WO2007040260A1 - オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法 - Google Patents

オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法 Download PDF

Info

Publication number
WO2007040260A1
WO2007040260A1 PCT/JP2006/319956 JP2006319956W WO2007040260A1 WO 2007040260 A1 WO2007040260 A1 WO 2007040260A1 JP 2006319956 W JP2006319956 W JP 2006319956W WO 2007040260 A1 WO2007040260 A1 WO 2007040260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
ozone oxidation
acid
water
surface tension
Prior art date
Application number
PCT/JP2006/319956
Other languages
English (en)
French (fr)
Inventor
Yoshikuni Takeuchi
Taku Ogura
Masaru Tamura
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to EP06811294A priority Critical patent/EP1942170A4/en
Priority to JP2007538797A priority patent/JP5090172B2/ja
Priority to US12/083,130 priority patent/US20100147777A1/en
Publication of WO2007040260A1 publication Critical patent/WO2007040260A1/ja
Priority to US13/113,151 priority patent/US8337710B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/12Prevention of foaming
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • Ozone oxidation accelerator, ozone oxidation accelerator composition and ozone treatment method Ozone oxidation accelerator, ozone oxidation accelerator composition and ozone treatment method
  • the present invention relates to an ozone oxidation accelerator and an ozone oxidation accelerator composition that promote ozone oxidation and exhibit excellent effects in bleaching, sterilization, deodorization, decomposition, synthesis, and the like, and an ozone treatment method. .
  • Ozone has an extremely high standard oxidation-reduction potential at 25 ° C of 2.07V, and has strong oxidizing power following fluorine. For this reason, ozone treatment has been conventionally performed in various fields such as semiconductor cleaning, food cleaning (sterilization), and water purification using this acid squid.
  • ozone decomposes into oxygen and has an environmentally friendly aspect, so its use has been increasing in recent years.
  • Patent Document 1 describes a sterilization method using ozone and hydrogen peroxide in combination as a method for obtaining a high treatment effect while reducing the amount of ozone used.
  • Patent Document 2 describes a sterilization method in which food is alternately immersed in ozone water, an organic acid solution, and Z or an alcohol solution.
  • Patent Document 3 describes a sterilizing detergent composition containing ozone water and a surfactant, and the sterilizing effect is promoted by immersing the object to be treated in the powerful sterilizing detergent composition. It is described. This is mainly to supplement the cleaning effect on the oil component with a surfactant and to aim at the residual effect of ozone.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-226579
  • Patent Document 2 JP-A-3-164155
  • Patent Document 3 Japanese Patent Laid-Open No. 6-313194
  • the ozone treatment method includes a method of supplying (aeration) ozone (gas) into the water to be treated containing the object to be treated (ozone aeration treatment) and the above-described Patent Documents 2 to 3.
  • ozone aeration treatment a method of immersing the treatment object in ozone water in which ozone is dissolved (ozone water immersion treatment) is generally used.
  • ozone aeration treatment has advantages such as less ozone usage, less water usage, and the ability to deal with a large amount of organic matter to be treated compared to ozone water immersion treatment.
  • the present invention has been made in view of the above circumstances, and in ozone aeration treatment, particularly ozone aeration treatment at a low concentration, an ozone oxidation accelerator capable of suppressing foaming of the water surface and easily promoting ozone oxidation, ozone Oxidation promoter composition and ozone treatment method It is a problem.
  • the dynamic surface tension of a 0.5 mass% aqueous solution at 25 ° C. at 100 milliseconds (msec) is 70 mNZm or less and the dynamic surface tension at 30 seconds (sec) It is an ozone oxidation promoter consisting of a compound with a surface tension of 55 to 67 mNZm.
  • the second aspect of the present invention is an ozone oxidation accelerator composition containing the ozone oxidation accelerator of the first aspect.
  • the third aspect of the present invention is the presence of the ozone oxidation accelerator composition of the second aspect!
  • An ozone treatment method characterized by having a step of supplying ozone into the water to be treated containing the treatment object.
  • the bubbling of the water surface can be suppressed in ozone aeration treatment, particularly ozone aeration treatment at a low concentration. Easy to promote. Therefore, according to the present invention, the amount of ozone used in ozone aeration treatment can be reduced and high efficiency can be achieved.
  • FIG. 1 In Test Example 2, when the aeration was performed by changing the ozone concentration without adding the additive, and when the glycerol or triacetin was added in the low concentration ozone aeration. It is a graph which shows the time change of a fungal effect.
  • FIG. 2 In Test Example 2, the bactericidal effect obtained when ozone aeration was carried out while changing the ozone concentration without adding an additive, and when glycerin or triacetin was added in a low concentration ozone aeration. It is a graph to show.
  • Ozone oxidation promoter >> Ozone oxidation promoting agent of the present invention, 25 ° C ⁇ this definitive 0.5 mass 0/0 aqueous 100msec during the dynamic surface tension (hereinafter, sometimes referred to 100msec dynamic surface tension) is not more than 70MNZm, It is composed of a compound having a dynamic surface tension of 30 sec (hereinafter also referred to as 30 sec dynamic surface tension) force of 5 to 67 mNZm.
  • dynamic surface tension means the surface tension when a new interface is formed or when the interface is unstable and in a flow or stirring state.
  • the hemispherical interface water And gas interface.
  • a force surface tension
  • buoyancy increases as the amount of gas in the interface increases.
  • the buoyancy is greater than the surface tension
  • the hemispherical interface separates the straw tip force, forming a bubble and rising to the water surface. Then, the formation of bubbles is repeated, and when bubbles gather on the water surface, a foam is formed.
  • the interface is in an unstable state. After the bubbles are formed (after the gas supply stops), the interface becomes stable over time. The surface tension gradually decreases with this stability and becomes constant (equilibrium value). In this way, the surface tension until the surface tension reaches the equilibrium value after the bubble interface is formed (until the interface becomes stable) is called dynamic surface tension. It changes every hour.
  • the smaller the equilibrium value the higher the stability of the bubbles and foams, and the more difficult it is to break. The larger the equilibrium value, the lower the stability of the bubbles and foams, and the more likely they are to break.
  • the characteristics of bubbles generated in the water to be treated by ozone aeration are controlled by the components blended in the water to be treated. As a result, excellent effects can be obtained as described below.
  • the dynamic surface tension of 100 msec is 70 mNZm or less, preferably 68 mNZm or less, more preferably 65 mNZm. There is no particular lower limit, but 55mNZm or more 60mNZm or more is more preferable.
  • the 100 msec dynamic surface tension is defined as 0 when the gas supply is started, and the force at that time is also the dynamic surface tension after 100 msec. That is, in the example in which the straw force is also fed, the dynamic surface tension after 100 msec from the start of the gas supply into the straw is shown.
  • the dynamic surface tension is 100 msec or less, the buoyancy is greater than the surface tension when the gas supply is low, and bubbles are separated from the tip of the hemispherical interfacial force straw. That is, fine bubbles are formed.
  • the contact efficiency between ozone and the object to be processed is improved, and as a result, the ozone treatment efficiency is improved.
  • the 30 sec dynamic surface tension is 55 to 67 mNZm, preferably 58 to 67 mNZm, more preferably 60 to 67 mNZm.
  • the 30-second dynamic surface tension is a dynamic surface tension 30 seconds after the time when the gas supply is started at 0.
  • some dynamic surface tensions take several tens of hours to reach an equilibrium value, and the force that takes time to measure them.
  • the 30-second dynamic surface tension adopted in the present invention is not necessarily the same as the equilibrium value.
  • the 30-second dynamic surface tension is sufficient as an index for evaluating the stability of bubbles and foam.
  • the formed bubbles have moderate stability.
  • the 30-second dynamic surface tension is less than 55 mNZm, the stability of the bubbles becomes too high, and when the aeration treatment is performed, the water surface becomes foamed and overflows, etc., making the treatment itself difficult. If the 30-second dynamic surface tension exceeds 67mNZm, the ozone treatment efficiency will deteriorate. It is presumed that this is because bubbles with low bubble stability break before contacting the object to be treated.
  • the 100 msec dynamic surface tension and the 30 sec dynamic surface tension are obtained by, for example, preparing a 0.5 mass% aqueous solution (25 ° C) by dissolving the compound in water, For example, it can be measured using a Theta t60 (trade name) manufactured by Eihiro Seiki Co., Ltd.
  • the ozone oxidation promoter of the present invention preferably has a molecular weight of 100 or more. Force S is more preferred.
  • a compound having a molecular weight of 100 or more is suitable for the present invention in which the 30-second dynamic surface tension tends to be a value of 67 mN / m or less.
  • it is difficult to volatilize it is difficult to cause various problems due to volatilization.
  • the ozone oxidation accelerator of the present invention preferably has a molecular weight of 250 or less.
  • the dynamic surface tension of 100 msec tends to be a value of 70 mNZm or less.
  • foaming is less likely to occur because the 30-second dynamic surface tension tends to be 55 mNZm or more. Therefore, it is suitable for the present invention.
  • the ozone oxidation accelerator of the present invention is preferably a compound having low hydrophobicity.
  • the compound having low hydrophobicity include compounds having a polar group such as a carboxy group and a hydroxyl group (such as carboxylic acid and alcohol), and compounds having an oxygen atom in the structure (such as an ester and ether).
  • ozone acid soot promoter are not particularly limited as long as the conditions of the dynamic surface tension are satisfied.
  • organic acids and salts thereof (hereinafter collectively referred to as these)
  • organic acids (salts) include carboxylic acids and their sodium, potassium and ammonium salts.
  • the carboxylic acid (salt) preferably has 7 to 10 carbon atoms, more preferably 7 to 9 and even more preferably 8 to 9.
  • Specific examples include 2-ethylhexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, and salts thereof. Of these, octanoate is preferred, and sodium octanoate is particularly preferred.
  • Alcohols include pentanediol, 2-methyl-2,4 pentanediol, diacetone alcohol, 3-methyl-1,3 butanediol, 2-methyl-1,3 butanediol, 3-methyl-1,4 butanediol, 2-methylone 1,4-butanediol, 2-methyl-1,2-butanediol, 3-methyl-1,2-butanediol and the like.
  • ketones include acetylacetone.
  • ethers of glycols ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, etc.
  • examples include diethylene glycol jetyl ether, diethylene glycol dimethyl ether, diethylene glycol monomono thioenoate, Mono- or dialkyl ethers of diethylene glycol, such as diethylene glycol monobutinoreethenole; propylene glycol monoethyl ether, propylene glycol monoethylenol ether monopropylene glycol mono- or dialkyl ether; dipropylene glycol monoethyl ether , Dipropylene glycol monobutyl ether, dipropylene glycol monomonopropylene ether, di B pyrene glycol Honoré mono-methylol Honoré ether dipropylene glycol Honoré monomer other such Honoré is like dialkyl ethers.
  • ester examples include carboxylic acid ester, sulfuric acid ester, phosphoric acid ester, boric acid ester and the like.
  • the carboxylic acid ester is a compound having at least one structure “c-co-o-c” in the molecule.
  • Examples of the carboxylic acid in the carboxylic acid ester include the same carboxylic acids as exemplified in the organic acid.
  • an ester compound represented by the following general formula (I) is particularly preferable.
  • R 1, R 2, R 3 are each independently, - H, -OH, groups and the following formula represented by the following general formula (1) (2) Wherein at least one of R 1 , R 2 and R 3 is a group represented by the following general formula (2). ]
  • X represents 0 to 4, preferably 1.
  • R 1 , R 2 and R 3 are each independently represented by H, —OH, a group represented by the above general formula (1) (hereinafter referred to as group (1)) and the above general formula (2).
  • group (1) a group represented by the above general formula (1)
  • group (2) A group force consisting of a group (hereinafter referred to as group (2)) is also selected, and at least one of R 1 , R 2 and R 3 is group (2).
  • R 1 , R 2 or R 3 is a group other than one or two groups (2), OH is particularly preferred as the group.
  • R 4 is an alkyl group having 1 to 4 carbon atoms, and includes a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, a sec butyl group, iso butyl group, tert butyl group.
  • R 4 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • R 1 , R 2 and R 3 are a group represented by the formula (2) wherein R 4 is a methyl group A glycerin monoacetate (monoacetin) in which the other two are —OH; x is 1 and two of R 1 , R 2 and R 3 are represented by the following formula (2): Glycerin diacetate (diacetin), which is a group that is an R 4 cate group and the other is OH; x is 1, and R 2 and R 3 are all R in formula (2) 4 glycerin ⁇ diacetate (Toriasechin) is preferably a group which is mosquitoes butyl group.
  • Monoacetin and diacetin have structural isomers, and examples of monoacetin structural isomers include glycerin 1-acetate, glycerin 2 acetate, and glycerin 3-acetate. Examples of structural isomers of diacetin include glycerol 1,3 diacetate and glycerol 1,2-diacetate.
  • the compounds represented by the general formula (I) include monopetitin, propyl acetate, diacetoxypropane (propanediol diacetate), diacetoxybutane (butanediol diacetate). G) and the like.
  • ester other than the compound represented by the general formula (I) examples include the following:
  • Polyethylene glycol such as diethylene glycol and its mono- or dialkyl ether, polypropylene glycol such as dipropylene glycol and its mono- or mono- Is a acetylated hydroxyl group in a dialkyl ether, such as diethylene glycol diacetate, diethylene glycol monoethyl ether acetate, etc .;
  • Anoleylene carbonate such as butylene carbonate, hexylene carbonate, dibutyl carbonate, or alkyllatatanes, such as pentano-4-latatane, ⁇ -decalactone, ⁇ -decalactone, ⁇ -nonalataton, etc .;
  • the ozonate promoter of the present invention may be composed of any one of these compounds or a mixture of two or more.
  • the ozone oxidation promoter of the present invention can promote ozone oxidation by being a compound having a 100 msec dynamic surface tension of 70 mN Zm or less and a 30 sec dynamic surface tension of 55 to 67 mNZm or less. Therefore, the amount of ozone used in ozone treatment can be reduced and high efficiency can be achieved.
  • the reason why the strong effect is obtained is that the dynamic surface tension satisfies the above conditions, so that when ozone is sent (aerated) into the water containing the ozone oxidation accelerator, fine ozone having appropriate stability is obtained. It is considered that the bubbles are formed.
  • the 30-second dynamic surface tension is 55 to 67 mNZm or less, the formed bubbles remain stable until they contact the object to be processed and break in a relatively short time. It will have.
  • the ozone oxidation accelerator composition of the present invention contains the above-described ozone oxidation accelerator of the present invention. It is what you have.
  • the ratio of the ozone oxidation accelerator is preferably 0.1 to LOO% by mass with respect to the total mass solid content of the ozone oxidation accelerator composition 10 to LOO.
  • the mass% is more preferable. 0.1.
  • the content is 1% by mass or more, the oxidation promoting effect is more satisfactorily exhibited.
  • the ozone oxidation promoter composition of the present invention includes, as other components, various surfactants and chelates as long as they do not hinder the ozone oxidation reaction, in order to stabilize usability and provide functions.
  • Agents, fragrances, enzymes, fluorescent agents, alkali agents, thickeners, dispersants, inorganic salts, alcohols, saccharides, acids, and the like may be included.
  • the surfactant is not particularly limited and may be appropriately selected from conventionally known surfactants according to the purpose. Examples thereof include the following (1) to (4).
  • Ethoxylated nonions such as polyoxyalkyl ether and polyoxyalkyl ether, polyglycerin fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, darcoside Glyceric active agents such as esters, sugar esters, methyl dalcoside esters, ethyl dalcoside esters, alkylpolydalcoxides, amide-based active agents such as alkylamine oxides, alkyldiethanolamides, fatty acid N-alkylglucamides, alkylamines Non-ionic surfactants such as oxides.
  • Amphoteric surfactants such as aminocarboxylates such as alkylcarboxybetaines, alkylsulfoxybetaines, alkylamidopropylbetaines, and alkylaranates, imidazoline derivatives, and alkylamine oxides.
  • Cationic surfactants such as alkyltrimethyl ammonium salts and dialkyldimethyl ammonium salts.
  • the concentration of the surfactant in the water to be treated is preferably 0 to 5% by mass, more preferably 0 to 5% by mass based on the total solid content of the ozone oxidation accelerator composition.
  • the concentration power of the surfactant in the water to be treated does not become a problem when using the ozone oxidation accelerator composition.
  • the chelating agent means an agent that traps polyvalent metal ions when the compound is dissolved in water.
  • Any chelating agent may be used as long as it can capture polyvalent metal ions when dissolved in water.
  • Specific examples include, but are not limited to, phosphorus compounds, compounds containing two or more carboxy groups, and the like.
  • the content of the chelating agent in the ozone oxidation accelerator composition is preferably 0 to 40% by mass and more preferably 0 to 10% by mass with respect to the total solid content of the ozone oxidation accelerator composition.
  • the ozone treatment method of the present invention is an ozone treatment method for treating an object to be treated by ozone oxidation, and supplies ozone into the water to be treated containing the object to be treated in the presence of the ozone oxidation accelerator composition. It has the process (aeration).
  • the object to be treated is not particularly limited and is generally subjected to ozone treatment. It may be. Specifically, organic substances such as pigments, bacteria, oils and fats, amines, proteins, humus, sludge, surfactants, agricultural chemicals, etc. that have been treated with ozone in bleaching, sterilization, washing, deodorization, decomposition, synthesis, etc. And articles (semiconductors, foods, etc.) to which they are attached.
  • the concentration of the ozone oxidation promoter composition in the water to be treated is 0.
  • An amount in the range of 001-5% by mass is preferred.
  • An amount in the range of 0.01-1% by mass is more preferred.
  • the effect of the present invention is enhanced when the concentration of the ozone oxidation accelerator is 0.001% by mass or more.
  • ozone will not easily be consumed by reacting with the ozone oxidation promoter in the water to be treated, and as a result, the efficiency of ozone treatment will be improved.
  • the water used for the water to be treated reacts with dissolved metals, chlorine, organic matter, etc. due to its strong acidity, so the content of these impurities is low (high purity) ))
  • Water for example, having a resistivity of not less than 0.0001 ⁇ , more preferably not less than 0.001 ⁇ , more preferably not less than 1 ⁇ is advantageous and preferable for an ultrapure hydraulic reaction.
  • water to be treated containing an ozone oxidation accelerator composition and a treatment object is contained in a container, and a gas containing at least ozone (aeration gas) is supplied into the water to be treated.
  • a gas containing at least ozone aeration gas
  • the ozone oxidation accelerator composition may be added to the water to be treated while supplying aeration gas to the water to be treated.
  • a container that contains the treated water and performs aeration
  • the acidity of ozone is strengthened, so that the material in contact with the treated water is made of glass, Teflon (polytetrafluoroethylene).
  • Polyethylene (registered trademark)
  • titanium and aluminum treated with ozone treatment (a strong acid film formed by high-concentration ozone) are preferred.
  • the aerated gas may be supplied by diluting the generated ozone with a diluent gas that may be used as it is.
  • the generation method of ozone there are no restrictions on the generation method of ozone, but high energy such as electron beam, radiation, ultraviolet rays, etc. There are a method of irradiating light with oxygen, a chemical method, an electrolytic method, a discharge method, and the like. Industrially, the generation cost and generation force are silent discharge methods.
  • ozone generators can be used to generate ozone.
  • BO-90 (trade name) manufactured by Bethel Co., Ltd. is commercially available as a low-concentration ozone generator.
  • Engineering Co., Ltd. HO-100 (trade name) etc. are available on the market! Since ozone has self-degradability, it is desirable to use it immediately after preparation.
  • the dilution gas used for the dilution of ozone include helium, argon, carbon dioxide, oxygen, air, nitrogen and the like, which are preferably inert or less reactive to ozone.
  • the ozone concentration in the aerated gas is not particularly limited, but considering work safety, it is preferably 10% by mass or less, more preferably 1% by mass or less.
  • the lower limit is not particularly limited. In view of ozone treatment efficiency and the like, 0.0001% by mass or more is preferable, and 0.0001% by mass or more is more preferable.
  • the present invention is particularly useful when the ozone concentration is low, for example, when the ozone concentration is from 0.0001 to 0.5 mass%, it can effectively promote the oxidation of ozone.
  • a conventionally used method such as a diffuser plate, a diffuser cylinder, or a diffuser without particular limitation can be used.
  • the treatment temperature at the time of aeration (that is, the temperature of the water to be treated) is not particularly limited!
  • the treatment temperature is more preferably 0 to 60 ° C, and further preferably 0 to 30 ° C.
  • the pH of the water to be treated at the time of aeration is not particularly limited. However, if the alkalinity is high, for example, if the pH is 12 or more, ozone decomposition and accelerator decomposition are likely to occur.
  • the pH of the water to be treated is more preferably 1 to 10, more preferably 2 to 8.
  • the treatment time for aeration is not particularly limited, and considers the purpose of treatment, the ease of decomposition of the treatment object, the concentration of the treatment object in the treated water, the temperature, the treatment volume, etc. You should set it in consideration.
  • an accelerated oxidation treatment may be performed in order to promptly proceed with bleaching or decomposition of a hardly decomposable substance.
  • AOP actively decomposes ozone to generate hydroxyl radicals with high acidity, thereby further promoting the acid reaction.
  • Each compound shown in Table 1 was dissolved in water to prepare 0.5% by weight aqueous solution (25 ° C), and the 100msec dynamic surface tension and 30sec dynamic surface tension of each aqueous solution were determined using Eita Seiki Co., Ltd. Was measured using.
  • As the water ultrapure water having a resistivity of 18 M ⁇ or more purified using 80 0 8 [ ⁇ 031 ⁇ -210 manufactured by Zuji] was used.
  • C 12EO 15 POE
  • Lauryl ether [Lauryl ether of polyoxyethylene (average number of moles of 15)]
  • Synthetic products JP-A-1-164437, JP-A-2000-61304
  • the narrow ratio defined in Japanese Patent Laid-Open No. 2001-164298 obtained by the method described in the official gazette etc. is 55% or more.
  • C 12EO40 POE (40) Lauryl ether [Lauryl ether of polyoxyethylene (average number of moles of 40)] (Synthetic products: described in JP-A-1-164437, JP-A-2000-61304, etc.) (Narrow rate defined by JP 2001-164298A obtained by the method is 30% or more.)
  • Glycerin mono force plate Riken Vitamin Co., Ltd.
  • Glycerin monocaprylate Riken Vitamin Co., Ltd.
  • Decaglycerin monolaurate Decaglynl-L (manufactured by Nikko Chemicals Co., Ltd.) [0042] Next, the following tests were conducted using the compounds shown in Table 1. The results are shown in Table 2.
  • a sample solution was prepared by adding the dye to be bleached to 200 mL of a 0.5 mass% aqueous solution prepared in the same manner as described above so that the dye concentration was 0.5 mmol ZL.
  • Acid Black 48 molecular weight Mw459. 46 manufactured by ACROS was used.
  • Pigment degradation rate [%] (Initial absorbance Absorbance after reaction) Z Initial absorbance X 100 A pigment degradation rate of 70% or more Suitable as an ozone oxidation accelerator.
  • Comparative Example 15 5 Propylene carbonate ⁇ 0.4 60 From the results in Table 1 2, when using a compound (Example 19) having a 100 msec dynamic surface tension of 70 mNZm or less and a 30 sec dynamic surface tension of 55 67 mNZm, Overflow during aeration was suppressed, and a bleaching effect with excellent strength was obtained. It was confirmed that these compounds promoted ozone acid.
  • the compound having a 100 msec dynamic surface tension exceeding 70 mNZm or a compound having a 30 msec dynamic surface tension exceeding 67 mNZm had a low pigment degradation rate.
  • test solutions a test solution a consisting of ultrapure water of 18 ⁇ or more purified using GSR-210 manufactured by ADVANTEC, and a test solution b in which triacetin was dissolved to 0.5% by mass in the ultrapure water were used.
  • a test solution a consisting of ultrapure water of 18 ⁇ or more purified using GSR-210 manufactured by ADVANTEC, and a test solution b in which triacetin was dissolved to 0.5% by mass in the ultrapure water were used.
  • Acid B1 ack 48 dye 0.5 mmol / L
  • a bleaching test (2) was performed.
  • 400 mL of each test solution was placed in a lOOOOmL Teflon (registered trademark) bottle, and OZSD-3000A (manufactured by Sugawara Jitsugyo Co., Ltd.) was used as the ozone generator.
  • the ozone gas concentration was 10 times (50 g ZNm 3 )
  • the same procedure as in the bleaching test (1) was performed, except that air was blown into each solution at a flow rate of 1. OLZ for 3 minutes at 25 ° C for 3 minutes.
  • high-concentration ozone gas was used, so exhaust gas was passed through an ozonolysis device to make it harmless.
  • test solution a consisting of 18 ⁇ or more ultrapure water purified using ADVANTEC GSR-210, test solution b in which triacetin was dissolved to 0.5% by mass in the ultrapure water, A test solution c in which glycerin was dissolved in pure water so as to be 0.5% by mass was prepared.
  • test solution a + bacterial solution 6 mL of the above general bacterial solution is added to 594 mL of test solutions a to c, respectively, for a total of 600 mL of sample A (test solution a + bacterial solution), sample B (test solution a + bacterial solution), and sample. (Test solution b + bacterial solution) and sample D (test solution c + bacterial solution) were used in the experiment.
  • sample A was first placed in a processing vessel (Pyrex (registered trademark) glass lOOOmL beaker), ozone gas was generated using the high-concentration ozone generator shown below, and an air diffuser was used at 25 ° C. Then, while agitating with a Teflon (registered trademark) stirrer at a rotational speed of 200 rpm, ozone aeration was carried out by changing the aeration time (1 min, 5 min, 10 min).
  • a Kinoshita glass filter 503G No. 1 (coarse) manufactured by Kinoshita Ryoko Kogyo Co., Ltd. was used.
  • Samples B to D were subjected to ozone aeration in the same manner as above except that the low concentration ozone generator shown below was used instead of the high concentration ozone generator.
  • High-concentration ozone generator Navi Engineering Co., Ltd. HO-100 (flow rate 1. OL / min, ozone concentration 5gZm 3 ).
  • Low-concentration ozone generator BO-90 manufactured by Bethel (flow rate 2. lL / min, ozone concentration
  • Samples A to D were collected in a test tube that was quickly sterilized after aeration, and serially diluted 10-fold into the test tube using peptone saline buffer. Peptone saline buffer was used for dilution. 100 / zL of each diluted solution was collected with a micropipette and dropped on a standard agar medium in a petri dish. After smearing on the medium with a disposable cone large rod and culturing at 37 ° C for 24 hours in an incubator, count the number of remaining viable cells by counting the number of colonies on the medium dish in the range of 300 or less per dish. (Bacteria count) was examined. Two cells were cultured at each dilution stage, and the obtained number of bacteria was averaged.
  • FIG. 2 shows the number of bacteria after 5 minutes of aeration time for samples A to D.
  • the high-concentration ozone aeration (sample A) and the low-concentration ozone aeration (sample B) are compared, the high-concentration ozone aeration is about 5 minutes aeration as shown in the graph of Fig. 1. While the number of bacteria decreased to about 1Z100, low concentration ozone showed little change in the number of bacteria when aerated for 5 minutes.
  • a solution was prepared by dispersing lOOppm of tapos water mold diosmin (natural product chemistry research reagent, manufactured by Kanto Chemical Co., Ltd.) in ethanol (special grade reagent, manufactured by Kanto Chemical Co., Ltd.).
  • a sample was prepared in the same manner as in Test Example 31 except that triacetin lOOOOppm aqueous solution was added to the beaker instead of water, and the odor was evaluated (Test Example 3-2).
  • a sample was prepared in the same manner as in Test Example 31 except that air was aerated instead of ozone gas, and the odor was evaluated (Test Example 3-3).
  • samples were prepared in the same manner as in Test Example 3-2 except that air was used instead of ozone gas, and the odor was evaluated (Test Example 3-4).
  • the odor was evaluated by three subjects in a sensory manner based on the following criteria, and the average value was calculated.
  • the bubbling of the water surface can be suppressed and ozone oxidation can be easily promoted in ozone aeration treatment, particularly ozone aeration treatment at a low concentration. it can. Therefore, according to the present invention, the amount of ozone used in ozone aeration treatment can be reduced and high efficiency can be achieved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Detergent Compositions (AREA)

Abstract

 本発明は、25°Cにおける0.5質量%水溶液の100ミリ秒(msec)時の動的表面張力が70mN/m以下であり、かつ30秒(sec)時の動的表面張力が55~67mN/mである化合物からなるオゾン酸化促進剤、および該オゾン酸化促進剤を含有するオゾン酸化促進剤組成物に関する。また、本発明は、該オゾン酸化促進剤組成物の存在下において、処理対象物を含有する被処理水中にオゾンを供給する工程を有することを特徴とするオゾン処理方法に関する。

Description

オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法 技術分野
[0001] 本発明は、オゾン酸化を促進し、漂白、殺菌、消臭、分解、合成等において優れた 効果を発揮させるオゾン酸化促進剤およびオゾン酸化促進剤組成物、ならびにォゾ ン処理方法に関する。
本願は、 2005年 10月 5日に出願された特願 2005— 292408号に基づいて優先 権を主張し、その内容をここに援用する。
背景技術
[0002] オゾンは、 25°Cにおける標準酸化還元電位が 2. 07Vと極めて高く、フッ素につい で酸化力が強い。そのため、従来、この酸ィ匕カを利用して、半導体洗浄や食品洗浄 (殺菌)、水の浄化など様々な分野でオゾン処理が行われて 、る。
また、オゾンは、分解して酸素となり、環境にやさしい側面を有しているため、近年、 その利用は拡大する傾向にある。
このようなオゾン処理において、その効果を上げる方法としては、まず、オゾン使用 量を増やす方法が一般的である。しかし、オゾン使用量の増加は、直接的に処理コ ストの上昇をもたらす。さら〖こは、有効利用されな力つた未吸収オゾン、すなわち、ォ ゾンを水中に供給して処理を行う場合に、水に吸収されずに大気中に放出されるォ ゾンを増加させることになる。未吸収オゾンの増加は、処理に要するコストを増加させ るだけでなぐ作業安全性に対する懸念を増大させる。 日本および諸外国の多くでは 、作業安全性を考慮して、オゾン濃度に関する作業環境基準として、 0. lppm ( = 0 . 2mgZm3)の値を採用しているため、オゾン使用量の増加には限界がある。
このような問題に対し、たとえば特許文献 1には、オゾンの使用量を低減しつつ、高 い処理効果が得られる方法として、オゾンと過酸化水素を併用する殺菌方法が記載 されている。また、特許文献 2には、食品を、オゾン水と、有機酸溶液および Zまたは アルコール溶液とに、交互に浸漬処理する殺菌方法が記載されて 、る。
しかし、これらの方法においては、オゾンで処理する工程の他に、別の処理を行う 工程を行う必要があり、プロセスが複雑ィ匕する問題がある。
[0003] また、オゾン処理の効率を高める方法として、オゾンと有機物とを併用する方法も提 案されている。
たとえば特許文献 3には、オゾン水および界面活性剤を含有する殺菌洗浄剤組成 物が記されており、力かる殺菌洗浄剤組成物中に処理対象物を浸漬することにより 殺菌効果が促進されることが記載されて 、る。これは主に油成分に対する洗浄効果 を界面活性剤で補うとともに、オゾンの残存効果を狙ったものである。
特許文献 1:特開平 11― 226579号公報
特許文献 2:特開平 3 - 164155号公報
特許文献 3:特開平 6— 313194号公報
発明の開示
発明が解決しょうとする課題
[0004] オゾン処理の方法としては、処理対象物を含む被処理水中にオゾン (ガス)を供給 する(曝気する)方法 (オゾン曝気処理)と、上述した特許文献 2〜3に記載されるよう な、オゾンが溶解したオゾン水中に処理対象物を浸漬する方法 (オゾン水浸漬処理) とが一般的である。これらのうち、オゾン曝気処理は、オゾン水浸漬処理に比べ、ォゾ ン使用量が少ない、水の使用量が少ない、処理対象の有機物の量が多くても対応可 能等の利点がある。
しかし、オゾン曝気処理を行う場合、特許文献 3に記載されるような方法でオゾン処 理の効率を高めることは困難である。たとえば、被処理水中に界面活性剤が存在す ると、曝気の際に水面が泡立ち、オーバーフローなどが生じ、処理効率が低下したり 、処理自体が不可能になる場合がある。また、被処理水中の界面活性剤にオゾンが 作用してしまい、処理対象物に作用するオゾンの量が少なくなつて、オゾン処理の有 効性が低下する。特に、上述のように、作業安全性を考慮した低濃度でのオゾン曝 気処理を行った場合、オゾン処理効率は非常に悪!ヽものとなる。
本発明は、前記事情に鑑みてなされたものであって、オゾン曝気処理、特に低濃度 でのオゾン曝気処理において、水面の泡立ちを抑制でき、オゾン酸化を簡便に促進 できるオゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法を提供す ることを課題とする。
課題を解決するための手段
[0005] 本発明者らは、上記目的を達成するため鋭意研究を行った結果、特定の性質を有 する化合物を用いることにより上記課題が解決されることを見出し、本発明を完成さ せるに至った。
すなわち、本発明の第一の態様は、 25°Cにおける 0. 5質量%水溶液の 100ミリ秒 ( msec)時の動的表面張力が 70mNZm以下であり、かつ 30秒(sec)時の動的表面 張力が 55〜67mNZmである化合物からなるオゾン酸化促進剤である。
本発明の第二の態様は、前記第一の態様のオゾン酸化促進剤を含有するオゾン 酸化促進剤組成物である。
本発明の第三の態様は、前記第二の態様のオゾン酸化促進剤組成物の存在下に お!ヽて、処理対象物を含有する被処理水中にオゾンを供給する工程を有することを 特徴とするオゾン処理方法である。
発明の効果
[0006] 本発明のオゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法によ れば、オゾン曝気処理、特に低濃度でのオゾン曝気処理において、水面の泡立ちを 抑制でき、オゾン酸化を簡便に促進できる。そのため、本発明によれば、オゾン曝気 処理におけるオゾン使用量の低減および高効率ィ匕が可能である。
図面の簡単な説明
[0007] [図 1]試験例 2にお 、て、添加剤をカ卩えずにオゾン濃度を変えてオゾン曝気を行った 場合と、低濃度オゾン曝気においてグリセリンまたはトリァセチンを添加した場合の殺 菌効果の時間変化を示すグラフである。
[図 2]試験例 2にお 、て、添加剤をカ卩えずにオゾン濃度を変えてオゾン曝気を行った 場合と、低濃度オゾン曝気においてグリセリンまたはトリァセチンを添加した場合の殺 菌効果を示すグラフである。
発明を実施するための最良の形態
[0008] 《オゾン酸化促進剤》 本発明のオゾン酸化促進剤は、 25°C〖こおける 0. 5質量0 /0水溶液の 100msec時の 動的表面張力(以下、 100msec動的表面張力ということがある)が 70mNZm以下 であり、かつ 30sec時の動的表面張力(以下、 30sec動的表面張力ということがある) 力 5〜67mNZmである化合物からなる。
[0009] ここで、本明細書および特許請求の範囲において、「動的表面張力」は、新たに界面 が形成される時、あるいは界面が不安定な流動,撹拌状態での表面張力を意味する 水中にストロー力 気体を送り込む際の気泡の形成過程を例に挙げると、水中に斜 めに差し込んだストローを介して気体を供給していくと、まず、ストローの先端から半 球状の界面 (水と気体との界面)が形成される。このとき、界面には、界面を元に戻そ うとする力(表面張力)と、気体による浮力とが働いている。界面内の気体の量が多く なるにつれて浮力も大きくなる。表面張力よりも浮力の方が大きくなると、半球状の界 面がストロー先端力 離れて気泡 (bubble)が形成され、水面へ上昇する。そして、 気泡の形成が繰り返され、水面に気泡が集まると泡沫 (form)が形成される。
このとき、界面は不安定な状態である。そして、気泡となった後 (気体の供給が止ま つた後)、その界面は、経時的に安定ィ匕していく。表面張力は、この安定ィ匕に伴って 次第に低下し、一定 (平衡値)となる。このように、気泡の界面が形成されてカゝら表面 張力が平衡値に達するまで (界面が安定な状態になるまで)の表面張力を動的表面 張力といい、動的表面張力は、測定時間毎に変化する。
力かる気泡の形成において、表面張力より浮力の方が大きくなる時点の気体の供 給量が少ないほど、気泡の大きさは小さくなる。また、平衡値が小さいほど、気泡や 泡沫の安定性が高ぐ壊れにくい傾向があり、逆に平衡値が大きいほど、気泡や泡 沫の安定性が低ぐ壊れやす傾向がある。
そのため、本発明においては、オゾン曝気により被処理水中に生じる気泡の特性を 、被処理水中に配合する成分によってコントロールするものであり、これにより、下記 に示すように、優れた効果が得られる。
[0010] 100msec動的表面張力は、 70mNZm以下であり、 68mNZm以下が好ましぐ 6 5mNZmがより好ましい。下限値としては、特に制限はないが、 55mNZm以上が 好ましぐ 60mNZm以上がより好ましい。
ここで、 100msec動的表面張力は、気体の供給を開始した時点を 0とし、その時点 力も 100msec後の動的表面張力である。すなわち、上記ストロー力も気体を送り込 む例において、ストロー内への気体の供給を開始してから 100msec後の動的表面 張力を示す。 100msec動的表面張力が 70mNZm以下であると、気体の供給量が 少ない時点で、表面張力よりも浮力の方が大きくなり、半球状の界面力ストロー先端 から気泡が分離する。すなわち、微細な気泡が形成される。
そして、気泡の微細化により、オゾンと処理対象物と接触効率が向上し、結果、ォゾ ン処理効率が向上する。
[0011] 30sec動的表面張力は、 55〜67mNZmであり、 58〜67mNZmが好ましぐ 60 〜67mNZmがより好ましい。
ここで、 30sec動的表面張力は、気体の供給を開始した時点を 0とし、その時点から 30sec後の動的表面張力である。一般に、動的表面張力が平衡値に達するのには 数十時間を要するものもあり、その測定には時間を要する力 本発明において採用し た 30sec動的表面張力は、平衡値とは必ずしも同一ではないが、曝気処理を行う場 合の処理時間を考慮すると、 30sec動的表面張力でも充分、気泡や泡沫の安定性を 評価する指標として有用である。
30sec動的表面張力が 55〜67mNZmであることにより、形成された気泡が適度 な安定性を有するものとなる。
一方、 30sec動的表面張力が 55mNZm未満であると、気泡の安定性が高くなりす ぎ、曝気処理を行った際に水面が泡立ち、オーバーフローなどが生じてしまい、処理 自体が困難となる。また、 30sec動的表面張力が 67mNZmを越えるとオゾン処理効 率が悪くなる。これは、気泡の安定性が低ぐ気泡が処理対象物に接触する前に壊 れてしまうことによると推測される。
[0012] 100msec動的表面張力および 30sec動的表面張力は、たとえば、当該化合物を 水に溶解して 0. 5質量%水溶液 (25°C)を調製し、市販の動的表面張力計、たとえ ば英弘精機株式会社製シータ t60 (商品名)等を用いて測定することができる。
[0013] 本発明のオゾン酸化促進剤は、分子量が 100以上であることが好ましぐ 120以上 力 Sさらに好ましい。分子量が 100以上の化合物であると、 30sec動的表面張力が 67 mN/m以下の値である傾向が高ぐ本発明に好適である。また、揮発しにくいため、 揮発による様々な問題を生じにく 、。
[0014] 本発明のオゾン酸化促進剤は、分子量が 250以下であることが好ましぐ 200以下 力 Sさらに好ましい。
分子量が 250以下の化合物であると、気泡の界面における分子の拡散が速 、ため 、 100msec動的表面張力が 70mNZm以下の値である傾向が高い。また、 30sec 動的表面張力が 55mNZm以上である傾向が高ぐ泡立ちが生じにくい。そのため、 本発明に好適である。
ただし、分子量が 250以下であっても、疎水性が高い分子は、会合して見かけ上の 分子量が大きくなる傾向がある。そのため、本発明のオゾン酸化促進剤は、疎水性の 低い化合物であることが好ましい。疎水性の低い化合物としては、カルボキシ基、水 酸基等の極性基を有する化合物 (カルボン酸、アルコール等)、構造中に酸素原子 を含む化合物(エステル、エーテル等)が挙げられる。
[0015] 本発明のオゾン酸ィ匕促進剤の具体例としては、上記動的表面張力の条件を満たす ものであれば特に限定されず、たとえば、有機酸およびその塩 (以下、これらをまとめ て有機酸 (塩)という。)、ケトン、アルコール、エーテル、エステル等が挙げられる。 有機酸 (塩)としては、カルボン酸、およびそのナトリウム塩、カリウム塩、アンモ-ゥ ム塩等が挙げられる。カルボン酸 (塩)は、炭素数が、 7〜10であることが好ましぐ 7 〜9がより好ましぐ 8〜9がさらに好ましい。具体的には、 2 ェチルへキサン酸、へ プタン酸、オクタン酸、ノナン酸、これらの塩等が挙げられる。これらの中でもオクタン 酸塩が好ましぐ特にオクタン酸ナトリウムが好ましい。
アルコールとしては、ペンタンジオール、 2—メチルー 2, 4 ペンタンジオール、ジ アセトンアルコール、 3—メチルー 1, 3 ブタンジオール、 2—メチルー 1, 3 ブタン ジオール、 3—メチルー 1, 4 ブタンジオール、 2—メチルー 1, 4 ブタンジオール、 2—メチルー 1, 2 ブタンジオール、 3—メチルー 1, 2 ブタンジオール等が挙げら れる。
ケトンとしては、ァセチルアセトン等が挙げられる。 エーテルとしては、グリコール類(エチレングリコール、ポリエチレングリコール、プロ ピレンダリコール、ポリプロピレングリコール等)のエーテルィ匕合物が好ましぐたとえ ばジエチレングリコールジェチルエーテル、ジエチレングリコールジメチルエーテル、 ジエチレングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ 等のジエチレングリコールのモノまたはジアルキルエーテル;プロピレングリコールモ ノエチノレエ一テル、プロピレングリコーノレモノブチノレエーテノレ等のプロピレングリコー ルのモノまたはジアルキルエーテル;ジプロピレングリコールモノェチルエーテル、ジ プロピレングリコールモノブチルエーテル、ジプロピレングリコーノレモノプロピノレエ一 テル、ジプロピレングリコーノレモノメチノレエーテノレ等のジプロピレングリコーノレのモノま たはジアルキルエーテルなどが挙げられる。
[0016] エステルとしては、カルボン酸エステル、硫酸エステル、リン酸エステル、ホウ酸エス テル等が挙げられる。
カルボン酸エステルは、分子内に少なくとも 1つ、「c— co— o— c」という構造を有 する化合物である。
カルボン酸エステルにおけるカルボン酸としては、上記有機酸に例示したのと同様 のカルボン酸が挙げられる。
本発明においては、特に、下記一般式 (I)で表されるエステルイ匕合物が好ましい。
[0017] [化 1]
Figure imgf000008_0001
[式中、 Xは 0〜4を示し; R1, R2, R3は、それぞれ独立に、— H、 -OH,下記一般式 (1)で表される基および下記一般式 (2)で表される基からなる群から選択される基で あって、 R1, R2, R3のうちの少なくとも 1つは下記一般式(2)で表される基である。 ]
[0018] [化 2]
Figure imgf000008_0002
… ) … (2 ) [式中、 R4は炭素数 1〜4のアルキル基である。 ]
[0019] 式 (I)中、 Xは 0〜4を示し、好ましくは 1を示す。
R1, R2, R3は、それぞれ独立に、 H、 -OH,上記一般式(1)で表される基 (以下 、基(1)という。)および上一般式 (2)で表される基 (以下、基 (2)という。)からなる群 力も選択される基であって、 R1, R2, R3のうちの少なくとも 1つは基(2)である。
R1, R2, R3のうちの 1または 2個力 基(2)以外の基である場合、該基としては、特 に OHが好ましい。
[0020] 式(1)および(2)において、 R4は炭素数 1〜4のアルキル基であり、メチル基、ェチ ル基、 n プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 iso ブチル 基、 tert ブチル基が挙げられる。 R4としてはメチル基またはェチル基が好ましぐ 特にメチル基が好ましい。
[0021] 一般式 (I)で表される化合物としては、特に、 Xが 1であり、かつ R1, R2, R3のうちの 1個が、式(2)において R4がメチル基である基であり、他の 2個が—OHであるグリセリ ンモノァセタート(モノァセチン);xが 1であり、かつ R1, R2, R3のうちの 2個力 式(2) にお 、て R4カ チル基である基であり、他の 1個が OHであるグリセリンジァセター ト(ジァセチン);xが 1であり、かつ , R2, R3がすべて、式(2)において R4カ チル 基である基であるグリセリントリァセタート(トリァセチン)が好まし 、。
モノァセチンおよびジァセチンには構造異性体が存在し、モノァセチンの構造異性 体としては、グリセリン 1ーァセタート、グリセリン 2 ァセタート、グリセリン 3— ァセタートが挙げられる。ジァセチンの構造異性体としては、グリセリン 1, 3 ジァ セタート、グリセリン 1, 2—ジァセタートが挙げられる。
上記化合物に加えて、一般式 (I)で表される化合物として、モノプチリン、酢酸プロ ピル、ジァセトキシプロパン(プロパンジオールジァセタート)、ジァセトキシブタン(ブ タンジオールジァセタート)等が例示される。
[0022] 一般式 (I)で表される化合物以外のエステルとしては、たとえば、以下のものが例示 される:
(1)ジエチレングリコール等のポリエチレングリコールおよびそのモノまたはジアルキ ルエーテル、ジプロピレングリコール等のポリプロピレングリコールおよびそのモノまた はジアルキルエーテルにおける水酸基をァセチル化したもの、例えば、ジエチレング リコールジァセタート、ジエチレングリコールモノェチルエーテルァセタート等;
(2)リンゴ酸、クェン酸、シユウ酸、マロン酸、コハク酸、マレイン酸、グルタル酸、また はアジピン酸のメチル、ェチル、プロピル、またはブチルエステル、例えば、コハク酸 ジメチル等;
(3)ァノレキレンカーボネート、例えば、ブチレンカーボネート、へキシレンカーボネー ト、ジブチルカーボネート等、または、アルキルラタトン、例えば、ペンタノ- 4-ラタトン、 γ—デカラクトン、 ε—デカラクトン、 γ —ノナラタトン等;および
(4)酢酸 1-エトキシ- 2-プロパノール等。
[0023] 本発明のオゾン酸ィ匕促進剤は、これらの化合物のいずれか 1種力 構成されてもよ ぐ 2種以上の混合物から構成されてもよい。
[0024] 上述したように、本発明のオゾン酸化促進剤は、 100msec動的表面張力が 70mN Zm以下、 30sec動的表面張力が 55〜67mNZm以下の化合物であることにより、 オゾン酸化を促進できる。そのため、オゾン処理におけるオゾン使用量の低減および 高効率ィ匕が達成できる。
力かる効果が得られる理由として、動的表面張力が上記条件を満たすことにより、 当該オゾン酸化促進剤を含有する水中にオゾンを送り込む (曝気する)際に、適度な 安定性を有する微細なオゾンの気泡が形成されることことが考えられる。
すなわち、 100msec動的表面張力が 70mNZm以下であることにより微細なォゾ ンの気泡が形成され、気泡の微細化により、オゾンの溶解効率や、オゾンと処理対象 物と接触効率が向上する。
また、 30sec動的表面張力が 55〜67mNZm以下であることにより、形成された気 泡が、処理対象物に接触するまでの間、安定に存在し、かつ比較的短時間で壊れる 適度な安定性を有するものとなる。
これらの相乗効果により、オゾンと処理対象物と接触効率が向上してオゾン酸ィ匕が 促進されるとともに、水面の泡立ちが抑制されると推測される。
[0025] «オゾン酸化促進剤組成物》
本発明のオゾン酸化促進剤組成物は、上述した本発明のオゾン酸化促進剤を含 有するものである。
本発明のオゾン酸化促進剤組成物中、オゾン酸化促進剤の割合は、オゾン酸化促 進剤組成物の総質量固形分に対し、 0. 1〜: LOO質量%が好ましぐ 10〜: LOO質量 %がより好ましい。 0. 1質量%以上であると、酸化促進効果がより良好に発現する。
[0026] 本発明のオゾン酸化促進剤組成物は、その他の成分として、オゾン酸化反応を阻 害しない範囲で、使用性や製品の安定化、機能付与のために、各種界面活性剤、キ レート剤、香料、酵素、蛍光剤、アルカリ剤、増粘剤、分散剤、無機塩、アルコール類 、糖類、酸などを含有してもよい。
[0027] 界面活性剤としては、特に制限はなぐ従来公知の界面活性剤のなかから、 目的に 応じて適宜選択でき、たとえば、下記(1)〜(4)等が挙げられる。
(1)アルキルベンゼンスルホン酸、アルキル硫酸、アルキルフ ニルエーテル硫酸、 ポリオキシエチレンアルキルエーテル硫酸、ァシルアミドアルキル硫酸、アルキル燐 酸、ポリオキシエチレンアルキルエーテルカルボン酸、ノ ラフインスルホン酸、 α—ォ レフインスルホン酸、 α スルホカルボン酸及びそれらのエステル等の水溶性塩、石 鹼等のァニオン界面活性剤。
(2)ポリオキシアルキルエーテル、ポリオキシアルキルフエ-ルエーテル等のエトキシ 化ノニオン、ポリグリセリン脂肪酸エステル、グリセリン脂肪酸エステル、プロピレンダリ コール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂 肪酸エステル、ダルコシドエステル、シュガーエステル、メチルダルコシドエステル、ェ チルダルコシドエステル、アルキルポリダルコキシド等の糖系活性剤、アルキルアミン オキサイド、アルキルジエタノールアミド、脂肪酸 N—アルキルグルカミド等のアミド系 活性剤、アルキルアミンオキサイド等のノ-オン界面活性剤。
(3)アルキルカルボキシベタイン、アルキルスルホキシベタイン、アルキルアミドプロピ ルべタイン、アルキルァラ-ネート等のアミノカルボン酸塩、イミダゾリン誘導体、アル キルアミンォキシド等の両性界面活性剤。
(4)アルキルトリメチルアンモ -ゥム塩、ジアルキルジメチルアンモ-ゥム塩等のカチ オン界面活性剤。
界面活性剤は 1種類のみカゝらなるものでもよいし、複数種を含有することもできる。 高濃度の界面活性剤を含む被処理水中にオゾンを曝気すると、水面が泡立ち、ォ 一バーフローなどプロセス上好ましくない現象が生じるおそれがある。したがって、ォ ゾン酸ィ匕促進剤組成物中の界面活性剤の含有量としては、被処理水中の界面活性 剤の濃度を考慮することが好ましい。本発明においては、オゾン酸化促進剤組成物 の総固形分に対し、界面活性剤の含有量は、 0〜10質量%が好ましぐ 0〜5質量% 力 り好ましい。 10質量%以下であると、オゾン酸化促進剤組成物の使用に際して、 被処理水中の界面活性剤の濃度力 泡沫が問題にならない程度となる。
[0028] キレート剤は、その化合物を水に溶力したとき、多価金属イオンを捕捉する剤を意 味する。
キレート剤としては、水に溶かしたとき、多価金属イオンを捕捉することができるもの であればよい。具体例としては、特に限定しないが、リンィ匕合物、 2つ以上のカルボキ シル基を含有する化合物等が挙げられる。好ましくは、リン酸、メタリン酸、へキサメタ リン酸、ピロリン酸、トリポリリン酸、 1—ヒドロキシェタン一 1, 1—ジホスホン酸、トリェチ レンテトラミン一 N, N, Ν' , Ν' , Ν" ' Ν" ' , Ν,,,一六酢酸、ジエチレントリアミン五 酢酸、エチレンジァミン四酢酸、ニトロソ三酢酸、シユウ酸、クェン酸であり、より好まし くは、へキサメタリン酸、ピロリン酸、トリポリリン酸、 1ーヒドロキシェタン 1, 1ージホ スホン酸、ジエチレントリアミン五酢酸、エチレンジァミン四酢酸、ニトロソ三酢酸であ り、さらに好ましくは、へキサメタリン酸、トリポリリン酸、 1—ヒドロキシェタン一 1, 1—ジ ホスホン酸、ジエチレントリアミン五酢酸、エチレンジァミン四酢酸、ニトロソ三酢酸で ある。
キレート剤は 1種類のみカゝらなるものでもよいし、複数種を含有することもできる。 オゾン酸化促進剤組成物中のキレート剤の含有量としては、オゾン酸化促進剤組 成物の総固形分に対し、 0〜40質量%が好ましぐ 0〜10質量%がより好ましい。
[0029] 《オゾン酸化処理方法》
本発明のオゾン処理方法は、オゾン酸化により処理対象物を処理するオゾン処理 方法であって、前記オゾン酸化促進剤組成物の存在下において、処理対象物を含 有する被処理水中にオゾンを供給する(曝気する)工程を有することを特徴とする。
[0030] 処理対象物としては、特に制限はなぐ一般的にオゾン処理が行われているもので あってよい。具体的には、漂白、殺菌、洗浄、消臭、分解、合成等においてオゾン処 理されているもの、たとえば色素、細菌、油脂、ァミン、タンパク質、腐植、汚泥、界面 活性剤、農薬等の有機物や、それらが付着した物品(半導体、食品等)などが挙げら れる。
[0031] 被処理水中のオゾン酸化促進剤組成物の濃度は、オゾン酸化促進剤の濃度が 0.
001〜5質量%の範囲内となる量が好ましぐ 0. 01〜1質量%となる量がより好まし い。オゾン酸化促進剤の濃度が 0. 001質量%以上であると、本発明の効果が高ぐ
5質量%以下であると、オゾンが、被処理水中のオゾン酸化促進剤と反応して消費さ れにくくなり、結果、オゾン処理の効率が向上する。
[0032] 被処理水に使用する水は、オゾンはその強い酸ィ匕力のため、溶存金属、塩素ある いは有機物等と反応するため、これらの不純物の含有量が少な 、(純度が高 、)水、 たとえば抵抗率が 0. 00001Μ Ω以上、より好ましくは 0. 001Μ Ω以上、さらに好ま しくは 1Μ Ω以上の超純水力 反応に有利であり好ましい。
[0033] 曝気は、たとえばオゾン酸化促進剤組成物および処理対象物を含有する被処理水 を容器に収容し、該被処理水中に、少なくともオゾンを含むガス(曝気ガス)を供給す ること〖こより行うことができる。また、被処理水中に曝気ガスを供給しつつ、オゾン酸化 促進剤組成物を被処理水中に添加してもよ ヽ。
また、本工程においては、曝気を行う際、被処理水を撹拌するために撹拌装置など を併用することも可能である。
[0034] 被処理水を収容し、曝気を行う容器 (処理容器)としては、オゾンの酸ィ匕力が強 ヽた め、被処理水に接する面の材質が、ガラス、テフロン (ポリテトラフルォロエチレン)(登 録商標)、チタン、オゾン処理 (高濃度オゾンによる強固な酸ィ匕皮膜形成)をしたアル ミゃステンレスのものが好まし 、。
オゾンに対する耐性が低い-トリルゴム、シリコンあるいウレタンなどの材質のものを 使用する場合、処理容器の劣化に充分に注意する必要がある。
[0035] 曝気ガスは、発生させたオゾンをそのまま用いてもよぐ希釈ガスで希釈して供給し てもよい。
オゾンの発生方式に制限はないが、電子線、放射線、紫外線など高エネルギーの 光を酸素に照射する方法や、化学的方法、電解法、放電法などがある。工業的には 、発生コストや発生量力 無声放電法が多く用いられて 、る。
オゾンの発生には、市販のオゾン発生器が利用でき、たとえば低濃度オゾン発生 器として株式会社べテル製 BO— 90 (商品名)等が市販されており、高濃度オゾン発 生器としてナビ ·エンジニアリング株式会社 HO— 100 (商品名)等が市販されて!、る オゾンは自己分解性を持つことから調製後すぐに使用することが望ましい。 オゾンの希釈に用いる希釈ガスとしては、オゾンに対して不活性あるいは反応性に 乏しいガスが好ましぐたとえばヘリウム、アルゴン、二酸化炭素、酸素、空気、窒素な どを挙げることができる。
曝気ガス中のオゾン濃度は、特に制限はないが、作業安全性を考慮すると、 10質 量%以下が好ましぐ 1質量%以下がより好ましい。下限値としては、特に制限はない 力 オゾン処理効率などを考慮すると、 0. 000001質量%以上が好ましぐ 0. 0001 質量%以上がより好ましい。本発明は、特に、オゾン濃度が低い場合、たとえばォゾ ン濃度が 0. 0001〜0. 5質量%において、効果的にオゾンの酸ィ匕を促進でき、有用 である。
[0036] 曝気ガスを被処理水中に曝気する方法は、特に制限はなぐ散気板、散気筒、ディ フューザ一など従来使用されている方法が使用できる。
[0037] 曝気を行う際の処理温度 (すなわち被処理水の温度)は、特に限定されな!、が、 80
°C以下で行われるのが好ましい。 80°C以下であると、オゾンが分解しにくぐ被処理 水へのオゾンの溶解度も高い。処理温度は、 0〜60°Cがより好ましぐ 0〜30°Cがさ らに好ましい。
曝気を行う際の被処理水の pHは、特に限定されない。ただしアルカリ性が高い場 合、たとえば pHが 12以上であると、オゾンの分解や促進剤の分解が起こりやすいた め注意が必要である。被処理水の pHは、 1〜10がより好ましぐ 2〜8がさらに好まし い。
曝気を行う際の処理時間(曝気を行う時間)は、特に限定されず、処理目的、処理 対象物の分解しやすさ、被処理水中の処理対象物の濃度、温度、処理容積等を考 慮して設定すればよい。
[0038] 本工程では、曝気処理と併せて、漂白や難分解性の物質の分解などを速やかに進 めるために、促進酸化処理 (AOP)を行ってもよい。
AOPは、オゾンを積極的に分解させることにより、酸ィ匕力の高いヒドロキシルラジカ ルを発生させ、これによつて酸ィ匕反応をより進めるものである。
オゾンを積極的に分解する手段としては、紫外線'高 pH条件 ·Η Ο '無機触媒添
2 2
加などが一般に用いられて!/、る。
実施例
[0039] 以下、本発明を実施例に基づいてより詳細に説明するが、実施例は本発明の性質 を限定するものではない。
試験例 1
下記表 1に示すィ匕合物について、 25°Cにおける 0. 5質量%水溶液の 100msec動 的表面張力および 30sec動的表面張力を下記の手順で測定した。
表 1に示す化合物をそれぞれ水に溶解して 0. 5質量%水溶液 (25°C)を調製し、 各水溶液の 100msec動的表面張力および 30sec動的表面張力を、英弘精機株式 会社製シータ t60を使用して測定した。水は八0¥八?^[¾じ製031^—210を用ぃて 精製した抵抗率 18M Ω以上の超純水を使用した。
その結果と各化合物の分子量とを表 1に示す。
[0040] [表 1]
動的表面張力 動的表面張力
化合物 分子量
(100msec) [mN/m] (30sec)[mN/m]
実施例 1 モノァセチン 134.1 69.8 66.6
実施例 2 ジァセチン 176.2 66.8 61.9
実施例 3 トリァセチン 218.2 61.7 61.5
1,2-プロピレングリコ
実施例 4 160.2 60.6 60.0
ールジァセタート
実施例 5 モノブチリン 162.2 64.0 62.2
酢酸 1·ェトキシ ·2'プロ
実施例 6 146.2 57.2 55.0
パノール
実施例 7 酢酸 η-プロピル 102.1 55.6 55.5
1,4-プタンジオール
実施例 8 174.2 59.1 57.8
ジァセタート
実施例 9 オクタン酸ナトリ ウム 166.2 67.7 66.4
ラウリル硫酸
比較例 1 288.4 38.9 36.2
ナトリゥム *
比較例 2 C12E015* 847.1 40.9 37.2
比較例 3 C12EO40* 1948,5 45.0 40.8
ショ糖ステアリン酸
比較例 4 608.8 70.9 51.8
エステル *
ショ糖ラウリン酸
比較例 5 524.6 40.8 35.2
エステノレ *
グリセリン
比較例 6 218.3 26.4 22.5
モノ力プレート *
グリセリン
比較例 7 246.4 29.2 22.2
モノカプリレート *
デカグリセリン
比較例 8 941.1 67.1 39.0
モノラウレート *
比較例 9 酢酸ナトリゥム 82.0 72.0 72.0
比較例 1 0 へキサン酸ナトリゥム 138.0 69.1 68.5
比較例 1 1 エタノール 46.1 69.4 69.0
比較例 1 2 グリセリン 92.1 72.3 72.1
比較例 1 3 プロピレンダリコール 76.1 70.2 70.0
トリエチレン
比較例 1 4 150.2 70.5 70.1
グリコーノレ
比較例 1 5 炭酸プロピレン 102.1 69.7 68.9 表 1中、 *を付したィ匕合物は、市販の界面活性剤であり、それぞれ、下記のものを 用いた。
ラウリル硫酸ナトリウム:生化学用(和光純薬工業株式会社製)
C 12EO 15: POE ( 15)ラウリルエーテル [ポリオキシエチレン(平均付加モル数 15) のラウリルエーテル] (合成品:特開平 1— 164437号公報、特開 2000— 61304号 公報等に記載された方法によって得られた、特開 2001— 164298号公報にて定義 されたナロー率が 55%以上であるもの。)
C 12EO40: POE (40)ラウリルエーテル [ポリオキシエチレン(平均付カ卩モル数 40) のラウリルエーテル] (合成品:特開平 1— 164437号公報、特開 2000— 61304号 公報等に記載された方法によって得られた、特開 2001— 164298号公報にて定義 されたナロー率が 30%以上であるもの。)
ショ糖ステアリン酸ナトリウム: S— 1670 (三菱ィ匕学フーズ株式会社製)
ショ糖ラウリン酸ナトリウム: L—1695 (三菱ィ匕学フーズ株式会社製)
グリセリンモノ力プレート:理研ビタミン株式会社製
グリセリンモノカプリレート:理研ビタミン株式会社製
デカグリセリンモノラウレート: Decaglynl— L (日光ケミカルズ株式会社製) [0042] 次に、表 1に示すィ匕合物を用いて、以下の試験を行った。その結果を表 2に示す。
<泡立ち試験 >
上記と同様にして調製した 200mLの 0. 5質量%水溶液を 300mLトールビーカー 中に入れ、散気管を用い、 25°Cにて 10分間、ガス流量 1. 0LZ分で、オゾン濃度 5g /Nm3の空気を曝気した。散気管としては、木下理ィ匕工業株式会社製の木下式ガラ スフィルター 503G No. 1 (粗)を用いた。
曝気後、泡がトールビーカー外にオーバーフローした場合を X、オーバーフローし なかった場合を〇とした。
また、このとき同時に、泡の高さ(cm)を測定した。
[0043] <漂白試験(1) >
上記と同様にして調製した 200mLの 0. 5質量%水溶液に、漂白対象色素を、色 素濃度が 0. 5mmolZLとなるよう添加して試料溶液を調製した。漂白対象色素とし ては、 ACROS製 Acid Black 48 (分子量 Mw459. 46)を用いた。
各試料溶液 200mLを 300mLトールビーカー中に入れ、散気管を用い、 25°Cにて 1時間、ガス流量 1. 0LZ分で、オゾン濃度 5gZNm3の空気を曝気した。散気管とし ては、木下理ィ匕工業株式会社製の木下式ガラスフィルター 503G No. 1 (粗)を用 反応終了後、各試料溶液について、紫外 ·可視吸光光度計を用い、 600nmでの 吸光度を測定し、次式にて色素分解率を算出した。
色素分解率 [%] = (初期吸光度 反応後の吸光度) Z初期吸光度 X 100 色素分解率が 70%以上のもの力 オゾン酸化促進剤として適して 、る。
なお、対照試料とし、漂白対象色素以外の化合物を含まない溶液を用い、オゾン 単独で同様の漂白試験を行ったところ、色素分解率は 61%であった。
[表 2]
泡立ち試験 白 験
化合物 オーバー 1 0分後の泡高さ 色素分解率
フロー ( c m) (%)
実施例 1 モノァセチン 〇 0.5 74
実施例 2 ジァセチン ο 0.6 80
実施例 3 トリァセチン 0 1.5 89
1,2-プロピレンダリコー
実施例 4 ο 1.4 90
ルジァセタート
実施例 モノプチリン 〇 1.3 78
酢酸 1-ェトキシ ·2-プロ
実施例 6 0 1.5 85
パノール
実施例 酢酸 η-プロピル ο 1.5 85
1 4-ブタンジオール
実施例 8 〇 1.5 93
ジァセタート
実施例 9 オクタン酸ナトリゥム 〇 1.3 74
ラゥリル硫酸
比較例 1 X >6.5 測定できず
ナトリゥム *
比較例 2 C12E015* X > 6.5 測定できず
比較例 3 C12EO40* X > 6.5 測定できず
ショ糖ステアリン酸
比較例 4 X >6.5 測定できず
エステル *
ショ糖ラウリン酸
比較例 5 X >6.5 測定できず
エステ
グリセリン
比較例 6 X >6.5 測定できず
モノ力プレート *
グリセリン
比較例 7 X >6.5 測定できず
モノカプリ レート *
デカグリセリン
比較例 8 X >6.5 測定できず
モノラゥレート *
比較例 9 酉乍酸ナトリウム Ο 0.4 50
比較例 1 0 へキサン酸ナトリウム Ο 0.4 62
比較例 1 1 エタノール 〇 0.4 65
比較例 1 2 グリセリン Ο 0.4 48
比較例 1 3 プロピレングリコール 〇 0.4 48
トリエチレン
比較例 1 4 〇 0.4 45
ダリコール
比較例 1 5 炭酸プロピレン 〇 0.4 60 表 1 2の結果から、 100msec動的表面張力が 70mNZm以下であり、かつ 30sec 動的表面張力が 55 67mNZmである化合物(実施例 1 9)を用いた場合、曝気 時のオーバーフローを抑制でき、し力も優れた漂白効果が得られており、これらのィ匕 合物が、オゾン酸ィ匕を促進したことが確認できた。
これに対し、 30sec動的表面張力が 55mNZmに満たない化合物(比較例 1 8) は、泡のオーバーフローを引き起こした。なお、これらの化合物を用いた例では、ォ 一バーフローのため、処理が充分に行えず、色素分解率が測定できな力つた。
また、 100msec動的表面張力が 70mNZmを超える化合物、あるいは、 30msec 動的表面張力が 67mNZmを超える化合物(比較例 9〜15)は色素分解率が低かつ た。
[0046] <漂白試験(2) >
試験溶液として、 ADVANTEC製 GSR— 210を用いて精製した 18Μ Ω以上の超 純水からなる試験溶液 a、および、前記超純水にトリァセチンを 0. 5質量%となるよう 溶解した試験溶液 bを調製した。各試験溶液 aおよび に、漂白対象として、 Acid B1 ack 48色素(0. 5mmol/L)を添加し、漂白試験(2)を行った。漂白試験(2)は、 各試験溶液 400mLを lOOOmLテフロン (登録商標)瓶中に入れ、オゾン発生機とし て OZSD— 3000A (荏原実業株式会社製)を使用し、オゾンガス濃度を 10倍(50g ZNm3)とした空気を、流量 1. OLZ分で、 25°Cにて 3分間、散気管より各溶液に吹 き込んだ以外は、漂白試験(1)と同様にして行った。また、本試験においては、高濃 度オゾンガスを用いるため、排ォゾンガスはオゾン分解器に通し、無害化した。
[0047] [表 3]
Figure imgf000020_0001
[0048] 表 3に示す結果より、高濃度オゾンガスを用いた場合であっても、トリァセチンの存 在により、色素分解促進効果が得られることが示された。
[0049] 試験例 2
<一般細菌溶液の調製 >
巿販の無漂白もやし 20gをフィルタ付ホモジナイズバックに入れ、リン酸緩衝生理 食塩水 90mLをカ卩えた。ホモジナイザ((株)エルメッタス製 SH— ΠΜ)にて 60秒間破 砕し、得られた破砕液を、株式会社ァテクト製ホモジェナイズバッグに添付のフィルタ でろ過した。ろ過された破砕液を一般細菌溶液として使用した。
[0050] <曝気による殺菌 > 試験溶液として、 ADVANTEC製 GSR— 210を用いて精製した 18Μ Ω以上の超 純水からなる試験溶液 a、前記超純水にトリァセチンを 0. 5質量%となるよう溶解した 試験溶液 b、前記超純水にグリセリンを 0. 5質量%となるよう溶解した試験溶液 cを調 製した。
上記一般細菌溶液 6mLを、 594mLの試験溶液 a〜cにそれぞれ添カ卩し、合計 600 mLの試料 A (試験溶液 a +細菌溶液)、試料 B (試験溶液 a +細菌溶液)、試料。 (試 験溶液 b +細菌溶液)、試料 D (試験溶液 c +細菌溶液)として実験に使用した。
実験は、まず、試料 Aを、処理容器 (パイレックス (登録商標)ガラス製 lOOOmLビー カー)に入れ、下記に示す高濃度オゾン発生器を用いてオゾンガスを発生させ、散 気管を用い、 25°Cにて、テフロン (登録商標)スターラーにて 200rpmの回転速度で 攪拌しつつ、オゾン曝気を、曝気時間を変化させて(1分間、 5分間、 10分間)行った 。散気管としては、木下理ィ匕工業株式会社製の木下式ガラスフィルター 503G No. 1 (粗)を用いた。
また、試料 B〜Dについて、高濃度オゾン発生器に代えて下記に示す低濃度ォゾ ン発生器を用いた以外は上記と同様にしてオゾン曝気を行った。
高濃度オゾン発生器:ナビ ·エンジニアリング株式会社 HO - 100 (流量 1. OL/mi n、オゾン濃度 5gZm3)。
低濃度オゾン発生器:株式会社べテル製 BO— 90 (流量 2. lL/min,オゾン濃度
Figure imgf000021_0001
<菌数の測定 >
上記試料 A〜Dを、曝気後すばやくあら力じめ滅菌した試験管に採取し、ペプトン 食塩緩衝液を用いて試験管に 10倍ずつ段階希釈した。希釈にはペプトン食塩緩衝 液を使用した。各希釈液をマイクロピペットにて 100 /z L採取し、シャーレ中の標準寒 天培地に滴下した。ディスポコーンラージ棒にて培地上に塗抹後、インキュベータに て 37°Cで 24時間培養したのち、 1シャーレ当り 300以下の範囲のものについて培地 シャーレ上のコロニー数を計数することで残存生菌数 (菌数)を調べた。各希釈段階 とも 2枚づっ培養し、求めた菌数を平均化した。
標準寒天培地およびペプトン食塩緩衝液、リン酸緩衝生理食塩水は株式会社ァテ タト製のものを用いた。
[0052] 試料 A〜Dにつ ヽて、曝気時間を横軸、菌数を縦軸にとったグラフを作成した。そ のグラフを図 1に示す。図 1に示したグラフより、添加剤(トリァセチンまたはグリセリン) を加えない状態においては、高濃度オゾン曝気 (試料 A)では、曝気時間に伴い菌 数が減少した力 低濃度オゾン曝気 (試料 B)では、曝気時間 5分では菌数にほとん ど変化はなぐ曝気時間 10分で約 1Z20に減少していた。この結果から、低濃度ォ ゾン曝気では、明らかに高濃度オゾン曝気より殺菌速度が遅いことが判る。
これに対し、トリァセチンを 0. 5質量%添加した試料 Cでは、試料 Bと同様の低濃度 オゾン曝気でありながら、高濃度オゾン曝気の試料 Aと同様の殺菌速度で菌数が減 少しており、明らかに殺菌効果が上昇したことが確認できた。
一方、グリセリンを 0. 5質量%添加した試料 Dでは、試料 Bと同様、殺菌速度が遅く 、 5分の曝気では菌数にほとんど変化がな力つた。
[0053] 図 2に、試料 A〜Dについて、曝気時間 5分後の菌数を示す。図 2から明らかなよう に、添加剤を添加しな!、状態での高濃度オゾン曝気 (試料 A)と低濃度オゾン曝気 ( 試料 B)とを比較した場合、高濃度オゾン曝気では、図 1のグラフにも示したように、 5 分の曝気により約 1Z100程に菌数が減少するのに対し、低濃度オゾンでは、 5分の 曝気では菌数にほとんど変化がな力つた。
これに対し、トリァセチンを 0. 5質量%添加した試料 Cでは、低濃度オゾン曝気であ りながら、 5分の曝気により、高濃度オゾン曝気の試料 Aと同レベル程度にまで減少し ており、明らかに殺菌効果が上昇したことが確認できた。
一方、グリセリンを 0. 5質量%添加した試料 Dでは、試料 Bと同様、 5分の曝気では 菌数にほとんど変化がな力つた。
[0054] 試験例 3
<水カビ臭に対する消臭効果 >
水道水のカビ臭気物質であるジォスミン (天然物化学研究用試薬、関東化学株式 会社製)をエタノール (特級試薬、関東化学株式会社製)に lOOppm分散させた溶液 を調製した。
新品の 50mLビーカーを ImolZL塩酸に浸漬した後、イオン交換水で濯ぎ、さらに メタノール (特級試薬、関東化学株式会社製)に浸漬することで、ビーカー表面の汚 れやにおいを除去した。更に、このビーカーをイオン交換水でよく濯ぎ、乾燥させた。 前記ビーカーにジォスミン溶液 lmLを入れ、ビーカー内壁になじませながら溶媒を 揮発させたものを以下の試験に用いた。
[0055] 80°Cの水 40mLを前記ビーカーに添カ卩し、木下式ガラスフィルター 501G No. 4 ( 細)散気管を用い、 1. 5gZNm3のオゾンガスを 1LZ分の流量で 10分間曝気させて 、水を捨てた。そのまま室温で 24時間乾燥させたものを試料とし、その臭気の評価を 行った (試験例 3— 1)。
水の代わりにトリァセチン lOOOppm水溶液をビーカーに添加した以外は、試験例 3 1と同様に試料を作製し、その臭気の評価を行った (試験例 3— 2)。
前記曝気工程において、オゾンガスの代わりに空気を曝気させた以外は、試験例 3 1と同様に試料を作製し、その臭気の評価を行った (試験例 3— 3)。
曝気工程において、オゾンガスの代わりに空気を曝気させた以外は、試験例 3— 2 と同様に試料を作製し、その臭気の評価を行った (試験例 3— 4)。
臭気の評価は、被験者 3人が、官能的に、下記基準に従って 5段階評価し、その平 均値を算出した。
5点:ジォスミン臭を非常に強く感じる。
4点:ジォスミン臭をやや強く感じる。
3点:ジォスミン臭を感じる。
2点:ジォスミン臭をわず力に感じる。
1点:ジォスミン臭を感じな 、(ジォスミン未処理ビーカーと同程度)。
[0056] [表 4]
Figure imgf000023_0001
表 4に示す結果より、トリァセチン存在下でオゾンガスを曝気することにより、オゾン 単独で曝気する場合に比べて、より優れた消臭効果を呈することが明らかとなった。 産業上の利用可能性
本発明のオゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法によ れば、オゾン曝気処理、特に低濃度でのオゾン曝気処理において、水面の泡立ちを 抑制でき、オゾン酸化を簡便に促進できる。そのため、本発明によれば、オゾン曝気 処理におけるオゾン使用量の低減および高効率ィ匕が可能である。

Claims

請求の範囲
[1] 25°C〖こおける 0. 5質量%水溶液の 100ミリ秒時の動的表面張力が 70mNZm以 下であり、かつ 30秒時の動的表面張力が 55〜67mNZmである化合物力もなるォ ゾン酸化促進剤。
[2] 前記化合物は、分子量が 100以上である請求項 1記載のオゾン酸化促進剤。
[3] 前記化合物は、分子量が 250以下である請求項 1または 2記載のオゾン酸化促進 剤。
[4] 請求項 1〜3の ヽずれかに記載のオゾン酸化促進剤を含有するオゾン酸化促進剤 組成物。
[5] オゾン酸化により処理対象物を処理するオゾン処理方法であって、
請求項 4記載のオゾン酸化促進剤組成物の存在下にお 、て、処理対象物を含有 する被処理水中にオゾンを供給する工程を有することを特徴とするオゾン処理方法。
PCT/JP2006/319956 2005-10-05 2006-10-05 オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法 WO2007040260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06811294A EP1942170A4 (en) 2005-10-05 2006-10-05 ACCELERATORS FOR OZONE OXIDATION, OZONE OXIDIZING COMPOUND COMPOSITION, AND OZONE PROCESSING
JP2007538797A JP5090172B2 (ja) 2005-10-05 2006-10-05 オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
US12/083,130 US20100147777A1 (en) 2005-10-05 2006-10-05 Ozone Oxidation Accelerator, Ozone Oxidation Accelerator Composition, and Ozone Treatment Method
US13/113,151 US8337710B2 (en) 2005-10-05 2011-05-23 Ozone oxidation accelerator, ozone oxidation accelerator composition, and ozone treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-292408 2005-10-05
JP2005292408 2005-10-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/083,130 A-371-Of-International US20100147777A1 (en) 2005-10-05 2006-10-05 Ozone Oxidation Accelerator, Ozone Oxidation Accelerator Composition, and Ozone Treatment Method
US13/113,151 Division US8337710B2 (en) 2005-10-05 2011-05-23 Ozone oxidation accelerator, ozone oxidation accelerator composition, and ozone treatment method

Publications (1)

Publication Number Publication Date
WO2007040260A1 true WO2007040260A1 (ja) 2007-04-12

Family

ID=37906302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319956 WO2007040260A1 (ja) 2005-10-05 2006-10-05 オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法

Country Status (4)

Country Link
US (2) US20100147777A1 (ja)
EP (2) EP2495296B1 (ja)
JP (1) JP5090172B2 (ja)
WO (1) WO2007040260A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255045A (ja) * 2007-04-04 2008-10-23 Lion Corp 殺菌剤組成物および殺菌方法
JP2010053226A (ja) * 2008-08-27 2010-03-11 Lion Corp オゾン酸化促進剤および洗浄方法
JP2010208978A (ja) * 2009-03-09 2010-09-24 Lion Corp オゾン処理用の殺菌助剤組成物及びこれを用いた殺菌方法
JP2011008072A (ja) * 2009-06-26 2011-01-13 Lion Corp コンタクトレンズの洗浄方法及びこれに用いる洗浄助剤
WO2011129262A1 (ja) 2010-04-12 2011-10-20 ライオン株式会社 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
US20120160780A1 (en) * 2010-09-09 2012-06-28 Robinson B Keel Method for inhibition of bromate formation in ozonation of water
WO2013031869A1 (ja) * 2011-08-31 2013-03-07 キユーピー株式会社 カット野菜の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616591B2 (ja) * 2008-06-20 2014-10-29 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
CN102491450B (zh) * 2011-12-15 2013-06-12 南京大学 一种利用紫外光-乙酰丙酮氧化处理染料废水的方法
WO2013161959A1 (ja) * 2012-04-27 2013-10-31 独立行政法人科学技術振興機構 オゾン水による金属又は金属酸化物のエッチング方法、オゾン水による金属又は金属酸化物表面の平滑化方法、及びオゾン水を用いたパターニング方法
DE102013211954A1 (de) * 2013-06-24 2014-12-24 Henkel Ag & Co. Kgaa Waschmittel- oder Reinigungsmittel enthaltend Saccharosealkylester

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164437A (ja) 1987-09-29 1989-06-28 Lion Corp アルコキシル化用触媒
JPH03164155A (ja) 1989-11-22 1991-07-16 Aichi Pref Gov 食品又は包装材料をオゾン,アルコールおよび有機酸により交互処理又は混合処理する殺菌方法
JPH06313194A (ja) 1993-05-06 1994-11-08 Adeka Clean Eido:Kk 殺菌洗浄剤組成物
JPH08306655A (ja) * 1995-03-06 1996-11-22 Tadahiro Omi 洗浄装置及び洗浄方法
JPH11226579A (ja) 1998-02-20 1999-08-24 Mitsubishi Electric Corp 殺菌方法および殺菌装置
JP2000061304A (ja) 1998-06-10 2000-02-29 Lion Corp アルコキシル化用触媒とその製造方法、およびこの触媒を用いるアルキレンオキサイド付加物の製造方法
JP2001164298A (ja) 1999-12-10 2001-06-19 Lion Corp 液体洗浄剤組成物
JP2005292408A (ja) 2004-03-31 2005-10-20 Mitsubishi Paper Mills Ltd 平版印刷版及びその製版方法
JP2006032432A (ja) * 2004-07-12 2006-02-02 Sekisui Chem Co Ltd 有機物の除去方法及び有機物除去装置
JP2006278644A (ja) * 2005-03-29 2006-10-12 Kazutoshi Yamazaki 洗浄方法および洗浄装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2466663A (en) * 1944-10-20 1949-04-05 Ward Baking Co Fungicide containing caprylic acid and its salt
US2911437A (en) * 1957-04-02 1959-11-03 Sinclair Refining Co Preparation of glycerol triesters
JPS526946B2 (ja) * 1974-10-03 1977-02-25
JPS52138352A (en) * 1976-05-14 1977-11-18 Mitsubishi Electric Corp Apparatus for treating water
DE3833076A1 (de) * 1987-09-29 1989-04-06 Lion Corp Alkoxylierungskatalysator
US5777157A (en) * 1996-01-11 1998-07-07 Industrias Monfel S.A. De C.V. Process for production and purification of triacetin
US5705468A (en) * 1996-11-18 1998-01-06 Quantum Technologies, Inc. Vehicle and method for storing ozone
US5971368A (en) * 1997-10-29 1999-10-26 Fsi International, Inc. System to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized
US6504061B1 (en) * 1998-06-10 2003-01-07 Lion Corporation Alkoxylation catalyst and method for producing the same, and method for producing alkylene oxide adduct using the catalyst
JP2000109887A (ja) 1998-10-02 2000-04-18 Kao Corp 食品の殺菌洗浄剤組成物
US20030139310A1 (en) * 2001-08-07 2003-07-24 Smith Kim R. Peroxygen compositions and methods for carpet or upholstery cleaning or sanitizing
US6962714B2 (en) * 2002-08-06 2005-11-08 Ecolab, Inc. Critical fluid antimicrobial compositions and their use and generation
US20050051922A1 (en) * 2002-09-20 2005-03-10 Avinash Nangia Pharmaceutical composition with sodium lauryl sulfate as an extra-granular absorption/compression enhancer and the process to make the same
US7504123B2 (en) * 2004-01-09 2009-03-17 Ecolab Inc. Methods for washing poultry during processing with medium chain peroxycarboxylic acid compositions
US7682403B2 (en) * 2004-01-09 2010-03-23 Ecolab Inc. Method for treating laundry
US20060078509A1 (en) * 2004-10-13 2006-04-13 Cadbury Adams Usa Llc Effervescent pressed gum tablet compositions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164437A (ja) 1987-09-29 1989-06-28 Lion Corp アルコキシル化用触媒
JPH03164155A (ja) 1989-11-22 1991-07-16 Aichi Pref Gov 食品又は包装材料をオゾン,アルコールおよび有機酸により交互処理又は混合処理する殺菌方法
JPH06313194A (ja) 1993-05-06 1994-11-08 Adeka Clean Eido:Kk 殺菌洗浄剤組成物
JPH08306655A (ja) * 1995-03-06 1996-11-22 Tadahiro Omi 洗浄装置及び洗浄方法
JPH11226579A (ja) 1998-02-20 1999-08-24 Mitsubishi Electric Corp 殺菌方法および殺菌装置
JP2000061304A (ja) 1998-06-10 2000-02-29 Lion Corp アルコキシル化用触媒とその製造方法、およびこの触媒を用いるアルキレンオキサイド付加物の製造方法
JP2001164298A (ja) 1999-12-10 2001-06-19 Lion Corp 液体洗浄剤組成物
JP2005292408A (ja) 2004-03-31 2005-10-20 Mitsubishi Paper Mills Ltd 平版印刷版及びその製版方法
JP2006032432A (ja) * 2004-07-12 2006-02-02 Sekisui Chem Co Ltd 有機物の除去方法及び有機物除去装置
JP2006278644A (ja) * 2005-03-29 2006-10-12 Kazutoshi Yamazaki 洗浄方法および洗浄装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942170A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255045A (ja) * 2007-04-04 2008-10-23 Lion Corp 殺菌剤組成物および殺菌方法
JP2010053226A (ja) * 2008-08-27 2010-03-11 Lion Corp オゾン酸化促進剤および洗浄方法
JP2010208978A (ja) * 2009-03-09 2010-09-24 Lion Corp オゾン処理用の殺菌助剤組成物及びこれを用いた殺菌方法
JP2011008072A (ja) * 2009-06-26 2011-01-13 Lion Corp コンタクトレンズの洗浄方法及びこれに用いる洗浄助剤
WO2011129262A1 (ja) 2010-04-12 2011-10-20 ライオン株式会社 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
US20120160780A1 (en) * 2010-09-09 2012-06-28 Robinson B Keel Method for inhibition of bromate formation in ozonation of water
WO2013031869A1 (ja) * 2011-08-31 2013-03-07 キユーピー株式会社 カット野菜の製造方法
JPWO2013031869A1 (ja) * 2011-08-31 2015-03-23 キユーピー株式会社 カット野菜の製造方法

Also Published As

Publication number Publication date
US8337710B2 (en) 2012-12-25
EP2495296A1 (en) 2012-09-05
EP1942170A4 (en) 2011-11-30
EP1942170A1 (en) 2008-07-09
US20100147777A1 (en) 2010-06-17
JPWO2007040260A1 (ja) 2009-04-16
EP2495296B1 (en) 2014-04-09
JP5090172B2 (ja) 2012-12-05
US20110223073A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2007040260A1 (ja) オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP5663569B2 (ja) 硬質物品用殺菌剤組成物及び硬質物品の表面の殺菌方法
JP4232002B2 (ja) デバイス基板用の洗浄組成物及び該洗浄組成物を用いた洗浄方法並びに洗浄装置
WO2011129262A1 (ja) オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
JP5085157B2 (ja) オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP2007084589A (ja) 酸性殺菌洗浄剤
JP5016962B2 (ja) 殺菌剤組成物および殺菌方法
JP4983011B2 (ja) 界面活性剤含有水の処理方法および処理装置
AU586242B2 (en) Low-foaming detergents
JP2011121883A (ja) 殺菌助剤及びオゾン殺菌洗浄方法
JP5386128B2 (ja) オゾン酸化促進剤および洗浄方法
JP2005154561A (ja) 発泡性洗浄剤
JP5340550B2 (ja) オゾン安定化水溶液とその製造方法
JP5030089B2 (ja) 除菌または除粒子による洗浄方法、およびそれに用いる装置
FR2761080A1 (fr) Composition a base de peracides pour le nettoyage, la desinfection et la decontamination de surfaces souillees par des agents toxiques
CN105969539A (zh) 一种多功能浓缩清洁剂
JP5193907B2 (ja) カットされた野菜又は果物の洗浄方法
AU2017384299B2 (en) Process for the manufacture of an aqueous composition suitable for physical foaming
JP2011088024A (ja) オゾン水生成装置及びこれを用いた洗浄装置、オゾン水生成方法、洗浄方法
JP2018002859A (ja) 野菜類の異物除去洗浄用の洗浄剤組成物
JP5364401B2 (ja) 殺菌方法
CN109592646A (zh) 一种臭氧化水乳化液的制备方法
JP2007238811A (ja) 食品処理による汚れ洗浄剤
JP2000026216A (ja) 工業用殺菌剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12083130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811294

Country of ref document: EP