WO2007043343A1 - 研磨剤 - Google Patents

研磨剤 Download PDF

Info

Publication number
WO2007043343A1
WO2007043343A1 PCT/JP2006/319237 JP2006319237W WO2007043343A1 WO 2007043343 A1 WO2007043343 A1 WO 2007043343A1 JP 2006319237 W JP2006319237 W JP 2006319237W WO 2007043343 A1 WO2007043343 A1 WO 2007043343A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow body
polished
polishing
abrasive
puff
Prior art date
Application number
PCT/JP2006/319237
Other languages
English (en)
French (fr)
Inventor
Masato Sako
Original Assignee
Masato Sako
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masato Sako filed Critical Masato Sako
Priority to EP06810695A priority Critical patent/EP1935957A4/en
Priority to JP2007539863A priority patent/JP4231892B2/ja
Publication of WO2007043343A1 publication Critical patent/WO2007043343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se

Definitions

  • the present invention relates to the surface of articles such as glass products, glazed products, tile products, and metal products, stone floors, wooden floors, synthetic resin floors, linoleum floors, brick floors, metal floors, etc.
  • the present invention relates to an abrasive that polishes the floor surface.
  • the window glass is cleaned chemically, if hydrogen fluoride remains on the window glass, the remaining hydrogen fluoride chemically reacts with the window glass and the window glass becomes cloudy. Therefore, the chemical cleaning method is preferred!
  • This cleaning tool is prepared by mixing fine powder of volcanic ash soil and a solidification regulator, kneading with water, and solidifying.
  • the fine powder is refined to a particle size of about 8-10 / ⁇ ⁇ .
  • the solidification regulator is gypsum.
  • An operator uses this cleaning tool to rub the surface of the window glass while spraying water on the surface of the window glass of the car.
  • the fine powder of volcanic ash soil in the cleaning tool wipes off the dirt adhering to the surface of the window glass.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-245168
  • the fine powder of volcanic ash soil in the cleaning tool is solidified by the solidification regulator to form an integrated cleaning tool.
  • An operator uses this cleaning tool to rub the surface of the window glass of an automobile.
  • the fine powder of volcanic ash soil exposed on the surface of the cleaning tool is rubbed against the surface of the window glass.
  • the fine powder of volcanic ash soil exposed on the surface of the cleaning tool tends to be attracted by dirt, etc. adhering to the surface of the window glass. Even if the fine powder of volcanic ash soil is attracted to the surface of the window glass, etc., the worker may not notice this pulling force and may continue to rub the surface of the window glass with the cleaning tool. When this happens, excessive force acts on the surface of the window glass, and the surface of the window glass is damaged.
  • the problem that occurs is not limited to removing dirt on the window glass of an automobile.
  • the same problem occurs when removing dirt on the surface of other products such as glass products, glazed products, tile products, and metal products.
  • a chemical that is harmless to a floor made of salty bulb is not necessarily a chemical that is harmless to a floor made of linoleum. It is difficult to visually distinguish between a linoleum floor and a salty bulu floor. For this reason, workers must check the floor materials on the building design drawings and specifications, and select appropriate chemicals. If you can't select the right chemicals, the floor will change color or change quality.
  • the present invention solves the above problems, and its object is excellent workability and safety, and the surface of articles such as glass products, glazed products, tile products, metal products, stone floors,
  • the object is to provide an abrasive capable of efficiently removing dirt adhering to the surface of floors such as wooden floors, synthetic resin floors, linoleum floors, brick floors and metal floors.
  • the dirt adhering to the floor surface includes old wax adhering to the floor surface.
  • the present invention adopts the following configuration in order to solve the problem.
  • the abrasive according to the invention of claim 1 comprises a hollow body obtained by firing and foaming volcanic glass, a hollow body pulverized product obtained by crushing the hollow body, a thickener, and water.
  • the hollow body contained therein has a particle size of 10 to LOO ⁇ m, and the contained hollow body pulverized product has a particle size of 5 to 30 ⁇ m.
  • the abrasive contains a hollow body, a hollow body pulverized product, a thickener, and water.
  • the hollow body and the hollow body pulverized product are dispersed in the abrasive by the thickener.
  • the hollow body is obtained by firing and foaming volcanic glass and has a hollow portion.
  • the hollow part of the hollow body may be independent of the external force or may communicate with the outside.
  • the hollow body pulverized product obtained by pulverizing the hollow body has an edge on the surface. This edge is formed when the hollow body is powdered.
  • the volcanic glass that is the raw material of the hollow body is obtained from glassy volcanic rocks and glassy volcanic debris.
  • Vitreous volcanic rocks include pearlite (crude perlite), obsidian, obsidian ( It is a rock mainly composed of volcanic glass that is generally called pitchstone.
  • Glassy volcanic debris is a shard-like solid substance released to the surface by volcanic activity, and is rich in glass. Deposits of glassy volcanic debris are called white clay, volcanic ash, shirasu, and silica sand.
  • Vitreous volcanic debris found in Japan includes Biei white clay in Hokkaido, Fukushima white clay in Tohoku, Kakuto Shirasu in Kyushu, Yoshida Shirasu in Kyushu, and the primary Shirasu in Kyushu. Since the hollow body is manufactured from natural raw materials, the burden imposed on the environment and workers by the hollow body and the pulverized hollow body is small.
  • Examples of the thickener include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropylmethylcellulose and methylcellulose, which are cellulose derivatives.
  • the thickener is not limited to those exemplified here, and other conventional thickeners can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • the hollow body and the pulverized hollow body in the abrasive roll between the puff and the surface to be polished Move freely.
  • polishing agent is grind
  • the edge of the pulverized hollow body bites into the oil film, and the oil film is rubbed off by the surface of the polished hollow body.
  • a hollow body or a pulverized hollow body that rolls between the puff and the surface to be polished may attract the dirt and foreign matter on the surface to be polished.
  • the worker continues polishing with the puff as it is the hollow body or the hollow body pulverized material that has attracted the dirt will move in the direction of resistance and decrease, and will be released from the catch, Again, you can move freely. Unreasonable force does not work between the hollow body or the pulverized hollow body and the surface to be polished. Accordingly, it is possible to prevent the polished surface from being damaged by the hollow body or the pulverized hollow body being polished.
  • the particle size of the hollow body in the abrasive is less than 10 ⁇ m
  • the hollow body becomes too small.
  • the area force of the hollow body that comes into contact with the surface to be polished is reduced, and the hollow body cannot efficiently scrape off the scaled surface force.
  • Abrasive When the particle size of the hollow body exceeds 100 m, scratches that are noticeable to the naked eye are likely to occur on the surface to be polished.
  • the particle size of the hollow body in the polishing agent becomes larger and exceeds 3 20 m, the hollow body only strokes on the scale adhering to the surface to be polished. Power Can't rub off efficiently.
  • the polishing agent in order for the hollow body in the polishing agent to efficiently scrape off the scale surface without causing scratches to the extent that the hollow surface in the polishing agent is scratched with the naked eye, the polishing agent
  • the hollow body has a particle size of 10-100111.
  • the particle size of the hollow body pulverized product in the abrasive when the particle size of the hollow body pulverized product in the abrasive is less than 1, the hollow body pulverized product becomes too small. As a result, the area force of the pulverized hollow body that comes into contact with the surface to be polished is reduced, and the pulverized hollow body cannot efficiently scrape the oil film to the surface to be polished.
  • the particle size of the pulverized hollow body in the abrasive exceeds m, scratches that are visible to the naked eye are likely to occur on the surface to be polished.
  • the particle size of the hollow body pulverized product in the abrasive becomes larger and exceeds 200 / zm, the edge of the hollow pulverized product bites into the oil film, and the hollow pulverized product grinds the oil film. The surface power cannot be removed efficiently.
  • the particle size of the hollow powder in the abrasive exceeds 200 m, there is a high possibility that large scratches will occur on the surface to be polished.
  • the particle size force of the hollow pulverized product in the agent may be 5 to 30 m.
  • the content of the hollow body and the content of the pulverized hollow body in the abrasive are adjusted according to the state and amount of scale and oil film adhering to the surface to be polished. If the scale is firmly attached or if the amount of attached scale is large, the content of the hollow body is increased. Also, if the oil film is firmly attached or the amount of attached oil film is large, the content of the hollow body pulverized product is increased.
  • the drainage pipe is not clogged by the flushed abrasive that prevents the abrasive that was washed away with water from precipitating in the drainage pipe.
  • the hollow body, the pulverized hollow body, and the thickener in the abrasive have a small burden on the environment. It is easy to clean and clean after finishing the polishing operation.
  • the abrasive according to the invention of claim 2 is obtained by pulverizing a hollow body obtained by firing and foaming volcanic glass, cerium oxide particles, and a thickener.
  • the hollow pulverized product containing 5 to 30 m in diameter, and the cerium oxide particles to be contained have a particle diameter of 0.5 to 5 / ⁇ ⁇ .
  • the abrasive contains a hollow pulverized product, cerium oxide particles, a thickener, and water.
  • the hollow pulverized product and cerium oxide particles are dispersed in the abrasive by the thickener.
  • the hollow body pulverized product is obtained by pulverizing a hollow body obtained by firing and foaming volcanic glass.
  • the hollow body pulverized product has an edge on the surface. This edge is formed when the hollow body is crushed.
  • the hollow body before being crushed has a hollow portion.
  • the hollow portion may be independent of external force or may be in communication with the outside.
  • the volcanic glass used as the raw material for the hollow crushed material can be obtained from vitreous volcanic rocks and vitreous volcanic debris. Since hollow body pulverized products are manufactured from natural raw materials, the burden on the environment and workers is small!
  • Acid cerium is a natural mineral. The burden placed on the environment and workers by the natural mineral acid cerium particles is small! /.
  • thickener examples include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropyl methylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other conventional thickeners are not limited. Can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • Acid cerium has a greater hardness than glass.
  • the cerium oxide particles roll on the surface to be polished, irregularities and scratches on the surface to be polished are polished, and the surface to be polished becomes smooth. If irregularities and scratches on the glass surface, the surface of a glazed product, the surface of a tile, etc. are polished and smoothed, the cloudiness and cloudiness from these surfaces disappear. If the cerium oxide particles roll on the metal surface, the metal surface becomes smooth, the metal surface is not fogged, and the metal surface is mirror-finished.
  • the hollow pulverized material or cerium oxide particles rolling between the puff and the surface to be polished may be attracted to dirt or foreign matter on the surface to be polished.
  • the hollow body pulverized material and the cerium oxide particles that have attracted the dirt move to the direction in which the resistance decreases, and the Liberated and free to move again.
  • An unreasonable force does not work between the hollow body pulverized material or the cerium oxide particles and the surface to be polished. Therefore, the hollow body pulverized material and the cerium oxide particles in the abrasive are prevented from damaging the surface to be polished.
  • the pulverized hollow body in the polishing agent does not cause scratches on the surface to be polished that are visible to the naked eye.
  • the particle size of the hollow body pulverized product in the polishing agent may be 5 to 30 ⁇ m.
  • the particle size of the cerium oxide particles in the abrasive is less than 0.5 ⁇ m, the cerium oxide particles are too small, and the cerium oxide particles Cannot efficiently polish unevenness and scratches on the surface to be polished. If the particle size of the cerium oxide particles in the polishing agent exceeds 5 / zm, the cerium oxide particles will become too large, and the oxycerium particles will efficiently polish uneven surfaces on the surface to be polished. Can not ,.
  • the particle size force of the cerium oxide particles in the abrasive may be 0.5 to 5 ⁇ m.
  • the content of the pulverized hollow body and the content of cerium oxide particles in the abrasive depend on the state and amount of the oil film adhering to the surface to be polished and the cloudiness and cloudiness of the surface to be polished. To be adjusted. If the oil film is firmly attached or if the amount of oil film attached is large, the content of the hollow pulverized product is increased. If the surface to be polished is very cloudy or cloudy, increase the content of cerium oxide particles.
  • the abrasive is easily washed away with water. Abrasives washed away with water will flow with the water without settling. Therefore, the drainage pipe is not clogged by the flushed abrasive that prevents the abrasive that was washed away with water from precipitating in the drainage pipe.
  • the hollow body pulverized product, the cerium oxide particles, and the thickener in the polishing agent have a small burden on the environment. It can be washed away, and it is easy to clean up and clean after the polishing work.
  • the abrasive according to the invention of claim 3 contains a hollow body obtained by firing and foaming volcanic glass, cerium oxide particles, a thickener, and water. 4.
  • the particle size of the body is 10 to: LOO ⁇ m, and the particle size of the cerium oxide particles contained is 0.5 to 5 ⁇ m.
  • the abrasive is a hollow body And cerium oxide particles, a thickener, and water. Hollow bodies and cerium oxide particles are dispersed in the abrasive by the thickener.
  • the hollow body is obtained by firing and foaming volcanic glass, and has a hollow portion.
  • the hollow portion of the hollow body may have independent external force or may communicate with the outside.
  • the volcanic glass that is the raw material of the hollow body is obtained from glassy volcanic rocks and glassy volcanic debris. It is. Since hollow bodies are manufactured from natural raw materials, the burden of the hollow bodies on the environment and workers is small.
  • Acid cerium is a natural mineral. The burden placed on the environment and workers by the natural mineral acid cerium particles is small! /.
  • Examples of the thickener include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropylmethylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other thickeners with conventional strength can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • the hollow body and cerium oxide particles in the abrasive roll between the puff and the surface to be polished. While moving freely. Further, a part of the hollow body in the abrasive is crushed to form a hollow body pulverized product, and this hollow crushed product also moves freely while rolling between the puff and the surface to be polished.
  • the cerium oxide particles roll on the surface to be polished, the unevenness and scratches on the surface to be polished are polished, and the surface to be polished becomes smooth. If the irregularities and scratches on the glass surface, the surface of the glazed product, the surface of the tile, etc. are polished and smoothed, these surface forces will also not become cloudy or cloudy. If the cerium oxide particles roll on the metal surface, the metal surface becomes smooth, the metal surface is not fogged, and the metal surface is mirror-finished.
  • Hollow body, hollow body pulverized material, or cerium oxide particles rolling between the puff and the surface to be polished may be attracted to dirt or foreign matter on the surface to be polished. .
  • the hollow body, the hollow body pulverized material, or the cerium oxide particles that have been attracted to dirt move in a direction in which the resistance decreases. They are freed from being caught and can move freely again.
  • Hollow body or hollow where excessive force attracted dirt It does not work between the pulverized body or cerium oxide particles and the surface to be polished. Therefore, it is possible to prevent the polished surface from being damaged by the hollow body, the hollow body pulverized product, or the cerium oxide particles that have attracted dirt.
  • the hollow body in the polishing agent efficiently scrubs off the scale without causing scratches to the extent that the hollow surface in the abrasive is hard to see with the naked eye.
  • the particle size of the hollow body in the abrasive may be 10 to: LOO / zm.
  • the particles of oxycerium may be 0.5 to 5 m.
  • the content of the hollow body and the content of the cerium oxide particles in the polishing agent depend on the state and amount of scale adhering to the surface to be polished, and the cloudiness or cloudiness of the surface to be polished. Each is adjusted. If the scale is firmly attached or if the amount of attached scale is large, increase the hollow body content. If the surface to be polished is very cloudy or cloudy, increase the content of cerium oxide particles.
  • the abrasive according to the invention of claim 4 includes a hollow body obtained by firing and foaming volcanic glass, a hollow body pulverized product obtained by pulverizing the hollow body, cerium oxide particles, and an increase. With sticky The hollow body contains 10 to LOO m, and the hollow pulverized product contains 5 to 30 ⁇ m in particle diameter, and contains the cerium oxide. The particle size is 0.5-5 ⁇ m.
  • the abrasive contains a hollow body, a hollow body pulverized product, particles of acid cerium, a thickener, and water.
  • the hollow body, the hollow body pulverized product, and the cerium oxide particles are dispersed in the abrasive by the thickener.
  • the hollow body is obtained by firing and foaming volcanic glass, and has a hollow portion.
  • the hollow part of the hollow body may be independent of the external force or may communicate with the outside.
  • the hollow body pulverized product obtained by pulverizing the hollow body has an edge on the surface. This edge is formed when the hollow body is powdered.
  • the volcanic glass that is the raw material of the hollow body is obtained from glassy volcanic rocks and glassy volcanic debris. Since hollow bodies are manufactured from natural raw materials, the burden placed on the environment and workers by hollow bodies and pulverized hollow bodies is small!
  • Acid cerium is a natural mineral. The burden placed on the environment and workers by the natural mineral acid cerium particles is small! /.
  • thickener examples include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropyl methylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other thickeners with conventional strength can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • the worker polishes the surface to be polished of the object to be polished using the puff with the abrasive
  • the hollow body, the pulverized hollow body, and the cerium oxide particles in the abrasive are separated from the puff. It moves freely while rolling between the surfaces to be polished. Further, a part of the hollow body in the abrasive is pulverized to obtain a hollow body pulverized product.
  • the edge of the pulverized hollow body bites into the oil film, and the oil film is rubbed off by the surface of the polished hollow body.
  • the cerium oxycerium particles roll on the surface to be polished, the unevenness and scratches on the surface to be polished are polished, and the surface to be polished becomes smooth. If the irregularities and scratches on the glass surface, the surface of the glazed product, the surface of the tile, etc. are polished and smoothed, these surface forces will also not become cloudy or cloudy. If the cerium oxide particles roll on the metal surface, the metal surface becomes smooth, the metal surface is not fogged, and the metal surface is mirror-finished.
  • the hollow body in the polishing agent efficiently scrubs off the scale without causing scratches to the extent that the hollow surface of the polishing target is hard to see with the naked eye.
  • the particle size of the hollow body in the abrasive may be 10 to: LOO / zm.
  • the particle size of the hollow body pulverized product in the polishing agent may be 5 to 30 ⁇ m.
  • the particle size of the cerium particles may be 0.5 to 5 m.
  • the content of the hollow body in the abrasive, the content of the pulverized hollow body, and the content of the cerium oxide particles are the state and amount of scale and oil film adhering to the surface to be polished, the cloudiness of the surface to be polished, Each is adjusted according to the cloudy condition.
  • the abrasive is easily washed away with water. Abrasives washed away with water will flow with the water without settling. Therefore, the drainage pipe is not clogged by the flushed abrasive that prevents the abrasive that was washed away with water from precipitating in the drainage pipe. Further, as described above, since the hollow body, hollow body pulverized product, cerium oxide particles, and thickener in the abrasive have a small burden on the environment, the abrasive is usually used after the polishing operation. It can be washed out to the drainage facility, and it is easy to clean up and clean after the polishing work.
  • the abrasive according to the invention of claim 5 includes a hollow body obtained by firing and foaming volcanic glass, a thickener, and water, and the particle size of the hollow body contained is 80. ⁇ 320 / ⁇ ⁇ .
  • the abrasive contains a hollow body, a thickener, and water. The hollow body is dispersed in the abrasive by the thickener.
  • the hollow body is obtained by firing and foaming volcanic glass and has a hollow portion.
  • the hollow portion of the hollow body may have independent external force or may communicate with the outside.
  • the volcanic glass that is the raw material of the hollow body is obtained from glassy volcanic rocks or glassy volcanic debris. Since hollow bodies are manufactured from natural raw materials, the burden of the hollow bodies on the environment and workers is small.
  • thickener examples include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropyl methylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other thickeners with conventional strength can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • a part of the hollow body in the abrasive is pulverized by the force applied by the worker to the puff, and the hollow body is pulverized.
  • This hollow pulverized material also moves freely while rolling between the puff and the surface to be polished.
  • Most of the crushed hollow bodies produced from hollow bodies with a particle size force of 0 to 320 ⁇ m are less than 200 ⁇ m.
  • the hollow particle crushed material has a particle size of 50 to 200 / ⁇ ⁇ .
  • a hollow body or a pulverized hollow body that rolls between the puff and the surface to be polished may be attracted to dirt or foreign matter on the surface to be polished.
  • the hollow body or the hollow body pulverized material that has attracted the dirt will move in the direction of resistance and decrease, and will be released from the catch, Again, you can move freely. Unreasonable force does not work between the hollow body or the pulverized hollow body and the surface to be polished. Therefore, it is prevented that the hollow body and the hollow body powdered material greatly damage the surface to be polished.
  • the surface to be polished of the object to be polished is the floor surface and the particle size of the hollow body in the abrasive is less than 80 m
  • the hollow body cannot efficiently remove dirt such as scale adhering to the floor surface.
  • the particle size of the hollow body in the abrasive exceeds 320 m
  • the hollow body in the abrasive cannot efficiently scrub off dirt such as scale adhering to the floor surface.
  • the particle size of the hollow body in the abrasive exceeds 320 ⁇ m, the hollow body in the abrasive and the hollow body crushed material resulting from this hollow body force will cause a noticeable scratch on the floor surface. There is a fear.
  • the surface to be polished of the object to be polished is the floor surface
  • the particle size of the pulverized hollow body in the abrasive is less than 50 m
  • the pulverized hollow body is an oil film adhered to the floor surface.
  • dirt and old wax can not be efficiently removed.
  • the particle size of the hollow body pulverized product in the abrasive exceeds 200 m
  • the hollow body pulverized product cannot efficiently scavenge old wax etc. if it becomes dirty such as oil film adhering to the floor surface.
  • the particle size of the hollow body pulverized product in the abrasive exceeds 200 m, there is a risk of noticeable scratches on the floor surface.
  • the surface to be polished of the object to be polished is the floor surface
  • the particle size of the hollow body existing in the abrasive is 80 to 320 m.
  • the hollow body in the abrasive can efficiently scrub off dirt such as water scale adhering to the floor surface, and causes small scratches on the floor surface.
  • the particle size of the pulverized hollow body in the abrasive is 50 When it is ⁇ 200 m, the hollow pulverized material in the abrasive can efficiently scrub off dirt such as oil film adhering to the floor surface and old wax, and damage the floor surface with small scratches. .
  • the hollow body in the abrasive is used.
  • the particle size force of 80 to 320 m is sufficient.
  • the content of the hollow body in the abrasive is adjusted according to the state and amount of dirt and old wax adhering to the surface to be polished.
  • dirt is firmly attached
  • dirt when there is a large amount of dirt attached
  • old wax adheres firmly when there is a large amount of old wax attached, Increase the content of hollow bodies inside.
  • the abrasive when the surface to be polished of the object to be polished is washed with water after the polishing operation is completed, the abrasive is not washed out and is washed away with water, such as a drainage facility pipe. The abrasive does not settle and accumulate inside. Since the hollow body, hollow body pulverized product, and thickener contained in the abrasive have a small burden on the environment, the abrasive can be washed away into normal drainage equipment after the polishing operation, and after the polishing operation is completed. Easy cleaning and cleaning.
  • the hollow body, hollow body pulverized product, and thickener contained in the abrasives alter the floor such as stone floor, wooden floor, synthetic resin floor, linoleum floor, brick floor, metal floor, etc. Do not let it discolor or discolor. Therefore, the worker must select the floor material when cleaning the floor. There is no need to worry about it, and the floor can be cleaned efficiently.
  • the floor materials listed here are merely examples, and the floor materials that can be used with the abrasive are not limited to those listed here.
  • the abrasive according to the invention of claim 6 contains a hollow body pulverized product obtained by pulverizing a hollow body obtained by firing and foaming volcanic glass, a thickener, and water.
  • the hollow body pulverized product contains a particle size of 50 to 200 ⁇ m.
  • the abrasive contains a hollow body pulverized product, a thickener, and water.
  • the hollow body pulverized product is dispersed in the abrasive by the thickener.
  • the hollow body pulverized product is obtained by pulverizing a hollow body obtained by firing and foaming volcanic glass.
  • the hollow body pulverized product has an edge on the surface. This edge is formed when the hollow body is crushed.
  • the hollow body before being crushed has a hollow portion. This hollow portion may be independent from the outside or may be in communication with the outside.
  • the volcanic glass used as a raw material for the hollow body pulverized material can be obtained from vitreous volcanic rocks and vitreous volcanic debris. Since hollow body pulverized products are manufactured from natural raw materials, the burden on the environment and workers is small!
  • thickener examples include xanthan gum, which is a natural thickening polysaccharide, and hydroxypropyl methylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other thickeners with conventional strength can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • the hollow crushed material that rolls between the puff and the surface to be polished may be attracted to dirt and foreign matter on the surface to be polished.
  • the hollow body pulverized material that has been attracted to the dirt moves in a direction in which the resistance decreases, is released from the catch, and is free again. I can move. Unreasonable force does not work between the hollow body pulverized product and the surface to be polished. Therefore, the pulverized hollow body is prevented from seriously damaging the surface to be polished.
  • the surface of the floor is firmly attached with old waxes having various stains such as scale and oil film. In addition, the old wax takes these stains inside and solidifies!
  • the surface to be polished of the object to be polished is the floor surface, and the particle size of the pulverized hollow body in the abrasive is 50 to 200 m.
  • the hollow body pulverized product in the polishing agent can efficiently scavenge old wax etc. if it becomes dirty such as oil film adhering to the floor surface, and will cause small scratches on the floor surface.
  • the particles of the hollow body pulverized material in the abrasive are used.
  • the diameter may be 50 to 200 m.
  • the content of the pulverized hollow body in the abrasive is adjusted according to the state and amount of dirt, such as an oil film attached to the surface to be polished, and the amount of old wax.
  • dirt such as an oil film attached to the surface to be polished
  • the amount of old wax When oil film or other dirt is firmly attached, when there is a large amount of oil film or other dirt attached, when old wax is firmly attached, or when there is a large amount of old wax attached, increase the content of pulverized hollow body in the abrasive.
  • the abrasive when the surface to be polished of the object to be polished is washed with water after the polishing operation is completed, the abrasive is not washed out and is washed away with water, and the drainage pipes, etc. The abrasive does not settle and accumulate inside. Hollow body pulverized material contained in abrasive and increase Since the adhesive has a small burden on the environment, the polishing agent can be poured into a normal drainage facility after the polishing operation, and cleaning and cleaning after the polishing operation is easy.
  • the hollow body pulverized product and the thickener contained in the abrasive may alter the floor such as stone floor, wooden floor, synthetic resin floor, linoleum floor, brick floor, metal floor, etc. There is no discoloration. Therefore, the worker does not have to worry about the floor material when performing the floor cleaning work, and can efficiently perform the floor cleaning work.
  • the floor materials listed here are merely examples, and the floor materials that can be used with the abrasive are not limited to those listed here.
  • the abrasive according to the invention of claim 7 includes a hollow body obtained by firing and foaming volcanic glass, a hollow body pulverized product obtained by pulverizing the hollow body, a thickener, water, , And the hollow body containing therein has a particle size of 80 to 320 m, and the hollow body pulverized product containing therein has a particle size force of ⁇ 50 to 200 / ⁇ ⁇ .
  • the abrasive contains a hollow body, a hollow body pulverized product, a thickener, and water.
  • the hollow body and the hollow body pulverized product are dispersed in the abrasive by the thickener.
  • the hollow body is obtained by firing and foaming volcanic glass, and has a hollow portion.
  • the hollow part of the hollow body may be independent of the external force or may communicate with the outside.
  • the hollow body pulverized product obtained by pulverizing the hollow body has an edge on the surface. This edge is formed when the hollow body is powdered.
  • the volcanic glass that is the raw material of the hollow body is obtained from glassy volcanic rocks and glassy volcanic debris. Since hollow bodies are manufactured from natural raw materials, the burden placed on the environment and workers by hollow bodies and pulverized hollow bodies is small!
  • the thickening agent is, for example, xanthan gum, which is a natural thickening polysaccharide, and hydroxypropylmethylcellulose and methylcellulose, which are cellulose derivatives. It should be noted that the thickener is not limited to those exemplified above, and other thickeners with conventional strength can be used. If thickeners used in food additives and cosmetics are used, the burden of abrasive thickeners on the environment and workers is small! /.
  • the hollow body in the abrasive is crushed into a hollow body pulverized product.
  • Most of the crushed hollow bodies produced from hollow bodies having a particle size of 80 to 320 ⁇ m have a particle size of 200 ⁇ m or less, and at least a part of the crushed hollow bodies is 50 to 200 / ⁇ . It has a particle diameter of ⁇ .
  • a hollow body or a pulverized hollow body that rolls between the puff and the surface to be polished may attract the dirt and foreign matter on the surface to be polished.
  • the hollow body or the hollow body pulverized material that has attracted the dirt will move in the direction of resistance and decrease, and will be released from the catch, Again, you can move freely. Unreasonable force does not work between the hollow body or the pulverized hollow body and the surface to be polished. Therefore, it is prevented that the hollow body and the hollow body powdered material greatly damage the surface to be polished.
  • the surface to be polished is a floor surface and the particle size of the hollow body present in the abrasive is 80 to 320 m, polishing is performed.
  • the hollow body in the agent can efficiently scrub off dirt such as scales adhering to the floor surface, and causes small scratches on the floor surface.
  • the particle size of the hollow body pulverized product present in the abrasive is 50 to 200 m, the hollow pulverized product in the abrasive efficiently removes dirt such as oil film adhered to the floor surface and old wax. Can be rubbed off well and makes small scratches on the floor surface.
  • the hollow body in the abrasive is used.
  • the content of the hollow body in the abrasive and the content of the pulverized hollow body are adjusted according to the state and amount of old wax, such as dirt or oil film adhering to the surface to be polished. . If dirt is strongly adhered, if there is a large amount of dirt adhering, if old wax adheres firmly, or if the amount of old wax adhering is large, abrasives Increase the content of hollow bodies and the content of pulverized hollow bodies.
  • the abrasive when the surface to be polished of the object to be polished is washed with water after completion of the polishing operation, the abrasive is not precipitated but is washed away together with water, such as a drainage facility pipe. The abrasive does not settle and accumulate inside. As described above, since the hollow body, hollow body pulverized product, and thickener contained in the abrasive have a small burden on the environment, the abrasive can be washed away into a normal drainage facility after the polishing operation. It is easy to clean up and clean after finishing polishing.
  • the hollow body, hollow body pulverized product, and thickener contained in the abrasives alter the floor such as stone floor, wooden floor, synthetic resin floor, linoleum floor, brick floor, metal floor, etc. Do not let it discolor or discolor. Therefore, the worker does not have to worry about the floor material when performing the floor cleaning work, and can efficiently perform the floor cleaning work.
  • the floor materials listed here are merely examples, and the floor materials that can be used with the abrasive are not limited to those listed here.
  • the abrasive according to the invention of claim 8 is the abrasive according to any one of claims 1 to 7, wherein the hollow body is a shirasu balloon.
  • Shirasu-balloons are made by firing glassy volcanic debris at high temperature and foaming.
  • the abrasive according to claim 9 is the abrasive according to any one of claims 1 to 7, wherein the hollow body is pearlite.
  • Perlite expanded perlite is obtained by firing and foaming vitreous volcanic rocks such as pearlite, obsidian, and pine sebumite at high temperatures.
  • vitreous volcanic rocks such as pearlite, obsidian, and pine sebumite at high temperatures.
  • pearlite in the present specification indicates a glassy volcanic rock that has been fired and foamed at a high temperature, and does not indicate nacre.
  • FIG. 1 is an external view of a polishing puff.
  • the abrasive according to the first embodiment contains a hollow body, a pulverized hollow body obtained by pulverizing the hollow body, cerium oxide particles, a thickener, and water. .
  • the hollow body is a shirasu balloon or pearlite.
  • Shirasu Balloon is a glassy volcano
  • the scrap is obtained by baking and foaming at 1000 to 1200 ° C.
  • Perlite can be obtained by preheating glassy volcanic rocks at, for example, 200-500 ° C and then rapidly heating at 900-: L100 ° C for foaming.
  • the hollow part of the hollow body may be independent from the outside, or may communicate with the outside.
  • the particle size of the hollow body is 10-100 ⁇ m.
  • the hollow body pulverized product is obtained by pulverizing shirasu balloon or pearlite.
  • the hollow body pulverized product has an edge on the surface. This edge is formed when the shirasu balloon or pearlite is crushed.
  • the particle size of the hollow body pulverized product is 5 to 30 m.
  • the particle of acid cerium is obtained by pulverizing naturally-occurring acid cerium.
  • the particle size of the cerium oxide particles is 0.5 to 5 ⁇ m.
  • the thickener is xanthan gum which is a kind of thickening polysaccharide.
  • the hollow body pulverized product may be obtained by pulverizing a shirasu balloon, or may be obtained by pulverizing pearlite. Good. Further, when the hollow body is pearlite, the hollow body pulverized product may be obtained by pulverizing shirasu balloon, or may be obtained by pulverizing pearlite. A procedure for preparing the abrasive according to the first embodiment will be described.
  • a worker adds a thickener to water and dissolves it.
  • the worker will add the hollow body and the hollow body pulverized product and stir. It is desirable that the worker stirs until the hollow body or the pulverized hollow body disappears and the hollow body or the pulverized hollow body is dispersed and dispersed in water.
  • the worker adds the cerium oxide particles to the separately prepared water and stirs. It is desirable for the worker to stir until the cerium oxide mass disappears and the cerium oxide particles are dispersed and dispersed in the water.
  • the worker adds the water in which the particles of cerium oxide are dispersed to the water in which the hollow body and the pulverized hollow body are dispersed, and stirs. It is desirable that the worker stirs until the hollow body, the hollow body pulverized product, and the cerium oxide particles are dispersed and held in water. When the stirring is sufficiently performed, the preparation of the abrasive according to the first embodiment is completed.
  • the hollow body, the hollow body pulverized product, and the cerium oxide particles are dispersed in water, and the thickener is dispersed. Keep Yes. Therefore, separation of the prepared abrasive according to the first embodiment is prevented.
  • polishing puff used when polishing the surface to be polished of the object to be polished will be described.
  • the polishing puff 10 has a substrate 12 and a nonwoven fabric 18.
  • the substrate 12 is formed of an elastic member. This elastic member is a urethane sponge.
  • the substrate 12 has a cylindrical shape, and a face tape 24 is attached to one circular end surface 14 of the substrate 12.
  • the face tape 24 is a part of the hook-and-loop fastener 22 and has a large number of small loops.
  • the non-woven fabric 18 covers the other circular end face 16 of the substrate 12.
  • a hole 20 opens in the center of the nonwoven fabric 18 covering the circular end face 16.
  • the hole 20 is formed through the nonwoven fabric 18, the base material 12, and the surface tape 24 from the circular end surface 16 side to the circular end surface 14 side.
  • the nonwoven fabric 18 is, for example, any one of a resin bond nonwoven fabric, a thermal bond nonwoven fabric, a spunlace nonwoven fabric, a needle punched nonwoven fabric, an airlaid nonwoven fabric, a spunbond nonwoven fabric, a melt blown nonwoven fabric, and a wet nonwoven fabric. Nonwoven fabrics other than these may be used as the nonwoven fabric 18.
  • the rotary tool 28 has a rotating shaft 30.
  • the rotary tool 28 is configured such that the rotary shaft 30 rotates by electric drive or air drive.
  • a disk-shaped puff mounting base 32 is attached to the tip of the rotary shaft 30.
  • the face tape 26 is attached to the puff mounting base 32.
  • the face tape 26 is part of the hook-and-loop fastener 22 and has a number of small hooks. The hook of the face tape 26 is engaged with the loop of the face tape 24, the face tape 26 and the face tape 24 are bonded together, and the polishing puff 10 is attached to the tip of the rotating shaft 30.
  • the object to be polished is a window glass of a bus, and an operator polishes the surface to be polished of the object to be polished using the abrasive according to the first embodiment and the polishing puff 10.
  • the surface to be polished of the object to be polished has irregularities.
  • the irregularities are formed as a result of chemically cleaning the object to be polished using hydrogen fluoride. Due to the unevenness, cloudiness is generated on the surface to be polished. Moreover, the oil film and scale adhere firmly to the surface to be polished. This These oil films and scales cause poor visibility and glare on the window glass, which is the object to be polished, and detract from the beauty of the object to be polished.
  • the worker covers the peripheral portion of the object to be polished in the body of the bus with a vinyl sheet, and heals it. This curing prevents the bath body from getting dirty or damaged during the polishing process. Even if the abrasive according to the first embodiment adheres to a portion of the body of the bus other than the object to be polished and not cured by the vinyl sheet, the first embodiment It is possible to easily wash away the abrasive according to the first embodiment, which has adhered to the part to which the abrasive according to the present invention has adhered, with water.
  • the worker rinses the surface to be polished with water and rinses away iron powder or the like attached to the surface to be polished. If the surface power to be polished is washed away beforehand, the surface to be polished is prevented from being damaged by the iron powder.
  • the worker attaches the polishing puff 10 to the puff mounting base 32 at the tip of the rotary shaft 30 of the rotary tool 28.
  • the polishing puff 10 is fixed to the puff mounting base 32 by a hook-and-loop fastener 22.
  • the operator checks the nonwoven fabric 18 of the polishing puff 10.
  • the worker finds dirt or foreign matter adhering to the nonwoven fabric 18, the worker cleans the polishing puff 10 with water and removes the dirt or foreign matter from the nonwoven fabric 18. The worker prevents dirt and foreign matter adhering to the nonwoven fabric 18 from soiling or scratching the surface to be polished.
  • the worker includes the abrasive according to the first embodiment in the nonwoven fabric 18 of the polishing puff 10.
  • the worker rotates the rotary shaft 30 of the rotary tool 28 and rotates the polishing puff 10 together with the rotary shaft 30.
  • the worker then presses the nonwoven fabric 18 of the rotating polishing puff 10 against the surface to be polished.
  • the non-woven fabric 18 of the polishing puff 10 becomes the polishing surface, and the surface to be polished is polished.
  • the hollow body, the hollow body pulverized material, and the particles of acid cerium in the abrasive according to the first embodiment roll and move freely.
  • the hollow body in the abrasive according to the first embodiment rolls on the scale adhering to the surface to be polished, and the scale is scraped off from the surface force to be polished.
  • the pulverized hollow body in the abrasive according to the first embodiment rolls on the oil film adhering to the surface to be polished, and the edge of the pulverized hollow body bites into the oil film.
  • the oil film is rubbed off by the surface force to be polished.
  • the acid-cerium particles in the abrasive according to the first embodiment roll on the unevenness of the surface to be polished, and the unevenness of the surface to be polished is polished by the particles of acidium. The polished surface becomes smooth.
  • the base 12 of the polishing puff 10 is an elastic member, the polishing puff 10 is freely deformed in accordance with the shape of the surface to be polished. Therefore, the nonwoven fabric 18 can contact any surface to be polished. The entire surface to be polished is polished by the abrasive according to the first embodiment.
  • a hollow body that freely moves while rolling between the surface to be polished and the nonwoven fabric 18, pulverized hollow body, and cerium oxide particles are attracted to the scale and oil film adhering to the surface to be polished.
  • the surface of the surface to be polished may be pulled. Even if the hollow body or the like is attracted by scales, the worker continues the polishing operation by rotating the polishing puff 10 as it is.
  • the hollow body or the like that is caught moves in the direction of resistance, and is released from the catch.
  • the polishing basket moves toward the outer periphery of the rotating nonwoven fabric 18 and is discharged from between the surface to be polished and the nonwoven fabric 18.
  • the remainder of the polishing basket moves toward the center of the rotating nonwoven fabric 18, enters the hole 20 at the center of the nonwoven fabric 18, and is discharged from between the surface to be polished and the nonwoven fabric 18.
  • the polishing rod is discharged from between the surface to be polished and the nonwoven fabric 18, and the polishing rod is prevented from damaging the surface to be polished.
  • the polishing pad is discharged from between the surface to be polished and the nonwoven fabric 18, the polishing pad is less likely to scatter the polishing surface force to the surroundings, and dirt around the polishing surface is reduced. Therefore, after the polishing operation is completed, it is easy to clean up and clean, and the area to be cured first needs to be small.
  • the surface to be polished becomes dry. When the surface to be polished is dried and the moisture between the surface to be polished and the polishing puff 10 is reduced, the hollow body, the hollow body pulverized material, and the cerium oxide particles cannot freely roll.
  • I can't roll freely
  • the hollow body, the pulverized hollow body, and the cerium oxide particles cannot move as they are when they are attracted to dirt.
  • the hollow body equal force that cannot be moved by excessive force also acts on the surface to be polished, and the surface to be polished is damaged.
  • the worker replenishes the surface to be polished with a spray bottle or the like. If moisture is appropriately supplied to the surface to be polished, the hollow body, the hollow body pulverized product, and the cerium oxide particles in the abrasive according to the first embodiment can move freely while rolling. Become. Further, the replenished water cools between the surface to be polished and the polishing puff 10.
  • polishing puff 10 Since the polishing puff 10 is mounted on the puff mounting base 32 by the hook-and-loop fastener 22, it can be easily attached and detached. Therefore, it is easy to replace the old polishing puff 10 with the new polishing puff 10.
  • the hollow body, the hollow body pulverized product, and the cerium oxide particles in the abrasive according to the first embodiment can all have natural raw material strength. Therefore, the burden imposed on the environment and workers by the hollow body, the hollow body pulverized product, and the particles of oxyhycerium in the abrasive according to the first embodiment is small. Further, the xanthan gum as a thickener in the abrasive according to the first embodiment is a thickener used for food additives and cosmetics. Therefore, the burden imposed on the environment and workers by the thickener in the abrasive according to the first embodiment is small. And the burden that the polishing pad gives to the environment and workers is small.
  • the worker cleans the surface to be polished with water.
  • the abrasive and the polishing pad according to the first embodiment are washed away with water without being precipitated.
  • the abrasive does not settle and collect in the drainage piping.
  • the hollow body, the hollow body pulverized product, the cerium oxide particles, and the thickener in the abrasive according to the first embodiment have a small burden on the environment.
  • the abrasive can be washed away into normal drainage facilities, making it easy to clean up and clean after finishing the polishing operation.
  • an operator wears the polishing puff 10 on the puff mounting base 32 and rotates the polishing puff 10 with the rotary tool 28.
  • the operator can polish the surface to be polished by holding the polishing puff 10 in his / her hand.
  • the abrasive according to the second embodiment has the same configuration as the abrasive according to the first embodiment except for the following points.
  • the abrasive according to the second embodiment contains a hollow body, a pulverized hollow body obtained by pulverizing the hollow body, a thickener, and water.
  • the hollow body is a shirasu balloon or pearlite, and the particle size of the hollow body is 80 to 320 m.
  • the pulverized hollow body is obtained by pulverizing shirasu balloon or pearlite, and the particle size of the pulverized hollow body is 50 to 200 ⁇ m.
  • a procedure for preparing the abrasive according to the second embodiment will be described.
  • the procedure for preparing the abrasive according to the second embodiment is the same as the procedure for preparing the abrasive according to the first embodiment except for the following points.
  • the worker does not need to prepare water in which the particles of cerium oxide are dispersed.
