WO2007032136A1 - 光学装置、および光学装置を用いて物体の寸法を測定する方法 - Google Patents

光学装置、および光学装置を用いて物体の寸法を測定する方法 Download PDF

Info

Publication number
WO2007032136A1
WO2007032136A1 PCT/JP2006/312731 JP2006312731W WO2007032136A1 WO 2007032136 A1 WO2007032136 A1 WO 2007032136A1 JP 2006312731 W JP2006312731 W JP 2006312731W WO 2007032136 A1 WO2007032136 A1 WO 2007032136A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
crack
optical device
telescope
width
Prior art date
Application number
PCT/JP2006/312731
Other languages
English (en)
French (fr)
Inventor
Kazuhide Nakaniwa
Original Assignee
Kansai Kouji Sokuryou Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Kouji Sokuryou Co., Ltd. filed Critical Kansai Kouji Sokuryou Co., Ltd.
Priority to EP06767348.3A priority Critical patent/EP1939583B1/en
Priority to JP2007503140A priority patent/JP3996946B2/ja
Priority to US12/066,756 priority patent/US7667823B2/en
Priority to CN2006800339283A priority patent/CN101263362B/zh
Publication of WO2007032136A1 publication Critical patent/WO2007032136A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0021Measuring arrangements characterised by the use of mechanical techniques for measuring the volumetric dimension of an object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture

Definitions

  • the present invention relates to an optical device, and more particularly to an optical device that can be suitably used for dimension measurement of an object (for example, a crack generated on the surface of a concrete structure).
  • the invention also relates to a method for measuring the dimensions of an object using such an optical device.
  • the width of cracks generated on the concrete surface is measured.
  • the conventional method used to measure the crack width is to measure the crack width visually by applying a normal scale or crack scale for crack width measurement to the concrete surface. Therefore, the measurement location was limited to the reach of the measurer.
  • Patent Document 1 proposes a crack measuring device in which a scale or crack scale is attached to the end of an elongated rod, but the range that can be measured with this device is limited to the place where the rod reaches, for example, Even cracks in bridge girders and tunnel zeniths could not be measured.
  • Patent Document 1 JP-A-8-94752
  • the present invention provides an object, for example, an object having a size of about 0.1 to several millimeters, such as a crack in a concrete structure, separated from the object (for example, several meters to several hundreds).
  • the present invention relates to an optical device for measuring from a place (a meter away) and a method for measuring the size of an object using the optical device. Means for solving the problem
  • an optical device is an optical device (10) including a telescope (16) having a projection plate (46), and the projection plate (46) includes A plurality of reference scales (52) are provided for comparison with the size (W) of the image (C ') of the object (C) projected onto the projection plate (46).
  • the plurality of reference scales (52) are centered on a direction perpendicular to the optical axis (38) of the telescope (16) or the optical axis (38). They are arranged in the circumferential direction with a gap in the direction of displacement.
  • each of the plurality of reference scales (52) is a mark having a spread in a two-dimensional direction on the projection plate (46).
  • the marks of the plurality of reference scales (52) each have a size different from the marks of the other reference scales in the arrangement direction.
  • the mark has a square or circular planar shape.
  • an index (54) corresponding to the size of each of the plurality of reference scales (52) is provided in the vicinity of the plurality of reference scales (52).
  • the optical device may also include the telescope.
  • the distance measuring means (20) includes a laser distance measuring unit or an ultrasonic distance measuring unit.
  • An optical device according to another aspect of the present invention provides an index related to the plurality of reference scales (52).
  • Computation means (32) for computation is provided.
  • An optical device includes an output unit (26) that outputs the dimension (W) of the object (C) calculated by the calculation means (32).
  • the image (C ′) of the object (C) is a crack generated in a concrete structure.
  • a method for measuring the size of an object using an optical device includes a telescope (16) including a projection plate (46) provided with a plurality of reference scales (52), A ranging unit (20) is provided to measure the distance (L) from the object (C) collimated with the telescope (16) to the reference point (P).
  • the dimension (W) of the object (C) is calculated on the basis of the value (54) obtained by comparing two or more and the distance (L) measured by the distance measuring unit (20). Process.
  • a measurement method includes:
  • the object (C) is a crack generated on the surface (Q) of a concrete structure, and the second step is
  • a sub-process for obtaining the width (W) of the crack (C) using the value (W), distance (L), and angle ( ⁇ ) is provided.
  • a measurement method includes:
  • the object (C) is a crack generated on the surface (Q) of a concrete structure, and the second step is
  • a sub-process that assumes an extension line (L) on the surface (Q) and extending in a direction perpendicular to the width dimension of the crack;
  • a sub-process for obtaining the width (W) of the crack (C) using the value (W), distance (L), and angle ( ⁇ ) is provided.
  • a telescope (16) having a projection plate (46) provided with a plurality of reference scales (52), and a reference point from a crack portion (C) on the plane (Q) collimated by the telescope (16). Up to (P)
  • the second step is provided.
  • a method for measuring the width of a crack according to another embodiment of the present invention includes:
  • the second step is
  • a sub-process for obtaining the width (W) of the crack (C) using the value (W), distance (L), and angle ( ⁇ ) is provided.
  • a method for measuring the width of a crack according to another embodiment of the present invention includes:
  • the second step is
  • Sub-process A sub-process for obtaining the width dimension (W) using the value (W), the intersection angle ( ⁇ ), and the distance (L) is provided.
  • FIG. 1 is a perspective view of a surveying instrument which is an embodiment of the optical apparatus of the present invention.
  • FIG. 2 A block diagram showing the configuration and functions of the surveying instrument shown in FIG.
  • FIG. 3 A sectional view showing a schematic configuration of the telescope of the surveying instrument shown in FIG.
  • FIG. 4 A diagram showing an object (crack) projected on the focusing screen shown in FIG. 3 and a reference scale.
  • FIG. 5 A block diagram showing the configuration and functions of the distance measuring unit shown in FIG.
  • FIG. 6 A diagram showing details of the input unit and the display unit shown in FIG.
  • FIG. 7 is a diagram for explaining the principle of measuring the object width or crack width.
  • Figure 8 Enlarged view of the crack projected on the telescope's focusing screen.
  • Fig. 9 Relationship between crack width, crack image width, and angle.
  • FIG. 11 is a diagram showing a method for calculating an angle.
  • FIG. 12 is a flowchart showing a process for obtaining a crack width.
  • ⁇ 13 A view showing another example of the reference scale and dimension index formed on the focusing screen.
  • ⁇ 16 A diagram showing another example of the reference scale and dimension index formed on the focusing screen.
  • ⁇ 17 A view showing another example of the reference scale and dimension index formed on the focusing screen.
  • ⁇ 18 A diagram showing another example of the reference scale and dimension index formed on the focusing screen.
  • ⁇ 19 A diagram showing another example of the reference scale and dimension index formed on the focusing screen.
  • FIG. 20 is a diagram showing another example of the reference scale and dimension index formed on the focusing screen.
  • ⁇ 21 A view showing another example of the reference scale and dimension index formed on the focusing screen.
  • the “optical device” includes a telescope, a collimation device including the telescope, and a surveying device having a collimation function and a ranging function.
  • object includes a part of an object that does not need to be an independent object of a finite size or a tangible object (for example, a part of a crack generated in a concrete structure).
  • FIG. 1 shows a laser surveying device (total station) 10 that embodies an optical device according to the present invention.
  • the surveying instrument 10 is connected to a base 12 that is fixedly attached to a tripod (not shown) and attached to a tripod (not shown), and is connected to the base 12 so as to be rotatable about a vertical axis (Z-axis), similarly to a normal surveying instrument.
  • a telescope 16 connected to the main body 14 so as to be rotatable about a horizontal axis (X axis).
  • the surveying instrument 10 has three axes, a vertical axis (Z axis), a horizontal axis (X axis), and a reference point (reference coordinate or machine coordinate) P intersected by the Y axis that coincides with the optical axis 38 of the telescope 16.
  • the surveying apparatus 10 includes an input unit 22 for inputting data necessary for surveying, a display unit 24 for displaying survey results, etc., and data inputted from the input unit 22 and data of survey results.
  • Devices e.g. An output unit 26 for outputting to a computer 28.
  • FIG. 2 is a block diagram illustrating the configuration of the surveying instrument 10 in terms of functional viewpoint.
  • the surveying instrument 10 has a control unit 30.
  • the control unit 30 is electrically connected to the ranging unit 20, the input unit 22, the display unit 24, and the output unit 26.
  • the ranging unit 20 the input unit 22, the display unit 24.
  • the control unit 30 is located at the position collimated by the crack width calculation unit 32 for calculating the size of the object, for example, the width of the crack formed in the concrete structure, and the spatial coordinates of the survey target, for example, the telescope 16.
  • a coordinate calculation unit 34 for calculating the three-dimensional coordinates of the crack portion and a storage unit 35 for storing programs and data necessary for coordinate calculation and crack width calculation are provided.
  • the surveying instrument 10 has components necessary for surveying, such as a leveling unit and an angle measuring unit.
  • FIG. 3 shows a schematic configuration of the telescope 16.
  • the telescope 16 is placed in order along the optical axis 38 from the object side to the surveying operator side (from the left side to the right side in the figure) in the lens barrel (indicated by reference numeral 36 in FIG. 1).
  • An image is formed on the focusing screen 46 through the lens 42 and the erecting prism 44, and the object image is enlarged and observed by the operator through the eyepiece lens 48.
  • FIG. 4 shows an object image or an image formed on the focusing screen 46 and observed through the eyepiece 48 with the crosshairs 50 and a plurality of marks or reference scale 52 of the collimation index drawn on the focusing screen 46. Shown with crack image C '. The intersection of the crosshairs 50 coincides with the optical axis 38.
  • a plurality of (for example, 16) reference scales 52 are formed in the peripheral region of the focusing screen 46.
  • the plurality of reference scales 52 are square or strip-shaped mark forces each having a large horizontal dimension and a small vertical dimension, and are arranged in a row at intervals in the vertical direction perpendicular to the optical axis.
  • the horizontal lengths of the plurality of band-like reference scales are the same.
  • the vertical dimensions of the strip-shaped reference scales are different, and the reference scale placed in the top row has the shortest vertical dimension of the reference scale placed in the bottom row.
  • the vertical dimension of the reference scale located at the upper level is made larger so that the vertical dimension of the scale is the largest.
  • the vertical dimension of the reference scale 52 up to the uppermost stage in the second stage force is an integral multiple of the vertical dimension of the lowermost reference scale 52.
  • the numerical value of the dimension index 54 corresponding to the reference scale is drawn next to each reference scale 52.
  • the dimension index “1” is next to the reference scale 52 (1) in the top row, and the reference scale in the bottom row is displayed. 52
  • the dimension index “16” is drawn beside (16).
  • the dimension indicator 54 may be other symbols (for example, alphabets) that need not be numerical values.
  • the numerical value of each dimension index 54 is related to the actual vertical dimension of the corresponding reference scale 52, and the relationship between the dimension index 54 and the actual vertical dimension is stored in the storage unit 35 in the form of a table or a mathematical expression. .
  • the operator compares the object image projected on the focusing screen with the reference scale, and calculates the numerical value of the reference scale having the same size as the object image or the size index of the reference scale having the size closest to the object image.
  • the surveying instrument 10 can calculate the size of the object image projected on the focusing screen 46.
  • the distance measuring unit 20 outputs a laser beam, for example, a light emitting unit (laser device) 58 such as a laser diode, and a light receiving unit 60 that receives laser reflected light of an object (for example, crack) force.
  • the calculation unit 62 calculates the distance from the object to the reference point P based on the time from when the laser beam is emitted until the force is received, and the laser beam emitted from the light emitting unit 58.
  • an optical system 64 for guiding the laser beam which guides the object along the optical axis 38 of the telescope 16 and also returns the object force along the optical axis 38 to the light receiving unit 60.
  • a prism 66 constituting a part of the optical system 64 is disposed inside the telescope 16, so that the path of the laser beam 56 coincides with the optical axis 38 of the telescope 16.
