WO2007034647A1 - 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置 - Google Patents

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2007034647A1
WO2007034647A1 PCT/JP2006/316566 JP2006316566W WO2007034647A1 WO 2007034647 A1 WO2007034647 A1 WO 2007034647A1 JP 2006316566 W JP2006316566 W JP 2006316566W WO 2007034647 A1 WO2007034647 A1 WO 2007034647A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electrode
forming
substrate
Prior art date
Application number
PCT/JP2006/316566
Other languages
English (en)
French (fr)
Inventor
Yousuke Takashima
Keiichi Aoki
Kiyokazu Tanahashi
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to US12/066,724 priority Critical patent/US8574661B2/en
Priority to JP2007536424A priority patent/JPWO2007034647A1/ja
Publication of WO2007034647A1 publication Critical patent/WO2007034647A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an organic electoluminescence (EL) element, and in particular, forms a plurality of elements on a large-area substrate at once, and forms an external connection terminal in the case of multi-sided processing.
  • the present invention relates to ensuring the appearance of the external connection terminal forming portion.
  • organic electroluminescence (EL) elements for display devices such as flat displays, light sources such as electrophotographic copying machines and printers has been studied.
  • an anode made of a transparent conductive film such as ITO (Indium tin oxide) is provided on a transparent substrate 1 such as a glass substrate, and an organic layer made of a hole transport layer and a light emitting layer is formed on the anode.
  • the cathode is made of aluminum and is formed in this order in the form of stripes that intersect and form stripes.
  • An anode and a cathode are provided at the periphery of the pixel portion where the organic EL elements are arranged in a matrix.
  • a cathode-side extraction electrode and a cathode-side extraction electrode for connection to an external circuit or an internal drive circuit are formed.
  • the organic EL element is a pixel at each intersection of the anode and the cathode, and a voltage is applied to each organic EL element so that electrons from the cathode cover and holes from the anode cover to the organic layer respectively. It is known that light is emitted by recombination of electrons and holes in the organic layer.
  • An organic EL device is a current-driven light-emitting device that emits light when a very thin thin film of a fluorescent organic compound is sandwiched between an anode and a cathode and a current flows. Normally, the organic substance is an insulator, but by making the organic layer very thin, current can be injected and it can be driven as an organic EL element. It can be driven at a low voltage of 10V or less, and it is possible to obtain highly efficient light emission.
  • phosphorescent dopants used in phosphorescent organic EL devices are difficult to introduce into a device by vapor deposition of a plurality of dopants having a large area and unevenness, which is difficult in terms of cost and technology. I must say.
  • high molecular weight materials can employ wet processes such as extrusion coating, dip coating, spin coating, ink jetting, and printing.
  • wet processes such as extrusion coating, dip coating, spin coating, ink jetting, and printing.
  • it since it can be manufactured under atmospheric pressure, there is an advantage that the cost can be reduced.
  • it since it is prepared in a solution and made into a thin film, it has a feature that the adjustment of dopants is difficult to cause unevenness even in a large area. This can be said to be very advantageous in terms of cost and manufacturing technology for lighting applications of organic EL elements.
  • an organic layer such as a hole transport layer or a light-emitting layer
  • an organic layer is formed on the entire surface of the substrate, so that the outside of the anode patterned and formed on the substrate in advance.
  • a film is also formed on a portion that becomes a partial electrode extraction portion.
  • the organic layer is basically an insulator, so if there is an organic layer at the electrical contact, it will cause a conduction failure. For this reason, when organic layers such as a hole transport layer and a light-emitting layer are produced by a coating method, methods for preventing film formation on the external connection terminal forming portion for forming the external connection terminal have been studied. Came.
  • an organic layer is formed by a coating method, and the organic layer formed on the non-light emitting portion outside the liquid repellent portion is used as a solvent. Wipe off with A method of manufacturing an organic EL display device is known (for example, see Patent Document 1).
  • Patent Document 1 has the following drawbacks. 1) The liquid repellent part must be formed in all the parts forming the light emitting part, and when a plurality of organic EL elements are formed on the substrate, it is expected that the production efficiency is extremely lowered. In particular, when the substrate is a flexible support having a wide band shape and it is continuously produced, a decrease in production efficiency is expected. 2) The unnecessary organic layer is wiped off with a solvent, but when multiple organic EL elements are formed on the substrate, it is considered difficult to uniformly remove the unnecessary organic layer on all the organic EL elements. And there is a risk of variations in performance. 3) Especially when the substrate is a flexible support with a wide band and multiple organic EL devices are produced continuously, it takes time to uniformly remove the organic layer, and a decrease in production efficiency is expected. .
  • a partition for isolating and forming the electrode layer in the display region is prepared, and after the organic light emitting layer material is applied and cured in the partition, the organic layer formed outside the display region outside the partition is dried.
  • a method of selectively removing by pinching is known (see, for example, Patent Document 2).
  • Patent Document 2 has the following drawbacks. 1) A partition wall must be formed in every part where the light emitting part is formed, and when a plurality of organic EL elements are formed on the substrate, it is expected that the production efficiency is extremely lowered. In particular, when the substrate is a flexible support having a wide band shape and it is continuously produced, a decrease in production efficiency is expected. 2) Although unnecessary organic layers are removed by dry etching, when multiple organic EL elements are formed on a substrate, it is difficult to uniformly remove unnecessary organic layers on all organic EL elements. There is a risk that the performance may vary. 3) Particularly when the substrate is a flexible support having a wide band shape and a plurality of organic EL elements are continuously produced, it takes time to uniformly remove the organic layer, and a decrease in production efficiency is expected.
  • an organic EL element having a plurality of organic EL elements on a substrate having at least a first electrode, one or more organic compound layers, a second electrode, and a sealing layer is applied. It is easy to secure the external connection terminal forming part that forms the external connection terminal, and the production method of the organic EL element with high production efficiency and stable performance quality and organic EL Development of a display device is desired.
  • Patent Document 1 JP 2004-152512 A
  • Patent Document 2 JP 2005-158388 A
  • the present invention has been made in view of the above situation, and an object thereof is an organic EL having at least a first electrode, one or more organic compound layers, a second electrode, and a sealing layer.
  • an organic EL element having at least a first electrode, one or more organic compound layers, a second electrode, and a sealing layer.
  • At least one organic elect opening having at least a first electrode (anode layer), at least one organic compound layer, a second electrode (cathode layer), and a sealing layer on a substrate.
  • a masking member is bonded to a masking member having an adhesive strength of lNZ25 mm to 1 ONZ25 mm in the formation prohibition region of the organic compound layer on the substrate.
  • a method for producing an organic electoluminescence device comprising: a combining step; an organic compound layer forming step for forming the organic compound layer on the substrate; and a masking member peeling step for peeling the masking member. .
  • An organic elect port having at least one organic elect port luminescence element having at least a first electrode, at least one organic compound layer, a second electrode, and a sealing layer on a substrate According to the method for manufacturing a luminescence element, after forming the first electrode on the substrate, the formation prohibition region of the organic compound layer on the substrate is covered with a masking member having an adhesive force of lNZ25 mm to 10NZ25 mm, and After forming the organic compound layer on the entire surface of the substrate, the second electrode and the sealing layer are formed, and then the masking A method for producing an organic electoluminescence device, comprising peeling off a member.
  • a manufacturing apparatus having a step of sequentially forming at least a first electrode layer, an organic compound layer including a light emitting layer, a second electrode layer, and a sealing layer on a substrate, Organic electroluminescent device that manufactures at least one organic electroluminescent device in which at least the first electrode layer, the organic compound layer, the second electrode layer, and the sealing layer are sequentially stacked on a substrate.
  • the step of forming the organic compound layer has an adhesive force of 1NZ25mn in the formation prohibition region of the organic compound layer on the substrate.
  • the substrate is a belt-like flexible substrate, and a roll-like belt-like flexible substrate having a belt-like flexible substrate around the belt-like flexible substrate as a winding tool shape can be used in the process of feeding.
  • the masking member is supplied online, and the masking member is bonded and 10.
  • an organic EL element having a plurality of organic EL elements having at least a first electrode, one or more organic compound layers, a second electrode, and a sealing layer on a substrate by a coating method It is possible to provide a method for manufacturing an organic EL element and an organic EL display device, in which it is easy to secure the external connection terminal forming portion for forming the external connection terminal, the production efficiency is high, and the performance quality is stable. Mass production of organic EL elements and organic EL display devices has become easier.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of an organic EL element.
  • FIG. 2 is a schematic view showing an example of a production apparatus for producing an organic EL element.
  • FIG. 3 is a schematic view showing another example of a process for producing an organic EL element.
  • FIG. 4 is an enlarged schematic view of a portion indicated by S in FIG.
  • FIG. 5 is an enlarged schematic view of a portion indicated by U in FIG.
  • FIG. 6 is an enlarged schematic view of the sealing member bonding portion shown in FIG.
  • FIG. 7 is an enlarged schematic perspective view of the punched and cut portion shown in FIG.
  • FIG. 8 is an enlarged schematic view of a portion indicated by V in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of an organic EL element.
  • Fig. 1 (a) shows the sealing film
  • FIG. 3 is a schematic cross-sectional view showing a constituent layer of an organic EL element in which is formed.
  • FIG. 1 (b) is a schematic cross-sectional view showing the constituent layers of the organic EL element formed by adhering a sealing member via an adhesive.
  • the layer structure of the organic EL element shown in Fig. 1 (a) will be described.
  • la indicates the organic EL element.
  • the organic EL element la has an anode layer 102, a hole transport layer 103, an organic compound layer (light emitting layer) 104, an electron injection layer 105, a cathode layer 106, and a sealing layer 107 on a substrate 101. In this order.
  • lb represents an organic EL device.
  • the organic EL element lb is bonded to the base material 101 with the anode 102, the hole transport layer (hole injection layer) 103, the organic compound layer (light emitting layer) 104, the electron injection layer 105, and the cathode 106.
  • the agent layer 108 and the sealing member 109 are provided in this order.
  • a hole injection layer (not shown) may be provided between the anode 102 and the hole transport layer 103.
  • an electron transport layer (not shown) may be provided between the cathode 106, the organic compound layer (light emitting layer) 104, and the electron injection layer 105.
  • a gas noria film (not shown) may be provided between the anode 102 and the substrate 101.
  • the present invention relates to a method for forming the organic compound layer (light emitting layer) 104 and the organic compound layer (hole transporting layer) 103 shown in the figure, the formed organic compound layer (light emitting layer) 104, the organic compound Electron injection layer 105 on the layer (hole transport layer) 103, the cathode 106, the organic EL element la in which the sealing film 107 is formed, and the electron injection on the formed organic compound layer (light emitting layer) 104
  • the present invention relates to a method for producing an organic EL element lb in which a sealing member 109 is bonded via a layer 105, a cathode 106, and an adhesive layer 108, and an organic EL element produced by these production methods.
  • the layer structure of the organic EL element shown in this figure is an example, but the following structure can be given as a layer structure of another typical organic EL element.
  • FIG. 2 is a schematic view showing an example of a production apparatus for producing an organic EL element.
  • the gas barrier layer and the first electrode already formed on the belt-like flexible support are used, the gas barrier layer and the first electrode forming step are omitted.
  • the description of the manufacturing apparatus shown in this figure is an example of an organic EL device, in which a gas nolia layer, a first electrode, a hole transport layer, a light emitting layer, an electron injection layer, a second electrode, a sealing are provided on a belt-like flexible support. This is done in the case of organic EL elements formed in the order of the stop layers.
  • 2a represents the manufacture of an organic EL element in which an organic compound layer, which is one of the constituent layers of the organic EL element, is formed by a wet coating method and a sealing layer is formed by bonding a sealing member Indicates a device.
  • the manufacturing apparatus 2a includes a forming step 3 for forming an organic compound layer, a second electrode (cathode layer) forming step 4, and a sealing layer forming step 5.
  • the forming step 3 for forming the organic compound part layer includes the step 3a for supplying the strip-shaped flexible support, the masking member bonding step 3b, and the first organic compound part layer forming step (first coating and drying). Step) 3c, second organic compound layer forming step (second coating / drying step) 3d, masking member peeling step 3e, and first recovery step 3f.
  • the supply process 3a includes a feeding process 3al and a surface treatment process 3a2.
  • the belt-like flexible support 7 in which the gas noria film and the anode layer including the first electrode are already formed in this order is wound around the winding core and supplied in a roll state.
  • Yes. 7 a represents the former roll of the belt-like flexible support 7.
  • the surface treatment step 3a2 includes a cleaning surface modification treatment device 3a21 and a first antistatic means 3a22.
  • the cleaning surface modification treatment device 3a21 is a first electrode of the strip-shaped flexible support 7 sent from the supply step 3al before applying the organic compound layer forming coating solution (hole transport layer forming coating solution).
  • the surface is cleaned and reformed, and the first antistatic means 3a22 has a non-contact type antistatic device and a contact type antistatic device.
  • the first antistatic means removes the charge of the base material, and prevents adhesion of dust and insulation breakdown when applying the coating solution for forming the organic compound layer (coating solution for forming the hole transport layer). The yield of the element can be improved.
  • the masking member bonding step 3b is performed in order to bond the masking member to the formation prohibition region of the organic compound layer of the band-shaped flexible support 7 where the first electrode (not shown) is formed! The organic compound layer is easily formed on the belt-like flexible support 7 by pasting the masking member 8.
  • the masking member bonding step 3b will be described in detail in FIG.
  • the first organic compound layer forming step (first coating and drying step) 3c includes a backup roll 3cl that holds the strip-shaped flexible support 7 and a strip-shaped flexible support that is held by the knock-up roll 3cl.
  • a first drying device 3c3 for removing the solvent, a first heat treatment device 3c4 for heating the hole transport layer a from which the solvent has been removed, and a second antistatic means 3c5 are provided.
  • the coating liquid for forming a hole transport layer by the first wet coater 3c2 is applied to the entire surface of the strip-shaped flexible support 7 including the masking member bonded to the strip-shaped flexible support 7.
  • Second organic compound layer forming step (second coating / drying step) 3d includes a backup roll 3dl that holds the belt-like flexible support 7 and a belt-like flexible support that is held by the backup roll 3dl.
  • the coating solution for forming the light emitting layer by the second wet coater 3d2 is applied to the entire surface of the hole transport layer a on the strip-shaped flexible support 7.
  • the second antistatic means 3c5 and the third antistatic means 3d5 preferably have the same configuration as the first antistatic means 3a22.
  • the masking member peeling step 3e has a peeling roll 3el, and the masking member 8 bonded to the belt-like flexible support 7 can be peeled and collected.
  • the masking member peeling step 3e will be described in detail with reference to FIG.
  • the strip-shaped flexible support 7 (the gas barrier film, the first electrode, the hole transport layer, and the light emitting layer are in this state) with the masking member 8 peeled off in the masking member peeling step 3e.
  • the state formed by the number is wound up and collected as a roll-like belt-like flexible support 7a
  • the second electrode (cathode layer) forming step 4 includes a supplying step 401, an electron injection layer forming step 402, a second electrode forming step 403, and a second recovery step 404.
  • the strip-shaped flexible support 7a produced in the previous step is fed out and supplied to the electron injection layer forming step 402.
  • the electron injection layer c is formed on the light emitting layer b.
  • the electron injection layer is not deposited on the external lead terminal forming portion of the first electrode, but is deposited through a mask.
  • 402a represents a vapor deposition apparatus
  • 402b represents an evaporation source container.
  • the belt-like flexible support 7 on which the electron injection layer c is formed is continuously sent to the second electrode forming step 403.
  • the second electrode d is formed on the electron injection layer c formed in the electron injection layer formation step 402 in a state orthogonal to the first electrode.
  • vapor deposition is performed through a mask so that the component for forming the second electrode is not deposited on the external lead terminal forming portion of the first electrode.
  • Reference numeral 403a denotes a vapor deposition apparatus
  • 403b denotes an evaporation source container.
  • the belt-like flexible support on which the second electrode d is formed is sent to the encapsulating layer forming step 5 in the next step, and is wound up in the second recovery step and collected as a roll-like belt-like flexible support 7b.
  • the gas noria film, the first electrode, the hole transport layer, the light emitting layer, the electron injection layer, and the second electrode are formed on the flexible support 7 in this order.
  • the sealing layer forming step 5 includes a strip-like flexible support 7b including the second electrode formed on the strip-like flexible support 7b, a sealing member bonding step 502, a punching and cutting step 503, have.
  • the belt-like flexible support supply step 501 the belt-like flexible support 7 b produced in the previous step is fed out and supplied to the sealing member bonding step 502.
  • the sealing member bonding step 502 includes an adhesive application step 502a for applying an adhesive to the light emitting region on or around the light emitting region on the belt-like flexible support 7b, and a sealing member supplying step 502b. ing.
  • Adhesive application step 502a After the adhesive is applied, the sealing member 502bl is overlapped over the entire width of the band-shaped flexible support 7b, and is pasted on the band-shaped flexible support 7b via the pressure roll 502c. And cured in a bonding process of 502d. After the curing process is performed, it is sent to the punching and cutting step 503, and the excess sealing member is removed by the punching and cutting device 503a. At this stage, the gas barrier film, the first electrode, the hole transport layer, the light emitting layer, the electron injection layer, the second electrode, It is recovered as a roll-like strip-like flexible support 7c having a plurality of organic EL elements in which a sealing layer is formed in this order.
  • 502bl l shows a sealing member of an unnecessary part (extracted dregs) by removing the part pasted on the belt-like flexible support, and it is wound up and removed.
  • the collected roll-like flexible support 7c is cut into individual organic EL elements in the cutting step 11 shown in FIG.
  • the punching and cutting step 503 will be described with reference to FIG.
  • the method of applying the adhesive is not particularly limited, and examples thereof include a method used for applying an ordinary adhesive such as a spray method, an extrusion nozzle method, and a silk method.
  • the adhesive according to the present invention include photocuring and thermosetting sealing agents having reactive beer groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing type sealing agents such as 2 cyanoacrylates.
  • the heat- and epoxy-based sealant two-component mixture
  • FIG. 3 is a schematic view showing another example of a process for producing an organic EL element.
  • the formation process 3 for forming the organic compound layer shown in this figure is the same as the organic compound layer formation process shown in FIG.
  • 2b represents a manufacturing apparatus for producing an organic EL element.
  • the manufacturing apparatus 2b includes a formation process 3 for forming an organic compound layer (the same as the formation process 3 for forming an organic compound layer shown in FIG. 2), a second electrode (cathode layer) formation process 9, and a sealing layer formation. It has process 10 and cutting process 11
  • the second electrode (cathode layer) forming step 9 includes a supplying step 901, an electron injection layer forming step 902, and a second electrode forming step 903.
  • the supply step 901 the strip-shaped flexible support 7a produced in the previous step is fed out and supplied to the electron injection layer forming step 902.
  • the electron injection layer forming step 902 the electron injection layer c is formed on the light emitting layer b.
  • vapor deposition is performed through a mask so that the electron injection layer is not deposited on the external extraction terminal forming portion of the first electrode.
  • Reference numeral 902a denotes a vapor deposition apparatus, and 902b denotes an evaporation source container.
  • the strip-shaped flexible support 7 on which the electron injection layer c is formed is subsequently sent to the second electrode forming step 903.
  • the electron injection layer c formed in the electron injection layer formation step 902 A second electrode d is formed on the top in a state orthogonal to the first electrode.
  • vapor deposition is performed through a mask so that the component for forming the second electrode is not deposited on the external lead terminal forming portion of the first electrode.
  • Reference numeral 903a denotes a vapor deposition apparatus
  • reference numeral 903b denotes an evaporation source container.
  • the belt-like flexible support on which the second electrode d is formed is subsequently sent to the sealing layer forming step 10 of the next step.
  • a sealing layer is formed on the second electrode except for the external connection terminal forming portion that forms the external connection terminal of the formed second electrode.
  • a plurality of organic layers in which a gas barrier film, a first electrode, a hole transport layer, a light emitting layer, an electron injection layer, a second electrode, and a sealing layer are formed in this order on the flexible support 7 are provided.
  • An organic EL device is produced with the EL devices continuously formed. After the sealing layer is formed, it is subsequently sent to the cutting step 11 in order to separate the plurality of organic EL elements formed on the flexible support 7 independently.
  • the cutting step 11 includes a slitter 11a having an upper blade and a lower blade, and a cutting machine l ib, and separates a plurality of organic EL elements formed on the strip-shaped flexible support 7 independently. This completes the fabrication of the organic EL device shown in Fig. 1 (a). The cutting step 11 will be described with reference to FIG. The other symbols are the same as in FIG.
  • Specific examples of the cleaning surface modification treatment used in the organic compound layer forming step of the manufacturing apparatus for producing the organic EL element shown in Figs. 2 and 3 include, for example, a low-pressure mercury lamp, an excimer lamp, It is preferable to use a plasma cleaning device or the like.
  • the conditions for cleaning surface modification with a low-pressure mercury lamp are, for example, conditions in which a low-pressure mercury lamp with a wavelength of 184.2 nm is irradiated at an irradiation intensity of 5 mWZcm 2 to 20 mWZcm 2 at a distance of 5 mm to 15 mm to perform cleaning surface modification. Is mentioned.
  • atmospheric pressure plasma is preferably used as the condition for the cleaning surface modification treatment by the plasma cleaning apparatus.
  • cleaning conditions argon gas containing 1 to 5% by volume of oxygen is used, frequency is 100KHz to 150MHz, voltage is 10V to 10KV, and irradiation distance is 5mn!
  • the condition for cleaning surface modification treatment at ⁇ 20mm is mentioned.
  • Examples of the non-contact type antistatic device used as the antistatic means used in the manufacturing apparatus for producing the organic EL element shown in Figs. 2 and 3 include a non-contact type ionizer. There are no restrictions on the type of ion generation method. Either method or DC method can be used. Force that can be used with AC type, double DC type, pulsed AC type, and soft X-ray type Especially from the viewpoint of precision static elimination, AC type is preferred. Air or N is used for the injection gas required for AC type use.
  • N having sufficiently high purity. Also, from the perspective of doing inline,
  • a static elimination roll or a conductive brush connected to the ground is used as the contact-type static elimination preventing device.
  • the static elimination roll as the static eliminator is grounded and removes the surface charge by rotatingly contacting the static neutralized surface.
  • Such static elimination rolls are made of elastic plastic or rubber mixed with metal rolls such as aluminum, copper, nickel, and stainless steel, and conductive materials such as carbon black, metal powder, and metal fibers. The role is used. In particular, an elastic material is preferable in order to improve contact with the belt-like flexible continuous sheet.
  • the conductive brush connected to the earth generally include a brush member made of conductive fibers arranged in a linear shape, and a static elimination bar having a linear metal brush or a static elimination yarn structure.
  • the neutralization bar is not particularly limited, but a corona discharge type is preferably used. For example, SJ-B manufactured by Keyence Corporation is used.
  • the neutralizing yarn is not particularly limited, but a flexible yarn is usually preferably used.
  • the non-contact type antistatic device is preferably used on the first electrode surface side on the belt-like flexible support, and the contact-type antistatic device is preferably used on the back surface side of the belt-like flexible support.
  • FIG. 4 is an enlarged schematic view of a portion indicated by S in FIG.
  • FIG. 4 (a) is an enlarged schematic perspective view of the masking member bonding step indicated by S in FIG.
  • FIG. 4 (b) is a schematic enlarged plan view of the portion indicated by the ditch in FIG. 4 (a).
  • reference numerals 7-1 to 7-3 denote rows of the first electrodes formed on the strip-shaped flexible support 7.
  • 3b shows a masking member bonding process.
  • Masking member pasting step 3b is a masking member supplying step 3bl for supplying the masking member 8 in the form of a winding roll to the core, and a masking member is pasted to the organic compound layer formation prohibition region of the belt-like flexible support 7
  • a crimping step 3b2 having a crimping roll 3b21 and a receiving roll 3b22.
  • the pressure (surface pressure) when the band-shaped flexible support 7 and the masking member are pressure-bonded between the pressure roll 3b21 and the receiving roll 3b22 forms the first electrode (anode layer).
  • Transparent In consideration of the strength of the electromembrane, etc., 0.01 MPa to 0.5 MPa is preferable.
  • the adhesive strength of the masking member used is lNZ25mm to 10NZ25mm, and 3NZ25mm to 8NZ25 is particularly preferable. The value measured in accordance with the adhesive strength test and IS Z-0237 adhesive tape test method.
  • the adhesive strength is less than 25 mm, it will peel off while the organic compound layer is being applied! Danger of the organic compound layer forming coating liquid being applied to areas where organic compound layer formation is prohibited This is not preferable. If it exceeds 10NZ25mm, you don't want to peel it off when peeled! / It is preferable because there is a risk of peeling to the organic film on the effective pixel electrode.
  • the masking member is not particularly limited, for example: 1) a masking member provided with an adhesive (adhesive) on the substrate and the back surface, 2) a masking member provided with a sealant layer on the substrate and the back surface, 3) heat Examples thereof include a plastic resin film alone.
  • thermoplastic resin film used in the above can be used.
  • a multilayer film made by co-extrusion with a different film, a multilayer film made by laminating at different stretching angles, etc. can be used as needed. Furthermore, it is naturally possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties.
  • the adhesive is not particularly limited, and for example, acrylic, silicone, rubber, etc. can be used, and an organic compound layer (hole transport layer, light emitting layer) applied on the masking member. ) It can be appropriately selected depending on the coating solution solvent used for the forming coating solution.
  • thermoplastic resin film having a melt flow rate specified in JIS K 7210 of 5 gZl0min to 20 gZlOmin is preferable, and more preferably a thermoplastic resin film having 6 gZl0min to 15 g / 10 min is used. I prefer it.
  • the thermoplastic resin film is not particularly limited as long as it satisfies the above numerical values. For example, it is a polymer film described in Toray Research Center, Inc., a new development of functional packaging materials.
  • Low density polyethylene LDPE
  • HDPE linear low density polyethylene
  • LLDPE linear low density polyethylene
  • CPP unstretched polypropylene
  • OPP ONy
  • PET cellophane
  • PVA polyvinyl alcohol
  • OV expanded vinylon
  • ethylene propylene copolymer ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, salt vinylidene (PVDC) and the like
  • thermoplastic resin films it is particularly preferable to use LDPE, LLDPE produced by using LDPE, LLDPE, and a meta-catacene catalyst, or a film using a mixture of these films and HDPE films.
  • thermoplastic resin film used when the thermoplastic resin film is used alone examples include the thermoplastic resin film used for the sealant layer.
  • FIG. 7 shows a case where four masking members 8a to 8d are used.
  • the formation prohibition region of the organic compound layer of the strip-shaped flexible support 7 is defined as 7-3 rows of the first electrode end and the strip-shaped flexible support 7 left end, 7-2 rows. Between 7-2 rows and 7-3 rows, including 7-1 rows, including 7-1 rows, between 7-1 rows and 7-2 rows, and 7-1 rows of first electrode ends
  • the right end portion of the flexible support 7 corresponds to the portion and the belt-like shape.
  • the strip-shaped flexible support 7 in which the first electrodes are continuously formed in three rows is supplied from the previous step.
  • Each masking member 8a to 8d is arranged in the masking member supply step 3b 1 corresponding to each row 7-1 to 7-3 of the first electrode formed on the belt-like flexible support 7.
  • the organic compound layer of the strip-shaped flexible support 7 is fed out in the traveling direction of the strip-shaped flexible support 7 (in the direction of the arrow in the figure) at the same speed as the transport speed of the strip-shaped flexible support 7. It is possible to bond a masking member to the formation prohibited area.
  • the masking member 8a has 7-3 rows of first electrode ends and the left end of the strip-shaped flexible support 7, and the masking member 8b has 7-2 rows of 7-2 rows.
  • masking member 8c includes 7–1 row ends 7– Between 1–7 and 2–2 rows, masking member 8d is 7–1 row of first electrode ends A state is shown in which the film and the belt-like flexible support 7 are continuously bonded to the right end of the belt-like flexible support 7 in accordance with the conveyance speed of the belt-like flexible support 7. The end of the first electrode in each row covered by the masking member is the portion that finally becomes the terminal for external extraction.
  • Reference numeral 7d denotes an alignment mark attached to each block of the first electrode in the 7-1 row.
  • 7e indicates the alignment mark attached to each block of the first electrode in the second row.
  • 7f shows the alignment mark attached to each block of the 1st electrode in 7-3 rows. Alignment marks 7d to 7f attached to the blocks of these first electrodes are formed with a sealing layer, and after the organic EL elements are fabricated on the strip-shaped flexible support 7, the organic EL elements are individually separated. Used for alignment when cutting to separate.
  • FIG. 5 is an enlarged schematic view of a portion indicated by U in FIG.
  • FIG. 5A is an enlarged schematic perspective view of the masking member peeling step indicated by U in FIG.
  • FIG. 5 (b) is a schematic cross-sectional view taken along the line A- of FIG. 5 (a).
  • the hole transport layer and light emission are formed on the entire surface including each masking member 8a to 8d bonded to the formation prohibition region of the organic compound layer of the band-shaped flexible support 7 in the previous step.
  • the masking members 8a to 8d are peeled off from the belt-like flexible support 7 in a state where layers are sequentially formed.
  • Fig. 5 (b) illustrates the state where the masking member is peeled off.
  • 701 denotes a Gasunoria film
  • 7 Rei_2 indicates a first electrode
  • 7_Rei 3 shows the hole transport layer
  • 704 denotes a light-emitting layer.
  • 702a shows the end of the first electrode that appears by peeling off the masking member bonded to the end of the first electrode, which is a region where organic compound layer formation is prohibited, and finally forms an external connection terminal This is the external connection terminal forming part.
  • the other symbols have the same meanings as in Figs.
  • FIG. 6 is an enlarged schematic view of the sealing member bonding step shown in FIG. FIG. 6 (a) is an enlarged schematic perspective view of the sealing member bonding step shown in FIG. FIG. 6 (b) is a schematic cross-sectional view of FIG. 6 (a).
  • the sealing member bonding step 502 includes an alignment mark detection step 502e for detecting alignment marks 7d to 7f arranged in accordance with the positions of the organic EL elements formed on the belt-like flexible support 7b.
  • the sealing agent coating process 502a for applying a sealing agent in accordance with the position of the organic EL element, the strip-shaped flexible sealing member 502bl supply process 502b, and the strip-shaped flexible sealing member 502bl are bonded together.
  • a pasting step 502d In the supplying step 502b, a roll-shaped flexible sealing member 502b2 is supplied and a strip-shaped flexible sealing member 502bl is fed out!
  • the alignment mark detection process 502e is an alignment mark detection device 502el.
  • the alignment mark detection device 502el is arranged in accordance with the positions of the alignment marks 7d to 7f previously arranged on the belt-like flexible support 7b. Information detected by the alignment mark detection device 502el is input to a control step (not shown), and the sealant coating device 502al in the sealant coating step 502a is controlled.
  • the alignment mark detection device 5002el is not particularly limited. For example, image recognition using a CCD camera can be used.
  • the sealant coating process 502a is a sealant coating apparatus 502al and a sealant coating apparatus for coating the organic EL element with a sealant on or around the light emitting area according to information from the alignment mark detecting process 502e And a housing 502a2 in which 502al is disposed.
  • the number of the sealing agent coating device 502al is not particularly limited, but it is preferable to arrange the sealing agent coating device 502al according to the number of organic EL elements disposed in the width direction of the strip-shaped flexible support 7b. This figure shows the case where three sealant coating devices 502al are installed according to the number of organic EL elements.
  • the housing 502a2 can be moved in the XY direction (arrow direction in the figure) by a driving device (not shown).
  • the laminating step 502d has a roll 502d2 that contacts the main body 502dl and the flexible support, and a flexible sealing rod 502b: a lawn and a hornet 502d3, and a lawn 502d2 and a ronore 502d3.
  • the flexible sealing member is bonded by pressing and sandwiching the belt-like flexible support 7c on which the organic EL element is formed and the flexible sealing member 502bl.
  • the width of the flexible sealing member 502 bl is preferably the same as the width of the belt-like flexible support 7 b.
  • the other symbols have the same meaning as in FIG. In this figure, the supply system of the sealant to the sealant coating apparatus 502al is omitted.
  • Bonding on the cathode layer including the second electrode through the sealing agent of the flexible sealing member 502bl is 10 Pa to l X 10 in consideration of the exclusion of oxygen and moisture, mixing of bubbles into the bonding part, etc. "It is preferably performed in a reduced pressure condition of 5 Pa and in an environment having an oxygen concentration of 10 ppm or less and a water concentration of 10 ppm or less.
  • the method of applying the sealant is not particularly limited, and examples thereof include methods used for applying an ordinary adhesive such as a spray method, an extrusion nozzle method, a screen printing method, and a silk method.
  • the viscosity of the sealant used is preferably 40 Pa ′s to 400 Pa ′s in consideration of coating uniformity and prevention of spread of spread.
  • Examples of the liquid sealing agent according to the present invention include photocuring and thermosetting sealing agents having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curable types such as 2-cyanoacrylates.
  • Sealing agents such as heat- and chemical-curing agents (two-component mixture) such as epoxy-based materials, and cationic-curing type UV-curable epoxy resin sealants. It is preferable to add a filler to the liquid sealant as necessary.
  • the amount of filler added is preferably 5% by volume to 70% by volume in consideration of adhesive strength.
  • the size of the filler to be added is preferably from: m to LOO m in consideration of the adhesive strength, the thickness of the sealant after bonding and bonding, and the like.
  • the type of filler to be added is not particularly limited, for example, soda glass, alkali-free glass, or metal oxides such as silica, titanium dioxide, antimony oxide, titanium, alumina, zirconium oxide and tungsten oxide. It is done.
  • FIG. 7 is an enlarged schematic perspective view of the punching and cutting step shown in FIG.
  • reference numeral 503b denotes an alignment mark detection step for detecting the alignment marks 7d to 7f previously attached to the belt-like flexible support.
  • the alignment mark detection step 503b includes an alignment mark detection device 503bl and a housing 503b2 in which the alignment mark detection device 503bl is disposed.
  • the alignment mark detection device 503bl is not particularly limited. For example, an image recognition means using a CCD camera can be used. Information detected by the alignment mark detection device 503bl is input to a control step (not shown) to control the punching and cutting device 503a.
  • the punching / cutting device 503a is formed of an upper die 503a2 provided with a punching blade 503al for punching an unnecessary portion of a flexible sealing member 502b bonded on a belt-like flexible support, and an upper die 503a2 in the vertical direction ( It has four guide posts 503a4 that enable operation in the direction of the arrow in the figure, and a mounting surface 503a5 (also serving as a receiving part for the punching blade 503al) on which the belt-like flexible support is placed It has a lower mold 503a6. 503a6 indicates a drive source that moves the upper mold 503a2 in the vertical direction (arrow direction in the figure).
  • the number of punching blades 503al can be appropriately selected from the number of organic EL elements formed on the belt-like flexible support, the number of punching at a time, the size of the punching and cutting device 503a, and the like. This figure shows the case where the number of punches at one time is six.
  • Punching and cutting device 503a is a half-cut method because it punches only unnecessary parts of the sealing member 502b. It is. The unnecessary part of the sealing member 502bl can be punched by moving the upper die 503a2 with the punching blade 503al along the guide post 503a4 and adjusting the bottom dead center of the punching blade 503al. Yes.
  • 502bl l shows a sealing member of an unnecessary portion (extracted dregs) removed from the portion pasted on the belt-like flexible support, and is wound up and removed.
  • the strip-shaped flexible support body in which unnecessary sealing members are removed and a plurality of organic EL elements is formed is wound up and collected as a roll-shaped strip-shaped flexible support body 7c.
  • FIG. 8 is an enlarged schematic view of a portion indicated by V in FIG.
  • FIG. 8A is an enlarged schematic perspective view of the cutting process indicated by V in FIG. Fig. 8 (b) is an enlarged schematic plan view of the portion indicated by W in Fig. 8 (a).
  • FIG. 8 (c) is a schematic cross-sectional view along B in FIG. 8 (b).
  • the cutting step 11 is a step of cutting the plurality of organic EL elements formed on the band-shaped flexible support 7 after the sealing layer is formed, so as to be separated.
  • the organic EL element blocks formed in this order are continuously formed in three rows 7-1 to 7-3.
  • the cutting step 11 includes a slitter 11a, a cutting machine ib, and a recovery step 11c.
  • the slitter 11a has an upper blade l lal attached to the rotating shaft l la2 and a lower blade 1 la4 attached to the rotating shaft l la3. These organic EL elements can be cut into narrow strips for each row 7-1 to 7-3.
  • the upper blade l lal and the lower blade l la4 constitute one set of cutting blades.
  • the arrangement of the upper blade l lal and the lower blade l la4 can be changed as appropriate according to the rows of the plurality of organic EL elements formed on the strip-shaped flexible support 7, and this figure Shown when 4 sets of cutting blades are arranged.
  • the cutting machine l ib has a detection process l lbl and a main body (not shown) having a cutting blade l lb2.
  • the detection process l lbl has a sensor l lbl2 and a housing l lbl3 in which the sensor l lbl2 is disposed.
  • the sensor l lbl2 is arranged in the housing l lbl3 corresponding to each alignment mark 7d to 7f attached on the strip-shaped flexible support 7, and each alignment mark 7c!
  • the cutting blade 1 lb2 is driven according to the detected information of ⁇ 7f, and the strip-shaped flexible support in the state of being cut into narrow strips for each row 7 1-7-7 by the slitter 1 la Individual organic EL devices are produced by cutting each of the cuts and collected in the collection step 11c.
  • a masking member is bonded to the formation prohibition region of the organic compound layer, and peeled after the organic compound layer is formed.
  • the following effects can be obtained by manufacturing an organic EL device by the method of stacking two electrodes and a sealing layer sequentially. 1) By using a re-peelable masking member, it is not necessary to apply a pixel pattern to the organic compound layer, making it possible to produce a roll-to-roll organic EL device with high production efficiency. 2) It is easy to deal with the pixel size of the organic EL elements on the substrate, and it is possible to change the product type in a short time, and to improve the production efficiency.
  • Examples of the strip-shaped support used for the strip-shaped support in which the gas barrier layer and the first electrode according to the present invention are already formed include a transparent resin film.
  • the resin film include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, cenololose diacetate, cenololose triacetate, cenololose acetate butyrate, cenololose acetate propionate, cenololose acetonate.
  • Cellulose esters such as tate phthalate and cellulose nitrate or their derivatives, poly (vinylidene chloride), poly (bull alcohol), polyethylene (b) alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly (methyl pentene), polyether ketone, polyimide , Polyethersulfone (PES), Polyphenylene sulfide, Polysulfones, Polyetherimide, Polyether Ton'imido, polyamide, fluorine ⁇ , nylon, polymethyl methacrylate Tari rates, acrylic or polyarylates, ⁇ chromatography Tap (trade name, manufactured by JSR) or ⁇ ⁇ pel (trade name, manufactured by Mitsui Chemicals) t, cycloolefin-based resin, and the like.
  • PES Polyethersulfone
  • Polyphenylene sulfide Polyphenylene sulfide
  • Polysulfones Polyetherimide
  • the thickness is not particularly limited, but is preferably in the range of 0.05 mm to Lmm in consideration of handling properties, transportability, and the like.
  • the width of the belt-like support is not particularly limited, and can be appropriately selected according to the screen size of the electoluminescence display device to be used.
  • the belt-like support may contain an additive or the like.
  • an electromagnetic wave shielding transparent plate is attached to the front surface of the plasma display panel, near infrared rays generated from the front surface of the panel are absorbed.
  • it may be colored with a colorant such as a dye or a pigment.
  • a gas barrier film is preferably formed on the surface of the resin film used as the belt-like flexible support, if necessary.
  • the gas noble film include an inorganic film, an organic film, or a hybrid film of both.
  • the characteristics of the gas noria membrane are as follows. Water vapor permeability (25 ⁇ 0.5 ° C, relative humidity (9 0 ⁇ 2)% RH) measured by a method based on JIS K 712 9-1992 is 0.01 gZ ( m 2 '24h) or less.
  • the oxygen permeability measured by the method according to JIS K 7 126-1987 ⁇ ⁇ ⁇ (m 2 ⁇ 24hr ⁇ MPa) or less the water vapor transmission rate measured by the method according to JIS K 7129-1992 It is preferable that the film has a high barrier property (degree 25 (0.5 ° C, relative humidity (90 ⁇ 2)% RH)) of 10-3 ⁇ 4Z (m 2 '24h) or less.
  • any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. I can do it.
  • the formation method of the noria film for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma weighting.
  • a method based on an atmospheric pressure plasma polymerization method as described in Japanese Patent Publication No. 4-68143 is particularly preferable.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tinoxide (ITO), Sn02, and ZnO. It is also possible to use an amorphous material such as IDIXO (In203 'ZnO) that can produce a transparent conductive film.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so necessary ( The pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • a hole injection layer (anode buffer layer) may be present.
  • the hole injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission.
  • the organic EL element and its industrial front line June 30, 1998) The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123-166) of “T.S.”.
  • the details of the anode buffer layer are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • Hole transport materials include hole injection or transport, electron barriers Any of organic substances and inorganic substances may be used.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, Examples thereof include hydrazone derivatives, stilbene derivatives, silazane derivatives, terrin copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • a borfilin compound an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N' —tetraphenyl 4,4 ′ —daminophenol; N, N′—diphenyl N, — Bis (3-methylphenol) 1 [1, 1 '— Biphenyl] 1, 4, 4 ′ — Diamine (TPD); 2, 2 Bis (4 di-p-triaminophenol) propane; 1, 1 — Bis (4-di-p-tolylaminophenol) cyclohexane; N, N, N ', N' — Tetra-p-tolyl 4, 4 '— Diaminobiphenyl; 1, 1-bis (4-di-p-tolylaminophenol- )-4 -phenylcyclohexane; bis (4-dimethylamino-2-methylphenol) phenol methane; bis (4-di-trimethylamino) phenol methane; N, N '-diphenyl-N, N '
  • a so-called p-type hole transport material as described in Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light emitting element with higher efficiency can be obtained.
  • the thickness of the hole transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 5 ⁇ m, preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials. It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include those described in JP-A-4 297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), and the like. It is preferable to use a hole transport layer with such a high p property because an organic EL device with lower power consumption can be produced.
  • the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer.
  • the order of stacking the light emitting layers is not particularly limited, and a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a white element can be manufactured by forming a light emitting layer in multiple layers.
  • the total film thickness of the light-emitting layer is not particularly limited, but is usually 2 ⁇ considering the film homogeneity and the voltage required for light emission. ⁇ 5 ⁇ m, preferably 2 ⁇ ! It is chosen in the range of ⁇ 200nm. Further, it is preferably in the range of 10 ⁇ m to 20nm. A film thickness of 20 nm or less is preferable because it has the effect of improving the stability of the emission color with respect to the driving current as well as the voltage aspect.
  • Individual light emitting layer The film thickness is preferably selected in the range of 2 nm to 100 nm, and more preferably in the range of 2 nm to 20 nm.
  • the film thickness relationship of the blue, green, and red light emitting layers is not particularly limited, but it is preferable that the blue light emitting layer (sum of multiple layers) is the thickest among the three light emitting layers.
  • the light emitting layer includes at least three layers having different emission spectra, each having a maximum emission wavelength in the range of 430 nm to 480 nm, 510 nm to 550 nm, and 600 nm to 640 nm. There is no particular limitation as long as it has three or more layers. When there are more than four layers, there may be a plurality of layers having the same emission spectrum.
  • a layer with a maximum emission wavelength of 430 nm to 480 nm is a blue light emitting layer, 510 ⁇ !
  • a layer in the range of ⁇ 550 nm is called a green light emitting layer, and a layer in the range of 600 nm to 640 nm is called a red light emitting layer.
  • a plurality of light emitting compounds may be mixed in each light emitting layer within the range in which the maximum wavelength is maintained.
  • the blue emission layer has a maximum wavelength of 430 ⁇ ! ⁇ 480nm blue luminescent compound, same 510 ⁇ ! ⁇ 550nm green light-emitting compound may be mixed and used
  • Materials used for the light emitting layer are not particularly limited. For example, Toray Research Center Co., Ltd. 1. Latest trends in flat panel displays Current status and latest technological trends in EL displays Various materials such as those described on pages 228-332 It is done.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron injection layer, or the hole transport layer, and the light-emitting portion may be within the layer of the light-emitting layer. It may be an interface between the light emitting layer and the adjacent layer.
  • the hole transport layer forming coating solution and the light emitting layer forming coating solution to be used have at least one organic compound material and at least one solvent, and have repelling during coating, coating unevenness, and the like. considering, it is preferable surface tension of 15 X 10 _3 N / m ⁇ 55 X 10 _3 N / m.
  • the process of forming the hole transport layer and the light-emitting layer which are the constituent layers of the organic EL device shown in this figure, includes maintaining the performance of the hole transport layer and the light-emitting layer, preventing failure defects due to adhesion of foreign matter, etc.
  • measured cleanliness is class 5 or less, and is formed under atmospheric pressure conditions of 10 ° C to 45 ° C except for the drying process. It is preferable to be done.
  • cleanliness of class 5 or less means class 3 to class 5.
  • the electron injection layer is made of a material having a function of transporting electrons, and in a broad sense, transports electrons. Included in the layer.
  • the electron injection layer is a layer that is provided between the electrode and the organic layer in order to lower the drive voltage and improve the light emission luminance. “The organic EL element and its forefront of industrialization (November 30, 1998, NTT) It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123-166) of “issued by S Corporation”. The details of the electron injection layer (one cathode buffer layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium or aluminum is used.
  • the buffer layer is preferably a very thin film.
  • the film thickness is preferably in the range of 0.1 nm to 5 m.
  • an electron transport material also serving as a hole blocking material
  • it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any one of conventionally known compounds can be selected and used.
  • nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiobilanoxide derivatives, carpositimide, fluorenylidenemethane derivatives, Anthraquinodimethane, anthrone derivatives, oxadiazole derivatives and the like can be mentioned.
  • a thiadiazole derivative in which the oxygen atom of the oxaziazole ring is replaced with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. I can do it.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-jib mouthpiece) 8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine, or the terminal of them is an alkyl group or a sulfonic acid group.
  • the substituted one can be preferably used as an electron transport material.
  • Distyrubirazine derivatives can also be used as electron transport materials, and as with hole injection layers and hole transport layers, inorganic semiconductors such as n-type Si and n-type SiC can also be used as electron transport materials. I can do it.
  • the thickness of the electron transport layer is not particularly limited, but is usually 5 ⁇ ! About 5 m, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure with one or more of the above materials! /.
  • an electron transport layer having a high n property doped with impurities can be used.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, Appl. Phys., 95, 5773 (2004), etc. Those described in. It is preferable to use such an electron transport layer having a high ⁇ property because a device with lower power consumption can be manufactured.
  • the electron transport layer can also be formed by thin-filming the electron transport material by a known method such as wet coating or vacuum deposition.
  • the second electrode a material having a small work function! /, (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a small work function! /, (4 eV or less) metal
  • an alloy a material having a small work function! /, (4 eV or less) metal
  • an alloy a material having a small work function! /, (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof is used as the second electrode.
  • Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum -UM (Al 2 O) mixture, indium, lithium Z aluminum mixture, rare earth metal, etc.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, magnesium Z Silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al thium
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. or
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less.
  • the film thickness is usually selected from the range of 10 ⁇ -5 / ⁇ , preferably 50nm-200nm.
  • either the first electrode (anode) or the second electrode (cathode) of the organic EL element is transparent or semi-transparent. If it is transparent, the emission luminance is improved, which is convenient.
  • a transparent or semi-transparent second electrode (cathode) can be produced by producing the conductive transparent material mentioned in the description of the first electrode on it.
  • an element in which both the first electrode (anode) and the second electrode (cathode) are transmissive can be manufactured.
  • a known host compound and a known phosphorescent compound are used in order to increase the luminous efficiency of the light-emitting layer. It is preferable to contain.
  • a host compound is a compound contained in a light-emitting layer and has a mass ratio of 20% or more in the layer, and phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C). Defined as a compound with a power less than 0.1. The phosphorescence quantum yield is preferably less than 0.01.
  • a plurality of host compounds may be used in combination. By using multiple types of host compounds, it is possible to adjust the movement of electric charge and to make the organic EL element highly efficient. In addition, by using a plurality of phosphorescent compounds, it is possible to mix different light emission, and thereby any light emission color can be obtained. White light emission is possible by adjusting the type of phosphorescent compound and the amount of doping, and it can also be applied to lighting and backlighting.
  • these host compounds compounds having a hole transporting ability and an electron transporting ability, preventing the emission of longer wavelengths, and having a high Tg (glass transition temperature) are preferable.
  • As known host compounds JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-33857 9, 2002-105445, 2002-343568, 2002-141 173, 2002-352957, 2002-203683, 2002-3 63227, 2002-231453, 2003-3165, 2002-2 34888, 2003-27048, 2002-255934, 2002-260861 , 2002-280183, 2002-299060, 2002 — The compounds described in 302516, 2002-305083, 2002-305084, and 2002-308837 are listed.
  • the host compound in each layer is the same compound, since it is easy to obtain a uniform film property over the entire organic layer.
  • the phosphorescence emission energy of the compound is more than 2.9 eV. This is more preferable because energy transfer from the dopant can be effectively suppressed and high luminance can be obtained.
  • Phosphorescence emission energy is the peak energy of the 0-0 band of phosphorescence emission measured by measuring the photoluminescence of the lOOnm deposited film on the substrate.
  • the host compound has a phosphorescent emission energy of 2.9 eV, taking into account the deterioration of the organic EL device over time (decrease in brightness, film properties) and the field as a light source.
  • the Tg is preferably 90 ° C or higher. That is, in order to satisfy both luminance and durability, it is preferable that the phosphorescence emission energy is 2.9 eV or more and Tg is 90 ° C or more. Tg is more preferably 100 ° C or higher.
  • a phosphorescent compound is a compound in which emission of excited triplet force is observed, and is a compound that emits phosphorescence at room temperature (25 ° C). It is a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. When used in combination with the host compound described above, an organic EL device with higher luminous efficiency can be obtained.
  • the phosphorescent compound according to the present invention preferably has a phosphorescence quantum yield of 0.1 or more.
  • the above phosphorescence quantum yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopic II, 4th edition, Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescent compound used in the present invention can be obtained if the phosphorescence quantum yield is achieved in any solvent. ⁇ ⁇ .
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent compound is preferably a complex compound containing a group 8 or group 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). ), Rare earth complexes, and most preferred U is iridium compounds.
  • the phosphorescent maximum wavelength of the phosphorescent compound is not particularly limited.
  • a central metal, a ligand, a ligand substituent, and the like are selected. By doing so, the emission wavelength obtained can be changed.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element ⁇ the number of electrons X 100 flowed to the organic EL element.
  • a hue improvement filter such as a color filter or the like may be used in combination, or a color conversion filter that converts the emission color of the organic EL element power into multiple colors using a phosphor may be used in combination! .
  • the maximum light emission of the organic EL element is preferably 480 nm or less.
  • the organic EL device of the present invention is preferably used in combination with the following method in order to efficiently extract light generated in the light emitting layer.
  • An organic EL element emits light inside a layer having a higher refractive index than air (refractive index is about 1.7 to 2.1), and only about 15% to 20% of the light generated in the light emitting layer is emitted. It is generally said that it cannot be taken out. This is an angle above the critical angle
  • the light incident on the interface at ⁇ (the interface between the transparent substrate and the air) is totally reflected and cannot be extracted outside the device, or it is a transparent electrode! / Between the light emitting layer and the transparent substrate. This is because the light is totally reflected, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the element.
  • Japanese Patent Laid-Open No. 2001-202827 A method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter. There is a method of forming a diffraction grating between any of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283751).
  • these methods can be used in combination with an organic EL element.
  • a method of forming a diffraction grating between any of the layers and the light emitting layer (including between the substrate and the outside) can be suitably used. In the present invention, by combining these means, it is possible to obtain a device having higher luminance or durability.
  • a low refractive index medium When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light emitted from the transparent electrode is extracted to the outside as the refractive index of the medium decreases. Increases efficiency.
  • the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium should be at least twice the wavelength in the medium.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method By utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction, By diffracting the light that cannot be emitted outside due to total internal reflection between layers, by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode), It tries to take out light. It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index.
  • the position where the diffraction grating is introduced may be between any force layers or in the medium (in the transparent substrate or transparent electrode), but the vicinity of the organic light emitting layer where light is generated is located. desirable.
  • the period of the diffraction grating is preferably about 1Z2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a square, or a eucam lattice.
  • the organic EL device of the present invention can be designed to provide, for example, a structure on the microlens array on the light extraction side of the substrate in order to efficiently extract the light generated in the light emitting layer.
  • the luminance in a specific direction can be increased by condensing light in a specific direction, for example, the front direction with respect to the element light emitting surface.
  • a microlens array square pyramids with a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 / z m to LOO / z m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness is increased, which is not preferable.
  • the light condensing sheet for example, a material that is put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, a stripe having a vertex angle of 90 degrees and a pitch of 50 111 may be formed on the base material, or the vertex angle is rounded and the pitch is changed randomly. In other shapes There may be.
  • a light diffusing plate film may be used in combination with a light collecting sheet in order to control the light emission angle of the light emitting element.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a multilayer film having a resin base material and a barrier layer is used.
  • ethylene tetrafluoroethyl copolymer ETFE
  • high density polyethylene HDPE
  • expanded polypropylene OPP
  • polystyrene PS
  • polymethylmetatalylate PMMA
  • Stretched nylon ONy
  • PET polyethylene terephthalate
  • PC polycarbonate
  • polyimide polyether styrene
  • other thermoplastic resin film materials used for general packaging films I can do it.
  • thermoplastic resin films can be used as needed, such as a multilayer film produced by coextrusion with a different film, or a multilayer film produced by laminating at different stretching angles. Furthermore, it is of course possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties.
  • Examples of the NORA layer include an inorganic vapor-deposited film and a metal foil.
  • Thin film node book p879-p901 Japanese Society for the Promotion of Science
  • vacuum technology handbook p502-p509, p612, p810 (Nikkan Kogyo Shimbun)
  • vacuum handbook revised edition pl32-pl34 (ULVAC Nippon Vacuum Technology K)
  • metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni, MgO, SiO, SiO, AlO, GeO, NiO, Ca
  • SiC, TiC, PSG, Si N, single crystal Si, amorphous Si, W, etc. are used.
  • the material of the metal foil for example, a metal material such as aluminum, copper or nickel, or an alloy material such as stainless steel or aluminum alloy can be used. Aluminum is preferable in terms of cost.
  • the film thickness is about 1 ⁇ m to 100 ⁇ m, preferably about 10 ⁇ m to 50 m.
  • ⁇ ⁇ IS as a sealant layer
  • thermoplastic resin film having a melt flow rate specified by K 7210 of 5 gZ 1 Omin to 20 gZ 1 Omin is more preferable, and a thermoplastic resin film having a viscosity of 6 gZ10 min to 15 gZ10 min or less is preferably used. This is because the melt flow rate is 5 (gZl0min ) If the following grease is used, the gap caused by the step of the lead electrode of each electrode cannot be completely filled, and if it is 20 (g / 10 min) or more, the tensile strength can be resisted by stress cracking. This is because the properties, workability, and the like are lowered.
  • the thermoplastic resin film is not particularly limited as long as it satisfies the above numerical values.
  • a low-density polymer film that is a polymer film described in Toray Research Center, Inc. Ethylene (LDPE), HDPE, linear low density polyethylene (LLDPE), medium density polyethylene, unstretched polypropylene (CPP), OPP, ONy, PET, cellophane, polybular alcohol (PVA), expanded vinylon (OV) Ethylene acetate butyl copolymer (EVOH), ethylene propylene copolymer, ethylene acrylic acid copolymer, ethylene-methacrylic acid copolymer, and salt vinylidene (PVDC)
  • Ethylene acetate butyl copolymer ethylene propylene copolymer, ethylene acrylic acid copolymer, ethylene-methacrylic acid copolymer, and salt vinylidene (PVDC)
  • LDPE low-density polymer film that is a polymer film described in Toray Research Center, Inc.
  • Ethylene LDPE
  • HDPE linear
  • the flexible sealing member used to form the sealing layer is provided with a barrier layer (a protective layer as necessary) on the resin base material in order to facilitate handling during production. It is preferably used in the state of being formed into a laminated film.
  • a barrier layer a protective layer as necessary
  • the side in contact with the adhesive is the barrier layer.
  • a protective layer When there is a protective layer, a protective layer is preferable.
  • any material that has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element may be used. Silicon, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers having organic material power.
  • the method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion Beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method, etc. can be used
  • a polyethersulfone (film manufactured by Sumitomo Bakelite Co., Ltd., hereinafter abbreviated as PES) having a thickness of 200 ⁇ m and a width of 250 mm was prepared.
  • a transparent gas barrier film was prepared by laminating three layers of low density layer, medium density layer, high density layer, and medium density layer by atmospheric pressure plasma discharge treatment. JIS K
  • a 120nm thick ITO (indium tin oxide) layer is deposited on the formed barrier layer by vapor deposition to form a first electrode 50mm wide and 50mm long as shown in Fig. 3 (a).
  • the strip-shaped flexible support is continuously formed in three rows in the width direction (interval between rows is 30 mm) and the distance between each first electrode is 25 mm in the transport direction, and is then wound around the winding core. The original winding ronole was used.
  • a masking member having a thickness of 25 m as a base material and having different adhesive strength as shown in Table 1 was prepared and designated as No. 1-a to l-f. Note that the values measured in accordance with the 180 degree peel adhesive strength specified in Section 10.4 are shown. The adhesive force was changed by changing the temperature during crimping. The width of the masking member was 25 mm. [0146] [Table 1]
  • the masking member Before bonding the masking member, use a low pressure mercury lamp with a wavelength of 184.9 nm for the first electrode forming strip-shaped flexible support, and apply a cleaning surface modification treatment at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. This was followed by a charge removal process using a weak X-ray static eliminator.
  • the bonding speed of the masking member was 1. OmZmin, and the surface pressure of one crimping port was 0.2 MPa.
  • Polyethylenedioxythiophene Z polystyrene sulfonate aqueous dispersion (PEDOTZ PSS, Bytron P AI 4083 manufactured by Bayer) diluted 140% with pure water and 10% with methanol. It was adjusted to 0.5 mass% to obtain a coating solution for a hole transport layer.
  • the surface tension of the hole transport layer coating solution was 45 mNZm (manufactured by Kyowa Interface Chemical Co., Ltd .: surface tension meter CBVP-A3).
  • the surface tension of the light emitting layer forming coating solution is 32mNZm (Kyowa Interface Chemical Co., Ltd .: Surface tension meter CBVP-A3).
  • the second drying device and the second heat treatment device After applying the light-emitting layer coating solution shown above, use the second drying device and the second heat treatment device, and the second drying device uses a slit nozzle type discharge loca. After removing the solvent at a wind speed of lmZs, a wide wind speed distribution of 5%, and a temperature of 100 ° C, the second heat treatment device was then heat-treated at a temperature of 120 ° C to form a light-emitting layer.
  • the electron injection layer is formed on the light emitting layer by the method described below.
  • Samples 101 to 106 were prepared by sequentially forming a cathode and a sealing layer to produce an organic EL device.
  • the external connection terminal forming portion forming the external connection terminal of the first electrode covered with a mask, LiF layer of 5 X 10- 4 Pa thickness 0. 5 nm in the area of the light-emitting layer formed under vacuum of the Strike
  • the electron injection layer was formed by vapor deposition, and an aluminum layer having a thickness of 1 OOnm was further stripe-deposited on the electron injection layer so as to be orthogonal to the first electrode to form a second electrode.
  • SiOx was striped to a thickness of 300 nm by a sputtering method in addition to the region serving as the connection terminal to form a sealing layer.
  • 75% or more and less than 95% force out of 50 sheets Light is emitted uniformly in 80% or more of the light emitting area.
  • 50% or more and less than 75% force in 50 sheets Uniform light is emitted in 80% or more of the light emitting region.
  • X 0% or more and less than 50% force out of 50 sheets Light is emitted uniformly in 80% or more of the light emitting area.
  • Example 1 The same belt-like flexible support as in Example 1 was used, and the transparent gas nolia layer and the first electrode were formed under the same conditions to produce the same first electrode-formed belt-like flexible support as in Example 1.
  • the hole transport layer forming coating solution was applied and dried under the same conditions as in Example 1.
  • the light emitting layer forming application was performed under the same conditions as in Example 1.
  • the masking member is peeled and removed to produce a strip-shaped flexible support body that is formed up to the light emitting layer, subjected to charge removal treatment, and cooled to the same temperature as room temperature. After that, the wound core was wound into a roll shape, and Nos. 2-1 to 2-6 were obtained.
  • the second electrode is formed on the light emitting layer by the method described below.
  • Samples Nos. 201 to 206 were prepared by sequentially forming a (cathode) and a sealing layer to produce an organic EL device. After forming the second electrode (cathode), it was wound up into a roll and stored in an inert gas atmosphere.
  • a roll-shaped strip-shaped flexible support with the second electrode (cathode) formed is fed out, and UV curable epoxy resin (manufactured by Nagase ChemteX Corp.) as an adhesive.
  • UV resin XNR5570—B1 external connection terminal forming external connection terminal
  • the epoxy resin of the adhesive may be a thermosetting type. In that case, thermocompression bonding is performed by passing between the heat rolls at the time of bonding. Further, the adhesive may be formed by a dispenser, screen printing or the like only on the outer periphery of the light emitting area.
  • the flexible sealing member PET having a thickness of 100 m was used as a base material, and a sealing film formed by vapor deposition using silicon oxide as a barrier layer with a thickness of 500 nm was used.
  • Table 4 shows the results of testing using the same test method and evaluating according to the same evaluation rank as in Example 1.
  • the organic EL element of this Example 2 has a green light emission capability.
  • the dopant material is Ir (ppy), FI
  • a white organic EL device can be produced by mixing 3 r (pic) and btp Ir ( acac ) as appropriate. This is
  • a lighting device can be used as a lighting device, and according to the present invention, a low-cost and high-productivity lighting production facility such as roll-to-roll can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、少なくとも第1電極と、1層以上の有機化合物層と、第2電極と、封止層とを有する有機EL素子を基板上に複数有する有機EL素子を塗布法により形成する時、外部接続用端子を形成する外部接続用端子形成部分の形成が容易で、生産効率が高く、性能品質が安定している有機EL素子の製造方法を提供する。この有機EL素子の製造方法は、基板上に、少なくとも第1電極(陽極層)と、少なくとも1層の有機化合物層と、第2電極(陰極層)と、封止層とを有する少なくとも一つの有機EL素子を有する有機EL素子の製造方法において、前記基板上の前記有機化合物層の形成禁止領域に接着力1N/25mm~10N/25mmのマスキング部材の貼合を行うマスキング部材貼合工程と、前記有機化合物層を前記基板上に形成する有機化合物層形成工程と、前記マスキング部材を剥離するマスキング部材剥離工程とを有することを特徴とする。

Description

有機エレクト口ルミネッセンス素子の製造方法、有機エレクト口ルミネッセン ス表示装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス (EL)素子の製造方法に関するもので、特 に、大面積基材に複数素子を一括に形成し、多面取りする場合の外部接続用端子 を形成する外部接続用端子形成部分の表出確保に関するものである。
背景技術
[0002] 近年、フラットディスプレイなどの表示装置や、電子写真複写機、プリンターなどの 光源に有機エレクト口ルミネッセンス (EL)素子の使用が検討されている。この有機 E L素子はガラス基板等の透明基板 1上に ITO (Indium tin oxide)等の透明導電 膜からなる陽極が設けられ、その上に正孔輸送層及び発光層からなる有機層、及び 陽極と交差してストライプ状に成膜されたアルミニウム等力 なる陰極がこの順に設け られることにより構成されたものであり、有機 EL素子がマトリクス状に配置された画素 部の周辺部には陽極及び陰極を外部回路又は内部駆動回路に接続するための陽 極側取り出し電極及び陰極側取り出し電極が形成されて 、る。
[0003] 有機 EL素子は陽極と陰極との交差部の各々力 ^画素となり、各有機 EL素子に電 圧が印加されてその陰極カゝら電子が、陽極カゝら正孔がそれぞれ有機層に注入され、 この有機層中で電子一正孔の再結合が起こることにより発光が生じることが知られて いる。有機 EL素子は蛍光性有機化合物の非常に薄い薄膜を陽極と陰極ではさみ電 流を流すことで発光する電流駆動型発光素子である。通常、有機物は絶縁体である が有機層の膜厚を非常に薄くすることにより電流注入が可能となり有機 EL素子として 駆動することが可能となる。そして 10V以下の低電圧で駆動することが可能であり、こ れにより高効率な発光を得ることも可能なため将来のディスプレイとして注目を浴び ている。
[0004] 特に最近にお 、ては従来の励起一重項を用いる有機 EL素子の効率を遙かにしの ぐ励起三重項を用いるリン光発光有機 EL素子が S. R. Forrestらにより見いだされ ている(Appl. Phys. Lett. (1999) , 75 (1) , 4— 6)。更に C. Adachiらが報告して ヽるよう【こ (J. Appl. Phys. , 90, 5048 (2001) ) 601m/W【こも及ぶ視感度効率を 出すまでに及び、この様な素子はディスプレイのみならず、照明への応用が期待され る。
[0005] 現在、有機 EL材料には低分子系のものと高分子系のものがある。低分子系材料を 用いて EL素子を製造するには高真空での蒸着を行う。低分子材料は昇華精製する ことが可能で、精製が行いやすぐ高純度な有機 EL材料を用いることが出来、更に 積層構造を作るのが容易なため、効率、寿命という面で非常に優れている。しかしな がら 10— 4Pa以下という高真空条件下で蒸着を行うため、操作が複雑でコストも高く製 造の観点力 は必ずしも好ましくない。特に照明用途では、大面積に素子を形成しな ければならないので、蒸着では製造が難しい。又、リン光発光有機 EL素子で用いら れるようなリン光ドーパントについても、大面積でムラなぐ複数のドーパントを蒸着で 素子に導入するのは困難であり、コスト的にも技術的にも難しいと言わざるを得ない。
[0006] 低分子系材料に対し高分子系材料では製造に押し出し塗布、ディップ塗布、スピ ンコート、インクジェット、印刷といったウエットプロセスを採用することが出来る。つまり 大気圧下で製造することが出来るためコストが安くすむメリットがある。更に、溶液で 調製して薄膜にするため、ドーパント等の調整がしゃすぐ大面積に対してもムラが 出来にくいという特徴がある。これは有機 EL素子の照明用途にはコスト、製造技術と いう面で非常にメリットがあると言える。
[0007] 塗布法により正孔輸送層や発光層などの有機層を塗布すると、基板上の全面に有 機層が成膜されてしまうため、予め基板上にパターユングされ形成された陽極の外 部電極取り出し部となる部分上にも成膜がされてしまう。有機層は基本的には絶縁物 であるため電気接点に有機層があれば導通不良を弓 Iき起こすことになる。このため、 これまでに正孔輸送層や発光層などの有機層を塗布法で作製する場合、外部接続 用端子を形成する外部接続用端子形成部分への成膜を防止する方法が検討されて きた。
[0008] 例えば、発光部と非発光部との間に撥液部を形成した後、有機層を塗布法により 形成し、撥液部よりも外側の非発光部に形成された有機層を溶剤により拭き取り除去 し、有機 EL表示装置を製造する方法が知られている (例えば、特許文献 1を参照。 )
[0009] し力しながら、特許文献 1の方法は次の欠点を有している。 1)撥液部を発光部を形 成する全ての部分に形成しなければならず、基板上に複数の有機 EL素子を形成す る場合は、極めて生産効率が低下することが予測される。特に基板が広幅帯状の可 橈性支持体で、連続的に生産する場合は生産効率の低下が予測される。 2)不要と する有機層を溶剤により拭き取り除去するとあるが、基板上に複数の有機 EL素子を 形成する場合、全ての有機 EL素子に付いて不要とする有機層の均一な除去は困難 と考えられ、性能にバラツキが発生する危険がある。 3)特に基板が広幅帯状の可撓 性支持体で、複数の有機 EL素子を連続的に生産する場合は、有機層の均一な除 去に時間を要し、生産効率の低下が予測される。
[0010] 又、表示領域に電極層を隔離形成するための隔壁を作製し、隔壁内に有機発光 層材料を塗布し硬化させた後、隔壁外の表示領域外に形成された有機層をドライエ ツチングにより選択的に除去する方法が知られている(例えば、特許文献 2を参照。)
[0011] し力しながら、特許文献 2の方法は次の欠点を有している。 1)隔壁を発光部が形成 される全ての部分に形成しなければならず、基板上に複数の有機 EL素子を形成す る場合は、極めて生産効率が低下することが予測される。特に基板が広幅帯状の可 橈性支持体で、連続的に生産する場合は生産効率の低下が予測される。 2)不要と する有機層をドライエッチングにより除去するとあるが、基板上に複数の有機 EL素子 を形成する場合、全ての有機 EL素子に付いて不要とする有機層の均一な除去は困 難と考えられ、性能にバラツキが発生する危険がある。 3)特に基板が広幅帯状の可 橈性支持体で、複数の有機 EL素子を連続的に生産する場合は、有機層の均一な 除去に時間を要し、生産効率の低下が予測される。
[0012] この様な状況から、少なくとも第 1電極と、 1層以上の有機化合物層と、第 2電極と、 封止層とを有する有機 EL素子を基板上に複数有する有機 EL素子を塗布法により 形成する時、外部接続用端子を形成する外部接続用端子形成部分の確保が容易で 、生産効率が高ぐ性能品質が安定している有機 EL素子の製造方法及び有機 EL 表示装置の開発が要望されている。
特許文献 1:特開 2004 - 152512号公報
特許文献 2 :特開 2005— 158388号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、上記状況に鑑み成されたものであり、その目的は、少なくとも第 1電極と 、 1層以上の有機化合物層と、第 2電極と、封止層とを有する有機 EL素子を基板上 に複数有する有機 EL素子を塗布法により形成する時、外部接続用端子を形成する 外部接続用端子形成部分の確保が容易で、生産効率が高ぐ性能品質が安定して いる有機 EL素子の製造方法及び有機 EL表示装置を提供することである。
課題を解決するための手段
[0014] 本発明の上記目的は、以下の構成により達成された。
[0015] (1)基板上に、少なくとも第 1電極 (陽極層)と、少なくとも 1層の有機化合物層と、第 2電極(陰極層)と、封止層とを有する少なくとも一つの有機エレクト口ルミネッセンス 素子を有する有機エレクト口ルミネッセンス素子の製造方法にぉ 、て、前記基板上の 前記有機化合物層の形成禁止領域に、接着力が lNZ25mm〜 1 ONZ25mmのマ スキング部材の貼合を行うマスキング部材貼合工程と、前記有機化合物層を前記基 板上に形成する有機化合物層形成工程と、前記マスキング部材を剥離するマスキン グ部材剥離工程とを有することを特徴とする有機エレクト口ルミネッセンス素子の製造 方法。
[0016] (2)前記マスキング部材剥離工程の後に切断工程を有することを特徴とする前記( 1)に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0017] (3)基板上に、少なくとも第 1電極と、少なくとも 1層の有機化合物層と、第 2電極と、 封止層とを有する少なくとも一つの有機エレクト口ルミネッセンス素子を有する有機ェ レクト口ルミネッセンス素子の製造方法にぉ 、て、前記基板上に前記第 1電極を形成 した後、前記基板上の前記有機化合物層の形成禁止領域を接着力が lNZ25mm 〜10NZ25mmのマスキング部材で被覆し、前記基板上の全面に前記有機化合物 層を形成した後、前記第 2電極と、前記封止層を形成し、この後に、前記マスキング 部材を剥離することを特徴とする有機エレクト口ルミネッセンス素子の製造方法。
[0018] (4)前記マスキング部材を剥離した後、基板上に形成された有機エレクト口ルミネッ センス素子を切断することを特徴とする前記(3)に記載の有機エレクト口ルミネッセン ス素子の製造方法。
[0019] (5)基板上に、少なくとも第 1電極層と、発光層を含む有機化合物層と、第 2電極層 と、封止層とを順次形成する工程を有する製造装置を使用し、前記基板上に少なくと も前記第 1電極層と、前記有機化合物層と、前記第 2電極層と、前記封止層とを順次 積層した少なくとも一つの有機エレクト口ルミネッセンス素子を製造する有機エレクト口 ルミネッセンス素子の製造方法において、前記有機化合物層を形成する工程は、前 記基板上の前記有機化合物層の形成禁止領域に接着力が lNZ25mn!〜 10NZ2 5mmのマスキング部材を貼合するマスキング部材貼合工程と、前記有機化合物層を 形成する有機化合物層形成工程と、前記マスキング部材を剥離するマスキング部材 剥離工程とを有してなることを特徴とする有機エレクト口ルミネッセンス素子の製造方 法。
[0020] (6)前記封止層を形成する工程の後に、切断工程を有することを特徴とする前記(
5)に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0021] (7)前記形成禁止領域が少なくとも第 1電極層の外部接続用端子を形成する外部 接続用端子形成部分であることを特徴とする前記(1)〜(6)の何れ力 1項に記載の 有機エレクト口ルミネッセンス素子の製造方法。
[0022] (8)前記基板が帯状可撓性基板であり、該帯状可撓性基板を巻き芯に巻き取り口 ール状としたロール状帯状可撓性基板を供給工程力ゝら該帯状可撓性基板として送り 出し、第 1電極層と、発光層を含む有機化合物層と、第 2電極層と、封止層との何れ 力が形成された後、巻き芯に巻き取りロール状とし回収することを特徴とする前記(1) 〜(7)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0023] (9)前記マスキング部材が基材にシ一ラント層を有する可撓性部材であることを特 徴とする前記(1)〜(8)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製 造方法。
[0024] (10)前記マスキング部材がオンラインで供給され、該マスキング部材の貼合及び 剥離をオンラインで行うことを特徴とする前記(1)〜(9)の何れか 1項に記載の有機 エレクト口ルミネッセンス素子の製造方法。
[0025] (11)前記マスキング部材の貼合が圧着方式で行われることを特徴とする前記(1) 〜(10)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0026] (12)前記有機化合物層が発光層形成用材料を含んで!/ヽることを特徴とする前記( 1)〜(: L 1)の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0027] (13)前記発光層形成用材料の発光機構がリン光に基づくものであることを特徴と する前記(12)に記載の有機エレクト口ルミネッセンス素子の製造方法。
[0028] (14)前記(1)〜(13)の何れ力 1項に記載の有機エレクト口ルミネッセンス素子の製 造方法により製造された有機エレクト口ルミネッセンス素子を使用したことを特徴とす る有機エレクト口ルミネッセンス表示装置。 発明の効果
[0029] 少なくとも第 1電極と、 1層以上の有機化合物層と、第 2電極と、封止層とを有する有 機 EL素子を基板上に複数有する有機 EL素子を塗布法により形成する時、外部接 続用端子を形成する外部接続用端子形成部分の確保が容易で、生産効率が高ぐ 性能品質が安定している有機 EL素子の製造方法及び有機 EL表示装置を提供する ことが出来、有機 EL素子及び有機 EL表示装置の量産化が容易となった。
図面の簡単な説明
[0030] [図 1]有機 EL素子の層構成の一例を示す概略断面図である。
[図 2]有機 EL素子を作製する製造装置の一例を示す模式図である。
[図 3]有機 EL素子を作製する工程の他の一例を示す模式図である。
[図 4]図 2の Sで示される部分の拡大概略図である。
[図 5]図 2の Uで示される部分の拡大概略図である。
[図 6]図 2に示される封止部材貼合部の拡大概略図である。
[図 7]図 2に示される打ち抜き切断部の拡大概略斜視図である。
[図 8]図 3の Vで示される部分の拡大概略図である。
符号の説明
[0031] la 有機 EL素子 101 基材
102 陽極層
103 正孔輸送層
104 有機化合物層 (発光層)
105 電子注入層
106 陰極層
107 封止層
108 接着剤層
109 封止部材
2a 製造装置
3 有機化合物層形成工程
3b マスキング部材貼合工程
3e マスキング部材剥離工程
4 第 2電極 (陰極層)形成工程
5、 10 封止層形成工程
502 封止部材貼合部
502a 接着剤塗設部
502b 封止部材供給部
503 打ち抜き切断部
503a 打ち抜き切断装置
8、 8a〜8d マスキング杳 才
11 切断工程
11a スリツター
l ib 切断機
発明を実施するための最良の形態
[0032] 本発明の実施の形態を図 1〜図 8を参照して説明するが、本発明はこれに限定さ れるものではない。
[0033] 図 1は有機 EL素子の層構成の一例を示す概略断面図である。図 1の (a)は封止膜 が形成された有機 EL素子の構成層を示す概略断面図である。図 1の (b)は接着剤 を介して封止部材を貼着することで形成された有機 EL素子の構成層を示す概略断 面図である。
[0034] 図 1の (a)に示される有機 EL素子の層構成に付き説明する。図中、 laは有機 EL素 子を示す。有機 EL素子 laは、基材 101上に、陽極層 102と、正孔輸送層 103と、有 機化合物層(発光層) 104と、電子注入層 105と、陰極層 106と、封止層 107とをこの 順番に有している。
[0035] 図 1の (b)に示される有機 EL素子の層構成に付き説明する。図中、 lbは有機 EL 素子を示す。有機 EL素子 lbは、基材 101上に、陽極 102と、正孔輸送層(正孔注入 層) 103と、有機化合物層 (発光層) 104と、電子注入層 105と、陰極 106と、接着剤 層 108と、封止部材 109とをこの順番に有している。本図に示される有機 EL素子に おいて、陽極 102と正孔輸送層 103の間に正孔注入層(不図示)を設けてもよい。又 、陰極 106と有機化合物層(発光層) 104と電子注入層 105との間に電子輸送層(不 図示)を設けてもよい。本図に示される有機 EL素子 la及び有機 EL素子 lbでは、陽 極 102と基材 101との間にガスノ リア膜 (不図示)を設けても力まわない。
[0036] 本発明は、本図に示される有機化合物層 (発光層) 104、有機化合物層(正孔輸送 層) 103の形成方法と、形成された有機化合物層 (発光層) 104、有機化合物層 (正 孔輸送層) 103の上に電子注入層 105と、陰極 106と、封止膜 107を形成した有機 E L素子 laと、形成された有機化合物層(発光層) 104の上に電子注入層 105と、陰極 106と、接着剤層 108を介して封止部材 109を貼着した有機 EL素子 lbの製造方法 及びこれらの製造方法により作製された有機 EL素子に関するものである。
[0037] 本図に示す有機 EL素子の層構成は一例を示したものであるが、他の代表的な有 機 EL素子の層構成としては次の構成が挙げられる。
[0038] (1)基材 Z陽極 Z発光層 Z電子輸送層 Z陰極 Z封止層
(2)基材 z陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 Z封 止層
(3)基材 Z陽極 Z正孔輸送層 (正孔注入層) Z発光層 Z正孔阻止層 Z電子輸送 層 Z陰極バッファ一層(電子注入層) Z陰極 Z封止層 (4)基材 Z陽極 Z陽極バッファ一層(正孔注入層) Z正孔輸送層 Z発光層 Z正孔 阻止層 Z電子輸送層 Z陰極バッファ一層(電子注入層) Z陰極 Z封止層
有機 EL素子を構成して 、る各層につ 、ては後に説明する。
[0039] 図 2は有機 EL素子を作製する製造装置の一例を示す模式図である。尚、本図では 、帯状可撓性支持体上にガスバリア層、第 1電極が既に形成されたものを使用するた め、ガスバリア層及び第 1電極形成工程は省略してある。本図で示す製造装置の説 明は、有機 EL素子の一例として、帯状可撓性支持体上にガスノリア層、第 1電極、 正孔輸送層、発光層、電子注入層、第 2電極、封止層の順番に形成されている有機 EL素子の場合につ 、て行う。
[0040] 図中、 2aは有機 EL素子の構成層の一つである有機化合物層を湿式塗布方式で 形成し、封止部材を貼合することで封止層を形成する有機 EL素子の製造装置を示 す。製造装置 2aは、有機化合物層を形成する形成工程 3と、第 2電極 (陰極層)形成 工程 4と、封止層形成工程 5とを有している。
[0041] 有機化合部層を形成する形成工程 3は、帯状可撓性支持体の供給工程 3aと、マス キング部材貼合工程 3bと、第 1有機化合部層形成工程 (第 1塗布,乾燥工程) 3cと、 第 2有機化合部層形成工程 (第 2塗布 ·乾燥工程) 3dと、マスキング部材剥離工程 3e と、第 1回収工程 3fとを有している。
[0042] 供給工程 3aは、繰り出し工程 3alと表面処理工程 3a2とを有している。繰り出しェ 程 3alでは、ガスノリア膜と第 1電極を含む陽極層とがこの順番で既に形成された帯 状可撓性支持体 7が巻き芯に巻き取られロール状態で供給される様になつている。 7 aは帯状可撓性支持体 7の元巻きロールを示す。表面処理工程 3a2は洗浄表面改質 処理装置 3a21と、第 1帯電防止手段 3a22とを有している。洗浄表面改質処理装置 3a21は、有機化合物層形成用塗布液 (正孔輸送層形成用塗布液)を塗布する前に 供給工程 3alから送られてきた帯状可撓性支持体 7の第 1電極 (不図示)表面を洗浄 改質が行われ、第 1帯電防止手段 3a22は、非接触式除電防止装置と接触式除電防 止装置とを有している。第 1帯電防止手段により基材の帯電除去が図られ、有機化合 物層形成用塗布液 (正孔輸送層形成用塗布液)を塗布の時にゴミの付着や絶縁破 壊が防止されるため、素子の歩留まりの向上が図られる。 [0043] マスキング部材貼合工程 3bは第 1電極 (不図示)が形成されて!ヽる帯状可撓性支 持体 7の有機化合物層の形成禁止領域にマスキング部材を貼合するために配設さ れており、マスキング部材 8を貼合することで帯状可撓性支持体 7上への有機化合物 層の形成を容易にしている。マスキング部材貼合工程 3bに関しては図 4で詳細に説 明する。
[0044] 第 1有機化合部層形成工程 (第 1塗布,乾燥工程) 3cは、帯状可撓性支持体 7を保 持するバックアップロール 3clと、ノ ックアップロール 3clに保持された帯状可撓性支 持体 7に正孔輸送層形成用塗布液を塗布する第 1湿式塗布機 3c2と、帯状可撓性 支持体 7上の第 1電極 (不図示)上に形成された正孔輸送層 aの溶媒を除去する第 1 乾燥装置 3c3と、溶媒が除去された正孔輸送層 aを加熱する第 1加熱処理装置 3c4 と、第 2帯電防止手段 3c5とを有している。第 1湿式塗布機 3c2による正孔輸送層形 成用塗布液は、帯状可撓性支持体 7上に貼合されたマスキング部材上を含め帯状 可撓性支持体 7の全面に塗布される。
[0045] 第 2有機化合部層形成工程 (第 2塗布 ·乾燥工程) 3dは、帯状可撓性支持体 7を保 持するバックアップロール 3dlと、バックアップロール 3dlに保持された帯状可撓性 支持体 7に発光層形成用塗布液を塗布する第 2湿式塗布機 3d2と、帯状可撓性支 持体 7上の正孔輸送層 a上に形成された発光層 bの溶媒を除去する第 2乾燥装置 3d 3と、溶媒が除去された発光層 bを加熱する第 2加熱処理装置 3d4と、第 3帯電防止 手段 3d5とを有している。第 2湿式塗布機 3d2による発光層形成用塗布液は、帯状 可撓性支持体 7上の正孔輸送層 aの全面に塗布される。第 2帯電防止手段 3c5及び 第 3帯電防止手段 3d5は第 1帯電防止手段 3a22と同じ構成をしていることが好まし い。
[0046] マスキング部材剥離工程 3eは剥離ロール 3elを有しており、帯状可撓性支持体 7 に貼合されたマスキング部材 8を剥離し回収することが可能となって 、る。マスキング 部材剥離工程 3eに関しては図 5で詳細に説明する。
[0047] 第 1回収工程 3fでは、マスキング部材剥離工程 3eでマスキング部材 8が剥離された 状態の帯状可撓性支持体 7 (ガスバリア膜、第 1電極、正孔輸送層、発光層がこの準 番で形成された状態)が巻き取られロール状帯状可撓性支持体 7aとして回収される [0048] 第 2電極 (陰極層)形成工程 4は、供給工程 401と、電子注入層形成工程 402と、 第 2電極形成工程 403と、第 2回収工程 404とを有している。供給工程 401では、前 工程で作製された帯状可撓性支持体 7aが繰り出され電子注入層形成工程 402へ供 給される。電子注入層形成工程 402では、発光層 b上に電子注入層 cが形成される。 尚、電子注入層 cの形成に際しては、第 1電極の外部取り出し用端子形成部に電子 注入層が蒸着しな 、用にマスクを介して蒸着が行われる。 402aは蒸着装置を示し、 402bは蒸発源容器を示す。電子注入層 cが形成された帯状可撓性支持体 7は、引 き続き、第 2電極形成工程 403へ送られる。
[0049] 第 2電極形成工程 403では電子注入層形成工程 402で形成された電子注入層 c 上に第 1電極と直交する状態で第 2電極 dが形成される。尚、第 2電極 dの形成に際し ては、第 1電極の外部取り出し用端子形成部に第 2電極の形成成分が蒸着しない用 にマスクを介して蒸着が行われる。 403aは蒸着装置を示し、 403bは蒸発源容器を 示す。第 2電極 dが形成された帯状可撓性支持体は次工程の封止層形成工程 5に送 られるため、第 2回収工程で巻き取られロール状帯状可撓性支持体 7bとして回収さ れる。この段階でガスノリア膜、第 1電極、正孔輸送層、発光層、電子注入層、第 2電 極とがこの順番で可撓性支持体 7上に形成された状態となっている。
[0050] 封止層形成工程 5は第 2電極までが形成された帯状可撓性支持体 7bの帯状可撓 性支持体供給工程 501と封止部材貼合工程 502と、打ち抜き切断工程 503とを有し ている。帯状可撓性支持体供給工程 501では、前工程で作製された帯状可撓性支 持体 7bが繰り出され封止部材貼合工程 502へ供給される。封止部材貼合工程 502 は、帯状可撓性支持体 7b上の発光領域又は発光領域の周辺に接着剤を塗設する 接着剤塗設工程 502aと、封止部材供給工程 502bとを有している。接着剤塗設工程 502a接着剤が塗設された後、封止部材 502blが帯状可撓性支持体 7b上全幅に重 ね合わされ、圧着ロール 502cを介して帯状可撓性支持体 7b上に貼合され、貼合ェ 程 502dで硬化処理される。硬化処理が行われた後、打ち抜き切断工程 503へ送ら れ打ち抜き切断装置 503aで余分の封止部材の除去が行われる。この段階で可撓性 支持体上にガスバリア膜、第 1電極、正孔輸送層、発光層、電子注入層、第 2電極、 封止層とがこの順番で形成された複数の有機 EL素子を連続的に有するロール状帯 状可撓性支持体 7cとして回収される。 502bl lは帯状可撓性支持体上に貼合され た部分が除かれ不要部分 (抜きカス)の封止部材を示し、巻き取られ除去される。回 収されたロール状帯状可撓性支持体 7cは図 3に示す切断工程 11で個別の有機 EL 素子に切断される。尚、打ち抜き切断工程 503は図 6で説明する。
[0051] 接着剤を塗設する方法は特に限定はなぐ例えばスプレー方式、押出しノズル方式 、シルク方式等通常の接着剤の塗設に使用されている方法が挙げられる。本発明に 係わる接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビ -ル基を有する光硬化及び熱硬化型シール剤、 2 シァノアクリル酸エステルなどの 湿気硬化型等のシール剤、エポキシ系などの熱及びィヒ学硬化型(二液混合)等のシ ール剤、カチオン硬化タイプの紫外線硬化型エポキシ榭脂シール剤等を挙げること が出来る。液状シール剤には必要に応じてフィラーを添加することが好ましい。
[0052] 図 3は有機 EL素子を作製する工程の他の一例を示す模式図である。尚、本図に示 す有機化合部層を形成する形成工程 3は図 2で示した有機化合物層形成工程と同 じであるため説明は省略する。
[0053] 図中、 2bは有機 EL素子を作製する製造装置を示す。製造装置 2bは有機化合部 層を形成する形成工程 3 (図 2に示す有機化合部層を形成する形成工程 3と同じ)と、 第 2電極 (陰極層)形成工程 9と、封止層形成工程 10と、切断工程 11とを有している
[0054] 第 2電極 (陰極層)形成工程 9は、供給工程 901と、電子注入層形成工程 902と、 第 2電極形成工程 903とを有している。供給工程 901では、前工程で作製された帯 状可撓性支持体 7aが繰り出され電子注入層形成工程 902へ供給される。電子注入 層形成工程 902では、発光層 b上に電子注入層 cが形成される。尚、電子注入層じの 形成に際しては、第 1電極の外部取り出し用端子形成部に電子注入層が蒸着しない 用にマスクを介して蒸着が行われる。 902aは蒸着装置を示し、 902bは蒸発源容器 を示す。電子注入層 cが形成された帯状可撓性支持体 7は、引き続き、第 2電極形成 工程 903へ送られる。
[0055] 第 2電極形成工程 903では電子注入層形成工程 902で形成された電子注入層 c 上に第 1電極と直交する状態で第 2電極 dが形成される。尚、第 2電極 dの形成に際し ては、第 1電極の外部取り出し用端子形成部に第 2電極の形成成分が蒸着しない用 にマスクを介して蒸着が行われる。 903aは蒸着装置を示し、 903bは蒸発源容器を 示す。第 2電極 dが形成された帯状可撓性支持体は、引き続き次工程の封止層形成 工程 10に送られる。
[0056] 封止層形成工程 10では、形成された第 2電極の外部接続用端子を形成する外部 接続用端子形成部分を除き、第 2電極上に封止層が形成される。この段階で、可撓 性支持体 7上にはガスバリア膜、第 1電極、正孔輸送層、発光層、電子注入層、第 2 電極、封止層とがこの順番で形成された複数の有機 EL素子が連続的に形成された 状態の有機 EL素子が作製される。封止層が形成された後、引き続き可撓性支持体 7 上に形成された複数の有機 EL素子を単独に分離するために切断工程 11へ送られ る。
[0057] 切断工程 11は、上刃と下刃とを有するスリツター 11aと、切断機 l ibとを有し、帯状 可撓性支持体 7上に形成された複数の有機 EL素子を単独に分離され図 1の (a)に 示される有機 EL素子の作製が終了する。切断工程 11に関しては、図 8で説明する。 他の符号は図 2と同じである。
[0058] 図 2、図 3に示される有機 EL素子を作製する製造装置の有機化合物層形成工程 で使用される洗浄表面改質処理としては具体的には、例えば、低圧水銀ランプ、ェ キシマランプ、プラズマ洗浄装置等を使用することが好ましい。低圧水銀ランプによる 洗浄表面改質処理の条件としては、例えば、波長 184. 2nmの低圧水銀ランプを、 照射強度 5mWZcm2〜20mWZcm2で、距離 5mm〜 15mmで照射し洗浄表面改 質処理を行う条件が挙げられる。プラズマ洗浄装置による洗浄表面改質処理の条件 としては、例えば、大気圧プラズマが好適に使用される。洗浄条件としてはアルゴン ガスに酸素 1〜 5体積%含有ガスを用い、周波数 100KHz〜150MHz、電圧 10V 〜10KV、照射距離 5mn!〜 20mmで洗浄表面改質処理を行う条件が挙げられる。
[0059] 図 2、図 3に示される有機 EL素子を作製する製造装置に使用される帯電防止手段 として使用される非接触式除電防止装置としては例えば、非接触式のィォナイザー が挙げられィオナイザ一の種類については特に制限はなぐイオン発生方式は AC 方式、 DC方式どちらでも構わない。 ACタイプ、ダブル DCタイプ、パルス ACタイプ、 軟 X線タイプが用いることが出来る力 特に精密除電の観点から、 ACタイプが好まし い。 ACタイプの使用の際に必要となる噴射気体については、空気か Nが用いられる
2
力 十分に純度が高められた Nで行うことが好ましい。又、インラインで行う観点より、
2
ブロワ一タイプもしくはガンタイプより選ばれる。
[0060] 又、接触式除電防止装置としては、除電ロール又はアース接続した導電性ブラシを 用いて行われる。除電器としての除電ロールは、接地されており、除電された表面に 回転自在に接触して表面電荷を除去する。この様な除電ロールとしては、アルミ-ゥ ム、銅、ニッケル、ステンレス等の金属製ロールの他に、カーボンブラック、金属粉、 金属繊維等の導電性材料を混合した弾性のあるプラスチックやゴム製のロールが使 用される。特に、帯状可撓性連続シートとの接触をよくするため、弾性のあるものが好 ましい。アース接続した導電性ブラシとは、一般には、線状に配列した導電性繊維か らなるブラシ部材ゃ線状金属製のブラシを有する除電バー又は除電糸構造のものを 挙げることが出来る。除電バーについては、特に限定はないが、コロナ放電式のもの が好ましく用いられ、例えば、キーエンス社製の SJ— Bが用いられる。除電糸につい ても、特に限定はないが、通常フレキシブルな糸状のものが好ましく用いられる。
[0061] 非接触式帯電防止装置は帯状可撓性支持体上の第 1電極面側に使用し、接触式 帯電防止装置は帯状可撓性支持体の裏面側に使用することが好ましい。
[0062] 図 4は図 2の Sで示される部分の拡大概略図である。図 4の(a)は図 2の Sで示され るマスキング部材貼合工程の拡大概略斜視図である。図 4の(b)は図 4の(a)の丁で 示される部分の概略拡大平面図である。
[0063] 図中、 7— 1〜7— 3は帯状可撓性支持体 7上に形成された第 1電極の各列を示す 。 3bはマスキング部材貼合工程を示す。マスキング部材貼合工程 3bはマスキング部 材 8を巻き芯に巻き取りロール状態で供給するマスキング部材供給工程 3blと、帯状 可撓性支持体 7の有機化合物層の形成禁止領域にマスキング部材を貼合するため の圧着ロール 3b21と受けロール 3b22とを有する圧着工程 3b2とを有している。圧着 工程 3b2で、圧着ロール 3b21と受けロール 3b22との間に帯状可撓性支持体 7とマ スキング部材とを圧着する際の圧力(面圧)は、第 1電極 (陽極層)を形成する透明導 電膜の膜強度等を考慮し、 0. 01MPa〜0. 5MPaが好ましい。使用するマスキング 部材の接着力は lNZ25mm〜10NZ25mmであり、特に、 3NZ25mm〜8NZ2 5mmが好ましい。尚、接着力 ίお IS Z— 0237粘着テープ'粘着シート試験方法に 準じて測定した値を示す。
[0064] 接着力が lNZ25mm未満の場合は、有機化合物層を塗布している間に剥離して しま!ヽ、有機化合物層の形成禁止領域に有機化合物層形成用塗布液が塗布されて しまう危険があるため好ましくない。 10NZ25mmを越える場合は、剥離する時に剥 離したくな!/、有効画素電極上の有機膜まで剥離してしまう危険があり好ましくな 、。
[0065] マスキング部材としては特に限定はなぐ例えば、 1)基材と裏面に接着剤 (粘着剤) を設けたマスキング部材、 2)基材と裏面にシーラント層を設けたマスキング部材、 3) 熱可塑性榭脂フィルム単独等が挙げられる。基材としては特に限定はなぐ例えば、 紙、ポリテトラフルォロエチレン(PTFE)、エチレンテトラフルォロェチル共重合体(E TFE)、高密度ポリエチレン(HDPE)、延伸ポリプロピレン(OPP)、ポリスチレン(PS )、ポリメチルメタタリレート(PMMA)、延伸ナイロン(ONy)、ポリエチレンテレフタレ ート(PET)、ポリカーボネート(PC)、エポキシ、ポリイミド、ポリエーテルスチレン(PE S)など一般の包装用フィルムに使用されている熱可塑性榭脂フィルムを使用するこ とが出来る。又、これら熱可塑性榭脂フィルムは、必要に応じて異種フィルムと共押出 しで作った多層フィルム、延伸角度を変えて貼り合せて作った多層フィルム等も当然 使用出来る。更に必要とする物性を得るために使用するフィルムの密度、分子量分 布を組合せて作ることも当然可能である。
[0066] 接着剤 (粘着剤)は特に限定はなぐ例えばアクリル系、シリコーン系、ゴム系等の 使用が可能であり、マスキング部材の上に塗布される有機化合物層(正孔輸送層、 発光層)形成用塗布液に使用する塗布液溶剤に応じて適宜選択可能である。
[0067] シーラント層としては、 JIS K 7210規定のメルトフローレートが 5gZl0min〜20 gZlOminである熱可塑性榭脂フィルムが好ましぐ更に好ましくは、 6gZl0min〜 15g/10minである熱可塑性榭脂フィルムを用いることが好ま ヽ。熱可塑性榭脂フ イルムは、上記数値を満たすものであれば特に限定されるものではないが、例えば機 能性包装材料の新展開株式会社東レリサーチセンター記載の高分子フィルムである 低密度ポリエチレン (LDPE)、 HDPE、線状低密度ポリエチレン (LLDPE)、中密度 ポリエチレン、未延伸ポリプロピレン(CPP)、 OPP、 ONy、 PET、セロファン、ポリビ -ルアルコール(PVA)、延伸ビニロン(OV)、エチレン 酢酸ビュル共重合体(EV OH)、エチレン プロピレン共重合体、エチレン アクリル酸共重合体、エチレン メタクリル酸共重合体、塩ィ匕ビユリデン (PVDC)等の使用が可能である。これらの熱 可塑性榭脂フィルムの中で特に LDPE、 LLDPE及びメタ口セン触媒を使用して製造 した LDPE、 LLDPE,又、これらフィルムと HDPEフィルムの混合使用したフィルムを 使用することが好ましい。
[0068] 熱可塑性榭脂フィルムを単独に使用する場合に使用する熱可塑性榭脂フィルムと しては、シーラント層に使用した熱可塑性榭脂フィルムが挙げられる。
[0069] 本図では 4本のマスキング部材 8a〜8dを使用する場合を示している。本図におい て、帯状可撓性支持体 7の有機化合物層の形成禁止領域とは、 7— 3列の第 1電極 の端部と帯状可撓性支持体 7の左端部、 7— 2列の端部を含む 7— 2列と 7— 3列との 間、 7—1列の端部を含む 7—1列と 7— 2列との間、 7—1列の第 1電極の端部と帯状 可撓性支持体 7の右端部が該当する。
[0070] マスキング部材貼合工程 3bには、第 1電極が 3列に連続的に形成された帯状可撓 性支持体 7が前工程より供給されてくる。
[0071] 各マスキング部材 8a〜8dは、帯状可撓性支持体 7上に形成された第 1電極の各列 7— 1〜7— 3に対応してマスキング部材供給工程 3b 1に配置されており、帯状可撓 性支持体 7の進行方向(図中の矢印方向)に、帯状可撓性支持体 7の搬送速度と同 じ速度で繰り出され、帯状可撓性支持体 7の有機化合物層の形成禁止領域にマスキ ング部材を貼合することが可能となっている。本図では、マスキング部材 8aは 7— 3列 の第 1電極の端部と帯状可撓性支持体 7の左端部に、マスキング部材 8bは 7— 2列 の端部を含む 7— 2列と 7— 3列との間に、マスキング部材 8cは 7—1列の端部を含む 7— 1列と 7— 2列との間に、マスキング部材 8dは 7— 1列の第 1電極の端部と帯状可 橈性支持体 7の右端部に帯状可撓性支持体 7の搬送速度に合わせ連続的に貼合さ れる状態を示している。マスキング部材により被覆される各列の第 1電極の端部が最 終的に外部取り出し用の端子となる部分である。 [0072] 7dは 7—1列の第 1電極の各ブロックに付けられたァライメントマークを示す。 7eは 7 2列の第 1電極の各ブロックに付けられたァライメントマークを示す。 7fは 7— 3列の 第 1電極の各ブロックに付けられたァライメントマークを示す。これら第 1電極の各プロ ックに付けられたァライメントマーク 7d〜7fは封止層が形成され帯状可撓性支持体 7 上に有機 EL素子が作製された後、有機 EL素子を個別に分離するための裁断時の 位置合わせに使用される。
[0073] 図 5は図 2の Uで示される部分の拡大概略図である。図 5の(a)は図 2の Uで示され るマスキング部材剥離工程の拡大概略斜視図である。図 5の(b)は図 5の(a)の A— に沿った概略断面図である。
[0074] マスキング部材剥離工程 3eでは、前工程で帯状可撓性支持体 7の有機化合物層 の形成禁止領域に貼合された各マスキング部材 8a〜8d上を含め全面に正孔輸送 層、発光層までが順次形成された状態の帯状可撓性支持体 7から、各マスキング部 材 8a〜8dを剥離する工程である。マスキング部材を剥離した状態を図 5の(b)で説 明する。 701はガスノリア膜を示し、 7〇2は第 1電極を示し、 7〇3は正孔輸送層を示 し、 704は発光層を示す。 702aは有機化合物層の形成禁止領域である第電極の端 部に貼合されていたマスキング部材を剥離することで出現した第 1電極の端部を示し 、最終的に外部接続用端子を形成する外部接続用端子形成部分となる。他の符号 は図 2、図 4と同義である。
[0075] 図 6は図 2に示される封止部材貼合工程の拡大概略図である。図 6の(a)は図 2に 示される封止部材貼合工程の拡大概略斜視図である。図 6の (b)は図 6の(a)の概略 断面図である。
[0076] 封止部材貼合工程 502は、帯状可撓性支持体 7b上に形成された有機 EL素子の 位置に合わせ配置されたァライメントマーク 7d〜 7fを検出するァライメントマーク検出 工程 502eと、有機 EL素子の位置に合わせシール剤を塗設するシール剤塗設工程 502aと、帯状の可撓性封止部材 502blの供給工程 502bと、帯状の可撓性封止部 材 502blを貼合する貼合工程 502dとを有している。供給工程 502bにはロール状の 可撓性封止部材 502b2が供給され帯状の可撓性封止部材 502blが繰り出される様 になって!/、る。ァライメントマーク検出工程 502eはァライメントマーク検出装置 502el とァライメントマーク検出装置 502elを配設する筐体 502e2とを有して 、る。ァラィメ ントマーク検出装置 502elは予め帯状可撓性支持体 7b上に配設されたァライメント マーク 7d7fの位置に合わせ配設されて 、る。ァライメントマーク検出装置 502el により検出された情報は制御工程 (不図示)に入力され、シール剤塗設工程 502aの シール剤塗設装置 502alを制御するようになっている。ァライメントマーク検出装置 5 02elとしては特に限定はなぐ例えば CCDカメラによる画像認識を使用することが 可能である。シール剤塗設工程 502aはァライメントマーク検出工程 502eからの情報 に従って、有機 EL素子に対して発光領域又は発光領域の周辺にシール剤を塗設 するシール剤塗設装置 502alとシール剤塗設装置 502alを配設する筐体 502a2と を有している。シール剤塗設装置 502alの配設する数は特に限定はないが、帯状可 橈性支持体 7bの幅方向に配設された有機 EL素子の数に合わせて配設することが 好ましい。本図は、有機 EL素子の数に合わせ 3台のシール剤塗設装置 502alを配 設した場合を示している。筐体 502a2は駆動装置 (不図示)により X— y方向(図中の 矢印方向)の移動が可能となっている。
[0077] 貼合工程 502dは本体 502dlと可撓性支持体と接触するロール 502d2と可撓性封 止咅材 502b: 則と接虫するローノレ 502d3とを有し、ローノレ 502d2とローノレ 502d3と で有機 EL素子が形成された帯状可撓性支持体 7cと可撓性封止部材 502blとを圧 着挟持することで可撓性封止部材を貼合する様になって 、る。可撓性封止部材 502 blの幅は帯状可撓性支持体 7bの幅と同じであることが好ましい。他の符号は図 2と 同義である。尚、本図ではシール剤塗設装置 502alへのシール剤の供給系は省略 してある。可撓性封止部材 502blのシール剤を介して第 2電極を含む陰極層上への 貼合は、酸素、水分の排除、貼合部内への気泡混入等を考慮し、 10Pa〜l X 10"5P aの減圧条件及び、酸素濃度 lOppm以下、水分濃度 lOppm以下の環境下で行わ れることが好ましい。
[0078] シール剤を塗設する方法は特に限定はなぐ例えばスプレー方式、押出しノズル方 式、スクリーン印刷方式、シルク方式等通常の接着剤の塗設に使用されている方法 が挙げられる。使用するシール剤の粘度は、塗布均一性、塗れ広がり防止等を考慮 し、 40Pa' s〜400Pa' sであることが好ましい。 [0079] 本発明に係わる液状シール剤としては、アクリル酸系オリゴマー、メタクリル酸系オリ ゴマーの反応性ビニル基を有する光硬化及び熱硬化型シール剤、 2 シァノアクリ ル酸エステルなどの湿気硬化型等のシール剤、エポキシ系などの熱及び化学硬化 型(二液混合)等のシール剤、カチオン硬化タイプの紫外線硬化型エポキシ榭脂シ 一ル剤等を挙げることが出来る。液状シール剤には必要に応じてフィラーを添加する ことが好ましい。フィラーの添加量としては、接着力を考慮し、 5体積%〜70体積% が好ましい。又、添加するフイラ一の大きさは、接着力、貼合圧着後のシール剤厚み 等を考慮し、: m〜: LOO mが好ましい。添加するフイラ一の種類としては特に限 定はなぐ例えばソーダガラス、無アルカリガラス、或いはシリカ、二酸化チタン、酸ィ匕 アンチモン、チタ-ァ、アルミナ、ジルコユアや酸化タングステン等の金属酸化物等 が挙げられる。
[0080] 図 7は図 2に示される打ち抜き切断工程の拡大概略斜視図である。
[0081] 図中、 503bは予め帯状可撓性支持体に付けられている各ァライメントマーク 7d〜 7fを検出するァライメントマーク検出工程を示す。ァライメントマーク検出工程 503b はァライメントマーク検出装置 503blとァライメントマーク検出装置 503blを配設する 筐体 503b2とを有している。ァライメントマーク検出装置 503blとしては特に限定は なぐ例えば CCDカメラによる画像認識手段を使用することが可能である。ァライメン トマーク検出装置 503blにより検出された情報は制御工程 (不図示)に入力され、打 ち抜き切断装置 503aを制御するようになって 、る。打ち抜き切断装置 503aは帯状 可撓性支持体上に貼合された可撓性封止部材 502bの不要部分を打ち抜くための 打ち抜き刃 503alを配設した上型 503a2と、上型 503a2を上下方向(図中の矢印方 向)への作動を可能にする 4本のガイドポスト 503a4と、帯状可撓性支持体を載置す る載置面 503a5 (打ち抜き刃 503alの受け部を兼ねる)とを有する下型 503a6とを有 している。 503a6は上型 503a2を上下方向(図中の矢印方向)に動かす駆動源を示 す。打ち抜き刃 503alの数は、帯状可撓性支持体に形成されている有機 EL素子の 数と、一回に打ち抜く数、打ち抜き切断装置 503aの大きさ等から適宜選択すること が可能である。本図は、一回に打ち抜く数が 6個の場合を示している。打ち抜き切断 装置 503aは封止部材 502bの不要部分のみを打ち抜くため、ハーフカット方式とな つている。封止部材 502blの不要部分のみの打ち抜きは、打ち抜き刃 503alが取り 付けられている上型 503a2をガイドポスト 503a4に沿って移動し、打ち抜き刃 503al の下死点を調整することで可能となっている。 502bl lは帯状可撓性支持体上に貼 合された部分が除かれ不要部分 (抜きカス)の封止部材を示し、巻き取られ除去され る。一方不要の封止部材を除去し、複数の有機 EL素子を形成した帯状可撓性支持 体は巻き取られロール状帯状可撓性支持体 7cとして回収される。
[0082] 図 8は図 3の Vで示される部分の拡大概略図である。図 8の(a)は図 3の Vで示され る切断工程の拡大概略斜視図である。図 8の(b)は図 8の(a)の Wで示す部分の拡 大概略平面図である。図 8の(c)は図 8の(b)の B に沿った概略断面図である。
[0083] 切断工程 11は、封止層が形成された後、帯状可撓性支持体 7上に形成された複 数の有機 EL素子を単独に分離するために切断する工程であり、切断工程 11に送ら れてくる帯状可撓性支持体 7上にはガスノリア膜 701、第 1電極 702、正孔輸送層 7 03、発光層 704、電子注入層 705、第 2電極 706、封止層 707とがこの順番で形成 された有機 EL素子のブロックが 3列 7— 1〜7— 3で連続的に形成された状態となつ ている。
[0084] 切断工程 11はスリツター 11aと、切断機 l ibと、回収工程 11cとを有している。スリツ ター 11aは、回転軸 l la2に取り付けられた上刃 l lalと、回転軸 l la3に取り付けら れた下刃 1 la4とを有し、帯状可撓性支持体 7上に形成された複数の有機 EL素子を 各列 7— 1〜7— 3毎に細幅帯状に切断することが可能となっている。尚、上刃 l lal と下刃 l la4とで 1組の切断刃を構成している。上刃 l lalと、下刃 l la4との配置は 帯状可撓性支持体 7上に形成された複数の有機 EL素子の列に合わせ、適宜変更 することが可能となっており、本図は 4組の切断刃が配置された場合を示して 、る。
[0085] 切断機 l ibは、検知工程 l lblと切断刃 l lb2を有する本体 (不図示)とを有してい る。検知工程 l lblはセンサ l lbl2と、センサ l lbl2を配設した筐体 l lbl3とを有し ている。センサ l lbl2は、帯状可撓性支持体 7上に付けられた各ァライメントマーク 7 d〜7fに対応して筐体 l lbl3に配設されており、センサ l lbl2により各ァライメントマ ーク 7c!〜 7fを検知した情報に従って切断刃 1 lb2が駆動し、スリツター 1 laで各列 7 1〜7— 3毎に細幅帯状に切断された状態の帯状可撓性支持体を各ァライメントマ ーク毎に切断することで、個別の有機 EL素子が作製され、回収工程 11cで回収され る。
[0086] 図 2〜図 8示す有機 EL素子を作製する製造装置を使用し、有機化合物層の形成 禁止領域にマスキング部材を貼合し、有機化合物層形成後に剥離した後、電子注入 層、第 2電極、封止層を順次積重する方法で有機 EL素子を製造することで次の効果 が得られる。 1)再剥離可能なマスキング部材を使用することで、有機化合物層の画 素パター-ング塗布が不要となりロールツーロール方式の有機 EL素子の高生産効 率での生産が可能となった。 2)基板上の有機 EL素子の画素の大きさに対する対応 が容易であり、品種切り換えが短時間で行うことが可能となり、生産効率の向上が可 能となった。 3)再剥離可能なマスキング部材を使用することで、外部接続用端子を 形成する外部接続用端子形成部分の品質が安定したことに伴い有機 EL素子の品 質安定性が向上し高生産効率での生産が可能となった。 4)複数の有機 EL素子を形 成した母材力もの多数個取りが可能となり生産効率の向上が可能となった。 5)ロー ルツ一ロール方式のような生産性の高い有機 EL素子生産設備 (照明用生産設備) の提供が可能となった。有機 EL素子の高生産効率での生産が可能となった。
[0087] 以下、本発明に係わる有機 EL素子を構成しているガスノリア層、第 1電極、正孔輸 送層、発光層、電子注入層、第 2電極、封止層等に付き説明する。
[0088] 本発明に係わるガスバリア層と第 1電極が既に形成された帯状支持体に使用する 帯状可支持体としては、透明榭脂フィルムが挙げられる。榭脂フィルムとしては、例え ば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリェチ レン、ポリプロピレン、セロファン、セノレロースジアセテート、セノレローストリアセテート、 セノレロースアセテートブチレート、セノレロースアセテートプロピオネート、セノレロースァ セテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの 誘導体、ポリ塩化ビ-リデン、ポリビュルアルコール、ポリエチレンビュルアルコール、 シンジォタクティックポリスチレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルぺ ンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ-レン スルフイド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、 フッ素榭脂、ナイロン、ポリメチルメタタリレート、アクリル或いはポリアリレート類、ァー トン (商品名 JSR社製)或 ヽはァペル (商品名三井化学社製) t 、つたシクロォレフィ ン系榭脂等が挙げられる。
[0089] 厚さは特に限定されないが、取り扱い性、搬送性等を考慮し、 0. 05mm〜: Lmmの 範囲が好ましい。帯状支持体の幅は特に限定はなぐ使用するエレクト口ルミネッセン ス表示装置の画面サイズに応じて適宜に選択することが可能である。
[0090] 帯状支持体には、添加剤等が含有されていてもよぐ例えば電磁波遮蔽透明板が プラズマディスプレイパネルの前面に装着される場合には、パネルの前面から発生 する近赤外線を吸収させるための近赤外線吸収剤を含有させもよ ヽし、ディスプレイ の見やすさを向上させるために、染料、顔料等の着色剤により着色されていてもよい
[0091] 帯状可撓性支持体として使用する榭脂フィルムの表面にはガスバリア膜が必要に 応じて形成されることが好ましい。ガスノ リア膜としては無機物、有機物の被膜又はそ の両者のハイブリッド被膜が挙げられる。ガスノリア膜の特性としては、 JIS K 712 9— 1992に準拠した方法で測定された、水蒸気透過度(25±0. 5°C、相対湿度(9 0±2) %RH)が 0. 01gZ(m2' 24h)以下であることが好ましい。更には、 JIS K 7 126- 1987に準拠した方法で測定された酸素透過度力 Ιθ ηΐΖ (m2 · 24hr · MP a)以下、 JIS K 7129— 1992に準拠した方法で測定された、水蒸気透過度(25士 0. 5°C、相対湿度(90± 2) %RH)が、 10— ¾Z(m2' 24h)以下の高バリア性フィルム であることが好ましい。
[0092] バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入 を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化 珪素等を用いることが出来る。更に該膜の脆弱性を改良するためにこれら無機層と 有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積 層順については特に制限はないが、両者を交互に複数回積層させることが好ましい 。 ノ リア膜の形成方法については、特に限定はなぐ例えば真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー 法、熱 CVD法、コーティング法等を用いることが出来る力 特開 200 4— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましい。
[0093] 第 1電極としては、仕事関数の大きい (4eV以上)金属、合金、電気伝導性化合物 及びこれらの混合物を電極物質とするものが好ましく用いられる。この様な電極物質 の具体例としては Au等の金属、 Cul、インジウムチンォキシド(ITO)、 Sn02、 ZnO 等の導電性透明材料が挙げられる。又、 IDIXO (In203 'ZnO)等非晶質で透明導 電膜を作製可能な材料を用いてもょ ヽ。陽極はこれらの電極物質を蒸着やスパッタリ ング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望の形状のパター ンを形成してもよく、或いはパターン精度をあまり必要としない場合は(100 m以上 程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してバタ ーンを形成してもよい。或いは、有機導電性ィ匕合物のように塗布可能な物質を用いる 場合には、印刷方式、コーティング方式等湿式成膜法を用いることも出来る。この陽 極より発光を取り出す場合には、透過率を 10%より大きくすることが望ましぐ又陽極 としてのシート抵抗は数百 ΩΖ口以下が好ましい。更に膜厚は材料にもよるが、通常 1 Onm〜 1000nm、好ましくは 1 Onm〜 200nmの範囲で選ばれる。
[0094] 第 1電極と発光層又は正孔輸送層の間、正孔注入層(陽極バッファ一層)を存在さ せてもよい。正孔注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層 間に設けられる層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'エス社発行)」の第 2編第 2章「電極材料」(123— 166頁)に詳細に記載 されている。陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9— 2 60062号公報、同 8— 288069号公報等にもその詳細が記載されており、具体例と して、銅フタロシアニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに 代表される酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェ メラルディン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が 挙げられる。
[0095] 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味 で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数 層設けることが出来る。正孔輸送材料としては、正孔の注入又は輸送、電子の障壁 性の何れかを有するものであり、有機物、無機物の何れであってもよい。例えば、トリ ァゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアル カン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリ ールァミン誘導体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアント ラセン誘導体、フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン 誘導体、ァ-リン系共重合体、又導電性高分子オリゴマー、特にチォフェンオリゴマ 一等が挙げられる。
正孔輸送材料としては上記のものを使用することが出来る力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好まし ヽ。芳香族第 3級ァミン化合物及びスチリルァミン化合物の代 表例としては、 N, N, N' , N' —テトラフエ-ルー 4, 4' —ジァミノフエ-ル; N, N ' —ジフエ-ル一 N, —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン (TPD) ; 2, 2 ビス(4 ジ— p トリルァミノフエ-ル)プロパン; 1, 1 —ビス(4—ジ一 p トリルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル 4, 4' —ジアミノビフエ-ル; 1, 1—ビス(4 ジ一 p トリルァミノフエ-ル ) - 4—フエ-ルシクロへキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエ- ルメタン;ビス(4—ジ一 p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエニル — N, N' —ジ(4—メトキシフエ-ル)一 4, 4' —ジアミノビフエ-ル; N, N, Ν' , N ' ーテトラフエ二ルー 4, 4' ージアミノジフエニルエーテル; 4, 4' ビス(ジフエ二 ルァミノ)クオードリフエ-ル; N, N, N—トリ(p—トリル)ァミン; 4—(ジ—p—トリルアミ ノ)— 4' —〔4— (ジ— p トリルァミノ)スチリル〕スチルベン; 4— N, N—ジフエ-ル アミノー(2 ジフエ-ルビ-ル)ベンゼン; 3—メトキシー^ N, N ジフエ-ルアミ ノスチルベンゼン; N—フエ-ルカルバゾール、更には米国特許第 5, 061, 569号明 細書に記載されている 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス〔N— (1—ナフチル)—N フエ-ルァミノ〕ビフエ-ル(NPD)、特開平 4— 30 8688号公報に記載されているトリフエ-ルァミンユニットが 3つスターバースト型に連 結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル)一 N フエ-ルァミノ〕トリフエ ニルァミン(MTDATA)等が挙げられる。 [0097] 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした 高分子材料を用いることも出来る。又、 P型 Si、 p型 SiC等の無機化合物も正孔 注入材料、正孔輸送材料として使用することが出来る。
[0098] 又、特開平 11— 251067号公報、 J. Huang et. al.著文献 (Applied Physics
Letters 80 (2002) , p. 139)に記載されているような所謂 p型正孔輸送材料を用 いることも出来る。本発明においては、より高効率の発光素子が得られることから、こ れらの材料を用いることが好まし 、。
[0099] 正孔輸送層の膜厚については特に制限はないが、通常は 5ηπ!〜 5 μ m程度、好ま しくは 5nm〜200nmである。この正孔輸送層は上記材料の 1種又は 2種以上からな る一層構造であってもよい。又、不純物をドープした p性の高い正孔輸送層を用いる ことも出来る。その例としては、特開平 4 297076号、特開 2000— 196140号、特 開 2001— 102175号、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたもの力 S 挙げられる。この様な p性の高い正孔輸送層を用いることが、より低消費電力の有機 EL素子を作製することが出来るため好ま ヽ。
[0100] 本発明において、発光層とは青色発光層、緑色発光層、赤色発光層を指す。発光 層を積層する場合の積層順としては、特に制限はなぐ又各発光層間に非発光性の 中間層を有していてもよい。本発明においては、少なくとも 1つの青発光層が、全発 光層中最も陽極に近い位置に設けられていることが好ましい。又、発光層を 4層以上 設ける場合には、陽極に近い順から、例えば青色発光層 Z緑色発光層 Z赤色発光 層 Z青色発光層、青色発光層 Z緑色発光層 Z赤色発光層 Z青色発光層 Z緑色発 光層、青色発光層 Z緑色発光層 Z赤色発光層 Z青色発光層 Z緑色発光層 Z赤色 発光層のように青色発光層、緑色発光層、赤色発光層を順に積層することが、輝度 安定性を高める上で好ましい。発光層を多層にすることで白色素子の作製が可能で ある。
[0101] 発光層の膜厚の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を 考慮し、通常 2ηπ!〜 5 μ m、好ましくは 2ηπ!〜 200nmの範囲で選ばれる。更に 10η m〜20nmの範囲にあるのが好ましい。膜厚を 20nm以下にすると電圧面のみならず 、駆動電流に対する発光色の安定性が向上する効果があり好ましい。個々の発光層 の膜厚は、好ましくは 2nm〜100nmの範囲で選ばれ、 2nm〜20nmの範囲にある のが更に好ましい。青、緑、赤の各発光層の膜厚の関係については、特に制限はな いが、 3発光層中、青発光層(複数層ある場合はその総和)が最も厚いことが好まし い。
[0102] 発光層は発光極大波長が各々 430nm〜480nm、 510nm〜550nm、 600nm〜 640nmの範囲にある発光スペクトルの異なる少なくとも 3層以上の層を含む。 3層以 上であれば、特に制限はない。 4層より多い場合には、同一の発光スペクトルを有す る層が複数層あってもよい。発光極大波長が 430nm〜480nmにある層を青発光層 、 510ηπ!〜 550nmにある層を緑発光層、 600nm〜640nmの範囲にある層を赤発 光層と言う。又、前記の極大波長を維持する範囲において、各発光層には複数の発 光性化合物を混合してもよい。例えば、青発光層に、極大波長 430ηπ!〜 480nmの 青発光性化合物と、同 510ηπ!〜 550nmの緑発光性ィ匕合物を混合して用いてもよい
[0103] 発光層に使用する材料は特に限定はなぐ例えば、株式会社 東レリサーチセンタ 一 フラットパネルディスプレイの最新動向 ELディスプレイの現状と最新技術動向 228〜332頁に記載されている如き各種材料が挙げられる。
[0104] 発光層は、電極又は電子注入層、正孔輸送層から注入されてくる電子及び正孔が 再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣 接層との界面であってもよい。
[0105] 使用する正孔輸送層形成用塗布液、及び発光層形成用塗布液は、少なくとも 1種 の有機化合物材料と少なくとも 1種の溶媒とを有し、塗布時のハジキ、塗布ムラ等を 考慮し、表面張力が 15 X 10_3N/m〜55 X 10_3N/mであることが好ましい。
[0106] 本図で示される有機 EL素子の構成層である正孔輸送層及び発光層を形成するェ 程は、正孔輸送層及び発光層の性能維持、異物付着に伴う故障欠陥の防止等を考 慮し、露点温度— 20°C以下、且つ JISB 9920に準拠し、測定した清浄度がクラス 5 以下で、且つ、乾燥工程を除き 10°C〜45°Cの大気圧条件下で形成されることが好 ましい。本発明において清浄度がクラス 5以下とは、クラス 3〜クラス 5を示す。
[0107] 電子注入層とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送 層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有 機層間に設けられる層のことで、「有機 EL素子とその工業化最前線(1998年 11月 3 0日ェヌ'ティー'エス社発行)」の第 2編第 2章「電極材料」(123〜 166頁)に詳細に 記載されている。電子注入層(陰極バッファ一層)は、特開平 6— 325871号公報、 同 9— 17574号公報、同 10— 74586号公報等にもその詳細が記載されており、具 体的にはストロンチウムやアルミニウム等に代表される金属バッファ一層、フッ化リチ ゥムに代表されるアルカリ金属化合物バッファ一層、フッ化マグネシウムに代表される アルカリ土類金属化合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物ノッフ ァ一層等が挙げられる。上記バッファ一層(注入層)はごく薄い膜であることが望ましく
、素材にもよるがその膜厚は 0. lnm〜5 mの範囲が好ましい。
[0108] 他に発光層側に隣接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料 を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していれ ばよぐその材料としては従来公知の化合物の中から任意のものを選択して用いるこ とが出来、例えば、ニトロ置換フルオレン誘導体、ジフエ-ルキノン誘導体、チォビラ ンジォキシド誘導体、カルポジイミド、フレオレニリデンメタン誘導体、アントラキノジメ タン及びアントロン誘導体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォ キサジァゾール誘導体にぉ 、て、ォキサジァゾール環の酸素原子を硫黄原子に置 換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有す るキノキサリン誘導体も、電子輸送材料として用いることが出来る。更にこれらの材料 を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用い ることも出来る。
[0109] 又、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Ga又は Pbに置き 替わった金属錯体も、電子輸送材料として用いることが出来る。その他、メタルフリー もしくはメタルフタロシアニン、又はそれらの末端がアルキル基ゃスルホン酸基等で 置換されているものも、電子輸送材料として好ましく用いることが出来る。又、ジスチリ ルビラジン誘導体も、電子輸送材料として用いることが出来るし、正孔注入層、正孔 輸送層と同様に、 n型— Si、 n型— SiC等の無機半導体も電子輸送材料として用いる ことが出来る。電子輸送層の膜厚については特に制限はないが、通常は 5ηπ!〜 5 m程度、好ましくは 5nm〜200nmである。電子輸送層は上記材料の 1種又は 2種以 上力もなる一層構造であってもよ!/、。
[0110] 又、不純物をドープした n性の高い電子輸送層を用いることも出来る。その例として は、特開平 4— 297076号公報、特開平 10— 270172号公報、特開 2000— 19614 0号公報、特開 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004)等に 記載されたものが挙げられる。この様な η性の高い電子輸送層を用いることがより低 消費電力の素子を作製することが出来るため好ましい。電子輸送層は上記電子輸送 材料を、例えば、湿式塗布、真空蒸着法等の公知の方法により、薄膜ィ匕することによ り形成することも出来る。
[0111] 第 2電極としては、仕事関数の小さ!/、 (4eV以下)金属 (電子注入性金属と称する) 、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。 この様な電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金、マグネシ ゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Z アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ- ゥム (Al O )混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が挙
2 3
げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子注 入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、 例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al チウム
2 o )混合物、リ
3 Zァ ルミ-ゥム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着や スパッタリング等の方法により薄膜を形成させることにより、作製することが出来る。又
、陰極としてのシート抵抗は数百 ΩΖ口以下が好ましぐ膜厚は通常 10ηπι〜5 /ζ πι 、好ましくは 50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、 有機 EL素子の第 1電極(陽極)又は第 2電極 (陰極)の何れか一方が、透明又は半 透明であれば発光輝度が向上し好都合である。
[0112] 又、第 2電極に上記金属を Inn!〜 20nmの膜厚で作製した後に、第 1電極の説明 で挙げた導電性透明材料をその上に作製することで、透明又は半透明の第 2電極( 陰極)を作製することが出来、これを応用することで第 1電極 (陽極)と第 2電極 (陰極) の両方が透過性を有する素子を作製することが出来る。
[0113] 本発明の有機 EL素子を構成している発光層には、発光層の発光効率を高くする ために公知のホスト化合物と公知のリン光性化合物(リン光発光性化合物とも言う)を 含有することが好ましい。
[0114] ホストイ匕合物とは、発光層に含有される化合物の内で、その層中での質量比が 20 %以上であり、且つ室温(25°C)においてリン光発光のリン光量子収率力 0. 1未満 の化合物と定義される。好ましくはリン光量子収率が 0. 01未満である。ホスト化合物 を複数種併用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を 調整することが可能であり、有機 EL素子を高効率ィ匕することが出来る。又、リン光性 化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意 の発光色を得ることが出来る。リン光性化合物の種類、ドープ量を調整することで白 色発光が可能であり、照明、バックライトへの応用も出来る。
[0115] これらのホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の 長波長化を防ぎ、尚且つ高 Tg (ガラス転移温度)である化合物が好ましい。公知のホ ストィ匕合物としては、 ί列えば、特開 2001— 257076号公報、同 2002— 308855号 公報、同 2001— 313179号公報、同 2002— 319491号公報、同 2001— 357977 号公報、同 2002— 334786号公報、同 2002— 8860号公報、同 2002— 334787 号公報、同 2002— 15871号公報、同 2002— 334788号公報、同 2002— 43056 号公報、同 2002— 334789号公報、同 2002— 75645号公報、同 2002— 33857 9号公報、同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141 173号公報、同 2002— 352957号公報、同 2002— 203683号公報、同 2002— 3 63227号公報、同 2002— 231453号公報、同 2003— 3165号公報、同 2002— 2 34888号公報、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002 — 302516号公報、同 2002— 305083号公報、同 2002— 305084号公報、同 20 02— 308837号公報等に記載の化合物が挙げられる。
[0116] 複数の発光層を有する場合、これら各層のホスト化合物の 50質量%以上が同一の 化合物であることが、有機層全体に渡って均質な膜性状を得やすいことから好ましく 、更にはホストイ匕合物のリン光発光エネルギーが 2. 9eV以上であること力 ドーパン トからのエネルギー移動を効率的に抑制し、高輝度を得る上で有利となることからより 好ましい。リン光発光エネルギーとは、ホストイ匕合物を基板上に lOOnmの蒸着膜のフ オトルミネッセンスを測定し、そのリン光発光の 0— 0バンドのピークエネルギーを言う
[0117] ホストイ匕合物は、有機 EL素子の経時での劣化 (輝度低下、膜性状の劣化)、光源と しての巿場-一ズ等を考慮し、リン光発光エネルギーが 2. 9eV以上且つ Tgが 90°C 以上のものであることが好ましい。すなわち、輝度と耐久性の両方を満足するために は、リン光発光エネルギーが 2. 9eV以上且つ Tgが 90°C以上のものであることが好 ましい。 Tgは、更に好ましくは 100°C以上である。
[0118] リン光性ィ匕合物(リン光発光性化合物)とは、励起三重項力 の発光が観測される 化合物であり、室温(25°C)にてリン光発光する化合物であり、リン光量子収率が、 25 °Cにおいて 0. 01以上の化合物である。先に説明したホスト化合物と合わせ使用する ことで、より発光効率の高い有機 EL素子とすることが出来る。
[0119] 本発明に係るリン光性ィ匕合物は、リン光量子収率は好ましくは 0. 1以上である。上 記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に 記載の方法により測定出来る。溶液中でのリン光量子収率は種々の溶媒を用いて測 定出来る力 本発明に用いられるリン光性ィ匕合物は、任意の溶媒の何れかにおいて 上記リン光量子収率が達成されればょ ヽ。
[0120] リン光性ィ匕合物の発光は原理としては 2種挙げられ、 1つはキャリアが輸送されるホ ストィ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、この エネルギーをリン光性ィ匕合物に移動させることでリン光性ィ匕合物力 の発光を得ると いうエネルギー移動型、もう一つはリン光性ィ匕合物がキャリアトラップとなり、リン光性 化合物上出来ャリアの再結合が起こりリン光性ィ匕合物からの発光が得られるというキ ャリアトラップ型であるが、何れの場合においても、リン光性ィ匕合物の励起状態のエネ ルギ一はホストイ匕合物の励起状態のエネルギーよりも低いことが条件である。
[0121] リン光性ィ匕合物は、有機 EL素子の発光層に使用される公知のものの中から適宜選 択して用いることが出来る。リン光性ィ匕合物としては、好ましくは元素の周期表で 8族 10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、ォ スミゥム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも 最も好ま U、のはイリジウム化合物である。
[0122] 本発明においては、リン光性ィ匕合物のリン光発光極大波長としては特に制限される ものではなぐ原理的には中心金属、配位子、配位子の置換基等を選択することで 得られる発光波長を変化させることが出来る。
[0123] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ノヽ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を C IE色度座標に当て嵌めた時の色で決定される。
[0124] 本発明で言うところの白色素子とは、 2度視野角正面輝度を上記方法により測定し た際に、 1000cd/m2での CIE1931 表色系における色度力 ¾ =0. 33±0. 07、 Y=0. 33±0. 07の領域内にあることを言う。
[0125] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 5%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Ζ有機 EL素子に流した電子数 X 100である。
[0126] 又、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子力 の 発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよ!ヽ。色変 換フィルターを用いる場合においては、有機 EL素子の発光の maxは 480nm以下 が好ましい。
[0127] 本発明の有機 EL素子は、発光層で発生した光を効率よく取り出すために以下に示 す方法を併用することが好ましい。有機 EL素子は、空気よりも屈折率の高い (屈折率 が 1. 7〜2. 1程度)層の内部で発光し、発光層で発生した光の内 15%から 20%程 度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度 Θで界面 (透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に 取り出すことが出来な 、ことや、透明電極な!/、し発光層と透明基板との間で光が全反 射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に 逃げるためである。
[0128] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (米国特許第 4, 774, 435号 明細書)。基板に集光性を持たせることにより効率を向上させる方法 (特開昭 63— 31 4795号公報)。素子の側面等に反射面を形成する方法 (特開平 1 220394号公 報)。基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成 する方法 (特開昭 62— 172691号公報)。基板と発光体の間に基板よりも低屈折率 を持つ平坦層を導入する方法 (特開 2001— 202827号公報)。基板、透明電極層 や発光層の何れかの層間 (含む、基板と外界間)に回折格子を形成する方法 (特開 平 11— 283751号公報)等がある。
[0129] 本発明においては、これらの方法を有機 EL素子と組合せて用いることが出来る力 基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、或いは基板 、透明電極層や発光層の何れかの層間 (含む、基板と外界間)に回折格子を形成す る方法を好適に用いることが出来る。本発明においては、これらの手段を組合せるこ とにより、更に高輝度或いは耐久性に優れた素子を得ることが出来る。
[0130] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が 高くなる。低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシゥ ム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に 1. 5〜1. 7程度 であるので、低屈折率層は、屈折率がおよそ 1. 5以下であることが好ましい。又、更 に 1. 35以下であることが好ましい。低屈折率媒質の厚みは、媒質中の波長の 2倍以 上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバ ネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効 果が薄れるからである。全反射を起こす界面もしくは何れかの媒質中に回折格子を 導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、 回折格子が 1次の回折や、 2次の回折といった所謂ブラッグ回折により、光の向きを 屈折とは異なる特定の向きに変えることが出来る性質を利用して、発光層から発生し た光の内、層間での全反射等により外に出ることが出来ない光を、何れかの層間もし くは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ 、光を外に取り出そうとするものである。導入する回折格子は、二次元的な周期屈折 率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダ ムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な 1次 元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど 上がらない。し力しながら、屈折率分布を二次元的な分布にすることにより、あらゆる 方向に進む光が回折され、光の取り出し効率が上がる。
[0131] 回折格子を導入する位置としては前述の通り、何れ力の層間もしくは、媒質中 (透 明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が 望ましい。この時、回折格子の周期は、媒質中の光の波長の約 1Z2〜3倍程度が好 ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ノ、ユカムラチス 状等、 2次元的に配列が繰り返されることが好ましい。
[0132] 更に、本発明の有機 EL素子は、発光層で発生した光を効率よく取り出すために、 基板の光取り出し側に、例えばマイクロレンズアレイ上の構造を設けるようにカ卩ェした り、或いは、所謂集光シートと組合せることにより、特定方向、例えば素子発光面に対 し正面方向に集光することにより、特定方向上の輝度を高めることが出来る。マイクロ レンズアレイの例としては、基板の光取り出し側に一辺が 30 μ mでその頂角が 90度 となるような四角錐を 2次元に配列する。一辺は 10 /z m〜: LOO /z mが好ましい。これ より小さくなると回折の効果が発生して色付き、大き過ぎると厚みが厚くなり好ましくな い。
[0133] 集光シートとしては、例えば液晶表示装置の LEDバックライトで実用化されているも のを用いることが可能である。この様なシートとして例えば、住友スリーェム社製輝度 上昇フィルム (BEF)等を用いることが出来る。プリズムシートの形状としては、例えば 基材に頂角 90度、ピッチ 50 111の 状のストライプが形成されたものであってもよい し、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状で あってもよい。又、発光素子力もの光放射角を制御するために光拡散板'フィルムを、 集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)等を用 、ることが出来る。
[0134] 図 2に示される封止層形成工程で使用される封止部材としては、榭脂基材とバリア 層とを有する多層フィルムが使用されている。榭脂基材としては特に限定はなぐ例 えばエチレンテトラフルォロェチル共重合体(ETFE)、高密度ポリエチレン(HDPE) 、延伸ポリプロピレン(OPP)、ポリスチレン(PS)、ポリメチルメタタリレート(PMMA)、 延伸ナイロン(ONy)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポ リイミド、ポリエーテルスチレン (PES)など一般の包装用フィルムに使用されている熱 可塑性榭脂フィルム材料を使用することが出来る。又、これら熱可塑性榭脂フィルム は、必要に応じて異種フィルムと共押出しで作った多層フィルム、延伸角度を変えて 貼り合せて作った多層フィルム等も当然使用出来る。更に必要とする物性を得るため に使用するフィルムの密度、分子量分布を組合せて作ることも当然可能である。
[0135] ノ リア層としては、無機蒸着膜、金属箔が挙げられる。無機蒸着膜としては薄膜ノヽ ンドブック p879〜p901 (日本学術振興会)、真空技術ハンドブック p502〜p509、 p 612、 p810 (日刊工業新聞社)、真空ハンドブック増訂版 pl32〜pl34 (ULVAC 日本真空技術 K. K)に記載されている如き無機膜が挙げられる。例えば、 In、 Sn、 P b、 Au、 Cu、 Ag、 Al、 Ti、 Ni等の金属、 MgO、 SiO、 SiO 、 Al O 、 GeO、 NiO、 Ca
2 2 3
0、 BaO、 Fe O 、 Y O 、 TiO 、 Cr O 、 Si O (x= l、 y= l. 5〜2. 0)、 Ta O 、 ZrN
2 3 2 3 2 2 3 x y 2 3
、 SiC、 TiC、 PSG、 Si N、単結晶 Si、アモルファス Si、 W、等が用いられる。
3 4
[0136] 又、金属箔の材料としては、例えばアルミニウム、銅、ニッケルなどの金属材料や、 ステンレス、アルミニウム合金などの合金材料を用いることが出来る力 加工性ゃコス トの面でアルミニウムが好ましい。膜厚は、 1 μ m〜100 μ m程度、好ましくは 10 μ m 〜50 m程度が望ましい。
[0137] 更に、ノ リア層の上にシーラント層を設けることが好ましい。シーラント層として ίお IS
K 7210規定のメルトフローレートが 5gZ 1 Omin〜 20gZ 1 Ominである熱可塑性 榭脂フィルムが好ましぐ更に好ましくは、 6gZl0min〜15gZl0min以下の熱可 塑性榭脂フィルムを用いることが好ましい。これは、メルトフローレートが 5 (gZl0min )以下の榭脂を用いると、各電極の引き出し電極の段差により生じる隙間部を完全に 埋めることが出来ず、 20 (g/10min)以上の榭脂を用いると引っ張り強さゃ耐ストレ スクラッキング性、加工性などが低下するためである。熱可塑性榭脂フィルムは、上 記数値を満たすものであれば特に限定されるものではな 、が、例えば機能性包装材 料の新展開株式会社東レリサーチセンター記載の高分子フィルムである低密度ポリ エチレン(LDPE)、 HDPE、線状低密度ポリエチレン(LLDPE)、中密度ポリェチレ ン、未延伸ポリプロピレン(CPP)、 OPP、 ONy、 PET、セロファン、ポリビュルアルコ ール(PVA)、延伸ビニロン(OV)、エチレン 酢酸ビュル共重合体(EVOH)、ェチ レン プロピレン共重合体、エチレン アクリル酸共重合体、エチレンーメタクリル酸 共重合体、塩ィ匕ビユリデン (PVDC)等の使用が可能である。これらの熱可塑性榭脂 フィルムの中で特に LDPE、 LLDPE及びメタ口セン触媒を使用して製造した LDPE 、 LLDPE,又、これらフィルムと HDPEフィルムの混合使用したフィルムを使用するこ とが好ましい。
[0138] 封止層を形成するのに使用する可撓性封止部材は、製造時の取り扱いを容易に するために、榭脂基材の上にバリア層(必要に応じて保護層)を形成し積層フィルム 状にした状態で使用することが好ましい。積層フィルムの製造方法としては、無機物 を蒸着した熱可塑性榭脂フィルム及びアルミニウム箔をラミネートした熱可塑性榭脂 フィルムの無機物層の上に一般的に知られている各種の方法、例えばウエットラミネ ート法、ドライラミネート法、ホットメルトラミネート法、押出しラミネート法、熱ラミネート 法を利用して作ることが可能である。
[0139] 封止層の形成に可撓性封止部材を使用する場合、接着剤と接触する側がバリア層
(保護層がある場合は保護層)であることが好ましい。
[0140] 図 3示される封止層形成工程 10で、膜を形成する材料としては、水分や酸素など 素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよぐ例え ば、酸化珪素、二酸化珪素、窒化珪素などを用いることが出来る。更に、膜の脆弱性 を改良するためにこれら無機層と有機材料力もなる層の積層構造を持たせることが 好ましい。これらの膜の形成方法については、特に限定はなぐ例えば真空蒸着法、 スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオン ビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズ マ CVD法、レーザー CVD法、熱 CVD法、コーティング法などを用いることが出来る 実施例
[0141] 以下、実施例を挙げて本発明の具体的な効果を示すが、本発明の態様はこれに 限定されるものではない。
[0142] 実施例 1
(帯状可撓性支持体の準備)
厚さ 200 μ m、幅 250mmのポリエーテルサルフォン(住友ベークライト社製フィルム 、以下、 PESと略記する)を準備した。
[0143] (透明性ガスノリア層の形成)
準備した PES上に、大気圧プラズマ放電処理法で、低密度層、中密度層、高密度 層、中密度層のユニットを 3層積層した透明ガスバリア性フィルムを作製した。 JIS K
7129— 1992に準拠した方法により水蒸気透過度を測定した結果、 10— 3gZ (m2- 24h)以下であった。 JIS K 7126— 1987に準拠した方法により酸素透過度を測 定した結果、 10"3ml/ (m2 · 24hr-MPa)以下であった。
[0144] (第 1電極 (陽極)形成帯状可撓性支持体の準備)
形成したバリア層の上に厚さ 120nmの ITO (インジウムチンォキシド)を蒸着法によ り、 1つの大きさが幅 50mm、長さ 50mmの第 1電極を図 3の(a)に示す様に、帯状可 橈性支持体の幅方向に 3列 (列間隔は 30mm)、搬送方向に各第 1電極間の距離を 25mmになるように連続的に形成した後、巻き芯に巻き取りロール状とし元巻きロー ノレとした。
[0145] (マスキング部材の準備)
基材として厚さ 25 mのポリプロピレンフィルムを使用し、表 1に示す様に接着力を 変えたマスキング部材を準備し No. 1— a〜l— fとした。尚、接着力 ίお IS Z-0237 粘着テープ'粘着シート試験方法 10. 4項に規定される 180度引きはがし粘着力の 測定に準じて測定した値を示す。接着力の変化は圧着時の温度を変更することによ り行った。尚、マスキング部材の幅は 25mmとした。 [0146] [表 1]
Figure imgf000039_0001
[0147] (マスキング部材の貼合及び有機化合物層の形成)
図 3に示される製造装置を用い、図 4に示す状態で準備した第 1電極形成帯状可 橈性支持体の各第 1電極間の間に準備したマスキング部材 No. 1— a〜l—fの貼合 を行った後、下記に示す条件で正孔輸送層形成用塗布液を塗布 ·乾燥し正孔輸送 層を形成した後、下記に示す条件で発光層形成用塗布液を塗布,乾燥し発光層を 形成した後、マスキング部材を剥離除去し発光層までを形成した帯状可撓性支持体 を作製し、帯電除去処理し、室温と同じ温度になるまで冷却した後、巻き芯に巻き取 りロール状とし No. 1— 1〜1 6とした。尚、マスキング部材の貼合の前に第 1電極 形成帯状可撓性支持体を波長 184. 9nmの低圧水銀ランプを使用し、照射強度 15 mW/cm2,距離 10mmで洗浄表面改質処理を実施し、続けて、微弱 X線除電器に より帯電除去処理を行った。マスキング部材の貼合速度は 1. OmZminとし、圧着口 一ルの面圧は 0. 2MPaとした。又、マスキング部材の剥離までは、正孔輸送層及び 発光層の溶媒除去、加熱工程を除き、露点温度 20°C以下かつ清浄度クラス 5以 下 (JIS B 9920)で 10°C〜45°Cの大気圧環境下で製造した。
[0148] (正孔輸送層の形成)
(正孔輸送層塗布液の調製)
ポリエチレンジォキシチォフェン Zポリスチレンスルホネート水分散液(PEDOTZ PSS、: Bayer社製 Bytron P AI 4083)の原液に対して、純水で 140%、メタノ ールで 10%希釈し、固形分濃度が 0. 5質量%となるように調整し正孔輸送層用塗 布液とした。正孔輸送層塗布液の表面張力は 45mNZm (協和界面化学社製:表面 張力計 CBVP— A3)であった。
[0149] (正孔輸送層の塗布) スリット方式の塗布装置と基材とのギャップが 100 mとなるように設置し、塗布膜 厚が 10 m (ドライ膜厚 50nm)となるように上に示す正孔輸送層塗布液を塗布した 後、第 1乾燥装置及び第 1加熱処理装置を使用し、第 1乾燥装置ではスリットノズル 形式の吐出ロカも成膜面に向け高さ 100mm、吐出風速 lmZs、幅手の風速分布 5 %、温度 100°Cで溶媒を除去した後、引き続き、第 1加熱処理装置で温度 120°Cで 裏面伝熱方式の熱処理を行!ヽ正孔輸送層を形成した。
[0150] (発光層の形成)
(発光層塗布液の調製)
ホスト材のポリビ-ルカルバゾール(PVK)に対して、緑ドーパント材 Ir (ppy) 力 ½質
3 量%になるように混合し、溶媒である 1, 2,—ジクロロェタンに対してホスト材とドーパ ント材の全固形分濃度が 1質量%となるように溶解させ溶液とした。発光層形成用塗 布液の表面張力は 32mNZm (協和界面化学社製:表面張力計 CBVP— A3)であ つた o
(発光層の塗布)
適宜帯電処理を行い、引き続き引き正孔輸送層上に、スリット方式の塗布装置と基 材とのギャップが 100 mとなるように設置し、塗布膜厚が m (ドライ膜厚 100η m)になるように上に示す発光層塗布液を塗布した後、第 2乾燥装置及び第 2加熱処 理装置を使用し、第 2乾燥装置ではスリットノズル形式の吐出ロカ 成膜面に向け高 さ 100mm、吐出風速 lmZs、幅手の風速分布 5%、温度 100°Cで溶媒を除去した 後、引き続き、第 2加熱処理装置で温度 120°Cで加熱処理を行い発光層を形成した
<第 2電極 (陰極)、封止層の形成 >
準備した発光層までを形成した帯状可撓性支持体 No. 1— 1〜1— 6を使用し、図 3に示す製造装置を用い、発光層上に、以下に示す方法により、電子注入層、陰極 、封止層を順次形成し有機 EL素子を作製し試料 No. 101〜106とした。
[0151] (第 2電極の形成)
第 1電極の外部接続用端子を形成する外部接続用端子形成部分をマスクで覆い、 5 X 10— 4Paの真空下にて形成された発光層の領域に厚さ 0. 5nmの LiF層をストライ プ蒸着し電子注入層を形成し、更に電子注入層の上に厚さ 1 OOnmのアルミ層を第 1 電極と直交する様にストライプ蒸着し第 2電極を形成した。
[0152] (封止層の形成)
5 X 10_4Paの真空下にて形成された電極の上に、接続端子となる領域以外にスパ ッタリング法により SiOxを厚さ 300nmでストライプ成膜させ封止層とした。
[0153] (評価)
作製した各試料 No. 101〜106に付き、図 8に示す切断工程で切断し、個別の有 機 EL素子を作製し、発光ムラを以下に示す試験方法で試験し、発光領域端部を以 下に示す観察方法により観察し、以下に示す評価ランクに従って評価した結果を表 2 に示す。
[0154] 発光ムラの試験方法
各試料 No. 101〜106から切断した個別の有機 EL素子をランダムに 50枚サンプ リングし、 KEITHLEY製ソースメジャーユニット 2400型を用いて、直流電圧を有機 EL素子に印加し発光させた。 200cdで発光させた発光素子について、 50倍の顕微 鏡で発光ムラを観察した。
[0155] 発光ムラの評価ランク
◎: 50枚中 95%以上力 発光領域の 8割以上において均一に発光している。
[0156] 〇: 50枚中 75%以上 95%未満力 発光領域の 8割以上において均一に発光して いる。
[0157] △: 50枚中 50%以上 75%未満力 発光領域の 8割以上において均一に発光して いる。
[0158] X : 50枚中 0%以上 50%未満力 発光領域の 8割以上において均一に発光してい る。
[0159] 発光領域端部の観察方法
各試料 No. 101〜106から切断した個別の有機 EL素子をランダムに 50枚サンプ リングし、 KEITHLEY製ソースメジャーユニット 2400型を用いて、直流電圧を有機 EL素子に印加し発光させた。 200cdで発光させた発光素子について、 50倍の顕微 鏡で発光領域端部を観察した。 [0160] 発光領域端部の評価ランク
◎ : 50枚中 95%以上が、発光領域端部が明確に出ている。
[0161] 〇: 50枚中 75%以上 95%未満が、発光領域端部が明確に出ている。
[0162] △: 50枚中 50%以上 75%未満が、発光領域端部が明確に出ている。
[0163] X : 50枚中 0%以上 50%未満が、発光領域端部が明確に出ている。
[0164] [表 2]
Figure imgf000042_0001
[0165] 試料 No. 101はマスキング部材の接着力の不足に伴い、正孔輸送層又は発光層 の何れかが浸透し有効画素領域力 はみ出した形状での成膜になり、発光領域端 部の不良が確認された。試料 No. 106はマスキング部材の接着力が高いことに伴い 、マスキング部材を剥離する際の剥離応力が増加し、有効領域となる第 1電極上の 有機膜の剥離に伴うと推定される発光ムラ、発光領域端部不良が認められた。本発 明の有効性が確認できた。
[0166] 実施例 2
(第 1電極形成帯状可撓性支持体の準備)
実施例 1と同じ、帯状可撓性支持体を使用し、同じ条件で透明性ガスノリア層、第 1 電極を形成し、実施例 1と同じ第 1電極形成帯状可撓性支持体を作製した。
[0167] (マスキング部材の準備)
基材として厚さ 25 mのポリエステルフィルム、接着剤としてシリコン系榭脂を使用 し、表 3に示す様に接着力を変えたマスキング部材を各 100m準備し No. 2— a〜2 — fとした。尚、接着力 ίお IS Z— 0237粘着テープ'粘着シート試験方法に準じて測 定した値を示す。接着力の変化は粘着層の組成を変更することにより行った。尚、マ スキング部材の幅は 25mmとした。 [0168] [表 3]
Figure imgf000043_0001
[0169] (マスキング部材の貼合及び有機化合物層の形成)
図 2に示される製造装置を用い、図 4に示す状態で準備した第 1電極形成帯状可 橈性支持体の各第 1電極間の間に準備したマスキング部材 No . 2— a〜 2— fの貼合 を行った後、実施例 1と同じ条件で正孔輸送層形成用塗布液を塗布 ·乾燥し正孔輸 送層を形成した後、実施例 1と同じ条件で発光層形成用塗布液を塗布 ·乾燥し発光 層を形成した後、マスキング部材を剥離除去し発光層までを形成した帯状可撓性支 持体を作製し、帯電除去処理し、室温と同じ温度になるまで冷却した後、巻き芯に卷 き取りロール状とし No. 2—1〜2— 6とした。
<第 2電極 (陰極)、封止層の形成 >
準備した発光層までを形成した帯状可撓性支持体 No. 2— 1〜2— 6を使用し、図 2に示す製造装置を用い、発光層上に、以下に示す方法により、第 2電極 (陰極)、封 止層を順次形成し有機 EL素子を作製し試料 No. 201〜206とした。尚、第 2電極( 陰極)を形成した後、一旦ロール状に巻き取り不活性ガス雰囲気で保存した。
[0170] (第 2電極 (陰極)の形成)
第 1電極の外部接続用端子を形成する外部接続用端子形成部分をマスクで覆い、 5 X 10— 4Paの真空下にて形成された発光層の領域に厚さ 0. 5nmの LiF層をストライ プ蒸着し電子注入層を形成し、更に、形成された電子注入層の上に厚さ lOOnmの アルミ層を第 1電極と直交する様にストライプ蒸着し第 2電極 (陰極)を形成した。
[0171] (可撓性封止部材の貼合による封止層の形成)
図 6に示す装置を使用し、第 2電極 (陰極)までが形成されたロール状の帯状可撓 性支持体を繰り出し、接着剤として UV硬化性のエポキシ榭脂(ナガセケムテックス( 株)製 UVレジン XNR5570— B1)を外部接続用端子を形成する外部接続用端子 形成部分 (第 1電極、第 2電極)を除く部分にグラビア印刷法により塗布し、帯状可撓 性支持体と同じ幅の可撓性封止部材を圧着させ貼り合せた後、 UVランプを第 2電極 (陰極)側力も照射し可撓性封止部材の接着を実施した。この後、図 7に示す打ち抜 き切断装置にて、不要の可撓性封止部材を除くために打ち抜き切断を行い、帯状可 橈性支持体上の有機 EL素子の発光領域に貼合された部分が除かれ不要部分 (抜 きカス)の帯状可撓性封止部材を卷き取り除去した。
[0172] 尚、接着剤のエポキシ榭脂は熱硬化型であってもよい。その場合は、貼り合せ時に ヒートロール間を通すことにより加熱圧着を行う。又、接着剤は発光部領域の外周の みにディスペンサ、スクリーン印刷等で形成してもよい。
[0173] 可撓性封止部材としては、基材に厚さ 100 mの PETを使用し、バリア層は酸化珪 素を使用し蒸着で厚さ 500nmで形成した封止フィルムを使用した。
[0174] (評価)
作製した各試料 No. 201〜206に付き、実施例 1と同じ様に図 8に示す切断工程 で切断し、個別の有機 EL素子を作製し、発光ムラ、発光領域端部を実施例 1と同じ 試験方法により試験し、実施例 1と同じ評価ランクに従って評価した結果を表 4に示 す。
[0175] [表 4]
Figure imgf000044_0001
試料 No. 201はマスキング部材の接着力の不足に伴い、正孔輸送層又は発光層 の何れかが浸透し有効画素領域力 はみ出した形状での成膜になり、発光領域端 部の不良が確認された。試料 No. 206fはマスキング部材の接着力が高いことに伴 い、マスキング部材を剥離する際の応力が増加し、有効領域となる第 1電極上の有機 膜の剥離に伴うと推定される発光ムラ、発光領域端部不良が認められた。本発明の 有効性が確認できた。
本実施例 2の有機 EL素子は緑色発光を示す力 ドーパント材料を Ir(ppy)、 FI
3 r (pic)、 btp Ir (acac)を適宜混合することで白色有機 EL素子が作製できる。これは
2
照明装置として利用することが可能で、本発明によりロールツーロールのような低コス トで生産性の高い照明用生産設備が提供可能できた。

Claims

請求の範囲
[1] 基板上に、少なくとも第 1電極 (陽極層)と、少なくとも 1層の有機化合物層と、第 2電 極(陰極層)と、封止層とを有する少なくとも一つの有機エレクト口ルミネッセンス素子 を有する有機エレクト口ルミネッセンス素子の製造方法において、
前記基板上の前記有機化合物層の形成禁止領域に、接着力が lNZ25mn!〜 10 NZ25mmのマスキング部材の貼合を行うマスキング部材貼合工程と、
前記有機化合物層を前記基板上に形成する有機化合物層形成工程と、
前記マスキング部材を剥離するマスキング部材剥離工程とを有することを特徴とする 有機エレクト口ルミネッセンス素子の製造方法。
[2] 前記マスキング部材剥離工程の後に切断工程を有することを特徴とする請求の範囲 第 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[3] 基板上に、少なくとも第 1電極と、少なくとも 1層の有機化合物層と、第 2電極と、封止 層とを有する少なくとも一つの有機エレクト口ルミネッセンス素子を有する有機エレクト 口ルミネッセンス素子の製造方法にぉ 、て、
前記基板上に前記第 1電極を形成した後、
前記基板上の前記有機化合物層の形成禁止領域を接着力が lNZ25mn!〜 10N
Z25mmのマスキング部材で被覆し、
前記基板上の全面に前記有機化合物層を形成した後、
前記第 2電極と、前記封止層を形成し、
この後に、前記マスキング部材を剥離することを特徴とする有機エレクト口ルミネッセ ンス素子の製造方法。
[4] 前記マスキング部材を剥離した後、基板上に形成された有機エレクト口ルミネッセンス 素子を切断することを特徴とする請求の範囲第 3項に記載の有機エレクト口ルミネッ センス素子の製造方法。
[5] 基板上に、少なくとも第 1電極層と、発光層を含む有機化合物層と、第 2電極層と、封 止層とを順次形成する工程を有する製造装置を使用し、前記基板上に少なくとも前 記第 1電極層と、前記有機化合物層と、前記第 2電極層と、前記封止層とを順次積層 した少なくとも一つの有機エレクト口ルミネッセンス素子を製造する有機エレクト口ルミ
Figure imgf000047_0001
、て、
前記有機化合物層を形成する工程は、前記基板上の前記有機化合物層の形成禁 止領域に接着力が lNZ25mm〜10NZ25mmのマスキング部材を貼合するマス キング部材貼合工程と、
前記有機化合物層を形成する有機化合物層形成工程と、
前記マスキング部材を剥離するマスキング部材剥離工程とを有してなることを特徴と する有機エレクト口ルミネッセンス素子の製造方法。
[6] 前記封止層を形成する工程の後に、切断工程を有することを特徴とする請求の範囲 第 5項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[7] 前記形成禁止領域が少なくとも第 1電極層の外部接続用端子を形成する外部接続 用端子形成部分であることを特徴とする請求の範囲第 1項〜第 6項の何れか 1項に 記載の有機エレクト口ルミネッセンス素子の製造方法。
[8] 前記基板が帯状可撓性基板であり、該帯状可撓性基板を巻き芯に巻き取りロール状 としたロール状帯状可撓性基板を供給工程力ゝら該帯状可撓性基板として送り出し、 第 1電極層と、発光層を含む有機化合物層と、第 2電極層と、封止層との何れかが形 成された後、巻き芯に巻き取りロール状とし回収することを特徴とする請求の範囲第 1 項〜第 7項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[9] 前記マスキング部材が基材にシ一ラント層を有する可撓性部材であることを特徴とす る請求の範囲第 1項〜第 8項の何れか 1項に記載の有機エレクト口ルミネッセンス素 子の製造方法。
[10] 前記マスキング部材がオンラインで供給され、該マスキング部材の貼合及び剥離を オンラインで行うことを特徴とする請求の範囲第 1項〜第 9項の何れ力 1項に記載の 有機エレクト口ルミネッセンス素子の製造方法。
[11] 前記マスキング部材の貼合が圧着方式で行われることを特徴とする請求の範囲第 1 項〜第 10項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[12] 前記有機化合物層が発光層形成用材料を含んでいることを特徴とする請求の範囲 第 1項〜第 11項の何れか 1項に記載の有機エレクト口ルミネッセンス素子の製造方法
[13] 前記発光層形成用材料の発光機構がリン光に基づくものであることを特徴とする請 求の範囲第 12項に記載の有機エレクト口ルミネッセンス素子の製造方法。
[14] 請求の範囲第 1項〜第 13項の何れか 1項に記載の有機エレクト口ルミネッセンス素子 の製造方法により製造された有機エレクト口ルミネッセンス素子を使用したことを特徴 とする有機エレクト口ルミネッセンス表示装置。
PCT/JP2006/316566 2005-09-20 2006-08-24 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置 WO2007034647A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/066,724 US8574661B2 (en) 2005-09-20 2006-08-24 Process for producing organic electroluminescent element and organic electroluminescent display device
JP2007536424A JPWO2007034647A1 (ja) 2005-09-20 2006-08-24 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-271712 2005-09-20
JP2005271712 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034647A1 true WO2007034647A1 (ja) 2007-03-29

Family

ID=37888701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316566 WO2007034647A1 (ja) 2005-09-20 2006-08-24 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置

Country Status (3)

Country Link
US (1) US8574661B2 (ja)
JP (1) JPWO2007034647A1 (ja)
WO (1) WO2007034647A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300045A (ja) * 2007-05-29 2008-12-11 Konica Minolta Holdings Inc エレクトロルミネッセンス素子の製造方法
JP2009145504A (ja) * 2007-12-12 2009-07-02 Fujifilm Corp ウエブ状電極材料およびその製造方法
EP2138992A1 (en) * 2007-04-13 2009-12-30 Nikon Corporation Display element manufacturing method, display element manufacturing apparatus and display element
CN101971387A (zh) * 2008-07-03 2011-02-09 欧司朗光电半导体有限公司 用于制造有机电子器件的方法和有机电子器件
WO2011021622A1 (ja) * 2009-08-20 2011-02-24 コニカミノルタホールディングス株式会社 パターン薄膜形成方法
WO2012046736A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 有機el装置及びその製造方法
WO2012046742A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 有機el装置
WO2012050043A1 (ja) * 2010-10-15 2012-04-19 日東電工株式会社 有機エレクトロルミネッセンス発光装置およびその製法
JP2015053185A (ja) * 2013-09-06 2015-03-19 株式会社Screenホールディングス 塗布装置および塗布方法
JP2015069882A (ja) * 2013-09-30 2015-04-13 株式会社Screenホールディングス 塗布装置および塗布方法
JP2017073308A (ja) * 2015-10-08 2017-04-13 住友化学株式会社 有機電子素子の製造方法、及び、有機電子素子
JP2017098105A (ja) * 2015-11-25 2017-06-01 住友化学株式会社 有機デバイスの製造方法及び有機デバイス用基板
JP6284670B1 (ja) * 2017-04-25 2018-02-28 住友化学株式会社 有機デバイスの製造方法
JP2018185925A (ja) * 2017-04-25 2018-11-22 住友化学株式会社 有機デバイスの製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101005B2 (en) * 2009-09-15 2015-08-04 Industrial Technology Research Institute Package of environmental sensitive element
KR101267534B1 (ko) * 2009-10-30 2013-05-23 엘지디스플레이 주식회사 유기전계발광소자의 제조방법
US8809091B2 (en) * 2009-12-11 2014-08-19 Konica Minolta Holdings, Inc. Method of manufacturing organic electroluminescence element
JP5660129B2 (ja) * 2010-03-16 2015-01-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
EP2824726B1 (en) 2010-04-28 2020-12-23 Beijing Xiaomi Mobile Software Co., Ltd. Organic light emitting device
KR20120065136A (ko) 2010-12-10 2012-06-20 삼성모바일디스플레이주식회사 유기 발광 표시 장치와 이의 제조 방법 및 이의 제조 설비
KR20120117073A (ko) * 2011-04-14 2012-10-24 장경원 물 절약형 변기의 형성, 제조 방법.
US8674377B2 (en) * 2011-08-30 2014-03-18 General Electric Company Optoelectronic device package, array and method of fabrication
KR20140073461A (ko) * 2011-10-19 2014-06-16 닛토덴코 가부시키가이샤 유기 el 디바이스의 제조 방법 및 제조 장치
TWI675470B (zh) * 2011-12-29 2019-10-21 三星顯示器有限公司 有機發光二極體顯示器以及其之製造方法和製造設備
JP2014075253A (ja) * 2012-10-04 2014-04-24 Nitto Denko Corp 有機エレクトロルミネッセンス装置の製造方法
KR20140118004A (ko) * 2013-03-27 2014-10-08 삼성디스플레이 주식회사 도너 기판 제조방법
WO2015047044A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 유기전자장치의 제조 방법
EP2960059B1 (en) 2014-06-25 2018-10-24 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
US11267012B2 (en) 2014-06-25 2022-03-08 Universal Display Corporation Spatial control of vapor condensation using convection
US11220737B2 (en) * 2014-06-25 2022-01-11 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
US9899330B2 (en) * 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
US9991478B2 (en) * 2015-03-31 2018-06-05 Industrial Technology Research Institute Methods for fabricating an organic electro-luminescence device and flexible electric device
US10566534B2 (en) 2015-10-12 2020-02-18 Universal Display Corporation Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP)
TWI600347B (zh) * 2015-11-30 2017-09-21 財團法人工業技術研究院 有機電激發光元件以及可撓性電子元件的製造方法
CN109313176B (zh) * 2016-06-20 2021-05-14 阿克斯比尔公司 用于检测生物大分子的电子装置
TWI649787B (zh) * 2017-07-12 2019-02-01 林義溢 多層式遮罩
CN116528603B (zh) * 2023-05-31 2024-06-11 广州追光科技有限公司 一种有机太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273859A (ja) * 1998-03-24 1999-10-08 Sony Corp 有機電界発光素子及びその製造方法
JP2001297876A (ja) * 2000-04-12 2001-10-26 Tokki Corp 有機el表示素子の製造方法および製造装置
JP2002075638A (ja) * 2000-08-29 2002-03-15 Nec Corp マスク蒸着方法及び蒸着装置
JP2002151254A (ja) * 2000-11-09 2002-05-24 Denso Corp 有機el素子の製造方法
JP2003017251A (ja) * 2001-06-28 2003-01-17 Canon Electronics Inc 有機エレクトロルミネセンス表示装置の製造方法
JP2005158824A (ja) * 2003-11-20 2005-06-16 Seiko Epson Corp 成膜方法、膜、電子デバイスおよび電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB836991A (en) * 1955-12-05 1960-06-09 Telephone Mfg Co Ltd Improvements in and relating to coating extended supports
US6469439B2 (en) * 1999-06-15 2002-10-22 Toray Industries, Inc. Process for producing an organic electroluminescent device
TW495854B (en) * 2000-03-06 2002-07-21 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US6867539B1 (en) * 2000-07-12 2005-03-15 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
US6821348B2 (en) * 2002-02-14 2004-11-23 3M Innovative Properties Company In-line deposition processes for circuit fabrication
JP2004152512A (ja) 2002-10-29 2004-05-27 Canon Electronics Inc 有機エレクトロルミネセンス表示装置、及びその製造方法
JP2005158388A (ja) 2003-11-25 2005-06-16 Optrex Corp 有機el表示装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273859A (ja) * 1998-03-24 1999-10-08 Sony Corp 有機電界発光素子及びその製造方法
JP2001297876A (ja) * 2000-04-12 2001-10-26 Tokki Corp 有機el表示素子の製造方法および製造装置
JP2002075638A (ja) * 2000-08-29 2002-03-15 Nec Corp マスク蒸着方法及び蒸着装置
JP2002151254A (ja) * 2000-11-09 2002-05-24 Denso Corp 有機el素子の製造方法
JP2003017251A (ja) * 2001-06-28 2003-01-17 Canon Electronics Inc 有機エレクトロルミネセンス表示装置の製造方法
JP2005158824A (ja) * 2003-11-20 2005-06-16 Seiko Epson Corp 成膜方法、膜、電子デバイスおよび電子機器

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2138992A1 (en) * 2007-04-13 2009-12-30 Nikon Corporation Display element manufacturing method, display element manufacturing apparatus and display element
EP2138992B1 (en) * 2007-04-13 2017-08-02 Nikon Corporation Display element manufacturing method
JP2008300045A (ja) * 2007-05-29 2008-12-11 Konica Minolta Holdings Inc エレクトロルミネッセンス素子の製造方法
JP2009145504A (ja) * 2007-12-12 2009-07-02 Fujifilm Corp ウエブ状電極材料およびその製造方法
CN101971387A (zh) * 2008-07-03 2011-02-09 欧司朗光电半导体有限公司 用于制造有机电子器件的方法和有机电子器件
JP2011526409A (ja) * 2008-07-03 2011-10-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機電子構成部材を製造する方法および電子構成部材
JP5660041B2 (ja) * 2009-08-20 2015-01-28 コニカミノルタ株式会社 パターン薄膜形成方法
WO2011021622A1 (ja) * 2009-08-20 2011-02-24 コニカミノルタホールディングス株式会社 パターン薄膜形成方法
WO2012046736A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 有機el装置及びその製造方法
JP2012084306A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd 有機el装置
WO2012046742A1 (ja) * 2010-10-08 2012-04-12 住友化学株式会社 有機el装置
JP2012104474A (ja) * 2010-10-15 2012-05-31 Nitto Denko Corp 有機エレクトロルミネッセンス発光装置およびその製法
WO2012050043A1 (ja) * 2010-10-15 2012-04-19 日東電工株式会社 有機エレクトロルミネッセンス発光装置およびその製法
US9516721B2 (en) 2010-10-15 2016-12-06 Nitto Denko Corporation Organic electro-luminescence light-emitting device and production method of the same
JP2015053185A (ja) * 2013-09-06 2015-03-19 株式会社Screenホールディングス 塗布装置および塗布方法
JP2015069882A (ja) * 2013-09-30 2015-04-13 株式会社Screenホールディングス 塗布装置および塗布方法
JP2017073308A (ja) * 2015-10-08 2017-04-13 住友化学株式会社 有機電子素子の製造方法、及び、有機電子素子
WO2017061380A1 (ja) * 2015-10-08 2017-04-13 住友化学株式会社 有機電子素子の製造方法、及び、有機電子素子
US10651430B2 (en) 2015-10-08 2020-05-12 Sumitomo Chemical Company, Limited Organic electronic element manufacturing method and organic electronic element
JP2017098105A (ja) * 2015-11-25 2017-06-01 住友化学株式会社 有機デバイスの製造方法及び有機デバイス用基板
WO2017090266A1 (ja) * 2015-11-25 2017-06-01 住友化学株式会社 有機デバイスの製造方法及び有機デバイス用基板
JP6284670B1 (ja) * 2017-04-25 2018-02-28 住友化学株式会社 有機デバイスの製造方法
WO2018198655A1 (ja) * 2017-04-25 2018-11-01 住友化学株式会社 有機デバイスの製造方法
JP2018185925A (ja) * 2017-04-25 2018-11-22 住友化学株式会社 有機デバイスの製造方法
CN110574493A (zh) * 2017-04-25 2019-12-13 住友化学株式会社 有机器件的制造方法

Also Published As

Publication number Publication date
JPWO2007034647A1 (ja) 2009-03-19
US20090267507A1 (en) 2009-10-29
US8574661B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
WO2007034647A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス表示装置
JP5157440B2 (ja) 有機el素子の製造方法
US8809091B2 (en) Method of manufacturing organic electroluminescence element
WO2007004627A1 (ja) パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
WO2006100889A1 (ja) 有機el層の形成方法
JP5575353B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5104849B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
JP5447244B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP2007073332A (ja) 有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンスパネルの製造方法
JP6020339B2 (ja) プラズマcvd成膜用マスク、及びプラズマcvd成膜方法
JP5104301B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP2007207469A (ja) 積層体の製造方法、積層体、有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置
JP5018317B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2007200591A (ja) 有機エレクトロルミネッセンスパネルの製造方法及び有機エレクトロルミネッセンスパネル
JP5092756B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンス照明装置および有機エレクトロルミネッセンスパネルの製造装置
JPWO2009025186A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
WO2014104102A1 (ja) 有機エレクトロルミネッセンス素子製造方法及び有機エレクトロルミネッセンス素子
JP4957643B2 (ja) 有機化合物層形成用塗布液の塗布方法
JP5862439B2 (ja) 有機半導体素子及びその製造方法
WO2007029474A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP5282786B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子
JP4622746B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2008117689A (ja) 機能性積層膜の形成方法、積層薄膜デバイス、有機エレクトロルミネッセンス表示装置
JP5170102B2 (ja) 有機エレクトロニクス素子の製造方法
JP2010092710A (ja) 有機エレクトロニクス素子の製造方法、有機エレクトロニクス素子及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536424

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12066724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782970

Country of ref document: EP

Kind code of ref document: A1