  • the worker needs to cover the water in which the cerium oxide particles are dispersed in the water in which the hollow body and the hollow body pulverized material are dispersed.
  • This polisher is similar to the polisher used in the past to polish the floor of a building, and has a puff that rotates on the floor.
  • the object to be polished is a floor of a building, and the surface to be polished is the surface of the floor. It is assumed that the worker polishes the surface to be polished of the object to be polished by using the abrasive according to the second embodiment and the polisher.
  • an operator defines a range of cleaning operations to be performed at one time, and covers and cures the objects around the range with a vinyl sheet. This curing prevents the surrounding equipment from getting dirty or damaged during floor cleaning. Note that even if the abrasive according to the second embodiment adheres to peripheral equipment, the worker who does not alter the portion where the abrasive has adhered will not remove the adhered abrasive. Can be easily washed away with water. In addition, the worker can easily wipe off with a rag wetted with the attached abrasive.
  • the worker After finishing the surrounding curing, the worker removes the dust from the floor surface in the area where the cleaning work is performed with a vacuum cleaner or the like.
  • the worker sprays an appropriate amount of the abrasive according to the second embodiment on the surface of the floor where the cleaning work is performed.
  • An operator moves the polisher on the sprayed abrasive according to the second embodiment to rotate the puff of the polisher.
  • the polisher puff becomes the polishing surface and polishes the floor surface.
  • a part of the hollow body in the abrasive according to the second embodiment is crushed by the force received from the puff of the polisher to form a hollow body pulverized product.
  • Most of the crushed hollow bodies generated from hollow bodies having a particle size of 80 to 320 ⁇ m have a particle size of 200 / zm or less, and at least a part of the crushed hollow bodies is 50 to 200 m. Having a particle size of
  • the hollow body and the pulverized hollow body in the abrasive according to the second embodiment roll and move freely.
  • the hollow body rolls on the dirt such as scale adhering to the surface of the floor, and the dirt such as scale is removed from the surface to be polished.
  • the hollow body pulverized product rolls on the oil film and other dirt or old solid wax that adheres to the floor surface, and the edge of the hollow body pulverized material is eaten by the oil film and other dirt or old solid wax.
  • dirt, oil film, etc. and old solid wax are removed from the surface force of the floor.
  • the worker uses the polishing puff 10 and the rotary tool 28 of the first embodiment to perform cleaning. Work can be done. Even if the abrasive or the polishing pad according to the second embodiment adheres to the surface of the floor, the water evaporates immediately and the polishing agent or the polishing pad according to the second embodiment is dried. Therefore, the floor surface is particularly easy to slip, and the risk of the worker falling is eliminated.
  • the abrasive according to the second embodiment has dried, the worker applies water to the place where the polisher is applied using a sprayer or the like, and then applies the polisher. Therefore, even if the abrasive according to the second embodiment is dried, there is no problem in the cleaning work.
  • the worker rinses away the abrasive and the polishing pad according to the second embodiment from the floor surface with water. Since the abrasive and the soot according to the second embodiment are washed away together with water without precipitating, the abrasive will not settle and collect in the piping of the drainage facility. Since the hollow body, hollow body pulverized product, and thickener in the abrasive according to the second embodiment have a small burden on the environment, the abrasive or abrasive wrinkle according to the second embodiment is used. The surface force of the floor along with the water can be washed out to normal drainage facilities.
  • the worker can interrupt the work as appropriate. If the work is interrupted, the floor surface dries quickly, so it is no longer slippery and people can safely and easily pass through the place where the work was interrupted.
  • Examples 1 to 48 the present inventor used the abrasive described in the first embodiment to polish the surface to be polished of the object to be polished.
  • Table 1 shows the polishing agent, polishing puff, and polishing object used in Examples 1 to 16.
  • each abrasive used in Examples 1 to 16 is the abrasive described in the first embodiment.
  • the particle size of the hollow shirasu balloon is 90 / zm
  • the particle size of the hollow pulverized shirasu balloon is 15 am
  • the particle size of the cerium oxide particles is 15 am &) At 3 ⁇ m.
  • the polishing puff used in Example 1 is the polishing buff described in the first embodiment. However, one circular end surface of the base material is not covered with the nonwoven fabric. The urethane sponge that forms the base material is exposed on one circular end face of the base material, and this urethane sponge forms a polished surface! /
  • polishing puffs used in Examples 2 to 6 are the polishing puffs described in the first embodiment. However, one circular end surface of the base material is not covered with the nonwoven fabric. A woven cloth covers the circular end face instead of the non-woven cloth, and this woven cloth forms a polished surface.
  • Example 2 the material of the woven fabric forming the polishing surface of the polishing puff is 100% cotton.
  • Example 3 the material of the woven fabric forming the polishing surface of the polishing puff is 100% wool.
  • Example 4 the material of the woven fabric forming the polishing surface of the polishing puff is 100% lotion.
  • Example 5 the material of the woven fabric forming the polishing surface of the polishing puff is 75% by mass of polyester and the balance is nylon.
  • Example 6 the material of the woven fabric forming the polishing surface of the polishing puff is 100% polyester.
  • Each polishing puff used in Examples 7 to 16 is the polishing puff described in the first embodiment. However, the nonwoven fabrics that form the polished surface are different.
  • Example 7 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 100% polyester.
  • Example 8 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 75% by mass of polyester and the remainder is rayon.
  • Example 9 65% by mass of the nonwoven fabric material forming the polishing surface of the polishing puff is polyester and the remainder is rayon.
  • Example 10 the nonwoven fabric material forming the polishing surface of the polishing puff is 60% by mass. Is polyester and the remainder is rayon.
  • Example 11 55% by mass of the nonwoven fabric material forming the polishing surface of the polishing puff is polyester, and the remainder is rayon.
  • Example 12 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 50% by mass of polyester and the remainder is rayon.
  • Example 13 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 30% by mass of polyester and the remainder is rayon.
  • Example 14 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 100% nylon.
  • Example 15 the material of the nonwoven fabric forming the polishing surface of the polishing puff is 100% cotton felt.
  • Example 16 the nonwoven fabric forming the polishing surface of the polishing puff is subjected to aluminum vapor deposition treatment on the surface.
  • Each polishing object used in Examples 1 to 16 is a soft glass, and is a float plate glass.
  • the polished surface of each object to be polished is a 500 mm ⁇ 500 mm square. Oil film and fish scale-like scale are firmly attached to each polished surface.
  • Example 1 to 16 the present inventor included an abrasive in each polishing puff, rotated each polishing puff with a rotary tool, and turned the rotating polishing puff to each polishing object.
  • the surface to be polished was pressed to polish the surface to be polished.
  • the rotational speed of each rotary tool used in Examples 1 to 16 is 1300 rpm. Table 1 shows the results of the polishing work in Examples 1 to 16.
  • the object to be polished is a soft glass
  • Use of the polishing puff of the working efficiency example is not preferable because the surface to be polished is damaged.
  • Examples 9 to 11 were evaluated to have no visible scratch on the surface to be polished and the working efficiency was A.
  • Examples 1 to 8, 14, and 16 visible scratches were confirmed on the polished surface, and the working efficiency was evaluated as E.
  • Example 13 the nonwoven fabric forming the polishing surface of the polishing puff frayed, and the life of the polishing buff was shortened.
  • Table 2 shows the abrasives, polishing puffs, and objects to be polished used in Examples 17 to 32.
  • the abrasives of Examples 17 to 32 are the same as the abrasives of Examples 1 to 16.
  • the polishing puff of Example 17 is the same as the polishing puff of Example 1.
  • the polishing puff of Example 18 is the same as the polishing puff of Example 2.
  • the polishing puff of Example 19 is the same as the polishing puff of Example 3.
  • the polishing puff of Example 20 is the same as the polishing puff of Example 4.
  • the polishing puff of Example 21 is the same as the polishing puff of Example 5.
  • the polishing puff of Example 22 is the same as the polishing puff of Example 6.
  • the polishing puff of Example 23 is This is the same as the polishing puff of Example 7.
  • the polishing puff of Example 24 is the same as the polishing puff of Example 8.
  • the polishing puff of Example 25 is the same as the polishing puff of Example 9.
  • the polishing puff of Example 26 is the same as the polishing puff of Example 10.
  • the polishing puff of Example 27 is the same as the polishing puff of Example 11.
  • the polishing puff of Example 28 is the same as the polishing puff of Example 12.
  • the polishing puff of Example 29 is the same as the polishing puff of Example 13.
  • the polishing puff of Example 30 is the same as the polishing puff of Example 14.
  • the polishing puff of Example 31 is the same as the polishing puff of Example 15.
  • the polishing puff of Example 32 is the same as the polishing puff of Example 16.
  • Each polishing object used in Examples 17 to 32 is tempered glass.
  • the surface to be polished of each object to be polished is a 500 mm x 500 mm square. Unevenness exists on each surface to be polished. The unevenness is a result of chemical cleaning using hydrogen fluoride, and each surface to be polished is clouded by the unevenness. And an oil film and fish scale-like scale are firmly attached to each surface to be polished.
  • Example 17 to 32 the present inventor included an abrasive in each polishing puff, rotated each polishing puff with a rotary tool, and rotated the polishing puff to each object to be polished.
  • the surface to be polished was pressed against the polished surface.
  • the rotational speed of each rotary tool used in Examples 17 to 32 is 2000 rpm.
  • Table 2 shows the results of the polishing work in Examples 17-32.
  • the work efficiency of the polishing work was evaluated in five stages of A, B, C, D, and E.
  • the work efficiency was evaluated as A.
  • the work efficiency was evaluated as B.
  • the work efficiency was evaluated as C.
  • the work efficiency was evaluated as D.
  • Work efficiency is E when scratches on the polished surface occur under the sun's rays with the naked eye It was evaluated.
  • polishing puff of the working example having the working efficiency A because the polishing operation can be performed quickly and cleanly.
  • Use of the polishing puff of the working example of the working efficiency 3 ⁇ 4 is not preferable because the surface to be polished is damaged.
  • Example 17 was evaluated to have a work efficiency of D.
  • Example 29 the nonwoven fabric forming the polishing surface of the polishing puff was frayed, and the life of the polishing buff was shortened.
  • Table 3 shows the abrasives, polishing puffs, and objects to be polished used in Examples 33 to 48.
  • each abrasive in Example 3348 is the abrasive described in the first embodiment.
  • the particle size of the hollow shirasu balloon is 15 / zm.
  • the particle size of the shirasu balloon pulverized product is 5 ⁇ m, and the particle size of the cerium oxide particles is 3 ⁇ m.
  • the polishing puff of Example 33 is the same as the polishing puff of Example 1.
  • the polishing puff of Example 34 is the same as the polishing puff of Example 2.
  • the polishing puff of Example 35 is the same as that of Example 3. This is the same as the polishing puff.
  • the polishing puff of Example 36 is the same as the polishing puff of Example 4.
  • the polishing puff of Example 37 is the same as the polishing puff of Example 5.
  • the polishing puff of Example 3 8 is the same as the polishing puff of Example 6.
  • the polishing puff of Example 39 is the same as the polishing puff of Example 7.
  • the polishing puff of Example 40 is the same as the polishing puff of Example 8.
  • the polishing puff of Example 41 is the same as the polishing puff of Example 9.
  • the polishing puff of Example 42 is the same as the polishing puff of Example 10.
  • the polishing puff of Example 43 is the same as the polishing puff of Example 11.
  • the polishing puff of Example 44 is the same as the polishing puff of Example 12.
  • the polishing puff of Example 45 is the same as the polishing puff of Example 13.
  • the polishing puff of Example 46 is the same as the polishing puff of Example 14.
  • the polishing puff of Example 47 is the same as the polishing puff of Example 15.
  • the polishing puff of Example 48 is the same as the polishing puff of Example 16.
  • Each polishing object used in Examples 33 to 48 is a SUS304 stainless steel plate.
  • the surface to be polished of each object to be polished is a 500 mm x 500 mm square. Oil film and fish scale-like scale adhere firmly to each surface to be polished, and each surface to be polished is cloudy.
  • Example 33 to 48 the present inventor included an abrasive in each polishing puff, rotated each polishing puff with a rotary tool, and rotated the polishing puff to each object to be polished.
  • the surface to be polished was pressed against the polished surface.
  • the rotational speed of each rotary tool used in Examples 33 to 48 is 1300 rpm. Table 3 shows the results of the polishing work in Examples 33 to 48.
  • the work efficiency of the polishing work was evaluated in five stages of A, B, C, D, and E.
  • the work efficiency was evaluated as A when the time required to remove the scale, oil film and cloudiness from the surface to be polished and to finish the surface to be polished was less than 10 minutes.
  • the work efficiency was evaluated as B when the time required to remove the scale, oil film and cloudiness from the polished surface and mirror finish the polished surface was 10 minutes or more and less than 30 minutes.
  • the work efficiency was evaluated as C. Dust, oil film and cloudiness from the polished surface
  • the work efficiency was evaluated as D.
  • the work efficiency was evaluated as E when the surface to be polished was damaged by the naked eye under sunlight.
  • Example 45 the non-woven fabric forming the polishing surface of the polishing puff frayed, and the life of the polishing buff was shortened.
  • the inventor conducted a test on the hollow body, the hollow body pulverized product, and the particles of cerium oxide in the abrasive according to the present invention, and the hollow body, the hollow body pulverized product, and the acid. We verified the effects of cerium particles.
  • Verification Examples 1 to 5 the present inventor verified the action of the hollow body contained in the abrasive according to the present invention.
  • Verification Examples 1 to 5 the present inventor prepared abrasives each containing a hollow body, a thickener, and water.
  • the hollow body is dispersed by the thickener.
  • the abrasives in Verification Examples 1 to 5 are the same except that the average particle diameters of the hollow bodies contained therein are different.
  • polishing agent of verification examples 1-5 is a shirasu balloon.
  • the average particle diameter of the hollow body in the abrasive of Verification Example 1 is 8.26 ⁇ m.
  • the average particle diameter of the hollow body in the abrasive of Verification Example 2 is 10.06 / zm.
  • the average particle size of the hollow body in the abrasive of Verification Example 3 is 59.
  • the average particle diameter of the hollow body in the abrasive of Verification Example 4 is 96.53 m.
  • the average particle diameter of the hollow body in the abrasive of Verification Example 5 is 120.96 / zm.
  • each polishing object in Verification Examples 1 to 5 is float glass and has a rectangular surface to be polished. Each polished surface is 300mm long x 400mm wide. For 30 days, the present inventor sprayed water twice a day on the surface to be polished of each polishing object in Verification Examples 1 to 5 and left it outdoors. As a result, fish scale-like scales were formed as dirt on the polished surfaces of the polishing objects of Verification Examples 1 to 5.
  • the present inventor included an abrasive in the polishing puff, rotated the polishing puff with a rotary tool, and rotated the polishing puff to each surface to be polished.
  • the surface to be polished was polished.
  • the rotation speed of the rotary tool used in Verification Examples 1 to 5 is 2000 rpm.
  • the inventor performed polishing by pressing a rotating polishing puff a total of 10 times on the same portion of the surface to be polished of the object to be polished.
  • the scale on the surface to be polished of the object to be polished was not removed in part. If the number of times of polishing is increased by pressing the rotating polishing puff against the surface of the object to be polished, it is considered that the scale of the surface of the object to be polished is completely removed. However, in this case, the time required for the polishing work is increased to some extent, and the work efficiency of the polishing work is somewhat deteriorated. It is judged. When comparing the polishing agent of Verification Example 1 with the polishing agent of Verification Example 2, the polishing agent of Verification Example 1 has a longer time for polishing work and the work efficiency of the polishing work is worse.
  • the surface to be polished has minute scratches that are hard to see with the naked eye
  • the surface of the surface to be polished can be efficiently scraped off. It can be seen that can be used.
  • Verification Examples 6 to 10 the present inventor verified the action of V, a hollow body pulverized material contained in the abrasive according to the present invention.
  • Verification Examples 6 to 10 the present inventor prepared abrasives containing a hollow body pulverized product, a thickener, and water, respectively.
  • the hollow body pulverized product is dispersed by the thickener.
  • the abrasives in Verification Examples 6 to 10 are the same except that the average particle size of the hollow body pulverized product contained therein is different.
  • the hollow body pulverized product in each polishing agent of Verification Example 6-: LO is a crushed shirasu balloon.
  • the average particle size of the hollow pulverized product in the abrasive of Verification Example 6 is 3.54 m.
  • the average particle size of the hollow pulverized product in the abrasive of Verification Example 7 is 5.86 ⁇ m.
  • the average particle size of the hollow body pulverized product in the abrasive of Verification Example 8 is 17.82 / zm.
  • the average particle size of the hollow body pulverized product in the abrasive of Verification Example 9 is 31.32 / z m.
  • the average particle size of the hollow body pulverized product in the abrasive of Verification Example 10 is 40.62 / z m.
  • each polishing object in Verification Examples 6 to 10 is float glass, and has a rectangular polished surface. Each polished surface is 300mm long x 400mm wide. For 30 days, the present inventor wiped the polished surface of each of the objects to be polished in Verification Examples 6 to 10 once with a cloth containing lubricating oil and water, and exhausted gasoline car exhaust for 30 minutes every day. And left outdoors. As a result, an oil film was formed as dirt on the polished surface of each polishing object in Verification Examples 6 to 10.
  • the present inventor included an abrasive in the polishing puff, rotated the polishing puff with a rotary tool, and rotated the polishing puff to each surface to be polished.
  • the surface to be polished was polished.
  • the rotational speed of the rotary tool used in verification examples 6 to 10 is 2000 rpm.
  • the inventor performed polishing by pressing a rotating polishing puff a total of 10 times on the same portion of the surface to be polished of the object to be polished.
  • Verification Example 7 the oil film on the surface to be polished of the object to be polished was partially removed, and the force was not removed. If the number of times of polishing is increased by pressing the rotating polishing puff against the surface of the object to be polished, it is considered that the scale of the surface of the object to be polished is completely removed. However, in this case, it takes a long time for the polishing work, and it is judged that the work efficiency of the polishing work is poor.
  • Verification Example 9 the oil film on the polished surface of the object to be polished was completely removed, and there was no scratch on the polished surface of the object to be polished with the naked eye.
  • the polishing agent of Verification Example 8 the polishing agent of Verification Example 9
  • the rotating polishing puff was removed from the polishing target object until the oil film on the polishing target surface of the polishing target was completely removed.
  • the minimum number of times the polishing agent in Verification Example 9 was less than the polishing agent in Verification Example 8 had to be pressed against the surface. Therefore, the polishing agent of Verification Example 9 requires less time for polishing work than the polishing agent of Verification Example 8, and the work efficiency of the polishing operation is better.
  • Verification Examples 11 to 14 the present inventors respectively prepared abrasives containing cerium oxide particles, a thickener, and water. In each of the polishing agents of Test Examples 11 to 14, cerium oxide particles are dispersed by a thickener. Each abrasive in Verification Examples 11-14 contains This is the same except that the particle sizes of the cerium oxide particles are different.
  • the particle size of the cerium oxide particles in the abrasive of Verification Example 11 is 0.1-0.
  • the particle size of the cerium oxide particles in the abrasive of Verification Example 12 is 0.5 m.
  • the particle size of the cerium oxide particles in the abrasive of Verification Example 13 is 1.2 to 2.5 m.
  • the particle size of the cerium oxide particles in the abrasive of Verification Example 14 is 3.0 to 5. O / z m.
  • the present inventor prepared each polishing puff of Example 10.
  • each of the polishing objects in Verification Examples 11 to 14 is float glass, and has a rectangular polished surface. Each polished surface is 300mm long x 400mm wide.
  • the present inventor wiped the surfaces to be polished of the objects to be polished in Verification Examples 11 to 14 with a cloth soaked with a diluted solution of hydrogen fluoride once every three days and washed with water. As a result, the to-be-polished surface of each object to be polished in Verification Examples 11 to 14 was violated by hydrogen fluoride, becoming clouded and opaque.
  • Verification Examples 11 to 14 the present inventor included an abrasive in the polishing puff, rotated the polishing puff with a rotary tool, and turned the rotating polishing puff to each polishing object.
  • the surface to be polished was pressed to polish the surface to be polished.
  • the rotational speed of the rotary tool used in Verification Examples 11 to 14 is 2000 rpm.
  • the inventor performed polishing by pressing a rotating polishing puff a total of 10 times on the same portion of the surface to be polished of the object to be polished.
  • Verification Example 11 the surface to be polished of the object to be polished slightly recovered in transparency. However, cloudiness remained on the polished surface. The number of times the rotating polishing puff was pressed against the surface to be polished of the object to be polished was increased, but the remaining cloudiness on the surface to be polished was not removed.
  • Verification Example 13 the surface to be polished of the object to be polished recovered its transparency, the cloudiness was removed from the surface to be polished, and the cloudiness had no residual power.
  • Verification Example 14 the polished surface of the object to be polished recovered its transparency, and the cloudiness was removed from the polished surface, and no cloudiness remained.
  • the polishing agent in Verification Example 13 the polishing agent in Verification Example 14 was completely removed before the rotating polishing puff was removed from the surface to be polished.
  • the minimum number of times that the polishing must be performed by pressing against the surface of the test sample was less than that of the verification example 13. Therefore, the polishing agent of Verification Example 14 requires less time for the polishing work than the polishing agent of Verification Example 13, and the work efficiency of the polishing work is better.
  • the abrasive according to the present invention includes the surface of articles such as glass products, glazed products, tile products, metal products, stone floors, wooden floors, synthetic resin floors, linoleum floors, brick floors, metal It is useful as an abrasive for polishing the surface of floors such as flooring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 作業性と安全性に優れ、ガラス表面等に付着している汚れを効率的に除去可能な研磨剤を提供する。粒径が10~100μmのシラスバルーンと、シラスバルーンを粉砕して得られる粒径が5~30μmの中空体粉砕物と、粒径が0.5~5μmの酸化セリウムの粒子と、増粘剤と、水と、を含有する研磨剤を調製する。

