (b)に示すよう に、図 8 (a)に示す音響信号 13から搬送波 42の周波数帯域 Dの成分を除去する。図 8 (b)において、実線部分が周波数帯域 Dの成分が除去された音響信号 13を示し、 点線が除去した周波数帯域 Dを示す。
[0076] 変調部 53は、図 8 (c)に示すように、各搬送波 42の振幅をスペクトル包絡に合わせ 、各搬送波 42を変調して変調信号 42Fを生成する。音響信号生成部 54は、図 8 (c) に示すように、変調信号 42Fと周波数帯域 Dの成分が除去された音響信号 13とを重 畳して合成変調信号 14Bを生成する。
[0077] 図 10に、合成音響信号 14Bに含まれる信号フレーム、ガード時間信号、マスカ一 信号、フレーム同期信号の周波数利用例を示す。フレーム同期信号の先頭は、ガー ド時間の開始ポイントと一致させる。スペクトル拡散したフレーム同期信号は、音響信 号 13の成分が残っている低音域で伝送される。ガード時間、及び信号フレームは、 高音域で伝送される。すなわち、フレーム同期信号は、信号フレーム及びガード時間 を伝送する周波数帯とは異なる周波数帯で伝送する。
[0078] 引き続いて、変調装置 4Bにおける変調方法について図 11を参照しながら説明す る。図 11は、第 2実施形態に係る変調方法のフローチャートである。
[0079] まず、符号化伝送信号 3が、 SZP変換部 41によってシングルビットストリームカもパ ラレルビットストリームに変換される(S21)。また、音響信号 13のスペクトル包絡力 ス ベクトル包絡振幅調整部 47によって計算される(S22)。閾値に満たない音響信号 1 3の周波数がある場合に、該当する周波数のパワーが変調部 53によって増幅される (S23)。
[0080] その後、スペクトル包絡の計算結果に示される音響信号 13の各周波数の振幅情報 1S パイロット信号 49を含めたパラレル伝送ビットの各ビットに、それぞれ対応させて 付加される。そして、音響信号 13の振幅情報が付加された各伝送ビットで搬送波 42 が変調される。すなわち、搬送波 42の振幅を音響信号 13がスペクトル包絡に合わせ て変調部 53によって調整されると共に各搬送波 42が各伝送ビットで変調 (逆フーリ ェ変換)される。そして、変調された各搬送波 42の信号が合成されて信号フレームが 形成される(S24)。
[0081] 形成された信号フレームの後方区間が、ガード時間信号生成部 43によって複製さ れて前方に連結され、ガード時間信号が生成される(S25)。ガード時間が生成され ると、 M系列符号で変調した PN (疑似ノイズ)信号が、フレーム同期信号生成部 45 によって生成され、フレーム同期信号として信号フレームに付加される(S26)。
[0082] 搬送波 42の周波数帯域が削除された音響信号 13と信号フレームとが、音響信号 生成部 54によって重畳されて、合成音響信号が生成される(S27)。生成した合成音 響信号 14B力 DZA変換部 46によってアナログ信号に変換されて出力される(S2 8)。
[0083] このようにして出力された合成音響信号 14Bは、スピーカ 6から音波 7として出力さ れ、音響信号 13に基づくメロディを奏でると共に空間を信号が伝搬する。そして、音 波 7が音響信号受信システムに含まれるマイクロフォン 8によって受信される。マイクロ フォン 8によって受信された音波 7は、受信音響信号 9Bとして復調装置 10Bへ出力さ れる。
[0084] 次に復調装置 10Bについて説明する。図 12に、第 2実施形態に係る復調装置 10 Bの構成図を示す。復調装置 10Bは、 AZD変換部 101、バンドパスフィルタ 106、フ レーム同期部 102、ガード時間除去部 115、復調部 112、位相補正部 109、及び P ZS変換部 105を備えて構成される。このうち、 AZD変換部 101、フレーム同期部 1 02、及び PZS変換部 105は、上述した第 1実施形態に係る復調装置 10Aが備える 部分と同様な機能を有するので、説明を省略する。 [0085] バンドパスフィルタ 106は、 AZD変換部 101によって出力されたデジタル信号を入 力し、入力したデジタル信号をフレーム同期信号成分のある帯域と、信号フレーム成 分のある帯域に分割する。フレーム同期信号成分のある帯域の信号をフレーム同期 信号 107とし、信号フレーム成分のある帯域の信号を OFDM変調信号 108とする。 バンドパスフィルタ 106は、フレーム同期信号 107と OFDM変調信号 108とをそれぞ れフレーム同期部 102へ出力する。
[0086] フレーム同期部 102は、フレーム同期信号 107を 1サンプルおよび数サンプルずつ ずらしながら M系列符号で変調した PN信号との相関をとり、相関値の最も高いポイン トをフレーム同期ポイントと認識する。そして、フレーム同期部 102は、認識したフレー ム同期ポイントに応じて OFDM変調信号 108をフレーム単位に分割する。フレーム 同期部 102は、分割した OFDM変調信号 108をガード時間除去部 115へ出力する
[0087] ガード時間除去部 115は、分割されたフレームごとにガード時間を除去し、信号フ レームを抽出する。ガード時間除去部 115は、抽出した信号フレームを復調部 116 へ出力する。
[0088] 復調部 116は、抽出した信号フレームに対して各搬送波 104で復調する。復調部 1 16は、信号フレームをフーリエ変換して OFDM復調方式により復調する。
[0089] 位相補正部 109は、復調された搬送波 104からパイロット信号を抽出する。そして 位相補正部 109は、抽出したパイロット信号のスペクトル係数と既知のノ ィロット信号 49のスペクトル係数とを比較することにより、パイロット信号の信号変化を検出する。 そして位相補正部 109は、検出した信号変化に基づいて他の搬送波 104の信号の 補正をする。位相補正部 109は、補正した信号を PZS変換部 105へ出力する。
[0090] PZS変換部 105は、入力した信号からパラレル伝送ビットを抽出する。そして、 P/ S変換部 105は、抽出したパラレル伝送ビットをシングルビットストリームに変換し、受 信伝送信号 11として出力する。
[0091] 以上のように構成された復調装置 10Bは、以下のように動作する。まず、受信音響 信号 9Bが入力されると、受信音響信号 9Bが AZD変換部 101によってデジタル信 号に変換される。変換されたデジタル信号が、フレーム同期信号 107と OFDM変調 信号 108とにバンドパスフィルタ 106によって分割される。 OFDM変調信号 108がフ レーム同期信号 107に基づいてフレーム同期部 102によってフレーム単位に分割さ れる。分割されたデジタル信号が、ガード時間除去部 115によってフレームごとにガ ード時間信号が除去され、信号フレームが抽出される。
[0092] 抽出されたそれぞれの信号フレームが搬送波 104で復調部 116によって復調され る。復調された信号フレームからパイロット信号が位相補正部 109によって抽出され、 抽出されたノ ィロット信号と既知のパイロット信号 49との変化力も他の搬送波 104の 信号が補正される。搬送波 104の補正後、搬送波 104のスペクトル係数からパラレル 伝送ビットが PZS変換部 105によって抽出される。抽出されたパラレル伝送ビットは 、シングルビットストリームに P/S変換部 105によって変換されて受信伝送信号 11が 生成される。
[0093] 引き続いて、第 2実施形態に係る変調装置 4B、変調方法、及び復調装置 10Bにつ V、ての作用効果につ!、て説明する。
[0094] 上記変調装置 4B及び変調方法では、変調部 53が可聴音帯域の搬送波 42の振幅 を音響信号 13のスペクトル包絡に合わせると共に搬送波 42をベースバンド信号で変 調して変調信号を生成するので、音響信号 13に基づく音を奏でる可聴音波を生成 すると共に可聴音波によってベースバンド信号に含まれる信号をより高いビットレート で伝送可能な状態とすることとなる。そして音響信号生成部 54が搬送波 42の周波数 帯域を変調信号と置き換えて合成音響信号を生成するので、音響信号 13に基づく 音を奏でると共に伝送情報ビットレートを向上させて情報を伝送することができる。
[0095] また、変調部 53は、音響信号 13のスペクトル包絡において可聴レベルに基づく所 定の閾値に満たない周波数がある場合に、該周波数のスペクトルのパワーを閾値ま で増幅するので、伝送中に不快な音を発生することなく伝送信号の SN比を向上させ ることがでさる。
[0096] また、位相補正部 109は、既知の信号 (例えば、パイロット信号)で変調された搬送 波 42の信号の変化力 他の搬送波 42の信号の変化を推定して信号を補正するの で、信号伝搬中に生じた信号の振幅又は位相の変化を補正することができる。よって 、信号の変化による信号の識別の誤りを低減することができる。 [0097] また、上記変調装置 4Aにお 、て、信号フレームに含まれる特定の搬送波 42をパイ ロット信号 49で変調し、上記復調装置 10Bにおいて、特定の搬送波 42の信号変化 から他の搬送波 42の信号を補正するとした。これに対して、特定の信号フレームの 全ての搬送波 42をパイロット信号 49で変調し、その信号フレームの各搬送波 42の 信号変化から、他の信号フレームのそれぞれ同じ搬送波 42の信号を補正してもよ ヽ 。このように、既知の信号で変調されたある時間帯の信号の変化から他の時間帯の 信号の変化を推定し、信号を補正してもよい。このようにすることにより、信号の変化 による信号の識別の誤りを低減することができる。
[0098] (第 3実施形態)
本実施形態に係る音波情報伝送システムは、上記第 2実施形態と同様に音声,音 楽と並列に伝送信号及びマスカ一音を加えてスピーカから再生させて伝送するシス テムである。また、この音波情報伝送システムは、受信側において、送信側と受信側 とのサンプリング周波数の微小なずれを補正する。
[0099] 本実施形態に係る音波情報伝送システムは、上記第 2実施形態の音波情報伝送 システムと同様に、音響信号送信システム (送信側)と音響信号受信システム (受信 側)とを備えて構成される。本実施形態の変調装置 4Cは、符号化伝送信号 3を音波 として伝送できるように変換し、音響信号 13と合成して合成音響信号 14Bを出力する 。復調装置 10Cは、受信音響信号 9Cから受信伝送信号 11を抽出する。
[0100] 本実施形態の音響信号送信システムは、第 2実施形態の音響信号送信システム R S2と同様な構成であり、変調装置 4Bに換えて変調装置 4Cを備える。本実施形態の 音響信号受信システムは、第 2実施形態の音響信号受信システムと同様な構成であ り、復調装置 10Bに換えて復調装置 10Cを備える。引き続いて変調装置 4C及び復 調装置 10Cについて詳細に説明する。
[0101] 図 13に、第 3実施形態に係る変調装置 4Cの構成を示す。変調装置 4Cは、 S/P 変換部 41、スペクトル包絡振幅調整部 47、変調部 53、ガード時間信号生成部 43、 マスカ一音生成部 44、音響信号生成部 52、フレーム同期信号生成部 45、バンドパ スフィルタ 48、音響信号生成部 54、及び DZA変換部 46を備える。これらの構成要 素は、第 1実施形態及び第 2実施形態の変調装置 4B, 4Cに含まれる構成要素と同 様な機能を有するので、各構成要素の詳細な説明は省略する。
[0102] 引き続いて、変調装置 4Cにおける変調方法について説明する。まず、符号化伝送 信号 3が SZP変換部 41に入力されて、シングルビットストリームの符号ィ匕伝送信号 3 力 Sパラレルビットストリームに変換される。変換されたパラレルビットストリームにパイ口 ット信号 49がパラレルに変調部 53によって付加される。一方で、音響信号 13がスぺ タトル包絡振幅調整部 47によって入力され、スペクトル包絡が計算される。
[0103] 計算されたスペクトル包絡を用いて、各搬送波 42の振幅が音響信号 13のスぺタト ル包絡に合わせて調節しされると共に、パイロット信号 49を含めたパラレル伝送ビット の各ビットで各搬送波 42が変調部 53によって変調される。変調された各搬送波 42 の信号は、変調部 53によって合成され、信号フレームが形成される。信号フレームの 後方区間が、ガード時間信号生成部 43によって複製されて信号フレームの前方に ガード時間信号として連結される。
[0104] この信号フレームおよびガード時間信号をマスキングするマスカ一音のマスカ一信 号がマスカ一音生成部 44によって生成される。生成されたマスカ一信号は、音響信 号生成部 52によってガード時間信号の前方および信号フレームの後方に付加され る。そして、信号フレーム、ガード時間信号、及びマスカ一信号の場所を受信側で特 定するためのフレーム同期信号力 フレーム同期信号生成部 45によって生成され、 信号フレームに付加される。
[0105] 一方で、スペクトル包絡振幅調整部 47によって入力された音響信号 13は、バンド パスフィルタ 48によって搬送波周波数帯の成分が除去される。搬送波 42の周波数 帯域が除去された音響信号 13と、信号フレームとガード時間信号とマスカ一信号と 力 音響信号生成部 54によって重畳されて、合成音響信号が生成される。生成した 合成音響信号 14Cが、 DZA変換部 46によってアナログ信号に変換されて出力され る。
[0106] 図 12に、このようにして生成された合成音響信号 14Cに含まれる信号フレーム、ガ ード時間信号、マスカ一信号、フレーム同期信号、及び音響信号 13の周波数利用 配置の例を示す。フレーム同期信号は、搬送波 42とは異なる周波数帯で伝送する。 すなわち、音響信号 13の成分が残っている低音域で、スペクトル拡散したフレーム 同期信号を伝送する。マスカ一音は低音域、高音域の双方の周波数を用いてメロデ ィを形成する。また、ガード時間、信号フレームを高音域で伝送する。また、フレーム 同期信号の先頭は、マスカ一音区間の先頭と一致させる。
