WO2007040071A1 - 2段過給式エンジンのegrシステム - Google Patents

2段過給式エンジンのegrシステム Download PDF

Info

Publication number
WO2007040071A1
WO2007040071A1 PCT/JP2006/318928 JP2006318928W WO2007040071A1 WO 2007040071 A1 WO2007040071 A1 WO 2007040071A1 JP 2006318928 W JP2006318928 W JP 2006318928W WO 2007040071 A1 WO2007040071 A1 WO 2007040071A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
pressure
low
valve
pressure stage
Prior art date
Application number
PCT/JP2006/318928
Other languages
English (en)
French (fr)
Inventor
Junichiro Nitta
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Publication of WO2007040071A1 publication Critical patent/WO2007040071A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an EGR system for a two-stage supercharged engine including a high-pressure stage turbocharger and a low-pressure stage turbocharger. More specifically, the present invention relates to an EGR system for a two-stage supercharged engine that does not cause deterioration in supercharging even at a high EGR rate.
  • EGR is generally performed to recirculate exhaust gas to the intake side.
  • a low-pressure stage compressor 5c of a low-pressure stage turbocharger 5 and a high-pressure stage compressor 6c of a high-pressure stage turbocharger 6 are provided in order of the upstream side force of the intake passage 3.
  • the upstream side force of the exhaust path 4 is also provided with a high-pressure turbine 6t of the high-pressure turbocharger 6 and a low-pressure turbine 5t of the low-pressure turbocharger 5 in this order.
  • the high-pressure turbocharger 6 is smaller than the low-pressure turbocharger 5 and uses a turbocharger to handle the air compressed by the low-pressure compressor 5c.
  • the low-pressure stage turbocharger 5 is provided with a low-pressure stage exhaust bypass path 5a for bypassing the low-pressure stage turbine 5t.
  • the low-pressure stage exhaust bypass path 5a is used for controlling the amount of flowing gas.
  • the Westgate valve 5b is installed.
  • the high-pressure stage turbocharger 6 is provided with a high-pressure stage intake bypass path 6a that binos the high-pressure stage compressor 6c in the intake system, and a high-pressure stage exhaust bypass path 6d that bypasses the high-pressure turbine 6t in the exhaust system.
  • a high-pressure stage intake bypass valve 6b and a high-pressure stage exhaust bypass valve 6e for controlling the amount of flowing gas are attached to the bypass paths 6a and 6d, respectively.
  • the low pressure stage exhaust bypass path 5a and the wastegate valve 5b may not be installed.
  • the high-pressure stage intake bypass path 6a and the high-pressure stage exhaust bypass path 6d may not be installed.
  • an intercooler (intake air cooler) 7 for cooling the intake air compressed and heated by the low pressure compressor 5c is provided downstream of the low pressure compressor 5c.
  • the EGR path 1 IX includes an exhaust path 4 between the engine body 2 on the exhaust side and the high-pressure turbine 6t, and a high-pressure compressor 6c on the intake side.
  • An intake passage 3 between the gin body 2 and the gin body 2 is connected.
  • This EGR path 11X The upstream force is also provided with EGR cooler 13X and EGR valve 12X.
  • the EGR gas Ge is introduced from the exhaust side to the intake side via the EGR path 1 IX via the EGR cooler 13X and the EGR valve 12X in this order. Further, the valves 5b, 6b, 6e, and 12X are opened and closed and the valve opening degree is controlled according to the operating conditions of the engine IX.
  • FIG. 2 shows an EGR system in a two-stage supercharged engine provided with a high pressure EGR path for a high-pressure stage turbocharger.
  • the EGR path 11Y includes an exhaust path 4 between the exhaust-side high-pressure turbine 6t and the low-pressure turbine 5t, an intake-side low-pressure compressor 5c, and a high-pressure compressor. 6c and an intake path 3 upstream of the intercooler 7 is connected.
  • the EGR path 11Y is also provided with an EGR cooler 13Y and an EGR valve 12Y on the upstream side! EGR gas Ge is also introduced into the intake side through the EGR path 11Y through the EGR cooler 13Y and the EGR valve 12Y in this order.
  • FIG. 3 shows an EGR system in a two-stage supercharged engine provided with a low pressure EGR path for the high-pressure turbocharger 6.
  • the first is, for example, as described in Japanese Patent Application Laid-Open No. 05-69364, the upstream side force of the high-pressure turbine, between the low-pressure compressor and the high-pressure compressor. It is a system that circulates. This system is the currently known low pressure EGR system.
  • the second is a mirror cycle engine equipped with two exhaust turbo-superchargers that are not provided with a bypass valve in series, as described in Japanese Unexamined Patent Publication No. 2000-220480, for example.
  • an intercooler is installed downstream of each intake compressor, and the EGR gas is circulated between the low-pressure compressor and the high-pressure compressor on the upstream side of the high-pressure turbine.
  • the EGR gas amount can be adjusted by the EGR valve based on the signal from the knocking sensor, and fuel supply means is provided between the low-pressure compressor and the high-pressure compressor.
  • the third is, for example, a two-stage as described in Japanese Patent Application Laid-Open No. 2003-49674.
  • a turbocharger system consisting of a mechanical supercharger and an exhaust turbocharger
  • an intercooler is installed downstream of each intake compressor, and both intakes from the upstream side of the exhaust turbine.
  • This system circulates EGR gas between compressors. In this system, the amount of EGR gas is adjusted by the EGR valve and then cooled by the EGR cooler!
  • a motor-driven intake compressor having a bypass path is provided on the upstream side of the intake compressor of the turbocharger as described in JP-T-2001-509561.
  • Upstream force of exhaust turbine This is a low pressure EGR system that circulates EGR gas to the upstream side of a motor-driven intake compressor. In this system, after cooling with an EGR cooler, the amount of EGR gas is adjusted with an EGR valve.
  • the high pressure EGR system for a high-pressure turbine as shown in Fig. 2 is superior in operating flow rate characteristics compared to a conventional supercharger, and is a supercharger in a two-stage supercharging system.
  • the supercharger pressure decreases because the supercharger operating flow rate decreases as the EGR rate increases.
  • operating at a high EGR rate especially in the low to medium load operating range at low to medium speed rotation, will cause a significant drop in the supercharging pressure, and the relationship between the air-fuel ratio (A / F) and the EGR rate trade-off. There is a problem that it becomes impossible to improve.
  • the high-pressure compressor 6c in the two-stage turbocharging system is a low-pressure turbocharger.
  • the capacity can be smaller than that of the low-pressure stage compressor 5c.
  • the high-pressure turbine 6t also handles gas at a higher pressure than the low-pressure turbine 5t. Therefore, even if the gas handled by the high-pressure turbine 6t is the same in mass flow as the low-pressure turbine 5t, the volume is small, so the high-pressure turbine 6t has a smaller capacity than the low-pressure turbine 5t. ,.
  • Patent Document 1 Japanese Patent Laid-Open No. 05-69364
  • Patent Document 2 JP 2000-220480 A
  • Patent Document 3 JP 2003-49674
  • Patent Document 4 Special Table 2001-509561
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an EGR system for a two-stage turbocharged engine including a high-pressure stage turbocharger and a low-pressure stage turbocharger.
  • the exhaust gas pressure or the EGR gas outlet pressure force of the exhaust system is lower than the intake manifold pressure or the intake EGR gas inlet pressure, or the low pressure stage compressor and the high pressure High EGR rate operation is possible even under the operating conditions in which the intermediate supercharging pressure with the stage compressor is higher than the intermediate exhaust pressure between the high-pressure turbine and the low-pressure turbine.
  • the objective is to provide an EGR system for a two-stage supercharged engine that can improve the supercharging characteristics in the rotation / high-load operation region.
  • An EGR system for a two-stage turbocharged engine to achieve the above-described purpose is provided with a low-pressure stage compressor of a low-pressure stage turbocharger and a high-pressure stage compressor of a high-pressure stage turbocharger in order of the upstream side force of the intake passage.
  • an EGR system for an internal combustion engine provided with a high-pressure stage turbine of the high-pressure stage turbocharger and a low-pressure stage turbine of the low-pressure stage turbocharger in order from the upstream side of the exhaust path, the high-pressure stage turbine and the low-pressure stage
  • EGR gas is introduced via a third EGR valve from the second EGR path for introducing the engine and the exhaust path between the internal combustion engine body and the high-pressure turbine to the intake path between the high-pressure compressor and the internal combustion engine body
  • an EGR control device that opens and closes the first EGR valve, the second EGR valve, and the third EGR valve, respectively, and adjusts the valve opening degree.
  • An EGR cooler can be provided for each EGR path, and a common EGR cooler can be used for the first EGR path and the second EGR path. Also, these EGR coolers are usually installed upstream of the EGR valve to protect the EGR valve from high-temperature exhaust gas (EGR gas). However, an EGR cooler may be provided downstream of the EGR valve.
  • the EGR path is also branched between the internal combustion engine main body and the high pressure stage turbine, and the EGR gas is introduced upstream of the high pressure stage compressor.
  • the second EGR route and the third EGR route, which is the high-pressure high pressure EGR route to be introduced downstream, will be installed.
  • Each EGR path has a first EGR valve, a second EGR valve, and a third EGR valve. With this configuration, the EGR path is selected according to the operating conditions of the internal combustion engine to control the EGR gas flow.
  • the first EGR path which is the high pressure stage low pressure EGR path
  • the supercharging pressure on the intake side is higher than the exhaust pressure on the exhaust side, making it difficult to introduce EGR gas to the intake side.
  • the EGR gas can be easily introduced to the intake side by using the second EGR path or the third EGR path.
  • the EGR is performed by selecting the first to third EGR paths depending on which operating region the operating condition of the internal combustion engine is in.
  • the operation condition of the internal combustion engine is a low speed rotation or medium speed rotation operation region and a low load or medium load operation region.
  • an intermediate exhaust pressure which is an exhaust pressure between the high-pressure turbine and the low-pressure turbine, in the low-speed rotation operation region and the high-load operation region.
  • the intermediate boost pressure is higher than the intermediate boost pressure with the high-pressure compressor
  • the first EGR valve and the second EGR valve are controlled to open and close, and the third EGR valve is closed.
  • the intermediate exhaust pressure is equal to or lower than the intermediate supercharging pressure
  • the second EGR valve and the third EGR valve are opened and closed and the valve opening is controlled, and the first EGR valve is closed. Configured to perform second EGR control.
  • the operating pressure at the high EGR rate greatly reduces the supercharging air operating flow rate. Shifting to the surge line side, the efficiency drops significantly.
  • the first EGR path with the first EGR valve is used, or the second EGR path with the second EGR valve is used. This increases the operating flow rate of the high-pressure compressor and improves the operating efficiency. As a result, an increase in the supercharging pressure and a corresponding increase in the EGR rate can reduce the exhaust pressure.
  • the third EGR valve is opened and closed and the valve It is configured to perform fourth EGR control that controls the opening and closes the first EGR valve and the second EGR valve.
  • the intercooler is further downstream of the low-pressure stage compressor and more than both the connection portion of the first EGR path and the connection portion of the second EGR path. It is configured to be provided in the upstream intake path.
  • EGR can be performed while suppressing an increase in intake air temperature to a minimum.
  • the intake air temperature at the inlet of the high-pressure compressor can be significantly reduced even in the medium-speed rotation / high-load operation region where the engine intake temperature is expected to rise to about 50 ° C to 80 ° C in the conventional technology. wear.
  • the operating efficiency of the high-pressure compressor is significantly improved.
  • high supercharging is possible, and the mass intake amount can be significantly increased.
  • the aluminum alloy material used in the prior art can be used as the material of the compressor blade. Therefore, it is not necessary to use expensive titanium materials for high temperature measures.
  • the EGR system of the present invention even when the intake air temperature rises in the low-speed to medium-speed rotation operation region, the low pressure is applied to the high-pressure turbocharger when the first EGR path is used. Therefore, the operation efficiency of the supercharger is improved, and the supercharging pressure is significantly increased over the conventional EGR system. Therefore, the trade-off relationship between the EGR rate and air-fuel ratio is improved by improving the supercharging pressure. Since the improvement effect of this trade-off relationship exceeds the bad intake efficiency associated with the rise in intake air temperature, it is possible to operate at a higher air-fuel ratio and higher EGR rate than the conventional EGR system. The invention's effect
  • the EGR system for a two-stage turbocharged engine equipped with a high-pressure turbocharger and a low-pressure turbocharger!
  • EGR gas is sucked not only from the downstream side of the high-pressure stage turbine but also from the upstream side of the high-pressure stage turbine without deteriorating supercharging. It can be circulated downstream of the stage compressor.
  • FIG. 1 is a diagram showing a configuration of an EGR system of a two-stage supercharged engine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of a high-pressure stage pressure / pressure EGR system.
  • FIG. 3 is a diagram showing an example of the configuration of a high pressure stage low pressure EGR system.
  • the EGR system 10 is applied to an engine (internal combustion engine) 1 of a two-stage supercharging system.
  • a low-pressure stage compressor 5 c of a low-pressure stage turbocharger 5, an intercooler 7, and a high-pressure stage compressor 6 c of a high-pressure stage turbocharger 6 are provided in order from the upstream side of the intake path 3.
  • a high-pressure turbine 6 t of the high-pressure turbocharger 6 and a low-pressure turbine 5 t of the low-pressure turbocharger 5 are provided in this order from the upstream side of the exhaust path 4.
  • the low-pressure stage turbocharger 5 is provided with a low-pressure stage exhaust bypass path 5a for bypassing the low-pressure stage turbine 5t.
  • a wastegate valve 5b for controlling the amount of gas flowing is attached to the low-pressure stage exhaust bypass path 5a.
  • the high pressure turbocharger 6 is provided with a high pressure stage intake bypass path 6a for bypassing the high pressure stage compressor 6c in the intake system.
  • a high-pressure stage intake bypass valve 6b for controlling the amount of flowing gas is attached to the high-pressure stage intake bypass path 6a.
  • a high-pressure stage exhaust bypass path 6d for bypassing the high-pressure stage turbine 6t is provided in the exhaust system.
  • a high-pressure stage exhaust bypass valve 6e for controlling the amount of flowing gas is attached to the high-pressure stage exhaust bypass path 6d.
  • the high-pressure stage intake bypass valve 6b When the operating condition of the engine is in the high-speed rotation operation region, the high-pressure stage intake bypass valve 6b is opened, and the intake air is caused to flow to the high-pressure stage intake bypass path 6a to bin the high-pressure stage compressor 6c. . In this case, supercharging is performed only with the low-pressure compressor 5c.
  • the present invention can be applied to a series type two-stage supercharging system other than the sequential two-stage supercharging system.
  • the turbocharger which has a large capacity compared to the sequential type, is set to a high-pressure stage, and supercharging is performed without switching control in the high-speed rotation range.
  • the high-pressure turbine 6t is used for the supercharging pressure control
  • the high-pressure stage exhaust noisle path 6d and the high-pressure stage exhaust bino-relevant 6e are used for the supercharging pressure control
  • the wastegate type is set for the high-pressure stage turbine 6t. To do. With this configuration, at least the high-pressure stage intake bypass path 6a in the intake-side high-pressure stage compressor 6c is not necessary.
  • the first EGR valve 12 and the first EGR cooler 13 are provided.
  • 1EGR path 11 is provided by connecting exhaust path 4 between high-pressure turbine 6t and low-pressure turbine 5t and intake path 3 between intercooler 7 and high-pressure compressor 6c.
  • This first EGR path 11 passes through the first EGR valve 12 from the exhaust path 4 between the high pressure turbine 6t and the low pressure turbine 5t to the intake path 3 between the low pressure compressor 5c and the high pressure compressor 6c.
  • EGR gas Ge 1 is introduced.
  • the second EGR path 14 including the second EGR valve 15 and the second EGR cooler 16 is connected to the exhaust path 4 between the engine body 2 and the high pressure turbine 6t, the intercooler 7 and the high pressure compressor 6c. Connected to the intake path 3 between the two.
  • the exhaust path 4 between the engine body (internal combustion engine body) 2 and the high-pressure turbine 6t leads to the intake path 3 between the low-pressure compressor 5c and the high-pressure compressor 6c.
  • 2 EGR gas Ge2 is introduced via EGR valve 15.
  • the second EGR path 17 including the third EGR valve 18 and the third EGR cooler 19 is connected to the exhaust path 4 between the engine body 2 and the high-pressure turbine 6t, the high-pressure compressor 6c, and the engine body 2. And an intake path 3 between them.
  • the exhaust path 4 between the engine main body 2 and the high-pressure turbine 6t goes to the intake path 3 between the high-pressure compressor 6c and the engine body 2 via the third EGR valve 18.
  • EGR gas Ge3 is introduced.
  • the intercooler 7 is located downstream of the low-pressure compressor 5c and upstream of both the connecting portion 11a of the first EGR path 11 and the connecting portion 14a of the second EGR path 14. It was established in 3.
  • the EGR valves 12, 15, 18 are arranged downstream of the EGR coolers 13, 16, 19, respectively, and the exhaust gas Gel, Ge2, Ge3 are cooled by the EGR coolers 13, 16, 19, respectively. Leave and let it flow through EGR valves 12, 15 and 18.
  • This EGR control is performed by an EGR control device incorporated in an engine control device called ECU that controls the engine.
  • This EGR control device selects the first to third EGR controls that selectively use the first to third EGR paths 11, 14, and 17 according to the operating conditions of the engine 1, and selects the optimal EGR for each operating condition. I do.
  • the first purpose of this EGR control is not to generate a gas flow (reverse flow) to the intake side force exhaust side, and there are various methods for this control.
  • a method based on open control using a control map, or detection that detects the pressure, temperature, or flow rate of each gas in each flow path of each gas such as intake gas, exhaust gas, and EGR gas
  • Whether or not the operating condition of the engine 1 is within the operating range is determined based on the detected engine speed and engine load with reference to map data for control prepared in advance. To do. Further, a supercharging intermediate supercharging pressure that is a supercharging pressure between the low pressure stage compressor 5c and the high pressure stage compressor 6c, and an intermediate exhaust pressure that is an exhaust pressure between the high pressure stage turbine 6t and the low pressure stage turbine 5t
  • the pressure detection means such as the first pressure gauge 9a that detects the intermediate supercharging pressure of the intercooler 7 and the second pressure gauge 9b that detects the intermediate exhaust pressure of the 6t high-pressure turbine 6t It is determined based on the intermediate exhaust pressure and the intermediate supercharging pressure detected by. These are merely examples of various control methods, and other control methods may be used.
  • the operating condition force of the engine 1 is in the low-speed or medium-speed rotation operation region and in the low-load or medium-load operation region, or in the low-speed rotation operation region and high. This is performed when the engine is in the load operating range and the intermediate exhaust pressure is greater than the intermediate boost pressure.
  • the first EGR valve 12 is mainly used, and the second EGR valve 15 is used as an auxiliary, and the first EGR valve 12 and the second EGR valve 15 are opened and closed and the valve opening degree is controlled. At the same time, the third EGR valve 18 is closed.
  • the opening degree of the first EGR valve 12 is prioritized over the opening degree of the second EGR valve 15.
  • the first EGR valve 12 alone can introduce a predetermined amount of EGR gas
  • only the first EGR valve 12 adjusts the valve opening and introduces EGR gas
  • the second EGR valve 15 is fully closed.
  • the first EGR valve 12 is left in the fully open state or close to the fully open state
  • the second EGR valve 15 Adjust the valve opening and adjust the opening of the second EGR valve 15 so that a predetermined amount of EGR gas can be introduced.
  • the second EGR control when performing EGR, when the operating condition force of the engine 1 is in the low speed rotation or medium speed rotation operation region and in the low load or medium load operation region, or In the case of the low-speed rotation operation region and the high-load operation region, it is further performed when the intermediate exhaust pressure is equal to or lower than the intermediate boost pressure.
  • the second EGR valve 15 is mainly used, and the third EGR valve 18 is used as an auxiliary, and the second EGR valve 15 and the third EGR valve 18 are opened and closed and the valve opening degree is controlled. At the same time, the first EGR valve 12 is closed.
  • the third EGR control is performed when the EGR is performed and the operating condition force of the engine 1 is in the medium speed rotation operation region and the high load operation region.
  • the second EGR valve 15 and the third EGR valve 18 are opened and closed and the valve opening degree is controlled.
  • the first EGR valve 12 is closed.
  • the fourth EGR control is performed when the EGR is performed and the operating condition force of the engine 1 is in the high-speed rotation operation region.
  • the third EGR valve 18 is opened and closed and the valve opening degree is controlled, and the first EGR valve 12 and the second EGR valve 15 are closed.
  • the first and second EGR controls described above minimize the decrease in the working gas flow rate for the high-pressure stage turbocharger 6 even under the low E / G speed and low E / R operation conditions. As a result, it is possible to minimize the decrease in supercharging pressure when the EGR rate increases.
  • the third EGR control in the medium speed rotation / high load operation region, generally, a high EGR rate is not required, and the third EGR path is operated under the operating conditions in which the turbocharger operating flow is sufficiently secured. Use 17.
  • the conventional high-pressure stage high pressure EGR can be implemented, and the operating flow rate of the high-pressure stage turbocharger 6 can be suppressed.
  • the intake air that has exited the low-pressure stage compressor 5c is cooled by the intercooler 7. Therefore, in the conventional technology, the intake air temperature at the inlet of the high-pressure stage compressor 6c is greatly reduced even in the medium speed rotation / high load operation region where the intake air temperature of the engine 1 is considered to rise to about 50 ° C to 80 ° C. You can.
  • the operating efficiency of the high-pressure compressor 6c is remarkably improved. As a result, high supercharging becomes possible, and the mass intake air amount can be greatly increased.
  • the aluminum alloy material used in the prior art can be used for the material of the compressor wing of the high-pressure compressor 6c. Therefore, it is not necessary to use an expensive titanium material for high temperature countermeasures.
  • the EGR system of the internal combustion engine of the present invention having the above-described excellent effects can be used very effectively for many internal combustion engines such as an internal combustion engine mounted on an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 2段過給式エンジン(1)のEGRシステム(10)において、高圧段タービン(6t)と低圧段タービン(5t)間の排気経路(4)から、低圧段コンプレッサ(5c)と高圧段コンプレッサ(6c)間の吸気経路(3)に通じる第1EGR経路(11)と、内燃機関本体(2)と前記高圧段タービン(6t)間の排気経路(4)から、前記低圧段コンプレッサ(5c)と前記高圧段コンプレッサ(6c)間の吸気経路(3)へ通じる第2EGR経路(14)と、内燃機関本体(2)と前記高圧段タービン(6t)間の排気経路(4)から、前記高圧段コンプレッサ(6c)と内燃機関本体(2)間の吸気経路(3)へ通じる第3EGR経路(17)と、各EGR経路(11,14,17)を選択してEGRを行うEGR制御装置とを設けて構成する。これにより、このEGRシステム(10)において、高EGR率であっても、過給悪化とならないようにする。

Description

明 細 書
2段過給式エンジンの EGRシステム
技術分野
[0001] 本発明は、高圧段ターボチャージャと低圧段ターボチャージャを備えた 2段過給式 エンジンの EGRシステムに関する。より詳細には、高 EGR率であっても、過給悪化を 伴わない 2段過給式エンジンの EGRシステムに関する。
背景技術
[0002] 内燃機関の排気ガス中の NOx低減のために、排気ガスを吸気側に還流させる EG Rが一般的に行われて 、る。
[0003] 従来技術の単段のターボ過給式エンジンにおいては、排気経路の排気タービンで 排気エネルギーを回収し、このエネルギーで吸気経路の吸気コンプレッサを駆動し、 EGRガスを排気タービンの上流側から吸気コンプレッサの下流側に循環している。
[0004] この従来技術の過給式エンジンの EGRシステムでは、排気タービンの上流側から 排気ガスの大半を冷却器を通して吸気側に循環させるため、高 EGR率で運転する ために EGR率を増加すると、排気タービンを経由する排気ガス量が減少して、作動 流量が減少する。そのため、タービンに作用する排気エネルギーが減少するので、タ ーボ回転数が低下し過給圧が低下する。その結果、ターボ過給器の作動効率の悪 ィ匕、及び、サージングの発生を招く。
[0005] 従って、エンジンの運転条件が低速回転〜中速回転の運転領域にある場合にお いては、 EGR率の増加と共に著しく過給圧が低下し、空燃比 (AZF)が低下してしま う。その結果、 EGR率を増加すると空燃比が減少し、逆に、空燃比を増加させると E GR率が減少するという、一方の増加が他方の減少を招くトレードオフの関係が生じる 。この空燃比と EGR率とのトレードオフの関係を改善することが困難な状況となって いる。
[0006] 一方、今後より厳しくなる排ガス規制に対しては、高 EGR導入と高空燃比の両立が 必須である。そのため、ターボ過給特性改善のために、より効率の高い可変容量ター ボ、および 2段過給システムなどが提案されて 、る。 [0007] そこで、従来力 提案されている 2段過給システムに、ディーゼルエンジンメーカー を中心に関心が寄せられて、この 2段過給システムを備えたエンジンにおける EGRシ ステムが検討されている。この 2段過給システムの概要を図 2及び図 3に示す。
[0008] この 2段過給システムを備えたエンジン IXでは、吸気経路 3の上流側力 順に低圧 段ターボチャージャ 5の低圧段コンプレッサ 5cと高圧段ターボチャージャ 6の高圧段 コンプレッサ 6cが設けられていると共に、排気経路 4の上流側力も順に高圧段ターボ チャージャ 6の高圧段タービン 6tと低圧段ターボチャージャ 5の低圧段タービン 5tが 設けられている。一般的に、高圧段ターボチャージャ 6は、低圧段コンプレッサ 5cに よって圧縮された空気を取り扱うために、低圧段ターボチャージャ 5よりも小さ 、ター ボチャージャが使用される。
[0009] この低圧段ターボチャージャ 5に関しては、低圧段タービン 5tをバイパスするための 低圧段排気バイパス経路 5aが設けられており、この低圧段排気バイパス経路 5aには 、流れるガス量を制御するためのウェストゲートバルブ 5bが取り付けられている。また 、高圧段ターボチャージャ 6に関しては、吸気系で高圧段コンプレッサ 6cをバイノス させる高圧段吸気バイパス経路 6a、排気系で高圧段タービン 6tをバイパスさせる高 圧段排気バイパス経路 6dが設けられている。これらのバイパス経路 6a, 6dに、流れ るガス量を制御するための高圧段吸気バイパスバルブ 6b、高圧段排気バイパスバル ブ 6eがそれぞれ取り付けられて 、る。
[0010] 但し、低圧段タービンの容量特性如何によつては、低圧段排気バイパス経路 5a及 びウェストゲートバルブ 5bは設置されない場合もある。同様に、高圧段ターボチヤ一 ジャの容量によっては、高圧段吸気バイパス経路 6a及び高圧段排気バイパス経路 6 dが設置されな 、場合もある。
[0011] 更に、吸気側においては、低圧段コンプレッサ 5cの後流に、低圧段コンプレッサ 5c で圧縮 ·昇温された吸気を冷却するためのインタークーラ(吸気冷却器) 7が設けられ ている。
[0012] また、この図 2の EGRシステム 10Xでは、 EGR経路 1 IXが、排気側のエンジン本体 2と高圧段タービン 6tとの間の排気経路 4と、吸気側の高圧段コンプレッサ 6cとェン ジン本体 2との間の吸気経路 3とを接続して設けられている。この EGR経路 11Xには 、上流側力も EGRクーラ 13Xと EGR弁 12Xが設けられている。 EGRガス Geは排気 側から EGR経路 1 IXを EGRクーラ 13Xと EGR弁 12Xを順に経由して吸気側に導入 される。また、各バルブ 5b, 6b, 6e, 12Xはエンジン IXの運転条件に応じて開閉及 び弁開度制御が行われる。
[0013] この図 2は、高圧段ターボチャージャに対するハイプレッシャー EGR経路を設置し た 2段過給式エンジンにおける EGRシステムである。
[0014] 更に、図 3の EGRシステム 10Yでは、 EGR経路 11Yが、排気側の高圧段タービン 6tと低圧段タービン 5tとの間の排気経路 4と、吸気側の低圧段コンプレッサ 5cと高圧 段コンプレッサ 6cとの間で、かつ、インタークーラ 7の上流側の吸気経路 3とを接続し て設けられている。この EGR経路 11Yには、上流側力も EGRクーラ 13Yと EGR弁 1 2Yが設けられて!/、る。 EGRガス Geは排気側力も EGR経路 11Yを EGRクーラ 13Yと EGR弁 12Yを順に経由して吸気側に導入される。
[0015] この図 3は、高圧段ターボチャージャ 6に対するロープレッシャー EGR経路を設置 した 2段過給式エンジンにおける EGRシステムである。
[0016] この他にも、 2段過給システムのエンジンにおける EGRシステムとして、次のような E GRシステムが提案されて!、る。
[0017] その一つ目は、例えば、 日本の特開平 05— 69364号公報に記載されているような 、高圧段タービンの上流側力 低圧段コンプレッサと高圧段コンプレッサとの間へと E GRガスを循環させるシステムである。このシステムは、現在、一般的に知られている ロープレシヤー EGRシステムである。
[0018] その二つ目は、例えば、 日本の特開 2000— 220480号公報に記載されているよう な、バイパスバルブを備えていない排気ターボ式過給器を直列に 2つ装備したミラー サイクルエンジンにおいて、それぞれの吸気コンプレッサの後流にインタークーラを 設置し、高圧段タービンの上流側力 低圧段コンプレッサと高圧段コンプレッサとの 間へと EGRガスを循環させるシステムである。このシステムでは、ノッキングセンサの 信号を基に、 EGRガス量を EGR弁で調整可能にすると共に、低圧段コンプレッサと 高圧段コンプレッサとの間に燃料供給手段を備えている。
[0019] その三つ目は、例えば、特開 2003— 49674号公報に記載されているような、 2段 過給システムを機械式過給器と排気ターボ式過給器で構成した船舶の内燃機関に おいて、それぞれの吸気コンプレッサの後流にインタークーラを設置し、排気タービ ンの上流側から両吸気コンプレッサの間へと EGRガスを循環させるシステムである。 このシステムでは、 EGRガス量を EGR弁で調整した後 EGRクーラで冷却して!/、る。
[0020] その四つ目は、例えば、特表 2001— 509561号公報に記載されているような、タ ーボチャージャの吸気コンプレッサの上流側に、バイパス経路を備えたモーター駆動 の吸気コンプレッサを設けて、排気タービンの上流側力 モーター駆動の吸気コンプ レッサの上流側へと EGRガスを循環させるロープレッシャー EGRシステムである。こ のシステムでは、 EGRクーラで冷却した後、 EGRガス量を EGR弁で調整している。
[0021] しかしながら、これらの 2段過給システムエンジンにおける EGRシステムにおいても 、 EGRガスの導入に関する問題と、 EGR率と空燃比とのトレードオフ関係の悪ィ匕の 問題と、吸気の冷却に関係する問題とがある。
[0022] EGRガスの導入に関しては、 2段過給システムによる作動効率の改善によって、排 気圧力と過給圧力との差が減少することにより、 EGR率の増加に限界が生じるという 問題がある。つまり、 2段過給システムにより過給器の作動率が上昇すると、過給圧が 上昇するので、この過給圧に対して排圧が低下する。そのため、 EGR経路における 排気側圧力と吸気側圧力との差圧が減少したり、場合によっては、吸気側圧力が排 気側圧力よりも大きくなるという吸気側圧力 Z排気側圧力の逆転現象が発生したりす る。そのために、 EGR弁を開弁しても、 EGRガスの循環、即ち、 EGRガスの吸気側 への導入が困難になる。
[0023] 図 2に示すような高圧段タービンに対するハイプレッシャー EGRシステムでは、従 来の過給器と比較して作動流量特性に優れて 、る 2段過給システムにお 、て、過給 器の上流側で EGR経路を分岐した場合には、 EGR率の増加と共に、過給器作動流 量が減少するので、過給圧が低下する。そのため、特に、低中速回転時の低中負荷 運転領域において高 EGR率で運転を行うと、過給圧の大幅な低下を招き、空燃比( A/F)と EGR率のトレードオフの関係を改善できなくなるという問題がある。
[0024] 一方、図 3に示すような高圧段ターボチャージャに対するロープレッシャー EGRシ ステム 10Yでは、高 EGR率での運転においても高圧段ターボチャージャ 6に対する 作動流量が減少しないため、過給圧の低下が発生しない。従って、高 EGR率でも空 燃比の低下を最小限度で抑制できる。
[0025] しかし、高負荷運転領域では、低圧段ターボチャージャ 5の作動効率が上昇するた め、高圧段タービン 6tと低圧段タービン 5tとの間における中間排圧と、低圧段コンプ レッサ 5cと高圧段コンプレッサ 6cとの間における中間過給圧力が逆転(中間過給圧 >中間排圧)し、 EGRガスの吸気側への導入が困難になる場合が存在するという問 題がある。
[0026] また、 2段過給システムにおける高圧段コンプレッサ 6cは、低圧段ターボチャージャ
5で過給が行われて圧縮された空気を取り扱うために、その容量は低圧段コンプレツ サ 5cと比較して小容量で良い。また、高圧段タービン 6tにおいても低圧段タービン 5 tより圧力の高い状態のガスを取り扱う。従って、高圧段タービン 6tが扱うガスは、質 量流量が低圧段タービン 5tと同一であっても、体積が小さいために、高圧段タービン 6tは、低圧段タービン 5tと比較して小容量で良 、。
[0027] その上、低速回転'高負荷運転時において、トルク特性改善のために高過給で運 転できるようにするためには、あるいは、低中速回転 ·低中負荷において高 EGR率か つ高過給で運転できるようにするためには、これらの運転条件に合わせて、高圧段タ ーボチャージャの容量を極端に小さくする必要がある。
[0028] し力しながら、高圧段ターボチャージャの容量を極端に小さくすると、低圧段ターボ チャージャと高圧段ターボチャージャとの間に大きな容量差が生じ、中速回転 ·高負 荷運転領域における過給特性に問題が発生し易くなるという問題がある。
特許文献 1:特開平 05— 69364号公報
特許文献 2:特開 2000 - 220480号公報
特許文献 3 :特開 2003— 49674号公報
特許文献 4:特表 2001 - 509561号公報
発明の開示
発明が解決しょうとする課題
[0029] 本発明は、上記の問題を解決するためになされたものであり、その目的は、高圧段 ターボチャージャと低圧段ターボチャージャを備えた 2段過給式エンジンの EGRシス テムにおいて、過給器作動効率の改善により排気マ-ホールド圧力若しくは排気系 の EGRガス取り出し部圧力力 吸気マ二ホールド圧力若しくは吸気側 EGRガス導入 部圧力を下回る状態、又は、低圧段コンプレッサと高圧段コンプレッサとの間の中間 過給圧が、高圧段タービンと低圧段タービンとの間の中間排気圧より高くなつた運転 条件であっても、高 EGR率運転が可能であり、かつ、中高速回転 ·高負荷運転領域 における過給特性を改善できる 2段過給式エンジンの EGRシステムを提供することに ある。
課題を解決するための手段
[0030] 上記のような目的を達成するための 2段過給式エンジンの EGRシステムは、吸気経 路の上流側力 順に低圧段ターボチャージャの低圧段コンプレッサと高圧段ターボ チャージャの高圧段コンプレッサを設けると共に、排気経路の上流側から順に前記 高圧段ターボチャージャの高圧段タービンと前記低圧段ターボチャージャの低圧段 タービンを設けた内燃機関の EGRシステムであって、前記高圧段タービンと前記低 圧段タービンとの間の排気経路から、前記低圧段コンプレッサと前記高圧段コンプレ ッサとの間の吸気経路へ、第 1EGR弁を経由して EGRガスを導入する第 1EGR経路 と、内燃機関本体と前記高圧段タービンとの間の排気経路から、前記低圧段コンプ レッサと前記高圧段コンプレッサとの間の吸気経路へ、第 2EGR弁を経由して EGR ガスを導入する第 2EGR経路と、内燃機関本体と前記高圧段タービンとの間の排気 経路から、前記高圧段コンプレッサと内燃機関本体の間の吸気経路へ、第 3EGR弁 を経由して EGRガスを導入する第 3EGR経路と、前記第 1EGR弁と前記第 2EGR弁 と前記第 3EGR弁とをそれぞれ開閉及び弁開度調整する EGR制御装置とを備えて 構成される。
[0031] なお、 EGRクーラを各 EGR経路毎に設けることもでき、第 1EGR経路と第 2EGR経 路とで共通の EGRクーラを使用するように構成することもできる。また、これらの EGR クーラは、通常は EGR弁を高温の排気ガス(EGRガス)から守るために、 EGR弁の 上流側に設けることが多い。しかし、 EGRクーラを EGR弁の下流側に設けてもよい。
[0032] この EGRシステムは、低圧段コンプレッサと高圧段コンプレッサとの間の中間過給 圧が、高圧段タービンと低圧段タービンとの間の中間排圧よりも大きくなつた場合に、 EGRガスの吸気側への導入が困難になるという問題を解決する。そして、このような 場合であっても、高 EGR率での内燃機関の運転を可能とし、なお、かつ中速回転- 高負荷運転領域における過給特性を改善するシステムである。
[0033] つまり、高圧段ロープレッシャー EGR経路である第 1EGR経路に加え、内燃機関 本体と高圧段タービンとの間においても、 EGR経路を分岐し、 EGRガスを高圧段コ ンプレッサの上流側に導入する第 2EGR経路と、下流側に導入する高圧段ハイプレ ッシヤー EGR経路である第 3EGR経路との両方を設置する。それぞれの EGR経路 に第 1EGR弁、第 2EGR弁、第 3EGR弁を備える。この構成により、内燃機関の運転 状況に応じて、 EGR経路を選択して EGRガスの流れを制御する。
[0034] これにより、内燃機関の運転条件全域において最適な条件で、高 EGR率で運転で きる。例えば、運転条件によって、高圧段ロープレッシャー EGR経路である第 1EGR 経路で、吸気側の過給圧が排気側の排圧よりも高くなつて、 EGRガスの吸気側への 導入が困難になった場合でも、第 2EGR経路や第 3EGR経路の使用により、容易に EGRガスを吸気側へ導入することができる。
[0035] そして、上記の 2段過給式エンジンの EGRシステムにおいて、内燃機関の運転条 件がいずれの運転領域にあるかによって、第 1〜第 3EGR経路を選択して EGRを行
[0036] 上記の内燃機関の EGRシステムで、前記 EGR制御装置が、 EGRを行う場合にお いて、内燃機関の運転条件が、低速回転又は中速回転運転領域でかつ低負荷又は 中負荷運転領域にある場合、又は、低速回転運転領域でかつ高負荷運転領域にあ る場合に、前記高圧段タービンと前記低圧段タービンとの間の排気圧である中間排 気圧が、前記低圧段コンプレッサと前記高圧段コンプレッサとの間の過給圧である中 間過給圧よりも大きいときには、前記第 1EGR弁と前記第 2EGR弁を開閉及び弁開 度制御すると共に、前記第 3EGR弁を閉弁状態とする第 1EGR制御を行い、前記中 間排気圧が前記中間過給圧以下のときには、前記第 2EGR弁と前記第 3EGR弁を 開閉及び弁開度制御すると共に、前記第 1EGR弁を閉弁状態とする第 2EGR制御 を行うように構成される。
[0037] これにより、低中速回転かつ低中負荷運転条件における、高 EGR率での運転条件 でも、高圧段ターボチャージャに対する作動ガス流量の減少を最小限に抑制できる ので、 EGR率増加時の過給圧低下も最小限で抑制可能となる。
[0038] また、低中速回転かつ高負荷運転条件における通常のハイプレッシャー EGR方式 では、高 EGR率での運転条件で、過給気作動流量が大幅に減少するため、コンプレ ッサ作動点がサージライン側に移行して効率が著しく低下する。このような運転条件 においては、第 1EGR弁のある第 1EGR経路を使用する、あるいは、第 2EGR弁の ある第 2EGR経路を使用する。これにより、高圧段コンプレッサの作動流量が増加し 、作動効率が改善される。その結果、過給圧の増加とこれに伴う EGR率の増加ゃ排 圧の低下が可能となる。
[0039] 上記の内燃機関の EGRシステムで、前記 EGR制御装置が、 EGRを行う場合にお いて、内燃機関の運転条件が、中速回転運転領域でかつ高負荷運転領域にある場 合は、前記第 2EGR弁と前記第 3EGR弁を開閉及び弁開度制御すると共に、前記 第 1EGR弁を閉弁状態とする第 3EGR制御を行うように構成する。
[0040] この中速回転'高負荷運転領域では、一般的に高 EGR率を必要としておらず、こ のときの過給器作動流量も十分に確保されている。従って、この運転条件では、第 3 EGR弁のある第 3EGR経路を使用する。これにより、従来技術の高圧段ハイプレツシ ヤー EGRを実施することができ、高圧段ターボチャージャの作動流量を、抑制できる ようになる。
[0041] 上記の内燃機関の EGRシステムで、前記 EGR制御装置が、 EGRを行う場合にお いて、内燃機関の運転条件が、高速回転運転領域にある場合は、前記第 3EGR弁 を開閉及び弁開度制御すると共に前記第 1EGR弁と前記第 2EGR弁を閉弁状態と する、第 4EGR制御を行うように構成される。
[0042] この高速回転運転領域では、内燃機関の吸気流量が増加する。しかし、第 1EGR 経路と第 2EGR経路を使用すると、第 3EGR経路を使用した場合と比較して、高圧 段ターボチャージャのタービン及びコンプレッサに掛カる負荷が大きくなり、排圧が増 加する傾向を示す。そこで、第 3EGR経路を使用して EGRガスを吸気側へ導入する ことにより、高圧段コンプレッサに対する吸気流量 (作動流量)が抑制されると同時に 高圧段タービンに対する作動流量も抑制されるため、この問題を回避できる。 [0043] 従って、内燃機関の運転条件の変化によって生じる、高圧段ターボチャージャに対 する過給器作動流量の変化を最小限に抑制することができるので、高圧段ターボチ ヤージャの容量を増加することができる。その結果、高圧段ターボチャージャの運転 領域の拡大が可能となり、内燃機関の運転条件全域において過給特性を大幅に改 善できる。
[0044] 上記の内燃機関の EGRシステムにおいて、更に、インタークーラを、前記低圧段コ ンプレッサの下流側で、かつ、前記第 1EGR経路の接続部と前記第 2EGR経路の接 続部の両方よりも上流側の吸気経路に設けて構成される。
[0045] この構成によれば、インタークーラを低圧段コンプレッサと高圧段コンプレッサの間 の中間過給圧部に設けて 、るので、 EGR用の排気ガスがインタークーラを通らな!/ヽ 。そのため、インタークーラにおける腐食や目詰まりの発生を防止できる。
[0046] また、低圧段コンプレッサを出た吸気力 インタークーラにより冷却されるので、吸気 温度の上昇を最小限に抑制しながら EGRを行うことができる。特に、従来技術ではェ ンジン吸気温度が 50°C〜80°C程度に上昇すると考えられる中速回転 ·高負荷運転 領域においても、高圧段コンプレッサの入口の吸気温度を大幅に低下させることがで きる。
[0047] そのため、高圧段コンプレッサの作動効率が著しく改善し、その結果、高過給が可 能となり、質量吸気量を大幅に増加できる。また、高圧段コンプレッサの入口の吸気 温度を低下できるので、このコンプレッサ羽の材料に、従来技術で使用されているァ ルミ-ゥム合金材料を使用できる。そのため、高温対策用の高価なチタン材等を使用 せずに済む。
[0048] なお、本発明の EGRシステムによれば、低速回転〜中速回転運転領域において、 吸気温度が上昇しても、第 1EGR経路を用いる場合には、高圧段ターボチャージャ に対してロープレッシャー EGRとなって 、るので、過給器の作動効率が改善されて おり、過給圧が従来型の EGRシステムよりも大幅に上昇する。そのため、過給圧の改 善による EGR率と空燃比とのトレードオフ関係の改善がなされる。このトレードオフ関 係の改善効果が、吸気温度上昇にともなう吸気効率の悪ィ匕を上回るため、従来技術 の EGRシステムよりも、高空燃比かつ高 EGR率での運転が可能となる。 発明の効果
[0049] 本発明に係る 2段過給エンジンの EGRシステムによれば、高圧段ターボチャージャ と低圧段ターボチャージャを備えた 2段過給式エンジンの EGRシステムにお!/、て、高 EGR率であっても、過給悪化を伴わなずに、高圧段タービンの下流側のみならず、 高圧段タービンの上流側からも EGRガスを吸入し、高圧段コンプレッサの上流側の みならず、高圧段コンプレッサの下流側へ循環させることができる。
[0050] 従って、内燃機関の運転条件の変化によって生じる、高圧段ターボチャージャに対 する過給器作動流量の変化を最小限に抑制することができるので、高圧段ターボチ ヤージャの容量を増加することができる。その結果、高圧段ターボチャージャの運転 領域の拡大が可能となり、内燃機関の運転条件全域において過給特性を大幅に改 善できる。
図面の簡単な説明
[0051] [図 1]本発明に係る実施の形態の 2段過給式エンジンの EGRシステムの構成を示す 図である。
[図 2]高圧段ノ、ィプレッシャー EGRシステムの構成の一例を示す図である。
[図 3]高圧段ロープレッシャー EGRシステムの構成の一例を示す図である。
発明を実施するための最良の形態
[0052] 以下、本発明に係る実施の形態の 2段過給エンジンの EGRシステムについて、図 面を参照しながら説明する。
[0053] 図 1に示すように、この EGRシステム 10は、 2段過給システムのエンジン(内燃機関 ) 1に適用される。このエンジン 1では、吸気経路 3の上流側から順に低圧段ターボチ ヤージャ 5の低圧段コンプレッサ 5cとインタークーラ 7と高圧段ターボチャージャ 6の 高圧段コンプレッサ 6cを設ける。それと共に、排気経路 4の上流側から順に高圧段タ ーボチャージャ 6の高圧段タービン 6tと低圧段ターボチャージャ 5の低圧段タービン 5tを設ける。
[0054] また、低圧段ターボチャージャ 5には、低圧段タービン 5tをバイパスするための低圧 段排気バイパス経路 5aが設けられる。この低圧段排気バイパス経路 5aには、流れる ガス量を制御するためのウェストゲートバルブ 5bが取り付けられている。 [0055] また、高圧段ターボチャージャ 6には、吸気系においては、高圧段コンプレッサ 6c をバイパスさせる高圧段吸気バイパス経路 6aが設けられる。この高圧段吸気バイパ ス経路 6aには、流れるガス量を制御するための高圧段吸気バイパスバルブ 6bが取り 付けられている。更に、排気系においては、高圧段タービン 6tをバイパスさせる高圧 段排気バイパス経路 6dが設けられる。この高圧段排気バイパス経路 6dには、流れる ガス量を制御するための高圧段排気ノ ィパスバルブ 6eが取り付けられている。
[0056] そして、エンジンの運転条件が高速回転運転領域にある場合は、高圧段吸気バイ パスバルブ 6bを開弁し、吸気を高圧段吸気バイパス経路 6aに流して、高圧段コンプ レッサ 6cをバイノスさせる。この場合には、低圧段コンプレッサ 5cのみで過給を行う。
[0057] 一方、エンジンの運転条件が低速回転〜中速回転運転領域にある場合は、高圧 段吸気バイパスバルブ 6bを閉弁し、吸気を高圧段コンプレッサ 6cに流して、低圧段 コンプレッサ 5cと 2段で過給を行う。
[0058] なお、上記の構成では、高圧段ターボチャージャ 6に比較的小型の容量特性を持 つものを使用するシーケンシャル 2段過給システムで説明して 、る。このシーケンシャ ル 2段過給システムにおいては、高圧段ターボチャージャ 6が小型であるため、低中 速回転域においては良好な過給特性が得られる。しかし、高圧段ターボチャージャ 6 が小型であるがため、高速回転域では排気圧力が急激に増加してしまう。そのため、 高圧段ターボチャージャ 6をバイノスさせる必要があり、上記のような構成となってい る。
[0059] しかし、本発明は、シーケンシャル 2段過給システム以外のシリーズ型 2段過給シス テム等にも適用できる。このシリーズ型 2段過給システムでは、シーケンシャル型と比 較すると大容量のターボチャージャ (過給器)を高圧段に設定することで、高速回転 域における切換制御無しで過給を行う。実際には、過給圧制御用に高圧段タービン 6tに過給圧制御用の高圧段排気ノ ィパス経路 6dと高圧段排気バイノ スノ レブ 6eを 、又は、高圧段タービン 6tにウェストゲートタイプを設定する。この構成により、少なく とも、吸気側高圧段コンプレッサ 6cにおける高圧段吸気バイパス経路 6aは必要無く なる。
[0060] そして、 EGRシステム 1に関しては、第 1EGR弁 12と第 1EGRクーラ 13を備えた第 1EGR経路 11を、高圧段タービン 6tと低圧段タービン 5tとの間の排気経路 4と、イン タークーラ 7と高圧段コンプレッサ 6cとの間の吸気経路 3とを接続して設ける。この第 1EGR経路 11により、高圧段タービン 6tと低圧段タービン 5tとの間の排気経路 4から 、低圧段コンプレッサ 5cと高圧段コンプレッサ 6cとの間の吸気経路 3へ、第 1EGR弁 12を経由して EGRガス Ge 1を導人する。
[0061] また、第 2EGR弁 15と第 2EGRクーラ 16を備えた第 2EGR経路 14を、エンジン本 体 2と高圧段タービン 6tとの間の排気経路 4と、インタークーラ 7と高圧段コンプレッサ 6cとの間の吸気経路 3とを接続して設ける。この第 2EGR経路 14により、エンジン本 体(内燃機関本体) 2と高圧段タービン 6tとの間の排気経路 4から、低圧段コンプレツ サ 5cと高圧段コンプレッサ 6cとの間の吸気経路 3へ、第 2EGR弁 15を経由して EGR ガス Ge2を導入する。
[0062] 更に、第 3EGR弁 18と第 3EGRクーラ 19を備えた第 2EGR経路 17を、エンジン本 体 2と高圧段タービン 6tとの間の排気経路 4と、高圧段コンプレッサ 6cとエンジン本 体 2との間の吸気経路 3とを接続して設ける。この第 3EGR経路 17により、エンジン本 体 2と高圧段タービン 6tとの間の排気経路 4から、高圧段コンプレッサ 6cとエンジン 本体 2との間の吸気経路 3へ、第 3EGR弁 18を経由して EGRガス Ge3を導入する。
[0063] これらの構成により、インタークーラ 7は、低圧段コンプレッサ 5cの下流側で、かつ、 第 1EGR経路 11の接続部 11aと第 2EGR経路 14の接続部 14aの両方よりも上流側 の吸気経路 3に設けられたことになる。また、それぞれの EGR弁 12, 15, 18は、それ ぞれの EGRクーラ 13, 16, 19の下流側に配置して、排気ガス Gel, Ge2, Ge3を E GRクーラ 13, 16, 19で冷去口して力ら、 EGR弁 12, 15, 18に流すようにする。
[0064] 次に、 EGR制御について説明する。この EGR制御は、エンジンの制御を行う ECU と呼ばれるエンジン制御装置に組み込まれる EGR制御装置によって行われる。この EGR制御装置は、エンジン 1の運転条件に応じて、第 1〜第 3EGR経路 11, 14, 17 を選択的に使用する第 1〜第 3EGR制御を選択してそれぞれの運転条件に最適な EGRを行う。
[0065] この EGR制御の第 1の目的は、吸気側力 排気側へのガスの流れ (逆流)を発生さ せないことにあり、この制御には、種々の方法がある。 [0066] 例えば、制御マップを使用したオープン制御による方法や、吸気ガス、排気ガス、 E GRガスなどの各ガスの各流路に、それぞれのガスの圧力や温度、あるいは、流量を 検知する検知手段を配設して、これらの検知手段力もの情報に基づいて、各バルブ の開閉及び弁開度制御する方法等がある。
[0067] このエンジン 1の運転条件がその運転領域にある力否かは、検出されたエンジン回 転数やエンジン負荷に基づ 、て、予め用意した制御用のマップデータを参照して判 定する。また、低圧段コンプレッサ 5cと高圧段コンプレッサ 6cとの間の過給圧である 過給中間過給圧と、高圧段タービン 6tと低圧段タービン 5tとの間の排気圧である中 間排圧との大小関係は、インタークーラ 7後流の中間過給圧を検出する第 1圧力計 9 aと高段圧タービン 6t後流の中間排気圧を検出する第 2圧力計 9b等の圧力検知手 段により検出される中間排気圧と中間過給圧とに基づいて判定される。なお、これら は、各種の制御方法の例に過ぎず、他の制御方法を使用してもよい。
[0068] 第 1EGR制御は、 EGRを行う場合において、エンジン 1の運転条件力 低速回転 又は中速回転運転領域でかつ低負荷又は中負荷運転領域にある場合、又は、低速 回転運転領域でかつ高負荷運転領域にある場合で、かつ、中間排気圧が中間過給 圧よりも大きいときに行われる。
[0069] この第 1EGR制御では、第 1EGR弁 12を主とし、第 2EGR弁 15を補助で使用して 、第 1EGR弁 12と第 2EGR弁 15を開閉及び弁開度制御する。それと共に、第 3EG R弁 18を閉弁状態とする。
[0070] より詳細には、第 1EGR弁 12の弁開度開放を第 2EGR弁 15の弁開度開放より優 先して実施する。つまり、第 1EGR弁 12単独で所定量の EGRガス導入が可能な場 合は、第 1EGR弁 12のみ弁開度調整を行って EGRガス導入を行うと同時に、第 2E GR弁 15は全閉とする。そして、第 1EGR弁 12が全開状態においても所定量の EG Rガス導入が得られない場合は、第 1EGR弁 12を全開状態、若しくは全開状態に近 い状態のままにして、第 2EGR弁 15の弁開度調整を実施し、所定量の EGRガス導 入が得られるように第 2EGR弁 15の弁開度調整を実施する。
[0071] また、第 2EGR制御は、 EGRを行う場合において、エンジン 1の運転条件力 低速 回転又は中速回転運転領域でかつ低負荷又は中負荷運転領域にある場合、又は、 低速回転運転領域でかつ高負荷運転領域にある場合において、更に、中間排気圧 が中間過給圧以下のときに行われる。
[0072] この第 2EGR制御では、第 2EGR弁 15を主とし、第 3EGR弁 18を補助で使用して 、第 2EGR弁 15と第 3EGR弁 18を開閉及び弁開度制御する。それと共に、第 1EG R弁 12を閉弁状態とする。
[0073] 第 3EGR制御は、 EGRを行う場合において、エンジン 1の運転条件力 中速回転 運転領域でかつ高負荷運転領域にある場合に行う。この第 2EGR制御では、第 2E GR弁 15と第 3EGR弁 18を開閉及び弁開度制御する。それと共に、第 1EGR弁 12 を閉弁状態とする。
[0074] 第 4EGR制御は、 EGRを行う場合において、エンジン 1の運転条件力 高速回転 運転領域にある場合に行われる。この第 4EGR制御では、第 3EGR弁 18を開閉及 び弁開度制御すると共に、第 1EGR弁 12と第 2EGR弁 15を閉弁状態とする。
[0075] 上記の第 1及び第 2EGR制御により、低中速回転かつ低中負荷運転条件における 、高 EGR率での運転条件でも、高圧段ターボチャージャ 6に対する作動ガス流量の 減少を最小限に抑制できるので、 EGR率増加時の過給圧低下も最小限で抑制可能 となる。
[0076] また、低中速回転かつ高負荷運転条件における、高 EGR率での運転条件では、 過給気作動流量が大幅に減少するため、コンプレッサ作動点がサージライン側に移 行して効率が著しく低下する。このような運転条件において、第 1EGR経路 11を使用 する、あるいは、第 2EGR経路 14を使用することで、高圧段コンプレッサ 6cの作動流 量が増加し、作動効率が改善される。その結果、過給圧の増加とこれに伴う EGR率 の増加ゃ排圧の低下が可能となる。
[0077] 第 3EGR制御では、中速回転 ·高負荷運転領域で、一般的に高 EGR率を必要とし ておらず、過給器作動流量も十分に確保されている運転条件で、第 3EGR経路 17 を使用する。この第 3EGR制御により、従来技術の高圧段ハイプレッシャー EGRを実 施することができ、高圧段ターボチャージャ 6の作動流量を抑制できるようになる。
[0078] 第 4EGR制御では、エンジン 1の吸気流量が増加する高速回転運転領域で、第 1E GR経路 11と第 2EGR経路 14を使用すると、第 3EGR経路 17を使用した場合と比較 して、高圧段ターボチャージャ 6のタービン 6t及びコンプレッサ 6cに掛かる負荷が大 きくなり、排圧が増加する傾向を示す。そこで、第 3EGR経路 17を使用して EGRガス Ge3を吸気側へ導入することにより、この問題を回避する。
[0079] 従って、上記の 2段過給エンジンの EGRシステム 10によれば、エンジン 1の運転条 件の変化によって生じる、高圧段ターボチャージャ 6に対する過給器作動流量の変 化を最小限に抑制することができるので、高圧段ターボチャージャ 6の容量を増加す ることができる。その結果、高圧段ターボチャージャ 6の運転領域の拡大が可能となり 、エンジン 1の運転条件全域にぉ 、て過給特性を大幅に改善できる。
[0080] また、上記の 2段過給エンジンの EGRシステム 10によれば、低圧段コンプレッサ 5c を出た吸気が、インタークーラ 7により冷却される。従って、従来技術ではエンジン 1 の吸気温度が 50°C〜80°C程度に上昇すると考えられる中速回転 ·高負荷運転領域 においても、高圧段コンプレッサ 6cの入口の吸気温度を大幅に低下させることができ る。
[0081] そのため、高圧段コンプレッサ 6cの作動効率が著しく改善し、その結果、高過給が 可能となり、質量吸気量を大幅に増加できる。また、高圧段コンプレッサ 6cのコンプレ ッサの羽の材料に、従来技術で使用されて!、るアルミニウム合金材料を使用できる。 そのため、高温対策用の高価なチタン材等を使用せずに済む。
[0082] し力も、 EGRガス力インタークーラ 7の下流側に導入されるため、インタークーラ 7を 排気ガスが通らない。そのため、インタークーラ 7における腐食や目詰まりの発生を防 止できる。
産業上の利用可能性
[0083] 上述した優れた効果を有する本発明の内燃機関の EGRシステムは、自動車搭載 の内燃機関等、多くの内燃機関に対して、極めて有効に利用することができる。

Claims

請求の範囲
[1] 吸気経路の上流側力 順に低圧段ターボチャージャの低圧段コンプレッサと高圧 段ターボチャージャの高圧段コンプレッサを設けると共に、排気経路の上流側力 順 に前記高圧段ターボチャージャの高圧段タービンと前記低圧段ターボチャージャの 低圧段タービンを設けた内燃機関の EGRシステムであって、
前記高圧段タービンと前記低圧段タービンとの間の排気経路から、前記低圧段コ ンプレッサと前記高圧段コンプレッサとの間の吸気経路へ、第 1EGR弁を経由して E
GRガスを導入する第 1EGR経路と、
内燃機関本体と前記高圧段タービンとの間の排気経路から、前記低圧段コンプレ ッサと前記高圧段コンプレッサとの間の吸気経路へ、第 2EGR弁を経由して EGRガ スを導入する第 2EGR経路と、
内燃機関本体と前記高圧段タービンとの間の排気経路から、前記高圧段コンプレ ッサと内燃機関本体の間の吸気経路へ、第 3EGR弁を経由して EGRガスを導入す る第 3EGR経路と、
前記第 1EGR弁と前記第 2EGR弁と前記第 3EGR弁とをそれぞれ開閉及び弁開 度調整する EGR制御装置とを備えたことを特徴とする 2段過給式エンジンの EGRシ ステム。
[2] 前記 EGR制御装置が、 EGRを行う場合において、
内燃機関の運転条件力 低速回転又は中速回転運転領域でかつ低負荷又は中 負荷運転領域にある場合、又は、低速回転運転領域でかつ高負荷運転領域にある 場合に、
前記高圧段タービンと前記低圧段タービンとの間の排気圧である中間排気圧が、 前記低圧段コンプレッサと前記高圧段コンプレッサとの間の過給圧である中間過給 圧よりも大きいときには、前記第 1EGR弁と前記第 2EGR弁を開閉及び弁開度制御 すると共に、前記第 3EGR弁を閉弁状態とする第 1EGR制御を行い、
前記中間排気圧が前記中間過給圧以下のときには、前記第 2EGR弁と前記第 3E GR弁を開閉及び弁開度制御すると共に、前記第 1EGR弁を閉弁状態とする第 2EG R制御を行うことを特徴とする請求項 1記載の 2段過給式エンジンの EGRシステム。
[3] 前記 EGR制御装置が、 EGRを行う場合において、
内燃機関の運転条件が、中速回転運転領域でかつ高負荷運転領域にある場合は 、前記第 2EGR弁と前記第 3EGR弁を開閉及び弁開度制御すると共に、前記第 1E GR弁を閉弁状態とする第 3EGR制御を行うことを特徴とする請求項 1記載の 2段過 給式エンジンの EGRシステム。
[4] 前記 EGR制御装置が、 EGRを行う場合において、
内燃機関の運転条件が、高速回転運転領域にある場合は、前記第 3EGR弁を開 閉及び弁開度制御すると共に、前記第 1EGR弁と前記第 2EGR弁を閉弁状態とする 第 4EGR制御を行うことを特徴とする請求項 1記載の 2段過給式エンジンの EGRシス テム。
[5] インタークーラを、前記低圧段コンプレッサの下流側で、かつ、前記第 1EGR経路 の接続部と前記第 2EGR経路の接続部の両方よりも上流側の吸気経路に設けたこと を特徴とする請求項 1〜4のいずれか 1項に記載の 2段過給式エンジンの EGRシステ ム。
PCT/JP2006/318928 2005-10-06 2006-09-25 2段過給式エンジンのegrシステム WO2007040071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005293213A JP4692202B2 (ja) 2005-10-06 2005-10-06 2段過給式エンジンのegrシステム
JP2005-293213 2005-10-06

Publications (1)

Publication Number Publication Date
WO2007040071A1 true WO2007040071A1 (ja) 2007-04-12

Family

ID=37906114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318928 WO2007040071A1 (ja) 2005-10-06 2006-09-25 2段過給式エンジンのegrシステム

Country Status (2)

Country Link
JP (1) JP4692202B2 (ja)
WO (1) WO2007040071A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052167A (zh) * 2009-11-04 2011-05-11 万国引擎知识产权有限责任公司 具有二级涡轮增压器的发动机的排放控制系统
EP2545265A1 (de) * 2010-03-06 2013-01-16 Volkswagen Aktiengesellschaft Brennkraftmaschine mit zweistufiger aufladung
JP2013515895A (ja) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト 燃焼エンジンのegr率の測定及び制御のための方法及び装置
US20130298525A1 (en) * 2011-01-24 2013-11-14 Doosan Infracore Co., Ltd. Method for controlling an exhaust gas recirculation apparatus for heavy construction equipment
US20130298553A1 (en) * 2011-01-24 2013-11-14 Doosan Infracore Co., Ltd. Exhaust gas recirculation apparatus for heavy construction equipment
CN103670813A (zh) * 2013-11-28 2014-03-26 上海交通大学 旋转机构调节式低压排气循环系统
JP2016003614A (ja) * 2014-06-17 2016-01-12 いすゞ自動車株式会社 エンジンの排気再循環方法及び排気再循環装置
US10940954B2 (en) 2015-09-17 2021-03-09 Israel Aerospace Industries Ltd. Multistage turbocharging system for providing constant original critical altitude pressure input to high pressure stage turbocharger
CN112918460A (zh) * 2019-12-05 2021-06-08 现代自动车株式会社 混合动力车辆

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601315D0 (en) * 2006-01-23 2006-03-01 Ricardo Uk Ltd Supercharged diesel engines
US7748218B2 (en) * 2006-06-26 2010-07-06 International Engine Intellectual Property Company, Llc System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger
DE102007052899A1 (de) * 2007-11-07 2009-05-14 Ford Global Technologies, LLC, Dearborn Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP5130933B2 (ja) * 2008-02-07 2013-01-30 マツダ株式会社 エンジンの過給装置
WO2010005805A2 (en) * 2008-07-07 2010-01-14 Borgwarner Inc. Multi-stage supercharging device of an internal combustion engine
JP5136309B2 (ja) * 2008-09-10 2013-02-06 いすゞ自動車株式会社 エンジンシステム
DE102008061399A1 (de) * 2008-12-10 2010-06-17 Man Diesel Se Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
DE102010043027B4 (de) * 2010-10-27 2019-08-14 Mtu Friedrichshafen Gmbh Brennkraftmaschine
CN103615309A (zh) * 2013-12-10 2014-03-05 吉林大学 内燃机全工况可调的两级增压系统
CN105840355B (zh) * 2016-05-23 2018-05-11 吉林大学 内燃机全工况egr率可调的二级增压系统及其控制方法
JP6114446B1 (ja) * 2016-07-14 2017-04-12 矢野 隆志 低圧段駆動階層型電動ターボチャージャ装置および該低圧段駆動階層型電動ターボチャージャ装置を装着した動力システム
JP6813362B2 (ja) * 2017-01-04 2021-01-13 三菱重工業株式会社 2段過給システム
JP6170263B1 (ja) * 2017-01-31 2017-07-26 矢野 隆志 中圧egr低圧段駆動階層型電動ターボチャージャー装置を装着した動力システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148927A (en) * 1978-05-12 1979-11-21 Hino Motors Ltd Egr control method and device for supercharge type diesel engine
JPS57172153U (ja) * 1981-04-24 1982-10-29
JPH045444A (ja) * 1990-04-23 1992-01-09 Toyota Motor Corp 過給希薄燃焼ガソリン内燃機関の空燃比制御装置
JPH0417723A (ja) * 1990-05-02 1992-01-22 Toyota Motor Corp 2段過給内燃機関の排気切替弁の異常検出装置
JPH0450433A (ja) * 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
JPH06257519A (ja) * 1993-03-09 1994-09-13 Mazda Motor Corp ターボ過給機付エンジンの排気還流装置
JPH07233761A (ja) * 1994-02-22 1995-09-05 Nissan Motor Co Ltd エンジンの排気還流装置
JP2000213384A (ja) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd 圧縮自着火エンジン
JP2000220480A (ja) * 1999-01-28 2000-08-08 Osaka Gas Co Ltd ミラーサイクルエンジン
JP2000513788A (ja) * 1998-02-23 2000-10-17 カミンス エンジン カンパニー インコーポレイテッド 最適燃焼コントロールを有する予混合チャージ圧縮点火エンジン
JP2005009314A (ja) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd エンジンの過給装置
JP2005009313A (ja) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd ディーゼルエンジンの排気還流装置
JP2005090509A (ja) * 2003-09-16 2005-04-07 Detroit Diesel Corp Egr流を用いたターボ過給内燃機関

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148927A (en) * 1978-05-12 1979-11-21 Hino Motors Ltd Egr control method and device for supercharge type diesel engine
JPS57172153U (ja) * 1981-04-24 1982-10-29
JPH045444A (ja) * 1990-04-23 1992-01-09 Toyota Motor Corp 過給希薄燃焼ガソリン内燃機関の空燃比制御装置
JPH0417723A (ja) * 1990-05-02 1992-01-22 Toyota Motor Corp 2段過給内燃機関の排気切替弁の異常検出装置
JPH0450433A (ja) * 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
JPH06257519A (ja) * 1993-03-09 1994-09-13 Mazda Motor Corp ターボ過給機付エンジンの排気還流装置
JPH07233761A (ja) * 1994-02-22 1995-09-05 Nissan Motor Co Ltd エンジンの排気還流装置
JP2000513788A (ja) * 1998-02-23 2000-10-17 カミンス エンジン カンパニー インコーポレイテッド 最適燃焼コントロールを有する予混合チャージ圧縮点火エンジン
JP2000213384A (ja) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd 圧縮自着火エンジン
JP2000220480A (ja) * 1999-01-28 2000-08-08 Osaka Gas Co Ltd ミラーサイクルエンジン
JP2005009314A (ja) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd エンジンの過給装置
JP2005009313A (ja) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd ディーゼルエンジンの排気還流装置
JP2005090509A (ja) * 2003-09-16 2005-04-07 Detroit Diesel Corp Egr流を用いたターボ過給内燃機関

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052167A (zh) * 2009-11-04 2011-05-11 万国引擎知识产权有限责任公司 具有二级涡轮增压器的发动机的排放控制系统
EP2320051A3 (en) * 2009-11-04 2012-02-15 International Engine Intellectual Property Company, LLC Emission control system for an engine having a two-stage turbocharger
JP2013515895A (ja) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト 燃焼エンジンのegr率の測定及び制御のための方法及び装置
EP2545265A1 (de) * 2010-03-06 2013-01-16 Volkswagen Aktiengesellschaft Brennkraftmaschine mit zweistufiger aufladung
EP2669496A4 (en) * 2011-01-24 2016-11-30 Doosan Infracore Co Ltd METHOD FOR CONTROLLING EXHAUST GAS RECIRCULATION APPARATUS FOR HEAVY CONSTRUCTION EQUIPMENT
US20130298553A1 (en) * 2011-01-24 2013-11-14 Doosan Infracore Co., Ltd. Exhaust gas recirculation apparatus for heavy construction equipment
US9359944B2 (en) * 2011-01-24 2016-06-07 Doosan Infracore Co., Ltd. Method for controlling an exhaust gas recirculation apparatus for heavy construction equipment
US20130298525A1 (en) * 2011-01-24 2013-11-14 Doosan Infracore Co., Ltd. Method for controlling an exhaust gas recirculation apparatus for heavy construction equipment
CN103670813A (zh) * 2013-11-28 2014-03-26 上海交通大学 旋转机构调节式低压排气循环系统
JP2016003614A (ja) * 2014-06-17 2016-01-12 いすゞ自動車株式会社 エンジンの排気再循環方法及び排気再循環装置
US10940954B2 (en) 2015-09-17 2021-03-09 Israel Aerospace Industries Ltd. Multistage turbocharging system for providing constant original critical altitude pressure input to high pressure stage turbocharger
CN112918460A (zh) * 2019-12-05 2021-06-08 现代自动车株式会社 混合动力车辆
CN112918460B (zh) * 2019-12-05 2024-05-07 现代自动车株式会社 混合动力车辆

Also Published As

Publication number Publication date
JP2007100628A (ja) 2007-04-19
JP4692202B2 (ja) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4692202B2 (ja) 2段過給式エンジンのegrシステム
JP4692201B2 (ja) 内燃機関のegrシステム
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
JP3918855B1 (ja) 内燃機関の2段式過給システム
US7426830B2 (en) Supercharged internal combustion engine
US7080635B2 (en) Intake and exhaust device for multi-cylinder engine
US8051842B2 (en) Internal combustion engine with an exhaust-gas turbocharger and a charge-air cooler and method for operating an internal combustion engine
JP5444996B2 (ja) 内燃機関及びその制御方法
JP4788697B2 (ja) 2段過給機付きエンジンの制御装置
JP2004308487A (ja) Egr付き排気過給エンジン
JP5031250B2 (ja) エンジンの三段過給システム
JP4525544B2 (ja) 過給機付き内燃機関
US20180163616A1 (en) Engine system
JP2009115089A (ja) 過給機付エンジン及びその運転方法
JP5035097B2 (ja) 多段式ターボ過給システムのサージ回避制御システム
JP2010255525A (ja) 内燃機関及びその制御方法
JP4935094B2 (ja) ディーゼルエンジンの2段式過給システム
JP5912240B2 (ja) 排気ガス還流装置
JP2005009314A (ja) エンジンの過給装置
JP2009191668A (ja) 過給装置及び過給エンジンシステム
JP2011001877A (ja) 機械式過給装置を備えた内燃機関及びその過給方法
KR101628402B1 (ko) 인터쿨러가 설치된 디젤엔진의 과급공기냉각장치 및 그를 이용한 냉각 방법
JP2011111929A (ja) 内燃機関及びその制御方法
JP2010223077A (ja) 内燃機関
JP2010180782A (ja) 内燃機関の多段過給システム及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810496

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2006905527

Country of ref document: AU

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED