WO2007040268A1 - 無線通信装置 - Google Patents
無線通信装置 Download PDFInfo
- Publication number
- WO2007040268A1 WO2007040268A1 PCT/JP2006/319997 JP2006319997W WO2007040268A1 WO 2007040268 A1 WO2007040268 A1 WO 2007040268A1 JP 2006319997 W JP2006319997 W JP 2006319997W WO 2007040268 A1 WO2007040268 A1 WO 2007040268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interference
- signal
- wireless communication
- communication device
- wave
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/0848—Joint weighting
- H04B7/0857—Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a radio communication apparatus that is used in, for example, a terminal of a multi-cell radio communication system that uses the same channel in a plurality of terminals and that can receive a desired signal while suppressing an interference component from an interference wave source. .
- SDM Space Division Multiplexing
- Information on SDM technology is disclosed in Non-Patent Document 1, for example.
- Both transmitter and receiver are equipped with a plurality of antenna elements, and the correlation of received signals between antennas is low. Transmission can be realized.
- different data sequences are transmitted from the multiple antennas provided in the transmitter using physical channels of the same time, the same frequency, and the same code for each antenna element, and the receiver uses the multiple antennas provided in the receiver.
- Received signals are received separately based on estimated channel characteristics. As a result, it is possible to achieve high speed by using multiple spatial multiplexing channels without using multilevel modulation.
- SDM signal-to-noise ratio
- the same number of transmitters and receivers are used.
- the communication capacity can be increased in proportion to the number of antennas.
- Non-patent literature 1 G.J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas ", Bell Labs Tech. J., pp.4 to 59, Autumn 1996
- the interference suppression in the adaptive array antenna technique and the SDM technique described above uses a spatial filtering process in which a signal received by a plurality of antenna elements is multiplied by an antenna weight and then added and synthesized. .
- it operates by the MMSE (Error Least Squares) algorithm that maximizes SIR (signal power to interference noise power ratio).
- MMSE Error Least Squares
- SIR signal power to interference noise power ratio
- the present invention has been made in view of the above circumstances, and can realize spatial filtering adapted to an interference wave that appears unsteady even in a state where the interference wave does not exist steadily, and has an interference removal capability.
- An object of the present invention is to provide a wireless communication device that can be enhanced.
- the radio communication apparatus of the present invention includes an interference signal receiving unit that receives an interference signal including the interference wave component using an interference wave reception antenna weight that selectively receives a signal of the interference wave component; Based on the output of the interference signal receiving means, the signal level of the interference wave component is detected. Based on the output of the interference wave level detecting means, the desired wave separation receiving antenna weight for receiving the desired signal is varied. And a signal separation means.
- the present invention is the above-described wireless communication device, wherein the desired wave separation receiving antenna weight is a weight that minimizes interference wave reception power.
- the present invention is the above-described wireless communication device, wherein the desired wave separation receiving antenna weight is a weight that maximizes signal power versus interference noise power.
- the present invention is the above-described wireless communication device, wherein the desired wave separation receiving antenna weight is an interference wave reception power with respect to a sub-array consisting of k pieces smaller than N among a plurality of N antennas. Is a weight that minimizes.
- the present invention is the above-described wireless communication device, wherein the signal separation means multiplies a weight for preferentially removing other-station interference signals, and the first weight multiplier.
- the output of the weight multiplier is assumed to have a second weight multiplier that multiplies the spatial demultiplexing weight for separating the spatial multiplexed stream.
- the present invention is the above-described wireless communication device, wherein the signal separation unit is configured to multiply a weight for preferentially removing the other-station interference cancellation signal, and the first weight multiplication unit. And a second weight multiplier for multiplying the output of the weight multiplier by a maximum ratio combined weight that maximizes the signal power.
- the present invention is the above wireless communication apparatus, wherein the signal separation unit receives and detects a desired signal when the output of the interference wave level detection unit exceeds a predetermined value. It is assumed that the desired wave separation receiving antenna weight for suppressing the interference wave is changed. With this configuration, when the signal level of the interference wave component exceeds a predetermined value, the interference wave component exceeding the predetermined value is changed to a desired wave separation receiving antenna weight that can suppress the interference wave component, and even when the interference wave appears unsteadyly The desired wave can be received while sufficiently suppressing the interference wave.
- the present invention is the above-described wireless communication apparatus, wherein the interference wave level detection means detects a signal level of interference wave components having a plurality of interference source powers.
- This configuration detects the signal level of the interference wave components from multiple interference sources, prepares the interference wave receiving antenna weight for the multiple interference waves, and sets the desired wave separation receiving antenna weight based on the detection levels of the multiple interference waves. It can be changed and appears in a non-steady state Even interference waves can be sufficiently suppressed.
- the present invention is the above-described radio communication device, wherein the signal separation unit has signal levels of interference wave components from a plurality of interference sources at an output of the interference wave level detection unit exceeding a predetermined value.
- the signal separation unit has signal levels of interference wave components from a plurality of interference sources at an output of the interference wave level detection unit exceeding a predetermined value.
- a desired signal is received, and the detected interference wave is changed to a desired wave separation receiving antenna weight that suppresses the interference wave according to the signal level of the interference wave component.
- the present invention is the radio communication apparatus described above, wherein the interference wave receiving antenna weight is a weight that maximizes interference wave power versus desired signal power.
- the present invention is the above-described wireless communication device, wherein the interference wave receiving antenna weight is a weight that maximizes received power of a communication signal between wireless communication devices other than the wireless communication device.
- the interference signal can be appropriately selected and received by using, as the interference wave receiving antenna weight, the weight that maximizes the reception power of the communication signal between the wireless communication devices other than the wireless communication device.
- the present invention is the above-described wireless communication device, wherein the interference signal receiving means maximizes interference wave power using a correlation matrix obtained by a received signal power in a time interval not including a desired signal. It is assumed that the interference wave receiving antenna weight to be converted is calculated.
- the interference wave receiving antenna weight for selectively receiving the interference wave can be calculated based on the correlation matrix obtained from the received signal power in the time interval not including the desired signal.
- the present invention is the wireless communication apparatus described above, wherein the interference signal receiving means uses a correlation matrix obtained from a received signal within a predetermined time to maximize interference wave power. It is assumed that the wave receiving antenna weight is calculated.
- an interference wave receiving antenna weight for selectively receiving an interference wave can be calculated based on a correlation matrix obtained from a received signal within a predetermined time.
- the present invention is the above-described wireless communication device, wherein the interference signal receiving unit is configured to transmit a communication signal between wireless communication devices other than the wireless communication device when the wireless communication device is not communicating. Based on the reception result, one or a plurality of interference wave reception antenna weights are determined.
- the present invention is the above-described wireless communication apparatus, comprising storage means for storing interference wave reception information for selectively receiving the interference signal, wherein the interference signal receiving means includes: When the received signal is a destination signal other than the wireless communication apparatus, interference wave reception information regarding the interference wave component is calculated and stored in the storage unit.
- an interference wave receiving antenna weight capable of selectively receiving the interference wave can be generated.
- the present invention is the above wireless communication device, wherein the interference signal receiving means calculates an interference correlation matrix related to an interference wave as the interference wave reception information, and is based on the interference correlation matrix! / The interference signal is received using the interference wave receiving antenna weight generated in this way.
- the present invention is the above-described wireless communication device, wherein the signal separation means is a signal generated based on the interference correlation matrix when the received signal is a signal addressed to the wireless communication device. It is assumed that a desired signal is separated using a wave separation receiving antenna weight. With this configuration, when the received signal is a signal addressed to the wireless communication device, for example, Even in the state where the reception processing mode is changed to normal reception and the interference wave appears nonstationary, the interference wave is sufficiently suppressed by the selective reception of the interference wave using the interference wave reception antenna weight, and the desired wave separation reception is performed. The desired signal can be separated and received appropriately using the antenna weight.
- the present invention is the above-described wireless communication device, wherein the storage unit individually classifies an interference correlation matrix related to an interference wave as the interference wave reception information or classifies each interference source individually. It shall be remembered.
- the interference correlation matrix related to the interference wave is stored individually or separately for each transmission source, and based on this interference correlation matrix! /,
- the interference wave receiving antenna weight and the desired wave separation reception By generating and changing the antenna weight, it is possible to receive the desired signal by suppressing the interference wave to a sufficient level against the interference wave that appears unsteadyly.
- the present invention is the above-described wireless communication device, wherein a transmission replica generation unit that generates a replica of a transmission signal based on a reception result of a desired signal received by the desired wave separation receiving antenna weight; Based on the output of the transmission replica generation unit, an interference cancellation unit that cancels one or more desired signals from the received signal, and an interference signal correlation matrix detected by the interference wave level detection unit, an interference signal And an iterative decoding weight generation unit that generates an iterative decoding weight for suppressing the above, and a second signal separation unit that multiplies the output of the interference cancellation unit by the iterative decoding weight.
- the present invention is the above-described wireless communication apparatus, wherein a transmission replica generation unit that generates a replica of a transmission signal based on a reception result of a desired signal received by the desired wave separation receiving antenna weight; An interference correlation that cancels all desired signals from the received signal based on the output of the transmission replica generation unit, extracts interference signal components, and updates the correlation matrix of the interference signal detected by the interference wave level detection means A matrix update unit, an iterative decoding weight generation unit that generates an iterative decoding weight for suppressing an interference signal using the output of the interference correlation matrix update unit, and the iterative decoding for the output of the interference cancellation unit And second signal separation means for multiplying the weights for use.
- the invention's effect [0027] According to the present invention, it is possible to realize a spatial filtering adapted to an interference wave that appears non-stationarily even in a state where the interference wave does not exist steadily, and to improve the interference removal capability. Can provide.
- FIG. 1 is a diagram showing a configuration of a wireless communication system including a wireless communication device according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing an example of a packet configuration of a communication signal used in the present embodiment
- FIG. 3 is a schematic diagram for explaining a packet transmission situation in the present embodiment.
- FIG. 4 is a flowchart showing an operation at the time of reception of the wireless communication device in the present embodiment.
- FIG. 5 is a flowchart showing an operation for separating and receiving a desired wave in the present embodiment.
- FIG. 6 is a block diagram showing a configuration of a first modification of the wireless communication device according to the first embodiment.
- FIG. 7 is a block diagram showing a configuration of a second modified example of the wireless communication apparatus according to the first embodiment.
- FIG. 8 is a block diagram showing a configuration of a third modification of the wireless communication device in the first embodiment.
- FIG. 9 is a diagram showing a configuration of a wireless communication device according to a second embodiment of the present invention.
- FIG. 10 is a diagram showing a configuration of a wireless communication device according to a third embodiment of the present invention.
- FIG. 11 is a diagram showing a configuration of a wireless communication device according to a fourth embodiment of the present invention.
- FIG. 12 is a block diagram showing a configuration of a modification example of the wireless communication device according to the fourth embodiment.
- FIG. 1 is a diagram showing a configuration of a wireless communication system including the wireless communication device 3 according to the first embodiment of the present invention.
- a case is shown in which transmission signals are transmitted from desired wireless communication device 1 and interference source wireless communication devices 21 to S, and these transmission signals are received by wireless communication device 3.
- Each desired wireless communication device 1, interference source wireless communication devices 21 to S, and wireless communication device 3 are provided with a plurality of antennas, and SDM transmission is possible.
- the present embodiment is suitable for a multi-cell wireless communication system that repeatedly uses the same channel.
- desired radio communication apparatus 1 that is a desired transmission signal source
- interference source radio communication apparatus 2 that is an interference source that causes interference because the carrier frequency is the same as or close to that of desired radio communication apparatus 1
- the wireless communication device 3 receives transmission signals from 1 to S. Note that the wireless communication device 3 shows only the reception configuration, and the illustration of the transmission configuration is omitted.
- the wireless communication device 3 performs amplification processing, filtering processing, and frequency conversion processing to baseband signals on each of the high-frequency signals received by the plurality of (M) antennas 41-M and the plurality of antennas 41-M.
- Receiving unit 5-1 to M for extracting each as a digital signal
- Interference signal receiving means 6 for selectively receiving the interference signal from the interference source radio communication apparatus 2-1 to S based on the output of the receiving unit 5, and interference wave reception information for selectively receiving the interference signal.
- Storage means 7 for storing, interference wave level detecting means 8 for detecting the reception level of the interference wave based on the output of the interference signal receiving means 6, Nt pieces transmitted from the desired wireless communication device 1 (where Nt ⁇ 1)
- the signal separation means 9 for separating and receiving the received transmission sequence from the received signals received by the plurality of antennas 4 and the signal sequence reception processing means 10-l to demodulate and decode the Nt signal sequences received separately. Constructed with Nt.
- FIG. 2 is a diagram illustrating an example of the packet configuration of the communication signal.
- a packet transmitted as a transmission signal includes a training signal unit (preamble unit) 30, a signaling unit 31, and a data unit 32 that also have a known signal sequence power.
- the training signal unit 30 is used for automatic gain control (AGC) at the time of amplification processing in the receiving unit 5, frequency synchronization, symbol timing synchronization, transmission path distortion equalization, and the like.
- the signaling unit 31 includes information such as the unique identification signal of the transmission and transmission destination wireless communication devices of the subsequent data unit 32, the coding rate of the error correction code, and the modulation multi-level number.
- FIG. 3 is a schematic diagram for explaining the packet transmission situation, and shows the transmission signal timing from the interference source radio communication apparatus 2 for the packet 40 addressed to the own station transmitted from the desired radio communication apparatus 1.
- Interference source wireless communication device 2 transmits radio waves that are co-channel interference waves from the respective antennas provided, but it is not always transmitted from all interference source wireless communication devices 2, but differs at each transmission timing.
- the packet size is transmitted in bursts.
- the transmission packet 41 of the interference source wireless communication device 2 having a size larger than the packet 40 addressed to the own station is transmitted in Casel
- the interference source wireless communication having a size smaller than the packet 40 addressed to the own station is transmitted in Case2 and Case3.
- An example is shown in which the transmission packets 42 and 43 of device 2 are transmitted at different timings.
- transmission packet 41 there may be an interference wave transmission packet 41 over the entire period for the packet 40 addressed to the local station as in Casel, or one of the packets 40 addressed to the local station as in Case 2 and Case 3.
- transmission packets 42 and 43 of interference waves may exist during the period of the part.
- the state of the interference wave is Change.
- the transmission status of the co-channel interference wave from the interference source wireless communication device 2 is within the range of the interference removal capability of the wireless communication device 3, the packet addressed to itself is successfully received. If the interference cancellation capability is exceeded, packet reception fails and retransmission is performed.
- FIG. 4 is a flowchart showing the operation of the wireless communication device 3 when receiving a packet addressed to its own station. Note that the packets are transferred asynchronously between access points.
- Interference sources occur randomly. For this reason, the operation at the time of reception in FIG. 4 is repeated.
- This embodiment is particularly effective when the directivity of the interference wave, that is, the spatial position is substantially constant, and the interference wave is generated non-stationarily and changes with time.
- the assumed operation is shown. For example, this corresponds to a case where each communication device operates in a distributed manner like a wireless LAN and packets are transmitted randomly.
- the presence / absence of a transmission packet is detected in the frequency channel to be used (S21).
- a transmission packet that follows the training signal is established by establishing frequency synchronization and timing synchronization using a previously known training signal included in the training signal section and further equalizing the transmission path distortion.
- the address information of the packet transmission source and the transmission destination included in the signaling unit is read to detect whether it is a packet addressed to the own station (S22).
- the mode shifts to the preprocessing mode for learning the interference signal (S23). Shifts to the reception processing mode for receiving (S24).
- the interference signal receiving means 6 calculates the interference correlation matrix RI of the training signal section, and stores this as interference wave reception information in the storage means 7.
- the interference correlation matrix RI indicates an interference correlation matrix when a packet other than the nth self-station is received, and is a transmission path distortion calculated using a training signal (hereinafter referred to as channel estimation value).
- channel estimation value a training signal
- h (j, k) is transmitted from the k-th antenna cable of the n-th interference source radio communication device 2-n, and the j-th antenna of the radio communication device 3 is transmitted.
- 4 4 Represents the channel estimate when receiving at j.
- the nth interference source wireless communication device 2-n has Nit (n) antennas, and Nlt (n) is a natural number of 1 or more.
- the interference correlation matrix RI when a packet other than the nth self-station is received is calculated as shown in (Equation 1) below.
- B (n) is a matrix of M rows and Nit (n) columns, and the element of the j-th row and the k-th column consists of h (j, k).
- H indicates the vector conjugate transpose operator.
- P is the estimated noise power
- E is the Mth-order unit matrix.
- x (t, n) is an M-th column vector
- the j-th element is the j-th antenna 4-1 j of the wireless communication device 3 and is addressed to the n-th own station.
- Dt is the sampling time interval
- t is the sampling start time
- Ns is the number of sampled data. in this case,
- the interference correlation matrix RI can be calculated without using a pilot signal, it can also be calculated using a signal in the data portion. If the signal contained in the data part is sufficiently long, the interference correlation matrix RI can be estimated with high accuracy.
- the storage content is updated in the storage means 7.
- the update method use one of the following three methods or a combination of multiple methods. [0045] 1) A weighted averaged interference correlation matrix is calculated.
- the configuration of the interference signal receiving means 6 and the storage means 7 can be simplified.
- the received signal by the desired wave separation receiving antenna weight using the weighted averaged interference correlation matrix receives the desired wave signal and always gives priority to the strong level interference signal received in the preprocessing mode. The operation is suppressed, and individual interference signals cannot be received with the optimum level suppressed. Therefore, although this method is versatile, interference waves may not be sufficiently suppressed.
- the interference correlation matrix RI is individually stored as it is. When the number of interference correlation matrices that can be stored exceeds a predetermined number NI, the interference correlation matrix RI with the higher received power is
- the number of interference correlation matrices is stored. Where k is a natural number less than or equal to NI.
- the interference wave receiving antenna weight is provided for the plurality of interference correlation matrices RI to receive the interference signal, the configurations of the interference signal receiving means 6 and the storage means 7 are complicated.
- the received signal by the desired wave separation receiving antenna weight using the weighted averaged interference correlation matrix receives the desired wave signal, and receives each of the interference signals at the strong level received in the preprocessing mode.
- the interference correlation matrix RI is individually stored by classification for each source address information. If multiple interference correlation matrices that are the same source address are detected, they are stored after weighted averaging. In addition, when the number of interference correlation matrices that can be stored exceeds a predetermined number NI, priority is given to the address information of the source of the interference correlation matrix RI having a high received power, and the predetermined number NI is reduced.
- k is a natural number less than or equal to NI.
- one interference correlation matrix can be stored in the storage means 7 corresponding to one transmission source in consideration of the effect of 2).
- the interference signal is not received by providing a plurality of interference wave receiving antenna weights for one transmission source, and the configuration complexity due to such duplication of the interference signal receiving means 6 and the storage means 7 is eliminated. You can avoid babies.
- an averaging process is added for each common transmission source. Therefore, the noise component of the interference correlation matrix can be reduced, and as a result, the interference suppression effect by the desired wave separation receiving antenna weight using the interference correlation matrix can be enhanced. Therefore, this method can most effectively suppress the interference wave to a sufficient level.
- Equation 2 the interference correlation matrix RI is calculated without using the channel estimation value based on the training signal, the storage means 7 is updated, and the process returns to S21 again to check whether there is a transmission packet. If there are a plurality of interference waves, the same processing is repeated for the other interference waves.
- the processing up to storing the interference correlation matrix RI when receiving a packet other than that addressed to the own station is the preprocessing mode (S23).
- the high-frequency signals received by the multiple antennas 4 in the wireless communication device 3 are each quadrature-detected after amplification processing, filtering processing, and frequency conversion processing in the receiving units 5-1 to M, and converted into baseband signals on the IQ plane. It is done.
- This baseband signal is output as a received signal vector y (k) expressed as a complex digital signal using an AZD converter. In the following, k indicates the time of divergence of the sampled signal.
- transmission sequence vectors x (k) [x (k),..., X (k) composed of transmission sequences X (k) transmitted from Nt antennas of desired radio communication apparatus 1 )]
- T (superscript T is
- the received signal vector y (k) at the wireless communication device 3 at the discrete time k obtained through the vector transposition operator and the flat fading propagation path is expressed as (Equation 3) below.
- y (k) is a list including the received signals from M antennas 4 used for reception as elements.
- the signal y (k) received by antenna 4—m is the mth element.
- H is a channel response matrix indicating the propagation path variation that the transmission sequence x (k) of the desired radio communication apparatus 1 receives.
- H is a matrix composed of (number of antennas M of wireless communication device 3) rows X (number of transmission antennas Nt of desired wireless communication device 1) columns, and matrix element h of i rows and j columns is desired wireless communication.
- Signal X (k) force transmitted from the j-th transmitting antenna in device 1 shows propagation path changes when received by i-th antenna 4 i in wireless communication device 3.