  • the distance calculation in the laser distance measuring unit 20 is not limited to the method using the time until the light emission power is received. For example, the phase difference distance between the two can be obtained.
  • the input unit 22 includes a plurality of keys, for example, function keys 68, a numeric key 70, a cursor movement key 72, and an enter key 74.
  • function key 6 8 is used for instructing execution of processing in dimension measurement of a crack described later.
  • the numeric keypad 70 is used to input a numerical value of the dimension index 54 drawn on the focusing screen 46.
  • the display unit 24 has a liquid crystal display 76.
  • the liquid crystal display 76 includes numerical values measured by the distance measuring unit 20 (for example, distance and azimuth angle), numerical values of the dimension index 54 input via the numeric keypad 70, and crack width calculated by the crack width calculating unit 32.
  • the coordinate values calculated by the coordinate calculation unit 34, measurement results, and other information necessary for operation are displayed.
  • the output unit 26 outputs various information (measurement results and the like) displayed on the display unit 24 to a computer 28 connected thereto.
  • An oblique plane (in the figure, a plane including a triangle formed by points P 1, P 2 and P 3) is set to ⁇ 3. Also
  • the point that intersects with 0, point P is the point on the edge line L where the oblique plane Q and the vertical plane Q intersect.
  • Point P passes through point P and crosses the crack C at a right angle with the other edge line L.
  • FIG. 8 shows an image projected on the focusing screen 46 of the telescope 16 of the surveying instrument 10 in this situation.
  • symbol C ′ indicates the projected image of crack C
  • symbol W ′ indicates the width of the projected crack image C ′.
  • the symbols P ', P', P ', P' correspond to the points P, P, P, P in Fig. 7, respectively.
  • Lines L 'and L' indicate the projection lines corresponding to the edge lines L and L in Fig. 7, respectively.
  • the Symbols Q ′ and Q ′ are lines obtained by projecting the planes Q and Q of FIG.
  • the projected image Q ′ of the plane Q crosses the crack image C ′ obliquely. Also, the projection of the line connecting points P and P corresponding to the actual width W of crack C
  • the line is a line that passes through the projection points P ′ and P and obliquely crosses the crack image W ′.
  • Figure 8 shows
  • lines other than lines L 'and L' for example, projection line Q ', points P' and P
  • the line connecting 'the line connecting point P' and point P ') is actually a line that does not appear on the focusing screen 46
  • the line corresponding to the actual width W of the crack C is a line that obliquely crosses the crack image C '(a line connecting the point P' and the point P ').
  • the width of the crack image appearing on the focusing screen 46 is used to determine the actual crack width
  • a crack image that the observer reads from the focusing screen 46 is projected.
  • the width W ' is the length of this perpendicular.
  • Points P 1 and P 2 are also, a rectangular plane that includes the edge line L and the perpendicular line (the line connecting points P and P)
  • the width w can be obtained.
  • the perpendicular length W " is approximately proportional to the product of the width W 'of the crack image C' imaged on the focusing screen 46 and the distance L from the focusing screen 46 to the crack C, and is given by Equation 1 below. . [Number 1]
  • the coefficient ⁇ is a constant determined by the optical system of the telescope, for example, a value determined by the magnification of the objective lens.
  • the object (crack) force and the distance L to the focusing screen can be obtained based on the distance measurement results obtained by the distance measuring unit.
  • the reference point repulsive force and the distance AL to the focusing screen 46 are already known. Also, the reference point
  • the distance L up to 0 0 is obtained by the distance measuring unit 20. Based on these values, crack width calculator 3
  • the width W ′ of the crack image C ′ formed on the focusing screen 46 is obtained based on a dimension index (for example, values “1” to “16”) input by the operator through the input unit 22. More specifically, as described above, the relationship between the dimension index drawn on the focusing screen 46 and its actual vertical dimension is stored in the storage unit 35 in the form of a table or a mathematical expression. Therefore, the operator compares the width W ′ of the crack image C ′ projected on the focusing screen with the reference scale, and is closest to the reference scale or crack image having the same size (vertical dimension) as the width W ′.
  • a dimension index for example, values “1” to “16”
  • the crack width calculation unit 32 determines the width W of the crack image on the focusing screen 46 based on the table or the relational expression of the storage unit 35. , Is calculated. For example, when the operator inputs the dimension index “10” from the input unit 22, the crack width calculation unit 32 calculates the actual crack image width as “5 ⁇ mj”.
  • Equation 1 is an ideal equation where the perpendicular length W "is expressed as being proportional to the width W of the crack image C 'and the distance L from the focusing screen 46 to the crack L. Since the actual optical system includes various aberrations, the following formula 2 obtained by modifying formula 1 is used for the actual calculation, and the values of the coefficients ⁇ and a included in this formula 2 are obtained experimentally. Is preferable
  • Equation 3 The angle ⁇ is, for example, the line connecting point ⁇ and point ⁇ and the line connecting point ⁇ 'and point ⁇ in Fig. 7.
  • the coefficients a and ⁇ can be obtained by the following procedure, for example. First, the wall
  • these four values (L, W, W, 0) are statistically processed (for example, the least square method) to obtain coefficients a and a.
  • these four values (L, W, W, 0) are statistically processed (for example, the least square method) to obtain coefficients a and a.
  • draw a mark of a predetermined size (width) W on the wall change the distance L (L ⁇ ⁇ -L) to the wall force survey device, and use the dimension index W for each distance. It can also be obtained by reading '(W'---W ') and statistically processing those values (L, W, W', 0).
  • the direction of the cracks generated on the surface of the concrete structure is unusual. It is constant and has a winding shape. Accordingly, in the actual measurement of the crack width, as shown in FIG. 11, an extension line L of the crack portion C to be measured for the crack width projected on the focusing screen 46 is assumed.
  • This extension line L is a line extending in a direction perpendicular to the width direction of the crack portion C to be measured.
  • the extension line L can be calculated by identifying two points on the surface of the structure that appear to be on the extension line L. The identified points are indicated by P 1 and P 2 in the figure. As explained later, the crack part
  • Calculation is made using 1 1 2 2 2 3 3 3 0 and the reference point force and the oblique distance and azimuth to each point.
  • the function of the concrete surface is the coordinates of the three points ⁇ , ⁇ , ⁇ (X, y, ⁇ ), (X, y, ⁇ )
  • Equation 7 ( ⁇ , y, ⁇ ), for example, defined by Equation 7.
  • m 3 (x 2 -3 ⁇ 4) (y 3 - ⁇ )-(x 3 -3 ⁇ 4) (y 2 -y,)
  • the point P "on the extension line L is calculated, and it is obtained as a straight line connecting this point P" and the reference point P.
  • Equation 8 the perpendicular is defined by Equation 8 below.
  • the reference point ⁇ (X, y, ⁇ ) is lowered to the plane Q (or a virtual plane including the plane).
  • the coordinate P ' is the point on the plane Q that has the smallest distance from the reference point P.
  • a point P ′ on the plane that minimizes the distance to the point P is calculated, and the point P is directly connected to the reference point P.
  • Equation 9 the perpendicular is defined by Equation 9 below.
  • Line L is defined by Equation 10 below.
  • intersection angle ⁇ is the angle connecting the three points ⁇ , ⁇ ", ⁇ '.
  • Step S101 Turn on the crack width measurement mode key (function key) of the input unit 22. Thereby, the control unit 30 starts the crack width measurement mode based on the ON signal.
  • Step S102 The crack portion C (see Fig. 11) to be measured is collimated with the telescope 16.
  • Step S103 The focusing lens 42 is adjusted so that the image of the crack portion C is clearly formed on the focusing screen 46.
  • Step S104 The distance measuring key (function key) of the input unit 22 is turned on.
  • the control unit 30 drives the distance measuring unit 20 based on the ON signal, and the reference point P force crack portion C distance
  • Measure L The measured distance L is stored in the storage unit 35. At this time, with distance L
  • the distance L from the focusing screen to the crack is calculated based on the distances L and A L.
  • Step S105 A crack extension line L of the crack portion C is imagined on a plane (concrete surface) Q, and two points P, P on the extension line L and another plane on the plane near the crack portion C are separated.
  • Step S106 The telescope 16 is moved in the horizontal direction and the Z or vertical direction, and the reference scale 52 is arranged in the vicinity of the crack image C ′, or the reference scale 52 is superimposed on the crack image C ′.
  • Step S107 Reference scale 5 having the same or closest size as the width of crack image C '
  • Step S 108 The read dimension index 54 is input from the input unit 22.
  • Step S109 The crack width calculation unit 32 of the control unit 30 includes the input dimension index and the storage unit
  • the calculated width W ′ is stored in the storage unit 35.
  • Step S110 The crack width calculation unit 32 also determines the position of the reference point P, the measurement points P 1, P 2, and P 3.
  • Step S111 The crack width calculation unit 32 uses the distance L, the coefficient ⁇ , a, and the crack image width W.
  • Step S112 Display the calculated crack width W on the liquid crystal display of the display unit 24.
  • the crack width calculation unit is provided in an external device connected to the output unit 26 of the surveying device 10, for example, the computer 28, and based on the above-described calculation process based on the program stored in the computer 28.
  • the computer 28 may calculate the crack width.
  • the measurement result of the distance measuring unit 20 (the reference point force and the distance to the object) is transmitted from the surveying device 10 to the computer 28.
  • the dimension index (numerical value) of the reference scale 52 may be directly input to the computer 28.
  • the computer 28 calculates the size of the object image from the dimension index based on a table or a mathematical expression showing the relationship between the dimension index and the object image dimension.
  • the size of the object image and the distance force The actual size of the object is calculated.
  • each reference scale extends in the circumferential direction centered on the optical axis.
  • each reference scale may have an arc shape extending by a predetermined angle in the force-circumferential direction having a substantially circular shape.
  • a plurality of reference scales having a small lateral width are arranged in the upper area of the focusing screen, and a plurality of reference scales having a larger lateral width are arranged in the radial direction in the lower area of the focusing screen.
  • the plurality of reference scales have the same width, and for example, a scale is provided in the horizontal direction perpendicular to the optical axis.
  • each reference scale is represented by a solid, hollow circle. As described above, the shape and arrangement direction of the reference scale can be freely changed so that the size of the object image projected on the focusing screen can be read more easily.
  • the reference scale force of a solid circle or a hollow circle is preferably arranged at equal intervals on one or a plurality of circumferences centered on the optical axis.
  • the distance measuring means is not limited to the distance measuring section using a laser, but may be an ultrasonic distance measuring section using ultrasonic waves, for example.
  • the reference scale dimension index is also input as the input unit force.
  • a table showing the relationship between the dimension index and the object image dimension is prepared, and the object image obtained from the table is prepared. It is also possible to input the dimensions as input force.
  • the reference scale is provided on the focusing screen.
  • the focusing screen is arranged in the optical axis direction.
  • a transparent plate (projection plate) such as glass may be placed within the range of depth of focus before and after, and a reference scale may be drawn on this transparent plate.
  • the method for measuring the size of a crack using the optical device according to the present invention has been described above.
  • the measurement object is not limited to a crack, and any object can be the measurement object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

高所作業車や梯子を用いることなく、遠くにある物体、例えばコンクリートのクラックの寸法を測定できる装置と方法を提供する。そのため、光学装置(例えば、測量装置10)は、投影板(46)を有する望遠鏡(16)を備えている。投影板(46)は、上記投影板(46)に投影された物体(C)の像(C’)の大きさ(W)と対比するための参照スケール(52)が複数設けてある。この参照スケール(52)で計測される物体像の大きさと、光学装置の測距部(20)で計測された距離(基準点P0から物体までの距離)を用いて、物体の大きさが測定できる。

Description

明 細 書
光学装置、および光学装置を用いて物体の寸法を測定する方法 技術分野
[0001] 本発明は、光学装置、特に、物体 (例えばコンクリート構造物の表面に発生したクラ ック)の寸法測定に好適に利用できる光学装置に関する。本発明はまた、そのような 光学装置を用いて、物体の寸法を測定する方法に関する。
背景技術
[0002] コンクリート構造物(例えば橋梁、トンネル、ビル)の劣化状態を診断する方法の一 つとして、コンクリート表面に発生したクラックの幅 (クラックの伝播方向と直交する方 向の大きさ)を測定することが行われている。ところが、クラックの幅を測定するために 従来力 採られている方法は、通常のスケールやクラック幅測定用のクラックスケー ルをコンクリート表面に当ててクラックの幅を目視によって測定するものであったことか ら、測定場所が測定者の手の届く範囲に限られていた。また、特許文献 1には、細長 いロッドの先端にスケールやクラックスケールを取り付けたクラック測定装置が提案さ れているが、この装置で測定できる範囲もロッドの届く場所に限られており、例えば橋 梁の桁やトンネルの天頂部に存在するクラックまで測定できるものではなかった。 特許文献 1:特開平 8— 94752号公報
発明の開示
発明が解決しょうとする課題
[0003] このような事情から、例えばコンクリート構造物の高所部分に発生したクラックを測 定するためには、高所作業車や梯子を使用せざるを得ず、そのために測定に多大な 時間を要していた。当然、高所作業車や梯子を使用しても届力ない高所のクラックは
、測定できないという問題があった。
[0004] そこで、本発明は、物体、例えばコンクリート構造物のクラックのように、約 0. 1〜数 ミリメートルの大きさを有する物体を、該物体から離れた場所 (例えば、数メートル〜 数百メートル離れた場所)から測定するための光学装置、および該光学装置を用い て物体の寸法を測定する方法に関する。 課題を解決するための手段
[0005] このような目的を達成するため、本発明に係る光学装置は、投影板 (46)を有する 望遠鏡 (16)を備えた光学装置(10)であって、上記投影板 (46)に、上記投影板 (4 6)に投影された物体 (C)の像 (C' )の大きさ (W)と対比するための参照スケール(52 )が複数設けてある。
[0006] 本発明の他の形態の光学装置において、上記複数の参照スケール(52)は、上記 望遠鏡(16)の光軸 (38)と直交する方向または上記光軸 (38)を中心とする円周方 向の 、ずれかの配列方向に間隔をあけて配列されて 、る。
[0007] 本発明の他の形態の光学装置において、上記複数の参照スケール(52)のそれぞ れは上記投影板 (46)上で二次元方向に広がりを有するマークである。
[0008] 本発明の他の形態の光学装置において、上記複数の参照スケール(52)のマーク はそれぞれ、上記配列方向に関して、他の参照スケールのマークとは異なる大きさを 有する。
[0009] 本発明の他の形態の光学装置において、上記マークが四角又は円の平面形状を 有する。
[0010] 本発明の他の形態の光学装置は、上記複数の参照スケール (52)の近傍に、上記 複数の参照スケール (52)の大きさに対応する指標(54)がそれぞれ設けてある。
[0011] 本発明の他の形態の光学装置において、上記光学装置(10)はまた、上記望遠鏡
(16)の基準点 (P )から上記望遠鏡(16)で視準された物体 (C)までの距離 (L )を
0 0 測定する測距手段 (20)を有する。
[0012] 本発明の他の形態の光学装置において、上記測距手段(20)はレーザ測距部又は 超音波測距部を備えている。
[0013] 本発明の他の形態の光学装置は、上記複数の参照スケール (52)に関連する指標
(54)が入力される入力部(22)と、上記入力部(22)から入力された上記指標(54)と 上記測距手段 (20)で測定された距離 (L )に基づ 、て上記物体 (C)の寸法 (W)を
0
演算する演算手段 (32)を有する。
[0014] 本発明の他の形態の光学装置は、上記演算手段(32)で演算された上記物体 (C) の寸法 (W)を出力する出力部 (26)を有する。 [0015] 本発明の他の形態の光学装置において、上記物体 (C)の像 (C' )が、コンクリート 構造物に発生したクラックである。
[0016] 本発明に係る、光学装置を用いて物体の寸法を測定する方法は、複数の参照スケ ール (52)が設けられている投影板 (46)を備えた望遠鏡(16)と、上記望遠鏡(16) で視準された物体 (C)から基準点 (P )までの距離 (L)を測定する測距部 (20)を備
0
えた光学装置(10)を用意する工程と、上記望遠鏡 (16)の投影板 (46)に投影され た物体 (C)の像 (C' )と上記複数の参照スケール(52)のうちの一つ又は複数とを比 ベて求められた値 (54)と上記測距部 (20)で測定された距離 (L)に基づ ヽて、上記 物体 (C)の寸法 (W)を演算する工程を有する。
[0017] 本発明の他の形態の測定方法は、
上記物体 (C)がコンクリート構造物の表面 (Q)に発生したクラックであって、 上記第 2の工程は、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えている。
[0018] 本発明の他の形態の測定方法は、
上記物体 (C)がコンクリート構造物の表面 (Q)に発生したクラックであって、 上記第 2の工程は、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記表面 (Q)上にあって上記クラックの幅寸法と直交する方向に伸びる延長線 (L )を仮想する副工程と、
上記延長線 (L )上の少なくとも 2点の座標 [P , P 〕と、上記表面上にある 1点
1 KD 1 (2)
の座標〔P 〕を求める副工程と、
1 (3)
上記延長線 (L )を定義する副工程と、
上記表面 (Q)を定義する副工程と、
上記基準点 (P )から上記表面 (Q)に下ろした垂線 (L )と上記表面 (Q)が交叉す る第 1の交点座標 (P ' )を求める副工程と
0
上記基準点 (P )から上記延長線 (L )に下ろした垂線 (L )と上記延長線 (L )が交
0 1 2 1 わる第 2の交点座標 (P ")を求める副工程と、
0
上記基準点 (P )と第 2の交点座標 (P ")を結ぶ線 (L )と上記第 1の交点座標 (P '
0 0 2 0
)と第 2の交点座標 (P ")を結ぶ線 (L )とのなす角度( Θ )を求める副工程と、
0 4
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えている。
[0019] 本発明のクラックの幅を測定する方法は、
複数の参照スケール (52)が設けられている投影板 (46)を備えた望遠鏡(16)と、 上記望遠鏡(16)で視準された平面 (Q)上のクラック部分 (C )から基準点 (P )まで
1 0 の距離 (L )を測定する測距部 (20)を備えた光学装置(10)を用意する第 1の工程と
0 上記望遠鏡 (16)の投影板 (46)に投影されたクラック像 (C ' )と上記複数の参照ス ケール(52)のうちの一つ又は複数とを比べて求められた値 (W, )と、上記測距部 (2 0)で測定された距離 (L )を利用して、上記クラック部分 (C )の幅寸法 (W)を演算す
0 1
る第 2の工程を備えている。
[0020] 本発明の他の形態のクラックの幅を測定する方法は、
上記第 2の工程が、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えている。
[0021] 本発明の他の形態のクラックの幅を測定する方法は、
上記第 2の工程が、
上記クラック像 (C' )の延長線 (L )と上記基準点 (P )を含む平面 (Q )と上記平面 (
1 0 0
Q)との交角( 0 )を求める副工程と、
上記距離 (L )をもとに、上記投影板 (46)と上記クラック部分 (C )との距離 (L)を求
0 1
める副工程と、 上記値 (W )、交角( θ )、距離 (L)を用いて上記幅寸法 (W)を求める副工程を備 えている。
発明の効果
このような光学装置及び方法によれば、高所作業車や梯子を用いることなぐ遠く ある物体、例えばコンクリートのクラックの寸法を測定できる。
図面の簡単な説明
図 1]本発明の光学装置の実施形態である測量装置の斜視図。
図 2]図 1に示す測量装置の構成と機能を示すブロック図。
図 3]図 1に示す測量装置の望遠鏡の概略構成を示す断面図。
図 4]図 3に示す焦点板に投影された物体 (クラック)と参照スケールを示す図。
図 5]図 2に示す測距部の構成と機能を示すブロック図。
図 6]図 1に示す入力部と表示部の詳細を示す図。
図 7]物体幅又はクラック幅を測定する原理を説明する図。
図 8]望遠鏡の焦点板に投影されたクラックを拡大した図。
図 9]クラック幅、クラック像幅、角度の関係を示す図。
圆 10]望遠鏡の焦点板に投影されたクラックと、延長線 (仮想線)、計測点を示す図。
[図 11]角度の計算方法を示す図。
[図 12]クラック幅を求めるプロセスを示すフローチャート。
圆 13]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 14]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 15]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 16]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 17]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 18]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 19]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 20]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
圆 21]焦点板に形成された参照スケ -ル、寸法指標の他の例を示す図。
符号の説明 [0024] 10:レーザ測量装置(トータルステーション)、 12:基台、 14:本体、 16:望遠鏡、 18: 物体、 20:測距部、 22:入力部、 24:表示部、 26:出力部、 28:コンピュータ、 30:制 御部、 32:クラック幅演算部、 34:座標演算部、 35:記憶部、 36:鏡筒、 38:光軸、 40 :対物レンズ、 42:合焦レンズ、 44:正立プリズム、 46:焦点板 (投影板)、 48:接眼レ ンズ、 50:十字線、 52:参照スケール、 54:数値指標、 56:レーザ光、 58:発光部、 6 0:受光部、 62:演算部、 64:光学系、 66:プリズム、 68:ファンクションキー、 70:テン キー、 72:カーソル移動キー、 74:エンターキー、 76:液晶ディスプレイ、 C,:クラック 像。
発明を実施するための最良の形態
[0025] 以下、添付図面を参照して本発明に係る光学装置及びそれを用いた物体の寸法 を測定する方法について説明する。なお、本件特許出願において、「光学装置」は、 望遠鏡、望遠鏡を含む視準装置、視準機能と測距機能を備えた測量装置を含む。ま た、「物体」は、有限寸法の独立した物である必要はなぐ物の一部又はそれに付随 する有形物 (例えば、コンクリート構造物に発生したクラックの一部分)を含む。ただし 、発明の理解を容易にするために、以下の説明では、本発明を測量装置に組み入 れた態様、またその測量装置を用いてコンクリート構造物に形成されたクラックの大き さ(幅)を測定する方法について説明する。
[0026] 《1 1:測量装置》
図 1は、本発明に係る光学装置を具体ィ匕したレーザ測量装置(トータルステーション )10を示す。測量装置 10は、通常の測量装置と同様に、図示しない三脚に着脱自 在に連結されて固定される基台 12と、垂直軸 (Z軸)を中心として回転可能に基台 12 に連結された本体 14と、水平軸 (X軸)を中心として回転可能に本体 14に連結された 望遠鏡 16を備えている。測量装置 10は、 3つの軸 垂直軸 (Z軸)、水平軸 (X軸)、 および望遠鏡 16の光軸 38に一致する Y軸—が交叉する基準点 (基準座標又は機械 座標) Pと、望遠鏡 16によって視準された物体 18との距離を測定する測距手段又は
0
測距部(図 2に符号 20で示されている。)を有する。実施の形態では、測量装置 10は 、測量に必要なデータを入力するための入力部 22と、測量結果等を表示する表示 部 24、入力部 22から入力されたデータや測量結果のデータを他の装置 (例えば、コ ンピュータ 28)に出力する出力部 26を有する。
[0027] 図 2は、測量装置 10の構成を機能の観点力も表したブロック図である。図示するよ うに、測量装置 10は制御部 30を有する。制御部 30は、測距部 20、入力部 22、表示 部 24、出力部 26と電気的に接続されており、後に詳細に説明するように、これら測距 部 20、入力部 22、表示部 24、出力部 26を総合的に制御する。制御部 30は、物体 の大きさ、例えば、コンクリート構造物に形成されたクラックの幅を演算するクラック幅 演算部 32と、測量対象の空間座標、例えば、望遠鏡 16で視準された位置にあるクラ ック部分の三次元座標を演算する座標演算部 34、座標演算やクラック幅演算に必要 なプログラムやデータを格納する記憶部 35を有する。その他、図示しないが、測量装 置 10は、測量に必要な構成要素、例えば、整準器、測角部などを有する。
[0028] 《1 2 :望遠鏡》
図 3は、望遠鏡 16の概略構成を示す。図示するように、望遠鏡 16は、鏡筒(図 1に 符号 36で示す。 )内に、物体側から測量オペレータ側(図の左側から右側)に向かつ て、光軸 38に沿って順番に、対物レンズ 40、合焦レンズ 42、正立プリズム 44、焦点 板 (投影板) 46、接眼レンズ 48を備えており、視準された物体像 (例えば、クラック像) が対物レンズ 40、合焦レンズ 42、正立プリズム 44を介して焦点板 46に結像され、そ れにより物体像が接眼レンズ 48を介してオペレータによって拡大観察されるようにな つている。
[0029] 《1 3 :焦点板および参照スケール》
図 4は、焦点板 46に描かれている視準指標の十字線 50と複数のマーク又は参照 スケール 52を、焦点板 46に結像されて接眼レンズ 48を介して観察された物体像又 はクラック像 C'と共に示す。十字線 50の交点は、光軸 38に一致している。実施の形 態では、複数 (例えば、 16個)の参照スケール 52が、焦点板 46の周辺領域に形成さ れている。複数の参照スケール 52は、それぞれが大きな横寸法と小さな縦寸法を有 する四角形又はストリップ形状のマーク力 なり、光軸と直交する上下方向に間隔を あけて一列に配列されている。図示するように、複数の帯状参照スケールの横方向 の長さは同一である。一方、複数の帯状参照スケールの縦方向の寸法は異なり、最 下段に配置された参照スケールの縦方向寸法が最も短ぐ最上段に配置された参照 スケールの縦方向寸法が最も大きくなるように、より上段に位置する参照スケールの 縦方向寸法がより大きくしてある。
[0030] 実施の形態では、 2段目力も最上段までの参照スケール 52の縦方向寸法が、最下 段の参照スケール 52の縦方向寸法の整数倍としてある。また、各参照スケール 52の 横に、その参照スケールに対応する寸法指標 54の数値が描かれており、最上段の 参照スケール 52 (1)の横に寸法指標「1」、最下段の参照スケール 52 (16)の横に寸 法指標「16」が描かれている。寸法指標 54は数値である必要はなぐ他の記号 (例え ば、アルファベット)であってもよい。各寸法指標 54の数値は対応する参照スケール 5 2の実際の縦寸法に関連しており、寸法指標 54と実際の縦寸法の関係が、テーブル 又は数式の形で記憶部 35に記憶されている。したがって、オペレータが焦点板に投 影された物体像と参照スケールを対比し、物体像と同一の大きさを有する参照スケー ル又は物体像に最も近い大きさを有する参照スケールの寸法指標の数値を入力部 2 2を通じて測量装置 10に入力すると、測量装置 10は焦点板 46に投影された物体像 の大きさを計算できる。
[0031] 《1 4 :測距部》
図 5を参照すると、測距部 20は、レーザ光を出力する、例えばレーザダイオードな どの発光部(レーザ装置) 58と、物体 (例えば、クラック)力 のレーザ反射光を受光 する受光部 60と、レーザ光が発射されて力 受光されるまでの時間をもとに、物体か ら基準点 Pまでの距離を算出する演算部 62と、発光部 58から出射されたレーザ光
0
を望遠鏡 16の光軸 38に沿って物体に案内すると共に光軸 38に沿って物体力も帰つ てくるレーザ光を受光部 60に案内する光学系 64を有する。図示するように、光学系 6 4の一部を構成するプリズム 66が望遠鏡 16の内部に配置されており、これによりレー ザ光 56の進路が望遠鏡 16の光軸 38と一致させてある。なお、レーザ測距部 20にお ける距離計算は、発光カも受光までの時間を利用する方法に限るものでなぐ例えば 、両者の位相差力 距離を求めることもできる。
[0032] 《1 5 :入力部》
図 6に示すように、入力部 22は、複数のキー、例えばファンクションキー 68、テンキ 一 70、カーソル移動キー 72、エンターキー 74を有する。ここで、ファンクションキー 6 8は、後述するクラックの寸法測定における処理の実行を指示するために利用される 。また、テンキー 70は、焦点板 46に描かれた寸法指標 54の数値を入力するために 利用される。
[0033] 《1 6 :表示部》
図 6に示すように、表示部 24は液晶ディスプレイ 76を有する。液晶ディスプレイ 76 には、測距部 20で測定された数値 (例えば、距離、方位角)、テンキー 70を介して入 力された寸法指標 54の数値、クラック幅演算部 32で演算されたクラック幅、座標演 算部 34で演算された座標値、測定結果その他の操作上必要な情報が表示される。
[0034] 《1 7 :出力部》
図 1に示すように、出力部 26は、表示部 24に表示される種々の情報 (測定結果等) を、そこに接続されたコンピュータ 28に出力する。
[0035] 《2— 1 :計算方法の基本的考え》
以下、コンクリート構造物の表面に発生したクラックの幅を計算する方法の基本的な 考えについて説明する。ただし、説明を容易にするために、まず、図 7に示すように、 高所に設置された測量装置 10で、その下方にある水平面 (例えば、コンクリトート構 造物の表面) Qに生じた一定幅 Wの直線クラック Cを観察する状況を考える。図面上 、クラック Cは相当大きな幅を有するものとして描力されている力 これは計算方法の 理解を容易にするためである。ここで、クラック Cの長手方向に伸びる一方の縁線を L 、他方の縁線を Lとする。クラック Cの一方の縁線 Lと測量装置の基準点 Pを含む
L R L 0 斜めの平面(図上、点 P 、 P 、 P で形成される三角形を含む面。)を<3とする。また
0 し 0 し 2 0
、点 Pを通る矢印 D方向の垂直平面(図上、点 P 、 P '、 P で形成される三角形を
0 1 0 0 L0
含む面。)を<3
1とする。ここで、図示するように、点 P
0 'は点 P
0を通る垂線が平面 Q
0と 交叉する点、点 P は斜め平面 Qと垂直平面 Qが交叉する縁線 L上の点である。ま
し 0 0 1 し
た、点 P は、点 P を通り、クラック Cを直角に横断する線が、他方の縁線 Lと交叉
RO LO R
する点である。
[0036] 図 8は、この状況で測量装置 10の望遠鏡 16の焦点板 46に投影される画像を示す 。図上、符号 C'はクラック Cの投影像を示し、符号 W'は投影されたクラック像 C'の幅 を示す。符号 P ' , P ' , P ' , P 'はそれぞれ図 7の点 P , P , P , P に対応
LO RO PI Ml L RO PI Ml する投影点を示す。線 L ' , L 'はそれぞれ図 7の縁線 L , Lに対応する投影線を示
L R L R
す。符号 Q '、 Q 'はそれぞれ図 7の平面 Q , Qを焦点板 46に投影した線である。
0 1 0 1
図示するように、焦点板 46上において、平面 Qの投影像 Q 'はクラック像 C'を斜め に横切る。また、クラック Cの実際の横幅 Wに対応した、点 P , P を結ぶ線の投影
LO RO
線は、投影点 P ' , P ,を通り、クラック像 W'を斜めに横切る線である。なお、図 8に
LO RO
表示された複数の線のうち、線 L ' , L '以外の線 (例えば、投影線 Q '、点 P 'と P
L R 1 LO R
'を結ぶ線、点 P 'と点 P 'を結ぶ線)は、実際には焦点板 46に表れな 、線である
[0037] 焦点板 46上で、実際のクラック Cの横幅 Wに対応する線は、クラック像 C'を斜めに 横断する線 (点 P 'と点 P 'を結ぶ線)であって、クラック像 C'を直角に横断する線(
LO RO
点 P ,と点 P ,を結ぶ線)ではな!/ヽ。このクラック像 C'を直角に横断する線は、図 7
LO R1
に示すように、他方の縁線 L上の任意の点(例えば、点 P )から、斜めの平面 Qに
R R1 0 垂線を下ろしたとき、この垂線が斜めの平面 Q P
0に交叉する点 P
Mlと点 R1とを結ぶ垂 線を投影したものであり、焦点板 46に表れたクラック像の幅を用いて実際のクラック の幅を求める本発明では、観察者が焦点板 46から読み取るクラック像の幅 W'はこの 垂線の長さである。
[0038] 図 7に示すように、点 P、 P 'を含み、クラック Cと直角に交叉する三角形の垂直平
0 0
面 Qを考える。図示するように、垂直平面 Qと縁線 L , Lが交叉する点がそれぞれ
2 2 L R
点 P , P である。また、縁線 Lと垂線 (点 P 、P を結ぶ線)を含む四角形の平面
L2 R2 R Rl Ml
Qを考える。図示するように、平面 Qと平面 Qの交叉する線が点 P と点 P を結ぶ
3 2 3 M2 R2 線 (垂線)として与えられる。ここで、点 P と点 P を結ぶ垂線は、点 P と点 P を結
M2 R2 Ml Rl ぶ垂線と平行で且つ同じ長さを有する。この関係を利用すると、縁線 L、 Lと平行な
L R
方向 D (図 7参照)から平面 Q , Qを見た図 9に示すように、クラック像 C'の幅 W'を
2 1 2
基に点 P と点 P を結ぶ垂線の長さ W"を求め、この長さ W"から実際のクラック Cの
M2 R2
幅 wを求めることができる。
[0039] 《2— 2:クラック幅 Wの計算》
垂線長 W"は、焦点板 46に結像されたクラック像 C'の幅 W'と、焦点板 46からクラッ ク Cまでの距離 Lとの積に略比例し、以下の数式 1で与えられる。 [数 1]
W"= L W
式中、係数 αは、望遠鏡の光学系によって定まる定数で、例えば対物レンズの倍 率などによって定まる値である。物体 (クラック)力も焦点板までの距離 Lは、測距部で 得られる距離測量の結果をもとに得られる。具体的に説明すると、測量装置 10にお いて、基準点 Ρ力も焦点板 46までの距離 A Lは既知である。また、基準点 Ρ力 クラ
0 0 ックまでの距離 Lは測距部 20で求められる。これらの値をもとに、クラック幅演算部 3
0
2は、物体力も焦点板までの距離 L ( =L + A L)を計算する。
0
[0040] 焦点板 46に結像したクラック像 C'の幅 W'は、入力部 22を通じてオペレータが入 力する寸法指標 (例えば、「1」〜「16」の値)に基づいて得られる。具体的に説明する と、上述のように、焦点板 46に描かれた寸法指標とその実際の縦方向寸法の関係が 、テーブル又は数式の形で記憶部 35に記憶されている。したがって、オペレータが 焦点板に投影されたクラック像 C'の幅 W'と参照スケールを対比し、幅 W'と同一の 大きさ(縦寸法)を有する参照スケール又はクラック像に最も近 、大きさ(縦寸法)を有 する参照スケールの寸法指標を入力部 22から入力すると、クラック幅演算部 32は記 憶部 35のテーブル又は関係式に基づ 、て焦点板 46上のクラック像の幅 W,を計算 する。例えば、オペレータが寸法指標「10」を入力部 22から入力すると、クラック幅演 算部 32は実際のクラック像の幅を「5 μ mjと計算する。
[0041] 留意すべきことは、数式 1は理想的な式で、そこでは垂線長 W"はクラック像 C'の幅 Wと焦点板 46からクラックまでの距離 Lに比例するものとして表されている力 現実 の光学系は種々の収差を含むことから、実際の計算には数式 1を変形した下記の数 式 2を用い、この数式 2に含まれる係数 α , a の値を実験的に求めることが好ましい
1 2
[数 2]
[0042] ここで、図 9に示すように、垂線長 W"と実際のクラック Cの幅 Wは以下の数式 3の関 係を有する。
[数 3] 角度 Θは、例えば、図 7において、点 Ρと点 Ρ を結ぶ線と、点 Ρ 'と点 Ρ を結ぶ線
0 L2 0 L2 とが交叉する角度、また平面 Qと Qの交角である。角度 Θの求め方は後に説明する
0
[0043] 数式 2, 3から以下の数式 4が得られる。
w i^L + a2 ) W
sin θ
[0044] 係数 a , α は、例えば、次の手順によって求めることができる。まず、壁面に異な
1 2
る大きさ(幅) W'の複数 (n個)のマーク(例えば、長方形のマーク)を描き、各マーク の幅 W (W · ·,W )を測定する。次に、測量装置を設置し、測量装置 (基準点 P )か
1 n 0 ら各マークまでの距離 L (L · · -L )を測定する。また、焦点板に投影された各マーク の大きさ(寸法指標) W' (W - - -W ' )を読み取る。さらに、各マークについて角度
Θを求める。続いて、これら 4つの値 (L、 W, W , 0 )を統計処理 (例えば、最小二乗 法)して、係数 a , a を求める。または、係数 a , a は、壁面に所定の大きさ(幅) Wのマークを一つ描き、壁面力 測量装置までの距離 L (L · · -L )を変更し、各距離 について寸法指標 W' (W ' - - -W ' )を読み取り、それらの値 (L、W, W', 0 )を統 計処理して求めることもできる。さらに、壁面上の同一箇所に複数のマークを代わる 代わる描き、つまり、距離 Lと角度 0を一定に保ち、幅 W, W'の関係から係数 a , a を求めることもできる。以上のようにして計算された係数 a , a
1 2は、記憶部 35
2 に記 憶されている。
[0045] 数式 4に代えて、個々の光学装置に固有の機械誤差等を考慮した補正定数 a を
3 加えた以下の数式 5を用いることもできる。
[数 5]
„, ( ,L + a2 ) W
W =― ― + «3
sin Θ
[0046] 《2— 3 :角度 Θの計算》
図 1に示すように、コンクリート構造物の表面に発生するクラックの進行方向は不特 定であり、曲がりくねった形をしている。したがって、実際のクラック幅の測定にあたつ ては、図 11に示すように、焦点板 46に投影されたクラックにおける、クラック幅を測定 しょうとするクラック部分 Cの延長線 Lを仮定する。この延長線 Lは、測定対象のクラ ック部分 Cの幅方向と直交する方向に伸びる線である。具体的に、延長線 Lは、そ の延長線 L上に存在すると思われる構造物表面上の 2点を特定することにより計算 できる。図上、特定された点を P , P で示す。後に説明するように、クラック部分
1(1) 1(2)
cが存在しているコンクリート表面の関数を定義する必要から、このときクラック部分 Cの近傍にある第 3の点 P を併せて特定する。図 10では、点 P , P , P の
1 1(3) 1(1) 1(2) 1(3) 投影点がそれぞれ P ', Ρ ', Ρ ,で示してある。
1(1) 1(2) 1(3)
[0047] 次に、測量装置を用いて、 3つの点 Ρ , Ρ , Ρ についてそれぞれの座標(X
1(1) 1(2) 1(3) 1
, y , z ), (x , y , z ), (x , y , ζ )を求める。このとき、測量装置は、その基準点 P
1 1 2 2 2 3 3 3 0 と、該基準点力 各点までの斜距離及び方位角とを用いて、計算する。
[0048] 計算された 2点 P , P の座標 (x , y , z ) , (x , y , z )を用いて、クラック延長
1(1) 1(2) 1 1 1 2 2 2
線 Lの関数を求める。例えば、この延長線 Lは、以下の数式 6で定義される。
[数 6]
^-^i y-y^ z_Zl
ん-. , I-,
ん 1 "^"2_ 1
= 2 ~ 1
= Ζ2 - Zl
[0049] コンクリート表面の関数は、 3点 Ρ , Ρ , Ρ の座標(X , y , ζ ), (X , y , ζ )
1(1) 1(2) 1(3) 1 1 1 2 2 2
, (χ , y , ζ )を用いて、例えば数式 7で定義される。
3 3 3
[数 7] m1(x-x1) + m2(y-^1) + m3(z-z3) = 0
mx = (y2— )(¾ -z1)-(y3 -y1)(z2 -ζ,)
m2 = (z2 - z1 )(x3 - ) - (z, - z1 )(x2 - j)
m3 = (x2 - ¾ )(y3 - ^ ) - (x3 - ¾ )(y2 -y,)
[0050] 図 11に示す、基準点 P (x , y , z )から延長線 Lに下ろした垂線 Lの関数と、延
0 0 0 0 1 2
長線 Lと垂線 Lとの交点の座標 P "(X ", y ", z ";)を求める。座標 P "は、延長線 L
1 2 0 0 0 0 0 1 上にあって、基準点 Pとの距離が最小となる点であるから、基準点 Pとの距離が最小
0 0
となる延長線 L上の点 P "を計算し、この点 P "と基準点 Pを結ぶ直線として求めるこ
1 0 0 0
とができる。例えば、垂線しは、以下の数式 8で定義される。
2
[数 8] x " xo—ノーノ。 — Z0
k4 k5 / 6
ん 4 ― o 。
6 = Ζ0 "Ζ0
[0051] 次に、基準点 Ρ (X , y , ζ )から平面 Q (または平面を含む仮想の平面)に下ろした
0 0 0 0
垂線しの関数と、平面 Qと垂線 Lとの交点 P,の座標 P,(X ,, y ,, z,)を求める。
3 3 0 0 0 0 0 座標 P 'は、平面 Q上にあって、基準点 Pとの距離が最小となる点であるから、基準
0 0
点 Pとの距離が最小となる平面上の点 P 'を計算し、この点 P,と基準点 Pを結ぶ直
0 0 0 0 線として求めることができる。例えば、垂線しは、以下の数式 9で定義される。
3
[数 9]
¾ y-y0 z_ zo
k0 =y0'-y0
9 ―
[0052] 点 P (x y z ')と点 P " (X " y ζ ")を結ぶ垂線 Lを求める。例えば、垂
0 0 0 0 0 0 0
線 Lは、以下の数式 10で定義される。
4
[数 10] —V y-y0' ζ_ζ0
'*10 た 11 12
ん 10 — Λ0 ~
Figure imgf000016_0001
^12 0 ~Δ0
[0053] 垂線しとしの交角 Θを求める。なお、交角 Θは、 3点 Ρ、 Ρ "、 Ρ 'を結ぶ角度であ
2 4 0 0 0 るから、これら 3つの座標力 計算することも可能である。 [0054] 《2— 2:クラック幅の測定》
コンクリート構造物の表面に発生したクラックの幅の測定について、図 12のフロー チャートを参照して詳細に説明する。
[0055] ステップ S101:入力部 22のクラック幅測定モードキー(ファンクションキー)をオンす る。これにより、制御部 30は、そのオン信号に基づいて、クラック幅測定モードを開始 する。
[0056] ステップ S102 :測定対象のクラック部分 C (図 11参照)を望遠鏡 16で視準する。
[0057] ステップ S103 :焦点板 46上にクラック部分 Cの像が鮮明に結像されるように、合焦 レンズ 42を調整する。
[0058] ステップ S104 :入力部 22の測距キー(ファンクションキー)をオンする。制御部 30は 、そのオン信号に基づいて測距部 20を駆動し、基準点 P力 クラック部分 Cの距離
0 1
Lを測定する。測定された距離 Lは記憶部 35に記憶される。このとき、距離 Lと共に
0 0 0 又は距離 Lに代えて、距離 Lと A Lを基に焦点板カゝらクラックまでの距離 Lを計算し
0 0
、この値 Lを記憶部 35に記憶することが好ま 、。
[0059] ステップ S105 :クラック部分 Cのクラック延長線 Lを平面 (コンクリート表面) Q上に仮 想し、この延長線 L上の 2点 P , P とクラック部分 Cの近傍にある平面上の別の
1 1 (1) 1 (2) 1
1点 P を視準してそれぞれの座標 (X , y , z ) , (x , y , z ) , (x , y , z )を求め
1 (3) 1 1 1 2 2 2 3 3 3 る。測定された座標は記憶部 35に記憶される。
[0060] ステップ S106 :望遠鏡 16を水平方向及び Z又は垂直方向に動かし、クラック像 C' の近傍に参照スケール 52を配置する、またはクラック像 C'に参照スケール 52を重ね る。
[0061] ステップ S107 :クラック像 C'の幅と同一又はそれに最も近い大きさの参照スケール 5
2の寸法指標を読み取る。
[0062] ステップ S 108 :読み取った寸法指標 54を入力部 22から入力する。
[0063] ステップ S109:制御部 30のクラック幅演算部 32は、入力された寸法指標と、記憶部
35のテーブル又は関係式をもとに、焦点板 46に投影されたクラック像 C'の幅寸法 W
'を計算する。計算された幅 W'は記憶部 35に記憶される。
[0064] ステップ S110 :クラック幅演算部 32はまた、基準点 P、測点 P , P , P の座
0 1 (1) 1 (2) 1 (3) 標を用いて、上述のようにして角度 Θを計算する。
[0065] ステップ S111 :クラック幅演算部 32は、距離 L、係数 α , a 、クラック像幅 W,を用
1 2
いて、クラック Cの幅 Wを計算する。
[0066] ステップ S112:計算されたクラック幅 Wを、表示部 24の液晶ディスプレイに表示する
。出力部 26にコンピュータ 28が接続されている場合、このコンピュータ 28にクラック 幅 Wを送信する。
[0067] 《5 :変形例》
以上、本発明に係る寸法測定装置を説明したが、特許請求の範囲に記載された発 明の範囲内で種々改変可能である。
[0068] 例えば、以上の説明では、測定クラックを有する壁面に対して測量装置 10の光軸 3
8が斜めに交差する場合についてそのクラックの幅を正確に計算する方法を説明し た力 壁面に対して光軸が直交しない場合であっても、簡易的に数式 11を用いてク ラックの幅を計算してもよ!、。
[数 11]
W = {axL + 2 ) W + «,
[0069] また、クラック幅演算部は、測量装置 10の出力部 26に接続された外部装置、例え ばコンピュータ 28に設け、このコンピュータ 28に格納されているプログラムに基づき、 上述した計算プロセスに基づいてコンピュータ 28がクラック幅を計算してもよい。この 場合、測距部 20の測定結果 (基準点力も物体までの距離)は測量装置 10からコンビ ユータ 28に送信される。また、参照スケール 52の寸法指標 (数値)は、コンピュータ 2 8に直接入力してもよい。そして、コンピュータ 28は、上述した計算プロセスに基づい て、寸法指標と物体像寸法との関係を示すテーブル又は数式に基づいて、寸法指 標から物体像の大きさを計算する。また、物体像の大きさと距離力 物体の実寸法を 計算する。
[0070] 参照スケールの形、配置 (場所、方向)は、上述した図 4の形態に限るものでな 、。
例えば、図 13に示す実施形態では、複数の参照スケールが左右方向に配置されて おり、それらに参照スケールに付随する寸法指標の数値が参照スケールの上に配置 されている。図 14に示す実施形態では、複数の参照スケールが、光軸を中心とする 径方向に配置されている。図 15に示す実施形態では、各参照スケールは、光軸を中 心とする周方向に伸びている。ここで、各参照スケールは、ほぼ円の形をしている力 周方向に所定角度だけ伸びる、円弧状であってもよい。図 16に示す実施形態では、 焦点板の上部領域に、横幅の小さな複数の参照スケールが配置され、焦点板の下 部領域に、横幅がより大きな複数の参照スケールが、径方向に配置されている。図 1 7に示す実施形態では、複数の参照スケールは同一の横幅を有し、例えば光軸と直 交する水平方向に目盛が設けてある。図 18、図 19に示す実施形態では、各参照ス ケールが、中実、中空の円で表されている。このように、参照スケールの形と配列方 向は、焦点板に投影されている物体像の大きさの読み取りがより簡単にできるように、 自由に変更することができる。また、複数の参照スケール配列を設けることにより、望 遠鏡の移動を最小限に抑えることができる。図 20、図 21に示す実施形態では、中実 円又は中空円の参照スケール力 光軸を中心とする一つ又は複数の円周上に、好ま しくは等間隔に配置されて 、る。
[0071] 測距手段は、レーザを用いた測距部に限るものでなぐ例えば超音波を利用した超 音波測距部であってもよい。
[0072] 上記実施形態では、参照スケールの寸法指標を入力部力も入力するものとしたが、 寸法指標と物体像寸法との関係を示すテーブルを用意しておき、そのテーブルから 得られた物体像寸法を入力部力も入力するようにすることもできる。
[0073] また、上記実施形態では、焦点板に参照スケールを設けたが、オペレータが接眼レ ンズを介して物体像と参照スケールを鮮明に見ることができれば、例えば、光軸方向 に関して焦点板の前後で焦点深度の範囲内にガラスなどの透明板 (投影板)を配置 し、この透明板に参照スケールを描いてもよい。
[0074] さらに、以上、本発明に係る光学装置を用いてクラックの大きさを測定する方法を説 明したが、測定対象はクラックに限るものでなぐあらゆる物が測定対象となり得る。

Claims

請求の範囲
[1] 投影板 (46)を有する望遠鏡 (16)を備えた光学装置(10)であって、上記投影板 (4
6)に、上記投影板 (46)に投影された物体 (C)の像 (C ' )の大きさ (W )と対比するた めの参照スケール (52)が複数設けてあることを特徴とする光学装置。
[2] 上記複数の参照スケール (52)は、上記望遠鏡(16)の光軸(38)と直交する方向ま たは上記光軸(38)を中心とする円周方向のいずれかの配列方向に間隔をあけて配 列されていることを特徴とする請求項 1の光学装置。
[3] 上記複数の参照スケール(52)のそれぞれは上記投影板 (46)上で二次元方向に広 力^を有するマークであることを特徴とする請求項 2の光学装置。
[4] 上記複数の参照スケール(52)のマークはそれぞれ、上記配列方向に関して、他の 参照スケールのマークとは異なる大きさを有することを特徴とする請求項 2の光学装 置。
[5] 上記マークが四角又は円の平面形状を有することを特徴とする請求項 3の光学装置
[6] 上記複数の参照スケール(52)の近傍に、上記複数の参照スケール(52)の大きさに 対応する指標(54)がそれぞれ設けてあることを特徴とする請求項 4または 5の光学 装置。
[7] 上記光学装置(10)はまた、上記望遠鏡(16)の基準点 (P )から上記望遠鏡(16)で
0
視準された物体 (C)までの距離 (L )を測定する測距手段 (20)を有することを特徴と
0
する請求項 1〜6のいずれかの光学装置。
[8] 上記測距手段 (20)がレーザ測距部又は超音波測距部を備えて 、ることを特徴とす る請求項 7の光学装置。
[9] 上記複数の参照スケール (52)に関連する指標(54)が入力される入力部(22)と、上 記入力部(22)から入力された上記指標(54)と上記測距手段 (20)で測定された距 離 (L)に基づ 、て上記物体 (C)の寸法 (W)を演算する演算手段 (32)を備えたこと を特徴とする請求項 7または 8の光学装置。
[10] 上記演算手段(32)で演算された上記物体 (C)の寸法 (W)を出力する出力部(26) を備えたことを特徴とする請求項 9の光学装置。
[11] 上記物体 (c)の像 (c')が、コンクリート構造物に発生したクラックであることを特徴と する請求項 1〜: LOのいずれかの光学装置。
[12] 複数の参照スケール (52)が設けられている投影板 (46)を備えた望遠鏡(16)と、上 記望遠鏡(16)で視準された物体 (C)から基準点 (P )までの距離 (L )を測定する測
0 0
距部 (20)を備えた光学装置(10)を用意する第 1の工程と、
上記望遠鏡 (16)の投影板 (46)に投影された物体 (C)の像 (C ' )と上記複数の参 照スケール(52)のうちの一つ又は複数とを比べて求められた値 (W )と上記測距部 (20)で測定された距離 (L )を利用して、上記物体 (C)の寸法 (W)を演算する第 2
0
の工程を備えたことを特徴とする、光学装置を用いて物体の寸法を測定する方法。
[13] 上記物体 (C)がコンクリート構造物の表面 (Q)に発生したクラックであって、
上記第 2の工程は、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えていることを特徴とする請求項 12の方法。
[14] 上記物体 (C)がコンクリート構造物の表面 (Q)に発生したクラックであって、
上記第 2の工程は、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記表面 (Q)上にあって上記クラックの幅寸法と直交する方向に伸びる延長線 ( )を仮想する副工程と、
上記延長線 (L )上の少なくとも 2点の座標 [P , P 〕と、上記表面上にある 1点
1 KD 1 (2)
の座標〔P 〕を求める副工程と、
1 (3)
上記座標座標〔Ρ , P 〕を用いて上記延長線 (L )を定義する副工程と、
1 (1) 1 (2) 1
上記座標〔Ρ , Ρ , Ρ 〕を用いて上記表面 (Q)を定義する副工程と、
1 (1) 1 (2) 1 (3)
上記基準点 (P )から上記表面 (Q)に下ろした垂線 (L )と上記表面 (Q)が交叉す
0 3
る第 1の交点座標 (P ' )
0 を求める副工程と
上記基準点 (P )から上記延長線 (L )に下ろした垂線 (L )と上記延長線 (L )が交 わる第 2の交点座標 (P ")を求める副工程と、
0
上記基準点 (P )と第 2の交点座標 (P ")を結ぶ線 (L )と上記第 1の交点座標 (P '
0 0 2 0
)と第 2の交点座標 (P ")を結ぶ線 (L )とのなす角度( Θ )を求める副工程と、
0 4
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えていることを特徴とする請求項 12の方法。
[15] 複数の参照スケール (52)が設けられている投影板 (46)を備えた望遠鏡(16)と、上 記望遠鏡(16)で視準された平面 (Q)上のクラック部分 (C )から基準点 (P )までの
1 0 距離 (L )を測定する測距部 (20)を備えた光学装置(10)を用意する第 1の工程と、
0
上記望遠鏡 (16)の投影板 (46)に投影されたクラック像 (C ' )と上記複数の参照ス ケール(52)のうちの一つ又は複数とを比べて求められた値 (W, )と、上記測距部 (2 0)で測定された距離 (L )を利用して、上記クラック部分 (C )の幅寸法 (W)を演算す
0 1
る第 2の工程を備えたことを特徴とする、光学装置を用いてクラックの幅を測定する方 法。
[16] 上記第 2の工程は、
上記距離 (L )をもとに上記投影板 (46)力らクラック (C)までの距離 (L)を求める副
0
工程と、
上記値 (W )、距離 (L)、角度( Θ )を用いて上記クラック (C)の幅 (W)を求める副 工程を備えていることを特徴とする請求項 15の方法。
[17] 上記第 2の工程は、
上記クラック像 (C' )の延長線 (L )と上記基準点 (P )を含む平面 (Q )と上記平面 (
1 0 0
Q)との交角( 0 )を求める副工程と、
上記距離 (L )をもとに、上記投影板 (46)と上記クラック部分 (C )との距離 (L)を求
0 1
める副工程と、
上記値 (W )、交角( Θ )、距離 (L)を用いて上記幅寸法 (W)を求める副工程を備 えたことを特徴とする請求項 15の方法。
PCT/JP2006/312731 2005-09-15 2006-06-26 光学装置、および光学装置を用いて物体の寸法を測定する方法 WO2007032136A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06767348.3A EP1939583B1 (en) 2005-09-15 2006-06-26 Optical device, and method of measuring the dimension of object using optical device
JP2007503140A JP3996946B2 (ja) 2005-09-15 2006-06-26 光学装置、および光学装置を用いて物体の寸法を測定する方法
US12/066,756 US7667823B2 (en) 2005-09-15 2006-06-26 Optical device, and method of measuring the dimension of object using optical device
CN2006800339283A CN101263362B (zh) 2005-09-15 2006-06-26 光学装置、及使用光学装置测量物体尺寸的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-268435 2005-09-15
JP2005268435 2005-09-15
JP2006062740 2006-03-08
JP2006-062740 2006-03-08

Publications (1)

Publication Number Publication Date
WO2007032136A1 true WO2007032136A1 (ja) 2007-03-22

Family

ID=37864737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312731 WO2007032136A1 (ja) 2005-09-15 2006-06-26 光学装置、および光学装置を用いて物体の寸法を測定する方法

Country Status (6)

Country Link
US (1) US7667823B2 (ja)
EP (1) EP1939583B1 (ja)
JP (1) JP3996946B2 (ja)
KR (1) KR101029397B1 (ja)
CN (1) CN101263362B (ja)
WO (1) WO2007032136A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044817A1 (ja) * 2007-10-04 2009-04-09 Kansai Kouji Sokuryou Co., Ltd. 光学装置及び測量方法
JP2014032164A (ja) * 2012-07-11 2014-02-20 Nippon Koei Co Ltd デジタルカメラを用いた構造物の三次元変位測定システム
CN105180816A (zh) * 2015-05-27 2015-12-23 中国科学院长春光学精密机械与物理研究所 光电接收器与指示光栅气浮调整安装装置及其安装方法
CN105423916A (zh) * 2015-11-30 2016-03-23 中国联合网络通信集团有限公司 一种物体尺寸的测量方法和测量系统
JP2016050887A (ja) * 2014-09-01 2016-04-11 関西工事測量株式会社 クラック計測システム
JP6089245B1 (ja) * 2015-11-25 2017-03-08 クモノスコーポレーション株式会社 光学装置、光学装置に組み込まれる焦点板、及び光学装置を用いた測量方法
CN110231034A (zh) * 2019-06-10 2019-09-13 国网江苏省电力有限公司南京供电分公司 室外堆场物资间接定位方法与可视化模型
JP2021015054A (ja) * 2019-07-12 2021-02-12 西日本高速道路株式会社 ひび割れ幅測定装置、ひび割れ幅測定プログラムおよびひび割れ幅測定方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956209B1 (ko) * 2008-12-09 2010-05-04 삼성전기주식회사 광학검사장치 교정용 멀티 스탠다드 스케일
JP4598881B1 (ja) * 2010-05-17 2010-12-15 エヌ・ティ・ティジーピー・エコ株式会社 クラック調査装置とクラック調査方法並びにクラック調査プログラム
KR101124279B1 (ko) * 2010-09-29 2012-03-27 한국전력공사 균열 폭 측정용 레퍼런스 gui 제공방법 및 이를 적용한 전자기기
CN102175161B (zh) * 2011-01-31 2012-12-26 浙江建设职业技术学院 便携式建筑物表面裂缝检测装置
US20150143886A1 (en) * 2012-05-16 2015-05-28 Tread Gauge Ptr, LLC Tire sidewall crack inspection tool and method of use
US9057610B2 (en) 2012-11-03 2015-06-16 Trimble A.B. Robotic laser pointer apparatus and methods
DE102012112834A1 (de) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Rotationslaser
US9222772B2 (en) * 2012-12-29 2015-12-29 Robert Bosch Gmbh Rotary laser level with automated level calibration
CN103884286B (zh) * 2014-02-28 2017-01-25 河南省交通科学技术研究院有限公司 混凝土表面裂缝宽度测量标记贴片及进行测量识别的方法
CN104280014A (zh) * 2014-10-10 2015-01-14 中铁四局集团第五工程有限公司 一种测量混凝土面高程及平整度的测量方法
CN104754265A (zh) * 2015-03-16 2015-07-01 联想(北京)有限公司 一种数据处理方法及电子设备
JP6654649B2 (ja) * 2015-12-14 2020-02-26 株式会社ニコン・トリンブル 欠陥検出装置及びプログラム
EP3450910B1 (en) * 2016-04-27 2023-11-22 FUJIFILM Corporation Index generation method, measurement method, and index generation device
JP6164546B1 (ja) * 2016-11-07 2017-07-19 クモノスコーポレーション株式会社 測量方法及び測量装置
CN106596358A (zh) * 2016-12-07 2017-04-26 山东大学 基于图像处理的透水混凝土集料粒径测量方法
CN106840005A (zh) * 2017-01-24 2017-06-13 国网山东省电力公司海阳市供电公司 一种架空导线线径非接触测定方法及线缆标准板
KR102000999B1 (ko) 2018-07-10 2019-10-01 (주)태경이엔씨 크랙 폭 측정 장치 및 방법
CN110136196B (zh) * 2019-01-30 2022-09-20 西安电子科技大学 一种桥梁裂缝宽度自动测量方法
JP7285174B2 (ja) * 2019-09-04 2023-06-01 株式会社トプコン 壁面のひび割れ測定機および測定方法
CN111707197A (zh) * 2020-06-27 2020-09-25 南京宥安传感科技有限公司 一种基于图像处理技术的裂缝宽度变化测量装置
KR102419280B1 (ko) * 2021-04-23 2022-07-11 주식회사 동성엔지니어링 균열 측정을 위한 부착형 표식 부재 및 그의 부착 장치와 부착형 표식 부재를 이용한 균열 모니터링 장치 및 방법
CN116907365A (zh) * 2023-07-25 2023-10-20 山东捷瑞数字科技股份有限公司 基于工业视觉不规则零件测量方法及生产线预测分析系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832451A (en) 1986-06-09 1989-05-23 The United States Of America As Represented By The Secretary Of The Army Collimator targets
JPH0921627A (ja) * 1995-07-07 1997-01-21 Nikon Corp 形状測定装置
JP3037959U (ja) * 1995-08-02 1997-06-06 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング デジタル水準測量による方位照準のための水準器
JP2002013295A (ja) * 2000-06-30 2002-01-18 Nikken Atorasu Kobe:Kk 建築物における変状箇所の調査資料作成方法
WO2005047805A2 (en) 2003-11-12 2005-05-26 Horus Vision, Llc Apparatus and method for calculating aiming point information

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337959U (ja) 1989-08-24 1991-04-12
JPH0886601A (ja) 1994-09-19 1996-04-02 Toyo Consultant Kk クラック調査用補助具
JPH0894752A (ja) 1994-09-21 1996-04-12 Toyo Consultant Kk 距離測定装置を備えたクラック表示用指し棒
US5892617A (en) * 1997-07-28 1999-04-06 Wallace; Robert E. Multi-function day/night observation, ranging, and sighting device and method of its operation
US7164467B2 (en) * 2004-02-10 2007-01-16 Fluke Corporation Method and apparatus for electronically generating an outline indicating the size of an energy zone imaged onto the IR detector of a radiometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832451A (en) 1986-06-09 1989-05-23 The United States Of America As Represented By The Secretary Of The Army Collimator targets
JPH0921627A (ja) * 1995-07-07 1997-01-21 Nikon Corp 形状測定装置
JP3037959U (ja) * 1995-08-02 1997-06-06 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング デジタル水準測量による方位照準のための水準器
JP2002013295A (ja) * 2000-06-30 2002-01-18 Nikken Atorasu Kobe:Kk 建築物における変状箇所の調査資料作成方法
WO2005047805A2 (en) 2003-11-12 2005-05-26 Horus Vision, Llc Apparatus and method for calculating aiming point information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1939583A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044817A1 (ja) * 2007-10-04 2009-04-09 Kansai Kouji Sokuryou Co., Ltd. 光学装置及び測量方法
EP2199738A4 (en) * 2007-10-04 2011-05-25 Kansai Kouji Sokuryou Co Ltd OPTICAL ARRANGEMENT AND MEASURING PROCEDURES
US7996998B2 (en) 2007-10-04 2011-08-16 Kansai Kouji Sokuryou Co., Ltd. Optical device and measuring method
JP2014032164A (ja) * 2012-07-11 2014-02-20 Nippon Koei Co Ltd デジタルカメラを用いた構造物の三次元変位測定システム
JP2016050887A (ja) * 2014-09-01 2016-04-11 関西工事測量株式会社 クラック計測システム
CN105180816A (zh) * 2015-05-27 2015-12-23 中国科学院长春光学精密机械与物理研究所 光电接收器与指示光栅气浮调整安装装置及其安装方法
JP6089245B1 (ja) * 2015-11-25 2017-03-08 クモノスコーポレーション株式会社 光学装置、光学装置に組み込まれる焦点板、及び光学装置を用いた測量方法
CN105423916A (zh) * 2015-11-30 2016-03-23 中国联合网络通信集团有限公司 一种物体尺寸的测量方法和测量系统
CN110231034A (zh) * 2019-06-10 2019-09-13 国网江苏省电力有限公司南京供电分公司 室外堆场物资间接定位方法与可视化模型
CN110231034B (zh) * 2019-06-10 2023-05-09 国网江苏省电力有限公司南京供电分公司 室外堆场物资间接定位方法与可视化模型
JP2021015054A (ja) * 2019-07-12 2021-02-12 西日本高速道路株式会社 ひび割れ幅測定装置、ひび割れ幅測定プログラムおよびひび割れ幅測定方法

Also Published As

Publication number Publication date
CN101263362B (zh) 2011-01-19
US7667823B2 (en) 2010-02-23
US20090135401A1 (en) 2009-05-28
KR20080044873A (ko) 2008-05-21
EP1939583A1 (en) 2008-07-02
EP1939583B1 (en) 2013-11-06
KR101029397B1 (ko) 2011-04-14
EP1939583A4 (en) 2011-11-30
CN101263362A (zh) 2008-09-10
JPWO2007032136A1 (ja) 2009-03-19
JP3996946B2 (ja) 2007-10-24

Similar Documents

Publication Publication Date Title
WO2007032136A1 (ja) 光学装置、および光学装置を用いて物体の寸法を測定する方法
JP4441561B2 (ja) 光学装置
US8087176B1 (en) Two dimension layout and point transfer system
KR101502880B1 (ko) 수평으로 연장하는 컨투어 라인들을 따라 공간 지점들을 측정하고 마킹하는 장치
US9057610B2 (en) Robotic laser pointer apparatus and methods
US9499952B2 (en) System and method for providing information to operator of pile driver
JP2009092419A5 (ja)
WO2000017606A1 (fr) Procede de mesure tridimensionnelle et instrument d&#39;etude l&#39;utilisant
JP4024719B2 (ja) 電子式測量装置
RU2691633C1 (ru) Оптическое устройство, сетка нитей, встроенная в оптическое устройство, и способ разведки с использованием оптического устройства
JP2018077065A (ja) 測量方法及び測量装置
JP4933077B2 (ja) 測量機及びこの測量機を用いた測設方法
JP2001174261A (ja) 反射プリズム等を利用する入隅等の測定装置
JP4593223B2 (ja) 座標測定システム
JP3000450B2 (ja) 電子測板
RU2452920C1 (ru) Оптико-электронный центрир
JP2007303850A (ja) 光波測距装置
JP4276900B2 (ja) 自動測量システム
JPH06347271A (ja) 偏心補正機能を備えた測量機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033928.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007503140

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087006192

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066756

Country of ref document: US