WO2007037337A1 - 電気化学素子用電解液及びこれを用いた電気化学素子 - Google Patents

電気化学素子用電解液及びこれを用いた電気化学素子 Download PDF

Info

Publication number
WO2007037337A1
WO2007037337A1 PCT/JP2006/319337 JP2006319337W WO2007037337A1 WO 2007037337 A1 WO2007037337 A1 WO 2007037337A1 JP 2006319337 W JP2006319337 W JP 2006319337W WO 2007037337 A1 WO2007037337 A1 WO 2007037337A1
Authority
WO
WIPO (PCT)
Prior art keywords
imidazolium salt
imidazolium
carbonate
general formula
mixture
Prior art date
Application number
PCT/JP2006/319337
Other languages
English (en)
French (fr)
Inventor
Koji Fujioka
Yoshihiko Akazawa
Yasuyuki Ito
Satomi Onishi
Original Assignee
Sanyo Chemical Industries, Ltd.
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries, Ltd., Matsushita Electric Industrial Co., Ltd. filed Critical Sanyo Chemical Industries, Ltd.
Priority to CN2006800358405A priority Critical patent/CN101273423B/zh
Priority to EP06810784A priority patent/EP1947663B1/en
Priority to US12/088,818 priority patent/US8007680B2/en
Priority to JP2007537684A priority patent/JPWO2007037337A1/ja
Publication of WO2007037337A1 publication Critical patent/WO2007037337A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution for an electrochemical element and an electrochemical element using the same. More particularly, the present invention relates to a suitable electrochemical element used for memory backup of various electronic devices and electric power such as an electric vehicle requiring a large current, particularly an electrochemical capacitor, and an electrolyte suitable for this.
  • Non-aqueous electrolytes for electrochemical capacitors in which a cyclic amidium salt is dissolved in a propylene carbonate solvent are known as electrolytes for electrochemical devices! / Speak (Patent Document 1 and Patent Document 2).
  • Patent Document 1 International Publication No. 95Z15572 Pamphlet
  • Patent Document 2 JP 2005-197666
  • an object of the present invention is to provide an electrolytic solution that can drastically improve deterioration of performance of an electrochemical device over time.
  • the present invention includes an imidazolium salt (A) represented by the general formula (1) and an imidazolium salt (B) represented by the general formula (2), and includes an imidazolium salt (A) represented by the general formula (1).
  • RR 2 and R 3 are alkyl groups having 1 to 3 carbon atoms, which may be the same or different.
  • R 4 and R 5 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same or different. ⁇ Indicates a key-on. ]
  • the present invention is also an electrochemical device and an electric double layer capacitor using the above electrolyte.
  • the electrolyte for an electrochemical device of the present invention includes an imidazolium salt ( ⁇ ) represented by the general formula (1) and an imidazolium salt ( ⁇ ) represented by the general formula (2), and is represented by the general formula (1). Containing imidazolium salt ( ⁇ ) as the main component, content power of imidazolium salt ( ⁇ ) represented by general formula (2) 15 wt% or less with respect to the total weight of imidazolium salt ( ⁇ ) and imidazolium salt ( ⁇ ) It is characterized by being.
  • alkyl group having 1 to 3 carbon atoms in ⁇ ⁇ examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • the imidazolium salt ( ⁇ ) represented by the general formula (1) is generally composed of an imidazole (a) represented by the general formula (3), an alkylating agent such as dialkyl carbonate or alkyl chloride ( It is obtained by quaternization in c) and salt exchange of the carbonate ester salt or black mouth salt obtained to an anion.
  • an alkylating agent such as dialkyl carbonate or alkyl chloride
  • Imidazole (a) is obtained, for example, by reacting an a-dicarbonyl compound or its acetals or ketals (dl), ammonia or its carbonate (d2), aldehydes (d3) and primary amines (d4). It is done. Details of the production method are described, for example, in JP-A-2004-207451. The above reaction produces imidazole (b) represented by the general formula (4) together with imidazole (a). The imidazole (a) is, for example, about 16 with respect to the total weight of (a) and imidazole (b). Obtained with ⁇ 35 wt% imidazole (b).
  • the imidazole (a) can also be obtained by alkylating the imidazole (e) represented by the general formula (5).
  • Imidazole (e) can be obtained, for example, by reacting an a-dicarboxylic compound or its acetals or ketals (dl), ammonia or its carbonate (d2), or aldehydes (d3).
  • imidazole (e) is obtained with, for example, about 16 to 35% by weight of (f) based on the total weight of imidazole (f) represented by (e) and general formula (6). Therefore, also in this case, imidazole (a) can be obtained together with imidazole (b) represented by the general formula (4) of, for example, about 16 to 35% by weight based on the total weight of (a) and (b). become.
  • the imidazolium salt (A) using imidazole (a) as a raw material is, for example, about 16 to 35 weights based on the total weight of (A) and the imidazolium salt (B) when (a) produced by the above method is used. Obtained with% imidazolium salt (B).
  • the present inventors have succeeded in finding an electrolytic solution for an electrochemical device that has extremely little deterioration in performance over time by reducing the content of the imidazolium salt (B) coexisting with the imidazolium salt (A). did.
  • the electrolytic solution for an electrochemical element of the present invention is an electrolytic solution for an electrochemical element mainly composed of an imidazolium salt (A), and the content of the imidazolium salt (B) is (A) and (B )) Is 15% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 2% by weight or less, particularly preferably 1.7% by weight or less, most preferably 1 .5% by weight or less, most preferably 1% by weight or less, preferably 0.1% by weight or more, and more preferably 0.4% by weight or more.
  • imidazolium salt (A) as a main component means that it is a power imidazolium salt (A) of 50% by weight or more of the electrolyte constituting the electrolytic solution of the present invention.
  • the content of (B) is changed to (A) and (B)
  • Examples of the method for adjusting the total weight of the imidazole (b) to 15% by weight or less include a method of removing the imidazole (b) by distillation using a mixture of imidazole (a) and imidazole (b) as raw materials.
  • Distillation can be carried out in the temperature range of 50 ° C to 210 ° C and under a pressure of 30 kPa or less.
  • imidazole (e) as a raw material for imidazole (a) and imidazole (b)
  • the imidazolium salt (A) includes a salt having the following cationic power.
  • (1) and (2) are those having a methyl group at the 2-position, and 1, 2, 3-trimethylimidazole, 1, 2, 3, 4-tetramethylimidazole and 1-Ethyl 2,3 dimethyl imidazolium is even more preferred
  • Particularly preferred are 1, 2, 3 trimethyl imidazolium and 1-ethyl 2,3 dimethyl imidazolium, most preferably 1-ethyl diol 2,3 dimethyl imidazolium Is.
  • R 2 and R 3 those wherein at least one is a different alkyl group are preferred. Of R ⁇ R 2 and R 3, and at least one is different, if the one two are the same of RR 2 and R 3 are different, there may be different Te RR 2 and R 3 gas base.
  • Specific examples include 1-ethyl 2,3 dimethyl imidazolium, 1,3 dimethyl-2-ethyl imidazolium, 1,2 jetyl 3-methyl imidazolium, 1,3 jetyl-2-methyl imidazolium, Examples include 1-ethyl 2,3,4 trimethylimidazole, 1-ethyl 2,3,5 trimethylimidazole, 1-ethyl-2-methyl-3-propylimidazolium, and the like.
  • Anti-anion X— is PF—, BF—, AsF—, SbF—, N (RfSO) —, C (RfSO) —, Rf
  • RfSO— represents Rf contained in fluorocarbons having 1 to 12 carbon atoms.
  • imidazolium salt (A) examples include 1,2,3 trimethylimidazolium tetrafluoroborate (BF-salt), 1,2,3,4-tetramethylimidazolium tetrafluoroborate.
  • Examples include imidazolium hexafluorophosphate, 1-ethyl-2-hexafluorophosphate, and the like.
  • Examples of the imidazolium salt (B) include those in which the alkyl group at the 2-position of the corresponding imidazolium salt (A) is substituted with a hydrogen atom.
  • the imidazolium salt (B) includes the following salts with cationic power.
  • Examples of combinations of imidazolium salt (A) and imidazolium salt (B) include 1,2,3 trimethylimidazolium tetrafluoroborate and 1,3 dimethylimidazolium tetrafluoroborate, 1 , 2, 3, 4-tetramethylimidazole tetrafluoroborate and 1, 3, 4-trimethylimidazole tetrafluoroborate, 1-ethyl 2,3 dimethyl imidazole tetrafluoroborate Examples include 1-ethyl-3-methylimidazole tetrafluoroborate.
  • the contents of imidazolium salt (A) and imidazolium salt (B) can be quantified by high performance liquid chromatography (HPLC).
  • HPLC conditions are as follows: column: packed with polymer-coated filler, mobile phase: phosphate buffer ( ⁇ 2-3), flow rate: 0.5 mlZmin, detector: UV, temperature: 40 ° C (
  • Use the calibration curve to calculate the weight ratio of (A) and (B).
  • the contents of imidazole (a) and imidazole (b) and the contents of imidazole (e) and imidazole (f) can also be quantitatively calculated by the same method as described above.
  • the electrolytic solution of the present invention may contain a non-aqueous solvent.
  • a non-aqueous solvent known ones can be used, which can be appropriately selected in consideration of the solubility and electrochemical stability of the imidazolium salt (A). Examples include the following. Two or more of these can be used in combination.
  • Ether C4-12 chain ether (Jetyl ether, Methyl isopropyl ether, Ethylene glyconoresin methinore ethere, Diethylene glycol dimethyl ethere, Triethylene glycono retino enoate, Tetra Ethylene glycolateletinore ether, diethylene glycol jetinole ether, triethylene glycol dimethylolate ether, etc.), C4-C12 cyclic ether (tetrahydrofuran, 1,3 dioxolane, 1,4 dioxane, 4-butyl) Dioxolane, crown ether (1, 4, 7, 10, 13, 16—hexoxacyclocyclodecane, etc.) etc.
  • 'Amide a chain amide having 3 to 6 carbon atoms (N, N dimethylformamide, N, N-dimethylacetamide, N, N dimethylpropionamide, hexamethylphosphorylamide, etc.), having 4 to 6 carbon atoms Cyclic amides (pyrrolidinone, N-methylpyrrolidinone, N-butyrpyrrolidinone, etc.) etc.
  • Carboxylic acid esters chain esters with 3 to 8 carbon atoms (methyl acetate, methyl propionate, dimethyl adipate, etc.), cyclic esters with 4 to 5 carbon atoms ( ⁇ -petit latatotone, a-acetinole y butyrololataton, 13 Butyrorataton, ⁇ valerolataton, ⁇ valerolataton, etc.).
  • 'Nitrile 2-tolyl having 2 to 5 carbon atoms (acetonitrile, glutathiol-tolyl, adipo-tolyl, methoxyacetonitrile, 3-methoxypropionitrile, 3-ethoxypropionitrile, attarilonitrile, etc.) etc.
  • Carbonates C3-C5 chain carbonates (dimethyl carbonate, ethylmethyl carbonate, jetyl carbonate, etc.), C3-C5 cyclic carbonates (ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc.) )etc.
  • 'Sulphoxide Chain sulphoxide having 2 to 6 carbon atoms (dimethyl sulphoxide, dipropyl sulphoxide, etc.).
  • 'Sulfone cyclic sulfone having 4 to 6 carbon atoms (sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, etc.).
  • carbonates, sulfones, carboxylic acid esters and nitriles are preferred, carbonates, sulfones and -tolyls, particularly preferably ethylene carbonate, propylene carbonate and sulfolane, most preferably propylene.
  • carbonate and sulfolane are preferred, carbonates, sulfones and -tolyls, particularly preferably ethylene carbonate, propylene carbonate and sulfolane, most preferably propylene.
  • carbonate and sulfolane are preferred, carbonates, sulfones and -tolyls, particularly preferably ethylene carbonate, propylene carbonate and sulfolane, most preferably propylene.
  • carbonate and sulfolane are preferred.
  • main component means that the nonaqueous solvent contains 50 to 99% by weight, preferably 70 to 90% by weight.
  • the main component is at least one selected from the group consisting of propylene carbonate, ethylene carbonate, sulfolane, acetononitrile, and ⁇ -petit-mouth rataton force, from dimethyl carbonate, ethylmethyl carbonate, and jetyl carbonate
  • co-solvent dimethyl carbonate and ethyl methyl carbonate are more preferable, and dimethyl carbonate is particularly preferable.
  • sub-solvent means that the nonaqueous solvent contains 1 to 50% by weight, preferably 10 to 30% by weight.
  • the content (% by weight) of the non-aqueous solvent in the electrolytic solution is preferably 30 to 95, more preferably 40 to 90, particularly preferably 50 to 85, based on the weight of the electrolytic solution. Most preferably, it is 60-80. Within this range, salt precipitation occurs at low temperatures. The deterioration of performance over time can be further improved.
  • the water content (ppm) in the electrolytic solution of the present invention is preferably 300 or less, more preferably 100 or less, particularly preferably, based on the volume of the electrolytic solution. 50 or less. Within this range, it is possible to suppress the deterioration in performance of the electrochemical capacitor over time.
  • the water content in the electrolyte can be measured by the Karl Fischer method (JIS K0113-1997, coulometric titration method).
  • Examples of a method for bringing the water content in the electrolytic solution into the above range include a method of using imidazolium salt (A) that has been thoroughly dried and a non-aqueous solvent that has been sufficiently dehydrated in advance.
  • Examples of the drying method (A) include a method of evaporating and removing a trace amount of water that is contained by heating and drying under reduced pressure (for example, heating at 150 ° C. under a reduced pressure of 20 Torr).
  • As a dehydration method for non-aqueous solvents heat dehydration under reduced pressure (for example, 100 Torr, heating at 130 ° C (when non-aqueous solvent is propylene carbonate)), and removing a very small amount of water by evaporation.
  • a method using a dehydrating agent such as molecular sieve (manufactured by Nacalai Testa, 3A 1Z16, etc.), active alumina powder, and the like.
  • the electrolytic solution is heated and dehydrated under reduced pressure (for example, heated at 100 ° C under reduced pressure of lOOTorr) to evaporate and remove a trace amount of water, molecular sieve, activated alumina.
  • reduced pressure for example, heated at 100 ° C under reduced pressure of lOOTorr
  • Examples thereof include a method using a dehydrating agent such as powder. These methods may be performed alone or in combination.
  • the method of drying (A) by heating under reduced pressure and the method of adding molecular sieve to the electrolyte are preferred.
  • the electrolytic solution of the present invention can be used for electrochemical devices, particularly electrochemical capacitors.
  • the electrochemical element includes an electrochemical capacitor, an electrochemical cell, an electrochemical sensor, and the like.
  • the electrochemical capacitor includes an electrode, a current collector, and a separator as basic components, and optionally includes a case, a gasket, and the like that are usually used for the capacitor.
  • the electrolyte is impregnated in the electrode and separator in a glove box or the like in an argon gas atmosphere (dew point—50 ° C).
  • the electrolytic solution of the present invention is suitable for an electric double layer capacitor (one using a polarized electrode such as activated carbon for the electrode) among electrochemical capacitors.
  • the basic structure of an electric double layer capacitor is a separator between two polarizable electrodes. And is impregnated with an electrolytic solution.
  • Carbonaceous materials such as activated carbon, graphite, and polyacene-based organic semiconductors are preferred because the main component of a polarizable electrode is electrochemically inert to the electrolyte and has an appropriate electrical conductivity.
  • At least one of the positive electrode and the negative electrode is a carbonaceous material.
  • a porous carbon material (for example, activated carbon) having a specific surface area of 10 m 2 / g or more determined by the BET method by the nitrogen adsorption method is more preferable because of the large electrode interface where charges are accumulated.
  • the specific surface area of the porous carbon material is selected in consideration of the target capacitance per unit area (FZm 2 ) and the decrease in bulk density associated with the high specific surface area.
  • An activated carbon having a specific surface area of 300 to 2,300 m 2 Zg is particularly preferred because the specific surface area determined by the method is preferably 30 to 2,500 m 2 Zg, and the capacitance per volume is large.
  • the electrolytic solution of the present invention can also be suitably used for an aluminum electrolytic capacitor.
  • the basic structure of an aluminum electrolytic capacitor is to create an oxide film on the surface of the aluminum foil that will be the electrode by electrochemical treatment and use it as a dielectric, and to contain an electrolyte between the aluminum foil that will be the other electrode. It is sandwiched between immersed electrolytic paper.
  • examples of the electrochemical capacitor include a coin type, a wound type, and a rectangular type.
  • the electrolytic solution of the present invention can be applied to any electric double layer capacitor or any aluminum electrolytic capacitor.
  • the electrolytic solution for electrochemical devices of the present invention has a very high withstand voltage, an electrochemical device with very little performance deterioration over time can be produced. Therefore, by using the electrolytic solution of the present invention, the energy density of an electrochemical element, particularly an electrochemical capacitor, can be remarkably improved.
  • HPLC conditions in the examples are as follows: instrument: model name (LC—10A), manufacturer (Shimadzu Corporation), column: Develosil C30—UG (4.6 mm ⁇ X 25 cm), manufacturer (Nomura Chemical), mobile phase: phosphoric acid Concentration of 10mmolZl, concentration of sodium perchlorate lOOmmolZl Aqueous solution, flow rate: 0.8 mlZmin, detector: UV (210 nm), injection amount: 1, column temperature: 40 ° C.
  • a reaction flask equipped with a stirrer, thermometer, dropping funnel, reflux condenser, and nitrogen gas inlet tube was charged with a mixture of 31 parts of ethylamine (70% aqueous solution) and 32 parts of ammonia (28% aqueous solution) and stirred.
  • ethylamine 70% aqueous solution
  • 32 parts of ammonia 28% aqueous solution
  • a mixture of 69 parts of Darioxal (40% aqueous solution) and 71 parts of acetoaldehyde (30% aqueous solution) was added dropwise from the dropping port.
  • the darioxal / acetaldehyde mixture was added dropwise over 5 hours.
  • the mixture (M-2) of 1-ethyl-2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 1 was further added at a temperature of 105 ° C and a pressure of 1. OkPa.
  • the mixture (M-1) of (a-1) and (b-1) was obtained by distillation and purification under the conditions described above.
  • the weight ratio of (a-1) to (b-1) was 90:10.
  • the obtained mixture was treated in the same manner as in Example 1 to obtain a tan material.
  • NMR analysis of the substance revealed that the main components were EDMI and EMI, and the weight ratio was 90:10 from HPLC analysis.
  • 211 g of the obtained mixture of EDMI and EMI was uniformly dissolved in propylene carbonate to make 1 liter as a whole, and the electrolyte solution of the present invention was prepared.
  • the mixture (M-3) of 1-ethyl-2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 2 was further added at a temperature of 105 ° C and a pressure of 1. OkPa.
  • the mixture (M-4) of (a-1) and (b-1) was obtained by distillation and purification under the conditions described above. As a result of HPLC analysis, the weight ratio of (a-1) to (b-1) was 95: 5.
  • the obtained mixture was treated in the same manner as in Example 1 to obtain a tan material. NMR analysis of the substance revealed that the main components were EDMI and EMI, and the weight ratio was 95: 5 from HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 211 g of the obtained mixture of EDMI and EMI in propylene carbonate to make 1 liter as a whole.
  • the mixture (M-4) of 1-ethyl-2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 3 was further added at a temperature of 105 ° C and a pressure of 1. OkPa.
  • the mixture (M-5) of (a-1) and (b-1) was obtained by distillation and purification under the conditions described above.
  • the weight ratio of (a-1) to (b-1) was 98: 2.
  • NMR analysis of the substance revealed that the main components were EDMI and EMI, and the weight ratio was 98: 2 from HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 212 g of the obtained mixture of EDMI and EMl in propylene carbonate to make a total of 1 liter.
  • Example 5 The mixture (M-5) of 1-ethyl 2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 4 was further distilled under the conditions of a temperature of 105 ° C and a pressure of 1. OkPa. By purification, a mixture (M-6) of (a-1) and (b-1) was obtained. As a result of HPLC analysis, the weight ratio of (a-1) to (b-1) was 98.5: 1.5. The resulting mixture was treated as in Example 1 leaving a tan material. NMR analysis of this material revealed that the main components were EDMI and EMI, and the weight ratio was 98.5: 1.5 from HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 212 g of the obtained mixture of EDMI and EMI in propylene carbonate to make 1 liter as a whole.
  • the mixture (M-6) of 1-ethyl 2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 5 was further distilled under the conditions of temperature 105 ° C and pressure 1. OkPa.
  • a mixture (M-7) of (a-1) and (b-1) was obtained.
  • the weight ratio of (a-1) to (b-1) was 99: 1.
  • the main components were EDMI and EMI, and the weight ratio was 99: 1 based on HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 212 g of the obtained mixture of EDMI and EMl in propylene carbonate to make a total of 1 liter.
  • the mixture (M-7) of 1-ethyl-2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 6 was further subjected to a temperature of 105 ° C and a pressure of 1. OkPa.
  • a mixture (M-8) of (a-1) and (b-1) was obtained.
  • the weight ratio of (a-1) to (b-1) was 99.6: 0.4.
  • the resulting mixture was treated as in Example 1 leaving a tan material. NMR analysis of this material revealed that the main components were EDMI and EMI, and the weight ratio was 99.6: 0.4 from HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 212 g of the obtained mixture of EDMI and EMI in propylene carbonate to make 1 liter as a whole.
  • EDMIP 1-ethyl 2,3 dimethylimidazole hexafluorophosphonate
  • EMIP ethyl 3-methylhexafluorophosphonate
  • the weight ratio was 99: 1 by HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 270 g of the obtained mixture of EDMIP and EMIP in propylene carbonate to make 1 liter as a whole.
  • T Ml 1, 2, 3 trimethylimidazole tetrafluoroborate
  • TTL 1,3 dimethylimidazole tetrafluoroborate
  • a mixture of DMI From the HPLC analysis, the weight ratio was 85:15.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 198 g of the obtained mixture of TMI and DMI in propylene carbonate to make a total of 1 liter.
  • the mixture (M-9) of 1, 2 dimethylimidazole (a-2) and 1 methylimidazole (b-2) obtained in Example 9 was further distilled under the conditions of a temperature of 100 ° C and a pressure of 1 OkPa. To obtain a mixture (M-10) of (a-2) and (b-2). As a result of HPLC analysis, the weight ratio of (a-2) to (b-2) was 99: 1.
  • the obtained mixture was treated in the same manner as in Example 1 and analyzed by NMR. As a result, the main components were TMI and DMI, and the weight ratio was 99: 1 by HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 198 g of the obtained mixture of TMI and DMI in propylene carbonate to a total of 1 liter.
  • Example 11 The same treatment was performed except that 38 parts of methylamine (40% aqueous solution) was used in place of ethylamine (70% aqueous solution) in Example 1 and 87 parts of methyldarioxar was used instead of darioxar (40% aqueous solution). After the dropwise addition, a mixture of 1, 2, 4 trimethylimidazole (a-3) and 1,4 dimethylimidazole nore (b 3) was obtained. As a result of HPLC analysis, the weight ratio of (a-3) and (b-3) was (80:20). It was purified by distillation under conditions of temperature 110 ° C and pressure 1. OkPa. The weight ratio of (a-3) and (b-3) after purification was 85:15 (M-11).
  • TeMI 1, 2, 3, 4-tetramethylimidazole tetrafluoroborate
  • 4TMI tetrafluoroborate
  • a mixture (M-11) of 1, 2, 4 trimethylimidazole (a-3), 1, 4 dimethylimidazole (b-3) obtained in Example 11 was further added at a temperature of 110 ° C and a pressure of 1. OkPa. Distillation under the conditions and purification gave a mixture (M-12) of (a-3) and (b-3). As a result of HPLC analysis, the weight ratio of (a-3) to (b-3) was 99: 1.
  • the obtained mixture was treated in the same manner as in Example 1 and analyzed by NMR.
  • the main components were TeMI and 4TMI, and the weight ratio was 99: 1 by HPLC analysis.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 212 g of the obtained mixture of TeMI and 4TMI in propylene carbonate to a total of 1 liter.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 210 g of the mixture of EDMI and EMI obtained in Example 1 in sulfolane to a total of 1 liter.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 2 in sulfolane to a total of 1 liter.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 3 in sulfolane to make 1 liter as a whole. [0061]
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 210 g of the mixture of EDMI and EMI obtained in Example 1 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 6: 4) to make 1 liter as a whole. .
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 2 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 6: 4) to make 1 liter as a whole. It was.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 3 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 6: 4) to make 1 liter as a whole. It was.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 4 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 7: 3) to make 1 liter as a whole. It was.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 210 g of the mixture of EDMI and EMI obtained in Example 1 in a mixed solvent of propylene carbonate and ethyl methyl carbonate (weight ratio 7: 3) to make 1 liter as a whole. It was.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 2 in a mixed solvent of propylene carbonate and ethyl methyl carbonate (weight ratio 7: 3) to make 1 liter as a whole. went.
  • the electrolyte solution of the present invention was prepared by uniformly dissolving 21 lg of the mixture of EDMI and EMI obtained in Example 3 in a mixed solvent of propylene carbonate and ethyl methyl carbonate (weight ratio 7: 3) to make 1 liter as a whole. went. [0068] Comparative Example 1
  • a reaction flask equipped with a stirrer, thermometer, dropping funnel, reflux condenser, and nitrogen gas inlet tube was charged with a mixture of 18 parts Darioxar (40% aqueous solution) and 10 parts formalin (37% aqueous solution) and stirred.
  • Darioxar 50% aqueous solution
  • formalin 37% aqueous solution
  • To a homogeneous solution While maintaining the temperature at 35 ° C to 45 ° C, a mixed solution of 64 parts of ethylamine (70% aqueous solution) and 61 parts of ammonia (28% aqueous solution) was dropped from the dropping funnel. The mixture of ethylamine and ammonia was added dropwise over 5 hours. After completion of the addition, the mixture was reacted at 40 ° C for 1 hour.
  • Example 1 The mixture (M-1) of 1-ethyl-2-methylimidazole (a-1) and 1-ethylimidazole (b-1) obtained in Example 1 was subjected to simple distillation, and then methyl methyl as in Example 1. Then, Houfutsui Hydroacid was added dropwise to obtain a mixture of EDMI and EMI. This mixture is The quantitative ratio was 80:20. The resulting EDMI and EMI mixture (208 g) was uniformly dissolved in propylene carbonate to a total volume of 1 liter, and an electrolyte was prepared.
  • the electrolyte solution was prepared by uniformly dissolving 205 g of the mixture of EDMI and EMI obtained in Comparative Example 2 in sulfolane to a total volume of 1 liter.
  • the electrolyte solution was prepared by uniformly dissolving 208 g of the mixture of EDMI and EMI obtained in Comparative Example 3 in sulfolane to a total volume of 1 liter.
  • the electrolyte solution was prepared by uniformly dissolving 205 g of the mixture of EDMI and EMI obtained in Comparative Example 2 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 6: 4) to make 1 liter as a whole.
  • the electrolyte solution was prepared by uniformly dissolving 208 g of the mixture of EDMI and EMI obtained in Comparative Example 3 in a mixed solvent of propylene carbonate and dimethyl carbonate (weight ratio 6: 4) to make a total of 1 liter.
  • An electrolytic solution was prepared by uniformly dissolving 208 g of the mixture of EDMI and EMI obtained in Comparative Example 3 in a mixed solvent of propylene carbonate and ethylmethyl carbonate (weight ratio 7: 3) to make 1 liter as a whole.
  • wound type electric double layer capacitors (size; ⁇ 18mm X L50mm, rated voltage; 2.5V) were prepared.
  • the withstand voltage of the electrolyte was evaluated by measuring the self-discharge characteristics (residual voltage after self-discharge). Table 1 shows the residual voltage after self-discharge.
  • Capacity retention (%) [(capacity after 1000 hours) / (initial capacity)] X 100
  • a wound electric double layer capacitor charged at 2.5 V for 1 hour at room temperature is discharged at a constant current of 500 mA using a constant current load device, and the terminal voltage of the wound electric double layer capacitor is 1
  • the capacity was calculated from the time during the change from 5V to 1.0V.
  • Q is the discharge charge (C)
  • i the discharge current (A)
  • t the discharge time (sec)
  • C the capacity (F)
  • V voltage (V).
  • Example 1 1 85Zl 5 PC 2. 40 91 Example 2 1 90 10 PC 2. 41 92 Example 3 ⁇ 95 / 5 P c 2, 42 94 Example 4 1 98/2 P c 2. 43 96 Example 5 ⁇ 98.5 / 1.5 PC 2. 43 97 Example 6 1 99/1 PC 2.43 97 Example 7 1 99. 6 / 0.4 PC 2, 43 98 Example 8 ⁇ 99/1 P c 2 42 96 Example 9 3 85/15 P c 2, 40 90 Example 10 3 99/1 PC 2. 42 96 Example 1 1 4 85/15 PC 2. 40 90 Example 12 4 99/1 P c 2. 42 96 Example 13 1 85 15 SL 2. 40 92 Example 14 ® 90/10 s 2. 40 93 Example 15 CD95 / 5 s 2.
  • the electric double layer capacitors using the electrolytic solutions of Examples 1 to 22 of the present invention are more self-discharged than the electric double layer capacitors using the electrolytic solutions of Comparative Examples 1 to 9. High residual voltage and capacity retention Therefore, the electrolytic solution of the present invention can increase the withstand voltage of the electrochemical capacitor, improve performance deterioration with time, and constitute a highly reliable electrochemical capacitor.
  • the electrolytic solution of the present invention is excellent in withstand voltage, an electrochemical device produced using this electrolytic solution, particularly an electrochemical capacitor, is more time-consuming than a conventional electrochemical device.
  • a power storage device that replaces secondary batteries such as power storage devices used in combination with various types of electronic devices for memory backup, various power supply backup power supplies, and solar cells, large current It can be applied to power supplies for motor drives, power tools such as electric tools, and power supplies for electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、電気化学素子、特に電気化学キャパシタの経時的な性能劣化を飛躍的に改善しうる電解液を提供することである。 本発明は、一般式(1)で示されるイミダゾリウム塩(A)を主成分としてなる電気化学素子用電解液であって、一般式(2)で示されるイミダゾリウム塩(B)の含有量がイミダゾリウム塩(A)とイミダゾリウム塩(B)の合計重量に対して、15重量%以下であることを特徴とする電気化学素子用電解液である。 [化1] [式中、R1、R2及びR3は炭素数1~3のアルキル基であって、同じであっても異なっていてもよい。R4及びR5は水素原子又は炭素数1~3のアルキル基であって、同じであっても異なっていてもよい。X-は対アニオンを示す。] [化2] [式中、R1、R3、R4、R5、X-は一般式(1)と同じである。]

Description

明 細 書
電気化学素子用電解液及びこれを用いた電気化学素子
技術分野
[0001] 本発明は電気化学素子用電解液及びこれを用いた電気化学素子に関する。さらに 詳しくは、各種電子機器のメモリーバックアップ用、および大電流を必要とする電気 自動車などの電力用として用いられる好適な電気化学素子、特に電気化学キャパシ タ、並びにこれに好適な電解液に関する。
背景技術
[0002] 電気化学素子用電解液としては、プロピレンカーボネート溶媒に環状アミジ-ゥム塩 を溶解させた電気化学キャパシタ用非水電解液が知られて!/ヽる(特許文献 1及び特 許文献 2)。
従来の非水電解液は、耐電圧が十分でない場合があるため、この電解液を用いる電 気化学素子、特に電気化学キャパシタには経時的な性能劣化が著しい場合がある。 特許文献 1:国際公開第 95Z15572号パンフレット
特許文献 2 :特開 2005— 197666号公報
発明の開示
発明が解決しょうとする課題
[0003] すなわち、本発明の目的は、電気化学素子の経時的な性能劣化を飛躍的に改善し うる電解液を提供することである。
課題を解決するための手段
[0004] 本発明者らは、前記課題を解決すべく鋭意検討した結果、本発明に到達した。
すなわち本発明は、一般式(1)で示されるイミダゾリゥム塩 (A)と一般式 (2)で示され るイミダゾリゥム塩 (B)を含み、一般式(1)で示されるイミダゾリゥム塩 (A)を主成分と してなる電気化学素子用電解液であって、一般式(2)で示されるイミダゾリゥム塩 (B) の含有量力 Sイミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の合計重量に対して、 15重量 %以下であることを特徴とする電気化学素子用電解液;
[0005] [化 1]
Figure imgf000004_0001
[0006] [式中、 R R2及び R3は炭素数 1〜3のアルキル基であって、同じであっても異なつ ていてもよい。 R4及び R5は水素原子又は炭素数 1〜3のアルキル基であって、同じで あっても異なっていてもよい。 ΧΊま対ァ-オンを示す。 ]
[0007] [化 2]
[0008]
Figure imgf000004_0002
Ίま一般式(1)と同じである。 ]
本発明は、また、上記電解液を用いた電気化学素子及び電気二重層コンデンサで ある。
[0009] 以下に本発明を詳細に説明する。
本発明の電気化学素子用電解液は、一般式(1)で示されるイミダゾリゥム塩 (Α)と一 般式(2)で示されるイミダゾリゥム塩 (Β)を含み、一般式(1)で示されるイミダゾリゥム 塩 (Α)を主成分としてなり、一般式 (2)で示されるイミダゾリゥム塩 (Β)の含有量力 ミ ダゾリゥム塩 (Α)とイミダゾリゥム塩 (Β)の合計重量に対して、 15重量%以下であるこ とを特徴とするものである。
上記一般式(1)及び(2)の!^〜 における炭素数 1〜3のアルキル基としては、メチ ル基、ェチル基、プロピル基、イソプロピル基が挙げられる。
[0010] 一般式(1)で示されるイミダゾリゥム塩 (Α)は、一般的に、一般式(3)で示されるイミダ ゾール(a)を、ジアルキル炭酸、又は塩化アルキルのようなアルキル化剤(c)で 4級 化し、得られた炭酸エステル塩、又はクロ口塩を対ァニオンに塩交換することにより得 られる。 [0011] [化 3]
Figure imgf000005_0001
[0012] [式中、 R R2、 R4、 R5は一般式(1)と同じである。 ]
イミダゾール(a)は、例えば、 aージカルボニル化合物又はそのァセタール類若しく はケタール類 (dl)、アンモニア又はその炭酸塩 (d2)、アルデヒド類 (d3)及び一級 アミン類 (d4)を反応させて得られる。製造法の詳細は、例えば特開 2004— 20745 1号公報に記載されている。上記反応により、イミダゾール (a)とともに一般式 (4)で 示されるイミダゾール (b)が生成するが、イミダゾール (a)は、(a)とイミダゾール (b)の 合計重量に対して、例えば約 16〜35重量%のイミダゾール (b)とともに得られる。
[0013] [化 4]
Figure imgf000005_0002
[0014] [式中、
Figure imgf000005_0003
R4、 R5は一般式(1)と同じである。 ]
また、イミダゾール (a)は、一般式(5)で示されるイミダゾール (e)をアルキルィ匕しても 得られる。イミダゾール(e)は、例えば、 aージカルボ-ル化合物又はそのァセター ル類若しくはケタール類 (dl)、アンモニア又はその炭酸塩 (d2)、アルデヒド類 (d3) を反応させて得られる。上記反応により、イミダゾール (e)は、(e)と一般式 (6)で示さ れるイミダゾール (f)の合計重量に対して、例えば約 16〜35重量%の (f)とともに得 られる。したがって、この場合もイミダゾール( a)は、(a)と (b)の合計重量に対して、 例えば約 16〜35重量%の一般式 (4)で示されるイミダゾール (b)とともに得られるこ とになる。
[0015] [化 5]
Figure imgf000006_0001
[0016] [化 6]
Figure imgf000006_0002
[0017] [一般式 (5) (6)中、 R2、 R4、 R5は一般式(1)と同じである。 ]
イミダゾール (a)を原料とするイミダゾリゥム塩 (A)は、上記方法により製造された (a) を用いると、(A)とイミダゾリゥム塩 (B)の合計重量に対して、例えば約 16〜35重量 %のイミダゾリゥム塩 (B)とともに得られる。
本発明者らは、イミダゾリゥム塩 (A)と共存するイミダゾリゥム塩 (B)の含有量を少量 にすることにより、経時的な性能劣化が極めてわずかな電気化学素子用電解液を見 出すことに成功した。
[0018] 本発明の電気化学素子用電解液は、イミダゾリゥム塩 (A)を主成分としてなる電気化 学素子用電解液であって、イミダゾリゥム塩 (B)の含有量が (A)と (B)の合計重量に 対して 15重量%以下、好ましくは 10重量%以下、より好ましくは 5重量%以下、さら に好ましくは 2重量%以下、特に好ましくは 1. 7重量%以下、極めて好ましくは 1. 5 重量%以下、最も好ましくは 1重量%以下であり、好ましくは 0. 1重量%以上、より好 ましくは 0. 4重量%以上である。
(B)の含有量が (A)と (B)の合計重量に対して 15重量%を超えると、経時的な性能 劣化を十分に小さくすることが出来なくなる。
イミダゾリゥム塩 (A)を主成分としてなるとは、本発明の電解液を構成する電解質のう ち、 50重量%以上力イミダゾリゥム塩 (A)であることを意味する。
[0019] イミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の混合物から、(B)の含有量を (A)と (B) の合計重量に対して 15重量%以下とする方法としては、例えば原料であるイミダゾ ール (a)とイミダゾール (b)の混合物力もイミダゾール (b)を蒸留により除去する方法 が挙げられる。
蒸留は 50°C〜210°Cの温度範囲で圧力 30kPa以下の条件で行うことができる。 (B)の含有量を (A)と (B)の合計重量に対して 15重量%以下とする方法としては、ま た、イミダゾール(a)とイミダゾール(b)の原料となるイミダゾール(e)とイミダゾール(f) の混合物からイミダゾール (f)を再結晶、蒸留などにより除く方法等が挙げられる。
[0020] イミダゾリゥム塩 (A)としては、次のカチオン力もなる塩等が含まれる。
(1) 1, 2, 3—位置換体
1, 2, 3 トリメチルイミダゾリゥム、 1—ェチル 2, 3 ジメチルイミダゾリゥム、 1, 3 ジメチルー 2 ェチルイミダゾリゥム、 1, 2 ジェチルー 3—メチルイミダゾリゥム、 1 , 3 ジェチル— 2—メチルイミダゾリゥム、 1, 2, 3 卜リエチルイミダゾリゥム、 1—プ 口ピノレー 2, 3 ジメチルイミダゾリゥム、 1 イソプロピル 2, 3 ジメチルイミダゾリウ ムなど。
[0021] (2) 1, 2, 3, 4一位置換体
1, 2, 3, 4—テトラメチルイミダゾリゥム、 1—ェチル 2, 3, 4 トリメチルイミダゾリウ ム、 2 ェチル 1, 3, 4 トリメチルイミダゾリゥム、 1, 2 ジェチル— 3, 4 ジメチ ルイミダゾリゥム、 1, 3 ジェチル— 2, 4 ジメチルイミダゾリゥム、 1, 2 ジメチル— 3, 4 ジェチルイミダゾリゥム、 1, 2, 3 トリェチル—4—メチルイミダゾリゥム、 1, 2, 3 トリメチル 4 ェチルイミダゾリゥム、 1, 2, 4 トリメチル 3 ェチルイミダゾリ ゥム、 1, 4ージェチノレー 2, 3 ジメチルイミダゾリゥム、 2, 4 ジェチノレー 1, 3 ジメ チルイミダゾリゥム、 1, 2, 4 トリェチル—3—メチルイミダゾリゥム、 1, 3, 4 トリェチ ル— 2—メチルイミダゾリゥム、 1, 2, 3, 4—テトラエチルイミダゾリゥム、 1—プロピル - 2, 3, 4 トリメチルイミダゾリゥム、 1—イソプロピル— 2, 3, 4 トリメチルイミダゾリ ゥムなど。
[0022] (3) 1, 2, 3, 5—位置換体
1, 2, 3, 5—テトラメチルイミダゾリゥム、 1—ェチル 2, 3, 5 トリメチルイミダゾリウ ム、 1, 2 ジェチノレー 3, 5 ジメチルイミダゾリゥム、 1, 3 ジェチノレー 2, 5 ジメチ ルイミダゾリゥム、 1, 5 ジェチル— 2, 3 ジメチルイミダゾリゥム、 1, 2, 5 トリェチ ノレ一 3—メチノレイミダゾリゥム、 1, 3, 5 トリェチノレ一 2—メチノレイミダゾリゥム、 1—プ 口ピノレー 2, 3, 5 トリメチノレイミダゾリゥム、 1—イソプロピノレー 2, 3, 5 トリメチノレイミ ダゾリゥムなど。
[0023] (4) 1, 2, 3, 4, 5 -位置換体
1, 2, 3, 4, 5 ペンタメチルイミダゾリゥム、 1—ェチル 2, 3, 4, 5—テトラメチルイ ミダゾリゥム、 2 ェチル 1, 3, 4, 5—テトラメチルイミダゾリゥム、 3 ェチル 1, 2 , 4, 5—テトラメチルイミダゾリゥム、 4ーェチルー 1, 2, 3, 5—テトラメチルイミダゾリウ ム、 1, 2, 3, 4, 5 ペンタエチルイミダゾリゥム、 1—プロピル— 2, 3, 4, 5—テトラメ チルイミダゾリゥム、 1 イソプロピル 2, 3, 4, 5—テトラメチルイミダゾリゥムなど。
[0024] これらのカチオンのうち、耐電圧および溶解度の観点等から、 (1) 1, 2, 3—位置換 体、(2) 1, 2, 3, 4一位置換体及び(3) 1, 2, 3, 5—位置換体であるカチオンが好ま しぐさらに好ましくは(1)及び(2)である。
(1)及び(2)のうちで特に好ましいものは 2位にメチル基を有するものであり、 1, 2, 3 —トリメチルイミダゾリゥム、 1, 2, 3, 4—テトラメチルイミダゾリゥム及び 1—ェチル 2 , 3 ジメチルイミダゾリゥムがさらに好ましぐ次に特に好ましくは 1, 2, 3 トリメチル イミダゾリゥム及び 1ーェチルー 2, 3 ジメチルイミダゾリゥム、最も好ましくは 1ーェチ ノレ 2, 3 ジメチルイミダゾリゥムである。
また、上記のカチオンのうち、一般式(1)において、
Figure imgf000008_0001
R2及び R3のうち、少なくとも 1 個が異なるアルキル基であるものが好ましい。 R\ R2及び R3のうち、少なくとも 1個が 異なるとは、 R R2及び R3のうち 2個が同じで 1個が異なる場合、 R R2及び R3がす ベて異なる場合がある。具体例としては、 1—ェチル 2, 3 ジメチルイミダゾリゥム、 1, 3 ジメチルー 2 ェチルイミダゾリゥム、 1, 2 ジェチルー 3—メチルイミダゾリウ ム、 1, 3 ジェチル— 2—メチルイミダゾリゥム、 1—ェチル 2, 3, 4 トリメチルイミ ダゾリゥム、 1—ェチル 2, 3, 5 トリメチルイミダゾリゥム、 1—ェチル—2—メチル —3—プロピルイミダゾリゥム等が挙げられる。
[0025] 対ァニオン X—は、 PF―、 BF―、 AsF―、 SbF―、 N (RfSO ) —、 C (RfSO ) ―、 Rf
6 4 6 6 2 2 2 3
SO―、(Rfは炭素数 1〜12のフルォロアルキル基)、 N (FSO ) ―、 F―、 CIO―、 A1 F―、 A1C1―、 TaF―、 NbF―、 SiF―、 CN_又は F (HF) " (nは 1〜4の数を表す)
4 4 6 6 6 n
で表されるァ-オンが好ましぐさらに好ましくは、耐電圧の観点等から、 PF―
6、 BF " 4 又は N (RfSO ) —で表されるァ-オン、特に好ましくは PF—又は BF—で表されるァ
2 2 6 4
ユオン、最も好ましくは BF—で表されるァ-オンである。なお、 N (RfSO ) ―
4 2 2、 C (Rf
SO ) —又は RfSO—で表されるァ-オンに含まれる Rfは、炭素数 1〜12のフルォロ
2 3 3
アルキル基を表し、トリフルォロメチル、ペンタフルォロェチル、ヘプタフルォロプロピ ル、ノナフルォロブチルなどが挙げられる。これらのうち、トリフルォロメチル、ペンタフ ルォロェチル及びヘプタフルォロプロピルが好ましく、さらに好ましくはトリフルォロメ チル及びペンタフルォロェチル、特に好ましくはトリフルォロメチルである。
[0026] イミダゾリゥム塩 (A)の好ましい例としては、 1, 2, 3 トリメチルイミダゾリゥムテトラフ ルォロボレート(BF—塩)、 1, 2, 3, 4ーテトラメチルイミダゾリゥムテトラフルォロボレ
4
一卜、 1—ェチル 2, 3 ジメチルイミダゾリウムテ卜ラフルォロボレ一卜、 1, 2, 3—トリ メチルイミダゾリゥムへキサフルォロホスフェート(PF—塩)、 1, 2, 3, 4ーテトラメチル
6
イミダゾリゥムへキサフルォロホスフェート、 1ーェチルー 2, 3 ジメチルイミダゾリゥム へキサフルォロホスフェート等があげられる。
[0027] イミダゾリゥム塩 (B)の例としては、対応するイミダゾリゥム塩 (A)の 2位のアルキル基 を水素原子に置換したものが挙げられる。
具体的にはイミダゾリゥム塩 (B)として、次のカチオン力 なる塩等が含まれる。
(1) 1, 3—位置換体
1, 3 ジメチルイミダゾリゥム、 1—ェチル—3—メチルイミダゾリゥム、 1, 3 ジェチ ルイミダゾリゥム、 1—プロピル一 3—メチルイミダゾリゥム、 1—イソプロピル一 3—メチ ルイミダゾリゥムなど。
[0028] (2) 1, 3, 4一位置換体
1, 3, 4 トリメチルイミダゾリゥム、 1—ェチル 3, 4 ジメチルイミダゾリゥム、 3 ェ チル— 1, 4 ジメチルイミダゾリゥム、 1, 3 ジェチル— 4—メチルイミダゾリゥム、 1, 3 ジメチルー 4ーェチルイミダゾリゥム、 1, 4 ジェチルー 3—メチルイミダゾリゥム、 3, 4 ジェチル— 1—メチルイミダゾリゥム、 1, 3, 4 トリェチルイミダゾリゥム、 1—プ 口ピノレー 3, 4 ジメチルイミダゾリゥム、 1 イソプロピル 3, 4 ジメチルイミダゾリウ ムなど。
[0029] (3) 1, 3, 5—位置換体
1, 3, 5 トリメチルイミダゾリゥム、 1—ェチル 3, 5 ジメチルイミダゾリゥム、 1, 3 ジェチルー 5—メチルイミダゾリゥム、 1, 5 ジェチルー 3—メチルイミダゾリゥム、 1 , 3, 5 トリェチルイミダゾリゥム、 1—プロピル— 3, 5 ジメチルイミダゾリゥム、 1—ィ ソプロピル 3, 5—ジメチルイミダゾリゥムなど。
[0030] (4) 1, 3, 4, 5—位置換体
1, 3, 4, 5—テトラメチルイミダゾリゥム、 1—ェチル 3, 4, 5 トリメチルイミダゾリウ ム、 3 ェチル 1, 4, 5 トリメチルイミダゾリゥム、 4 ェチル—1, 3, 5 トリメチル イミダゾリゥム、 1, 3, 4, 5—テトラエチルイミダゾリゥム、 1—プロピル— 3, 4, 5 トリ メチノレイミダゾリゥム、 1 イソプロピル 3, 4, 5 トリメチノレイミダゾリウムなど。
[0031] イミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の組み合わせの例としては、 1, 2, 3 トリ メチルイミダゾリゥムテトラフルォロボレートと 1 , 3 ジメチルイミダゾリゥムテトラフルォ ロボレート、 1, 2, 3, 4—テトラメチルイミダゾリゥムテトラフルォロボレートと 1, 3, 4— トリメチルイミダゾリゥムテトラフルォロボレート、 1ーェチルー 2, 3 ジメチルイミダゾリ ゥムテトラフルォロボレートと 1ーェチルー 3—メチルイミダゾリゥムテトラフルォロボレ ート等があげられる。
[0032] イミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の含有量は、高速液体クロマトグラフィー( HPLC)により定量できる。 HPLCの条件は、カラム:ポリマーコート型充填剤を充填 したもの、移動相:リン酸緩衝液 (ρΗ2〜3)、流速: 0. 5mlZmin、検出器: UV、温 度 :40°Cである (例えば、機器:型名(LC— 10A)、メーカー(島津製作所)、カラム: Develosil C30— UG (4. 6mm X 25cm)メーカー(野村化学)、移動相:リン酸 の濃度 10mmolZl、過塩素酸ナトリウムの濃度 lOOmmolZlの水溶液、流速: 0. 8 mlZmin、検出器: UV(210nm)、注入量: 1、カラム温度: 40°C)。検量線を用 いて、(A)と (B)の重量比を算出する。
イミダゾール(a)とイミダゾール(b)の含有量、イミダゾール(e)とイミダゾール(f )の含 有量も、上記と同じ方法で定量'算出することができる。
[0033] 本発明の電解液中のイミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の含有量は、電解液 の重量に基づいて 5〜70%が好ましぐ 10〜60%がより好ましい。
[0034] 本発明の電解液には非水溶媒を含んでもよい。非水溶媒としては公知のものが使用 され、イミダゾリゥム塩 (A)の溶解性と電気化学的安定性とを考慮して適宜選択でき、 例えば、以下のものが含まれる。これらのうち 2種以上を併用することも可能である。
[0035] ·エーテル:炭素数 4〜 12の鎖状エーテル(ジェチルエーテル、メチルイソプロピルェ 一テル、エチレングリコーノレジメチノレエーテノレ、ジエチレングリコールジメチルエーテ ノレ、トリエチレングリコーノレジェチノレエーテノレ、テトラエチレングリコーノレジェチノレエ一 テル、ジエチレングリコールジェチノレエーテル、トリエチレングリコールジメチノレエ一 テル等)、炭素数 4〜12の環状エーテル {テトラヒドロフラン、 1 , 3 ジォキソラン、 1 , 4 ジォキサン、 4ーブチルジォキソラン、クラウンエーテル(1 , 4, 7, 10, 13, 16— へキサォキサシクロォクタデカン等)等 }等。
[0036] 'アミド:炭素数 3〜6の鎖状アミド(N, N ジメチルホルムアミド、 N, N—ジメチルァ セトアミド、 N, N ジメチルプロピオンアミド、へキサメチルホスホリルアミド等)、炭素 数 4〜6の環状アミド(ピロリジノン、 N メチルピロリジノン、 N—ビュルピロリジノン等) 等。
•カルボン酸エステル:炭素数 3〜8の鎖状エステル(酢酸メチル、プロピオン酸メチル 、アジピン酸ジメチル等)、炭素数 4〜5の環状エステル(γ—プチ口ラタトン、 a—ァ セチノレー y ブチロラタトン、 13 ブチロラタトン、 γ バレロラタトン、 δ バレロラタ トン等)等。
'二トリル:炭素数 2〜5の-トリル(ァセトニトリル、グルタ口-トリル、アジポ-トリル、メト キシァセトニトリル、 3—メトキシプロピオ二トリル、 3—エトキシプロピオ二トリル、アタリ ロニトリル等)等。
•カーボネート:炭素数 3〜5の鎖状カーボネート(ジメチルカーボネート、ェチルメチ ルカーボネート、ジェチルカーボネート等)、炭素数 3〜5の環状カーボネート(ェチレ ンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネー ト等)等。
'スルホキシド:炭素数 2〜6の鎖状スルホキシド(ジメチルスルホキシド、ジプロピルス ルホキシド等)等。 'スルホン:炭素数 4〜6の環状スルホン(スルホラン、 3—メチルスルホラン、 2, 4—ジ メチルスルホラン等)等。
'ニトロ化合物:ニトロメタン、ニトロエタン等。
'他の環状ィ匕合物: N—メチル—2—ォキサゾリジノン、 3, 5—ジメチル— 2—ォキサ ゾリジノン、 1, 3—ジメチルー 2—イミダゾリジノン等。
[0037] これらのうち、カーボネート、スルホン、カルボン酸エステル及び二トリルが好ましぐさ らに好ましくはカーボネート、スルホン及び-トリル、特に好ましくはエチレンカーボネ ート、プロピレンカーボネート及びスルホラン、最も好ましくはプロピレンカーボネート 及びスルホランである。これらの非水溶媒は、単独で用いてもよいし、 2種以上の混 合物であってもよいが、混合物の場合、プロピレンカーボネート、エチレンカーボネー ト、ブチレンカーボネート、スルホラン、メチルスルホラン、ァセトニトリル、 γ —ブチロ ラタトン、ジメチルカーボネート、ェチルメチルカーボネート及びジェチルカーボネー トからなる群より選ばれた少なくとも 1種を主成分とすることが好ましぐさらに好ましく はプロピレンカーボネート、エチレンカーボネート、スノレホラン、ァセトニトリノレ及び γ —プチ口ラタトン力 なる群より選ばれた少なくとも 1種を主成分とすること、特に好ま しくはプロピレンカーボネート、スルホラン及びァセトニトリル力もなる群より選ばれた 少なくとも 1種を主成分とすることである。ここで「主成分とする」とは、非水溶媒のうち 、 50〜99重量%、好ましくは 70〜90重量%を含有することを意味する。
上記のように、プロピレンカーボネート、エチレンカーボネート、スルホラン、ァセトニト リル及び γ—プチ口ラタトン力 なる群より選ばれる少なくとも 1種を主成分とする場合 は、ジメチルカーボネート、ェチルメチルカーボネート及びジェチルカーボネートから なる群より選ばれる少なくとも 1種を副溶媒とすることが好ましい。副溶媒として、さら に好ましくは、ジメチルカーボネートおよびェチルメチルカーボネートであり、特に好 ましくはジメチルカーボネートである。ここで、「副溶媒とする」とは、非水溶媒のうち、 1〜50重量%、好ましくは 10〜30重量%を含有することを意味する。
[0038] 電解液中に占める非水溶媒の含有量 (重量%)は、電解液の重量に基づいて、 30〜 95力 子ましく、さらに好ましくは 40〜90、特に好ましくは 50〜85、最も好ましくは 60 〜80である。この範囲であると、低温での塩析出が起こりに《なり、電気化学キャパ シタの経時的な性能劣化をさらに改善しうる。
[0039] 本発明の電解液中の含水量 (ppm)は、電気化学的安定性の観点から、電解液の容 量に基づいて、 300以下が好ましぐさらに好ましくは 100以下、特に好ましくは 50以 下である。この範囲であると、電気化学キャパシタの経時的な性能低下を抑制できる 。電解液中の含水量はカールフィッシャー法 (JIS K0113— 1997、電量滴定方法) で測定することができる。
電解液中の水分を上記の範囲にする方法としては、あら力じめ十分に乾燥したイミダ ゾリゥム塩 (A)と、あらかじめ十分に脱水した非水溶媒とを使用する方法等が挙げら れる。(A)の乾燥方法としては、減圧下加熱乾燥 (例えば 20Torr減圧下で 150°Cで 加熱)して、含有されて!、る微量の水を蒸発させて除去する方法等が挙げられる。 非水溶媒の脱水方法としては、減圧下加熱脱水(例えば 100Torr、 130°Cで加熱( 非水溶媒がプロピレンカーボネートの場合) )して、含有されて 、る微量の水を蒸発さ せて除去する方法、モレキュラーシーブ (ナカライテスタ製、 3A 1Z16等)、活性ァ ルミナ粉末などの除水剤を使用する方法等が挙げられる。
また、これらの他に、電解液を減圧下加熱脱水(例えば lOOTorr減圧下で 100°Cで 加熱)して、含有されている微量の水を蒸発させて除去する方法、モレキュラーシー ブ、活性アルミナ粉末などの除水剤を使用する方法等が挙げられる。これらの方法は 、それぞれ単独で行ってもよいし、組み合わせて行ってもよい。これらのうち、(A)を 減圧下加熱乾燥する方法、電解液にモレキュラーシーブを加える方法が好ま ヽ。
[0040] 本発明の電解液は電気化学素子、特に電気化学キャパシタに用いることができる。
本発明において、電気化学素子とは電気化学キャパシタ、電気化学電池、電気化学 センサー等を含むものである。電気化学キャパシタは、基本構成物品として、電極、 集電体、セパレーターを備えるとともに、キャパシタに通常用いられるケース、ガスケ ットなどを任意に備えるものである。電解液は、アルゴンガス雰囲気 (露点— 50°C)の グローブボックス内等で電極及びセパレーターに含浸される。
本発明の電解液は、電気化学キャパシタのうち、電気二重層コンデンサ(電極に分 極性電極、例えば活性炭等を使用するもの)に好適である。
[0041] 電気二重層コンデンサの基本構造としては、 2つの分極性電極の間にセパレーター を挟み、電解液を含浸させたものからなる。分極性電極の主成分は、電解液に対し て電気化学的に不活性で、かつ、適度な電気伝導度を有することから活性炭、グラフ アイト、ポリアセン系有機半導体などの炭素質物質が好ましぐ正極と負極の少なくと も一方は炭素質物質である。電荷が蓄積する電極界面が大きい点から、窒素吸着法 による BET法により求めた比表面積が 10m2/g以上の多孔性炭素物質 (例えば活 性炭)がさらに好ましい。多孔性炭素物質の比表面積は、目的とする単位面積あたり の静電容量 (FZm2)と、高比表面積ィヒに伴う嵩密度の低下を勘案して選択されるが 、窒素吸着法による BET法により求めた比表面積が 30〜2, 500m2Zgのものが好 ましぐ体積あたりの静電容量が大きいことから、比表面積が 300〜2, 300m2Zgの 活性炭が特に好ましい。
[0042] 本発明の電解液は、アルミ電解コンデンサにも好適に用いることができる。アルミ電 解コンデンサの基本構造としては、電極となるアルミ箔の表面に電気化学処理で酸 化膜をつくってこれを誘電体とし、もう一方の電極となるアルミ箔との間に電解液を含 浸させた電解紙を挟んだものである。
[0043] 本発明において、電気化学キャパシタの態様としては、コイン型、捲回型、角形のも の等があげられる。本発明の電解液は、いずれの電気二重層コンデンサ又はいずれ のアルミ電解コンデンサにも適用できる。
発明の効果
[0044] 本発明の電気化学素子用電解液は、耐電圧が極めて高いので、経時的な性能劣化 が極めてわずかな電気化学素子を製造し得る。したがって、本発明の電解液を用い ることにより、電気化学素子、特に電気化学キャパシタのエネルギー密度を著しく向 上させることができる。
発明を実施するための最良の形態
[0045] 以下、実施例および比較例により本発明を説明するが、本発明はこれに限定される ものではない。以下、特に記載のないかぎり、「部」は「重量部」を、「%」は「重量%」 を意味する。実施例における HPLCの条件は、機器:型名(LC—10A)、メーカー( 島津製作所)、カラム: Develosil C30— UG (4. 6mm φ X 25cm)、メーカー(野村 化学)、移動相:リン酸の濃度 10mmolZl、過塩素酸ナトリウムの濃度 lOOmmolZl の水溶液、流速: 0. 8mlZmin、検出器: UV(210nm)、注入量: 1、カラム温 度: 40°C、である。
実施例 1
撹拌装置、温度計、滴下ロート、還流冷却器、及び窒素ガス導入管を取り付けた反 応フラスコにェチルァミン(70%水溶液) 31部とアンモニア(28%水溶液) 32部の混 合液を仕込み、撹拌しながら均一溶液にした。温度を 45°C以下に保ちながら滴下口 ートからダリオキザール (40%水溶液) 69部、ァセトアルデヒド(30%水溶液) 71部の 混合液を滴下した。ダリオキザールとァセトアルデヒドの混合液の滴下は 5時間かけ て行い、滴下終了後、 40°Cで 1時間反応させ、 1ーェチルー 2 メチルイミダゾール( a— 1)、 1 ェチルイミダゾール (b— 1)の混合物(M— 1)を得た。 HPLC分析を行つ たところ (a— 1)と (b— 1)の重量比は(80 : 20)であった。次に、温度 80°C、常圧から 徐々に 5. OkPaまで減圧し脱水を行い、続いて、温度 105°C、圧力 1. OkPaの条件 で蒸留により精製し、混合物 (M— 2)を得た。 HPLC分析を行ったところ (a— 1)と (b 1)の重量比は 85: 15であった。
次に、還流コンデンサ付きステンレス製のオートクレープに得られた混合物(M— 2) を 100部、ジメチルカーボネート 135部、及びメタノール 192部を仕込み均一に溶解 させた。次いで、 130°Cまで昇温した。圧力 0. 8MPaで 80時間反応を行った。反応 物の NMR分析を行ったところ、 1ーェチルー 2、 3 ジメチルイミダゾリゥムモノメチル 炭酸塩と 1―ェチル 3 ジメチルイミダゾリゥムモノメチル炭酸塩が生成して ヽること がわかった。得られた反応混合物 427部をフラスコにとり、撹拌下においてホウフッ化 水素酸水溶液 207部(純度 42重量%)を室温下約 30分かけて徐々に滴下した。滴 下に伴い炭酸ガスが発生した。泡の発生がおさまった後、反応液をロータリーエバポ レーターに移し、溶剤を全量除去した。フラスコ内には、黄褐色物質 83部が残った。 この物質を NMR分析したところ、主成分は、 1ーェチルー 2、 3 ジメチルイミダゾリウ ムテトラフルォロボレート(以下 EDMIと略す)と 1ーェチルー 3—メチルイミダゾリゥム テトラフルォロボレート(以下 EMIと略す)であり、 HPLC分析より、重量比は、 85 : 15 であった。得られた EDMIと EMIの混合物 210gをプロピレンカーボネートに均一溶 解して全体を 1リットルとし、本発明の電解液の調製を行った。 [0047] 実施例 2
実施例 1で得られた 1—ェチル— 2—メチルイミダゾール(a— 1 )、 1—ェチルイミダゾ ール (b— 1)の混合物(M— 2)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 3)を得た。 HPLC分析を行つ たところ (a— 1)と (b— 1)の重量比は 90 : 10であった。得られた混合物を実施例 1と 同様に処理すると、黄褐色物質を得た。この物質を NMR分析したところ、主成分は、 EDMIと EMIであり、 HPLC分析より、重量比は 90 : 10であった。得られた EDMIと EMIの混合物 211gをプロピレンカーボネートに均一溶解して全体を 1リットルとし、 本発明の電解液の調製を行つた。
[0048] 実施例 3
実施例 2で得られた 1—ェチル— 2—メチルイミダゾール(a— 1 )、 1—ェチルイミダゾ ール (b— 1)の混合物(M— 3)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 4)を得た。 HPLC分析を行つ たところ (a— 1)と (b— 1)の重量比は 95: 5であった。得られた混合物を実施例 1と同 様に処理すると、黄褐色物質を得た。この物質を NMR分析したところ、主成分は、 E DMIと EMIであり、 HPLC分析より、重量比は 95: 5であった。得られた EDMIと EM Iの混合物 211gをプロピレンカーボネートに均一溶解し全体を 1リットルとし本発明の 電解液の調製を行った。
[0049] 実施例 4
実施例 3で得られた 1—ェチル— 2—メチルイミダゾール(a— 1 )、 1—ェチルイミダゾ ール (b— 1)の混合物(M— 4)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 5)を得た。 HPLC分析を行つ たところ (a— 1)と (b— 1)の重量比は 98: 2であった。得られた混合物を実施例 1と同 様に処理すると、黄褐色物質が残った。この物質を NMR分析したところ、主成分は、 EDMIと EMIであり、 HPLC分析より、重量比は 98: 2であった。得られた EDMIと E Mlの混合物 212gをプロピレンカーボネートに均一溶解し全体を 1リットルとし本発明 の電解液の調製を行った。
[0050] 実施例 5 実施例 4で得られた 1 ェチル 2 メチルイミダゾール(a— 1 )、 1 ェチルイミダゾ ール (b— 1)の混合物(M— 5)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 6)を得た。 HPLC分析を行つ たところ (a— 1)と (b—1)の重量比は 98. 5 : 1. 5であった。得られた混合物を実施例 1と同様に処理すると、黄褐色物質が残った。この物質を NMR分析したところ、主成 分は、 EDMIと EMIであり、 HPLC分析より、重量比は 98. 5 : 1. 5であった。得られ た EDMIと EMIの混合物 212gをプロピレンカーボネートに均一溶解し全体を 1リット ルとし本発明の電解液の調製を行った。
[0051] 実施例 6
実施例 5で得られた 1 ェチル 2 メチルイミダゾール(a— 1 )、 1 ェチルイミダゾ ール (b— 1)の混合物(M— 6)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 7)を得た。 HPLC分析を行つ たところ (a— 1)と (b— 1)の重量比は 99: 1であった。得られた混合物を実施例 1と同 様に処理すると、黄褐色物質が残った。この物質を NMR分析したところ、主成分は、 EDMIと EMIであり、 HPLC分析より、重量比は 99: 1であった。得られた EDMIと E Mlの混合物 212gをプロピレンカーボネートに均一溶解し全体を 1リットルとし本発明 の電解液の調製を行った。
[0052] 実施例 7
実施例 6で得られた 1ーェチルー 2—メチルイミダゾール(a— 1)、 1ーェチルイミダゾ ール (b— 1)の混合物(M— 7)をさらに、温度 105°C、圧力 1. OkPaの条件で蒸留し て精製することにより、(a— 1)、(b— 1)の混合物 (M— 8)を得た。 HPLC分析を行つ たところ (a— 1)と (b—1)の重量比は 99. 6 : 0. 4であった。得られた混合物を実施例 1と同様に処理すると、黄褐色物質が残った。この物質を NMR分析したところ、主成 分は、 EDMIと EMIであり、 HPLC分析より、重量比は 99. 6 : 0. 4であった。得られ た EDMIと EMIの混合物 212gをプロピレンカーボネートに均一溶解し全体を 1リット ルとし本発明の電解液の調製を行った。
[0053] 実施例 8
実施例 6で得られた 1ーェチルー 2—メチルイミダゾール(a— 1)、 1ーェチルイミダゾ ール (b— 1)の混合物((a— 1)と (b— 1)の重量比は 99: 1) (M- 7)を実施例 1のホ ゥフッ化水素酸水溶液 (純度 42重量%)の代わりに HPF水溶液 (純度 60重量%) 2
6
41部を用い、他は同様に処理した。これを NMR分析したところ、主成分は、 1—ェチ ルー 2、 3 ジメチルイミダゾリゥムへキサフルオロフォスホネート(以下 EDMIPと略す )と 1 ェチルー 3 メチルへキサフルオロフォスホネート(以下 EMIPと略す)であり、 HPLC分析より、重量比は、 99 : 1であった。得られた EDMIPと EMIPの混合物 270 gをプロピレンカーボネートに均一溶解して全体を 1リットルとし、本発明の電解液の 調製を行った。
[0054] 実施例 9
実施例 1のェチルァミン(70%水溶液)の代わりにメチルァミン (40%水溶液)を 38部 用いる他は同様に処理して 1、 2—ジメチルイミダゾール (a— 2)、 1ーメチルイミダゾ ール (b— 2)の混合物を得た。 HPLC分析を行ったところ (a— 2)と (b— 2)の重量比 は(80 : 20)であった。温度 100°C、圧力 1. OkPaの条件で蒸留により精製し、精製 後の(a— 2)と (b— 2)の重量比は 85 : 15 (M- 9)であった。得られた混合物を実施 例 1と同様に処理し、 1、 2、 3 トリメチルイミダゾリゥムテトラフルォロボレート(以下 T Mlと略す)と 1、 3 ジメチルイミダゾリゥムテトラフルォロボレート(以下 DMIと略す) の混合物を得た。 HPLC分析より、重量比は、 85 : 15であった。得られた TMIと DMI の混合物 198gをプロピレンカーボネートに均一溶解して全体を 1リットルとし、本発 明の電解液の調製を行った。
[0055] 実施例 10
実施例 9で得られた 1、 2 ジメチルイミダゾール(a— 2)、 1 メチルイミダゾール (b —2)の混合物 (M— 9)をさらに、温度 100°C、圧力 1. OkPaの条件で蒸留して精製 することにより、(a— 2)、(b— 2)の混合物(M— 10)を得た。 HPLC分析を行ったとこ ろ(a— 2)と (b— 2)の重量比は 99 : 1であった。得られた混合物を実施例 1と同様に 処理し、 NMR分析したところ、主成分は、 TMIと DMIであり、 HPLC分析より、重量 比は 99 : 1であった。得られた TMIと DMIの混合物 198gをプロピレンカーボネートに 均一溶解し全体を 1リットルとし本発明の電解液の調製を行った。
[0056] 実施例 11 実施例 1のェチルァミン(70%水溶液)の代わりにメチルァミン (40%水溶液) 38部を 、ダリオキザール (40%水溶液)の代わりにメチルダリオキザール 87部を用い他は同 様に処理した。滴下後に 1、 2、 4 トリメチルイミダゾール (a— 3)、 1、 4 ジメチルイ ミダゾ一ノレ (b 3)の混合物を得た。 HPLC分析を行ったところ (a— 3)と (b— 3)の重 量比は(80 : 20)であった。温度 110°C、圧力 1. OkPaの条件で蒸留により精製し、 精製後の(a— 3)と (b— 3)の重量比は 85: 15 (M— 11)であった。得られた混合物を 実施例 1と同様に処理し、 1、 2、 3、 4ーテトラメチルイミダゾリゥムテトラフルォロボレ ート(以下 TeMIと略す)と 1、 3、 4 トリメチルイミダゾリゥムテトラフルォロボレート(以 下 4TMIと略す)の混合物を得た。 HPLC分析より、重量比は、 85 : 15であった。得 られた TeMIと 4TMIの混合物 212gをプロピレンカーボネートに均一溶解して全体を 1リットルとし、本発明の電解液の調製を行った。
[0057] 実施例 12
実施例 11で得られた 1、 2、 4 トリメチルイミダゾール (a— 3)、 1、 4 ジメチルイミダ ゾール (b— 3)の混合物(M— 11)をさらに、温度 110°C、圧力 1. OkPaの条件で蒸 留して精製することにより、(a— 3)、(b— 3)の混合物 (M— 12)を得た。 HPLC分析 を行ったところ (a— 3)と (b— 3)の重量比は 99: 1であった。得られた混合物を実施 例 1と同様に処理し、 NMR分析したところ、主成分は、 TeMIと 4TMIであり、 HPLC 分析より、重量比は 99 : 1であった。得られた TeMIと 4TMIの混合物 212gをプロピ レンカーボネートに均一溶解し全体を 1リットルとし本発明の電解液の調製を行った。
[0058] 実施例 13
実施例 1で得られた、 EDMIと EMIの混合物 210gをスルホランに均一溶解して全体 を 1リットルとし、本発明の電解液の調製を行った。
[0059] 実施例 14
実施例 2で得られた、 EDMIと EMIの混合物 21 lgをスルホランに均一溶解して全体 を 1リットルとし、本発明の電解液の調製を行った。
[0060] 実施例 15
実施例 3で得られた、 EDMIと EMIの混合物 21 lgをスルホランに均一溶解して全体 を 1リットルとし、本発明の電解液の調製を行った。 [0061] 実施例 16
実施例 1で得られた、 EDMIと EMIの混合物 210gをプロピレンカーボネートとジメチ ルカーボネートの混合溶媒 (重量比 6 :4)に均一溶解し全体を 1リットルとし本発明の 電解液の調製を行った。
[0062] 実施例 17
実施例 2で得られた、 EDMIと EMIの混合物 21 lgをプロピレンカーボネートとジメチ ルカーボネートの混合溶媒 (重量比 6 :4)に均一溶解し全体を 1リットルとし本発明の 電解液の調製を行った。
[0063] 実施例 18
実施例 3で得られた、 EDMIと EMIの混合物 21 lgをプロピレンカーボネートとジメチ ルカーボネートの混合溶媒 (重量比 6 :4)に均一溶解し全体を 1リットルとし本発明の 電解液の調製を行った。
[0064] 実施例 19
実施例 4で得られた、 EDMIと EMIの混合物 21 lgをプロピレンカーボネートとジメチ ルカーボネートの混合溶媒 (重量比 7 : 3)に均一溶解し全体を 1リットルとし本発明の 電解液の調製を行った。
[0065] 実施例 20
実施例 1で得られた、 EDMIと EMIの混合物 210gをプロピレンカーボネートとェチル メチルカーボネートの混合溶媒 (重量比 7: 3)に均一溶解し全体を 1リットルとし本発 明の電解液の調製を行った。
[0066] 実施例 21
実施例 2で得られた、 EDMIと EMIの混合物 21 lgをプロピレンカーボネートとェチル メチルカーボネートの混合溶媒 (重量比 7: 3)に均一溶解し全体を 1リットルとし本発 明の電解液の調製を行った。
[0067] 実施例 22
実施例 3で得られた、 EDMIと EMIの混合物 21 lgをプロピレンカーボネートとェチル メチルカーボネートの混合溶媒 (重量比 7: 3)に均一溶解し全体を 1リットルとし本発 明の電解液の調製を行った。 [0068] 比較例 1
撹拌装置、温度計、滴下ロート、還流冷却器、及び窒素ガス導入管を取り付けた反 応フラスコにダリオキザール (40%水溶液) 18部、ホルマリン(37%水溶液) 10部の 混合液を仕込み、撹拌しながら均一溶液にした。温度を 35°C〜45°Cに保ちながら 滴下ロートからェチルァミン(70%水溶液) 64部とアンモニア(28%水溶液) 61部の 混合液を滴下した。ェチルァミンとアンモニアの混合液の滴下は 5時間かけて行 、、 滴下終了後、 40°Cで 1時間反応させた。次に、温度 80°C、常圧から徐々に 5. OkPa まで減圧し脱水を行い、続いて、温度 100°C、圧力 0. 8kPaの条件で蒸留により精 製し、 1—ェチルイミダゾール (b—1)を得た。次に、還流コンデンサ付きステンレス製 のオートクレーブに得られた (b— l)を 96部、ジメチル炭酸 135部、及びメタノール 1 92部を仕込み均一に溶解させた。次いで、 130°Cまで昇温した。圧力 0. 8MPaで 8 0時間反応を行った。反応物の NMRを行ったところ、 1—ェチル—3—ジメチルイミダ ゾリゥムモノメチル炭酸塩(2)が生成していることがゎカゝつた。得られた反応物(2) 42 3部をフラスコにとり、撹拌下においてホウフッ化水素酸水溶液 209部(純度 42重量 %)を室温下約 30分かけて徐々に滴下した。滴下に伴い炭酸ガスが発生した。泡の 発生がおさまった後、反応液をロータリーエバポレーターに移し、溶剤を全量除去し た。フラスコ内には、無色透明の液体(3) 198部が残った。この液を HPLC分析した ところ、主成分は、 EMIであった。得られた液体(3) 198gをプロピレンカーボネート に均一溶解して全体を 1リットルとし、電解液の調製を行った。
[0069] 比較例 2
実施例 1で得られた EDMIと EMIの混合物と、比較例 1で得られた EMIを混合するこ とにより、 EDMIと EMIの重量比が 50 : 50になるように混合物を調整し、 HPLCで重 量比が 50 : 50であることを確認した。得られた混合物 205gをプロピレンカーボネート に均一溶解して全体を 1リットルとし、電解液の調製を行った。
[0070] 比較例 3
実施例 1で得られた 1—ェチル— 2—メチルイミダゾール(a— 1 )、 1—ェチルイミダゾ ール (b— 1)の混合物 (M— 1)を単蒸留後、実施例 1と同様にメチルイ匕し、ホウフツイ匕 水素酸を滴下して EDMIと EMIの混合物を得た。この混合物は HPLC分析より、重 量比は 80 : 20であった。得られた EDMIと EMIの混合物 208gをプロピレンカーボネ ートに均一溶解して全体を 1リットルとし、電解液の調製を行った。
[0071] 比較例 4
比較例 2で得られた EDMIと EMIの混合物 205gをスルホランに均一溶解して全体を 1リットルとし、電解液の調製を行った。
[0072] 比較例 5
比較例 3で得られた EDMIと EMIの混合物 208gをスルホランに均一溶解して全体を 1リットルとし、電解液の調製を行った。
[0073] 比較例 6
比較例 2で得られた EDMIと EMIの混合物 205gをプロピレンカーボネートとジメチル カーボネートの混合溶媒 (重量比 6 :4)に均一溶解して全体を 1リットルとし、電解液 の調製を行った。
[0074] 比較例 7
比較例 3で得られた EDMIと EMIの混合物 208gをプロピレンカーボネートとジメチル カーボネートの混合溶媒 (重量比 6 :4)に均一溶解して全体を 1リットルとし、電解液 の調製を行った。
[0075] 比較例 8
比較例 2で得られた EDMIと EMIの混合物 205gをプロピレンカーボネートとェチルメ チルカーボネートの混合溶媒 (重量比 7 : 3)に均一溶解して全体を 1リットルとし、電 解液の調製を行った。
[0076] 比較例 9
比較例 3で得られた EDMIと EMIの混合物 208gをプロピレンカーボネートとェチルメ チルカーボネートの混合溶媒 (重量比 7 : 3)に均一溶解して全体を 1リットルとし、電 解液の調製を行った。
[0077] 実施例 1〜22、比較例 1〜9で調製した電解液の不純物含量はすべて以下の水準 であった。水分は lOppm以下。 3級ァミン塩 ImmolZkg以下、 BF—の加水分解物
4
は lOOppm以下、硫酸及び硫酸塩は lppm以下、グリコールは lOppm以下、ナトリウ ム、マグネシウム、カリウム、クロム、マンガン、鉄、コノルト、ニッケル、銅、亜鉛、鉛の イオン含量はすべて lppm以下。
[0078] 実施例 1〜22、比較例 1〜9の電解液を用いて、捲回形電気二重層コンデンサ(サイ ズ; φ 18mm X L50mm、定格電圧; 2. 5V)を作製し、この捲回形電気二重層コン デンサを使用して、電解液の耐電圧を自己放電特性(自己放電後の残存電圧)を測 定することで評価した。表 1に自己放電後の残存電圧を示す。
次に、自己放電特性の測定方法を説明する。室温下(25°C) 2. 5Vで 24時間充電し た上記で作製した捲回型電気二重層コンデンサを室温下で 50時間放置し、その後 、この捲回型電気二重層コンデンサの端子間電圧を測定した。この測定で得られた 2 4時間後の端子間電圧を残存電圧とした。残存電圧が高いほど耐電圧が高ぐ低い ほど耐電圧が低いことになる。
[0079] 前記捲回型電気二重層コンデンサを使用して、 65°C、 2. 5Vの高温負荷試験を行 い、 1000時間経過後の容量保持率を算出した。結果を表 1に示す。
容量保持率 (%) = [ (1000時間後の容量) / (初期の容量) ] X 100
次に容量測定方法を説明する。室温下で 2. 5Vで 1時間充電した捲回形電気二重 層コンデンサを、定電流負荷装置を用いて 500mAで定電流放電を行い、捲回形電 気二重層コンデンサの端子間電圧が 1. 5Vから 1. 0Vへ変化する間の時間より容量 を算出した。容量算出方法は、 Q=iX t = C XVの関係から、 C=i X A tZ AVとなり 、本測定においては i=0. 5 (A) , AV= 1. 5 - 1. 0 = 0. 5 (V)とした。ここで Qは放 電電荷量 (C)、 iは放電電流 (A)、 tは放電時間(sec)、 Cは容量 (F)、 Vは電圧 (V) である。
[0080] [表 1]
① EDM I /EM I
② EDM I P/E I P
溶媒 残存電圧 (V) 容量保持率 (%) ©TM I /DM I
®T e M I / TM【
実施例 1 ① 85Zl 5 PC 2. 40 91 実施例 2 ① 90 10 PC 2. 41 92 実施例 3 Φ95/5 P c 2, 42 94 実施例 4 ① 98/2 P c 2. 43 96 実施例 5 φ98. 5/ 1. 5 PC 2. 43 97 実施例 6 ① 99/ 1 PC 2. 43 97 実施例 7 ① 99. 6/0. 4 PC 2, 43 98 実施例 8 ©99/1 P c 2. 42 96 実施例 9 ③ 85/15 P c 2, 40 90 実施例 10 ③ 99/1 PC 2. 42 96 実施例 1 1 ④ 85/15 PC 2. 40 90 実施例 12 ④ 99/1 P c 2. 42 96 実施例 13 ① 85 15 S L 2. 40 92 実施例 14 ®90/10 sし 2. 40 93 実施例 15 CD95/5 sし 2. 41 94 実施例 1 β ① 85ノ15 P C/DMC 2. 42 92 実施例 17 ① 90/ 10 P C/DMC 2. 42 93 実施例 18 ① 95,5 PC/DMC 2. 43 95 実施例 19 Φ98/2 P C/DMC 2. 43 97 実施例 20 ① 85/15 PC/EMC 2. 1 93 実施例 21 ① 90/10 P C/EMC 2. 41 94 実施例 22 ① 95/5 P C/EMC 2, 42 95 比較例 1 ① 0/100 P c 2. 25 80 比較例 2 ① 50/50 PC 2. 30 83 比較例 3 ① 80/20 P c 2. 34 86 比較例 4 CD50/50 S L 2. 28 84 比較例 5 80/20 S L 2, 32 86 比較例 6 Φ50/50 PC/DMC 2. 34 85 比較例 7 ① 80/20 PC/DMC 2. 37 88 比較例 8 (D50/50 PC/EMC 2. 32 85 比較例 9 ① 80/20 P C/EMC 2. 36 88 表 1中の略号は、以下の非水溶媒を示す。
PC:プロピレンカーボネート
SL:スルホラン DMC:ジメチルカーボネート
EMC:ェチルメチルカーボネート
[0082] 表 1から、本発明の実施例 1〜22の電解液を使用した電気二重層コンデンサは、比 較例 1〜9の電解液を使用した電気二重層コンデンサに比べて、自己放電後の残存 電圧及び容量保持率が高!ヽ。よって本発明の電解液は電気化学キャパシタの耐電 圧を高くすることができ、経時的な性能劣化を改善し、高信頼性の電気化学キャパシ タを構成でさる。
産業上の利用可能性
[0083] 本発明の電解液は、耐電圧に優れていることから、この電解液を用いて作製した電 気化学素子、特に電気化学キャパシタは、従来の電気化学素子と比較して、経時的 な性能劣化がごくわずかであるため、各種電子機器のメモリーバックアップ用、各種 電源のバックアップ電源、太陽電池との組み合わせで使用される蓄電素子等の 2次 電池を代替する蓄電装置としてや、大電流を必要とするモーター駆動用電源、電動 工具等のパワーツール用電源、電気自動車用のパワー用電源用途等に適用できる

Claims

請求の範囲 [1] 一般式(1)で示されるイミダゾリゥム塩 (A)と一般式 (2)で示されるイミダゾリゥム塩 (B )を含み、一般式(1)で示されるイミダゾリゥム塩 (A)を主成分としてなる電気化学素 子用電解液であって、一般式(2)で示されるイミダゾリゥム塩 (B)の含有量がイミダゾ リウム塩 (A)とイミダゾリゥム塩 (B)の合計重量に対して、 15重量%以下であることを 特徴とする電気化学素子用電解液。
[化 1]
Figure imgf000026_0001
[式中、
Figure imgf000026_0002
R2及び R3は炭素数 1〜3のアルキル基であって、同じであっても異なつ ていてもよぐ R4及び R5は水素原子又は炭素数 1〜3のアルキル基であって、同じで あっても異なっていてもよい。 ΧΊま対ァ-オンを示す。 ]
[化 2]
Figure imgf000026_0003
[式中、 R\ R3、 R4、 R5、 ΧΊま一般式(1)と同じである。 ]
[2] 対ァニオン X—が PF―、 BF―、 AsF―、 SbF―、 N (RfSO )―、 C (RfSO )―、 RfS
6 4 6 6 2 2 2 3
O― (Rfは炭素数 1〜12のフルォロアルキル基)、 N (FSO ) ―、 F一、 CIO 一、 A1F―
3 2 2 4 4
、 A1C1一、 TaF 一、 NbF 一、 SiF 一、 CN_又は F (HF)― (nは 1〜4の数を表す)で表
4 6 6 6 n
されるァ-オンである請求項 1に記載の電解液。
[3] イミダゾリゥム塩 (A)が、 —ジカルボ二ルイ匕合物又はそのァセタール類若しくはケタ ール類 (dl)、アンモニア又はその炭酸塩 (d2)、アルデヒド類 (d3)及び一級アミン類 (d4)を反応させて得られるイミダゾール (a)を 4級化して得られる化合物である請求 項 1又は 2に記載の電解液。
[4] イミダゾリゥム塩 (B)の含有量力イミダゾリゥム塩 (A)とイミダゾリゥム塩 (B)の合計重 量に対して、 0. 1重量%以上、 15重量%以下である請求項 1〜3のいずれか 1項に 記載の電解液。
[5] 一般式(1)において、 R R2及び R3のうち、少なくとも 1個が異なるアルキル基である 請求項 1〜4のいずれ力 1項に記載の電解液。
[6] イミダゾリゥム塩 (A)が 1—ェチル 2, 3 ジメチルイミダゾリゥム、 1, 2, 3 トリメチ ルイミダゾリゥム及び 1, 2, 3, 4—テトラメチルイミダゾリゥムカもなる群より選ばれる少 なくとも一種のカチオンを含む請求項 1〜4のいずれか 1項に記載の電解液。
[7] さらに非水溶媒を含有してなる請求項 1〜6のいずれか 1項に記載の電解液。
[8] プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、スノレホラン、 メチルスルホラン、ァセトニトリル、 γ ブチロラタトン、ジメチルカーボネート、ェチル メチルカーボネート及びジェチルカーボネートからなる群より選ばれる少なくとも 1種 の非水溶媒を含有してなる請求項 7に記載の電解液。
[9] 請求項 1〜8のいずれか 1項に記載の電解液を用いることを特徴とする電気化学素 子。
[10] 請求項 1〜8のいずれか 1項に記載の電解液を用いて構成される電気二重層コンデ ンサ。
PCT/JP2006/319337 2005-09-29 2006-09-28 電気化学素子用電解液及びこれを用いた電気化学素子 WO2007037337A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800358405A CN101273423B (zh) 2005-09-29 2006-09-28 电化学元件用电解液和使用该电解液的电化学元件
EP06810784A EP1947663B1 (en) 2005-09-29 2006-09-28 Electrolyte solution for electrochemical device and electrochemical device using same
US12/088,818 US8007680B2 (en) 2005-09-29 2006-09-28 Electrolyte solution for electrochemical device and electrochemical device using same
JP2007537684A JPWO2007037337A1 (ja) 2005-09-29 2006-09-28 電気化学素子用電解液及びこれを用いた電気化学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005284070 2005-09-29
JP2005-284070 2005-09-29

Publications (1)

Publication Number Publication Date
WO2007037337A1 true WO2007037337A1 (ja) 2007-04-05

Family

ID=37899760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319337 WO2007037337A1 (ja) 2005-09-29 2006-09-28 電気化学素子用電解液及びこれを用いた電気化学素子

Country Status (7)

Country Link
US (1) US8007680B2 (ja)
EP (1) EP1947663B1 (ja)
JP (1) JPWO2007037337A1 (ja)
KR (1) KR100988183B1 (ja)
CN (1) CN101273423B (ja)
TW (1) TWI409834B (ja)
WO (1) WO2007037337A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218384A (ja) * 2007-03-06 2008-09-18 Lg Chem Ltd 高温保存特性に優れたリチウム二次電池用非水系電解液
JP2009218472A (ja) * 2008-03-12 2009-09-24 Sanyo Chem Ind Ltd 電気化学素子用電解液及びこれを用いた電気化学素子

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262816A1 (en) * 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
US9012345B2 (en) 2010-03-26 2015-04-21 Dioxide Materials, Inc. Electrocatalysts for carbon dioxide conversion
US9957624B2 (en) 2010-03-26 2018-05-01 Dioxide Materials, Inc. Electrochemical devices comprising novel catalyst mixtures
US8956990B2 (en) 2010-03-26 2015-02-17 Dioxide Materials, Inc. Catalyst mixtures
US9790161B2 (en) 2010-03-26 2017-10-17 Dioxide Materials, Inc Process for the sustainable production of acrylic acid
US20110237830A1 (en) 2010-03-26 2011-09-29 Dioxide Materials Inc Novel catalyst mixtures
US10173169B2 (en) 2010-03-26 2019-01-08 Dioxide Materials, Inc Devices for electrocatalytic conversion of carbon dioxide
US9815021B2 (en) 2010-03-26 2017-11-14 Dioxide Materials, Inc. Electrocatalytic process for carbon dioxide conversion
US9566574B2 (en) 2010-07-04 2017-02-14 Dioxide Materials, Inc. Catalyst mixtures
US9193593B2 (en) 2010-03-26 2015-11-24 Dioxide Materials, Inc. Hydrogenation of formic acid to formaldehyde
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system
WO2014047661A2 (en) 2012-09-24 2014-03-27 Dioxide Materials, Inc. Devices and processes for carbon dioxide conversion into useful fuels and chemicals
US10647652B2 (en) 2013-02-24 2020-05-12 Dioxide Materials, Inc. Process for the sustainable production of acrylic acid
CN104217862A (zh) * 2013-06-03 2014-12-17 张家港保税区超威电化技术服务有限公司 一种电解液和使用该电解液的电化学元件
US10774431B2 (en) 2014-10-21 2020-09-15 Dioxide Materials, Inc. Ion-conducting membranes
US10975480B2 (en) 2015-02-03 2021-04-13 Dioxide Materials, Inc. Electrocatalytic process for carbon dioxide conversion
EP3459097A4 (en) 2016-05-20 2020-05-06 AVX Corporation NON-AQUEOUS ELECTROLYTE FOR SUPERCAPACITOR
WO2017201183A1 (en) 2016-05-20 2017-11-23 Avx Corporation Ultracapacitor for use at high temperatures
CN117153567A (zh) * 2017-06-30 2023-12-01 京瓷Avx元器件公司 用于超级电容器模块的平衡电路中的热耗散
CN116404256B (zh) * 2023-05-31 2023-10-27 宁德时代新能源科技股份有限公司 电解液、电池单体、电池和用电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015572A1 (en) 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom
US20020036884A1 (en) 2000-06-19 2002-03-28 Hideki Shimamoto Electric double layer capacitor, electrolytic solution therefore and method for suppressing self-discharge in electronic component
JP2004207451A (ja) * 2002-12-25 2004-07-22 Sanyo Chem Ind Ltd 電解液
JP2005197666A (ja) 2003-12-10 2005-07-21 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751048B2 (ja) 1995-05-26 2006-03-01 松下電器産業株式会社 電解液およびそれを用いた電気化学素子
JP2004111921A (ja) * 2002-07-26 2004-04-08 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液およびそれを用いた電気化学キャパシタ
EP1564768A4 (en) * 2002-10-31 2006-04-12 Mitsubishi Chem Corp ELECTROLYTE FOR ELECTROLYTIC CAPACITOR, ELECTROLYTIC CAPACITOR, AND PROCESS FOR PRODUCING ORGANIC ONIUM TETRAFLUOROALUMINATE
JP4738173B2 (ja) * 2003-06-09 2011-08-03 パナソニック株式会社 電気化学素子用電解液、その探索方法と製造方法、および電気化学素子
JP2005197665A (ja) 2003-12-10 2005-07-21 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液及び電気化学キャパシタ
US20050127319A1 (en) * 2003-12-10 2005-06-16 Sanyo Chemical Industries, Ltd. Electrolytic solution for an electrochemical capacitor and an electrochemical capacitor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015572A1 (en) 1993-12-03 1995-06-08 Sanyo Chemical Industries, Ltd. Electrolytic solution and electrochemical element prepared therefrom
US20020036884A1 (en) 2000-06-19 2002-03-28 Hideki Shimamoto Electric double layer capacitor, electrolytic solution therefore and method for suppressing self-discharge in electronic component
JP2004207451A (ja) * 2002-12-25 2004-07-22 Sanyo Chem Ind Ltd 電解液
JP2005197666A (ja) 2003-12-10 2005-07-21 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947663A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218384A (ja) * 2007-03-06 2008-09-18 Lg Chem Ltd 高温保存特性に優れたリチウム二次電池用非水系電解液
JP2011171310A (ja) * 2007-03-06 2011-09-01 Lg Chem Ltd 高温保存特性に優れたリチウム二次電池用非水系電解液
JP2009218472A (ja) * 2008-03-12 2009-09-24 Sanyo Chem Ind Ltd 電気化学素子用電解液及びこれを用いた電気化学素子

Also Published As

Publication number Publication date
CN101273423B (zh) 2011-01-26
EP1947663A1 (en) 2008-07-23
US8007680B2 (en) 2011-08-30
TWI409834B (zh) 2013-09-21
EP1947663A4 (en) 2011-03-16
KR100988183B1 (ko) 2010-10-18
JPWO2007037337A1 (ja) 2009-04-09
US20090289211A1 (en) 2009-11-26
CN101273423A (zh) 2008-09-24
KR20080072640A (ko) 2008-08-06
TW200713365A (en) 2007-04-01
EP1947663B1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2007037337A1 (ja) 電気化学素子用電解液及びこれを用いた電気化学素子
JP4804488B2 (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
EP2141712A1 (en) Electrolyte, and electrolyte solution or electrochemical element comprising the same
JP2012074528A (ja) 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
JP2004221557A (ja) 電解液
JP2007335536A (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2005197665A (ja) 電気化学キャパシタ用電解液及び電気化学キャパシタ
JP5096906B2 (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2005197666A (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2006156728A (ja) 電気化学キャパシタ用電解液及び電気化学キャパシタ
JP5275011B2 (ja) 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP5101260B2 (ja) 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP5086903B2 (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP5116654B2 (ja) 第4級アンモニウム塩電解質を用いた電解液および電気化学素子
JP4902998B2 (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP4997151B2 (ja) 電気化学素子用電解液及びこれを用いた電気化学素子
JP2008277464A (ja) 第4級アンモニウム塩電解質とそれを用いた電解液および電気化学素子
JP2008042042A (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2008034600A (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2011155093A (ja) 電解液およびそれを用いた電気化学素子
JP2009283643A (ja) 電解質、これを用いた電解液および電気化学素子
JP2008016757A (ja) 電気化学キャパシタ用電解液及びこれを用いた電気化学キャパシタ
JP2013206893A (ja) 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
JP2008270643A (ja) 第4級アンモニウム塩電解質とそれを用いた電解液および電気化学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035840.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537684

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088818

Country of ref document: US