- n (k) is a noise component vector added at the time of reception by the M reception antennas 4 of the wireless communication apparatus 3.
- Such a received signal vector y (k) of the wireless communication device 3 is input to the interference signal receiving means 6 and the signal separating means 9.
- the interference signal receiving means 6 reads one or more interference correlation matrices RI obtained in the preprocessing mode from the storage means 7, and selects the interference signal power I (k) by spatial filtering.
- Interference wave receiving antenna weight vector WI that can be received automatically is calculated. If there are a plurality of interference correlation matrices RI, a plurality of outputs z (k) are calculated, and the interference wave level detection means 8 (to be described later) performs threshold determination to identify the interference wave.
- This interference wave reception antenna weight vector WI is an antenna weight that maximizes the interference signal (maximum SINR of the interference wave). Then, the product-sum operation with the received signal vector y (k) is performed as shown in (Equation 4) below, and the nth interference wave component signal z (k) is extracted.
- n is the number of interference correlation matrices stored in the storage means 7 and is a natural number equal to or less than NI
- z (k) has an element of the number of spatially multiplexed streams transmitted by the interference source wireless communication device 2 Column Vector card.
- Superscript H indicates a vector conjugate transpose operator.
- the number of spatially multiplexed streams refers to, for example, one signal (packet) in multiple data streams when performing spatial multiplexing transmission by MIMO (Multiple-Input Multiple-Output) in the next generation wireless LAN standard IEEE801.11n. Division and spatial multiplexing are performed, which corresponds to the number of data streams at this time.
- U (n) is kn among M eigenvalues obtained by eigenvalue decomposition of the interference correlation matrix RI.
- Eigenvalues are extracted in descending order for the number of spatially multiplexed streams transmitted by the interference source radio communication apparatus 2, and the corresponding eigenvectors are included in the column vector components.
- k l,.
- D is calculated by the following (Equation 7), and H is the transmission sequence n e of desired wireless communication apparatus 1
- x (k) is an estimate of the channel response matrix H
- ⁇ is the noise power estimate
- E is ⁇
- the signal separation means 9 receives the received signal vector y (k) as an input, and transmits the transmission sequence X (k) transmitted from the desired wireless communication device 1 using the desired wave separation receiving antenna weight WD. Separate reception is performed by setting WD H y (k).
- a desired wave separation / reception operation centering on the signal separation means 9 will be described.
- FIG. 5 is a flow chart showing the operation including the signal separation means 9 and the interference wave level detection means 8. The operation will be described below with reference to FIG.
- Equation 8 is calculated as the initial desired wave separation receiving antenna weight WD (S50).
- This desired wave separation receiving antenna weight WD is an antenna weight that maximizes the SINR of the desired wave.
- WD consists of a matrix of M rows and Nt columns, and its nth column consists of WD.
- R is calculated by the following (Equation 9).
- H is the transmission received by the transmission sequence x (k) of the desired wireless communication device 1.
- An estimated value is obtained from the known signal sequence in the signal section.
- P exceeds a predetermined value LI (S51)
- the desired wave separation receiving antenna weight WD in the signal separation means 9 is updated (S52).
- the interference wave component power P does not exceed the predetermined value LI
- the desired wave separation receiving antenna weight WD in the signal separation means 9 is maintained without being updated (S53). For example, as shown in Fig. 3, when interference waves are generated as in Case 1, Case 2, and Case 3, Case 2 and Case 3 receive the desired wave separation reception antenna weight WD between the sequential generation periods T1 and T2. Change it!
- the interference wave level detection means 8 calculates a new desired wave separation reception antenna weight WD as described below, and outputs the result to the signal separation means 9.
- W is calculated by the following (Equation 11), and V (n) is an eigenvalue of the interference correlation matrix RI.
- This desired wave separation receiving antenna weight WD maximizes the power of the desired wave. Both antenna weights suppress the corresponding interference wave below a predetermined level. As a result, it is possible to selectively receive the desired signal while suppressing the interference wave caused when the interference correlation matrix RI n is generated.
- LI P, P RI,...)
- each interference correlation matrix corresponding to each interference wave component is weighted and combined.
- Equation 15 is a parameter that varies the interference suppression effect. As a increases, the spatial filter gives priority to interference suppression over increasing the desired wave reception power. It is a filtering operation.
- This desired wave separation receiving antenna weight WD is an antenna weight that maximizes the power of the desired wave and suppresses the corresponding interference wave below a predetermined level. As a result, it is possible to receive the desired signal while suppressing the interference wave caused by the generation of the interference correlation matrix RI.
- LI predetermined value
- each interference correlation matrix corresponding to each interference wave component is weighted and combined.
- FIG. 6 is a block diagram showing a configuration of a first modification of the wireless communication device in which the signal separating means is divided into two weight multipliers.
- the signal separation means 9a is configured to include a first weight multiplication unit 90 and a second weight multiplication unit 91.
- the weights used in the first weight multiplication unit 90 are given as shown in (Equation 10) or (Equation 13).
- a signal in which the received power of the interference wave contained in the received signal vector y (k) is suppressed can be obtained.
- the weight used in second weight multiplication section 91 is ( Q_1 ) H in desired wave separation receiving antenna weight WD as shown in ( Equation 10) or (Equation 13), and the first weight. the multiplication of the output a (k), multiplying such that (Q _1) H a (k ).
- Nt desired wave signals can be separated and received from the signal A (k) in which the reception power of the interference wave contained in the received signal vector y (k) is suppressed.
- the reception quality can be improved by enhancing the diversity effect due to the reception of multiple antennas.
- the first weight multiplier 90 can extract the output signal A (k) with reduced interference waves. You can. Using this property, it is possible to use a configuration in which the channel estimation value is calculated again using a signal in which the influence of the interference wave signal is reduced.
- FIG. 7 is a block diagram showing a configuration of a second modification example of the wireless communication apparatus in which the channel estimation value is calculated again.
- rechannel estimation section 95 extracts a pilot signal known in advance for channel estimation included in output signal A (k) with reduced interference waves Then, channel estimation is performed.
- the weight used in second weight multiplication section 91 is calculated using channel estimation value ⁇ thus obtained.
- the re-channel estimation unit 95 is represented by the following (Equation 17) instead of (Equation 12) in the case of [Method 3] among the update methods of the desired wave separation receiving antenna weight WD described above.
- Q is used to calculate the desired wave reception weight.
- [Method 4] instead of (Equation 16), the Q shown in (Equation 18) below is used to calculate the weight for receiving the desired wave.
- the weights in the first weight multiplication section are set to a set of k sub-arrays of M, which is smaller than M, to generate weights for suppressing interference wave received power. .
- FIG. 8 is a block diagram showing a configuration of a third modification example of the radio communication apparatus configured by setting the weights in the first weight multiplication unit of the signal separation means to a set of a plurality of subarrays.
- first weight multiplication section 90 included in signal separation means 9b further includes a plurality of subarray weight multiplication sections 92.
- the signal sequence reception processing means 10 converts the Nt output signals from the signal separation means 9 into On the other hand, symbol data string power using a predetermined modulation method De-mapping process that converts to bit data string, de-interleaver process that restores the bit order by reverse operation of interleaving performed on the transmission side, and input bit data string Performs error correction decoding processing, etc., and performs reception processing to restore the transmitted bit sequence.
- signals from a plurality of interference source radio communication apparatuses 2 are received in advance as a preprocessing mode, and the resulting interference correlation matrix RI Based on the above, an interference wave receiving antenna weight WI that can selectively receive a transmission signal from the interference source wireless communication device 2 is prepared.
- An interference source radio communication apparatus that shifts to a reception processing mode during communication, performs normal reception, and detects interference signal component fluctuations based on signal power received by the interference wave receiving antenna weight WI, thereby causing interference.
- the desired wave separation receiving antenna weight WD for reducing interference can be adaptively changed using a new interference correlation matrix.
- the signal-to-interference noise power ratio SIR of the received signal y (n) is detected, and the detected value exceeds a predetermined level.
- the operation may be performed to update the interference wave receiving antenna weight vector WI.
- the weight that maximizes the SIR is selected as the interference wave receiving antenna weight vector WI.
- Another method for calculating the interference correlation matrix RI is as follows. A) When receiving a packet addressed to the local station and the timing at which no signal is included in the tracing signal, the above ( The interference correlation matrix may be calculated using Equation 2). This makes it possible to accurately detect the interference correlation matrix of the interference source that causes co-channel interference when receiving a packet addressed to the local station.
- the correlation matrix obtained by using the above (Equation 2) may be used in the data part when receiving a packet addressed to the own station.
- the calculation timing and calculation range of the correlation matrix are shifted, and the data portion is divided into a plurality of blocks, which are set as an interference correlation matrix RI.
- the interference correlation matrix of the interference source that causes co-channel interference is calculated while being shifted in time, so that the follow-up performance when the interference wave source fluctuates in time can be improved.
- FIG. 9 is a diagram showing a configuration of a wireless communication device 3a according to the second embodiment of the present invention.
- a transmission method using a single carrier is used, but in the second embodiment, an example applied to a wireless communication system using OFDM (Orthogonal Frequency Division Multiplexing) as multicarrier transmission is shown.
- OFDM Orthogonal Frequency Division Multiplexing
- the wireless communication device 3a differs in part from the first embodiment, and includes a processing system for each subcarrier.
- the wireless communication device 3a of the second embodiment includes interference signal receiving means 61-l to Nc, storage means 62-l to Nc, and signal separation means 64-1-lc for each subcarrier. . Further, the interference wave level detection means 63 integrates the output results of all the interference signal reception means 61-1 to Nc, and updates the desired wave separation reception antenna weight in the signal separation means 64-1 to Nc. judge. That is, the level of the interference wave component is detected based on the reception result of the interference signal in all subcarriers of OFDM, and the desired wave separation receiving antenna weight is varied according to the level detection result.
- Other configurations are the same as those of the first embodiment, and the configurations and operations of portions different from those of the first embodiment will be mainly described below.
- the OFDM modulation and demodulation method is disclosed in the literature (Tomohiro Ochi and Kenji Ueda, “OFDM system technology and MATLAB simulation explanation”, Trikes, 2002). Detailed description thereof is omitted here.
- interference is caused because the desired radio communication device 1 and the carrier frequency that is the same as or close to that of the desired radio communication device 1 are used.
- the wireless communication device 3a receives transmission signals from the interference source wireless communication devices 2-1 to S.
- the wireless communication device 3a shows only the reception configuration, and the transmission configuration is not shown.
- each of the OFDM demodulating means 60-1 to M includes a GI (guard interval) removing means, an IFFT means, and a serial / parallel conversion means (not shown), performs OFDM demodulation, and generates a symbol data sequence for each of Nc subcarriers. Output.
- the symbol data series for each fs-th subcarrier at discrete time k is denoted as Y (k, fs).
- the presence / absence of a transmission packet is detected in the frequency channel to be used (S21). If there is a transmission packet, it uses the previously known training signal included in the training signal section to establish frequency synchronization and timing synchronization, and further equalizes the transmission path distortion to follow the training signal.
- the address information of the source and destination of the packet included in the signaling part of the transmission packet is read to detect whether the packet is addressed to the own station (S22). Here, if a packet other than that addressed to the local station is received, it is an interference wave, so the mode shifts to the preprocessing mode for learning the interference signal (S23). Shifts to the reception processing mode for receiving (S24).
- the interference signal receiving means 61- fs for each subcarrier fs calculates an interference correlation matrix RI (f s) of the training signal portion, to memorize in the memory means 62- fs .
- the interference correlation matrix RI (fs) is an interference correlation matrix when a packet other than the nth self-addressed packet is received, and is a transmission path distortion (hereinafter referred to as a transmission path distortion) calculated using a training signal.
- channel estimation values) (k, fs) are used for calculation.
- h n (j, k, fs) is transmitted by the k-th antenna force of the n-th interference source radio communication device 2-n and received by the j-th antenna 4 j of the radio communication device 3a Represents the estimated channel value.
- fs l,..., Nc
- the n-th interference source radio communication device 2-n has Nit (n) antennas
- Nlt (n) is a natural number of 1 or more.
- the signals transmitted from the interference source wireless communication devices 2-1 to S have a relative delay time from the preceding wave of the multipath in the propagation path within the guard interval (GI) range.
- the frequency selective fading environment can be handled equivalently to the flat fading propagation environment in units of subcarriers. For this reason, assuming a flat fading transmission path, the interference correlation matrix RI (fs) when a packet other than that addressed to the n-th own station is received is calculated as shown in (Equation 19) below.
- B (n, fs) is a matrix of M rows and Nit (n) columns, and the elements of the j-th row and k-th column are composed of h (j, k, f s).
- the superscript H indicates the vector conjugate transpose operator.
- P is the estimated noise power
- E is the Mth-order unit matrix.
- Y (k, fs) is an M-th column vector
- the j-th element is the j-th antenna 4 j of the wireless communication device 3a and is not addressed to the n-th own station
- This is a signal obtained by sampling the baseband signal of the subcarrier fs at time t when the packet is received.
- Dt is the sampling time interval
- t is the sampling start time
- Ns is the sampled data. It is a number.
- the interference correlation matrix RI can be calculated without using the pilot signal, it can also be calculated using the signal of the data part. If the signal contained in the data part is sufficiently long, the interference correlation matrix RI can be estimated with high accuracy.
- the storage content is updated in the storage means 62-fs for each subcarrier.
- the update method as in the first embodiment, one of the following three methods or a combination of a plurality of methods is used.
- the interference correlation matrix RI (fs) is stored individually as it is. When the number of interference correlation matrices that can be stored exceeds the predetermined number NI, the interference correlation matrix RI (fs) with the highest received power is sequentially set to the predetermined number.
- NI interference correlation matrices Stores NI interference correlation matrices. Where k is a natural number less than or equal to NI.
- the interference correlation matrix RI (fs) is individually stored by classifying each address information of the transmission source. If multiple interference correlation matrices with the same source address are detected, they are stored after weighted averaging. If the number of interference correlation matrices that can be stored exceeds the predetermined number NI, the received power is high, and the address information of the source of the interference correlation matrix RI (fs) is given priority to the predetermined number NI.
- the number of interference correlation matrices is stored. Where k is a natural number less than or equal to NI.
- the preprocessing mode (S 23) is until the interference correlation matrix RI (fs) when the packet other than the one addressed to the own station is received is stored.
- a reception signal obtained through the plurality of antennas 4 and the reception unit 5 in the wireless communication device 3a is output as a reception signal vector Y (k, fs).
- k represents the discrete time of the sampled signal.
- Nt antenna powers of desired wireless communication device 1
- Transmission sequence vector X (k, fs) [X (k, fs) consisting of transmission sequence X (k, fs) for each subcarrier to be transmitted ,..., X (k, fs) n 1 Nt
- the received signal vector Y (k, fs) of the subcarrier fs at the wireless communication device 3a at the discrete time k is expressed as (Equation 21) below.
- Y (, 7;) ⁇ (, /;) X (,) + l (k, f s ) + n (kj s )-(2 1)
- Y (k, fs) is a column vector including elements received at M antennas 4 used for reception, and signal y (k, f) of subcarrier fs received at antenna 4 m. fs)
- H (fs) is a channel response matrix indicating the propagation path variation that the transmission sequence X (k, fs) of the desired radio communication apparatus 1 receives.
- H (fs) is a matrix composed of (number of antennas M of wireless communication device 3a) rows X (number of transmission antennas Nt of desired wireless communication device 1) columns, and the matrix element h of i rows and j columns is Indicates propagation path fluctuation when the signal X (k, fs) transmitted from the j-th transmitting antenna in the desired wireless communication device 1 is received by the i-th antenna 4 i in the wireless communication device a. .
- n (k, fs) is a noise component vector of subcarrier fs added at the time of reception by M reception antennas 4 of radio communication apparatus 3a.
- the received signal vector Y (k, fs) of such a wireless communication device 3a is input to the corresponding interference signal receiving means 61 fs and signal separating means 64 fs for each subcarrier.
- Where 1,..., Nc.
- the interference signal receiving means 61—fs is one obtained from the storage means 62—fs in the preprocessing mode.
- a plurality of interference correlation matrices RI n (fs) are read, and an interference wave receiving antenna weight vector WI (fs) that can selectively receive the interference signal power I (k, fs) by spatial filtering is calculated.
- the product-sum operation with the received signal vector Y (k, fs) is performed to extract the nth interference wave component signal Z (k, fs).
- n is the number of interference correlation matrices stored in the storage means 62—fs, a natural number equal to or less than NI, and Z (k, fs) is the number of spatially multiplexed streams transmitted by the interference source wireless communication device 2.
- the superscript H is the vector conjugate transpose operator.
- the following method is applied to calculate the interference wave receiving antenna weight vector WI (fs) of subcarrier fs.
- eigenvalues are extracted in descending order for the number of spatially multiplexed streams transmitted by the interference source radio communication apparatus 2, and the corresponding eigenvectors are included in the column vector components.
- k 1,..., M.
- the following method can be applied to calculate another interference wave receiving antenna weight vector WI (fs).
- D (fs) is calculated by the following (Equation 25), and H (fs) is n e of the desired wireless communication device 1.
- the signal separation means 64-fs in each subcarrier fs receives the received signal vector Y (k, fs) as an input, and transmits the transmission sequence X (k, fs) transmitted from the desired wireless communication apparatus 1. Separated reception is performed by using WD (fs) H Y (k,) using the desired wave separation receiving antenna weight WD (fs).
- the desired wave separation / reception operation centering on the signal separation means 64-and the interference wave level detection means 63 will be described with reference to FIG. 5, as in the first embodiment.
- Equation 26 is calculated as the initial desired wave separation receiving antenna weight WD (fs) (S50).
- WD (fs) consists of a matrix of M rows and Nt columns, and its nth column consists of WD.
- R (fs) is calculated by (Equation 27) below.
- H (fs) is the subcarrier e of desired wireless communication device 1
- the force estimation value ⁇ is obtained from the known signal sequence of the training signal part in the packet signal addressed to the own station.
- the interference wave level detection means 63 generates the interference wave component power P shown in the following (Equation 28) based on the output Z (k, fs) of the interference signal reception means 61-fs for each subcarrier. To detect.
- the interference wave component power P detected in all subcarriers exceeds the predetermined value LI (S51)
- the desired wave separation receiving antenna weight WD (fs) in the signal separation means 64—fs for each subcarrier is Update (S52).
- the interference wave component power P does not exceed the predetermined value LI
- the desired wave separation receiving antenna weight WD (fs) in the signal separation means 64—fs is changed. Keep it new (S53).
- the interference wave level detection means 63 may detect the interference wave component power of a specific subcarrier as necessary rather than detecting the interference wave component power P of all the subcarriers. It is also possible to determine whether or not to update the desired wave separation / reception antenna weights.
- Interference wave level detection means 63- fs of each subcarrier calculates the new desired wave separation receiving antenna weight WD (fs) as follows when updating the desired wave separation receiving antenna weight WD (fs). Then, the result is output to the signal separation means 64—fs.
- W is calculated by the following (Equation 30), and (n) is when Mt eigenvalues obtained by eigenvalue decomposition of the interference correlation matrix RI (fs) are extracted in ascending order.
- Equation 34 is a parameter that varies the interference suppression effect. As a increases, the spatial filtering operation prioritizes interference suppression over increasing the desired wave reception power. As a result, it is possible to receive the desired signal while suppressing the interference wave caused when the interference correlation matrix RI (fs) is generated. When there are multiple interference wave component powers exceeding the predetermined value LI (P (fs), P (fs), ...)
- the primary demodulation means 65 (fs) l to Nt are used for modulation on the output signal composed of Nt symbol data strings from the signal separation means 64-fs obtained for each subcarrier fs. Based on the mapping information, it is converted into a bit data string.
- the signal sequence reception processing means 10-l to Nt change the bit order for the bit data strings output from the respective PZS conversion means 66-l to Nt by the operation opposite to the interleaving performed on the transmission side. Performs reception processing to restore the transmitted bit sequence by performing restoration dingeriba processing, error correction decoding processing, and so on.
- the interference source that detects the interference wave component variation and causes interference is detected.
- the radio communication device 2 appears or changes, it is possible to adaptively change the desired wave separation receiving antenna weight for reducing interference using a new interference correlation matrix.
- spatial filtering adapted to interference waves appearing unsteady can be realized, and the stability of communication quality can be improved by increasing the interference removal capability. For example, stable reception quality can be obtained even when co-channel interference occurs unsteadyly with different interference wave source powers.
- the interference correlation matrix RI (fs) for each subcarrier
- A) When receiving a packet addressed to the local station and the timing at which no signal is included in the training signal, there is no signal timing.
- the interference correlation matrix may be calculated using the above (Equation 20). This makes it possible to accurately detect an interference correlation matrix of an interference source that causes co-channel interference when receiving a packet addressed to the local station.
- the interference correlation matrix RI (fs) a correlation matrix obtained by using the above (Formula 20) in the data part at the time of packet reception addressed to the own station. You can use! In this case, the calculation timing and calculation range of the correlation matrix are shifted, and the data part is divided into a plurality of blocks, which are defined as an interference correlation matrix RI (f S ). As a result, the interference correlation matrix of the interference source that causes co-channel interference during reception of the packet addressed to the local station is calculated while being shifted in time, so that the tracking performance when the interference wave source fluctuates over time can be improved. Togashi.
- FIG. 10 is a diagram illustrating a configuration of a wireless communication device 3e according to the third embodiment of the present invention.
- the wireless communication device 3e of the third embodiment performs re-encoding and re-modulation on the basis of the decoding result by the signal sequence reception processing means 10 in addition to the configuration of FIG. 1 described in the first embodiment.
- a transmission replica generation unit 70 that generates a transmission replica by performing, an interference cancellation unit 71 that cancels a signal other than a desired signal using the generated transmission replica and a channel estimation value, and an interference wave level detection unit
- the iterative decoding weight generation unit 72 that generates iterative decoding weights for removing the detected interference component of the other station, and the product-sum operation using the iterative decoding weight at the output of the interference cancellation unit Configuration in which a second signal separation unit 73 for extracting a desired signal component from which interference components have been removed and a second signal sequence reception processing unit 74 for performing reception processing on the output of the second signal separation unit are added so That.
- transmission signals are transmitted from desired wireless communication device 1 and interference source wireless communication devices 2-1 to S, and these transmission signals are received by wireless communication device 3e.
- Each desired radio communication device 1, interference source radio communication device 2-1 to S, and radio communication device 3e are provided with a plurality of antennas, and SDM transmission is possible.
- the desired wireless communication device 1 that is a desired transmission signal source and the interference source wireless communication devices 2-1 to S that are interference sources that cause interference because the carrier frequency is the same as or close to that of the desired wireless communication device 1. It is assumed that the wireless communication device 3e receives this transmission signal. Note that the wireless communication device 3e shows only the reception configuration, and the transmission configuration is not shown.
- the operation in the preprocessing mode at the time of non-communication is the same as in the first embodiment described above. Therefore, the description thereof is omitted. That is, as in the first embodiment, as processing in the preprocessing mode during non-communication, signals from a plurality of interference source radio communication devices 2 are received in advance, and the resulting interference correlation matrix RI is used as a basis. In addition, an interference wave receiving antenna weight WI capable of selectively receiving a transmission signal from the interference source wireless communication device 2 is prepared.
- the operation until receiving a desired signal in the reception processing mode at the time of communication is the same as that in the first embodiment described above. That is, as in the first embodiment, as processing in the reception processing mode during communication, normal reception is performed, and fluctuations in the interference wave component are detected based on the signal power received by the interference wave reception antenna weight WI. Then, when the interference source wireless communication device 2 that causes interference appears or changes, signal separation is performed by adaptively changing the desired wave separation receiving antenna weight WD that reduces interference using a new interference correlation matrix. The desired signal is received by the signal sequence reception processing means 10 through the means 9.
- the signal sequence reception processing means 10—l to Nt are Nt pieces transmitted from the desired wireless communication apparatus 1.
- Nm output signals from the signal separation means 9 corresponding to the transmission sequence are converted to a symbol data string power bit data string according to a predetermined modulation method, on the transmission side
- a deinterleaver process that restores the bit order by performing the reverse operation of the interleaving performed, an error correction decoding process that performs error correction on the input bit data string, etc., and a reception process that restores the transmitted bit sequence.
- the output obtained by the signal sequence reception processing means 10-l to Nt is used as the final output.
- the output obtained by the signal sequence reception processing means 10-l to Nt is used.
- the transmission path encoding unit applies an error correction code of the same method as that applied at the time of transmission based on the provisional decision bit string b (k).
- the puncture processing unit performs error correction coding on the output bit string. Then, the puncture processing is performed so that the coding rate is the same as that applied at the time of transmission.
- the interleaver performs the same interleaving on the output bit stream that has been punctured as it was sent.
- the symbol mapping unit performs symbol mapping processing on the interleaved output bit string using a modulation scheme having a predetermined modulation multilevel power.
- Interference canceling section 71 is a propagation path response matrix H received by provisionally determined transmission symbol sequence x [1] (k) that is output from transmission replica generating section 70 and transmission sequence x (k) of desired radio communication apparatus 1. Using the channel estimate H of m 1, e of the received signal vector y (k) as shown in (Equation 36) below
- a replica signal y [1] (k) is generated.
- x [1] (k) is an Nt-th order column vector
- the m-th element is composed of the provisional decision transmission symbol sequence x [1] (k).
- the interference cancellation unit 71 performs the removal from the reception signal vector y (k) that is the output of the reception unit 2 by regarding the spatial multiplexing stream excluding the desired r-th spatial multiplexing stream as an interference signal.
- the r th spatial multiplexed stream from which interference is removed is output. That is, as shown in the following (Equation 37), the interference cancellation output u (k) is calculated.
- Gr is a matrix in which the diagonal component of r rows and r columns is set to 0 from an Nt-order unit matrix.
- R is a natural number from 1 to Nt, and x Cl] (k) is a replica signal.
- the iterative decoding weight generation unit 72 is linked to the operation of updating the desired wave separation receiving antenna weight WD based on the output of the interference wave level detection means 8 according to the following [Method 9]. Alternatively, the operation of updating the iterative decoding antenna weight WD (r) for the r-th desired wave signal by [Method 10] is performed, and the result is output to the second signal separation means 73. Dried
- Dr indicates a matrix in which all the components other than the diagonal component of r rows and r columns from the Nt-th order unit matrix are set to zero.
- r is a natural number less than Nt.
- V (n) is the eigenvalue of the interference correlation matrix RI detected by the interference wave level detection means 8.
- This iterative decoding antenna weight WD (r) minimizes the interference wave and then transmits the desired wave power.
- the antenna weight maximizes the force. As a result, it is possible to selectively receive the desired signal while suppressing the interference wave caused when the interference correlation matrix RI is generated.
- the iterative decoding antenna weight WD (r) is updated based on the following (Equation 39).
- Equation 41 is a parameter that varies the interference suppression effect. As a increases, the spatial filter gives priority to interference suppression over increasing the desired wave reception power. It is a filtering operation.
- This iterative decoding antenna weight WD (r) is a parameter that varies the interference suppression effect. As a increases, the spatial filter gives priority to interference suppression over increasing the desired wave reception power. It is a filtering operation.
- ⁇ n (r) (l-a) R e O r (H e D f + a (n) H (") + ⁇ ⁇ ... (4 ⁇ )
- the second signal separation means 73 applies the iterative decoding weight WD (r), which is the output of the iterative decoding weight generation unit 72, to the output vector u (k) of the r-th interference cancellation unit.
- Nt second signal sequence reception processing means 74-1 to Nt receive Nt output signals Ar (k) from the second signal separation unit 73 as inputs, respectively, De-mapping processing that converts a symbol data sequence from a modulation method to a bit data sequence, dinuteer processing that restores the bit order by the reverse operation of interleaving performed on the transmission side, and error correction for the input bit data sequence Performs error correction decoding processing, etc., and performs reception processing to restore the transmission bit sequence.
- r is a natural number less than Nt.
- the reception diversity effect can be enhanced and reception quality can be improved. That is, at the time of non-communication, as a preprocessing mode, signals from a plurality of interference source radio communication apparatuses 2 are received in advance, and transmission from the interference source radio communication apparatus 2 is performed based on the interference correlation matrix RI obtained as a result. Prepare an interference wave receiving antenna weight WI that can selectively receive signals. Shift to reception processing mode at the time of communication, and at the same time normal reception, interference source wireless communication device 2 that detects interference and detects interference based on the signal power received by the interference wave receiving antenna weight WI. When appears or changes, it is possible to adaptively change the iterative decoding antenna weight WD (r) for reducing interference using a new interference correlation matrix.
- the weights for suppressing the interference wave reception power are generated for a set of subarrays that also has the power, but the interference signal reception power is set to the same subarray set as the second signal separation means 73 in the third embodiment. Let's generate weights to suppress. Subarraying in this way has the effect of reducing the matrix order when generating antenna weights and greatly reducing the amount of computation during inverse matrix computation and eigenvalue decomposition computation.
- FIG. 11 is a diagram showing a configuration of a wireless communication device 3f according to the fourth embodiment of the present invention.
- the wireless communication device 3f according to the fourth embodiment has an interference correlation matrix of interference components of other stations detected by the interference wave level detecting means 8 in addition to the configuration of FIG. 10 described in the third embodiment.
- an interference correlation matrix updating unit 80 to be updated is added.
- the desired wireless communication device 1 and the interference source wireless communication devices 2-1 to S are In this example, transmission signals are transmitted from the wireless communication device 3 and these transmission signals are received by the wireless communication device 3.
- Each desired wireless communication device 1, interference source wireless communication device 2-1 to S, and wireless communication device 3 are provided with a plurality of antennas, and SDM transmission is possible.
- the desired wireless communication device 1 that is a desired transmission signal source, and the interference source wireless communication device 2-1 that is an interference source that causes interference because the carrier frequency that is the same as or close to that of the desired wireless communication device 1 is used. It is assumed that the wireless communication device 3f receives a transmission signal from S.
- the wireless communication device 3f shows only the reception configuration, and the transmission configuration is not shown.
- the operation in the preprocessing mode at the time of non-communication is the same as that in the first embodiment described above, and the description thereof is omitted. That is, as in the first embodiment, as processing in the preprocessing mode during non-communication, signals from a plurality of interference source radio communication devices 2 are received in advance, and the resulting interference correlation matrix RI is used as a basis. In addition, an interference wave receiving antenna weight WI capable of selectively receiving a transmission signal from the interference source wireless communication device 2 is prepared.
- the operation until receiving a desired signal in the reception processing mode at the time of communication is the same as that in the first embodiment described above. That is, as in the first embodiment, as processing in the reception processing mode during communication, normal reception is performed, and fluctuations in the interference wave component are detected based on the signal power received by the interference wave reception antenna weight WI.
- the interference source wireless communication device 2 that causes interference appears or changes
- the desired wave separation receiving antenna weight WD for reducing interference is adaptively changed using a new interference correlation F matrix to The signal sequence reception processing means 10 receives the desired signal through the separation means 9.
- the signal sequence reception processing means 10-1 to Nt generate a temporary determination bit string b (k), and the transmission replica generation unit 70 receives the temporary determination bit string b (k )
- the temporary decision transmission symbol sequence x [1] (k) is regenerated based on mm.
- m l,..., Nt.
- the interference cancellation unit 71 performs provisional determination transmission symbol sequence x [1] (k) that is the output of the transmission replica generation unit 70 and the transmission system of the desired radio communication device 1 Using the channel estimation value H of the channel response matrix H received by the sequence x (k),
- a replica signal y [1] (k) of the received signal vector y (k) is generated. Further, the interference cancellation unit 71 removes the interference multiplexed signal from the received signal vector y (k) that is the output of the receiving unit 2 by regarding the spatial multiplexed stream excluding the desired r-th spatial multiplexed stream as an interference signal. Output the r th spatial multiplexed stream. That is, as shown in (Equation 37), the interference cancellation output u (k) is calculated.
- Equation 37 the interference cancellation output u (k)
- the interference correlation matrix update unit 80 is linked to the operation of updating the desired wave separation receiving antenna weight WD based on the output of the interference wave level detection means 8, as described below, as described below. ) B (n) Performs the operation to update H and outputs the result to the iterative decoding weight generator. If no interference wave is detected by the interference wave level detection means 8, the updating operation is not performed.
- Interference correlation matrix updating section 80 receives tentative decision transmission symbol sequence x [1] (k) and transmission sequence x (k) of desired radio communication apparatus 1, which are outputs of transmission replica generation section 70. Using the estimated channel H of the propagation path response matrix H, the received signal level is as shown in (Equation 43) below.
- the interference correlation matrix update unit 80 operates in conjunction with the operation of updating the desired wave separation receiving antenna weight WD based on the output of the interference wave level detection means 8, and the same desired wave separation reception antenna weight WD.
- the iterative decoding weight generation unit 72 uses the updated interference correlation matrix output from the interference correlation matrix update unit 80 to generate the iterative decoding antenna weight WD (r) for the r-th desired wave signal.
- the updating operation is performed, and the result is output to the second signal separation means 73.
- the interference correlation matrix is calculated using the received signal and the transmission replica signal obtained by the iterative decoding process. It can be re-estimated. As a result, even if the interference wave component contains time fluctuations compared to those during non-communication, a new interference correlation matrix corresponding to the time fluctuations can be calculated by re-estimation. It is possible to adaptively change the antenna weight WD (r) for iterative decoding that reduces interference.
- the interference suppression effect and the reception diversity effect for receiving the desired wave can be enhanced.
- the communication quality is further improved.
- stable reception quality can be obtained even if different interference wave powers cause non-stationary co-channel interference or adjacent channel interference.
- FIG. 12 is a block diagram showing a configuration of a modified example of the wireless communication device when spatial multiplexing transmission is not performed.
- the operation of this modification will be described with reference to FIG. FIG. 12 differs from FIG. 11 in that the interference canceling unit 71 is not included, and the operation of the second signal separation unit 73a is partially different. Only the operation of the second signal separation means 73a in the wireless communication device 3g in FIG. 12 will be described below.
- the present invention can realize spatial filtering adapted to an interference wave that appears non-stationarily even in a state where the interference wave does not exist steadily, and has an effect of improving the interference removal capability.
- it is used for a terminal of a multi-cell radio communication system that uses the same channel by a plurality of terminals, and is useful for a radio communication apparatus that can receive a desired signal while suppressing an interference component from an interference wave source.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
干渉波が定常的に存在しない状態においても、非定常に現れる干渉波に適応した空間的フィルタリングを実現可能にし、干渉除去能力を高める。
非通信時には、干渉信号受信手段6において、前処理モードとして複数の干渉源無線通信装置2からの信号を予め受信しておき、その結果得られる干渉相関行列RIを記憶手段7に記憶し、この干渉相関行列RIを基に、干渉源無線通信装置2からの送信信号を選択的に受信できる干渉波受信アンテナウエイトWIを準備する。通信時には、受信処理モードに移行し、信号分離手段9において、通常受信すると共に、干渉源受信アンテナウエイトWIを用いて受信された信号電力に基づき、干渉波レベル検出手段8により干渉波成分の変動を検出し、干渉波が出現または変化した場合、新たな干渉相関行列を用いて干渉低減するための所望波分離受信アンテナウエイトを適応的に変更する。
Description
明 細 書
無線通信装置
技術分野
[0001] 本発明は、例えば複数の端末で同一チャネルを使用するマルチセル構成の無線 通信システムの端末等に用いられ、干渉波源からの干渉成分を抑制して所望信号を 受信可能な無線通信装置に関する。
背景技術
[0002] 近年、無線通信の大容量化、高速化の要求が非常な高まりをみせており、有限な 周波数資源の有効利用効率を更に向上させる方法の研究が盛んになつている。そ の一つの方法として、空間領域を利用する手法が注目を集めている。空間領域利用 技術の一つは、ァダプティブアレーアンテナ (適応アンテナ)であり、受信信号に乗算 する重み付け係数 (以下、この重み付け係数を「重み」という)により振幅と位相を調 整することにより、所望方向から到来する所望信号を強く受信し、マルチパス干渉や 同一チャネル干渉と 、つた干渉成分信号を抑圧することができる。このような干渉抑 圧効果により、通信システムの通信容量を改善することが可能となる。
[0003] また、空間領域を利用した別な技術として、伝搬路における空間的な直交性を利用 することで、同一時刻、同一周波数、同一符号の物理チャネルを用いて異なるデー タ系列を、同一の端末装置に対して伝送する空間多重(Space Division Multiplexing ) (以下、 SDMと記載)技術がある。 SDM技術は、例えば非特許文献 1において情 報開示されており、送信機及び受信機共に複数のアンテナ素子を備え、アンテナ間 での受信信号の相関性が低 、伝搬環境下にお 、て SDM伝送が実現できる。この場 合、送信機の備える複数のアンテナから、アンテナ素子毎に同一時刻、同一周波数 、同一符号の物理チャネルを用いて異なるデータ系列を送信し、受信機においては 受信機の備える複数アンテナでの受信信号を、伝送路特性の推定値を基に分離受 信する。これにより、空間多重チャネルを複数用いることで多値変調を用いずに高速 化の達成が可能である。 SDM伝送を行う場合、十分な SZN (信号対雑音比)条件 下での送受信機間に多数の散乱体が存在する環境下では、送信機と受信機が同数
のアンテナを備える場合、アンテナ数に比例した通信容量の拡大が可能となる。
[0004] 非特千文献 1 : G.J.Foschini, Layered space-time architecture for wireless communi cation in a fading environment when using multi-element antennas", Bell Labs Tech. J., pp.4ト 59, Autumn 1996
発明の開示
発明が解決しょうとする課題
[0005] 上述したァダプティブアレーアンテナ技術及び SDM技術における干渉抑圧は、複 数のアンテナ素子で受信された信号に対し、アンテナウェイトを乗算した後に加算合 成する空間的なフィルタリング処理が用いられる。例えば SIR (信号電力対干渉雑音 電力比)を最大化する MMSE (誤差最小二乗規範)アルゴリズム等によって動作する 。しかしながら、このような干渉抑圧手法の前提条件として、干渉信号が所望信号とと もに定常的に存在することを仮定している。そのため、特に、無線 LAN等のパケット 伝送を用いる無線通信システムでは、自セル、他セル力 の干渉信号がバースト的 に生成消滅することになり、上記前提条件を満たさない場合がある。すなわち、上記 のような空間フィルタリング処理のアルゴリズムの適用後に、干渉信号に変動がある 場合は、干渉抑圧を効果的に行えな ヽと ヽぅ課題を有する。
[0006] 本発明は、上記事情に鑑みてなされたもので、干渉波が定常的に存在しない状態 においても、非定常に現れる干渉波に適応した空間的フィルタリングを実現でき、干 渉除去能力を高めることが可能な無線通信装置を提供することを目的とする。
課題を解決するための手段
[0007] 本発明の無線通信装置は、干渉波成分の信号を選択的に受信する干渉波受信ァ ンテナウエイトを用いて、前記干渉波成分を含む干渉信号を受信する干渉信号受信 手段と、前記干渉信号受信手段の出力から、干渉波成分の信号レベルを検出する 干渉波レベル検出手段と、前記干渉波レベル検出手段の出力を基に、所望信号を 受信する所望波分離受信アンテナウェイトを可変する信号分離手段と、を有するもの である。
この構成により、干渉波成分の信号レベルを基に所望波分離受信アンテナウェイト を可変することで、干渉波が定常的に存在しない状態においても、非定常に現れる
干渉波に適応した空間的フィルタリングを実現でき、干渉除去能力を高めることが可 能となる。
[0008] また、本発明は、上記の無線通信装置であって、前記所望波分離受信アンテナゥ エイトは、干渉波受信電力を最小化するウェイトであるものとする。
[0009] また、本発明は、上記の無線通信装置であって、前記所望波分離受信アンテナゥ エイトは、信号電力対干渉雑音電力を最大化するウェイトであるものとする。
[0010] また、本発明は、上記の無線通信装置であって、前記所望波分離受信アンテナゥ エイトは、複数アンテナ N個の内、 Nより小さい k個からなるサブアレーに対して、干渉 波受信電力を最小化するウェイトであるものとする。
[0011] また、本発明は、上記の無線通信装置であって、前記信号分離手段は、他局干渉 信号を優先的に除去するウェイトを乗算する第 1のウェイト乗算部と、前記第 1のゥェ イト乗算部の出力に対し、空間多重ストリームを分離する空間多重分離ウェイトを乗 算する第 2のウェイト乗算部とを有するものとする。
[0012] また、本発明は、上記の無線通信装置であって、前記信号分離手段は、他局干渉 除去信号を優先的に除去するウェイトを乗算する第 1のウェイト乗算部と、前記第 1 のウェイト乗算部の出力に対し、信号電力を最大化する最大比合成ウェイトを乗算 する第 2のウェイト乗算部とを有するものとする。
[0013] また、本発明は、上記の無線通信装置であって、前記信号分離手段は、前記干渉 波レベル検出手段の出力が所定値を超えた場合、所望信号を受信すると共に、検 出された干渉波を抑圧する所望波分離受信アンテナウェイトに変更するものとする。 この構成により、干渉波成分の信号レベルが所定値を超えた場合に、この所定値を 超えた干渉波成分を抑圧できる所望波分離受信アンテナウェイトに変更し、干渉波 が非定常に現れる状態でも、干渉波を十分に抑圧しながら所望波を受信できる。
[0014] また、本発明は、上記の無線通信装置であって、前記干渉波レベル検出手段は、 複数の干渉源力もの干渉波成分の信号レベルを検出するものとする。
この構成により、複数の干渉源からの干渉波成分の信号レベルを検出し、複数の 干渉波に関する干渉波受信アンテナウェイトの準備や、複数の干渉波の検出レベル に基づく所望波分離受信アンテナウェイトの変更などが可能となり、非定常に現れる
干渉波に対しても十分に抑圧することができる。
[0015] また、本発明は、上記の無線通信装置であって、前記信号分離手段は、前記干渉 波レベル検出手段の出力における複数の干渉源からの干渉波成分の信号レベルが 所定値を超えた場合、所望信号を受信すると共に、検出された複数の干渉波を干渉 波成分の信号レベルに応じて抑圧する所望波分離受信アンテナウェイトに変更する ものとする。
この構成により、複数の干渉源からの干渉波成分の信号レベルが所定値を超えた 場合に、複数の干渉波成分の信号レベルに応じて干渉波を抑圧できる所望波分離 受信アンテナウェイトに変更することで、干渉波が非定常に現れる状態でも、十分に 干渉波を抑圧しつつ所望信号を受信できる。
[0016] また、本発明は、上記の無線通信装置であって、前記干渉波受信アンテナウェイト は、干渉波電力対所望信号電力を最大化するウェイトであるものとする。
この構成により、干渉波電力対所望信号電力を最大化するウェイトを干渉波受信ァ ンテナウエイトとして用いて、適切に干渉信号を選択受信できる。
[0017] また、本発明は、上記の無線通信装置であって、前記干渉波受信アンテナウェイト は、当該無線通信装置以外の無線通信装置間の通信信号の受信電力を最大化す るウェイトであるものとする。
この構成により、当該無線通信装置以外の無線通信装置間の通信信号の受信電 力を最大化するウェイトを干渉波受信アンテナウェイトとして用いて、適切に干渉信 号を選択受信できる。
[0018] また、本発明は、上記の無線通信装置であって、前記干渉信号受信手段は、所望 信号が含まれない時間区間における受信信号力 得られる相関行列を用いて、干渉 波電力を最大化する干渉波受信アンテナウェイトを算出するものとする。
この構成により、所望信号が含まれない時間区間における受信信号力 得られる相 関行列に基づいて、干渉波を選択的に受信する干渉波受信アンテナウェイトを算出 できる。
[0019] また、本発明は、上記の無線通信装置であって、前記干渉信号受信手段は、所定 時間内での受信信号から得られる相関行列を用いて、干渉波電力を最大化する干
渉波受信アンテナウェイトを算出するものとする。
この構成により、所定時間内での受信信号から得られる相関行列に基づいて、干 渉波を選択的に受信する干渉波受信アンテナウェイトを算出できる。
[0020] また、本発明は、上記の無線通信装置であって、前記干渉信号受信手段は、当該 無線通信装置の非通信時に、前記当該無線通信装置以外の無線通信装置間の通 信信号の受信結果を基に、一つまたは複数の前記干渉波受信アンテナウェイトを決 定するものとする。
この構成により、非通信時に当該無線通信装置以外の無線通信装置間の通信信 号の受信結果を基に事前に学習を行い、一つまたは複数の干渉波受信アンテナゥ エイトを決定することで、個々の干渉波を選択的に受信可能にできる。
[0021] また、本発明は、上記の無線通信装置であって、前記干渉信号を選択的に受信す るための干渉波受信情報を記憶する記憶手段を有し、前記干渉信号受信手段は、 受信信号が当該無線通信装置以外の宛先の信号である場合に、前記干渉波成分 に関する干渉波受信情報を算出して前記記憶手段に記憶させるものとする。
この構成により、受信信号が当該無線通信装置以外の宛先の信号である場合に、 例えば事前学習を行う前処理モードなどに移行し、干渉波成分に関する干渉波受信 情報を記憶手段に記憶し、この干渉波受信情報に基づいて干渉波を選択的に受信 可能な干渉波受信アンテナウェイトを生成することが可能となる。
[0022] また、本発明は、上記の無線通信装置であって、前記干渉信号受信手段は、前記 干渉波受信情報として干渉波に関する干渉相関行列を算出し、前記干渉相関行列 に基づ!/、て生成される干渉波受信アンテナウェイトを用いて干渉信号を受信するも のとする。
この構成により、干渉波に関する干渉相関行列に基づ 、て干渉波受信アンテナゥ エイトを生成し、個々の干渉波を適切に選択受信することができる。
[0023] また、本発明は、上記の無線通信装置であって、前記信号分離手段は、受信信号 力当該無線通信装置宛の信号である場合に、前記干渉相関行列に基づいて生成さ れる所望波分離受信アンテナウェイトを用いて所望信号を分離するものとする。 この構成により、受信信号が当該無線通信装置宛の信号である場合に、例えば通
常受信を行う受信処理モードに移行し、干渉波が非定常に現れる状態でも、干渉波 受信アンテナウェイトを用いた干渉波の選択受信により干渉波を十分に抑圧しなが ら、所望波分離受信アンテナウェイトを用いて適切に所望信号を分離受信することが できる。
[0024] また、本発明は、上記の無線通信装置であって、前記記憶手段は、前記干渉波受 信情報として干渉波に関する干渉相関行列を個別に、あるいは送信元毎に分類して 個別に記憶するものとする。
この構成により、干渉波に関する干渉相関行列を個別に、あるいは送信元ごとに分 類して個別に記憶し、この干渉相関行列に基づ!/、て干渉波受信アンテナウェイト及 び所望波分離受信アンテナウェイトを生成、変更することで、非定常に現れる干渉波 に対して、干渉波を十分なレベルまで抑圧して所望信号を受信することが可能となる
[0025] また、本発明は、上記の無線通信装置であって、前記所望波分離受信アンテナゥ エイトで受信した所望信号の受信結果を基に、送信信号のレプリカを生成する送信 レプリカ生成部と、前記送信レプリカ生成部の出力を基に、受信信号から所望信号 の一つ以上をキャンセルする干渉キャンセル部と、前記干渉波レベル検出手段で検 出された干渉信号の相関行列を用いて、干渉信号を抑圧する反復復号用ウェイトを 生成する反復復号用ウェイト生成部と、前記干渉キャンセル部の出力に対し、前記 反復復号用ウェイトを乗算する第 2の信号分離手段とを有するものとする。
[0026] また、本発明は、上記の無線通信装置であって、前記所望波分離受信アンテナゥ エイトで受信した所望信号の受信結果を基に、送信信号のレプリカを生成する送信 レプリカ生成部と、前記送信レプリカ生成部の出力を基に、受信信号から全ての所望 信号をキャンセルして干渉信号成分を抽出し、前記干渉波レベル検出手段で検出さ れた干渉信号の相関行列を更新する干渉相関行列更新部と、前記干渉相関行列更 新部の出力を用いて、干渉信号を抑圧する反復復号用ウェイトを生成する反復復号 用ウェイト生成部と、前記干渉キャンセル部の出力に対し、前記反復復号用ウェイト を乗算する第 2の信号分離手段とを有するものとする。
発明の効果
[0027] 本発明によれば、干渉波が定常的に存在しない状態においても、非定常に現れる 干渉波に適応した空間的フィルタリングを実現でき、干渉除去能力を高めることが可 能な無線通信装置を提供できる。
図面の簡単な説明
[0028] [図 1]本発明の第 1の実施形態における無線通信装置を含む無線通信システムの構 成を示す図
[図 2]本実施形態に用いる通信信号のパケット構成の一例を示す図
[図 3]本実施形態におけるパケット伝送状況を説明する模式図
[図 4]本実施形態における無線通信装置の受信時の動作を示すフローチャート
[図 5]本実施形態における所望波の分離受信の動作を示すフローチャート
[図 6]第 1の実施形態における無線通信装置の第 1変形例の構成を示すブロック図
[図 7]第 1の実施形態における無線通信装置の第 2変形例の構成を示すブロック図
[図 8]第 1の実施形態における無線通信装置の第 3変形例の構成を示すブロック図
[図 9]本発明の第 2の実施形態における無線通信装置の構成を示す図
[図 10]本発明の第 3の実施形態における無線通信装置の構成を示す図
[図 11]本発明の第 4の実施形態における無線通信装置の構成を示す図
[図 12]第 4の実施形態における無線通信装置の変形例の構成を示すブロック図 符号の説明
[0029] 1 所望無線通信装置
2、 2—l〜2— S 干渉源無線通信装置
3、 3a、 3b— 1、 3b— 2、 3b— 3、 3e、 3f、 3g 無線通信装置
4、 4—l〜4— M アンテナ
5、 5— l〜5— M 受信部
6、 61 -fs 干渉信号受信手段
7、 62-fs 記憶手段
8、 63 干渉波レベル検出手段
9、 9a、64—fs 信号分離手段
10、 10— 1〜10— Nt 信号系列受信処理手段
70 送信レプリカ生成部
71 干渉キャンセル部
72 反復復号用ウェイト生成部
73、 73a 第 2の信号分離手段
74— 1〜74— Nt 第 2の信号系列受信処理手段
80 干渉相関行列更新部
90 第 1ウェイト乗算部
91 第 2ウェイト乗算部
92— 1、 92— 2、 92— 3 サブアレーウェイ卜乗算部
95 再チャネル推定部
発明を実施するための最良の形態
[0030] 以下、本発明の実施の形態について、図面を参照しながら説明する。
(第 1の実施形態)
図 1は、本発明の第 1の実施形態における無線通信装置 3を含む無線通信システ ムの構成を示す図である。ここでは、所望無線通信装置 1と干渉源無線通信装置 2 1〜Sとから送信信号が送出され、これらの送信信号を無線通信装置 3において受 信する場合を示している。それぞれの所望無線通信装置 1、干渉源無線通信装置 2 1〜S、無線通信装置 3は、複数のアンテナを備えており、 SDM伝送が可能となつ ている。本実施形態は、同一チャネルを繰り返し使用するマルチセル構成の無線通 信システム等に好適なものである。
[0031] 図 1において、所望の送信信号源である所望無線通信装置 1、及びこの所望無線 通信装置 1と同一または近接したキャリア周波数を用いるため干渉を与える干渉源と なる干渉源無線通信装置 2— 1〜Sからの送信信号を、無線通信装置 3が受信するも のとする。なお、無線通信装置 3は受信構成のみを示しており、送信構成の図示は 省略している。
[0032] 無線通信装置 3は、複数 (M個)のアンテナ 4 1〜M、複数のアンテナ 4 1〜M で受信した各高周波信号を増幅処理、フィルタリング処理及びベースバンド信号へ の周波数変換処理を施し、各々をディジタル信号として取り出す受信部 5— 1〜M、
受信部 5の出力を基に干渉源無線通信装置 2— 1〜Sからの干渉信号を選択的に受 信する干渉信号受信手段 6、干渉信号を選択的に受信するための干渉波受信情報 を記憶する記憶手段 7、干渉信号受信手段 6の出力を基に干渉波の受信レベルを検 出する干渉波レベル検出手段 8、所望無線通信装置 1から送信された Nt個(ただし、 Nt≥ 1)の送信系列を、複数アンテナ 4で受信した受信信号から分離合成受信する 信号分離手段 9、及び分離受信した Nt個の信号系列に対し、復調及び復号処理す る信号系列受信処理手段 10— l〜Ntを有して構成される。
[0033] 本実施形態では、送信信号は無線 LAN等で用いられるパケット伝送による通信信 号を仮定しており、図 2は通信信号のパケット構成の一例を示す図である。図 2にお いて、送信信号として伝送されるパケットは、予め既知の信号系列力もなるトレーニン グ信号部(プリアンブル部) 30、シグナリング部 31、及びデータ部 32を有してなる。ト レーニング信号部 30は、受信部 5での増幅処理時の自動利得制御 (AGC)、周波数 同期、シンボルタイミング同期及び伝送路歪みの等化などに用いられる。シグナリン グ部 31は、後続するデータ部 32の送信元及び送信先の無線通信装置の固有識別 信号、誤り訂正符号の符号化率、変調多値数等の情報を含む。
[0034] 図 3は、パケット伝送状況を説明する模式図であり、所望無線通信装置 1から送信さ れる自局宛パケット 40に対する干渉源無線通信装置 2からの送信信号タイミングを 示している。干渉源無線通信装置 2は、それぞれの備えたアンテナから同一チャネル 干渉波となる電波を送信するが、常に全ての干渉源無線通信装置 2から送信されて いるわけではなぐそれぞれの送信タイミングで、異なるパケットサイズで、バースト的 に送信される。図 3において、 Caselでは、自局宛パケット 40より大きいサイズの干渉 源無線通信装置 2の送信パケット 41が伝送され、 Case2、 Case3では、自局宛パケ ット 40より小さいサイズの干渉源無線通信装置 2の送信パケット 42、 43が、異なるタ イミングで伝送されて!ヽる例を示す。
[0035] すなわち、 Caselのように自局宛パケット 40に対して、全期間に渡り干渉波の送信 パケット 41が存在する場合もあるし、 Case2、 Case3のように、自局宛パケット 40の一 部の期間に、干渉波の送信パケット 42、 43が存在する場合もある。送信パケット 42 が存在する期間 T1と、送信パケット 43が存在する期間 T2とでは、干渉波の状態が
変化する。このような状況において、干渉源無線通信装置 2からの同一チャネル干渉 波の送信状況が、無線通信装置 3の干渉除去能力の範囲であれば、自局宛のパケ ットの受信が成功するが、干渉除去能力を超えた場合はパケット受信に失敗し、再送 動作を行うことなる。
[0036] 以下では、干渉源無線通信装置 2からの同一チャネル干渉波の送信状況が、無線 通信装置 3の干渉除去能力の範囲であることを前提に、図 1及び図 4を用いて、その 動作を説明する。図 4は、無線通信装置 3の自局宛パケットの受信時の動作を示すフ ローチャートである。なお、ノ ケットはアクセスポイント間で、非同期に転送されるため
、干渉源はランダム的に発生する。このため、図 4の受信時動作は、繰り返し行われ るものである。本実施形態は、干渉波の指向性、すなわち空間的な位置はほぼ一定 であり、干渉波が非定常に発生して時間的に変化する場合に特に有効なものであり 、このような場合を想定した動作を示している。例えば、無線 LANなどのように各通 信装置が自立分散的に動作し、ランダムにパケットが伝送される場合などに相当する
[0037] まず、使用する周波数チャネルで、伝送パケットの有無を検出する(S21)。伝送パ ケットが存在する場合、そのトレーニング信号部に含まれる予め既知のトレーニング 信号を用いて、周波数同期及びタイミング同期を確立し、さらに伝送路歪みを等化す ることで、トレーニング信号に続く伝送パケットのシグナリング部に含まれているバケツ ト送信元及び送信先のアドレス情報を読みとり、自局宛のパケットであるかを検出す る(S22)。ここで、自局宛以外のパケットを受信した場合、干渉波であるため、その干 渉信号を学習する前処理モードへ移行 (S23)し、自局宛のパケットを受信した場合 、その送信信号を受信する受信処理モードへ移行する(S24)。
[0038] 前処理モード (S23)では、干渉信号受信手段 6において、トレーニング信号部の干 渉相関行列 RIを算出し、これを干渉波受信情報として記憶手段 7にお 、て記憶する 。ここで、干渉相関行列 RIは、第 n番目の自局宛以外のパケットを受信した時の干 渉相関行列を示し、トレーニング信号を用いて算出される伝送路歪み(以下、チヤネ ル推定値) h (j、 k)を用いて算出する。ここで h (j、 k)は、第 n番目の干渉源無線通 信装置 2— nの第 k番目のアンテナカゝら送信され、無線通信装置 3の第 j番目のアンテ
ナ 4一 jで受信する際のチャネル推定値を表す。なお、第 n番目の干渉源無線通信装 置 2— nは、 Nit (n)個のアンテナをもち、 Nlt (n)は 1以上の自然数とする。フラットフ エージング伝送路を仮定した場合、第 n番目の自局宛以外のパケットを受信した場合 の干渉相関行列 RIは、下記 (数 1)のように算出される。
[0039] [数 1]
Rln = B(n) H (n) + PnEM … (】 )
[0040] ここで、 B (n)は M行 Nit (n)列の行列であり、その第 j行 k列の要素は h (j、 k)から なる。上付きの添え字 Hはベクトル共役転置演算子を示す。また、 Pは雑音電力推 定値、 E は M次の単位行列を示す。
M
[0041] なお、干渉相関行列 RIの別な算出方法として、トレーニング信号を用いて算出され るチャネル推定値を用いずに算出する方法もある。この場合、下記の (数 2)を用いる
[0042] [数 2]
Rln = —ヽ x(t0 + k x dtyn)\H (t0 + k x dt,n) ■■■ ( 2 )
[0043] ここで、 x (t、 n)は M次の列ベクトルであり、第 j番目の要素は、無線通信装置 3の第 j番目のアンテナ 4一 jで、第 n番目の自局宛以外のパケットを受信した場合のベース バンド信号を時刻 tでサンプリングされた信号を示す。また、 dtはサンプリング時間間 隔、 tはサンプリング開始時刻、 Nsはサンプリングされたデータ数である。この場合、
0
干渉相関行列 RIは、パイロット信号を用いずに算出することができるため、データ部 の信号を用いても算出することが可能である。データ部に含まれる信号が十分長い 場合は、干渉相関行列 RIを精度よく推定することができる。
[0044] 以上のように得られた干渉相関行列 RIを用いて、記憶手段 7にお 、て記憶内容を 更新する。更新手法として、以下のような 3つの手法のいずれか、または、複数を組 み合わせて用いる。
[0045] 1)重み付け平均化した干渉相関行列を算出する。
この場合、重み付け平均化した干渉相関行列に基づく干渉波受信アンテナウェイト により干渉信号を受信することができるため、干渉信号受信手段 6及び記憶手段 7の 構成を簡易化することが可能となる。一方、重み付け平均化された干渉相関行列を 用いた所望波分離受信アンテナウェイトによる受信信号は、所望波信号を受信する と共に、前処理モードにおいて受信された強勢なレベルの干渉信号を常に優先的に 抑圧する動作となり、個々の干渉信号を最適なレベルまで抑圧して受信することはで きない。よって、この方法は万能であるものの、干渉波を十分に抑圧できない場合が ある。
[0046] 2)干渉相関行列 RIを、個別に、そのまま記憶させる。記憶できる干渉相関行列数 が所定数 NIを超えた場合、受信電力が高い干渉相関行列 RIを、順に、所定数 NI
k
個分の干渉相関行列を記憶する。ただし、 kは NI以下の自然数を示す。
この場合、複数の干渉相関行列 RIに対し、干渉波受信アンテナウェイトを設けて 干渉信号を受信する構成となるため、干渉信号受信手段 6及び記憶手段 7の構成は 複雑化する。一方、重み付け平均化された干渉相関行列を用いた所望波分離受信 アンテナウェイトによる受信信号は、所望波信号を受信すると共に、前処理モードに ぉ 、て受信された強勢なレベルの干渉信号のそれぞれに対し、十分なレベルまで抑 圧して受信することが可能となる。
[0047] 3)送信元のアドレス情報毎に分類して、干渉相関行列 RIを個別に記憶させる。同 じ送信元のアドレスである干渉相関行列が複数検出された場合は、重み付け平均化 後に記憶する。また、記憶できる干渉相関行列数が所定数 NIを超えた場合、受信電 力が高い干渉相関行列 RIの送信元のアドレス情報を優先して、所定数 NI個分の干
k
渉相関行列を記憶する。ただし、 kは NI以下の自然数を示す。
この場合、 2)の効果にカ卩え、一つの送信元に対応して、一つの干渉相関行列を記 憶手段 7において記憶することができる。これにより、 1つの送信元に対し、複数の干 渉波受信アンテナウェイトを設けて干渉信号を受信することが無くなり、干渉信号受 信手段 6及び記憶手段 7のそのような重複による構成の複雑ィヒを避けることができる 。また、送信元の空間的変動がない場合、共通な送信元毎に平均化処理を加えるた
め干渉相関行列の雑音成分を低減でき、その結果、その干渉相関行列を用いた所 望波分離受信アンテナウェイトによる干渉抑圧効果を高めることができる。よって、こ の方法が一番効率的に干渉波を十分なレベルまで抑圧できる。
[0048] なお、十分な電力レベルの信号があるにもかかわらず、伝送パケットのシグナリング 部の情報が読みとれないような異種の通信システム力 の干渉が存在する場合は、 上記 (数 2)で示すようにトレーニング信号によるチャネル推定値を用いな ヽ干渉相関 行列 RIを算出し、記憶手段 7を更新し、再度、 S21にもどり、伝送パケットの有無を確 認する。そして、干渉波が複数ある場合は他の干渉波についても同様の処理を繰り 返す。
[0049] 以上の自局宛以外のパケットを受信した場合の干渉相関行列 RIを記憶するまでの 処理が、前処理モード(S23)である。
[0050] 次に、受信処理モードへ移行 (S24)した場合の動作説明を行う。なお、以下では、 トレーニング信号部のトレーニング信号を用いた周波数同期、位相同期、シンボル同 期確立後の動作を説明する。無線通信装置 3における複数アンテナ 4で受信された 高周波信号は、それぞれ受信部 5— 1〜Mにおいて、増幅処理、フィルタリング処理 及び周波数変換処理の後に直交検波され、 IQ平面上のベースバンド信号に変換さ れる。このベースバンド信号を、 AZD変換器を用いて複素ディジタル信号で表現さ れる受信信号ベクトル y(k)として出力する。以下、 kはサンプリングされた信号の離 散時刻を示す。
[0051] この場合、所望無線通信装置 1の Nt個の各アンテナから送信される送信系列 X (k )からなる送信系列ベクトル x(k) =[x (k)、 . . . 、 x (k)]Tに対し (上付き添え字 Tは
1 Nt
ベクトル転置演算子)、フラットフェージング伝搬路を通して得られる離散時刻 kにお ける無線通信装置 3での受信信号ベクトル y (k)は、下記 (数 3)のように示される。
[0052] [数 3]
y (ん)二 (ん) x( ) + 1( ) + n ( ) … ( 3 )
[0053] ここで、 y(k)は受信に用いる M個のアンテナ 4での受信信号を要素として含む列べ
タトルであり、アンテナ 4— mで受信された信号 y (k)を第 m番目の要素とする。また 、 Hは所望無線通信装置 1の送信系列 x(k)が受ける伝搬路変動を示すチャネル応 答行列である。ここで、 Hは (無線通信装置 3のアンテナ数 M)行 X (所望無線通信 装置 1における送信アンテナ数 Nt)列からなる行列であり、その i行 j列の行列要素 h は、所望無線通信装置 1における第 j番目の送信アンテナから送信された信号 X (k) 力 無線通信装置 3における第 i番目のアンテナ 4 iで受信される場合の伝搬路変 動を示す。
[0054] また、 n (k)は無線通信装置 3の M個の受信アンテナ 4で受信時に付加される雑音 成分ベクトルである。また、 I (k)は干渉源無線通信装置 2— 1〜Sのうち一つまたは 複数から送信される干渉信号成分を表す。なお、干渉源無線通信装置 2からの送信 信号が存在しない場合は I (k) =0となる。
[0055] このような無線通信装置 3の受信信号ベクトル y (k)は、干渉信号受信手段 6及び信 号分離手段 9に入力される。
[0056] 干渉信号受信手段 6は、記憶手段 7から前処理モードで得られた一つまたは複数 の干渉相関行列 RIを読み出し、干渉信号電力 I (k)を、空間的なフィルタリングによ り選択的に受信できる干渉波受信アンテナウェイトベクトル WIを算出する。なお、干 渉相関行列 RIが複数あれば、複数の出力 z (k)を算出して、後述する干渉波レべ ル検出手段 8で、しきい判定することで、干渉波の特定を行う。この干渉波受信アン テナウェイトベクトル WIは、干渉信号を最大化するような (干渉波の SINRが最大と なる)アンテナウェイトとなる。そして、下記 (数 4)で示すように受信信号ベクトル y(k) との積和演算を行い、第 n番目の干渉波成分信号 z (k)を抽出する。
[0057] [数 4] z"( = Wl y ( ) … (4 )
[0058] ここで、 nは記憶手段 7で記憶された干渉相関行列の個数 NI以下の自然数であり、 z (k)は、干渉源無線通信装置 2が送信した空間多重ストリーム数の要素を持つ列 ベクトルカゝらなる。また、上付きの添え字 Hはベクトル共役転置演算子を示す。ここで
、空間多重ストリーム数とは、例えば、次世代の無線 LAN規格 IEEE801.11nにおいて MIMO (Multiple-Input Multiple-Output)による空間多重伝送を行う場合に、 1つの 信号 (パケット)を複数のデータストリームに分割して空間的に多重して伝送するよう なことが行われ、このときのデータストリームの数に相当する。
[0059] なおこのとき、干渉波受信アンテナウェイトベクトル WIの算出は以下のような手法 を適用する。
1) [方式 1]干渉波受信アンテナウェイトベクトル WIとして下記の (数 5)を用いる。
[0060] [数 5]
WI" = U ) - ( 5 )
[0061] ここで、 U (n)は、干渉相関行列 RIを固有値分解して得られる M個の固有値の内、 k n
干渉源無線通信装置 2が送信した空間多重ストリーム数の分、大きい順に固有値を 取り出し、それに対応する固有ベクトルを列ベクトル成分に持つ。ここで k= l、 . . .、 Mである。これにより、干渉相関行列 RIの生成時に到来していた干渉波の電力を最 大化するように干渉波を受信することができる。
[0062] また、記憶手段 7における動作を変更することで、別な干渉波受信アンテナウェイト ベクトル WIの算出として以下のような手法の適用が可能である。
2) [方式 2]前処理モードにおいて得られる RIを記憶手段 7において記憶する代わ りに、前処理モードにおいて得られる B (n)を記憶させる。この場合、干渉波受信アン テナウェイトベクトル WIとして、下記の(数 6)を用いる。
[0063] [数 6]
WI" 二 ¾
[0064] ここで、 Dは、下記の(数 7)により算出され、 Hは所望無線通信装置 1の送信系列 n e
x (k)が受ける伝搬路応答行列 Hの推定値であり、 δは雑音電力推定値、 E は Μ
1 Μ 次の正方行列を示す (ただし、 Μは無線通信装置 3における受信アンテナブランチ
数)。これにより、所望信号を抑圧した上で、干渉相関行列 RInの生成時に到来して いた干渉波の電力を選択的に受信することができる。
[0065] [数 7]
= Η,Η 7 + (η)ΒΗ (η) + σΕΜ … ( 7 )
[0066] 一方、信号分離手段 9は、受信信号ベクトル y (k)を入力として、所望無線通信装置 1から送信される送信系列 X (k)を、所望波分離受信アンテナウェイト WDを用いて 、 WD Hy(k)とすることで分離受信する。ここで、 nは Nt以下の自然数であり、 Nt≥l である。すなわち、 Nt= lの場合は、いわゆるダイバーシチ受信動作を行い、 Nt> l の場合は、空間多重伝送された送信信号を分離受信する SDM受信動作となる。以 下に信号分離手段 9を中心にした所望波の分離受信動作について説明する。
[0067] 図 5は信号分離手段 9及び干渉波レベル検出手段 8を含めた動作を示すフローチ ヤートである。以下図 5を用いて、その動作説明を行う。
[0068] まず、初期の所望波分離受信アンテナウェイト WDとして下記の (数 8)を算出する( S50)。この所望波分離受信アンテナウェイト WDは、所望波の SINRが最大となるよ うなアンテナウェイトとなる。
[0069] [数 8]
WD二 " 1 - ( 8 )
[0070] ここで、 WDは M行 Nt列の行列からなりその第 n列は WDからなる。 Rは、下記の( 数 9)により算出される。また、 Hは所望無線通信装置 1の送信系列 x (k)が受ける伝
e
搬路応答行列 Hの推定値、 δは雑音電力推定値、 E は Nt次の正方行列を示す(
1 Nt
ただし、 Mは無線通信装置 3における受信アンテナブランチ数)。なお、伝搬路応答 行列 Hの推定値 H及び雑音電力推定値 δは、自局宛のパケット信号におけるトレ
1 e
一二ング信号部の既知信号系列から推定値を得る。
[0071] [数 9]
R„二 H Hど + σΕΜ … ( 9 )
[0072] なお、上記は MMSE手法に基づく信号分離手法であるが、これに限定されず、 ZF 、 MLD (Maximum likelihood Detection)等の手法の適用も可能である。
[0073] 次に、干渉波レベル検出手段 8は、干渉信号受信手段 6の出力 z (k)に基づき干 渉波成分電力 P = I I z (k) | | 2を検出し、干渉波成分電力 Pが所定値 LIを超え た場合 (S51)、信号分離手段 9における所望波分離受信アンテナウェイト WDを更 新する (S52)。一方、干渉波成分電力 Pが所定値 LIを超えない場合、信号分離手 段 9における所望波分離受信アンテナウェイト WDを更新せずに維持する(S53)。 例えば、図 3に示したように、 Casel、 Case2、 Case3のように干渉波が発生する場 合、 Case2、 Case3が、順次発生する期間 T1と T2との間で、所望波分離受信アンテ ナウエイト WDを変更すればよ!、。
[0074] 干渉波レベル検出手段 8は、所望波分離受信アンテナウェイト WDを更新する場合 、以下のような新たな所望波分離受信アンテナウェイト WDを算出し、信号分離手段 9に結果を出力する。
[0075] 1) [方式 3] : 上述した [方式 1]における干渉波受信アンテナウェイトベクトル WI として上記 (数 5)を用いた場合、下記の (数 10)に基づいて、所望波分離受信アンテ ナウエイト WDを更新する。
[0076] [数 10]
WD二 W Q"— 1 … ( 1 0 )
[0077] ここで、 Wは下記の(数 11)により算出され、また V (n)は、干渉相関行列 RIを固有
b k n 値分解して得られる M個の固有値を、小さい順に Nt個取り出したときの固有値に対 応する固有ベクトル (ただし k= l、 . . .、Nt)であり、 Qは下記の(数 12)により与え られる。この所望波分離受信アンテナウェイト WDは、所望波の電力を最大化すると
ともに、対応する干渉波を所定レベル以下に抑圧するようなアンテナウェイトとなる。 これにより、干渉相関行列 RInの生成時に起因する干渉波を抑圧した上で、所望信 号を選択的に受信することができる。なお、所定値 LIを超える干渉波成分電力が複 数ある場合 (P , P RI , . . . )
nO nl , . . . )、当該の干渉相関行列 (RI ,
ηθ nl を加算合成 した干渉相関行列 RI (= a RI +a RI + . . . )を用いる(ただし、 a は
η 0 ηθ 1 nl 0、 a、 . . .
1 重み係数)。すなわち、各干渉波成分に対応する干渉相関行列毎に重み付けをして 、合成する形となる。
[0080] 2) [方式 4]: 上述した [方式 2]における前処理モードにおいて得られる RIを、記 憶手段 7にお 、て記憶する代わりに、前処理モードにお!、て得られる B (n)を記憶さ せ、干渉波受信アンテナウェイトベクトル WIとして上記 (数 6)を用いた場合、下記の (数 13)に基づいて所望波分離受信アンテナウェイト WDを更新する。
[0081] [数 13]
WD = W^ 1 … ( 1 3 )
[0082] ここで、 Wは下記の(数 14)で、 Fは下記の(数 15)で、 Qは下記の(数 16)により
b n n
示される。なお、(数 15)における定数 aは、干渉抑圧効果を可変するパラメータであ り、 aが大きくなるほど、所望波受信電力を高めるよりも干渉抑圧を優先する空間フィ
ルタリング動作となる。この所望波分離受信アンテナウェイト WDは、所望波の電力を 最大化するとともに、対応する干渉波を所定レベル以下に抑圧するようなアンテナゥ エイトとなる。これにより、干渉相関行列 RIの生成時に起因していた干渉波を抑圧し た上で、所望信号を受信することができる。なお、所定値 LIを超える干渉波成分電力 が複数ある場合 (P , P , ... )、当該の干渉チャネル応答行列 (B(n ), B(n), .
ηθ nl 0 1
.. )から生成される相関行列を加算合成した相関行列 B(n)BH(n) (= a B(n )BH(
0 0 n ) +a B(n )BH(n )+... )を用いる(ただし、 a、 a、 ...は重み係数)。すなわ
0 1 1 1 0 1
ち、各干渉波成分に対応する干渉相関行列ごとに重み付けをして合成する形となる
[0084] [数 15]
Fw = (l- a)HeHe H + a (n)BH (n) + σΕΜ … (ι 5)
[0086] なお、信号分離手段 9は、所望波分離受信アンテナウェイト WDの乗算を、 2つのゥ エイト乗算部に分けて実施してもよい。以下、その構成の説明を行う。図 6は、信号分 離手段を 2つのウェイト乗算部に分けて構成した無線通信装置の第 1変形例の構成 を示すブロック図である。図 6に示す第 1変形例の無線通信装置 3b— 1において、信 号分離手段 9aは、第 1のウェイト乗算部 90と第 2のウェイト乗算部 91とを有して構成 される。
[0087] 第 1のウェイト乗算部 90で用いるウェイトは、(数 10)または (数 13)に示すように所
望波分離受信アンテナウェイト WDにおける Wで示され、無線通信装置 3b— 1の受
b
信信号ベクトル y (k)に対し、 A (k) =W Hy(k)となるように乗算する。これにより、受
b
信信号ベクトル y (k)に含まれる干渉波の受信電力を抑圧した信号を得ることができ る。
[0088] 次に、第 2のウェイト乗算部 91で用いるウェイトは、(数 10)または (数 13)に示すよ うに所望波分離受信アンテナウェイト WDにおける(Q _1) Hを、第 1のウェイト乗算部 の出力 A(k)に対して、 (Q _1) HA(k)となるように乗算する。これにより、受信信号べ タトル y(k)に含まれる干渉波の受信電力を抑圧した信号 A (k)から、 Nt個の所望波 信号を分離受信することができる。
[0089] なお、所望波の空間多重数が 1である場合は、信号電力を最大化する最大比合成 ウェイトを用いる。これにより、複数アンテナ受信によるダイバーシチ効果を高めること で、受信品質を高めることができる。
[0090] このように信号分離手段 9aを 2つのウェイト乗算部に分けて構成することで、第 1の ウェイト乗算部 90にお 、て、干渉波を低減した出力信号 A (k)を取り出すことができ る。この性質を用いて、干渉波信号の影響を低減した信号を用いて、チャネル推定 値を再度算出する構成を用いることが可能となる。
[0091] 図 7は、チャネル推定値を再度算出するようにした無線通信装置の第 2変形例の構 成を示すブロック図である。図 7に示す第 2変形例の無線通信装置 3b— 1において、 再チャネル推定部 95は、干渉波の低減した出力信号 A (k)に含まれるチャネル推定 用の予め既知であるパイロット信号を抽出して、チャネル推定を行う。これにより得ら れたチャネル推定値^を用いて、第 2のウェイト乗算部 91で用いるウェイトを算出す る。
[0092] ここで、再チャネル推定部 95は、上述した所望波分離受信アンテナウェイト WDの 更新方法のうち、 [方式 3]の場合は (数 12)の代わりに下記 (数 17)に示される Qを 用いて、所望波分受信用のウェイトを算出する。また、 [方式 4]の場合は (数 16)の 代わりに下記 (数 18)に示される Qを用いて、所望波分受信用のウェイトを算出する
[0093] [数 17]
Q" 二 Hr" Hr + σΕΜ … ( l 7 )
[0094] [数 18]
[0095] このように、干渉波信号成分を低減した信号を用いて、チャネル推定値を算出する ことによって、所望波分離するウェイトをより正確に求めることができる。これにより、所 望波に対する受信品質を高めることができる効果が得られる。
[0096] また、さらに、第 1のウェイト乗算部におけるウェイトを、複数アンテナ M個の内、 M より小さい k個からなるサブアレーの組にして、干渉波受信電力を抑圧するウェイトを 生成してちょい。
[0097] 図 8は、信号分離手段の第 1のウェイト乗算部におけるウェイトを複数のサブアレー の組にして構成した無線通信装置の第 3変形例の構成を示すブロック図である。図 8 に示す第 3変形例の無線通信装置 3b— 3において、信号分離手段 9bに含まれる第 1のウェイト乗算部 90は、さらに、複数のサブアレーウェイト乗算部 92を備える。ここ で、図 8ではアンテナ数 M = 3の時に、 M = 3のアンテナから k= 2のサブアレーのァ ンテナ数を構成する場合の例を示している。この場合、 3 (= C )
3 2通りのサブアレーの 組み合わせがあるため、 3つのサブアレーウェイト乗算部 92— 1〜92— 3を有する。 第 m番目のサブアレーウェイトの生成は、(数 11)あるいは (数 14)で示される Wの算 b 出時に当該のアンテナ番号に関わる行列またはベクトル要素を取り出した形で置換 すること〖こよって算出することができる。
[0098] このように、干渉波受信電力を抑圧するウェイト Wの生成時には、固有値分解や、 b
逆行列演算が含まれるが、サブアレー化して、行列の次数を下げることで、演算量を 大幅に削減できるという効果が得られる。
[0099] 続いて、信号系列受信処理手段 10は、信号分離手段 9からの Nt個の出力信号に
対し、所定の変調方式によるシンボルデータ列力 ビットデータ列に変換するデマツ ビング処理、送信側で施されたインターリーブと逆の動作によりビット順を復元するデ インタリーバ処理、入力されるビットデータ列に対し誤り訂正復号処理などを施し、送 信ビット系列を復元する受信処理を行う。
[0100] 以上のような動作により、本実施形態では、非通信時には、前処理モードとして複 数の干渉源無線通信装置 2からの信号を予め受信しておき、その結果得られる干渉 相関行列 RIを基に、干渉源無線通信装置 2からの送信信号を選択的に受信できる 干渉波受信アンテナウェイト WIを準備する。
[0101] 通信時には受信処理モードに移行し、通常受信すると共に、干渉波受信アンテナ ウェイト WIで受信された信号電力に基づき、干渉波成分の変動を検出し、干渉を与 える干渉源無線通信装置 2が出現、または変化した場合、新たな干渉相関行列を用 いて干渉低減する所望波分離受信アンテナウェイト WDを適応的に変更することが できる。
[0102] これにより、非定常に現れる干渉波に適応した空間的フィルタリングを実現でき、干 渉除去能力を高めることで通信品質の安定ィ匕を図ることができる。例えば、異なる干 渉波源力 非定常に同一チャネル干渉が発生する場合でも、安定した受信品質を得 ることがでさる。
[0103] また、無線 LANの通信システムにお!/、ては、隠れ端末または PCF (Point Coordina tion Function)動作をしている他 BSS (Basic Service Set)からの同一チャネル干渉が 存在した場合、所望でない送信元力ゝらの干渉信号を抑圧できない恐れがある。この ような場合でも、本実施形態を適用すれば、シンボル同期が可能なレベルでの干渉 を受けている場合に干渉耐性を向上することができ、伝送品質の向上が可能である
[0104] なお、所望波分離受信アンテナウェイトを可変する場合の別な簡易的な手法として 、受信信号 y(n)の信号対干渉雑音電力比 SIRを検出し、検出値が所定レベルを超 える場合、干渉波受信アンテナウェイトベクトル WIを更新する動作としてもよい。こ の際の干渉波受信アンテナウェイトベクトル WIとしては、 SIRが最大となるウェイトを 選択する。
[0105] また、干渉相関行列 RIの別な算出方法として、 A)自局宛のパケット受信時に、トレ 一ユング信号に無信号となるタイミングが含まれる場合、この無信号タイミングで、上 記 (数 2)を用いて干渉相関行列を算出してもよい。これにより自局宛のパケット受信 時に、同一チャネル干渉を与える干渉源の干渉相関行列を精度良く検出することが できる。
[0106] また、干渉相関行列 RIのさらに別の算出方法として、 B)自局宛のパケット受信時の データ部において、上記 (数 2)を用いて得られる相関行列を用いてもよい。この場合 、相関行列の算出するタイミング及び算出範囲をずらして、データ部で複数のブロッ クに分割し、それらを干渉相関行列 RIとする。これにより、自局宛のパケット受信時に 、同一チャネル干渉を与える干渉源の干渉相関行列を、時間的にずらしながら算出 するため、干渉波源が時間的に変動する場合の追従性能を高めることができる。
[0107] (第 2の実施形態)
図 9は、本発明の第 2の実施形態における無線通信装置 3aの構成を示す図である 。第 1の実施形態では、シングルキャリアを用いる伝送方式を用いたが、第 2の実施 开態では、マルチキャリア伝送として OFDM (Orthogonal Frequency Division Multipl exing)を用いる無線通信システムに適用する例を示す。このため、無線通信装置 3a は、第 1の実施形態とは一部の構成が異なり、サブキャリア毎に処理系を備えている
[0108] 第 2の実施形態の無線通信装置 3aは、サブキャリア毎に、干渉信号受信手段 61— l〜Nc、記憶手段 62— l〜Nc、信号分離手段 64— l〜Ncを備えている。また、干 渉波レベル検出手段 63は、全ての干渉信号受信手段 61— l〜Ncの出力結果を統 合して、信号分離手段 64— l〜Ncにおける所望波分離受信アンテナウェイトを更新 する力判定する。すなわち、 OFDMの全サブキャリアにおける干渉信号の受信結果 を基に、干渉波成分のレベル検出を行い、このレベル検出結果に応じて所望波分離 受信アンテナウェイトを可変する。その他の構成は第 1の実施形態と同様であり、以 下では第 1の実施形態とは異なる部分の構成及び動作を主に説明する。なお、 OFD M変調及び復調方法に関しては、文献 (尾知博、上田健二 共著、「OFDMシステ ム技術と MATLABシミュレーション解説」、トリケップス、 2002年)に情報開示されて
おり、ここではその詳細説明は省略する。
[0109] 第 2の実施形態においても、第 1の実施形態の図 1に示すものと同様に、所望無線 通信装置 1及び所望無線通信装置 1と同一または近接したキャリア周波数を用いる ため干渉を与える干渉源無線通信装置 2— 1〜Sからの送信信号を、無線通信装置 3aが受信するものとする。なお、無線通信装置 3aは受信構成のみを示しており、送 信構成の図示は省略している。
[0110] 無線通信装置 3aにおいて、複数 (M個)のアンテナ 4 1〜Mでの受信信号を基に して、受信部 5— 1〜Μの出力が得られるまでの動作は、第 1の実施形態と同様であ る。 OFDM復調手段 60— 1〜Mは、それぞれ図示されていない GI (ガードインター バル)除去手段、 IFFT手段、直列並列変換手段を含み、 OFDM復調を施し、 Nc個 のサブキャリア毎のシンボルデータ系列を出力する。ここで、離散時刻 kにおける第 fs 番目のサブキャリア毎のシンボルデータ系列を Y(k、 fs)と表記する。なお、 Y(k、 fs) は受信に用いるアンテナ数 M個で受信された信号を要素として含む列ベクトルであ る。すなわち、アンテナ 4— mで受信された信号 y (k、 fs)を第 m番目の要素とする。 ただし、 fs= l〜Ncである。
[0111] 以下、この信号を用いた動作を、第 1の実施形態と同様に図 4を用いて説明する。
まず、使用する周波数チャネルで、伝送パケットの有無を検出する(S21)。伝送パケ ットが存在する場合、そのトレーニング信号部に含まれる予め既知のトレーニング信 号を用いて、周波数同期及びタイミング同期を確立し、さらに伝送路歪みを等化する ことで、トレーニング信号に続く伝送パケットのシグナリング部に含まれているパケット 送信元及び送信先のアドレス情報を読みとり、自局宛のパケットであるかを検出する( S22)。ここで、自局宛以外のパケットを受信した場合、干渉波であるため、その干渉 信号を学習する前処理モードへ移行 (S23)し、自局宛のパケットを受信した場合、そ の送信信号を受信する受信処理モードへ移行する(S24)。
[0112] 前処理モード(S23)では、サブキャリア fs毎に干渉信号受信手段 61— fsにおいて 、トレーニング信号部の干渉相関行列 RI (fs)を算出し、記憶手段 62— fsにおいて記 憶する。ここで、干渉相関行列 RI (fs)は、第 n番目の自局宛以外のパケットを受信し た時の干渉相関行列を示し、トレーニング信号を用いて算出される伝送路歪み(以
下、チャネル推定値) ( k、 fs)を用いて算出する。ここで hn(j、 k、 fs)は、第 n番目 の干渉源無線通信装置 2— nの第 k番目のアンテナ力 送信され、無線通信装置 3a の第 j番目のアンテナ 4 jで受信する際のチャネル推定値を表す。なお、 fs= l、 . . .、 Ncであり、第 n番目の干渉源無線通信装置 2— nは、 Nit (n)個のアンテナをもち 、 Nlt (n)は 1以上の自然数とする。
[0113] ここで、干渉源無線通信装置 2— 1〜Sから送信される信号は、伝搬路におけるマ ルチパスの先行波からの相対的な遅延時間がガードインターバル (GI)範囲内であ れば、周波数選択性フェージング環境を、サブキャリア単位ではフラットフェージング 伝搬環境と等価に扱うことができる。このため、フラットフェージング伝送路を仮定した 場合、第 n番目の自局宛以外のパケットを受信した場合の干渉相関行列 RI (fs)は、 下記 (数 19)のように算出される。
[0114] [数 19]
RI, (Λ ) = B(n, fs ) M (n, fs ) ^ PnEM … ( i 9 )
[0115] ここで、 B (n、 fs)は M行 Nit (n)列の行列であり、その第 j行 k列の要素は h (j、 k、 f s)からなる。上付きの添え字 Hはベクトル共役転置演算子を示す。また、 Pは雑音電 力推定値、 E は M次の単位行列を示す。
M
[0116] なお、干渉相関行列 RI (fs)の別な算出方法として、トレーニング信号を用いて算出 されるチャネル推定値を用いずに算出する方法もある。この場合、下記の (数 20)を 用いる。
[0117] [数 20]
[0118] ここで、 Y (k、 fs)は M次の列ベクトルであり、第 j番目の要素は、無線通信装置 3a の第 j番目のアンテナ 4 jで、第 n番目の自局宛以外のパケットを受信した場合のサ ブキャリア fsのベースバンド信号を時刻 tでサンプリングされた信号を示す。また、 dt はサンプリング時間間隔、 tはサンプリング開始時刻、 Nsはサンプリングされたデー
タ数である。この場合、干渉相関行列 RIは、パイロット信号を用いずに算出すること ができるため、データ部の信号を用いても算出することが可能である。データ部に含 まれる信号が十分長い場合は、干渉相関行列 RIを精度よく推定することができる。
[0119] 以上のように得られた干渉相関行列 Rln(fs)を用いて、サブキャリア毎の記憶手段 62— fsにおいて記憶内容を更新する。更新手法として、第 1の実施形態と同様、以 下のような 3つの手法のいずれか、または、複数を組み合わせて用いる。
[0120] 1)重み付け平均化した干渉相関行列を算出する。
2)干渉相関行列 RI (fs)を個別にそのまま記憶させる。記憶できる干渉相関行列 数が所定数 NIを超えた場合、受信電力が高い干渉相関行列 RI (fs)を順に所定数
k
NI個分の干渉相関行列を記憶する。ただし、 kは NI以下の自然数を示す。
3)送信元のアドレス情報毎に分類して、干渉相関行列 RI (fs)を個別に記憶させる 。同じ送信元のアドレスである干渉相関行列が複数検出された場合は、重み付け平 均化後に記憶する。また、記憶できる干渉相関行列数が所定数 NIを超えた場合、受 信電力が高 、干渉相関行列 RI (fs)の送信元のアドレス情報を優先して所定数 NI
k
個分の干渉相関行列を記憶する。ただし、 kは NI以下の自然数を示す。
これらの 3つの手法のそれぞれの作用効果は、前述した第 1の実施形態と同様であ る。
[0121] なお、十分な電力レベルの信号があるにもかかわらず、伝送パケットのシグナリング 情報が読みとれな 、ような異種の通信システムからの干渉が存在する場合は、上記( 数 20)で示すようにトレーニング信号によるチャネル推定値を用いな 、干渉相関行列 RIを算出し、記憶手段 62— fsを更新する。
[0122] 以上の自局宛以外のパケットを受信した場合の干渉相関行列 RI (fs)を記憶するま でが前処理モード(S 23)である。
[0123] 次に、受信処理モードへ移行 (S24)した場合の説明を行う。なお、以下では、トレ 一-ング信号部のトレーニング信号を用いた周波数同期、位相同期、シンボル同期 確立後の動作を説明する。無線通信装置 3aにおける複数アンテナ 4、受信部 5を通 して得られる受信信号は、受信信号ベクトル Y(k、 fs)として出力される。以下、 kはサ ンプリングされた信号の離散時刻を示す。
[0124] 所望無線通信装置 1の Nt個の各アンテナ力 送信されるサブキャリア毎の送信系 列 X (k、 fs)からなる送信系列ベクトル X (k、 fs) = [ X (k、 fs)、 . . .、 X (k、 fs) n 1 Nt
に対し (上付き添え字 Tはベクトル転置演算子)、伝搬路におけるマルチパスの、先 行波からの相対的な遅延時間がガードインターバル (GI)範囲内であれば、周波数 選択性フェージング環境を、サブキャリア単位ではフラットフェージング伝搬環境とし て扱うことができる。このため、離散時刻 kにおける無線通信装置 3aでのサブキャリア fsの受信信号ベクトル Y (k、 fs)は、下記 (数 21)のように示される。
[0125] [数 21]
Y ( , 7;) = ^ ( ,/;) X( , ) + l(k,fs) + n(kjs) - ( 2 1 )
[0126] ここで、 Y (k、 fs)は受信に用いる M個のアンテナ 4での受信信号を要素として含む 列ベクトルであり、アンテナ 4 mで受信されたサブキャリア fsの信号 y (k、 fs)を第 m
m
番目の要素とする。また、 H (fs)は所望無線通信装置 1の送信系列 X (k、 fs)が受け る伝搬路変動を示すチャネル応答行列である。ここで、 H (fs)は (無線通信装置 3a のアンテナ数 M)行 X (所望無線通信装置 1における送信アンテナ数 Nt)列からなる 行列であり、その i行 j列の行列要素 hは、所望無線通信装置 1における第 j番目の送 信アンテナから送信された信号 X (k、 fs)が、無線通信装置 aにおける第 i番目のアン テナ 4 iで受信される場合の伝搬路変動を示す。
[0127] また、 n (k、 fs)は無線通信装置 3aの M個の受信アンテナ 4で受信時に付加される サブキャリア fsの雑音成分ベクトルである。また、 I (k、 fs)は干渉源無線通信装置 2— 1〜Sのうち一つまたは複数力 送信されるサブキャリア fsにおける干渉信号成分を 表す。なお、干渉源無線通信装置 2からの送信信号が存在しない場合は I (k、 fs) = 0となる。
[0128] このような無線通信装置 3aの受信信号ベクトル Y (k、 fs)は、対応するサブキャリア 毎の干渉信号受信手段 61 fs及び信号分離手段 64 fsに入力される。ここで = 1、 . . .、 Ncである。
[0129] 干渉信号受信手段 61— fsは、記憶手段 62— fsから前処理モードで得られた一つ
または複数の干渉相関行列 RIn(fs)を読み出し、干渉信号電力 I (k、 fs)を空間的な フィルタリングにより選択的に受信できる干渉波受信アンテナウェイトベクトル WI (fs )を算出する。そして、下記 (数 22)で示すように受信信号ベクトル Y(k、 fs)との積和 演算を行 ヽ、第 n番目の干渉波成分信号 Z (k、 fs)を抽出する。
[0131] ここで、 nは記憶手段 62— fsで記憶された干渉相関行列の個数 NI以下の自然数 であり、 Z (k、 fs)は、干渉源無線通信装置 2が送信した空間多重ストリーム数の要素 を持つ列ベクトルからなり、上付きの添え字 Hはベクトル共役転置演算子を示す。
[0132] なおこのとき、サブキャリア fsの干渉波受信アンテナウェイトベクトル WI (fs)の算出 は以下のような手法を適用する。
1) [方式 5]干渉波受信アンテナウェイトベクトル WI (fs)として、下記の (数 23)を 用いる。
[0133] [数 23]
\¥1„( ) = ¾(")( ) - ( 2 3 )
[0134] ここで、 U (n) (fs)は、干渉相関行列 RI (fs)を固有値分解して得られる M個の固有
k n
値の内、干渉源無線通信装置 2が送信した空間多重ストリーム数の分、大きい順に 固有値を取り出し、それに対応する固有ベクトルを列ベクトル成分に持つ。ここで k= 1、 . . .、 Mである。これにより、干渉相関行列 RI (fs)の生成時に到来していた干渉 波の電力を最大化するように干渉波を受信することができる。
[0135] また、記憶手段 62— fsにおける動作を変更することで、別な干渉波受信アンテナゥ エイトベクトル WI (fs)の算出として以下のような手法の適用が可能である。
2) [方式 6]前処理モードにおいて得られる RI (fs)を記憶手段 62— fsにおいて記
憶する代わりに、前処理モードにおいて得られる B (n、 fs)を記憶させる。この場合、 干渉波受信アンテナウェイトベクトル WI (fs)として、下記の (数 24)を用いる。
[0136] [数 24] )二 D (/ — ^(", ) - ( 2 4 )
[0137] ここで、 D (fs)は、下記の(数 25)により算出され、 H (fs)は所望無線通信装置 1の n e
サブキャリア fsにおける送信系列 x(k、 fs)が受ける伝搬路応答行列 H (fs)の推定値 であり、 δは雑音電力推定値、 E は Μ次の正方行列を示す (ただし、 Μは無線通信
Μ
装置 3aにおける受信アンテナブランチ数)。これにより、所望信号を抑圧した上で、 干渉相関行列 RI (fs)の生成時に到来して!/、た干渉波の電力を選択的に受信する ことができる。
[0138] [数 25]
D« (fs ) = H, ( , )Η( )e H + (n, fs ) H (n, fs ) + oEM ·. · ( 2 5 )
[0139] 一方、各サブキャリア fsにおける信号分離手段 64— fsは、受信信号ベクトル Y(k、 f s)を入力として、所望無線通信装置 1から送信される送信系列 X (k、 fs)を、所望波 分離受信アンテナウェイト WD (fs)を用いて WD (fs) HY(k、 )とすることで分離受 信する。ここで、 nは Nt以下の自然数であり、 Nt≥lである。すなわち、 Nt= lの場合 は、いわゆるダイバーシチ受信動作を行い、 Nt> lの場合は、空間多重伝送された 送信信号を分離受信する SDM受信動作となる。以下に信号分離手段 64— 及び 干渉波レベル検出手段 63を中心にした所望波の分離受信動作について、第 1の実 施形態と同様に図 5を用いて説明する。
[0140] まず、初期の所望波分離受信アンテナウェイト WD (fs)として下記の (数 26)を算出 する(S50)。
[0142] ここで、 WD (fs)は M行 Nt列の行列からなり、その第 n列は WDからなる。 R (fs) は、下記の(数 27)により算出される。また、 H (fs)は所望無線通信装置 1のサブキヤ e
リア fsの送信系列 x(k、 )が受ける伝搬路応答行列 H (fs)の推定値、 δは雑音電 力推定値、 Ε は Nt次の正方行列を示す (ただし、 Mは無線通信装置 3aにおける受
Nt
信アンテナブランチ数)。なお、伝搬路応答行列 H (fs)の推定値 H (fs)及び雑音電
1 e
力推定値 δは、自局宛のパケット信号におけるトレーニング信号部の既知信号系列 から推定値を得る。
[0143] [数 27]
R, ) = H, Η,(Λ) + ΟΕμ ... (27)
[0144] なお、上記は MMSE手法に基づく信号分離手法であるが、これに限定されず、 ZF 、 MLD (Maximum likelihood Detection)等の手法の適用も可能である。
[0145] 次に、干渉波レベル検出手段 63は、サブキャリア毎の干渉信号受信手段 61— fs の出力 Z (k、 fs)に基づき、下記の(数 28)に示す干渉波成分電力 Pを検出する。
[0147] 全サブキャリアにおいて検出した干渉波成分電力 Pが所定値 LIを超えた場合 (S5 1)、各サブキャリアの信号分離手段 64— fsにおける所望波分離受信アンテナウェイ ト WD (fs)を更新する(S52)。一方、干渉波成分電力 Pが所定値 LIを超えない場 合、信号分離手段 64— fsにおける所望波分離受信アンテナウェイト WD (fs)を更
新せずに維持する(S53)。なお、干渉波レベル検出手段 63において、全サブキヤリ ァの干渉波成分電力 Pを検出するのではなぐ必要に応じて特定のサブキャリアの 干渉波成分電力を検出するようにしてもよぐその検出レベルに応じて所望波分離受 信アンテナウェイトを更新するかどうか判定することもできる。
[0148] 各サブキャリアの干渉波レベル検出手段 63— fsは、所望波分離受信アンテナゥェ イト WD (fs)を更新する場合、以下のような新たな所望波分離受信アンテナウェイト WD (fs)を算出し、信号分離手段 64— fsに結果を出力する。
[0149] 1) [方式 7]干渉波受信アンテナウェイトベクトル WI (fs)として上記 (数 23)を用い た場合、下記の (数 29)に基づいて所望波分離受信アンテナウェイト WD (fs)を更新 する。
[0150] [数 29]
[0151] ここで、 Wは下記の(数 30)により算出され、また (n)は、干渉相関行列 RI (fs)を 固有値分解して得られる M個の固有値を小さい順に Nt個取り出したときの固有値に 対応する固有ベクトル (ただし k= l、 . . .、Nt)であり、 Q (fs)は下記の (数 31)によ り与えられる。これにより、干渉相関行列 RI (fs)の生成時に起因する干渉波を抑圧 した上で、所望信号を選択的に受信することができる。なお、所定値 LIを超える干渉 波成分電力が複数ある場合 (P (fs) , P (fs) , . . . )、当該の干渉相関行列 (RI ( fs) , RI (fs) , . . . )を加算合成した干渉相関行列 RI (fs) (= a RI (fs) +a RI
(fs) + . . . )を用いる(ただし、 a、 a、 . . .は重み係数)。
[0152] [数 30]
W,( ) = [V|") ...V¾) ] … ( 3 0 )
[0153] [数 31]
Qn (fs ) = [ W, (fs )Be (fs )f W, (fs )He (fs) + oE Nt … (31)
[0154] 2) [方式 8]前処理モードにおいて得られる RIn(fs)を記憶手段 62— fsにおいて記 憶する代わりに、前処理モードにおいて得られる B(n、 fs)を記憶させ、干渉波受信 アンテナウェイトベクトル WI (fs)として上記 (数 24)を用いた場合、下記の(数 32)に 基づ 、て所望波分離受信アンテナウェイト WD (fs)を更新する。
[0156] ここで、 W (fs)は下記の(数 33)で、 F (fs)は下記の(数 34)で、 Q (fs)は下記の(
b n n
数 35)により示される。なお、(数 34)における定数 aは、干渉抑圧効果を可変するパ ラメータであり、 aが大きくなるほど、所望波受信電力を高めるよりも干渉抑圧を優先 する空間フィルタリング動作となる。これにより、干渉相関行列 RI (fs)の生成時に起 因していた干渉波を抑圧した上で、所望信号を受信することができる。なお、所定値 LIを超える干渉波成分電力が複数ある場合 (P (fs), P (fs), ... )、当該の干渉
nO nl
チャネル応答行列(B(n、fs), B(n、fs), ... )から生成される相関行列を加算合
0 1
成した相関行列 B (n、 fs) BH (n、 f s) (二 a B (n、 fs) BH (n、 f s) + a B (n、 fs) BH (n
0 0 0 1 1
、 fs) + ... )を用いる(ただし、 a、 a、 ...は重み係数)。
1 0 1
F„ (Λ) = (1- ")He (fs )He ( + a (n s )BH(n ) + aEM - (34) [0159] [数 35]
Q„ (Λ ) = [ wft (Λ )He (fs ) w, (Λ )He (fs ) + o , (Λ w, ( ) ... ( 3 5 )
[0160] 続いて、一次復調手段 65 (fs) l〜Ntは、サブキャリア fs毎に得られた信号分離 手段 64— fsからの Nt個のシンボルデータ列からなる出力信号に対し、変調に用い たマッピング情報を基に、ビットデータ列に変換する。
[0161] PZS変換手段 66— l〜Ntは、並列的に得られたサブキャリア fs= l〜Ncのサブ キャリアのビットデータを直列のビットデータ列に変換する。すなわち、第 m番目の P ZS変換手段 66—mは、全てのサブキャリア fs= l〜Ncにおける、一次復調手段 65 (fs)—mの並列に得られたビットデータ出力を、直列のビットデータ列に変換する。
[0162] 信号系列受信処理手段 10— l〜Ntは、各 PZS変換手段 66— l〜Ntから出力さ れるビットデータ列に対し、送信側で施されたインターリーブと逆の動作により、ビット 順を復元するディンタリーバ処理、誤り訂正復号処理などを施し、送信ビット系列を 復元する受信処理を行う。
[0163] 以上のような動作により、本実施形態では、マルチキャリア伝送を用いた通信システ ムにおいても、第 1の実施形態と同様に、干渉波成分の変動を検出し、干渉を与える 干渉源無線通信装置 2が出現、または変化した場合、新たな干渉相関行列を用いて 干渉低減する所望波分離受信アンテナウェイトを適応的に変更することができる。こ れにより、非定常に現れる干渉波に適応した空間的フィルタリングを実現でき、干渉 除去能力を高めることで通信品質の安定ィ匕を図ることができる。例えば、異なる干渉 波源力 非定常に同一チャネル干渉が発生する場合でも、安定した受信品質を得る ことができる。
[0164] なお、サブキャリア毎の干渉相関行列 RI (fs)の別な算出方法として、 A)自局宛の パケット受信時に、トレーニング信号に無信号となるタイミングが含まれる場合、無信 号タイミングで、上記 (数 20)を用いて干渉相関行列を算出してもよい。これにより自 局宛のパケット受信時に、同一チャネル干渉を与える干渉源の干渉相関行列を精度 良く検出することができる。
[0165] また、干渉相関行列 RI (fs)のさらに別の算出方法として、 B)自局宛のパケット受 信時のデータ部にぉ 、て、上記 (数 20)を用いて得られる相関行列を用いてもよ!、。
この場合、相関行列の算出するタイミング及び算出範囲をずらして、データ部で複数 のブロックに分割し、それらを干渉相関行列 RI (fS)とする。これにより、自局宛のパ ケット受信時に、同一チャネル干渉を与える干渉源の干渉相関行列を、時間的にず らしながら算出するため、干渉波源が時間的に変動する場合の追従性能を高めるこ とがでさる。
[0166] (第 3の実施形態)
図 10は、本発明の第 3の実施形態における無線通信装置 3eの構成を示す図であ る。第 3の実施形態の無線通信装置 3eは、第 1の実施形態において説明を行った図 1の構成に、さらに、信号系列受信処理手段 10による復号結果を基に再符号ィ匕及び 再変調を行うことで送信レプリカを生成する送信レプリカ生成部 70と、生成された送 信レプリカとチャネル推定値を用いて、所望信号以外の信号をキャンセル処理する 干渉キャンセル部 71と、干渉波レベル検出手段により検出された他局干渉成分を除 去する反復復号用ウェイトを生成する反復復号用ウェイト生成部 72と、干渉キャンセ ル部の出力に反復復号用ウェイトを用いて積和演算することで、他局干渉成分を除 去した所望信号成分を抽出する第 2の信号分離手段 73と、第 2の信号分離手段の 出力に対して受信処理を施す第 2の信号系列受信処理手段 74とを追加した構成で ある。
[0167] 以下、図 10を用いて、図 1と異なる構成及び動作を主に説明する。なお、ここでは、 第 1の実施形態と同様に、所望無線通信装置 1と干渉源無線通信装置 2— 1〜Sとか ら送信信号が送出され、これらの送信信号を無線通信装置 3eにおいて受信する場 合を想定している。それぞれの所望無線通信装置 1、干渉源無線通信装置 2— 1〜S 、無線通信装置 3eは、複数のアンテナを備えており、 SDM伝送が可能となっている 。また、所望の送信信号源である所望無線通信装置 1、及びこの所望無線通信装置 1と同一または近接したキャリア周波数を用いるため干渉を与える干渉源となる干渉 源無線通信装置 2— 1〜Sからの送信信号を、無線通信装置 3eが受信するものとす る。なお、無線通信装置 3eは受信構成のみを示しており、送信構成の図示は省略し ている。
[0168] ここで、非通信時における前処理モードの動作は、前述した第 1の実施形態と同様
であるのでその説明は省略する。すなわち、第 1の実施形態と同様に、非通信時に おける前処理モードの処理として、複数の干渉源無線通信装置 2からの信号を予め 受信しておき、その結果得られる干渉相関行列 RIを基に、干渉源無線通信装置 2か らの送信信号を選択的に受信できる干渉波受信アンテナウェイト WIを準備する。
[0169] また、通信時における受信処理モード中の所望信号を受信するまでの動作は、前 述した第 1の実施形態と同様である。すなわち、第 1の実施形態と同様に、通信時に おける受信処理モードの処理として、通常受信すると共に、干渉波受信アンテナゥェ イト WIで受信された信号電力に基づき、干渉波成分の変動を検出する。そして、干 渉を与える干渉源無線通信装置 2が出現、または変化した場合、新たな干渉相関行 列を用いて干渉低減する所望波分離受信アンテナウェイト WDを適応的に変更する ことで、信号分離手段 9を通して信号系列受信処理手段 10により所望信号を受信す る。
[0170] 信号系列受信処理手段 10— l〜Ntは、所望無線通信装置 1から送信された Nt個
(ただし、 Nt> l)の送信系列に対応した、信号分離手段 9からの Nt個の出力信号に 対し、所定の変調方式によるシンボルデータ列力 ビットデータ列に変換するデマツ ビング処理、送信側で施されたインターリーブと逆の動作によりビット順を復元するデ インタリーバ処理、入力されるビットデータ列に対し誤り訂正を行う誤り訂正復号処理 などを施し、送信ビット系列を復元する受信処理を行う。第 1の実施形態では、信号 系列受信処理手段 10— l〜Ntで得られた出力を最終出力としたが、第 3の実施形 態では、信号系列受信処理手段 10— l〜Ntで得られた出力を仮判定ビット列 b (k
m
)として、反復復号処理を行う点が異なる。ただし、 m= l、 . . . 、 Ntである。以下、第 1の実施形態と異なる動作の説明を行う。
[0171] 送信レプリカ生成部 70は、仮判定ビット列 b (k)に基づいて仮判定送信シンボル 系列 x[1] (k)を再生成する。ただし、 m= l、 . . . 、 Ntである。すなわち、送信レプリ 力生成部 70は、図示されていない伝送路符号ィ匕部、パンクチヤ処理部、インターリー ノ 、シンボルマッピング部を含み、それぞれを用いて下記のような動作を行う。伝送 路符号化部は、仮判定ビット列 b (k)を基に送信時に施したものと同一方式の誤り訂 正符号を施す。パンクチヤ処理部は、誤り訂正符号化処理された出力ビット列に対し
、送信時に施したものと同一の符号化率にするパンクチヤ処理を行う。インターリーバ は、パンクチヤ処理された出力ビット列に対し、送信時に施したものと同一のインター リーブ処理を施す。シンボルマッピング部は、インターリーブされた出力ビット列に対 し、所定の変調多値数力もなる変調方式を用いてシンボルマッピング処理を行う。
[0172] 干渉キャンセル部 71は、送信レプリカ生成部 70の出力である仮判定送信シンボル 系列 x[1] (k)及び所望無線通信装置 1の送信系列 x(k)が受ける伝搬路応答行列 H m 1 のチャネル推定値 Hを用いて、下記 (数 36)に示すような、受信信号ベクトル y(k)の e
レプリカ信号 y[1] (k)を生成する。ここで、 x[1] (k)は、 Nt次の列ベクトルであり、その第 m番目の要素は仮判定送信シンボル系列 x[1] (k)からなる。
[0173] [数 36] y[1】 ( ) = H 1] ( … (3 6 )
[0174] さらに、干渉キャンセル部 71は、受信部 2の出力である受信信号ベクトル y(k)から 、所望の第 r番目の空間多重ストリームを除く空間多重ストリームを干渉信号とみなし て除去を行い、干渉除去された第 r番目の空間多重ストリームを出力する。すなわち 、下記 (数 37)に示すように、干渉キャンセル出力 u (k)を算出する。
[0175] [数 37]
ur ( ) = y (た)一 HeGrx[1] (ん) … ( 3 7 )
[0176] ここで、 Grは Nt次の単位行列から r行 r列の対角成分を 0にした行列を示す。また、 rは 1から Ntまでの自然数、 xCl] (k)はレプリカ信号である。また、干渉キャンセル出力 u (k)は M個の要素をもつ列ベクトルである。以上の干渉キャンセルの動作を送信さ れたすべての M個の空間多重ストリームに対して行う。すなわち、 r= l、 . . .、 Ntに 対して (数 37)に示す干渉キャンセル動作を行う。
[0177] 反復復号用ウェイト生成部 72は、干渉波レベル検出手段 8の出力に基づき所望波 分離受信アンテナウェイト WDを更新する動作に連動して、以下のような [方式 9]ま
たは [方式 10]による第 r番目の所望波信号に対する反復復号用アンテナウェイト W D (r)を更新する動作を行い、第 2の信号分離手段 73に結果を出力する。なお、干
2
渉波レベル検出手段 8により干渉波が検出されない場合は、干渉キャンセル出力 u ( k)に対し、最大比合成ウェイトを生成する。以下において、 Drは Nt次の単位行列か ら r行 r列の対角成分以外をすベて 0にした行列を示す。 rは Nt以下の自然数である。
[0178] 1) [方式 9]干渉波受信アンテナウェイトベクトル WIとして上記 (数 5)を用いた場合 下記の (数 38)に基づ 、て反復復号用アンテナウェイト WD (r)を更新する。
2
[0179] [数 38]
[0180] ここで、 V (n)は、干渉波レベル検出手段 8で検出される干渉相関行列 RIを固有値
min n
分解して得られる M個の固有値のうち、最小固有値に対応する固有ベクトルである。 この反復復号用アンテナウェイト WD (r)は、干渉波を最小化した上で、所望波の電
2
力を最大化するアンテナウェイトとなる。これにより、干渉相関行列 RIの生成時に起 因する干渉波を抑圧した上で、所望信号を選択的に受信することができる。
[0181] 2) [方式 10]前処理モードにおいて得られる干渉相関行列 RIを記憶手段 7におい て記憶する代わりに、前処理モードにおいて得られる B (n)を記憶させ、干渉波受信 アンテナウェイトベクトル WIとして上記 (数 6)を用いた場合:
下記の (数 39)に基づ 、て反復復号用アンテナウェイト WD (r)を更新する。
2
[0182] [数 39]
漏 2(r)二 W r)Q ) 1 … (3 9 )
[0183] ここで、 Wは下記の(数 40)で、 Fは下記の(数 41)で、 Qは下記の(数 42)により
b n n
示される。なお、(数 41)における定数 aは、干渉抑圧効果を可変するパラメータであ り、 aが大きくなるほど、所望波受信電力を高めるよりも干渉抑圧を優先する空間フィ
ルタリング動作となる。この反復復号用アンテナウェイト WD (r)は、所望波の電力を
2
最大化するとともに対応する干渉波を所定レベル以下に抑圧するアンテナウェイトと なる。これにより、干渉相関行列 RIの生成時に起因していた干渉波を抑圧した上で 、所望信号を受信することができる。
[0184] [数 40]
W ) = F )—1 HeDr ... ( 4 0 )
[0185] [数 41]
¥n(r) = (l - a)ReOr (HeD f + a (n) H (") + σΕΜ … ( 4 ι )
[0187] 第 2の信号分離手段 73は、第 r番目の干渉キャンセル部の出力ベクトル u (k)に対 し、反復復号用ウェイト生成部 72の出力である反復復号用ウェイト WD (r)の積和
2
演算 Ar(k) =WD (r) Hu (k)となるように乗算する。これにより、第 r番目の干渉キヤ
2 r
ンセル部の出力ベクトル u (k)に含まれる干渉波信号成分を抑圧した信号を得ること ができる。ここで、 rは Nt以下の自然数である。
[0188] 続いて、 Nt個の第 2の信号系列受信処理手段 74— l〜Ntは、第 2の信号分離手 段 73からの Nt個の出力信号 Ar (k)をそれぞれ入力とし、所定の変調方式によるシ ンボルデータ列からビットデータ列に変換するデマッピング処理、送信側で施された インターリーブと逆の動作によりビット順を復元するディンタリーバ処理、入力されるビ ットデータ列に対し誤り訂正を行う誤り訂正復号処理などを施し、送信ビット系列を復 元する受信処理を行う。ここで、 rは Nt以下の自然数である。
[0189] 以上のような動作により、第 3の実施形態では、第 1の実施形態による効果に加え、
さらに、反復復号処理による受信信号処理を加えることで、受信ダイバーシチ効果を 高めることができ、受信品質を高めることができる。すなわち、非通信時には、前処理 モードとして複数の干渉源無線通信装置 2からの信号を予め受信しておき、その結 果得られる干渉相関行列 RIを基に、干渉源無線通信装置 2からの送信信号を選択 的に受信できる干渉波受信アンテナウェイト WIを準備する。通信時には受信処理モ ードに移行し、通常受信すると共に、干渉波受信アンテナウェイト WIで受信された信 号電力に基づき、干渉波成分の変動を検出し、干渉を与える干渉源無線通信装置 2 が出現、または変化した場合、新たな干渉相関行列を用いて干渉低減する反復復 号用アンテナウェイト WD (r)を適応的に変更することができる。
2
[0190] これにより、非定常に現れる干渉波に適応した空間的フィルタリングを、反復復号受 信処理にも導入することが可能となる。その結果、干渉抑圧効果と、所望波受信のた めの受信ダイバーシチ効果を高めることができ、これによつて通信品質の安定ィ匕をさ らに図ることができる。例えば、異なる干渉波源力も非定常に同一チャネル干渉また は隣接チャネル干渉が発生する場合でも、安定した受信品質を得ることができる。
[0191] なお、前述した第 1の実施形態の第 3変形例において、図 8に示す信号分離手段 9 2— 1〜92— 3のように、複数アンテナ M個の内、 Mより小さい k個力もなるサブァレ 一の組にして、干渉波受信電力を抑圧するウェイトを生成したが、第 3の実施形態に おける第 2の信号分離手段 73に同様なサブアレーの組に対して干渉波受信電力を 抑圧するウェイトを生成するようにしてもょ 、。このようにサブアレー化することによつ て、アンテナウェイト生成時に、行列の次数を下げることができ、逆行列演算や固有 値分解演算時の演算量を大幅に削減できるという効果が得られる。
[0192] (第 4の実施形態)
図 11は、本発明の第 4の実施形態における無線通信装置 3fの構成を示す図であ る。第 4の実施形態の無線通信装置 3fは、第 3の実施形態において説明を行った図 10の構成に、さらに、干渉波レベル検出手段 8により検出された他局干渉成分の干 渉相関行列を更新する干渉相関行列更新部 80を追加した構成である。
[0193] 以下、図 11を用いて、図 10と異なる構成及び動作を主に説明する。なお、ここでは 、第 1の実施形態と同様に、所望無線通信装置 1と干渉源無線通信装置 2— 1〜Sと
から送信信号が送出され、これらの送信信号を無線通信装置 3において受信する場 合を示している。それぞれの所望無線通信装置 1、干渉源無線通信装置 2— 1〜S、 無線通信装置 3は、複数のアンテナを備えており、 SDM伝送が可能となっている。ま た、所望の送信信号源である所望無線通信装置 1、及びこの所望無線通信装置 1と 同一または近接したキャリア周波数を用いるため干渉を与える干渉源となる干渉源無 線通信装置 2— 1〜Sからの送信信号を、無線通信装置 3fが受信するものとする。な お、無線通信装置 3fは受信構成のみを示しており、送信構成の図示は省略している
[0194] ここで、非通信時における前処理モードの動作は、前述した第 1の実施形態と同様 であるので、その説明は省略する。すなわち、第 1の実施形態と同様に、非通信時に おける前処理モードの処理として、複数の干渉源無線通信装置 2からの信号を予め 受信しておき、その結果得られる干渉相関行列 RIを基に、干渉源無線通信装置 2か らの送信信号を選択的に受信できる干渉波受信アンテナウェイト WIを準備する。
[0195] また、通信時における受信処理モード中の所望信号を受信するまでの動作は、前 述した第 1の実施形態と同様である。すなわち、第 1の実施形態と同様に、通信時に おける受信処理モードの処理として、通常受信すると共に、干渉波受信アンテナゥェ イト WIで受信された信号電力に基づき、干渉波成分の変動を検出する。そして、干 渉を与える干渉源無線通信装置 2が出現、または変化した場合、新たな干渉相関 F 行列を用いて干渉低減する所望波分離受信アンテナウェイト WDを適応的に変更す ることで、信号分離手段 9を通して信号系列受信処理手段 10により所望信号を受信 する。
[0196] また、第 3の実施形態と同様に、信号系列受信処理手段 10— l〜Ntにおいて、仮 判定ビット列 b (k)を生成し、送信レプリカ生成部 70において、仮判定ビット列 b (k) m m に基づいて仮判定送信シンボル系列 x[1] (k)を再生成する。ただし、 m= l、 . . .、 Ntである。
[0197] そして、干渉キャンセル部 71は、第 3の実施形態と同様に、送信レプリカ生成部 70 の出力である仮判定送信シンボル系列 x[1] (k)及び所望無線通信装置 1の送信系 列 x (k)が受ける伝搬路応答行列 Hのチャネル推定値 Hを用いて、(数 36)に示す
1 e
ような、受信信号ベクトル y(k)のレプリカ信号 y[1] (k)を生成する。さらに、干渉キャン セル部 71は、受信部 2の出力である受信信号ベクトル y(k)から、所望の第 r番目の 空間多重ストリームを除く空間多重ストリームを干渉信号とみなし除去を行い、干渉 除去された第 r番目の空間多重ストリームを出力する。すなわち、(数 37)に示すよう に、干渉キャンセル出力 u (k)を算出する。以下、第 3の実施形態と異なる動作の説 明を行う。
[0198] 干渉相関行列更新部 80は、干渉波レベル検出手段 8の出力に基づき所望波分離 受信アンテナウェイト WDを更新する動作に連動して、以下のように、干渉相関行列 RIまたは B (n) B (n) Hを更新する動作を行い、反復復号用ウェイト生成部に結果を 出力する。なお、干渉波レベル検出手段 8により干渉波が検出されない場合は、更 新動作は行わない。
[0199] また、干渉相関行列更新部 80は、送信レプリカ生成部 70の出力である仮判定送 信シンボル系列 x[1] (k)及び所望無線通信装置 1の送信系列 x (k)が受ける伝搬路 応答行列 Hの推定値チャネル Hを用いて、下記 (数 43)に示すような、受信信号べ
1 e
タトル y(k)のレプリカ信号 y[1] (k)を生成し、さらに、受信部 2の出力である受信信号 ベクトル y(k)から、すべての空間多重ストリームの除去を行った所望信号除去信号 ベクトルを出力する。すなわち、(数 43)に示すように、所望信号除去信号ベクトル u ( a k)を算出する。ここで、 x[1] (k)は、 Nt次の列ベクトルであり、その第 m番目の要素は 仮判定送信シンボル系列 x[1] (k)力もなる。
[0200] [数 43] ): y (た) - y[1】 ( ) - ( 3 )
[0201] 続いて、干渉相関行列更新部 80は、干渉波レベル検出手段 8の出力に基づき所 望波分離受信アンテナウェイト WDを更新する動作に連動して、同じ所望波分離受 信アンテナウェイト WDが使われる期間に相当するサンプル数 Nwの、所望信号除去 信号ベクトル u (k)を用いて、下記 (数 44)または (数 45)に示す干渉相関行列を算 a
出する。
[0202] [数 44]
[0203] [数 45]
1 Nw
„ H : ∑U„(k ( … (4 5 )
ん l
[0204] 反復復号用ウェイト生成部 72は、干渉相関行列更新部 80の出力である更新され た干渉相関行列を用いて、第 r番目の所望波信号に対する反復復号用アンテナゥェ イト WD (r)を更新する動作を行い、第 2の信号分離手段 73に結果を出力する。ここ
2
で、反復復号用アンテナウェイト WD (r)の算出は、第 3の実施形態と同様である。な
2
お、干渉波レベル検出手段 8により干渉波が検出されない場合は、干渉キャンセル 出力 u (k)に対し、所望波信号の受信電力を最大化する最大比合成ウェイトを生成 する。
[0205] 以上のような動作により、第 4の実施形態では、干渉相関行列更新部 80を設けるこ とによって、受信信号と反復復号処理で得られる送信レプリカ信号を用いて、干渉相 関行列を再推定することができる。これにより、干渉波成分が非通信時に比較して時 間変動が含まれる場合でも、再推定することで、時間変動に対応した新たな干渉相 関行列を算出することができ、これを用いて干渉低減する反復復号用アンテナウェイ ト WD (r)を適応的に変更することができる。
2
[0206] このように第 4の実施形態によれば、干渉抑圧効果と、所望波受信のための受信ダ ィバーシチ効果を高めることができ、第 3の実施形態による効果に加え、さらに、通信 品質の安定ィ匕をさらに図ることができる。例えば、異なる干渉波源力も非定常に同一 チャネル干渉または隣接チャネル干渉が発生する場合でも、安定した受信品質を得 ることがでさる。
[0207] なお、第 4の実施形態では、空間多重数 Ntが 1より大きい場合の構成を示したが、 空間多重数 Nt= lの場合、すなわち、空間多重伝送を行わない場合も同様に適応 が可能である。
[0208] 図 12は、空間多重伝送を行わない場合の無線通信装置の変形例の構成を示すブ ロック図である。以下図 12を用いて、この変形例の動作の説明を行う。図 12において 、図 11と異なる点は、干渉キャンセル部 71を含まない点であり、第 2の信号分離手段 73aの動作が一部異なる。以下、図 12の無線通信装置 3gにおける第 2の信号分離 手段 73aの動作のみ説明を行う。
[0209] 第 2の信号分離手段 73aは、受信信号ベクトル y (k)に対し、反復復号用ウェイト生 成部 72の出力である反復復号用ウェイト WD (r)の積和演算 A (k) =WD (r) Hy(k
2 1 2
)となるように乗算する。これにより、受信信号ベクトル y (k)に含まれる干渉波信号成 分を抑圧した所望波信号を得ることができる。以上の動作により、空間多重数 Nt= l の場合、すなわち、空間多重伝送を行わない場合についても、第 4の実施形態と同 様の効果を得ることができる。
[0210] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 10月 5日出願の日本特許出願 (特願 2005-292504)、 2006年 9月 29日出願の日本特許出願(特願 2006-269287)、
に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0211] 本発明は、干渉波が定常的に存在しない状態においても、非定常に現れる干渉波 に適応した空間的フィルタリングを実現でき、干渉除去能力を高めることが可能となる 効果を有し、例えば複数の端末で同一チャネルを使用するマルチセル構成の無線 通信システムの端末等に用いられ、干渉波源からの干渉成分を抑制して所望信号を 受信可能な無線通信装置等に有用である。
Claims
[1] 干渉波成分の信号を選択的に受信する干渉波受信アンテナウェイトを用いて、前 記干渉波成分を含む干渉信号を受信する干渉信号受信手段と、
前記干渉信号受信手段の出力から、干渉波成分の信号レベルを検出する干渉波 レベル検出手段と、
前記干渉波レベル検出手段の出力を基に、所望信号を受信する所望波分離受信 アンテナウェイトを可変する信号分離手段と、
を有する無線通信装置。
[2] 請求項 1記載の無線通信装置であって、
前記所望波分離受信アンテナウェイトは、干渉波受信電力を最小化するウェイトで ある無線通信装置。
[3] 請求項 1記載の無線通信装置であって、
前記所望波分離受信アンテナウェイトは、信号電力対干渉雑音電力を最大化する ウェイトである無線通信装置。
[4] 請求項 1記載の無線通信装置であって、
前記所望波分離受信アンテナウェイトは、複数アンテナ N個の内、 Nより小さい k個 力 なるサブアレーに対して、干渉波受信電力を最小化するウェイトである無線通信 装置。
[5] 請求項 1記載の無線通信装置であって、
前記信号分離手段は、
他局干渉信号を優先的に除去するウェイトを乗算する第 1のウェイト乗算部と、前 記第 1のウェイト乗算部の出力に対し、空間多重ストリームを分離する空間多重分離 ウェイトを乗算する第 2のウェイト乗算部とを有する無線通信装置。
[6] 請求項 1記載の無線通信装置であって、
前記信号分離手段は、
他局干渉除去信号を優先的に除去するウェイトを乗算する第 1のウェイト乗算部と 、前記第 1のウェイト乗算部の出力に対し、信号電力を最大化する最大比合成ウェイ トを乗算する第 2のウェイト乗算部とを有する無線通信装置。
[7] 請求項 5または 6に記載の無線通信装置であって、
前記第 1のウェイト乗算部の出力を用いてチャネル推定を行うチャネル推定部を備 え、
前記信号分離手段は、前記チャネル推定部の出力を基に第 2のウェイト乗算部で 用いるウェイトを生成する無線通信装置。
[8] 請求項 1記載の無線通信装置であって、
前記信号分離手段は、前記干渉波レベル検出手段の出力が所定値を超えた場合
、所望信号を受信すると共に、検出された干渉波を抑圧する所望波分離受信アンテ ナウエイトに変更する無線通信装置。
[9] 請求項 1記載の無線通信装置であって、
前記干渉波レベル検出手段は、複数の干渉源からの干渉波成分の信号レベルを 検出する無線通信装置。
[10] 請求項 9記載の無線通信装置であって、
前記信号分離手段は、前記干渉波レベル検出手段の出力における複数の干渉源 からの干渉波成分の信号レベルが所定値を超えた場合、所望信号を受信すると共 に、検出された複数の干渉波を干渉波成分の信号レベルに応じて抑圧する所望波 分離受信アンテナウェイトに変更する無線通信装置。
[11] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉波受信アンテナウェイトは、干渉波電力対所望信号電力を最大化するゥ エイトである無線通信装置。
[12] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉波受信アンテナウェイトは、当該無線通信装置以外の無線通信装置間の 通信信号の受信電力を最大化するウェイトである無線通信装置。
[13] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉信号受信手段は、所望信号が含まれない時間区間における受信信号か ら得られる相関行列を用いて、干渉波電力を最大化する干渉波受信アンテナウェイ トを算出する無線通信装置。
[14] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉信号受信手段は、所定時間内での受信信号力 得られる相関行列を用 いて、干渉波電力を最大化する干渉波受信アンテナウェイトを算出する無線通信装 置。
[15] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉信号受信手段は、当該無線通信装置の非通信時に、前記当該無線通信 装置以外の無線通信装置間の通信信号の受信結果を基に、一つまたは複数の前 記干渉波受信アンテナウェイトを決定する無線通信装置。
[16] 請求項 1、 8、 9のいずれかに記載の無線通信装置であって、
前記干渉信号を選択的に受信するための干渉波受信情報を記憶する記憶手段を 有し、
前記干渉信号受信手段は、受信信号が当該無線通信装置以外の宛先の信号で ある場合に、前記干渉波成分に関する干渉波受信情報を算出して前記記憶手段に 記憶させる無線通信装置。
[17] 請求項 16記載の無線通信装置であって、
前記干渉信号受信手段は、前記干渉波受信情報として干渉波に関する干渉相関 行列を算出し、前記干渉相関行列に基づいて生成される干渉波受信アンテナウェイ トを用いて干渉信号を受信する無線通信装置。
[18] 請求項 17記載の無線通信装置であって、
前記信号分離手段は、受信信号が当該無線通信装置宛の信号である場合に、前 記干渉相関行列に基づいて生成される所望波分離受信アンテナウェイトを用いて所 望信号を分離する無線通信装置。
[19] 請求項 17記載の無線通信装置であって、
前記記憶手段は、前記干渉波受信情報として干渉波に関する干渉相関行列を個 別に、あるいは送信元毎に分類して個別に記憶する無線通信装置。
[20] 請求項 1記載の無線通信装置であって、
前記所望波分離受信アンテナウェイトで受信した所望信号の受信結果を基に、送 信信号のレプリカを生成する送信レプリカ生成部と、
前記送信レプリカ生成部の出力を基に、受信信号から所望信号の一つ以上をキヤ
ンセルする干渉キャンセル部と、
前記干渉波レベル検出手段で検出された干渉信号の相関行列を用いて、干渉信 号を抑圧する反復復号用ウェイトを生成する反復復号用ウェイト生成部と、 前記干渉キャンセル部の出力に対し、前記反復復号用ウェイトを乗算する第 2の信 号分離手段とを有する無線通信装置。
請求項 1記載の無線通信装置であって、
前記所望波分離受信アンテナウェイトで受信した所望信号の受信結果を基に、送 信信号のレプリカを生成する送信レプリカ生成部と、
前記送信レプリカ生成部の出力を基に、受信信号力 全ての所望信号をキャンセ ルして干渉信号成分を抽出し、前記干渉波レベル検出手段で検出された干渉信号 の相関行列を更新する干渉相関行列更新部と、
前記干渉相関行列更新部の出力を用いて、干渉信号を抑圧する反復復号用ゥェ イトを生成する反復復号用ウェイト生成部と、
前記干渉キャンセル部の出力に対し、前記反復復号用ウェイトを乗算する第 2の信 号分離手段とを有する無線通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/063,203 US7937057B2 (en) | 2005-10-05 | 2006-10-05 | Radio communication device |
CN2006800361056A CN101278500B (zh) | 2005-10-05 | 2006-10-05 | 无线通信设备 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-292504 | 2005-10-05 | ||
JP2005292504 | 2005-10-05 | ||
JP2006269287A JP4939888B2 (ja) | 2005-10-05 | 2006-09-29 | 無線通信装置 |
JP2006-269287 | 2006-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007040268A1 true WO2007040268A1 (ja) | 2007-04-12 |
Family
ID=37906310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319997 WO2007040268A1 (ja) | 2005-10-05 | 2006-10-05 | 無線通信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7937057B2 (ja) |
JP (1) | JP4939888B2 (ja) |
CN (1) | CN101278500B (ja) |
WO (1) | WO2007040268A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008093504A1 (ja) * | 2007-02-01 | 2008-08-07 | Sanyo Electric Co., Ltd. | 受信方法および装置 |
WO2012092751A1 (zh) * | 2011-01-05 | 2012-07-12 | 中兴通讯股份有限公司 | 一种邻区干扰检测方法及系统 |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7593356B1 (en) * | 2002-06-25 | 2009-09-22 | Cisco Systems, Inc. | Method and system for dynamically assigning channels across multiple access elements in a wireless LAN |
US8027417B2 (en) | 2003-12-19 | 2011-09-27 | Nortel Networks Limited | Interference-weighted communication signal processing systems and methods |
JP4593490B2 (ja) * | 2006-02-10 | 2010-12-08 | 日本電信電話株式会社 | 無線送信方法、無線受信方法、無線通信装置 |
EP1843484A1 (en) * | 2006-04-03 | 2007-10-10 | Nokia Siemens Networks Gmbh & Co. Kg | Method for data transmission in a radio communication system as well as radio station and radio communications system |
JP4484911B2 (ja) * | 2006-08-28 | 2010-06-16 | 三星電子株式会社 | 広帯域無線接続システムにおける受信装置及び方法 |
WO2008077113A1 (en) * | 2006-12-19 | 2008-06-26 | Airgain, Inc. | Optimized directional mimo antenna system |
WO2008093619A1 (ja) | 2007-01-29 | 2008-08-07 | Panasonic Corporation | 無線通信システム、無線通信装置及び再送制御方法 |
WO2008146713A1 (ja) * | 2007-05-29 | 2008-12-04 | Sharp Kabushiki Kaisha | 無線受信装置、無線通信システム及び無線通信方法 |
DE102008031068A1 (de) * | 2007-07-10 | 2009-01-15 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen |
US7894774B2 (en) * | 2007-08-02 | 2011-02-22 | Wireless Technology Solutions Llc | Communication unit and method for interference mitigation |
EP2031760B1 (en) * | 2007-08-31 | 2014-02-26 | Mitsubishi Electric R&D Centre Europe B.V. | Method for estimating, in a communication system, the level of interference plus noise affecting received signals representative of a set of received pilot symbols |
KR101400852B1 (ko) * | 2007-12-05 | 2014-05-29 | 삼성전자주식회사 | 다중 안테나 시스템에서 간섭 제거 장치 및 방법 |
JP5020158B2 (ja) * | 2008-04-25 | 2012-09-05 | 日本電信電話株式会社 | 無線受信装置、干渉除去方法、無線通信システムおよび無線通信方法 |
JP5177527B2 (ja) * | 2008-07-28 | 2013-04-03 | シャープ株式会社 | 通信システム、受信装置及び通信方法 |
WO2010054474A1 (en) | 2008-11-13 | 2010-05-20 | Nortel Networks Limited | Method and system for reduced complexity channel estimation and interference cancellation for v-mimo demodulation |
JP5475276B2 (ja) * | 2008-12-24 | 2014-04-16 | 三星電子株式会社 | 受信装置、及び信号検出方法 |
KR101584689B1 (ko) * | 2009-03-04 | 2016-01-13 | 삼성전자주식회사 | 다중 안테나 시스템에서 다중 사용자 간섭 제거 방법 및 장치 |
JP2010203965A (ja) * | 2009-03-04 | 2010-09-16 | Toshiba Corp | レーダ装置、受信機及び相関成分検出装置 |
CN101932129A (zh) * | 2009-06-21 | 2010-12-29 | 先耀无线股份有限公司 | 多使用者、多模式基带信号方法、时间/频率同步及接收器架构 |
US20110065409A1 (en) * | 2009-09-17 | 2011-03-17 | Peter Kenington | Frequency shifting based interference cancellation device and method |
US8411783B2 (en) * | 2009-09-23 | 2013-04-02 | Intel Corporation | Method of identifying a precoding matrix corresponding to a wireless network channel and method of approximating a capacity of a wireless network channel in a wireless network |
WO2011052575A1 (ja) * | 2009-10-26 | 2011-05-05 | 住友電気工業株式会社 | 無線通信装置 |
US8311485B2 (en) * | 2010-01-13 | 2012-11-13 | Sensormatic Electronics, LLC | Method and system for receiver nulling using coherent transmit signals |
JP5644475B2 (ja) * | 2010-02-18 | 2014-12-24 | 富士通株式会社 | 受信装置 |
US8737496B2 (en) * | 2010-04-01 | 2014-05-27 | Telefonaktiebolaget L M Ericsson (Publ) | Channel quality estimation for MLSE receiver |
US8446939B2 (en) * | 2010-04-21 | 2013-05-21 | Telefonaktiebolaget L M Ericsson (Publ) | Channel quality estimation for MLSE MIMO receiver |
JP5641787B2 (ja) * | 2010-05-31 | 2014-12-17 | シャープ株式会社 | 端末装置及びそれを用いた無線通信システム |
CN102006105B (zh) * | 2010-10-29 | 2014-07-02 | 北京大学 | 深空接收天线组阵相关加权方法及系统 |
CN107612597B (zh) | 2011-02-18 | 2021-01-05 | 太阳专利托管公司 | 信号生成方法及信号生成装置 |
JP2012181052A (ja) * | 2011-02-28 | 2012-09-20 | Toshiba Corp | 相関抑圧フィルタ、ウェイト算出方法、ウェイト算出装置、アダプティブアレーアンテナ及びレーダ装置 |
JP5670240B2 (ja) * | 2011-03-29 | 2015-02-18 | 京セラ株式会社 | 通信装置及び通信方法 |
JP5681011B2 (ja) * | 2011-03-29 | 2015-03-04 | 京セラ株式会社 | 通信装置及び通信方法 |
JP5611897B2 (ja) * | 2011-05-30 | 2014-10-22 | 日本電信電話株式会社 | 受信機 |
US9635572B2 (en) * | 2011-09-26 | 2017-04-25 | Lg Electronics Inc. | Method for coordinating interference in an uplink interference channel for a terminal in a wireless communication system |
EP2590336A1 (en) * | 2011-11-07 | 2013-05-08 | Panasonic Corporation | Precoding matrix set quality measurement and reporting |
JP5754353B2 (ja) * | 2011-11-11 | 2015-07-29 | 日本電信電話株式会社 | 無線信号の受信方法及び受信装置 |
WO2013108742A1 (ja) * | 2012-01-18 | 2013-07-25 | 京セラ株式会社 | 無線通信装置および無線通信方法 |
JP2015159421A (ja) * | 2014-02-24 | 2015-09-03 | パナソニック株式会社 | 無線通信装置及び指向性制御方法 |
US9781612B2 (en) * | 2014-03-31 | 2017-10-03 | Intel IP Corporation | Correlation-based self-interference suppression |
CN105490688B (zh) * | 2015-11-24 | 2018-08-28 | 航天恒星科技有限公司 | 一种阵列天线抗干扰的方法及装置 |
JP6374044B1 (ja) * | 2017-02-16 | 2018-08-15 | ソフトバンク株式会社 | 基地局、干渉抑圧装置及び干渉抑圧方法 |
FR3067189B1 (fr) * | 2017-06-01 | 2020-06-12 | Continental Automotive France | Procede de suppression spatiale et temporelle d'interferences multi-trajets pour recepteur de signaux radio modules en frequence |
KR102470863B1 (ko) | 2018-03-09 | 2022-11-28 | 삼성전자주식회사 | 간섭량 측정 방법 및 장치 |
WO2020076201A1 (en) * | 2018-10-08 | 2020-04-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Prach detection in a radio access network |
JP7257992B2 (ja) * | 2020-06-29 | 2023-04-14 | 株式会社Kddi総合研究所 | 情報処理装置、情報処理方法およびプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09219615A (ja) * | 1996-02-14 | 1997-08-19 | Toshiba Corp | アダプティブアレイ送受信装置の指向性制御方法と無線通信システムおよびアダプティブアレイ送受信装置 |
JP2001127679A (ja) * | 1999-08-20 | 2001-05-11 | Alcatel | Cdma移動無線システム |
JP2002368663A (ja) * | 2001-06-05 | 2002-12-20 | Matsushita Electric Ind Co Ltd | 適応アンテナ装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990011656A1 (fr) * | 1989-03-28 | 1990-10-04 | Nippon Telegraph And Telephone Corporation | Circuit recepteur en diversite |
JP2663820B2 (ja) | 1992-12-28 | 1997-10-15 | 日本電気株式会社 | 判定帰還形等化器 |
JP2967571B1 (ja) * | 1998-05-01 | 1999-10-25 | 日本電気株式会社 | Cdmaマルチユーザ受信装置と通信システム |
US6661832B1 (en) * | 1999-05-11 | 2003-12-09 | Qualcomm Incorporated | System and method for providing an accurate estimation of received signal interference for use in wireless communications systems |
JP3851478B2 (ja) * | 1999-12-16 | 2006-11-29 | 日本電信電話株式会社 | 適応アレーアンテナ装置 |
US7042869B1 (en) * | 2000-09-01 | 2006-05-09 | Qualcomm, Inc. | Method and apparatus for gated ACK/NAK channel in a communication system |
US7057573B2 (en) * | 2001-11-07 | 2006-06-06 | Advanced Telecommuications Research Institute International | Method for controlling array antenna equipped with a plurality of antenna elements, method for calculating signal to noise ratio of received signal, and method for adaptively controlling radio receiver |
JP4166026B2 (ja) * | 2002-03-22 | 2008-10-15 | 三洋電機株式会社 | 無線装置、空間パス制御方法および空間パス制御プログラム |
-
2006
- 2006-09-29 JP JP2006269287A patent/JP4939888B2/ja not_active Expired - Fee Related
- 2006-10-05 US US12/063,203 patent/US7937057B2/en not_active Expired - Fee Related
- 2006-10-05 CN CN2006800361056A patent/CN101278500B/zh not_active Expired - Fee Related
- 2006-10-05 WO PCT/JP2006/319997 patent/WO2007040268A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09219615A (ja) * | 1996-02-14 | 1997-08-19 | Toshiba Corp | アダプティブアレイ送受信装置の指向性制御方法と無線通信システムおよびアダプティブアレイ送受信装置 |
JP2001127679A (ja) * | 1999-08-20 | 2001-05-11 | Alcatel | Cdma移動無線システム |
JP2002368663A (ja) * | 2001-06-05 | 2002-12-20 | Matsushita Electric Ind Co Ltd | 適応アンテナ装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008093504A1 (ja) * | 2007-02-01 | 2008-08-07 | Sanyo Electric Co., Ltd. | 受信方法および装置 |
WO2012092751A1 (zh) * | 2011-01-05 | 2012-07-12 | 中兴通讯股份有限公司 | 一种邻区干扰检测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101278500A (zh) | 2008-10-01 |
US7937057B2 (en) | 2011-05-03 |
US20080293371A1 (en) | 2008-11-27 |
JP2007129697A (ja) | 2007-05-24 |
JP4939888B2 (ja) | 2012-05-30 |
CN101278500B (zh) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4939888B2 (ja) | 無線通信装置 | |
CA2536425C (en) | Frequency-independent spatial processing for wideband miso and mimo systems | |
JP5146920B2 (ja) | 受信装置および移動通信システム | |
US9258041B2 (en) | Methods and systems for combined cyclic delay diversity and precoding of radio signals | |
CN101056286B (zh) | 改善突发干扰变化期间无线电网中的信道估计的方法 | |
CN102571177B (zh) | 无线基站装置、终端装置及无线通信方法 | |
US20160165603A1 (en) | Radio communication system, radio communication method, radio communication device, reception device, and program | |
JP4911780B2 (ja) | 無線通信システム、受信装置及び受信方法 | |
US20070197166A1 (en) | Receiver apparatus, receiving method, and wireless communication system | |
NO329815B1 (no) | Databehandling i et sambandsnett med flere inn- og utganger (MIMO), ved bruk av kanalstatus | |
JP4903122B2 (ja) | 無線通信システム、受信装置、受信方法 | |
WO2009122842A1 (ja) | 移動通信システム、受信装置及び方法 | |
WO2009113639A1 (ja) | 受信装置および受信方法 | |
WO2012063739A1 (ja) | 無線制御装置、無線端末装置、無線通信システム、無線制御装置および無線端末装置の制御プログラムおよび集積回路 | |
JP5859913B2 (ja) | 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路 | |
Kurosaki et al. | SDM-COFDM scheme using feed-forward inter-channel interference canceller for broadband mobile communications | |
Bahri et al. | Performance of adaptive beamforming algorithm for LMS-MCCDMA MIMO smart antennas. | |
JP5241437B2 (ja) | 受信装置、及び信号処理方法 | |
JP4549162B2 (ja) | 無線基地局装置及び無線通信方法 | |
JP5802942B2 (ja) | 無線通信システム、無線送信装置および無線通信方法 | |
CN106549898B (zh) | 一种基于mimo-ofdm系统的ssfe信号检测方法和装置 | |
Padmaja et al. | Performance analysis of MIMO-OFDM under imperfect channel state information | |
Bahri et al. | Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer | |
Li | Study on Multiuser MIMO Downlink Communication Schemes | |
Ma | Exploration of Spatial Diversity in Multi-Antenna Wireless Communication Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680036105.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12063203 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06811324 Country of ref document: EP Kind code of ref document: A1 |