Description

明 細 書
研磨剤
技術分野
[0001] 本発明は、ガラス製品、琺瑯製品、タイル製品、金属製品等の物品の表面や、石製 床、木製床、合成樹脂製床、リノリュウム製床、レンガ製床、金属製床等の床の表面 を研磨する研磨剤に関する。
背景技術
[0002] ガラス製品、琺瑯製品、タイル製品、金属製品等を使用していると、これらの物品の 表面に、油膜や水垢等の汚れが付着してくる。
例えば、自動車が街中を走行すると、様々な汚れが自動車の窓ガラスに付着する。 大気中を浮遊する小さな油の粒子が窓ガラスの表面に付着し、油膜を形成する。ま た、雨水や洗車の際にかかる水等の中に含まれる雑物が窓ガラスの表面に付着し、 水垢を形成する。窓ガラスの表面に付着した油膜や水垢は、窓ガラスを曇らせたり、 ぎらつかせたりする。自動車の窓ガラスの曇りやぎらつきは、運転手の視界を遮り、自 動車の安全運転を妨げる。
[0003] 自動車の窓ガラス力 油膜や水垢を除去するために、界面活性剤を主成分とする 洗浄剤が広く用いられている。しかし、油膜や水垢は窓ガラスに強固に付着している ことが多い。作業員が、界面活性剤を主成分とする洗浄剤を用いて、強固に付着し た油膜や水垢を窓ガラスから除去することは、困難であり、時間もかかる。
作業員が、薬品を使って自動車の窓ガラスをィ匕学的に洗浄すれば、窓ガラスに付 着した油膜や水垢を除去することができる。しかし、自動車の窓ガラスをィ匕学的に洗 浄する際に使用する薬品は、フッ化水素等の劇薬である。このような薬品を使用して 自動車の窓ガラスを洗浄するときには、薬品に対する厳重な注意と管理が必要であ る。例えば、薬品を使用して自動車の窓ガラスを洗浄した後、使用済みの薬品の処 理が大変である。使用済みの薬品を管理し、適切な処理を施して無害化したり、専門 の廃棄物処理業者に処理を依頼しなければならな 、。大きな負担が環境や作業員 にかかり、薬品を使用して洗浄作業を行うことができる場所が限定されてしまう。 [0004] また、フッ化水素はガラスと化学反応するので、窓ガラスの表面がフッ化水素に犯さ れる危険性がある。窓ガラスの表面がフッ化水素に犯されると、凹凸が窓ガラスの表 面に生じる。この凹凸は窓ガラスの表面の荒れや白濁の原因となる。
さらに、窓ガラスをィ匕学的に洗浄した後、フッ化水素が窓ガラスに残っていると、残 つているフッ化水素が窓ガラスと化学反応し、窓ガラスが白濁してしまう。したがって、 化学的に洗浄する方法が好ま 、とは言!、がた 、。
[0005] 作業員が高硬度の研磨工具を用いて自動車の窓ガラスを研磨し、窓ガラスの汚れ を機械的に削り落とすことが考えられる。しかし、この方法では、窓ガラスの表面が研 磨工具によって傷つく危険性があり、窓ガラスの表面が傷つくことを防止しなければ ならない。このため、熟練した作業員が研磨作業を行わなければならず、作業を行え る作業員が限定されてしまう。
そこで、作業性と安全性を考慮したガラス表面の洗浄具が提唱されている (特許文 献 1を参照)。この洗浄具は、火山灰土の微粉体と固化調整剤とを混合し、水で捏練 りして、固形ィ匕したものである。微粉体は 8〜10 /ζ πι程度の粒度に精製されている。 固化調整剤は石膏である。作業員が、自動車の窓ガラスの表面に水をかけつつ、こ の洗浄具を用いて窓ガラスの表面を摩擦する。洗浄具中の火山灰土の微粉体が、窓 ガラスの表面に付着した汚れを搔き落とす。
[0006] また、建築物の床等の人が歩く場所は、非常に汚れやすい。そこで、清掃作業によ り床の汚れを除去することが必要になる。特に、店舗や公共施設等の不特定多数の 人が出入りする場所では、床が汚れやすぐ定期的に床の清掃作業が行われている 。床の清掃作業では、まず、作業員が、床の汚れと一緒に古いワックスを床力も剥離 して除去する。古くなつたワックスは固形ィ匕して床に強固にこびりついている。また、 床の汚れは、床にかけられたワックスと混ざり、床に強固にこびりついていることが多 い。このため、汚れと一緒に古いワックスを床力も剥離して除去する作業は、困難で あり、時間がかかる。
[0007] そこで、薬品を使って古!、ワックスを溶力して除去することが多 、。また、へらや砲 石等を使って機械的に汚れと一緒に古いワックスを床力 剥離して除去することも行 われている。 そして、作業員は、床力も汚れと古いワックスを除去したら、床に新しくワックスをか けて清掃作業を終える。
特許文献 1:特開平 11― 245168号公報
発明の開示
[0008] し力し、上記した洗浄具は次のような問題を有している。
洗浄具中の火山灰土の微粉体は、固化調整剤によって固形化されて、一体化した 洗浄具を形成している。作業員が、この洗浄具を用いて自動車の窓ガラスの表面を 摩擦する。洗浄具の表面に露出している火山灰土の微粉体が、窓ガラスの表面にこ すりつけられる。洗浄具の表面に露出している火山灰土の微粉体は、窓ガラスの表 面に付着した汚れ等に引つ力かりやすい。火山灰土の微粉体が窓ガラスの表面の汚 れ等に引つ力かっても、作業員がこの引つ力かりに気づかず、そのまま洗浄具で窓ガ ラスの表面を摩擦し続ける可能性がある。このようなことが生じた場合、無理な力が火 山灰土の微粉体力も窓ガラスの表面に働き、窓ガラスの表面が傷つく。
[0009] 作業員は、火山灰土の微粉体と窓ガラスの表面の汚れとの引つ力かりに気づくこと ができるように、細心の注意を払いつつ汚れの除去作業を行わなければならない。 作業員が、このような細心の注意を払いつつ作業を行っていたのでは、迅速に作業 を行うことが難しくなり、作業効率が低下しやすい。また、作業に不慣れな作業員は、 火山灰土の微粉体と窓ガラスの表面の汚れとの間の引つ力かりを見落す可能性が高 い。作業員が引つ力かりを見落したまま洗浄具で窓ガラスの表面を摩擦し続けると、 窓ガラスの表面が傷つ 、てしまう。
[0010] 力かる問題が発生するのは、自動車の窓ガラスの汚れを除去する場合に限られな い。その他のガラス製品、琺瑯製品、タイル製品、金属製品等の物品の表面に付着 した汚れを除去する場合にも、同じ問題が発生する。
また、建築物の床等の清掃作業で、作業員が古いワックスを薬品で溶力して除去 する場合、次のような問題が存在する。
清掃作業においては、床にこびりついたワックスを溶かすために、強アルカリ性の 薬品を使用することが多い。このため、作業員は薬品の取り扱いに細心の注意を払 わなければならない。薬品が周囲の壁等に飛散すると、薬品に触れた場所が変色し たり変質したりする。したがって、作業員は、清掃作業前に周辺を厳重に養生してお 力なければならず、作業員にとって事前準備が煩雑である。
[0011] また、ワックスが溶け込んだ薬品が床の上に広がっていると、床が非常に滑りやすく なる。作業員は、転倒事故を防止するために細心の注意を払わなければならない。 作業員がこのような細心の注意を払 、つつ清掃作業を行って 、たのでは、迅速に作 業を行うことが難しくなり、作業効率が低下しやすい。
薬品を用いて清掃作業を行っている間は、通行人が作業領域に立ち入ることを防 止しなければならない。そして、作業員は、床の上の薬品が乾いてしまう前に作業を 行わねばならない。また、作業員は、薬品で古いワックスを溶力したら、溶力したもの が固化してしまう前に作業を終えてしまわなければならない。このため、作業員は、清 掃作業を開始したら、その清掃作業を途中で中止できない。したがって、公共施設や 店舗等の人の通行量が多い場所においては、一回の清掃作業の対象となる面積を 広くすることが難しぐ一回の清掃作業にかける時間を長くすることも難しい。すなわ ち、公共施設や店舗等の人の通行量が多い場所において、薬品を使用して清掃作 業を行う場合、様々な要素を考慮しつつ適切な清掃作業の計画を練らねばならず、 清掃作業の遂行は非常に大きな困難が伴う。
[0012] 固形ィ匕して床に強固にこびりついたワックスを薬品によって溶かす場合、床が薬品 によって犯されることを防止しなければならない。例えば、塩ィ匕ビュル製の床に対し て無害な薬品が、リノリュウム製の床に対して無害な薬品であるとは限らない。そして 、リノリュウム製の床と塩ィ匕ビュル製の床とを目で見て区別することは難しい。このため 、作業員は、建築物の設計図や仕様書で床の材質を確認し、適切な薬品を選定しな ければならない。適切な薬品を選定できなければ、床が変色したり変質したりしてしま
[0013] さらに、清掃作業で使用した薬品を適切に処理しなければならない。この薬品の処 理は煩雑な作業である。作業員は使用済みの薬品を適切に管理し、適切な処理を 施して無害化したり、専門の廃棄物処理業者にその処理を依頼しなければならない また、建築物の床等の清掃作業で、へらや砲石等の道具を使って汚れと一緒に古 V、ワックスを床カゝら剥離して除去する場合、次のような問題がある
へらや砥石等を使って古 ヽワックスを床カゝら剥離して除去する場合、ワックスを剥離 した後の床の状態にムラが生じやすい。また、床と壁の境目や、部屋の隅には、へら や砲石等の道具が届きにくいことが多い。このような部分では、作業員が小さな道具 を使って根気よく手作業を行わなければならない。このような手作業は、作業員の熟 練度に負うところが大きい。熟練作業員がいない場合、古いワックスを床力も完全に 除去することが困難となりやすぐ作業効率が非常に悪くなりやすい。
[0014] このような建築物の床等の清掃作業における問題は、床の材質を問わず存在し、ま た、屋内の床であるか屋外の床であるかを問わず存在する。
本発明は、上記問題を解決するものであり、その目的とするところは、作業性と安全 性に優れ、ガラス製品、琺瑯製品、タイル製品、金属製品等の物品の表面や、石製 床、木製床、合成樹脂製床、リノリュウム製床、レンガ製床、金属製床等の床の表面 に付着した汚れを効率的に除去可能な研磨剤を提供することである。
[0015] なお、床の表面に付着した汚れには、床の表面に付着している古いワックス等を含 む。
本発明は、その課題を解決するために以下のような構成をとる。請求項 1の発明に 係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体と、当該中空体を粉 砕して得られる中空体粉砕物と、増粘剤と、水と、を含有し、含有する前記中空体の 粒径が 10〜: LOO μ mであり、含有する前記中空体粉砕物の粒径が 5〜30 μ mであ る。
請求項 1の発明によれば、研磨剤は、中空体と、中空体粉砕物と、増粘剤と、水と、 を含有する。中空体及び中空体粉砕物が増粘剤によって研磨剤中に分散している。
[0016] 中空体は、火山ガラスを焼成して発泡させたものであり、中空部を有する。中空体 の中空部は、外部力 独立していてもよぐまた、外部と連通していてもよい。中空体 を粉砕して得られる中空体粉砕物は、エッジを表面に有する。このエッジは中空体を 粉枠する際に形成されたものである。
中空体の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物から得ら れる。ガラス質火山岩とは、真珠岩 (crude perlite)、黒曜岩 (obsidian)、松脂岩( pitchstone)等を総称する火山ガラスを主とする岩石である。ガラス質火山砕屑物は 、火山活動によって地表に放出された破片状の固体物質であり、ガラス質に富む。ガ ラス質火山砕屑物の堆積したものは、白土、火山灰、シラス、シリカサンド等と呼ばれ ている。 日本国内でみられるガラス質火山砕屑物には、北海道の美瑛白土、東北の 福島白土、九州の加久藤シラス、九州の吉田シラス、九州の一次シラス等がある。中 空体は天然の原料から製造されるので、中空体や中空体粉砕物が環境や作業者に 与える負担は小さい。
[0017] 増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤は、ここに例示したものに限定されるものではなぐ従来からある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体及び中空体粉砕物が、パフと被研磨面の間を転動しつつ自由に 動く。また、研磨剤中の中空体の一部が粉砕されて中空体粉砕物となる。
[0018] 中空体が被研磨面に付着した水垢の上を転動すると、水垢が中空体によって被研 磨面から搔き落とされる。
中空体粉砕物が被研磨面に付着した油膜の上を転動すると、中空体粉砕物のエツ ジが油膜に食い込み、油膜が中空体粉砕物によって被研磨面力 搔き落とされる。 パフと被研磨面の間で転動する中空体や中空体粉砕物が、被研磨面上の汚れや 異物に引つ力かる場合がある。このような場合、作業員がパフによる研磨をそのまま 続けると、汚れ等に引つ力かった中空体や中空体粉砕物は、抵抗力 、さくなる方向 へ移動し、引つかかりから解放され、再び、自由に動けるようになる。無理な力が中空 体や中空体粉砕物と被研磨面との間に働くことがない。したがって、研磨中の中空体 や中空体粉砕物が被研磨面を傷つけることが防止されている。
[0019] 本発明者が試行錯誤して得た経験によれば、研磨剤中の中空体の粒径が 10 μ m 未満である場合、中空体が小さくなりすぎる。この結果、被研磨面と接触する中空体 の面積力 、さくなり、中空体は水垢を被研磨面力 効率よく搔き落とせない。研磨剤 中の中空体の粒径が 100 mを超える大きさになると、肉眼で見てわかる程度の傷 が被研磨面に発生しやすくなる。研磨剤中の中空体の粒径がさらに大きくなつて、 3 20 mを超える大きさとなると、中空体は被研磨面に付着した水垢の上をなでるだけ となりやすぐ中空体は水垢を被研磨面力 効率よく搔き落とせない。
[0020] したがって、研磨剤中の中空体が被研磨面に肉眼で見てわ力る程度の傷を発生さ せずに、水垢を被研磨面力 効率よく搔き落とすためには、研磨剤中の中空体の粒 径カ 10〜100 111でぁればょぃ。
本発明者の経験によれば、研磨剤中の中空体粉砕物の粒径が 未満である場 合、中空体粉砕物が小さくなりすぎる。この結果、被研磨面と接触する中空体粉砕物 の面積力 、さくなり、中空体粉砕物は油膜を被研磨面力 効率よく搔き落とせない。 研磨剤中の中空体粉砕物の粒径が mを超える大きさになると、肉眼で見てわか る傷が被研磨面に発生しやすくなる。研磨剤中の中空体粉砕物の粒径がさらに大き くなつて、 200 /z mを超える大きさとなると、中空体粉砕物のエッジが油膜に食い込み に《なり、中空体粉砕物は油膜を被研磨面力も効率よく搔き落とせない。また、研磨 剤中の中空体粉碎物の粒径が 200 mを超える大きさとなると、大きな傷が被研磨 面に発生する可能性が高い。
[0021] したがって、研磨剤中の中空体粉砕物が被研磨面に肉眼で見てわ力る程度の傷を 発生させずに、油膜を被研磨面力 効率よく搔き落とすためには、研磨剤中の中空 体粉砕物の粒径力 5〜30 mであればよい。
なお、研磨剤中の中空体の含有量や中空体粉砕物の含有量は、被研磨面に付着 した水垢や油膜の状態や量に応じて調整される。水垢が強固に付着している場合や 、付着している水垢の量が多い場合には、中空体の含有量を増やす。また、油膜が 強固に付着している場合や、付着している油膜の量が多い場合には、中空体粉砕物 の含有量を増やす。
[0022] 作業員が研磨作業を一時的に中断し、その後、作業を再開したとしても、再開した 作業になんら支障を生じない。作業を中断している間に研磨剤が乾燥してしまったと しても、乾燥した研磨剤に水分を与えれば、研磨剤は元の状態に戻る。したがって、 作業員は問題なく研磨作業を再開できる。 また、本発明者の経験によれば、研磨作業終了後、研磨剤が付着した研磨対象物 やパフを水洗すると、研磨剤は簡単に水によって洗い流される。水で洗い流した研 磨剤は、沈殿することなく水と一緒に流れてしまう。したがって、水と一緒に洗い流し た研磨剤が、排水用配管の中に沈殿することがなぐ洗い流した研磨剤によって排水 用配管が詰まってしまうこともない。また、前述したように、研磨剤中の中空体、中空 体粉砕物、及び、増粘剤は、環境に与える負担が小さいので、研磨作業後、水と一 緒に研磨剤を通常の排水設備に流してしまうことができ、研磨作業終了後の後片付 けや清掃が簡単である。
[0023] 請求項 2の発明に係る研磨剤は、研磨剤は、火山ガラスを焼成し発泡させた中空 体を粉砕して得られる中空体粉砕物と、酸化セリウムの粒子と、増粘剤と、水と、を含 有し、含有する前記中空体粉砕物の粒径が 5〜30 mであり、含有する前記酸化セ リウムの粒子の粒径が 0. 5〜5 /ζ πιである。
請求項 2の発明によれば、研磨剤は、中空体粉砕物と、酸化セリウムの粒子と、増 粘剤と、水と、を含有する。中空体粉砕物及び酸化セリウムの粒子が増粘剤によって 研磨剤中に分散している。
[0024] 中空体粉砕物は、火山ガラスを焼成し発泡させた中空体を粉砕して得られる。中空 体粉砕物は、エッジを表面に有する。このエッジは中空体の粉砕する際に形成され たものである。
粉砕される前の中空体は中空部を有する。この中空部は、外部力も独立していても よぐまた、外部と連通していてもよい。
中空体粉砕物の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物 力ら得られる。中空体粉砕物は天然の原料から製造されるので、中空体粉砕物が環 境や作業者に与える負担は小さ!/、。
[0025] 酸ィ匕セリウムは天然の鉱物である。天然の鉱物である酸ィ匕セリウムの粒子が環境や 作業者に与える負担は小さ!/、。
増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
[0026] 作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体粉砕物及び酸ィ匕セリウムの粒子が、パフと被研磨面の間を転動し つつ自由に動く。
中空体粉砕物が被研磨面に付着した油膜の上を転動すると、中空体粉砕物のエツ ジが油膜に食い込み、油膜が中空体粉砕物によって被研磨面力 搔き落とされる。 酸ィ匕セリウムはガラスよりも大きな硬度を有する。酸ィ匕セリウムの粒子が被研磨面上 を転動すると、被研磨面の凹凸や傷が研磨され、被研磨面が平滑になる。ガラス表 面、琺瑯製品の表面、タイルの表面等の凹凸や傷が研磨されて平滑になれば、これ らの表面から白濁や曇りがなくなる。酸ィ匕セリウムの粒子が金属表面上を転動すれば 、金属表面が平滑となり、金属表面の曇りがなくなり、金属表面が鏡面仕上げされる。
[0027] パフと被研磨面の間で転動する中空体粉砕物や酸ィ匕セリウムの粒子が、被研磨面 上の汚れや異物に引つ力かる場合がある。このような場合、作業員がパフによる研磨 をそのまま続けると、汚れ等に引つ力かった中空体粉砕物や酸ィ匕セリウムの粒子は、 抵抗が小さくなる方向へ移動し、引つかかりから解放され、再び、自由に動けるように なる。無理な力が中空体粉砕物や酸ィ匕セリウムの粒子と被研磨面との間に働くことが ない。したがって、研磨剤中の中空体粉砕物や酸ィ匕セリウムの粒子が被研磨面を傷 つけることが防止されて 、る。
[0028] 本発明者の経験によれば、研磨剤中の中空体粉砕物が被研磨面に肉眼で見てわ 力る程度の傷を発生させずに、油膜を被研磨面力も効率よく搔き落とすためには、研 磨剤中の中空体粉砕物の粒径が、 5〜30 μ mであればよい。
本発明者の経験によれば、研磨剤中の酸ィ匕セリウムの粒子の粒径が 0. 5 μ m未満 である場合、酸ィ匕セリウムの粒子が小さくなりすぎ、酸ィ匕セリウムの粒子は被研磨面の 凹凸や傷を効率よく研磨できない。研磨剤中の酸ィ匕セリウムの粒子の粒径が 5 /z mを 超える場合、酸ィ匕セリウムの粒子が大きくなりすぎ、酸ィ匕セリウムの粒子は被研磨面 の凹凸ゃ傷を効率よく研磨できな 、。
[0029] したがって、研磨剤中の酸化セリウムの粒子の粒径力 0. 5〜5 μ mであればよい なお、研磨剤中の中空体粉砕物の含有量や酸ィ匕セリウムの粒子の含有量は、被研 磨面に付着した油膜の状態や量、被研磨面の白濁や曇りの状態に応じて調整される 。油膜が強固に付着している場合や、付着している油膜の量が多い場合には、中空 体粉砕物の含有量を増やす。被研磨面の白濁や曇りの程度がひどい場合には、酸 化セリウムの粒子の含有量を増やす。
[0030] 作業員が研磨作業を一時的に中断し、その後、作業を再開したとしても、再開した 作業になんら支障を生じない。作業を中断している間に研磨剤が乾燥してしまったと しても、乾燥した研磨剤に水分を与えれば、研磨剤は元の状態に戻る。したがって、 作業員は問題なく研磨作業を再開できる。
また、本発明者の経験によれば、研磨作業終了後、研磨剤が付着した研磨対象物 やパフを水洗すると、研磨剤は簡単に水によって洗い流される。水で洗い流した研 磨剤は、沈殿することなく水と一緒に流れてしまう。したがって、水と一緒に洗い流し た研磨剤が、排水用配管の中に沈殿することがなぐ洗い流した研磨剤によって排水 用配管が詰まってしまうこともない。また、前述したように、研磨剤中の中空体粉砕物 、酸ィ匕セリウムの粒子、及び、増粘剤は、環境に与える負担が小さいので、研磨作業 後、研磨剤を通常の排水設備に洗い流すことができ、研磨作業終了後の後片付け や清掃が簡単である。
[0031] 請求項 3の発明に係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体と 、酸化セリウムの粒子と、増粘剤と、水と、を含有し、含有する前記中空体の粒径が 1 0〜: LOO μ mであり、含有する前記酸化セリウムの粒子の粒径が 0. 5〜5 μ mである 請求項 3の発明によれば、研磨剤は、中空体と、酸化セリウムの粒子と、増粘剤と、 水と、を含有する。中空体及び酸化セリウムの粒子が増粘剤によって研磨剤中に分 散している。
[0032] 中空体は、火山ガラスを焼成して発泡させたものであり、中空部を有する。中空体 の中空部は、外部力も独立していてもよぐまた、外部と連通していてもよい。
中空体の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物から得ら れる。中空体は天然の原料から製造されるので、中空体が環境や作業者に与える負 担は小さい。
酸ィ匕セリウムは天然の鉱物である。天然の鉱物である酸ィ匕セリウムの粒子が環境や 作業者に与える負担は小さ!/、。
[0033] 増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体及び酸ィ匕セリウムの粒子が、パフと被研磨面の間を転動しつつ自 由に動く。また、研磨剤中の中空体の一部が粉砕されて中空体粉砕物となり、この中 空体粉砕物もパフと被研磨面の間を転動しつつ自由に動く。
[0034] 中空体が被研磨面に付着した水垢の上を転動すると、水垢が中空体によって被研 磨面から搔き落とされる。
粉砕された中空体力 生じた中空体粉砕物が、被研磨面に付着した油膜の上を転 動すると、中空体粉砕物のエッジが油膜に食い込み、油膜が中空体粉砕物によって 被研磨面力 搔き落とされる。
酸ィ匕セリウムの粒子が被研磨面上を転動すると、被研磨面の凹凸や傷が研磨され 、被研磨面が平滑になる。ガラス表面、琺瑯製品の表面、タイルの表面等の凹凸や 傷が研磨されて平滑になれば、これらの表面力も白濁や曇りがなくなる。酸ィ匕セリウム の粒子が金属表面上を転動すれば、金属表面が平滑となり、金属表面の曇りがなく なり、金属表面が鏡面仕上げされる。
[0035] パフと被研磨面の間で転動する中空体、中空体粉砕物、又は、酸ィ匕セリウムの粒 子が、被研磨面上の汚れや異物に引つカゝかる場合がある。このような場合、作業員が パフによる研磨をそのまま続けると、汚れ等に引つ力かった中空体、中空体粉砕物、 又は、酸ィ匕セリウムの粒子は、抵抗が小さくなる方向へ移動し、引つかかりから解放さ れ、再び、自由に動けるようになる。無理な力が汚れ等に引つ力かった中空体、中空 体粉砕物、又は、酸ィ匕セリウムの粒子と被研磨面との間に働くことがない。したがって 、汚れ等に引つ力かった中空体、中空体粉砕物、又は、酸ィ匕セリウムの粒子が被研 磨面を傷つけることが防止されている。
[0036] 本発明者の経験によれば、研磨剤中の中空体が被研磨面に肉眼で見てわ力る程 度の傷を発生させずに水垢を被研磨面力 効率よく搔き落とすためには、研磨剤中 の中空体の粒径が、 10〜: LOO /z mであればよい。