[0107] また、マスカ一音は、搬送波周波数帯と異なる帯域で、任意の場所に挿入してもよ い。その場合、ガード時間信号と前の信号フレームが隣接し、ガード時間信号の位相 と前の信号フレームの位相とが不連続になる。そこで、位相が不連続な部分をスムー ジングする力、または、位相不連続な部分をマスキングするように、前の信号フレーム とガード時間信号の境界付近にマスカ一音を挿入する。
[0108] 次に復調装置 10Cについて説明する。図 15に、第 3実施形態に係る復調装置 10 Cの構成を示す。復調装置 10Cは、周波数多重方式で変調された受信音響信号 9C を復調する装置である。本実施形態では、受信音響信号 9Cは、 OFDM変調方式で 変調された信号である。復調装置 10Cは、 AZD変換部 101、バンドパスフィルタ 10 6、フレーム同期部 102、マスカ一音'ガード時間除去部 103、 OFDMフレーム連結 部 110 (連結手段)、復調部 116、サブキャリア選択部 111 (検出手段及び補正手段 )、位相補正部 109、及び PZS変換部 105を備えて構成される。復調装置 10A及び 10Cに含まれる構成要素は、復調装置 10Cにおいても同様な機能を有する。
[0109] 以下、 OFDMフレーム連結部 110とサブキャリア選択部 111について説明すると 共に、関連してマスカ一音'ガード時間除去部 103及び復調部 116について図 16及 び図 17を参照して説明する。図 16及び図 17は、第 3実施形態に係る復調方法を説 明するための図である。
[0110] 図 16 (a)にマスカ一信号及びガード時間信号と OFDM変調信号とが合成された 信号を示す。マスカ一音'ガード時間除去部 103は、図 16 (a)に示す合成された信 号力もマスカ一信号及びガード時間信号を除去して、信号フレームを抽出する。図 1 6 (b)が 1つの信号フレームを示す。マスカ一音 'ガード時間除去部 103は、抽出した 信号フレームを OFDMフレーム連結部へ出力する。
[0111] OFDMフレーム連結部 110は、信号フレームを複製し、複製した信号フレームを連 結する。例えば、 OFDMフレーム連結部 110は、図 16 (c)に示すように 1つの信号フ レームを 4つに複製し、複製した 4つの信号フレームを連結する。 OFDMフレーム連 結部 110は、連結した複数の信号フレームを復調部 116へ出力する。
[0112] 復調部 116は、複数連結された信号フレームをフーリエ変換して OFDM復調方式 によって復調する。このように、複数連結された信号フレームをフーリエ変換して復調 することの効果を説明する。図 17 (a)は、従来のように信号フレームを一つずつフー リエ変換した場合の信号スペクトルを示す。図 17において横軸は周波数を示し、太 線の目盛りは変調装置 4Cにおける搬送波 42の周波数を示す。図 17 (a)には、信号 スペクトルを識別した搬送波 104の周波数(図 17における信号スペクトルの中心周 波数)が搬送波 42の各周波数と一致している場合の理想的な信号スペクトルを図 17 (a)に示す。
[0113] 図 17 (b)は、 4個に複製して連結した信号フレームをフーリエ変換した場合の信号 スペクトルを示す。図 17において横軸の細線の目盛りは、信号スペクトルを識別する 搬送波 104の周波数を示す。また、図 17 (b)は、図 17 (a)と同様に、信号スペクトル を識別した搬送波 104の周波数が搬送波 42の周波数と一致している場合の理想的 な信号スペクトルを示す。図 17 (a)と (b)とを比較すると、図 17 (b)における周波数分 解能が図 17 (a)における周波数分解能の 4倍となる。すなわち、 n個に複製して連結 した信号フレームをフーリエ変換することにより、 1つの信号フレームをフーリエ変換し た場合の n倍の周波数分解能を得ることができる。つまり、信号フレームを複数に複 製して連結してフーリエ変換の対象時間を大きくすることにより、周波数分解能を高く できる。
[0114] ところで、送信側のサンプリング周波数と受信側のサンプリング周波数に微小なず れがあった場合、もしくはドップラー効果により搬送波 42の周波数がずれた場合、フ 一リエ変換により信号スペクトルを識別する搬送波 104の周波数が搬送波 42の周波 数力 ずれることとなる。この場合、図 17 (a)に示すように周波数分解能が低いと、ず れた信号スペクトルを識別した搬送波 104の周波数が隣の信号スペクトルに対応し た周波数を干渉するために、それぞれの信号スペクトルを認識できな 、。
[0115] 図 17 (c)に、 4個に複製して連結した信号フレームをフーリエ変換した場合の信号 スペクトルであって、信号スペクトルを識別する搬送波 104の周波数が搬送波 42の 周波数からずれた場合を示す。この場合、周波数分解能が高いので、ずれた信号ス ベクトルを識別した直交周波数が隣の信号に対応した直交周波数を干渉しない。よ つて、それぞれの信号スペクトルを識別できる。
[0116] 以上説明したように、信号フレームを複製して複数連結した信号フレームをフーリエ 変換することにより周波数分解能を高めることができる。周波数分解能が高いので、 信号スペクトルを識別する搬送波 104の周波数がずれた場合であっても、それぞれ の信号スペクトルを識別することができる。
[0117] 図 15に戻って、サブキャリア選択部 111は、復調された信号スペクトル (伝送信号) の搬送波 104の周波数のずれを検出し、検出した搬送波 104の周波数のずれに基 づいて信号スペクトルの搬送波 104の周波数を補正する。すなわち、サブキャリア選 択部 111は、信号スペクトルの搬送波 104の周波数のずれを検出すると、その搬送 波 104の周波数力も最も近い搬送波 42の周波数に補正する。信号スペクトルの搬送 波 104の周波数のずれは周波数ごとに異なるため、信号スペクトル毎に補正すること が好ましい。
[0118] また、サブキャリア選択部 111は、いくつかの搬送波 104の周波数のずれから、ず れた割合を推定して、補正を行うことも好ましい。搬送波 104の周波数のずれは、搬 送波 42の周波数から一定の割合で増減して 、る場合が多 、ので、この方法は有効 である。この方法によって、より大きな周波数シフト、ドップラーシフトも補正することが できる。
[0119] 以上のように構成された復調装置 10Bは、以下のように動作する。アナログの受信 音響信号 9Bが入力されると、受信音響信号 9Bが AZD変換部 101によってデジタ ル信号に変換される。変換されたデジタル信号力 フレーム同期信号 107と OFDM 変調信号 108とにバンドパスフィルタ 106によって分割される。 OFDM変調信号 108 がフレーム同期信号 107に基づいてフレーム同期部 102によってフレーム単位に分 割される。分割されたデジタル信号が、マスカ一音'ガード時間除去部 103によって フレームごとにマスカ一信号及びガード時間信号が除去され、信号フレームが抽出さ れる。
[0120] 抽出された信号フレーム力 OFDMフレーム連結部 110によって複製され連結され る。複数連結された信号フレームが、復調部 116によって復調される。復調された信 号において、信号スペクトルの搬送波 104の周波数力 サブキャリア選択部 111によ つて補正される。
[0121] 復調された信号フレームからパイロット信号が位相補正部 109によって抽出され、 パイロット信号の変化力も他の搬送波 104の位相が補正される。搬送波 104の補正 後、搬送波 104のスペクトル係数力もパラレル伝送ビットが PZS変換部 105によって 抽出される。抽出されたパラレル伝送ビットは、シングルビットストリームに P/S変換 部 105によって変換されて受信伝送信号 11が生成される。
[0122] 引き続いて、第 3実施形態に係る変調装置 4C、復調装置 10C及び復調方法につ V、ての作用効果につ!、て説明する。
[0123] 上記変調装置 4Cによれば、変調部 53が搬送波 104の振幅を音響信号 13のスぺ タトル包絡に合わせると共に搬送波 104を符号化伝送信号 3で変調して信号フレー ムを生成するので、音響信号に基づく音を奏でる可聴音波を生成すると共に可聴音 波によってベースバンド信号に含まれる信号をより高いビットレートで伝送可能な状 態とすることとなる。また、マスカ一音生成部 44が信号フレームの伝送時の音を聞こ えにくくするマスカ一音として出力されるマスカ一信号を生成し信号フレームに付カロ し、音響信号生成部 54が音響信号 13における搬送波 104の周波数帯域の成分を 変調信号 (信号フレーム)と置き換えて合成音響信号を生成するので、情報を含む可 聴音波をマスカ一信号のマスカ一音によって聞こえにくい状態で伝送することができ る。すなわち、人間の聴覚に不快でないレベルにもとづいた可聴音波で情報を伝送 すると共に伝送情報のビットレートを向上させることができる。
[0124] また、上記復調装置 10C及び復調方法によれば、 OFDMフレーム連結部 110によ つて複製して連結された複数の信号フレームをフーリエ変換するので、復調に用いる 直交周波数である搬送波 104の周波数の幅を狭くすることができる。すなわち、周波 数分解能を向上させることができる。周波数分解能が向上したことにより、サブキヤリ ァ選択部 111がフーリエ変換された信号フレームにおける伝送信号の搬送波 104の 周波数のずれを的確に検出し、搬送波 104の周波数を補正することができる。
産業上の利用可能性
[0125] 本発明は、音波で情報を伝達する音波情報通信技術を利用用途とし、人間の聴覚 に不快でな 、レベルに基づ 、た可聴音波で情報を伝送すると共に伝送情報のビット レートを向上させるものである。

Claims

請求の範囲
[1] 可聴音帯域の搬送波をベースバンド信号で変調して変調信号を生成する変調手 段と、
前記変調信号と共に伝送される際に前記変調信号を聞こえにくくするマスカ一音と して出力されるマスカ一信号を生成するマスカ一音生成手段と、
前記変調信号に前記マスカ一信号を付加して音響信号を生成する音響信号生成 手段と、
を備えることを特徴とする変調装置。
[2] 前記マスカ一音生成手段は、前記変調信号に挿入された各前記マスカ一信号を 正弦波で構成し、各前記マスカ一音のうち少なくとも一部の連続したマスカ一音の周 波数が所定のパターンとなるように前記マスカ一信号の周波数を選択することを特徴 とする請求の範囲第 1項に記載の変調装置。
[3] 可聴音帯域の搬送波の振幅を音響信号のスペクトル包絡に合わせると共に前記搬 送波をベースバンド信号で変調して変調信号を生成する変調手段と、
前記音響信号における前記搬送波の周波数帯域の成分を前記変調手段が生成し た前記変調信号と置き換えた合成音響信号を生成する音響信号生成手段と、 を備えることを特徴とする変調装置。
[4] 前記変調手段は、前記音響信号のスペクトル包絡において可聴レベルに基づく所 定の閾値に満たない周波数がある場合に、該周波数のスペクトルのパワーを前記閾 値まで増幅することを特徴とする請求の範囲第 3項に記載の変調装置。
[5] 周波数多重方式により変調された伝送信号の信号フレームを複製し、複製した前 記信号フレームと伝送された前記信号フレームとを含む複数の信号フレームを連結 する連結手段と、
前記連結手段によって連結された前記複数の信号フレームをフーリエ変換して前 記信号フレームを復調する復調手段と、
前記復調手段によってフーリエ変換された前記複数の信号フレームにおける前記 伝送信号の搬送波周波数のずれを検出する検出手段と、
前記検出手段によって検出された前記搬送波周波数のずれに基づいて前記伝送 信号の搬送波周波数を補正する補正手段と、
を備えることを特徴とする復調装置。
[6] 変調信号と、前記変調信号と共に伝送される際に前記変調信号を聞こえにくくする マスカ一音として出力されるマスカ一信号と、を含む音響信号を復調する復調装置 において、
前記音響信号から前記マスカ一信号を除去する除去手段と、
前記除去手段によって前記マスカ一信号が除去された前記音響信号を復調する 復調手段と、
を備えることを特徴とする復調装置。
[7] 変調信号と、搬送波の周波数帯域と関連付けられた周波数で構成されて前記変調 信号と共に伝送される際に前記変調信号を聞こえにくくするマスカ一音として出力さ れるマスカ一信号と、を含む音響信号を復調する復調装置において、
前記搬送波の周波数帯域と前記マスカ一信号の周波数とを関連付けて格納する 格納手段と、
前記マスカ一信号をフーリエ変換して前記マスカ一音の周波数を検出する検出手 段と、
前記検出手段が検出した前記マスカ一信号の周波数と前記格納手段によって関 連付けて格納された周波数帯域において前記音響信号を復調する復調手段と、 を備えることを特徴とする復調装置。
[8] 変調手段が、可聴音帯域の搬送波をベースバンド信号で変調して変調信号を生成 する変調ステップと、
マスカ一音生成手段が、前記変調信号と共に伝送される際に前記変調信号を聞こ えにくくするマスカ一音として出力されるマスカ一信号を生成するマスカ一音生成ス テツプと、
音響信号生成手段が、前記変調信号に前記マスカ一信号を付加して音響信号を 生成する音響信号生成ステップと、
を備えることを特徴とする変調方法。
[9] 変調手段が、可聴音帯域の搬送波の振幅を音響信号のスペクトル包絡に合わせる と共に前記搬送波をベースバンド信号で変調して変調信号を生成する変調ステップ と、
音響信号生成手段が、前記音響信号における前記搬送波の周波数帯域の成分を 前記変調ステップにおいて生成した前記変調信号と置き換えた合成音響信号を生 成する音響信号生成ステップと、
を備えることを特徴とする変調方法。
連結手段が、周波数多重方式により変調された伝送信号の信号フレームを複製し 、複製した前記信号フレームと伝送された前記信号フレームとを含む複数の信号フレ ームを連結する連結ステップと、
復調手段が、前記連結ステップにお 、て連結された前記複数の信号フレームをフ 一リエ変換して前記信号フレームを復調する復調ステップと、
検出手段が、前記復調ステップにおいてフーリエ変換された前記複数の信号フレ ームにおける前記伝送信号の搬送波周波数のずれを検出する検出手段と、 補正手段が、前記検出ステップにおいて検出された前記搬送波周波数のずれに 基づいて前記伝送信号の搬送波周波数を補正する補正手段と、
を備えることを特徴とする復調方法。
PCT/JP2006/319669 2005-10-07 2006-10-02 変調装置、変調方法、復調装置、及び復調方法 WO2007043376A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/066,836 US8498860B2 (en) 2005-10-07 2006-10-02 Modulation device, modulation method, demodulation device, and demodulation method
EP06811017A EP1947793A4 (en) 2005-10-07 2006-10-02 MODULATION DEVICE, MODULATION METHOD, DEMODULATION DEVICE AND DEMODULATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-295526 2005-10-07
JP2005295526A JP4398416B2 (ja) 2005-10-07 2005-10-07 変調装置、変調方法、復調装置、及び復調方法

Publications (1)

Publication Number Publication Date
WO2007043376A1 true WO2007043376A1 (ja) 2007-04-19

Family

ID=37942620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319669 WO2007043376A1 (ja) 2005-10-07 2006-10-02 変調装置、変調方法、復調装置、及び復調方法

Country Status (5)

Country Link
US (1) US8498860B2 (ja)
EP (1) EP1947793A4 (ja)
JP (1) JP4398416B2 (ja)
CN (2) CN101218768A (ja)
WO (1) WO2007043376A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149856A1 (ja) * 2007-06-07 2008-12-11 Ntt Docomo, Inc. 変調装置、復調装置、および音響信号伝送方法
JP4528365B1 (ja) * 2010-03-26 2010-08-18 株式会社フィールドシステム 発信装置
JP4545234B1 (ja) * 2010-03-26 2010-09-15 株式会社フィールドシステム 発信装置
US20110122959A1 (en) * 2008-09-17 2011-05-26 Hosei Matsuoka Ofdm modulation/demodulation method, ofdm modulation device, ofdm demodulation device, and ofdm modulation/demodulation system
JP2013141054A (ja) * 2011-12-28 2013-07-18 Spotlight Inc ビーコン、携帯端末を利用する超音波通信システム
US9177562B2 (en) 2010-11-24 2015-11-03 Lg Electronics Inc. Speech signal encoding method and speech signal decoding method
US9344802B2 (en) 2005-06-28 2016-05-17 Field System, Inc. Information providing system

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071479B2 (ja) * 2007-07-04 2012-11-14 富士通株式会社 符号化装置、符号化方法および符号化プログラム
JP2009094558A (ja) * 2007-10-03 2009-04-30 Ntt Docomo Inc 変調装置及び変調方法
JP5262171B2 (ja) 2008-02-19 2013-08-14 富士通株式会社 符号化装置、符号化方法および符号化プログラム
US9078095B2 (en) * 2008-03-14 2015-07-07 William J. Johnson System and method for location based inventory management
US8697975B2 (en) 2008-07-29 2014-04-15 Yamaha Corporation Musical performance-related information output device, system including musical performance-related information output device, and electronic musical instrument
US8737638B2 (en) 2008-07-30 2014-05-27 Yamaha Corporation Audio signal processing device, audio signal processing system, and audio signal processing method
US8942388B2 (en) 2008-08-08 2015-01-27 Yamaha Corporation Modulation device and demodulation device
WO2010018929A2 (ko) * 2008-08-14 2010-02-18 에스케이 텔레콤주식회사 가청주파수 대역에서의 데이터 송수신 시스템 및 방법
JP5375027B2 (ja) * 2008-10-30 2013-12-25 ヤマハ株式会社 復調装置及び変復調システム
RU2398356C2 (ru) 2008-10-31 2010-08-27 Cамсунг Электроникс Ко., Лтд Способ установления беспроводной линии связи и система для установления беспроводной связи
JP5168165B2 (ja) * 2009-01-20 2013-03-21 ヤマハ株式会社 電子透かし情報の埋め込みおよび抽出を行うための装置およびプログラム
JP4495243B2 (ja) * 2009-07-27 2010-06-30 株式会社エヌ・ティ・ティ・ドコモ Ofdm変復調方法、ofdm変調装置およびofdm復調装置
JP5782677B2 (ja) 2010-03-31 2015-09-24 ヤマハ株式会社 コンテンツ再生装置および音声処理システム
US8676570B2 (en) * 2010-04-26 2014-03-18 The Nielsen Company (Us), Llc Methods, apparatus and articles of manufacture to perform audio watermark decoding
CN102110441A (zh) * 2010-12-22 2011-06-29 中国科学院声学研究所 一种基于时间反转的声掩蔽信号产生方法
JP5966288B2 (ja) * 2011-09-15 2016-08-10 株式会社リコー 情報通信システム、クライアント装置、ホスト装置、接続情報受信プログラム、及び接続情報送信プログラム
EP2573761B1 (en) 2011-09-25 2018-02-14 Yamaha Corporation Displaying content in relation to music reproduction by means of information processing apparatus independent of music reproduction apparatus
CN103138807B (zh) 2011-11-28 2014-11-26 财付通支付科技有限公司 一种近距离通信实现方法和系统
JP5494677B2 (ja) 2012-01-06 2014-05-21 ヤマハ株式会社 演奏装置及び演奏プログラム
JP2013141167A (ja) 2012-01-06 2013-07-18 Yamaha Corp 演奏装置
JP5561497B2 (ja) 2012-01-06 2014-07-30 ヤマハ株式会社 波形データ生成装置及び波形データ生成プログラム
JP5533892B2 (ja) 2012-01-06 2014-06-25 ヤマハ株式会社 演奏装置
KR20140049365A (ko) * 2012-10-17 2014-04-25 삼성전자주식회사 전자 장치 및 그 제어 방법
US10243675B2 (en) 2013-06-18 2019-03-26 Powervoice Co., Ltd. Mobile device and method for outputting sound wave for control of external device, and external device
CN104349243A (zh) * 2013-08-07 2015-02-11 致伸科技股份有限公司 音乐播放系统
KR101475862B1 (ko) * 2013-09-24 2014-12-23 (주)파워보이스 사운드 코드를 인코딩하는 인코딩 장치 및 방법, 사운드 코드를 디코딩하는 디코딩 장치 및 방법
KR101475863B1 (ko) * 2013-09-24 2014-12-23 (주)파워보이스 음파를 출력하는 디바이스 및 방법, 그리고 음파에 대응하는 제어 정보를 생성하는 모바일 디바이스 및 방법
TWI549118B (zh) 2014-05-05 2016-09-11 宏碁股份有限公司 聲音資料傳輸系統與聲音資料傳輸方法
CN104505096B (zh) * 2014-05-30 2018-02-27 华南理工大学 一种用音乐传输隐藏信息的方法及装置
CN105323012B (zh) * 2014-07-14 2019-07-02 宏碁股份有限公司 声音数据传输系统与声音数据传输方法
JP6402063B2 (ja) * 2015-03-31 2018-10-10 秀彦 坂井 個人認証システム
KR101568314B1 (ko) * 2015-05-26 2015-11-12 주식회사 단솔플러스 음파 통신 장치 및 방법
CN107645343B (zh) 2016-07-20 2021-10-22 阿里巴巴集团控股有限公司 基于声波的数据发送/接收方法及数据传输系统
JP6984259B2 (ja) * 2017-09-13 2021-12-17 ヤマハ株式会社 信号処理方法、信号処理装置、および情報提供システム
US10349194B1 (en) * 2018-09-26 2019-07-09 Facebook Technologies, Llc Auditory masking for a coherence-controlled calibration system
JP2021157128A (ja) * 2020-03-30 2021-10-07 Kddi株式会社 音声波形合成装置、方法及びプログラム
CN111970063B (zh) * 2020-08-26 2022-04-29 北京字节跳动网络技术有限公司 一种通信方法、装置、设备和存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384216A (ja) * 1986-09-29 1988-04-14 Toshiba Corp 音声・デ−タ多重化装置
JPS6322102B2 (ja) * 1979-07-26 1988-05-10 Fujitsu Ten Ltd
JPH09224005A (ja) * 1995-07-19 1997-08-26 Esuwan Corp 音波通信装置及びその方法
JPH10290215A (ja) * 1997-04-15 1998-10-27 Sony Corp データ送受信方法およびデータ送受信装置
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局
JP2001148670A (ja) * 1999-11-19 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音響信号伝達方法および音響信号伝達装置
JP2002009734A (ja) * 2000-06-27 2002-01-11 Denso Corp Ofdm方式を用いた通信システム
JP2002354059A (ja) * 2001-05-28 2002-12-06 Cs Engineering:Kk 音の特性を利用した端末間の通信方式
JP2003506918A (ja) * 1999-07-30 2003-02-18 サイエンティフィック ジェネリクス リミテッド 音響通信システム
JP3491560B2 (ja) * 1999-05-12 2004-01-26 株式会社ケンウッド 無線通信機
JP2004088662A (ja) * 2002-08-28 2004-03-18 Chiba Inst Of Technology 直交マルチキャリア信号伝送方式のシンボル同期タイミング検出方法および装置
JP2006005390A (ja) * 2004-06-15 2006-01-05 Hitachi Ltd 同期捕捉方法、同期信号生成方法および通信装置
JP2006121222A (ja) * 2004-10-19 2006-05-11 Ntt Docomo Inc 情報伝達システム、送信装置、受信装置及び情報伝達方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112368A (en) * 1970-07-13 1978-09-05 Westinghouse Electric Corp. Constant amplitude carrier communications system
GB8608760D0 (en) 1986-04-10 1986-05-14 Massey Ferguson Services Nv Implement control system
JP2553839B2 (ja) 1986-06-05 1996-11-13 富士通株式会社 音声・描画同時通信方式
JPH11110913A (ja) * 1997-10-01 1999-04-23 Sony Corp 音声情報伝送装置及び方法、並びに音声情報受信装置及び方法、並びに記録媒体
JPH11298540A (ja) * 1998-04-08 1999-10-29 Oki Electric Ind Co Ltd Ask変調器
AUPP392498A0 (en) * 1998-06-04 1998-07-02 Innes Corporation Pty Ltd Traffic verification system
JP2000196861A (ja) 1998-12-25 2000-07-14 Sony Corp 信号処理装置およびその方法と記録媒体
US6628735B1 (en) * 1999-12-22 2003-09-30 Thomson Licensing S.A. Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
AU2211102A (en) 2000-11-30 2002-06-11 Scient Generics Ltd Acoustic communication system
JP4246925B2 (ja) 2001-03-28 2009-04-02 日本放送協会 マルチキャリア伝送方法及び伝送装置
US7243060B2 (en) 2002-04-02 2007-07-10 University Of Washington Single channel sound separation
JP4342171B2 (ja) 2002-12-25 2009-10-14 ソフトバンクテレコム株式会社 移動端末
JP4282998B2 (ja) * 2003-01-08 2009-06-24 パナソニック株式会社 変調器及びその補正方法
JP2005051462A (ja) 2003-07-28 2005-02-24 Sony Corp デジタルオーディオデータの伝送における付帯データの伝送方式
RU2276458C2 (ru) * 2003-11-26 2006-05-10 Институт радиотехники и электроники Российской Академии Наук Способ прямохаотической передачи информации с заданной спектральной маской

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322102B2 (ja) * 1979-07-26 1988-05-10 Fujitsu Ten Ltd
JPS6384216A (ja) * 1986-09-29 1988-04-14 Toshiba Corp 音声・デ−タ多重化装置
JPH09224005A (ja) * 1995-07-19 1997-08-26 Esuwan Corp 音波通信装置及びその方法
JPH10290215A (ja) * 1997-04-15 1998-10-27 Sony Corp データ送受信方法およびデータ送受信装置
JP3491560B2 (ja) * 1999-05-12 2004-01-26 株式会社ケンウッド 無線通信機
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局
JP2003506918A (ja) * 1999-07-30 2003-02-18 サイエンティフィック ジェネリクス リミテッド 音響通信システム
JP2001148670A (ja) * 1999-11-19 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> 音響信号伝達方法および音響信号伝達装置
JP2002009734A (ja) * 2000-06-27 2002-01-11 Denso Corp Ofdm方式を用いた通信システム
JP2002354059A (ja) * 2001-05-28 2002-12-06 Cs Engineering:Kk 音の特性を利用した端末間の通信方式
JP2004088662A (ja) * 2002-08-28 2004-03-18 Chiba Inst Of Technology 直交マルチキャリア信号伝送方式のシンボル同期タイミング検出方法および装置
JP2006005390A (ja) * 2004-06-15 2006-01-05 Hitachi Ltd 同期捕捉方法、同期信号生成方法および通信装置
JP2006121222A (ja) * 2004-10-19 2006-05-11 Ntt Docomo Inc 情報伝達システム、送信装置、受信装置及び情報伝達方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947793A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344802B2 (en) 2005-06-28 2016-05-17 Field System, Inc. Information providing system
WO2008149856A1 (ja) * 2007-06-07 2008-12-11 Ntt Docomo, Inc. 変調装置、復調装置、および音響信号伝送方法
US8411531B2 (en) 2007-06-07 2013-04-02 Ntt Docomo, Inc. Modulation device, demodulation device, and acoustic signal transmission method
US8451882B2 (en) * 2008-09-17 2013-05-28 Ntt Docomo, Inc. OFDM modulation/demodulation method, OFDM modulation device, OFDM demodulation device, and OFDM modulation/demodulation system
US20110122959A1 (en) * 2008-09-17 2011-05-26 Hosei Matsuoka Ofdm modulation/demodulation method, ofdm modulation device, ofdm demodulation device, and ofdm modulation/demodulation system
CN102812651A (zh) * 2010-03-26 2012-12-05 飞路得新思探有限公司 发送装置
WO2011118017A1 (ja) * 2010-03-26 2011-09-29 株式会社フィールドシステム 発信装置
WO2011118018A1 (ja) * 2010-03-26 2011-09-29 株式会社フィールドシステム 発信装置
JP4545234B1 (ja) * 2010-03-26 2010-09-15 株式会社フィールドシステム 発信装置
US8594340B2 (en) 2010-03-26 2013-11-26 Field System, Inc. Transmitter
CN102812651B (zh) * 2010-03-26 2014-07-23 飞路得新思探有限公司 发送装置及方法
JP4528365B1 (ja) * 2010-03-26 2010-08-18 株式会社フィールドシステム 発信装置
US9177562B2 (en) 2010-11-24 2015-11-03 Lg Electronics Inc. Speech signal encoding method and speech signal decoding method
JP2013141054A (ja) * 2011-12-28 2013-07-18 Spotlight Inc ビーコン、携帯端末を利用する超音波通信システム

Also Published As

Publication number Publication date
US8498860B2 (en) 2013-07-30
US20080243491A1 (en) 2008-10-02
CN101827064A (zh) 2010-09-08
EP1947793A1 (en) 2008-07-23
CN101218768A (zh) 2008-07-09
EP1947793A4 (en) 2011-01-26
CN101827064B (zh) 2011-11-23
JP4398416B2 (ja) 2010-01-13
JP2007104598A (ja) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4398416B2 (ja) 変調装置、変調方法、復調装置、及び復調方法
JP2007104598A5 (ja)
WO2010016589A1 (ja) 変調装置及び復調装置
KR101572552B1 (ko) 변조 장치, 복조 장치, 음향 전송 시스템, 프로그램, 및 복조 방법
JP5722912B2 (ja) 音響通信方法及び音響通信方法を実行させるためのプログラムを記録した記録媒体
US20090067292A1 (en) Acoustic signal transmission system, modulation device, demodulation device, and acoustic signal transmission method
US20090018680A1 (en) Data embedding device, data embedding method, data extraction device, and data extraction method
JPH09258787A (ja) 狭帯域音声信号の周波数帯域拡張回路
JP2011145541A (ja) 再生装置、楽音信号出力装置、再生システム及びプログラム
CN101641891A (zh) 调制装置、解调装置及声信号传输方法
JP5665885B2 (ja) 二次元ビット拡散を用いたウォーターマーク生成器、ウォーターマーク復号器、バイナリーメッセージデータに基づいてウォーターマーク信号を提供する方法、ウォーターマーク済み信号に基づいてバイナリーメッセージデータを提供する方法及びコンピュータプログラム
US20050286725A1 (en) Pseudo-stereo signal making apparatus
JP5589308B2 (ja) オーディオ信号受信装置、オーディオ信号再生装置および音響通信システム
WO2010032548A1 (ja) Ofdm変復調方法、ofdm変調装置、ofdm復調装置およびofdm変復調システム
Matsuoka et al. Acoustic communication system using mobile terminal microphones
JP2013529311A (ja) バイナリーメッセージデータを提供するウォーターマーク復号器および方法
JP4398494B2 (ja) 変調装置及び変調方法
JP2009094558A (ja) 変調装置及び変調方法
JP2009296617A (ja) 変調装置、変調方法、復調装置、及び復調方法
JP5447072B2 (ja) エコーキャンセラおよび音声処理システム
JP5487989B2 (ja) 音響を用いた情報伝送装置
JP5169913B2 (ja) データ重畳装置、通信システムおよび音響通信方法
JP5664419B2 (ja) 音響通信システム
JP5532900B2 (ja) 音響を用いた情報伝送装置
JP2010081248A (ja) 変調装置、復調装置、通信システムおよび通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025084.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12066836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811017

Country of ref document: EP