本発明者の経験によれば、研磨剤中の酸ィ匕セリウムの粒子が被研磨面の凹凸や 傷を効率よく研磨し、被研磨面を平滑にするためには、酸ィ匕セリウムの粒子の粒径が 、 0. 5〜5 mであればよい。
[0037] なお、研磨剤中の中空体の含有量及び酸ィ匕セリウムの粒子の含有量は、被研磨面 に付着した水垢の状態や量、被研磨面の白濁や曇りの状態に応じてそれぞれ調整 される。水垢が強固に付着している場合や、付着している水垢の量が多い場合には 、中空体の含有量を増やす。被研磨面の白濁や曇りの程度がひどい場合には、酸 化セリウムの粒子の含有量を増やす。
作業員が研磨作業を一時的に中断し、その後、作業を再開したとしても、再開した 作業になんら支障を生じない。作業を中断している間に研磨剤が乾燥してしまったと しても、乾燥した研磨剤に水分を与えれば、研磨剤は元の状態に戻る。したがって、 作業員は問題なく研磨作業を再開できる。
[0038] また、本発明者の経験によれば、研磨作業終了後、研磨剤が付着した研磨対象物 やパフを水洗すると、研磨剤は簡単に水によって洗い流される。水で洗い流した研 磨剤は、沈殿することなく水と一緒に流れてしまう。したがって、水と一緒に洗い流し た研磨剤が排水用配管の中に沈殿することがなぐ洗い流した研磨剤によって排水 用配管が詰まってしまうこともない。また、前述したように、研磨剤中の中空体、酸ィ匕 セリウムの粒子、及び、増粘剤は、環境に与える負担が小さいので、研磨作業後、研 磨剤を通常の排水設備に洗い流すことができ、研磨作業終了後の後片付けや清掃 が簡単である。
[0039] 請求項 4の発明に係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体と 、当該中空体を粉砕して得られる中空体粉砕物と、酸化セリウムの粒子と、増粘剤と 、水と、を含有し、含有する前記中空体の粒径が 10〜: LOO mであり、含有する前記 中空体粉砕物の粒径が 5〜30 μ mであり、含有する前記酸化セリウムの粒子の粒径 が 0. 5〜5 μ mである。
請求項 4の発明によれば、研磨剤は、中空体と、中空体粉砕物と、酸ィ匕セリウムの 粒子と、増粘剤と、水と、を含有する。中空体、中空体粉砕物及び酸化セリウムの粒 子が増粘剤によって研磨剤中に分散して 、る。
[0040] 中空体は、火山ガラスを焼成して発泡させたものであり、中空部を有する。中空体 の中空部は、外部力 独立していてもよぐまた、外部と連通していてもよい。中空体 を粉砕して得られる中空体粉砕物は、エッジを表面に有する。このエッジは中空体の 粉枠する際に形成されたものである。
中空体の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物から得ら れる。中空体は天然の原料から製造されるので、中空体や中空体粉砕物が環境や 作業者に与える負担は小さ!/、。
[0041] 酸ィ匕セリウムは天然の鉱物である。天然の鉱物である酸ィ匕セリウムの粒子が環境や 作業者に与える負担は小さ!/、。
増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
[0042] 作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体、中空体粉砕物及び酸ィ匕セリウムの粒子が、パフと被研磨面の間 を転動しつつ自由に動く。また、研磨剤中の中空体の一部が粉砕されて中空体粉砕 物となる。
中空体が被研磨面に付着した水垢の上を転動すると、水垢が中空体によって被研 磨面から搔き落とされる。
中空体粉砕物が被研磨面に付着した油膜の上を転動すると、中空体粉砕物のエツ ジが油膜に食い込み、油膜が中空体粉砕物によって被研磨面力 搔き落とされる。 [0043] 酸ィ匕セリウムの粒子が被研磨面上を転動すると、被研磨面の凹凸や傷が研磨され 、被研磨面が平滑になる。ガラス表面、琺瑯製品の表面、タイルの表面等の凹凸や 傷が研磨されて平滑になれば、これらの表面力も白濁や曇りがなくなる。酸ィ匕セリウム の粒子が金属表面上を転動すれば、金属表面が平滑となり、金属表面の曇りがなく なり、金属表面が鏡面仕上げされる。
パフと被研磨面の間で転動する中空体、中空体粉砕物や酸ィ匕セリウムの粒子が、 被研磨面上の汚れや異物に引つカゝかる場合がある。このような場合、作業員がパフ による研磨をそのまま続けると、汚れ等に引つ力かった中空体、中空体粉砕物、又は 、酸ィ匕セリウムの粒子は、抵抗力 、さくなる方向へ移動し、引つかかりから解放され、 再び、自由に動けるようになる。無理な力が汚れ等に引つ力かった中空体、中空体 粉砕物、又は、酸ィ匕セリウムの粒子と被研磨面との間に働くことがない。したがって、 汚れ等に引つ力かった中空体、中空体粉砕物、又は、酸ィ匕セリウムの粒子が被研磨 面を傷つけることが防止されている。
[0044] 本発明者の経験によれば、研磨剤中の中空体が被研磨面に肉眼で見てわ力る程 度の傷を発生させずに水垢を被研磨面力 効率よく搔き落とすためには、研磨剤中 の中空体の粒径が、 10〜: LOO /z mであればよい。
本発明者の経験によれば、研磨剤中の中空体粉砕物が被研磨面に肉眼で見てわ 力る程度の傷を発生させずに油膜を被研磨面力 効率よく搔き落とすためには、研 磨剤中の中空体粉砕物の粒径が、 5〜30 μ mであればよい。
[0045] 本発明者の経験によれば、研磨剤中の酸ィ匕セリウムの粒子が被研磨面の凹凸や 傷を効率よく研磨し、被研磨面を平滑にするためには、酸ィ匕セリウムの粒子の粒径が 、 0. 5〜5 mであればよい。
なお、研磨剤中の中空体の含有量、中空体粉砕物の含有量及び酸化セリウムの粒 子の含有量は、被研磨面に付着した水垢や油膜の状態や量、被研磨面の白濁や曇 りの状態に応じてそれぞれ調整される。
[0046] 作業員が研磨作業を一時的に中断し、その後、作業を再開したとしても、再開した 作業になんら支障を生じない。作業を中断している間に研磨剤が乾燥してしまったと しても、乾燥した研磨剤に水分を与えれば、研磨剤は元の状態に戻る。したがって、 作業員は問題なく研磨作業を再開できる。
また、本発明者の経験によれば、研磨作業終了後、研磨剤が付着した研磨対象物 やパフを水洗すると、研磨剤は簡単に水によって洗い流される。水で洗い流した研 磨剤は、沈殿することなく水と一緒に流れてしまう。したがって、水と一緒に洗い流し た研磨剤が排水用配管の中に沈殿することがなぐ洗い流した研磨剤によって排水 用配管が詰まってしまうこともない。また、前述したように、研磨剤中の中空体、中空 体粉砕物、酸ィ匕セリウムの粒子、及び、増粘剤は、環境に与える負担が小さいので、 研磨作業後、研磨剤を通常の排水設備に洗い流すことができ、研磨作業終了後の 後片付けや清掃が簡単である。
[0047] 請求項 5の発明に係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体と 、増粘剤と、水と、を含有し、含有する前記中空体の粒径が 80〜320 /ζ πιである。 請求項 5の発明によれば、研磨剤は、中空体と、増粘剤と、水と、を含有する。中空 体が増粘剤によって研磨剤中に分散して 、る。
中空体は、火山ガラスを焼成して発泡させたものであり、中空部を有する。中空体 の中空部は、外部力も独立していてもよぐまた、外部と連通していてもよい。
[0048] 中空体の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物から得ら れる。中空体は天然の原料から製造されるので、中空体が環境や作業者に与える負 担は小さい。
増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
[0049] 作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体が、パフと被研磨面の間を転動しつつ自由に動く。
また、作業員がパフに加える力によって、研磨剤中の中空体の一部が粉砕され、中 空体粉砕物となる。この中空体粉砕物も、パフと被研磨面の間を転動しつつ自由に 動く。粒径力 0〜320 μ mの中空体から生じる中空体破砕物の殆どは、 200 μ m以 下の粒径を有し、また、この中空体破砕物の少なくとも一部は、 50〜200 /ζ πιの粒径 を有する。
[0050] パフと被研磨面の間で転動する中空体や中空体粉砕物が、被研磨面上の汚れや 異物に引つ力かる場合がある。このような場合、作業員がパフによる研磨をそのまま 続けると、汚れ等に引つ力かった中空体や中空体粉砕物は、抵抗力 、さくなる方向 へ移動し、引つかかりから解放され、再び、自由に動けるようになる。無理な力が中空 体や中空体粉砕物と被研磨面との間に働くことがない。したがって、中空体や中空体 粉碎物が被研磨面を大きく傷つけることが防止されている。
[0051] 一般に、床の表面には、水垢や油膜をはじめとする様々な汚れ力 古いワックスとと もに強固に付着している。また、古いワックスは、これらの汚れを中に取り込んで固形 ィ匕してしまって!/ヽることが多!、。
本発明者が試行錯誤して得た経験によれば、研磨対象物の被研磨面が床の表面 であり、研磨剤中の中空体の粒径が 80 m未満である場合、研磨剤中の中空体は、 床の表面に付着した水垢等の汚れを効率よく搔き落とせない。また、研磨剤中の中 空体の粒径が 320 mを超える場合も、研磨剤中の中空体は、床の表面に付着した 水垢等の汚れを効率よく搔き落とせない。そして、研磨剤中の中空体の粒径が 320 μ mを超える場合、研磨剤中の中空体や、この中空体力ゝら生じた中空体破砕物が、 床の表面に目立つ傷をつけてしまうおそれがある。
[0052] また、研磨対象物の被研磨面が床の表面であり、研磨剤中の中空体粉砕物の粒径 が 50 m未満である場合、中空体粉砕物は床の表面に付着した油膜等の汚れや古 いワックス等を効率よく搔き落とせない。研磨剤中の中空体粉砕物の粒径が 200 m を超える場合も、中空体粉砕物は床の表面に付着した油膜等の汚れゃ古 ヽワックス 等を効率よく搔き落とせない。また、研磨剤中の中空体粉砕物の粒径が 200 mを 超える場合、床の表面に目立つ傷がつ!、てしまうおそれがある。
[0053] 本発明者が試行錯誤して得た経験によれば、研磨対象物の被研磨面が床の表面 であり、研磨剤中に存在する中空体の粒径が 80〜320 mである場合、研磨剤中 の中空体は、床の表面に付着した水垢等の汚れを効率よく搔き落とすことができ、床 の表面に小さな傷をつける。また、研磨剤中に存在する中空体粉砕物の粒径が 50 〜200 mである場合、研磨剤中の中空体粉砕物は、床の表面に付着した油膜等 の汚れや古いワックス等を効率よく搔き落とすことができ、床の表面に小さな傷をつけ る。
[0054] 床の表面力 水垢や油膜をはじめとする様々な汚れと古!、ワックスを除去し、表面 に小さな傷がついた床に新たにワックスをかけると、この小さな傷のためにワックスの のりが非常によくなる。そして、新たにワックスをかけた後は、床の表面についた小さ な傷は、ワックスによって埋まってしまい、まったく見えなくなる。
したがって、床の表面力 水垢や油膜をはじめとする様々な汚れと古くなつたヮック スとを効率よく除去し、ワックスがけをしやすくし、きれいな床を得るためには、研磨剤 中の中空体の粒径力 80〜320 mであればよい。
[0055] なお、研磨剤中の中空体の含有量は、被研磨面に付着した汚れや古いワックスの 状態や量に応じて調整される。汚れが強固に付着している場合、付着している汚れ の量が多い場合、古いワックスが強固に付着している場合、付着している古いヮック スの量が多 、場合には、研磨剤中の中空体の含有量を増やす。
研磨剤を用いて床の表面から汚れと古いワックスを除去する作業を、作業員が途中 で一時的に中止し、その後、作業を再開したとしても、再開した作業にはなんら支障 を生じない。作業を中止している間に研磨剤が乾燥してしまったとしても、水分を与え れば研磨剤は元に戻る。したがって、作業員は、作業を問題なく再開できる。すなわ ち、床の清掃作業を適宜一時中止できるので、床の清掃作業の計画が立てやすくな り、清掃作業の効率を高めることが容易である。
[0056] また、本発明者の経験によれば、研磨作業終了後、研磨対象物の被研磨面を水洗 すると、研磨剤は沈殿せずに水と一緒に洗い流され、排水設備の配管等の中に研磨 剤が沈殿して溜まったりすることがない。研磨剤が含有する中空体、中空体粉砕物、 及び、増粘剤は、環境に与える負担が小さいので、研磨作業後、研磨剤を通常の排 水設備に洗い流すことができ、研磨作業終了後の後片付けや清掃が簡単である。 さらに、研磨剤が含有する中空体、中空体粉砕物、及び、増粘剤は、石製床、木製 床、合成樹脂製床、リノリュウム製床、レンガ製床、金属製床等の床を変質させたり変 色させたりしない。したがって、作業員は、床の清掃作業を行うに際して、床の材質を 気にする必要がなくなり、床の清掃作業を効率よく行うことができる。なお、ここに列挙 した床の材質は例示であり、研磨剤を使用可能な床の材質がここに列挙したものに 限定されるものではない。
[0057] 請求項 6の発明に係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体を 粉砕して得られる中空体粉砕物と、増粘剤と、水と、を含有し、含有する前記中空体 粉砕物の粒径が 50〜200 μ mである。
請求項 6の発明によれば、研磨剤は、中空体粉砕物と、増粘剤と、水と、を含有す る。中空体粉砕物が増粘剤によって研磨剤中に分散している。
中空体粉砕物は、火山ガラスを焼成し発泡させた中空体を粉砕して得られる。中空 体粉砕物は、エッジを表面に有する。このエッジは中空体の粉砕する際に形成され たものである。粉砕される前の中空体は中空部を有する。この中空部は、外部から独 立していてもよぐまた、外部と連通していてもよい。
[0058] 中空体粉砕物の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物 力ら得られる。中空体粉砕物は天然の原料から製造されるので、中空体粉砕物が環 境や作業者に与える負担は小さ!/、。
増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
[0059] 作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体粉砕物が、パフと被研磨面の間を転動しつつ自由に動く。
パフと被研磨面の間で転動する中空体粉砕物が、被研磨面上の汚れや異物に引 つ力かる場合がある。このような場合、作業員がパフによる研磨をそのまま続けると、 汚れ等に引つ力かった中空体粉砕物は、抵抗が小さくなる方向へ移動し、引つかかり から解放され、再び、自由に動けるようになる。無理な力が中空体粉砕物と被研磨面 との間に働くことがない。したがって、中空体粉砕物が被研磨面を大きく傷つけること が防止されている。 [0060] 一般に、床の表面には、水垢や油膜をはじめとする様々な汚れ力 古いワックスとと もに強固に付着している。また、古いワックスは、これらの汚れを中に取り込んで固形 ィ匕してしまって!/ヽることが多!、。
本発明者が試行錯誤して得た経験によれば、研磨対象物の被研磨面が床の表面 であり、研磨剤中に存在する中空体粉砕物の粒径が 50〜200 mである場合、研 磨剤中の中空体粉砕物は、床の表面に付着した油膜等の汚れゃ古 ヽワックス等を 効率よく搔き落とすことができ、床の表面に小さな傷をつける。
[0061] 床の表面から油膜等の様々な汚れと古!、ワックスを除去し、表面に小さな傷がつ!、 た床に新たにワックスをかけると、この小さな傷のためにワックスののりが非常によくな る。そして、新たにワックスをかけた後は、床の表面についた小さな傷は、ワックスによ つて埋まってしまい、まったく見えなくなる。
したがって、床の表面力 油膜等の様々な汚れと古くなつたワックスとを効率よく除 去し、ワックスがけをしやすくし、きれいな床を得るためには、研磨剤中の中空体粉砕 物の粒径が、 50〜200 mであればよい。
[0062] なお、研磨剤中の中空体粉砕物の含有量は、被研磨面に付着した油膜等の汚れ ゃ古 ヽワックスの状態や量に応じて調整される。油膜等の汚れが強固に付着して 、 る場合、付着している油膜等の汚れの量が多い場合、古いワックスが強固に付着し ている場合、付着している古いワックスの量が多い場合には、研磨剤中の中空体粉 砕物の含有量を増やす。
研磨剤を用いて床の表面力 汚れと古いワックスを除去する作業を、作業員が一時 的に中止し、その後、作業を再開したとしても、再開した作業にはなんら支障を生じ ない。作業を中止している間に研磨剤が乾燥してしまったとしても、水分を与えれば 研磨剤は元に戻る。したがって、作業員は作業を問題なく再開できる。すなわち、床 の清掃作業を適宜一時中止できるので、床の清掃作業の計画が立てやすくなり、清 掃作業の効率を高めることが容易である。
[0063] また、本発明者の経験によれば、研磨作業終了後、研磨対象物の被研磨面を水洗 すると、研磨剤は沈殿せずに水と一緒に洗い流され、排水設備の配管等の中に研磨 剤が沈殿して溜まったりすることがない。研磨剤が含有する中空体粉砕物、及び、増 粘剤は、環境に与える負担が小さいので、研磨作業後、研磨剤を通常の排水設備に 、流すことができ、研磨作業終了後の後片付けや清掃が簡単である。 さらに、研磨剤が含有する中空体粉砕物、及び、増粘剤は、石製床、木製床、合成 榭脂製床、リノリュウム製床、レンガ製床、金属製床等の床を変質させたり変色させた りすることはない。したがって、作業員は、床の清掃作業を行うに際して、床の材質を 気にする必要がなくなり、床の清掃作業を効率よく行うことができる。なお、ここに列挙 した床の材質は例示であり、研磨剤を使用可能な床の材質がここに列挙したものに 限定されるものではない。
[0064] 請求項 7の発明に係る研磨剤は、火山ガラスを焼成し発泡させて得られる中空体と 、当該中空体を粉砕して得られる中空体粉砕物と、増粘剤と、水と、を含有し、含有 する前記中空体の粒径が 80〜320 mであり、含有する前記中空体粉砕物の粒径 力 ^50〜200 /ζ πιである。
請求項 7の発明によれば、研磨剤は、中空体と、中空体粉砕物と、増粘剤と、水と、 を含有する。中空体及び中空体粉砕物が増粘剤によって研磨剤中に分散している。
[0065] 中空体は、火山ガラスを焼成して発泡させたものであり、中空部を有する。中空体 の中空部は、外部力 独立していてもよぐまた、外部と連通していてもよい。中空体 を粉砕して得られる中空体粉砕物は、エッジを表面に有する。このエッジは中空体の 粉枠する際に形成されたものである。
中空体の原料となる火山ガラスは、ガラス質火山岩やガラス質火山砕屑物から得ら れる。中空体は天然の原料から製造されるので、中空体や中空体粉砕物が環境や 作業者に与える負担は小さ!/、。
[0066] 増粘剤は、例えば、天然系増粘多糖類であるキサンタンガムや、セルロース誘導体 であるヒドロキシプロピルメチルセルロースおよびメチルセルロースである。なお、増 粘剤はこれらの例示したものに限定されるものではなぐ従来力 ある他の増粘剤を 用いることができる。食品添加物やィ匕粧品に用いられる増粘剤を用いれば、研磨剤 の増粘剤が環境や作業者に与える負担は小さ!/、。
作業員が、研磨剤をつけたパフを使用して研磨対象物の被研磨面を研磨すると、 研磨剤中の中空体及び中空体粉砕物が、パフと被研磨面の間を転動しつつ自由に 動く。
[0067] 作業員がパフに加える力によって、研磨剤中の中空体が粉砕されて中空体粉砕物 となる。粒径が 80〜320 μ mの中空体から生じる中空体破砕物の殆どは、 200 μ m 以下の粒径を有し、また、この中空体破砕物の少なくとも一部は、 50〜200 /ζ πιの粒 径を有する。
パフと被研磨面の間で転動する中空体や中空体粉砕物が、被研磨面上の汚れや 異物に引つ力かる場合がある。このような場合、作業員がパフによる研磨をそのまま 続けると、汚れ等に引つ力かった中空体や中空体粉砕物は、抵抗力 、さくなる方向 へ移動し、引つかかりから解放され、再び、自由に動けるようになる。無理な力が中空 体や中空体粉砕物と被研磨面との間に働くことがない。したがって、中空体や中空体 粉碎物が被研磨面を大きく傷つけることが防止されている。
[0068] 一般に、床の表面には、水垢や油膜をはじめとする様々な汚れ力 古いワックスとと もに強固に付着している。また、古いワックスは、これらの汚れを中に取り込んで固形 ィ匕してしまって!/ヽることが多!、。
本発明者が試行錯誤して得た経験によれば、研磨対象物の被研磨面が床の表面 であり、研磨剤中に存在する中空体の粒径が 80〜320 mである場合、研磨剤中 の中空体は、床の表面に付着した水垢等の汚れを効率よく搔き落とすことができ、床 の表面に小さな傷をつける。また、研磨剤中に存在する中空体粉砕物の粒径が 50 〜200 mである場合、研磨剤中の中空体粉砕物は、床の表面に付着した油膜等 の汚れや古いワックス等を効率よく搔き落とすことができ、床の表面に小さな傷をつけ る。
[0069] 床の表面力 水垢や油膜をはじめとする様々な汚れと古!、ワックスを除去し、表面 に小さな傷がついた床に新たにワックスをかけると、この小さな傷のためにワックスの のりが非常によくなる。そして、新たにワックスをかけた後は、床の表面についた小さ な傷は、ワックスによって埋まってしまい、まったく見えなくなる。
したがって、床の表面力 水垢や油膜をはじめとする様々な汚れと古くなつたヮック スとを効率よく除去し、ワックスがけをしやすくし、きれいな床を得るためには、研磨剤 中の中空体の粒径力 80-320 μ mであればよぐ研磨剤中の中空体粉砕物の粒 径カ 50〜80 mであればよい。
[0070] なお、研磨剤中の中空体の含有量や中空体粉砕物の含有量は、被研磨面に付着 した水垢や油膜等の汚れゃ古 ヽワックスの状態や量に応じて調整される。汚れが強 固に付着している場合や、付着している汚れの量が多い場合、古いワックスが強固に 付着している場合、付着している古いワックスの量が多い場合には、研磨剤中の中空 体の含有量や中空体粉砕物の含有量を増やす。
研磨剤を用いて床の表面力 汚れと古いワックスを除去する作業を、作業員が一時 的に中止し、その後、作業を再開したとしても、再開した作業にはなんら支障を生じ ない。作業を中止している間に研磨剤が乾燥してしまったとしても、水分を与えれば 研磨剤は元に戻る。したがって、作業員は問題なく作業を再開できる。すなわち、床 の清掃作業を適宜一時中止できるので、床の清掃作業の計画が立てやすくなり、清 掃作業の効率を高めることが容易である。
[0071] また、本発明者の経験によれば、研磨作業終了後、研磨対象物の被研磨面を水洗 すると、研磨剤は沈殿せずに水と一緒に洗い流され、排水設備の配管等の中に研磨 剤が沈殿して溜まったりすることがない。前述したように、研磨剤が含有する中空体、 中空体粉砕物、及び、増粘剤は、環境に与える負担が小さいので、研磨作業後、研 磨剤を通常の排水設備に洗い流すことができ、研磨作業終了後の後片付けや清掃 が簡単である。
さらに、研磨剤が含有する中空体、中空体粉砕物、及び、増粘剤は、石製床、木製 床、合成樹脂製床、リノリュウム製床、レンガ製床、金属製床等の床を変質させたり変 色させたりしない。したがって、作業員は、床の清掃作業を行うに際して、床の材質を 気にする必要がなくなり、床の清掃作業を効率よく行うことができる。なお、ここに列挙 した床の材質は例示であり、研磨剤を使用可能な床の材質がここに列挙したものに 限定されるものではない。
[0072] 請求項 8の発明に係る研磨剤は、請求項 1から請求項 7のうちのいずれか 1項に記 載の研磨剤であって、前記中空体がシラスバルーンである。
シラスバルーン(Shirasu— balloons)は、ガラス質火山砕屑物を高温で焼成して 発泡させたものである。 請求項 9の発明に係る研磨剤は、請求項 1から請求項 7のうちのいずれか 1項に記 載の研磨剤であって、前記中空体がパーライトである。
[0073] パーライト (expanded perlite)は、真珠岩、黒曜岩、松脂岩等のガラス質火山岩 を高温で焼成して発泡させたものである。なお、請求項 9の記載を含めて、本明細書 中でパーライトというときは、ガラス質火山岩を高温で焼成して発泡させたものを示し ており、真珠岩のことを示してはいない。
上記のような研磨剤であるので、作業性と安全性に優れ、ガラス製品、琺瑯製品、 タイル製品、金属製品等の物品の表面や、石製床、木製床、合成樹脂製床、リノリュ ゥム製床、レンガ製床等の床の表面に付着した汚れを効率的に除去可能である。 図面の簡単な説明
[0074] [図 1]研磨用パフの外観図である。
符号の説明
[0075] 10 研磨用パフ
12 基材
14、 16 円形端面
18 不織布
20 穴
22 面ファスナー
24、 26 面テープ
28 回転式工具
30 回転軸
32 パフ装着台
発明を実施するための最良の形態
[0076] 本発明を実施するための第 1の実施の形態を説明する。
まず、第 1の実施の形態に係る研磨剤について説明する。
第 1の実施の形態に係る研磨剤は、中空体と、中空体を粉砕して得られた中空体 粉砕物と、酸化セリウムの粒子と、増粘剤と、水と、を含有している。
中空体はシラスバルーン又はパーライトである。シラスバルーンは、ガラス質火山砕 屑物を例えば 1000〜1200°Cに焼成し発泡させて得られる。パーライトは、ガラス質 火山岩を例えば 200〜500°Cで余熱し 900〜: L100°Cで急加熱して発泡させて得ら れる。中空体の中空部は外部から独立していてもよいし、外部と連通していてもよい。 中空体の粒径は 10〜100 μ mである。
[0077] 中空体粉砕物は、シラスバルーン又はパーライトを粉砕して得られる。中空体粉砕 物は、表面にエッジを有する。このエッジはシラスバルーン又はパーライトを粉砕する 際に形成されたものである。中空体粉砕物の粒径は 5〜30 mである。
酸ィ匕セリウムの粒子は、天然に産する酸ィ匕セリウムを粉砕して得られる。酸化セリウ ムの粒子の粒径は 0. 5〜5 μ mである。
増粘剤は、増粘多糖類の一種であるキサンタンガムである。
[0078] なお、中空体がシラスバルーンである場合、中空体粉砕物は、シラスバルーンを粉 砕して得られるものであってもよ 、し、パーライトを粉砕して得られるものであってもよ い。また、中空体がパーライトである場合、中空体粉砕物は、シラスバルーンを粉砕し て得られるものであってもよ 、し、パーライトを粉砕して得られるものであってもよ 、。 第 1の実施の形態に係る研磨剤を調製する手順について説明する。
まず、作業員が増粘剤を水に加えて溶かす。増粘剤が水に溶けたら、作業員は、さ らに、中空体と中空体粉砕物を加え、撹拌する。中空体や中空体粉砕物の塊がなく なり、中空体や中空体粉砕物が水中でばらばらになって分散するまで、作業員が撹 拌することが望ましい。
[0079] また、作業員が、酸ィ匕セリウムの粒子を別に用意した水に加え、撹拌する。酸化セリ ゥムの塊がなくなり、酸ィ匕セリウムの粒子が水中でばらばらになって分散するまで、作 業員が撹拌することが望ましい。
そして、作業員が、中空体と中空体粉砕物が分散している水に、酸ィ匕セリウムの粒 子が分散している水を加え、撹拌する。中空体、中空体粉砕物、及び、酸ィ匕セリウム の粒子が、水中でばらばらになって分散して保持されるまで、作業員が撹拌すること が望ましい。充分に撹拌したら、第 1の実施の形態に係る研磨剤の調製が完了する。
[0080] 第 1の実施の形態に係る研磨剤中では、中空体、中空体粉砕物、及び、酸化セリウ ムの粒子が水中でばらばらに分散しており、増粘剤がこの分散した状態を維持して いる。したがって、調製された第 1の実施の形態に係る研磨剤の分離が防止されてい る。
次に、研磨対象物の被研磨面を研磨する際に使用する研磨用パフについて説明 する。
図 1に示すように、研磨用パフ 10は、基材 12と不織布 18とを有する。
基材 12は弾性部材によって形成されて 、る。この弾性部材はウレタンのスポンジで ある。基材 12は円柱形をなし、面テープ 24が基材 12の一方の円形端面 14に貼り付 けられている。面テープ 24は面ファスナー 22の一部をなし、多数の小さなループを 有する。
[0081] 不織布 18が基材 12の他方の円形端面 16を覆っている。穴 20が、円形端面 16を 覆う不織布 18の中心部に開口している。穴 20は、円形端面 16側から円形端面 14側 まで、不織布 18、基材 12及び面テープ 24を貫通して形成されている。
不織布 18は、例えば、レジンボンド不織布、サーマルボンド不織布、スパンレース 不織布、ニードルパンチ不織布、エアレイド不織布、スパンボンド不織布、メルトブロ ー不織布、湿式不織布のうちのいずれかの不織布である。また、これら以外の不織 布を不織布 18としてもよい。
[0082] 回転式工具 28は回転軸 30を有する。回転式工具 28は、電気駆動又はエア駆動 によって回転軸 30が回転する構成となっている。円盤状のパフ装着台 32が回転軸 3 0の先端に取り付けられて 、る。面テープ 26がパフ装着台 32に貼り付けられて 、る。 面テープ 26は面ファスナー 22の一部をなし、多数の小さなフックを有する。面テープ 26のフックが面テープ 24のループと係合し、面テープ 26と面テープ 24とが貼り合わ されて、研磨用パフ 10が回転軸 30の先端に装着される構成となっている。
[0083] 次に、作用について説明する。
研磨対象物がバスの窓ガラスであり、作業員が、第 1の実施の形態に係る研磨剤と 研磨用パフ 10とを用いて、研磨対象物の被研磨面を研磨するものとする。
研磨対象物の被研磨面は、凹凸を有している。この凹凸は、フッ化水素を使用して 研磨対象物を化学的に洗浄した結果形成されたものである。この凹凸によって、白 濁が被研磨面に生じている。また、油膜と水垢が被研磨面に強固に付着している。こ れらの油膜と水垢が、研磨対象物である窓ガラスの視界不良やぎらつきの原因となつ ており、研磨対象物の美観を損ねている。
[0084] まず、作業員が、バスのボディーのうちの研磨対象物の周辺部分をビニールシート で覆い、養生する。この養生によって、被研磨面の研磨作業中に、バスのボディーが 汚れたり傷ついたりすることが防止される。なお、バスのボディーのうちの研磨対象物 以外の部分であって、ビニールシートによって養生されていない部分に、第 1の実施 の形態に係る研磨剤が付着したとしても、第 1の実施の形態に係る研磨剤が付着し た部分が変質等することはなぐ付着した第 1の実施の形態に係る研磨剤を水で簡 単に洗い流すことができる。
[0085] 作業員は、バスのボディーの養生を終えたら、被研磨面を水洗!、し、被研磨面に付 着している鉄粉等を洗い流す。予め、被研磨面力も鉄粉等を洗い流しておけば、鉄 粉等によって被研磨面が傷つくことが防止される。
作業員は、研磨用パフ 10を回転式工具 28の回転軸 30の先端のパフ装着台 32に 装着する。研磨用パフ 10は、面ファスナー 22によってパフ装着台 32に固定される。 作業員は、研磨用パフ 10を回転式工具 28に装着したら、研磨用パフ 10の不織布 18を点検する。作業員は、不織布 18に付着している汚れや異物を発見したら、研磨 用パフ 10を水洗いし、汚れや異物を不織布 18から除去する。作業員は、不織布 18 に付着している汚れや異物が被研磨面を汚したり傷つけたりすることを防止する。
[0086] 次いで、作業員は、研磨用パフ 10の不織布 18に第 1の実施の形態に係る研磨剤 を含ませる。
作業員は、回転式工具 28の回転軸 30を回転させ、回転軸 30とともに研磨用パフ 1 0を回転させる。そして、作業員は、回転する研磨用パフ 10の不織布 18を被研磨面 に押し当てる。研磨用パフ 10の不織布 18が研磨面となり、被研磨面を研磨する。 被研磨面と回転する不織布 18との間で、第 1の実施の形態に係る研磨剤中の中空 体、中空体粉砕物、及び、酸ィ匕セリウムの粒子が転動して自由に動く。第 1の実施の 形態に係る研磨剤中の中空体が、被研磨面に付着した水垢の上を転動し、水垢が 被研磨面力ゝら搔き落とされる。第 1の実施の形態に係る研磨剤中の中空体粉砕物が 、被研磨面に付着した油膜の上を転動し、中空体粉砕物のエッジが油膜に食い込み 、油膜が被研磨面力 搔き落とされる。第 1の実施の形態に係る研磨剤中の酸ィ匕セリ ゥムの粒子が被研磨面の凹凸の上を転動し、被研磨面の凹凸が酸ィ匕セリウムの粒子 によって研磨され、被研磨面が平滑になる。
[0087] 研磨用パフ 10の基材 12は弾性部材であるので、研磨用パフ 10は被研磨面の形 状に対応して自由に変形する。したがって、不織布 18はいかなる形状の被研磨面に も接触できる。被研磨面の全面が第 1の実施の形態に係る研磨剤によって研磨され る。
被研磨面と不織布 18との間で転動しつつ自由に動く中空体、中空体粉砕物、及び 、酸ィ匕セリウムの粒子が、被研磨面に付着した水垢や油膜に引つ力かったり、被研磨 面の凹凸に引つ力かる場合がある。中空体等が水垢等に引つ力かっても、作業員が 研磨用パフ 10をそのまま回転させて研磨作業を継続する。引つかかった中空体等は 、抵抗力 、さくなる方向へ移動し、引つかかりから解放されてしまう。無理な力が、引 つ力かった中空体等力も被研磨面に働くことがなぐ引つ力かった中空体等が被研磨 面を傷つけることもない。
[0088] 作業員が被研磨面の研磨作業を続けると、被研磨面力 搔き落とされた水垢や油 膜、第 1の実施の形態に係る研磨剤中の中空体、中空体粉砕物、酸ィ匕セリウムの粒 子、増粘剤等が、研磨滓となる。研磨滓の一部が、回転する不織布 18の外周に向か つて移動し、被研磨面と不織布 18との間から排出される。また、研磨滓の残りは、回 転する不織布 18の中心に向かって移動し、不織布 18の中心の穴 20に入り、被研磨 面と不織布 18との間から排出される。研磨滓が被研磨面と不織布 18との間から排出 され、研磨滓が被研磨面を傷つけることが防止される。
[0089] また、研磨滓が被研磨面と不織布 18との間から排出されていくので、研磨滓が研 磨面力も周囲へ飛散しにくくなり、研磨面の周囲の汚れが少なくなる。したがって、研 磨作業終了後の後片付けや清掃が簡単であり、最初に養生する面積が小さくて済む 作業員が被研磨面の研磨作業を続けると、被研磨面が乾燥してくる。被研磨面が 乾燥し、被研磨面と研磨用パフ 10との間の水分が少なくなると、中空体、中空体粉 砕物、及び、酸ィ匕セリウムの粒子は、自由に転動できなくなる。自由に転動できなくな つた中空体、中空体粉砕物、及び、酸ィ匕セリウムの粒子は、汚れなどに引つ力かると 、そのまま動けなくなる。そして、無理な力が動けなくなった中空体等力も被研磨面に 働き、被研磨面が傷つく。
[0090] そこで、作業員は霧吹きなどを用いて水分を被研磨面に補給する。水分を被研磨 面に適宜補給すれば、第 1の実施の形態に係る研磨剤中の中空体、中空体粉砕物 、及び、酸ィ匕セリウムの粒子は、転動しつつ自由に動けるようになる。また、補給され た水分が、被研磨面と研磨用パフ 10との間を冷却する。
研磨用パフ 10は面ファスナー 22によってパフ装着台 32に装着されているので、そ の着脱が簡単である。したがって、古い研磨用パフ 10と新しい研磨用パフ 10との交 換作業が簡単である。
[0091] 第 1の実施の形態に係る研磨剤中の中空体、中空体粉砕物及び酸化セリウムの粒 子は、すべて天然の原料力も得られるものである。したがって、第 1の実施の形態に 係る研磨剤中の中空体、中空体粉砕物及び酸ィヒセリウムの粒子が環境や作業者に 与える負担は、小さい。また、第 1の実施の形態に係る研磨剤中の増粘剤のキサンタ ンガムは、食品添加物やィ匕粧品に用いられる増粘剤である。したがって、第 1の実施 の形態に係る研磨剤中の増粘剤が環境や作業者に与える負担も小さい。そして、研 磨滓が環境や作業者に与える負担も小さ 、。
[0092] 作業員は、研磨作業終了後、被研磨面を水洗する。第 1の実施の形態に係る研磨 剤や研磨滓は、沈殿せずに水と一緒に洗い流される。排水設備の配管等の中に研 磨剤が沈殿して溜まったりすることがない。上記したように、第 1の実施の形態に係る 研磨剤中の中空体、中空体粉砕物、酸化セリウムの粒子、及び、増粘剤は、環境に 与える負担が小さいので、研磨作業後、簡単に研磨剤を通常の排水設備に洗い流 すことができ、研磨作業終了後の後片付けや清掃が簡単である。
[0093] なお、第 1の実施の形態において、作業員が研磨用パフ 10をパフ装着台 32に装 着し、回転式工具 28によって研磨用パフ 10を回転させている。回転式工具 28を用 いる代わりに、作業員が研磨用パフ 10を手に持って被研磨面を研磨できることは勿 論である。
次に、本発明を実施するための第 2の実施の形態を説明する。 まず、第 2の実施の形態に係る研磨剤について説明する。第 2の実施の形態に係る 研磨剤は、以下の点を除いて、第 1の実施の形態に係る研磨剤と同じ構成を有する
[0094] すなわち、第 2の実施の形態に係る研磨剤は、中空体と、中空体を粉砕して得られ た中空体粉砕物と、増粘剤と、水と、を含有している。中空体はシラスバルーン又は パーライトであり、中空体の粒径は 80〜320 mである。中空体粉砕物は、シラスバ ルーン又はパーライトを粉砕して得られ、中空体粉砕物の粒径は 50〜200 μ mであ る。
第 2の実施の形態に係る研磨剤の他の構成は、第 1の実施の形態に係る研磨剤の 構成と同じであり、重複する説明を省略する。
[0095] 第 2の実施の形態に係る研磨剤を調製する手順について説明する。第 2の実施の 形態に係る研磨剤を調製する手順は、以下の点を除いて、第 1の実施の形態に係る 研磨剤を調製する手順と同じである。
すなわち、作業員は、酸ィ匕セリウムの粒子が分散している水を準備する必要がない 。また、作業員は、中空体と中空体粉砕物が分散している水に、酸ィ匕セリウムの粒子 が分散して 、る水をカ卩える必要もな 、。
[0096] 第 2の実施の形態に係る研磨剤を調製するのに必要な他の手順は、第 1の実施の 形態に係る研磨剤を調製する手順と同じであり、重複する説明を省略する。
次に、研磨対象物の被研磨面を研磨する際に使用するポリッシヤーについて説明 する。このポリッシヤーは、従来力も建築物の床を磨く際に使用されているポリッシャ 一と同様のものであり、床の上で回転するパフを有する。
次に、作用について説明する。
[0097] 研磨対象物が建築物の床であり、被研磨面が床の表面である。作業員が、第 2の 実施の形態に係る研磨剤と前記ポリッシヤーとを用いて、研磨対象物の被研磨面を 研磨するものとする。
研磨対象物の被研磨面である床の表面は、多くの通行人が靴を履 、たまま通行す る。このため、水垢や油膜をはじめとする様々な汚れや古いワックス力 床の表面に 強固に付着している。古いワックスは、汚れの一部を中に取り込み、固形ィ匕してしまつ ている。水垢や油膜をはじめとする様々な汚れや古いワックスが、床の表面を黒ずま せ、建築物の美観を損ねている。
[0098] まず、作業員が、一度に行う清掃作業の範囲を定め、その範囲の周辺にある器物 等をビニールシートで覆い、養生する。この養生によって、床の清掃作業中に、周辺 の器物等が汚れたり傷ついたりすることが防止される。なお、第 2の実施の形態に係 る研磨剤が、周辺の器物に付着したとしても、この研磨剤が付着してしまった部分が 変質等することはなぐ作業員は、付着した研磨剤を水で簡単に洗い流すことができ る。また、作業員は、付着した研磨剤を濡らした雑巾等によって簡単にふき取ることも できる。
[0099] 作業員は、周辺の養生を終えたら、清掃作業を行う範囲の床の表面から塵を掃除 機等で除去する。
作業員は、清掃作業を行う範囲の床の表面に、第 2の実施の形態に係る研磨剤を 適量散布する。作業員は、散布した第 2の実施の形態に係る研磨剤の上で、前記ポ リツシヤーを動かし、前記ポリッシヤーのパフを回転させる。前記ポリッシヤーのパフが 研磨面となり、床の表面を研磨する。
[0100] 第 2の実施の形態に係る研磨剤中の中空体の一部は、前記ポリッシヤーのパフから 受ける力によって粉砕されて中空体粉砕物となる。粒径が 80〜320 μ mの中空体か ら生じる中空体破砕物の殆どは、 200 /z m以下の粒径を有し、また、この中空体破砕 物の少なくとも一部は、 50〜200 mの粒径を有する。
前記ポリッシヤーのパフと床の表面との間で、第 2の実施の形態に係る研磨剤中の 中空体及び中空体粉砕物が転動して自由に動く。中空体が、床の表面に付着した 水垢等の汚れの上を転動し、水垢等の汚れが被研磨面から搔き落とされる。中空体 粉砕物が、床の表面に付着した油膜等の汚れや古い固形ィ匕したワックスの上を転動 し、中空体粉砕物のエッジが油膜等の汚れや古い固形ィ匕したワックスに食 、込み、 油膜等の汚れや古い固形ィ匕したワックスが床の表面力ゝら搔き落とされる。
[0101] 清掃作業の作業対象となる範囲内に前記ポリッシヤーが届力ない場所がある場合、 作業員はは、第 1の実施の形態の研磨用パフ 10及び回転式工具 28を使用し、清掃 作業を行うことができる。 第 2の実施の形態に係る研磨剤や研磨滓が床の表面に付着していたとしても、すぐ に水分が蒸発し、第 2の実施の形態に係る研磨剤や研磨滓は乾いてしまう。したがつ て、床の表面が特にすベりやすくなることはなぐ作業員が転倒する危険性もなくなる 。第 2の実施の形態に係る研磨剤が乾いてしまったら、作業員は、前記ポリッシヤー をかける場所に霧吹き等を用いて水分を与えてから、前記ポリッシヤーをかける。した がって、第 2の実施の形態に係る研磨剤が乾いてしまうことがあったとしても、清掃作 業に支障を生じない。
[0102] 作業員が、第 2の実施の形態に係る研磨剤及び前記ポリッシヤーを使用し、床の表 面力も水垢や油膜をはじめとする様々な汚れゃ古 、ワックスを除去したら、きれ 、な 床の表面が露出する。この、床の表面には、第 2の実施の形態に係る研磨剤中の中 空体及び中空体粉砕物が転動してできた微小な傷が沢山残っている。
そして、作業員は、床の表面から第 2の実施の形態に係る研磨剤や研磨滓を水で 洗い流す。第 2の実施の形態に係る研磨剤や研磨滓は沈殿せずに水と一緒に洗い 流されるので、排水設備の配管等の中に研磨剤が沈殿して溜まったりすることがな!ヽ 。第 2の実施の形態に係る研磨剤中の中空体、中空体粉砕物、及び、増粘剤は、環 境に与える負担が小さいので、第 2の実施の形態に係る研磨剤や研磨滓を水と一緒 に床の表面力 通常の排水設備に洗い流すことができる。
[0103] 床の表面力 第 2の実施の形態に係る研磨剤や研磨滓を洗い流したら、新たにヮッ タスを床の表面にかける。床の表面に微小な傷が沢山あるので、ワックスののりがよい 。ワックスをかけ終えれば、床の表面についた微小な傷は、ワックスによって埋まって しまい、まったく見えなくなる。
なお、第 2の実施の形態に係る研磨剤及び前記ポリッシヤーを使用して床の表面の 汚れを除去している間、作業員は、適宜、その作業を中断することができる。作業を 中断すれば、床の表面はすぐに乾いてしまうので、滑りやすいということはなくなり、 作業を中断した場所を人が安全かつ容易に通行できる。
(実施例)
以下、実施例を挙げつつ上記した第 1の実施の形態において説明した研磨剤につ いて説明する。 [0104] 実施例 1〜48において、本発明者が、第 1の実施の形態において説明した研磨剤 を使用し、研磨対象物の被研磨面の研磨作業を行った。
まず、実施例 1〜16で使用した研磨剤、研磨用パフ、研磨対象物を表 1に示す。
[0105] [表 1]
Figure imgf000034_0001
表 1に示すように、実施例 1〜16で使用した各研磨剤は、第 1の実施の形態におい て説明した研磨剤である。中空体であるシラスバルーンの粒径は 90 /z m 中空体粉 砕物であるシラスバルーンの粉砕物の粒径は 15 a m、酸化セリウムの粒子の粒径は 3 μ mで &)る。
実施例 1で使用した研磨用パフは、第 1の実施の形態において説明した研磨用バ フである。ただし、基材の一方の円形端面は、不織布によって覆われてはいない。基 材をなすウレタンのスポンジが基材の一方の円形端面に露出し、このウレタンのスポ ンジが研磨面を形成して!/、る。
[0107] 実施例 2〜6で使用した各研磨用パフは、第 1の実施の形態において説明した研 磨用パフである。ただし、基材の一方の円形端面は、不織布によって覆われてはい ない。不織布の代わりに織布がこの円形端面を覆っており、この織布が研磨面を形 成している。
実施例 2において、研磨用パフの研磨面を形成する織布の素材は、 100%綿であ る。
実施例 3において、研磨用パフの研磨面を形成する織布の素材は、 100%ウール である。
[0108] 実施例 4において、研磨用パフの研磨面を形成する織布の素材は、 100%レーョ ンである。
実施例 5において、研磨用パフの研磨面を形成する織布の素材は、 75質量%がポ リエステルであり、残部がナイロンである。
実施例 6において、研磨用パフの研磨面を形成する織布の素材は、 100%ポリエス テルである。
[0109] 実施例 7〜16で使用した各研磨用パフは、第 1の実施の形態において説明した研 磨用パフである。ただし、研磨面を形成する不織布がそれぞれ異なっている。
実施例 7において、研磨用パフの研磨面を形成する不織布の素材は、 100%ポリ エステルである。
実施例 8において、研磨用パフの研磨面を形成する不織布の素材は、 75質量%が ポリエステルであり、残部がレーヨンである。
[0110] 実施例 9において、研磨用パフの研磨面を形成する不織布の素材は、 65質量%が ポリエステルであり、残部がレーヨンである。
実施例 10において、研磨用パフの研磨面を形成する不織布の素材は、 60質量% がポリエステルであり、残部がレーヨンである。
実施例 11において、研磨用パフの研磨面を形成する不織布の素材は、 55質量% がポリエステルであり、残部がレーヨンである。
[0111] 実施例 12において、研磨用パフの研磨面を形成する不織布の素材は、 50質量% がポリエステルであり、残部がレーヨンである。
実施例 13において、研磨用パフの研磨面を形成する不織布の素材は、 30質量% がポリエステルであり、残部がレーヨンである。
実施例 14において、研磨用パフの研磨面を形成する不織布の素材は、 100%ナ ィロンである。
[0112] 実施例 15において、研磨用パフの研磨面を形成する不織布の素材は、 100%綿 のフェルトである。
実施例 16において、研磨用パフの研磨面を形成する不織布は、表面にアルミ蒸着 処理が施されている。
実施例 1〜 16で使用した各研磨対象物は軟質系ガラスであり、フロート板ガラスで ある。各研磨対象物の被研磨面は 500mm X 500mmの正方形である。油膜と魚鱗 状の水垢が各被研磨面に強固に付着している。
[0113] 実施例 1〜16において、本発明者が各研磨用パフに研磨剤を含ませ、回転式ェ 具によつて各研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研 磨面に押し当て、被研磨面の研磨作業を行った。実施例 1〜16で使用した各回転 式工具の回転速度は 1300rpmである。実施例 1〜 16における研磨作業の結果を表 1に示す。
実施例 1〜16において、研磨作業後の各被研磨面の傷の有無を調べた。傷の有 無は、太陽光線下、肉眼で被研磨面を観察して調べた。
[0114] また、実施例 1〜16において、研磨作業の作業効率を A、 B、 C、 D、 Eの 5段階に 分けて評価した。被研磨面力 水垢と油膜を除去するのに要した時間が 5分未満の 場合、作業効率が Aであると評価した。被研磨面力 水垢と油膜を除去するのに要し た時間が 5分以上、 30分未満の場合、作業効率が Bであると評価した。被研磨面か ら水垢と油膜を除去するのに要した時間が 30分以上、 60分未満の場合、作業効率 力 であると評価した。被研磨面力も水垢と油膜を除去するのに要した時間が 60分 以上の場合、作業効率が Dであると評価した。太陽光線下、肉眼で見てわかる傷が 被研磨面に発生した場合、作業効率が Eであると評価した。
[0115] すなわち、研磨対象物が軟質系ガラスである場合、作業効率が Aの実施例の研磨 用パフを用いれば、研磨作業が迅速かっきれいに行われることとなり、最も好ましい。 作業効率力 ¾の実施例の研磨用パフを用いれば、被研磨面が傷つくので、好ましく ない。
この結果、実施例 9〜11は、目に見える傷が被研磨面に存在せず、作業効率が A であると評価された。実施例 12、 13、 15は、目に見える傷が被研磨面に存在せず、 作業効率が Bであると評価された。実施例 1〜8、 14、 16は、被研磨面に目に見える 傷が確認され、作業効率が Eであると評価された。
[0116] また、実施例 13では、研磨用パフの研磨面を形成する不織布がほつれ、研磨用バ フの寿命が短力つた。
したがって、研磨対象物が軟質系ガラスである場合、実施例 9〜11の研磨用パフを 使用することが最も好ましいことが確認された。また、実施例 12、 13、 15の研磨用バ フを使用すれば、比較的速ぐ且つ、きれいに研磨作業を行えることが確認された。 ただし、実施例 13の研磨用パフを使用すれば、研磨用パフの消耗が早いことも確認 された。
[0117] 次に、実施例 17〜32で使用した研磨剤、研磨用パフ、研磨対象物を表 2に示す。
[0118] [表 2]
Figure imgf000038_0001
表 2に示すように、実施例 17〜32の各研磨剤は、実施例 1〜16の研磨剤と同じで ある。
実施例 17の研磨用パフは、実施例 1の研磨用パフと同じである。実施例 18の研磨 用パフは、実施例 2の研磨用パフと同じである。実施例 19の研磨用パフは、実施例 3 の研磨用パフと同じである。実施例 20の研磨用パフは、実施例 4の研磨用パフと同 じである。実施例 21の研磨用パフは、実施例 5の研磨用パフと同じである。実施例 2 2の研磨用パフは、実施例 6の研磨用パフと同じである。実施例 23の研磨用パフは、 実施例 7の研磨用パフと同じである。実施例 24の研磨用パフは、実施例 8の研磨用 パフと同じである。実施例 25の研磨用パフは、実施例 9の研磨用パフと同じである。 実施例 26の研磨用パフは、実施例 10の研磨用パフと同じである。実施例 27の研磨 用パフは、実施例 11の研磨用パフと同じである。実施例 28の研磨用パフは、実施例 12の研磨用パフと同じである。実施例 29の研磨用パフは、実施例 13の研磨用パフ と同じである。実施例 30の研磨用パフは、実施例 14の研磨用パフと同じである。実 施例 31の研磨用パフは、実施例 15の研磨用パフと同じである。実施例 32の研磨用 パフは、実施例 16の研磨用パフと同じである。
[0120] 実施例 17〜32で使用した各研磨対象物は、強化ガラスである。各研磨対象物の 被研磨面は 500mm X 500mmの正方形である。凹凸が各被研磨面に存在している 。この凹凸は、フッ化水素を用いたィ匕学的な洗浄の結果生じたものであり、各被研磨 面がこの凹凸によって白濁している。そして、油膜と魚鱗状の水垢が各被研磨面に 強固に付着している。
実施例 17〜32において、本発明者が各研磨用パフに研磨剤を含ませ、回転式ェ 具によつて各研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研 磨面に押し当て、被研磨面の研磨作業を行った。実施例 17〜32で使用した各回転 式工具の回転速度は 2000rpmである。実施例 17〜32における研磨作業の結果を 表 2に示す。
[0121] 実施例 17〜32において、研磨作業後の各被研磨面の傷の有無を調べた。傷の有 無は、太陽光線下、肉眼で被研磨面を観察して調べた。
また、実施例 17〜32において、研磨作業の作業効率を A、 B、 C、 D、 Eの 5段階に 分けて評価した。被研磨面から水垢、油膜及び白濁を除去するのに要した時間が 10 分未満の場合、作業効率が Aであると評価した。被研磨面から水垢、油膜及び白濁 を除去するのに要した時間が 10分以上、 30分未満の場合、作業効率が Bであると評 価した。被研磨面から水垢、油膜及び白濁を除去するのに要した時間が 30分以上、 60分未満の場合、作業効率が Cであると評価した。被研磨面から水垢、油膜及び白 濁を除去するのに要した時間が 60分以上の場合、作業効率が Dであると評価した。 太陽光線下、肉眼で見てわ力る傷が被研磨面に発生した場合、作業効率が Eである と評価した。
[0122] すなわち、研磨対象物が強化ガラスである場合、作業効率が Aの実施例の研磨用 パフを用いれば、研磨作業が迅速かっきれいに行われることとなり、最も好ましい。作 業効率力 ¾の実施例の研磨用パフを用いれば、被研磨面が傷つくので、好ましくな い。
この結果、実施例 17〜32のすべてにおいて、目に見える傷が被研磨面には存在 しなカゝつた。実施例 30、 32は、作業効率が Aであると評価された。実施例 18〜29、 31は、作業効率が Cであると評価された。実施例 17は、作業効率が Dであると評価さ れた。
[0123] また、実施例 29では、研磨用パフの研磨面を形成する不織布がほつれ、研磨用バ フの寿命が短力つた。
したがって、研磨対象物が強化ガラスである場合、実施例 30、 32の研磨用パフを 使用することが最も好ましいことが確認された。また、実施例 18〜29、 31の研磨用バ フを使用すれば、比較的時間がかかるが、きれいに研磨作業を行えることが確認され た。さらに、実施例 17の研磨用パフを使用すれば、かなり時間がかかるが、きれいに 研磨作業を行えることが確認された。ただし、実施例 29の研磨用パフを使用すれば 、研磨用パフの消耗が早いことも確認された。
[0124] 次に、実施例 33〜48で使用した研磨剤、研磨用パフ、研磨対象物を表 3に示す。
[0125] [表 3]
Figure imgf000041_0001
表 3に示すように、実施例 33 48の各研磨剤は、第 1の実施の形態において説明 した研磨剤である。中空体であるシラスバルーンの粒径は 15 /z m 中空体粉砕物で あるシラスバルーンの粉砕物の粒径は 5 μ m、酸化セリウムの粒子の粒径は 3 μ mで ある。
実施例 33の研磨用パフは、実施例 1の研磨用パフと同じである。実施例 34の研磨 用パフは、実施例 2の研磨用パフと同じである。実施例 35の研磨用パフは、実施例 3 の研磨用パフと同じである。実施例 36の研磨用パフは、実施例 4の研磨用パフと同 じである。実施例 37の研磨用パフは、実施例 5の研磨用パフと同じである。実施例 3 8の研磨用パフは、実施例 6の研磨用パフと同じである。実施例 39の研磨用パフは、 実施例 7の研磨用パフと同じである。実施例 40の研磨用パフは、実施例 8の研磨用 パフと同じである。実施例 41の研磨用パフは、実施例 9の研磨用パフと同じである。 実施例 42の研磨用パフは、実施例 10の研磨用パフと同じである。実施例 43の研磨 用パフは、実施例 11の研磨用パフと同じである。実施例 44の研磨用パフは、実施例 12の研磨用パフと同じである。実施例 45の研磨用パフは、実施例 13の研磨用パフ と同じである。実施例 46の研磨用パフは、実施例 14の研磨用パフと同じである。実 施例 47の研磨用パフは、実施例 15の研磨用パフと同じである。実施例 48の研磨用 パフは、実施例 16の研磨用パフと同じである。
[0127] 実施例 33〜48で使用した各研磨対象物は、 SUS304ステンレス板である。各研 磨対象物の被研磨面は 500mm X 500mmの正方形である。油膜と魚鱗状の水垢 が各被研磨面に強固に付着し、各被研磨面は曇っている。
実施例 33〜48において、本発明者が各研磨用パフに研磨剤を含ませ、回転式ェ 具によつて各研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研 磨面に押し当て、被研磨面の研磨作業を行った。実施例 33〜48で使用した各回転 式工具の回転速度は 1300rpmである。実施例 33〜48における研磨作業の結果を 表 3に示す。
[0128] 実施例 33〜48において、研磨作業後の各被研磨面の傷の有無を調べた。傷の有 無は、太陽光線下、肉眼で被研磨面を観察して調べた。
また、実施例 33〜48において、研磨作業の作業効率を A、 B、 C、 D、 Eの 5段階に 分けて評価した。被研磨面から水垢、油膜及び曇りを除去し、被研磨面を鏡面仕上 げするのに要した時間が 10分未満の場合、作業効率が Aであると評価した。被研磨 面から水垢、油膜及び曇りを除去し、被研磨面を鏡面仕上げするのに要した時間が 10分以上、 30分未満の場合、作業効率が Bであると評価した。被研磨面から水垢、 油膜及び曇りを除去し、被研磨面を鏡面仕上げするのに要した時間が 30分以上、 6 0分未満の場合、作業効率が Cであると評価した。被研磨面から水垢、油膜及び曇り を除去し、被研磨面を鏡面仕上げするのに要した時間が 60分以上の場合、作業効 率が Dであると評価した。太陽光線下、肉眼で見てわ力る傷が被研磨面に発生した 場合、作業効率が Eであると評価した。
[0129] すなわち、研磨対象物力ステンレス板であり、その表面に鏡面仕上げを施す場合、 作業効率が Aの実施例の研磨用パフを用いれば、研磨作業が迅速かっきれいに行 われることとなり、最も好ましい。作業効率が Eの実施例の研磨用パフを用いれば、被 研磨面が傷つくので、好ましくない。
この結果、実施例 41〜43は、目に見える傷が被研磨面には存在せず、作業効率 が Aであると評価された。実施例 44、 45、 47は、目に見える傷が被研磨面には存在 せず、作業効率が Bであると評価された。実施例 33〜40、 46、 48は、目に見える傷 が被研磨面に確認され、作業効率力 ¾であると評価された。
[0130] また、実施例 45では、研磨用パフの研磨面を形成する不織布がほつれ、研磨用バ フの寿命が短力つた。
したがって、研磨対象物がステンレス板であり、その表面に鏡面仕上げを施す場合 、実施例 41〜43の研磨用パフを使用することが最も好ましいことが確認された。また 、実施例 44、 45、 47の研磨用パフを使用すれば、比較的速ぐ且つ、きれいに鏡面 仕上げを行えることが確認された。ただし、実施例 45の研磨用パフを使用すれば、 研磨用パフの消耗が早 、ことも確認された。
[0131] また、本発明者は、本発明に係る研磨剤中の中空体、中空体粉砕物、及び、酸ィ匕 セリウムの粒子について試験を行い、中空体、中空体粉砕物、及び、酸ィ匕セリウムの 粒子が奏する作用をそれぞれ検証した。以下、検証例を挙げながら説明する。 検証例 1〜5において、本発明者は、本発明に係る研磨剤中に含有されている中 空体の作用を検証した。
検証例 1〜5において、本発明者は、中空体と、増粘剤と、水と、を含有する研磨剤 をそれぞれ準備した。検証例 1〜5の各研磨剤中では、中空体が増粘剤によって分 散している。検証例 1〜5の各研磨剤は、含有する中空体の平均粒径がそれぞれ異 なる点を除いて、同じである。なお、検証例 1〜5の各研磨剤中の中空体はシラスバ ルーンである。 [0132] 検証例 1の研磨剤中の中空体の平均粒径は、 8. 26 μ mである。
検証例 2の研磨剤中の中空体の平均粒径は、 10. 06 /z mである。
検証例 3の研磨剤中の中空体の平均粒径は、 59. である。
検証例 4の研磨剤中の中空体の平均粒径は、 96. 53 mである。
検証例 5の研磨剤中の中空体の平均粒径は、 120. 96 /z mである。
検証例 1〜5において、本発明者は、前記実施例 10の研磨用パフを準備した。
[0133] 検証例 1〜5において、本発明者は、軟質系ガラスを研磨対象物としてそれぞれ準 備した。検証例 1〜5の各研磨対象物は、フロート板ガラスであり、長方形の被研磨 面を有する。各被研磨面の大きさは縦 300mm X横 400mmである。 30日間にわた つて、本発明者は、検証例 1〜5の各研磨対象物の被研磨面に毎日 2回散水し、屋 外に放置した。この結果、検証例 1〜5の各研磨対象物の被研磨面には魚鱗状の水 垢が汚れとして形成された。
[0134] 検証例 1〜5において、本発明者が、研磨用パフに研磨剤を含ませ、回転式工具 によって研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研磨面に 押し当て、被研磨面の研磨作業を行った。検証例 1〜5で使用した回転式工具の回 転速度は 2000rpmである。本発明者は、研磨対象物の被研磨面の同一部分に、回 転する研磨用パフを合計 10回押し当てて研磨した。
研磨作業を終了した後、検証例 1〜5の研磨対象物の被研磨面を太陽光線の下で 肉眼により観察した。観察の結果は以下に記した通りである。
[0135] 検証例 1において、研磨対象物の被研磨面の水垢は、殆ど除去されな力つた。回 転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨する回数を増やせば 、研磨対象物の被研磨面の水垢は完全に除去されると考えられる。しかし、この場合 、研磨作業にかかる時間が非常に長くなり、研磨作業の作業効率が非常に悪くなると 判断される。
検証例 2において、研磨対象物の被研磨面の水垢は、一部分除去されな力つた。 回転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨する回数を増やせ ば、研磨対象物の被研磨面の水垢は完全に除去されると考えられる。しかし、この場 合、研磨作業にかかる時間がある程度長くなり、研磨作業の作業効率がある程度悪 いと判断される。なお、検証例 1の研磨剤と検証例 2の研磨剤とを比較すると、検証 例 1の研磨剤のほうが研磨作業にかかる時間が長ぐ研磨作業の作業効率が悪い。
[0136] 検証例 3において、研磨対象物の被研磨面の水垢は、完全に除去され、研磨対象 物の被研磨面に肉眼で見てわ力る傷は存在していな力つた。
検証例 4において、研磨対象物の被研磨面の水垢は、完全に除去され、研磨対象 物の被研磨面に肉眼で見てわ力る傷は存在していな力つた。
検証例 5において、研磨対象物の被研磨面の水垢は、完全に除去されたが、研磨 対象物の被研磨面に肉眼で見てわ力る微小な傷が観察された。
[0137] これより、被研磨面に肉眼で見てわ力る傷を発生させずに水垢を被研磨面力 搔き 落とすためには、検証例 1〜4の平均粒径の中空体が必要であることがわかる。ある 程度の作業時間が力かることを容認できる場合、被研磨面に肉眼で見てわ力る傷を 発生させずに水垢を被研磨面力 搔き落とすためには、検証例 2〜4の平均粒径の 中空体が必要であることがわかる。被研磨面に肉眼で見てわ力る傷を発生させずに 水垢を被研磨面から効率よく搔き落とすためには、検証例 3又は 4の平均粒径の中 空体が必要であることがわかる。
[0138] 被研磨面に肉眼で見てわ力る微小な傷がつくことを容認できる場合、被研磨面力 水垢を効率よく搔き落とすためには、検証例 5の平均粒径の中空体を使用できること がわかる。また、被研磨面に肉眼で見てわ力る微小な傷をつけつつ水垢を効率よく 搔き落とさなければならない場合、検証例 5の平均粒径の中空体が必要であることが ゎカゝる。
次に、検証例 6〜10において、本発明者は、本発明に係る研磨剤中に含有されて V、る中空体粉砕物の作用を検証した。
[0139] 検証例 6〜10において、本発明者は、中空体粉砕物と、増粘剤と、水と、を含有す る研磨剤をそれぞれ準備した。検証例 6〜10の各研磨剤中では、中空体粉砕物が 増粘剤によって分散している。検証例 6〜10の各研磨剤は、含有する中空体粉砕物 の平均粒径がそれぞれ異なる点を除いて、同じである。なお、検証例 6〜: LOの各研 磨剤中の中空体粉砕物はシラスバルーンを粉砕したものである。
検証例 6の研磨剤中の中空体粉砕物の平均粒径は、 3. 54 mである。 [0140] 検証例 7の研磨剤中の中空体粉砕物の平均粒径は、 5. 86 μ mである。
検証例 8の研磨剤中の中空体粉砕物の平均粒径は、 17. 82 /z mである。 検証例 9の研磨剤中の中空体粉砕物の平均粒径は、 31. 32 /z mである。 検証例 10の研磨剤中の中空体粉砕物の平均粒径は、 40. 62 /z mである。
検証例 6〜10において、本発明者は、前記実施例 10の研磨用パフをそれぞれ準 備し 7こ。
[0141] 検証例 6〜10において、本発明者は、軟質系ガラスを研磨対象物としてそれぞれ 準備した。検証例 6〜10の各研磨対象物は、フロート板ガラスであり、長方形の被研 磨面を有する。各被研磨面の大きさは縦 300mm X横 400mmである。 30日間にわ たって、本発明者は、検証例 6〜 10の各研磨対象物の被研磨面を、潤滑油と水を含 ませた布で毎日 1回拭き、毎日 30分間ガソリン車の排気ガスにさらし、屋外に放置し た。この結果、検証例 6〜10の各研磨対象物の被研磨面には油膜が汚れとして形成 された。
[0142] 検証例 6〜10において、本発明者が、研磨用パフに研磨剤を含ませ、回転式工具 によって研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研磨面に 押し当て、被研磨面の研磨作業を行った。検証例 6〜 10で使用した回転式工具の 回転速度は 2000rpmである。本発明者は、研磨対象物の被研磨面の同一部分に、 回転する研磨用パフを合計 10回押し当てて研磨した。
研磨作業を終了した後、検証例 6〜10の各研磨対象物の被研磨面を太陽光線の 下で肉眼により観察した。観察の結果は以下に記した通りである。
[0143] 検証例 6において、研磨対象物の被研磨面の油膜は、まったく除去されな力つた。
回転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨する回数を増やし たとしても、研磨対象物の被研磨面力 油膜は除去されないと考えられる。
検証例 7において、研磨対象物の被研磨面の油膜は、一部分除去されな力つた。 回転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨する回数を増やせ ば、研磨対象物の被研磨面の水垢は完全に除去されると考えられる。しかし、この場 合、研磨作業にかかる時間が長くなり、研磨作業の作業効率が悪いと判断される。
[0144] 検証例 8において、研磨対象物の被研磨面の油膜は、完全に除去され、研磨対象 物の被研磨面に肉眼で見てわ力る傷は存在していな力つた。
検証例 9において、研磨対象物の被研磨面の油膜は、完全に除去され、研磨対象 物の被研磨面に肉眼で見てわ力る傷は存在していな力つた。なお、検証例 8の研磨 剤と検証例 9の研磨剤とを比較すると、研磨対象物の被研磨面の油膜が完全に除去 されるまでに、回転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨しな ければならな 、最少回数は、検証例 9の研磨剤ほうが検証例 8の研磨剤よりも少なか つた。したがって、検証例 9の研磨剤のほうが、検証例 8の研磨剤よりも研磨作業にか 力る時間が短くてすみ、研磨作業の作業効率が良い。
[0145] 検証例 10において、研磨対象物の被研磨面の油膜は、完全に除去されたが、研 磨対象物の被研磨面に肉眼で見てわ力る微小な傷が観察された。
これより、ある程度の作業時間が力かることを容認できる場合、被研磨面に肉眼で 見てわ力る傷を発生させずに油膜を被研磨面力 搔き落とすためには、検証例 7〜9 の平均粒径の中空体粉砕物が必要であることがわかる。一定以上の作業効率が求 められる場合、被研磨面に肉眼で見てわ力る傷を発生させずに油膜を被研磨面から 搔き落とすためには、検証例 8又は 9の平均粒径の中空体粉砕物が必要であること がわかる。被研磨面に肉眼で見てわ力る傷を発生させずに油膜を被研磨面力 効率 よく搔き落とすためには、検証例 9の平均粒径の中空体粉砕物が必要であることがわ かる。
[0146] 被研磨面に肉眼で見てわ力る微小な傷がつくことを容認できる場合、被研磨面力 油膜を効率よく搔き落とすためには、検証例 10の平均粒径の中空体粉砕物を使用 できることがわかる。また、被研磨面に肉眼で見てわ力る微小な傷をつけつつ油膜を 効率よく搔き落とさなければならない場合、検証例 10の平均粒径の中空体粉砕物が 必要であることがわかる。
次に、検証例 11〜14において、本発明者は、本発明に係る研磨剤中に含有され ている酸ィ匕セリウムの粒子の作用を検証した。
[0147] 検証例 11〜14において、本発明者は、酸ィ匕セリウムの粒子と、増粘剤と、水と、を 含有する研磨剤をそれぞれ準備した。検証例 11〜14の各研磨剤中では、酸化セリ ゥムの粒子が増粘剤によって分散している。検証例 11〜14の各研磨剤は、含有す る酸ィ匕セリウムの粒子の粒径がそれぞれ異なる点を除 、て、同じである。
検証例 11の研磨剤中の酸化セリウムの粒子の粒径は、 0. 1〜0. である。 検証例 12の研磨剤中の酸化セリウムの粒子の粒径は、 0. 5 mである。
[0148] 検証例 13の研磨剤中の酸化セリウムの粒子の粒径は、 1. 2〜2. 5 mである。
検証例 14の研磨剤中の酸化セリウムの粒子の粒径は、 3. 0〜5. O /z mである。 検証例 11〜14において、本発明者は、前記実施例 10の研磨用パフをそれぞれ 準備した。
検証例 11〜14において、本発明者は、軟質系ガラスを研磨対象物としてそれぞれ 準備した。検証例 11〜 14の各研磨対象物は、フロート板ガラスであり、長方形の被 研磨面を有する。各被研磨面の大きさは縦 300mm X横 400mmである。 30日間に わたって、本発明者は、検証例 11〜 14の各研磨対象物の被研磨面を、 3日毎に 1 回、フッ化水素の希釈液を浸した布で拭いて水洗した。この結果、検証例 11〜14の 各研磨対象物の被研磨面がフッ化水素によって犯され、白濁し非透明化した。
[0149] 検証例 11〜14において、本発明者が、研磨用パフに研磨剤を含ませ、回転式ェ 具によつて研磨用パフを回転させ、回転する研磨用パフを各研磨対象物の被研磨 面に押し当て、被研磨面の研磨作業を行った。検証例 11〜 14で使用した回転式ェ 具の回転速度は 2000rpmである。本発明者は、研磨対象物の被研磨面の同一部 分において、回転する研磨用パフを計 10回押し当てて研磨した。
研磨作業を終了した後、検証例 11〜14の各研磨対象物の被研磨面を太陽光線 の下で肉眼により観察した。観察の結果は以下に記した通りである。
[0150] 検証例 11にお 、て、研磨対象物の被研磨面は透明性を多少回復した。しかし、被 研磨面に曇りが残存した。研磨対象物の被研磨面に回転する研磨用パフを押し当て る回数を増やしたが、被研磨面に残った曇りは除去されな力つた。
検証例 12において、研磨対象物の被研磨面は透明性を回復した。しかし、被研磨 面に白濁が曇りとしてわずかに残存した。研磨対象物の被研磨面に回転する研磨用 ノ フを押し当てる回数を増やすと、被研磨面力 曇りが完全に除去された。
[0151] 検証例 13において、研磨対象物の被研磨面は透明性を回復し、被研磨面から白 濁が除去され、曇りはまったく残らな力つた。 検証例 14において、研磨対象物の被研磨面は透明性を回復し、被研磨面から白 濁が除去され、曇りはまったく残らなかった。なお、検証例 13の研磨剤と検証例 14の 研磨剤とを比較すると、研磨対象物の被研磨面力 白濁を完全に除去するまでに、 回転する研磨用パフを研磨対象物の被研磨面に押し当てて研磨しなければならな い最少回数は、検証例 14の研磨剤のほうが検証例 13の研磨剤よりも少な力つた。し たがって、検証例 14の研磨剤のほうが、検証例 13の研磨剤よりも研磨作業にかかる 時間が短くてすみ、研磨作業の作業効率が良い。
[0152] これより、ある程度の作業時間が力かることを容認できる場合、被研磨面から曇りを まったく残さずに白濁を完全に除去するためには、検証例 12〜 14の粒径の酸ィ匕セリ ゥムの粒子が必要であることがわかる。一定以上の作業効率が求められる場合、被 研磨面力 曇りをまったく残さずに白濁を完全に除去するためには、検証例 13又は 14の粒径の酸ィ匕セリウムの粒子が必要であることがわかる。被研磨面に力 効率よく 曇りをまったく残さずに白濁を完全に除去するためには、検証例 14の粒径の酸ィ匕セ リウムの粒子が必要であることがわかる。
産業上の利用の可能性
[0153] 本発明に係る研磨剤は、ガラス製品、琺瑯製品、タイル製品、金属製品等の物品 の表面や、石製床、木製床、合成樹脂製床、リノリュウム製床、レンガ製床、金属製床 等の床の表面を研磨する研磨剤として有用である。

Claims

請求の範囲
[1] 火山ガラスを焼成し発泡させて得られる中空体と、当該中空体を粉砕して得られる 中空体粉砕物と、増粘剤と、水と、を含有し、
含有する前記中空体の粒径が 10〜: LOO μ mであり、
含有する前記中空体粉砕物の粒径が 5〜30 μ mであることを特徴とする研磨剤。
[2] 火山ガラスを焼成し発泡させた中空体を粉砕して得られる中空体粉砕物と、酸化セ リウムの粒子と、増粘剤と、水と、を含有し、
含有する前記中空体粉砕物の粒径が 5〜30 μ mであり、
含有する前記酸化セリウムの粒子の粒径が 0. 5〜5 mであることを特徴とする研 磨剤。
[3] 火山ガラスを焼成し発泡させて得られる中空体と、酸化セリウムの粒子と、増粘剤と 、水と、を含有し、
含有する前記中空体の粒径が 10〜: LOO μ mであり、
含有する前記酸化セリウムの粒子の粒径が 0. 5〜5 mであることを特徴とする研 磨剤。
[4] 火山ガラスを焼成し発泡させて得られる中空体と、当該中空体を粉砕して得られる 中空体粉砕物と、酸化セリウムの粒子と、増粘剤と、水と、を含有し、
含有する前記中空体の粒径が 10〜: LOO μ mであり、
含有する前記中空体粉砕物の粒径が 5〜30 μ mであり、
含有する前記酸化セリウムの粒子の粒径が 0. 5〜5 mであることを特徴とする研 磨剤。
[5] 火山ガラスを焼成し発泡させて得られる中空体と、増粘剤と、水と、を含有し、 含有する前記中空体の粒径が 80〜320 μ mであることを特徴とする研磨剤。
[6] 火山ガラスを焼成し発泡させて得られる中空体を粉砕して得られる中空体粉砕物と 、増粘剤と、水と、を含有し、
含有する前記中空体粉砕物の粒径が 50〜200 μ mであることを特徴とする研磨剤
[7] 火山ガラスを焼成し発泡させて得られる中空体と、当該中空体を粉砕して得られる 中空体粉砕物と、増粘剤と、水と、を含有し、
含有する前記中空体の粒径が 80〜320 μ mであり、
含有する前記中空体粉砕物の粒径が 50〜200 μ mであることを特徴とする研磨剤 前記中空体がシラスバルーンであることを特徴とする請求項 1から請求項 7のうちの いずれか 1項に記載の研磨剤。
前記中空体がパーライトであることを特徴とする請求項 1から請求項 7のうちのいず れカ 1項に記載の研磨剤。
PCT/JP2006/319237 2005-10-11 2006-09-28 研磨剤 WO2007043343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06810695A EP1935957A4 (en) 2005-10-11 2006-09-28 POLISH
JP2007539863A JP4231892B2 (ja) 2005-10-11 2006-09-28 研磨剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005295914 2005-10-11
JP2005-295914 2005-10-11

Publications (1)

Publication Number Publication Date
WO2007043343A1 true WO2007043343A1 (ja) 2007-04-19

Family

ID=37942591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319237 WO2007043343A1 (ja) 2005-10-11 2006-09-28 研磨剤

Country Status (3)

Country Link
EP (1) EP1935957A4 (ja)
JP (1) JP4231892B2 (ja)
WO (1) WO2007043343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005327A1 (ja) * 2011-07-07 2013-01-10 株式会社長寿乃里 スクラブ石けんの製造方法およびスクラブ石けん

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589209B2 (ja) * 2010-03-02 2014-09-17 国立大学法人 宮崎大学 歯車の歯面研磨剤及びこれを用いた研磨方法
JP2014129214A (ja) * 2012-12-29 2014-07-10 Igawa Sangyo:Kk ガラス質火山噴出物に由来する微小粒子の製造方法
EP2941354B1 (de) * 2013-12-19 2017-03-22 Klingspor AG Schleifpartikel und schleifmittel mit hoher schleifleistung
WO2015192829A1 (de) 2014-06-18 2015-12-23 Klingspor Ag Mehrschicht-schleifpartikel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176685A (ja) * 1974-09-09 1976-07-02 Procter & Gamble Kenmaseimigakizaisoseibutsu
JPS5352513A (en) * 1976-09-07 1978-05-13 Procter & Gamble Composition for abrasion cleaning containing inflate
JPS606797A (ja) * 1983-06-27 1985-01-14 ライオン株式会社 研磨材含有液体洗浄剤組成物
JPH04189890A (ja) * 1990-11-22 1992-07-08 Taiho Ind Co Ltd 水系ペースト状撥水性皮膜除去剤、ガラス面の撥水性皮膜の除去方法及びガラス面の清浄化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB896910A (en) * 1958-02-21 1962-05-23 Carborundum Co Bonded abrasive articles
ATA853572A (de) * 1972-10-05 1975-08-15 Tschirf Ludwig Dipl Ing Dr Tec Schleifkorngemisch und schleifkorn
FR2414071A1 (fr) * 1978-01-05 1979-08-03 Essilor Int Materiau de polissage, notamment pour lentille ophtalmique en matiere organique
WO1998003306A1 (en) * 1996-07-23 1998-01-29 Minnesota Mining And Manufacturing Company Structured abrasive article containing hollow spherical filler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176685A (ja) * 1974-09-09 1976-07-02 Procter & Gamble Kenmaseimigakizaisoseibutsu
JPS5352513A (en) * 1976-09-07 1978-05-13 Procter & Gamble Composition for abrasion cleaning containing inflate
JPS606797A (ja) * 1983-06-27 1985-01-14 ライオン株式会社 研磨材含有液体洗浄剤組成物
JPH04189890A (ja) * 1990-11-22 1992-07-08 Taiho Ind Co Ltd 水系ペースト状撥水性皮膜除去剤、ガラス面の撥水性皮膜の除去方法及びガラス面の清浄化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1935957A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005327A1 (ja) * 2011-07-07 2013-01-10 株式会社長寿乃里 スクラブ石けんの製造方法およびスクラブ石けん
US8969274B2 (en) 2011-07-07 2015-03-03 Chojyu-No-Sato Co., Ltd. Scrub soap and method for manufacturing the same

Also Published As

Publication number Publication date
EP1935957A1 (en) 2008-06-25
JPWO2007043343A1 (ja) 2009-04-16
EP1935957A4 (en) 2009-04-29
JP4231892B2 (ja) 2009-03-04

Similar Documents

Publication Publication Date Title
RU2418672C2 (ru) Способ ухода, подходящий для ежедневного применения, за твердыми поверхностями пола из камня или камнеподобного материала
JP2966235B2 (ja) 可塑性柔軟砥石
JP4231892B2 (ja) 研磨剤
CN104017502B (zh) 汽车养护剂及其制备方法
WO2011043728A1 (en) Floor treatment
JP2008301926A (ja) 清掃具及びその製造方法ならびに清掃具を用いた清掃方法
US20070272223A1 (en) Method for maintaining a polished concrete floor
US5676714A (en) Method and composition for polishing painted surfaces
KR930005253B1 (ko) 석재 표면의 처리방법 및 조성물
US6383557B1 (en) Plumbing fixture surface restoration process
JP2001121404A (ja) 汚染ガラス面の清浄化方法
KR101799503B1 (ko) 건축물 바닥면 연마 방법
JP2003300169A (ja) ガラス表面汚れ落としパッド
JP2007175501A (ja) 床用ワックスの剥離浄化方法及び装置
JP2008194124A (ja) フロアーポリッシュ組成物皮膜の剥離方法
KR101921616B1 (ko) 건축물 바닥면 습식 연마 슬러지 폐기물 처리 방법
JPH08209117A (ja) 研磨洗浄用懸濁液組成物及びガラス面の洗浄方法
JP2003231052A (ja) フロアーポリッシュポリマー塗料剥離方法及びその装置
CN107225495A (zh) 一种吸尘上蜡打光一体机
KR101077998B1 (ko) 건축물 외벽 무수 광세척 방법
JP2010166950A (ja) 床面の付着物を剥離除去する剥離除去装置
TWI378999B (en) Composition for cleaning and method for using the same
JPH04262947A (ja) 自動車ホイール用洗浄材およびそれを用いた洗浄方法
JPH04189890A (ja) 水系ペースト状撥水性皮膜除去剤、ガラス面の撥水性皮膜の除去方法及びガラス面の清浄化方法
EP1700903B1 (en) Method for eliminating corrosion stains caused by acid foodstuffs from marble surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007539863

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006810695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE