WO2007026639A1 - 可変利得増幅器およびそれを用いた交流電源装置 - Google Patents

可変利得増幅器およびそれを用いた交流電源装置 Download PDF

Info

Publication number
WO2007026639A1
WO2007026639A1 PCT/JP2006/316853 JP2006316853W WO2007026639A1 WO 2007026639 A1 WO2007026639 A1 WO 2007026639A1 JP 2006316853 W JP2006316853 W JP 2006316853W WO 2007026639 A1 WO2007026639 A1 WO 2007026639A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
base
power supply
transistor
stage transistor
Prior art date
Application number
PCT/JP2006/316853
Other languages
English (en)
French (fr)
Inventor
Masafumi Nakamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06783082.8A priority Critical patent/EP1892829B1/en
Priority to CN2006800259931A priority patent/CN101223689B/zh
Priority to US11/915,018 priority patent/US7602247B2/en
Publication of WO2007026639A1 publication Critical patent/WO2007026639A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs

Definitions

  • the present invention relates to a variable gain amplifier and an AC power supply apparatus using the same.
  • the resulting output voltage VO has nonlinear distortion.
  • the first-stage transistors Q and Q are directly connected to the respective emitters.
  • variable gain amplifier that does not generate nonlinear distortion includes a multiplier circuit.
  • FIG. 7 is a circuit diagram of the multiplier circuit 5001.
  • the integrated circuit (IC) 1 is composed of a transconductance amplifier 2 and a pair of PN junction elements 4, and has seven terminals, namely, a power terminal 1A (+ Vcc), a power terminal 1B (—Vcc), and an input terminal. 1C (INV), input terminal 1D (NI), input terminal IE (BIAS), input terminal 1F (DB), and output terminal 1G (OUT).
  • a constant current source 101 (1) is input to the input terminal 1F.
  • Input terminal 1C has a constant current
  • Constant current source 103 (lZ2I) of 1Z2 current of source 101 and signal input current source (
  • Output terminal 1G force also outputs current lout.
  • Amplifier 2 includes four current mirrors 5A to 5D and two first-stage transistors Q and Q.
  • a pair of PN junction elements 4 is composed of two diodes D and D.
  • V K-T / q
  • the transistor base emitter voltage V is the emitter current I, saturation current I, collector
  • the current I is expressed as follows. Where the base current I is much smaller than the collector current So II holds.
  • V V ⁇ 1 ⁇ (I
  • the forward voltage V of the diode is expressed by the forward current I of the diode as follows.
  • V V ⁇ 1 ⁇ ( ⁇ / ⁇ )
  • V ⁇ 1 ⁇ ( ⁇ / ⁇ ) + V ⁇ 1 ⁇ ( ⁇ / ⁇ ) V ⁇ 1 ⁇ ( ⁇ / ⁇ ) + V ⁇ 1 ⁇ ( ⁇ / ⁇ )
  • Equation 3 Substituting Equation 3 to Equation 6 into Equation 2 gives the following equation.
  • Equation 7 includes only the term of the linear function with the term of the exponential function, the multiplication circuit 5001 does not generate nonlinear distortion in principle. Therefore, by using the input current Ix as a signal input and the input current Iy as a control input, a variable gain amplifier that does not generate nonlinear distortion can be obtained in principle.
  • the multiplier circuit 5001 requires an input terminal 1F for inputting the current from the constant current source 101 to IC1, and therefore, IC1 requires at least seven terminals. Since ICs generally have an even number of terminals, IC1 must have a package with eight terminals.
  • circuit 5 The ratio of the pad area for connecting to the terminal to the area of the chip that realizes 001 is large.Therefore, it greatly affects the area of the pad chip, which is the number of terminals, and also yields and costs. It is greatly reflected.
  • the variable gain amplifier includes first and second power supply terminals to which a power supply is connected, a transconductance amplifier, first and second PN junction elements, a voltage drop element, first and second A resistor, a current generating transistor, and a current mirror are provided.
  • the transconductance amplifier outputs a current corresponding to the potential difference between the base of the first first-stage transistor and the base of the second first-stage transistor.
  • the emitters of the first and second first stage transistors are connected to each other at the connection point.
  • the first and second PN junction elements each have a first end connected to the base of the first first-stage transistor and a second end. The second end of the first PN junction element is connected to the second end of the second PN junction element.
  • the voltage drop element is connected between the second end of the first PN junction element and the first power supply terminal.
  • the first resistor is connected between the base of the second first-stage transistor and the first input signal source that is a voltage source.
  • the current generating transistor has a collector connected to the base of the first first-stage transistor and a base connected to the first input signal source.
  • the second resistor is connected between the emitter of the current generating transistor and the second power supply terminal.
  • the current mirror is connected to the connection point, and the same current as the current flowing through the second input signal source that is the current source flows through the connection point.
  • This variable gain amplifier does not generate non-linear distortion and can be miniaturized.
  • FIG. 1 is a circuit diagram of a variable gain amplifier according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of an integrated circuit of the variable gain amplifier according to the embodiment.
  • FIG. 3 is a circuit diagram of another integrated circuit of the variable gain amplifier according to the embodiment.
  • FIG. 4A is a circuit diagram of another variable gain amplifier in the embodiment.
  • FIG. 4B is a circuit diagram of still another variable gain amplifier in the embodiment.
  • FIG. 5 is a circuit diagram of an AC power supply apparatus according to the embodiment.
  • FIG. 6 is a circuit diagram of another AC power supply apparatus according to the embodiment.
  • FIG. 7 is a circuit diagram of a conventional variable gain amplifier. Explanation of symbols
  • FIG. 1 is a circuit diagram of a variable gain amplifier 1001 using a multiplication circuit according to an embodiment of the present invention.
  • the same components as those of the conventional multiplier circuit 5001 shown in FIG. 7 are denoted by the same reference numerals and description thereof is omitted.
  • the variable gain amplifier 1001 shown in FIG. 1 does not need the input terminal 1F.
  • an integrated circuit (IC) 10 is composed of a transconductance amplifier 2, a voltage drop element 3, and a pair of PN junction elements 4A and 4B, and has six terminals, that is, a power source. It has a terminal lOA (Vcc), an input terminal lOC (INV), an input terminal 10D (NI), an input terminal 10E (BIAS), an output terminal lOG (OUT), and a power supply terminal lOB (GND) as a ground.
  • Vccl of power supply Vcc is connected to power supply terminal 10A, and the other end Vcc2 is connected to power supply terminal 10B.
  • the PN junction elements 4A and 4B also have diode D and D force, respectively.
  • the terminal 3A is connected to the power supply terminal lOA (Vcc), and a voltage obtained by dropping the voltage V3 from the voltage of the power supply terminal 10A appears at the terminal 3B.
  • the anode of the diode D is one of the voltage drop elements 3
  • the diode power sword is connected to the input terminal lOC (INV).
  • the collector of the current generating transistor Tr is connected to the input terminal 10C, and the emitter of the current generating transistor Tr is connected to one end R10A of the resistor R.
  • R10B is connected to the power supply Vcc (power supply terminal 10B).
  • the voltage Vs of the input signal source 501 is applied to the base of the current generation transistor Tr.
  • the input signal source 501 is biased with a DC bias Vb.
  • Input terminal 10D (NI) receives input signal via resistor R.
  • the current of the common emitter of the first-stage transistors Q and Q constituting the first-stage differential amplifier of the transconductance amplifier 2 is supplied to an input signal source 502 as a current source via a current mirror 5C.
  • the transconductance amplifier 2 is a first stage transistor Q, a first stage transistor.
  • the Q emitter is connected to the first transistor Q emitter at node 2P.
  • the diode D which is a PN junction element 4A, has an end (force sword) and an end (anode) connected to the base of the first-stage transistor Q.
  • Diode D which is PN junction element 4B, has an end (force sword) connected to the base of first-stage transistor Q and
  • the descent element 3 is connected between the power swords of the diodes D and D and the power supply terminal 10A.
  • the resistor R is connected between the base of the first-stage transistor Q and the input signal source 501 that is a voltage source.
  • the collector of the current generation transistor Tr is connected to the base of the first-stage transistor Q.
  • the base of the current generating transistor Tr is connected to the input signal source 501.
  • the resistor R is connected between the emitter power supply terminal 1OB of the current generating transistor Tr.
  • the The current mirror 5C is connected to the connection point 2P and causes the same current as the current Ic flowing from the input signal source 501 that is a current source to flow to the connection point 2P. That is, the current mirror 5C makes the sum of the currents flowing through the first-stage transistor Q and Q emitters the same as the current Ic.
  • variable gain amplifier 1001 in the embodiment, the diodes D and D
  • the resistance value of resistors R and R is R, and the base of current generating transistor Tr
  • the sum of the currents I and 1 (I + 1) is independent of the voltage Vs of the input signal source 501.
  • Resistor R to be equal to Dl D2
  • the voltage Vs of the input signal source 501 is a current generating transistor Tr, resistors R and R
  • the flowing currents I and 1 are in opposite phases.
  • Equation 7 the term of Equation 7 is expressed as follows.
  • Equation 7 the output current lout is expressed by Equation 7 below.
  • Iout Is-Ic / (l +1)
  • the amplification factor of 001 is determined by the current Ic input to the input terminal 10E. Since this equation includes only a linear function term, the variable gain amplifier 1001 does not generate nonlinear distortion in principle. That is, the gain of the current lout output from the output terminal 10G with respect to the voltage Vs of the input signal source 501 of the transconductance amplifier 2 is variable by the current Ic flowing from the input signal source 502.
  • the diodes D and D of the pair of PN junction elements 4A and 4B have the same characteristics and the same junk.
  • the IC 10 since the IC 10 has six terminals, it can be built in the same package as the smallest small signal transistor as an IC, and the electronic device can be made lighter, thinner, and shorter. Very effective for the request. In addition, since the number of terminals is 6, the chip area of IC10 is much smaller than that of 8-pin, which is very advantageous in terms of yield and cost.
  • FIG. 2 is a circuit diagram of the integrated circuit 10 and shows the transconductance amplifier 2 and the voltage drop element 3.
  • a diode-connected transistor having a collector and a base connected is used as the diodes D and D.
  • the transconductance amplifier 2 includes four current mirrors 5A to 5D and two first-stage transistors Q and Q. Each of the current mirrors 5A to 5D has three
  • the voltage drop element 3 is connected to the input of the transconductance amplifier 2, that is, the first-stage transistor Q.
  • the voltage drop element 3 is an element that drops the voltage, such as a Zener diode, etc.
  • FIG. 3 is another circuit diagram of the integrated circuit 10.
  • PN junction elements 4A and 4B are as shown in Fig. 3. Can be realized using PN junction between transistor Q, Q base and emitter
  • FIG. 4A is a circuit diagram of variable gain amplifier 1001A in the embodiment.
  • the variable gain amplifier 1001A includes a field effect transistor FET instead of the current generating transistor Tr in the variable gain amplifier 1001 shown in FIG. Instead of the collector, base, and emitter of the current generation transistor Tr, the drain, gate, and source of the field effect transistor FET are connected.
  • FIG. 4B is a circuit diagram of another IC 110 of the variable gain amplifier 1001 in the embodiment.
  • IC110 the arrangement of voltage drop element 3, PN junction elements 4A and 4B, current generation transistor Tr, and resistor R is the reverse of that in IC10 shown in Fig. 1, and the other parts
  • the anode of the diode is connected to the input terminal 110C and the base of the first stage transistor Q, and the anode of the diode D is connected to the input terminal 110D and the transistor Q.
  • one end 3B of the voltage drop element 3 is connected to a power supply terminal 110B serving as a ground.
  • IC110 has the same effect as IC10 shown in FIG. In Figure 4B, offset adjustment resistor R
  • FIG. 5 shows an AC constant voltage power supply device according to an embodiment using a variable gain amplifier 1001.
  • FIG. 1 is a circuit diagram of 2001.
  • the waveform generator 11 generates the waveform of the AC voltage that is to be obtained as an output. When generating a sine wave AC voltage, the waveform generator 11 generates a sine wave voltage. The sinusoidal voltage output by the waveform generator 11 is applied to the current generation transistor Tr and resistor R.
  • Resistor R is IC10
  • the output sine wave current lout is converted to a sine wave voltage. This sine wave voltage is input to the power amplifier 12.
  • the power amplifier 12 amplifies the input sine wave voltage, and applies it to the primary winding N1 of the transformer 13 to drive the transformer 13.
  • a sinusoidal AC voltage is output from the secondary winding N2 of the transformer 13 via the output terminals 13A and 13B.
  • An AC voltage proportional to the output AC voltage is generated in the tertiary winding N3 of the transformer, and the AC voltage is pulsated by a rectifier circuit composed of diodes D, D, D, D and resistor R. Converted. Resistance R
  • 19 is a dummy load resistance for obtaining an appropriate pulsating flow.
  • the pulsating flow is smoothed by a low-pass filter consisting of resistor R and capacitor C, and output terminal 13A,
  • a DC voltage proportional to the AC voltage output from 13B is obtained. That is, the rectifier circuit and the low-pass filter constitute an output voltage detection circuit 14 that detects an AC voltage output from the output terminals 13A and 13B and generates a DC voltage as a detection signal.
  • the comparator OP1 compares the obtained DC voltage with the reference voltage Vref, and outputs a voltage corresponding to the difference obtained by subtracting the DC voltage from the reference voltage Vref.
  • the output voltage is input as a current Ic to the input terminal 10E of IC10 through a resistor R.
  • R and capacitor C are feedback circuits that feedback the amplitude of the output AC voltage as current Ic.
  • FIG. 6 is a circuit diagram of an AC constant current power supply device 3001 according to the embodiment.
  • Resistor R is an AC proportional to the AC current flowing through output terminals 13A and 13B.
  • the generated AC voltage is applied to the rectifier circuit composed of diodes D and D.
  • the rectifier circuit and the low-pass filter constitute an output current detection circuit 15 that detects an AC current flowing through the output terminals 13A and 13B and outputs a DC voltage proportional to the current.
  • the comparator OP1 outputs a voltage corresponding to the difference obtained by subtracting the DC voltage from the reference voltage Vref
  • IC 10 outputs the voltage output from the comparator OP1.
  • the transformer 13 is driven via the power amplifier 12 so that the DC voltage output from the output current detection circuit 15 is the same as the reference voltage Vref.
  • Resistor R is adjusted This is a dummy load resistor for setting the pulsating current output from the flow circuit to an appropriate level.
  • Output current detection circuit 15, comparator ⁇ 1, reference voltage Vref, and resistance R are the output AC power
  • a feedback circuit is formed that feeds back the pressure amplitude as the current Ic.
  • variable gain amplifier 1001 By the variable gain amplifier 1001 according to the embodiment, AC power supply devices 2001, 3001 having a simple configuration with a constant voltage or a constant current and capable of varying the voltage and current are obtained. Industrial applicability
  • variable gain amplifier does not generate non-linear distortion and can be reduced in size, it is suitable for an AC power supply device that can change the current, and is suitable for electrophotography of uninterruptible power supply devices, copiers, printers, etc. It can be used for all power supply devices and power devices such as process power supplies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

 可変利得増幅器は、電源が接続される第1と第2の電源端子と、トランスコンダクタンスアンプと、第1と第2のPN接合素子と、電圧降下素子と、第1と第2の抵抗と、電流発生トランジスタと、カレントミラーとを備える。トランスコンダクタンスアンプは、第1の初段トランジスタのベースと第2の初段トランジスタのベースとの間の電位差に応じた電流を出力する。第1と第2の初段トランジスタのエミッタは接続点で互いに接続されている。第1と第2のPN接合素子は、第1の初段トランジスタのベースに接続された第1端と、第2端とをそれぞれ有する。第1のPN接合素子の第2端は第2のPN接合素子の第2端が接続されている。電圧降下素子は第1のPN接合素子の第2端と第1の電源端子との間に接続されている。第1の抵抗は、第2の初段トランジスタのベースと電圧源である第1の入力信号源との間に接続されている。電流発生トランジスタは、第1の初段トランジスタのベースに接続されたコレクタと、第1の入力信号源に接続されたベースを有する。第2の抵抗は電流発生トランジスタのエミッタと第2の電源端子との間に接続されている。カレントミラーは接続点に接続され、電流源である第2の入力信号源から流れる電流と同じ電流をその接続点に流す。この可変利得増幅器は、非直線ひずみを発生せず、小型にできる。

Description

可変利得増幅器およびそれを用いた交流電源装置
技術分野
[0001] 本発明は、可変利得増幅器およびそれを用いた交流電源装置に関する。
背景技術
[0002] 特開 2001— 308662号公報の図 1に開示されている従来の可変利得増幅器では 、初段トランジスタ Q、 Qのベース、ェミッタ間電圧対コレクタ電流の特性が指数関
1 2
数となるので、得られる出力電圧 VOが非直線ひずみを有する。
[0003] このひずみを軽減するために、初段トランジスタ Q、 Qのそれぞれのェミッタに直
1 2
列に抵抗を挿入する力 これでも非直線ひずみを軽減できても、完全に取り去ること ができない。
[0004] 原理的に非直線ひずみを発生しない可変利得増幅器が乗算回路で構成される。
図 7は乗算回路 5001の回路図である。集積回路 (IC) 1は、トランスコンダクタンスァ ンプ 2と一対の PN接合素子 4とから構成され、 7つの端子、すなわち電源端子 1A( + Vcc)と、電源端子 1B (— Vcc)と、入力端子 1C (INV)と、入力端子 1D (NI)と、入力 端子 IE (BIAS)と、入力端子 1F (DB)と、出力端子 1G (OUT)を有している。
[0005] 入力端子 1Fには定電流源 101 (1 )が入力されている。入力端子 1Cには、定電流
D
源 101の 1Z2の電流の定電流源 103 (lZ2I )と信号入力電流源(
D I )とに加算して
X
入力されている。出力端子 1G力も電流 loutが出力される。
[0006] アンプ 2は、 4つのカレントミラー 5A〜5Dと 2つの初段トランジスタ Q、 Qとから構
1 2 成されている。一対の PN接合素子 4は、 2つのダイオード D、 Dとから構成されてい
1 2
る。
[0007] 乗算回路 5001の動作を説明する。
[0008] 電子の電荷 qとボルツマン定数 Kと絶対温度 Tで以下の量を定義する。
[0009] V =K-T/q
τ
トランジスタのベースェミッタ間電圧 V は、ェミッタ電流 I、飽和電流 I 、コレクタ
BE E SAT
電流 Iで以下のように表される。ここでベース電流 Iはコレクタ電流より非常に小さい ので、 I Iが成り立つ。
E C
[0010] V =V ·1η (I
BE T E Λ ) =V -In (I
SAT T C Λ SAT )
ダイオードの順方向電圧 Vはダイオードの順方向電流 Iで以下のように表される。
D D
[0011] V =V ·1η(ΐ /\ )
D T D SAT
図 7の点 A、 B間にキルヒホッフの法則を適用して以下の式が得られる。
[0012] V ·1η(ΐ /\ ) +V ·1η (ΐ /\ ) =V ·1η(ΐ /\ ) +V ·1η (ΐ /\ )
T Dl SAT T 1 SAT T D2 SAT T 2 SAT
. (式 1)
(i Λ ) · (i /I ) = (i
Dl SAT 1 SAT D2 Λ ) · (i /I )
SAT 2 SAT
I -I =1 -I . . . (式 2)
Dl 1 D2 2
I = (1/2) ·Ι +1 . . . (式 3)
Dl D X
I = (1/2) ·Ι -I . . . (式 4)
D2 D X
I = (l/2) -Iy+Iout · · · (式 5)
I = (l/2) -Iy-Iout · · · (式 6)
2
式 3から式 6を式 2に代入して以下の式を得る。
[0013] Ix-Iy=I -lout
D
Iout = Ix-Iy/l . . . (式 7)
D
式 7より、 Iが一定のとき、入力電流 Ix、 Iyの積が電流 loutとして出力端子 1Gから
D
得られる。また、入力電流 Iyが一定のとき、入力電流 Ixを入力電流 I
Dで割った商が出 力電流 loutとして得られる。式 7には指数関数の項がなぐ 1次関数の項のみが含ま れるので、乗算回路 5001では原理的に非直線ひずみは発生しない。したがって、 入力電流 Ixを信号入力とし、入力電流 Iyを制御入力とすることにより、原理的に非直 線ひずみの発生しない可変利得増幅器が得られる。
[0014] 乗算回路 5001は、 IC1に定電流源 101からの電流を入力するための入力端子 1F を必要とし、したがって、 IC1は少なくとも 7つの端子を必要とする。 ICは一般的に偶 数の端子を有しているので、 IC1は 8つの端子を有するパッケージを備えざるを得な い。
[0015] 近年の電子機器への軽量、小型化の要望の下では、 ICのパッケージが 8ピンにな る力、 6ピンになるかは、非常に重要である。乗算回路 5001を収めた IC1では回路 5 001を実現するチップの面積に対して端子と接続するためのパッドの面積の占める 率が大きい、したがって、端子の数であるパッドのチップの面積にも大きく影響し、か つ歩留まり、コストにも大きく反映される。
発明の開示
[0016] 可変利得増幅器は、電源が接続される第 1と第 2の電源端子と、トランスコンダクタ ンスアンプと、第 1と第 2の PN接合素子と、電圧降下素子と、第 1と第 2の抵抗と、電 流発生トランジスタと、カレントミラーとを備える。トランスコンダクタンスアンプは、第 1 の初段トランジスタのベースと第 2の初段トランジスタのベースとの間の電位差に応じ た電流を出力する。第 1と第 2の初段トランジスタのェミッタは接続点で互いに接続さ れている。第 1と第 2の PN接合素子は、第 1の初段トランジスタのベースに接続され た第 1端と、第 2端とをそれぞれ有する。第 1の PN接合素子の第 2端は第 2の PN接 合素子の第 2端が接続されている。電圧降下素子は第 1の PN接合素子の第 2端と第 1の電源端子との間に接続されている。第 1の抵抗は、第 2の初段トランジスタのベー スと電圧源である第 1の入力信号源との間に接続されている。電流発生トランジスタ は、第 1の初段トランジスタのベースに接続されたコレクタと、第 1の入力信号源に接 続されたベースを有する。第 2の抵抗は電流発生トランジスタのェミッタと第 2の電源 端子との間に接続されている。カレントミラーは接続点に接続され、電流源である第 2 の入力信号源力 流れる電流と同じ電流をその接続点に流す。
[0017] この可変利得増幅器は、非直線ひずみを発生せず、小型にできる。
図面の簡単な説明
[0018] [図 1]図 1は本発明の実施の形態における可変利得増幅器の回路図である。
[図 2]図 2は実施の形態における可変利得増幅器の集積回路の回路図である。
[図 3]図 3は実施の形態における可変利得増幅器の他の集積回路の回路図である。
[図 4A]図 4Aは実施の形態における他の可変利得増幅器の回路図である。
[図 4B]図 4Bは実施の形態におけるさらに他の可変利得増幅器の回路図である。
[図 5]図 5は実施の形態における交流電源装置の回路図である。
[図 6]図 6は実施の形態における他の交流電源装置の回路図である。
[図 7]図 7は従来の可変利得増幅器の回路図である。 符号の説明
[0019] 2 トランスコンダクタンスアンプ
3 電圧降下素子
4A PN接合素子 (第 1の PN接合素子)
4B PN接合素子 (第 2の PN接合素子)
5C カレントミラー
10A 電源端子
10B 電源端子
10G 出力端子
501 入力信号源 (第 1の入力信号源)
502 入力信号源 (第 2の入力信号源)
FET 電界効果トランジスタ
Q 初段トランジスタ (第 1の初段トランジスタ)
Q 初段トランジスタ (第 2の初段トランジスタ)
2
R 抵抗 (第 2の抵抗)
10
R
11 抵抗 (第 1の抵抗)
Tr 電流発生トランジスタ
発明を実施するための最良の形態
[0020] 図 1は本発明の実施の形態における乗算回路による可変利得増幅器 1001の回路 図である。図 1において、図 7に示す従来の乗算回路 5001と同様の構成については 、同一符号を付すとともに、その説明を省略する。図 1に示す可変利得増幅器 1001 は、図 7に示す従来の乗算回路 5001と異なり、入力端子 1Fが不要である。
[0021] 図 1において、集積回路 (IC) 10は、トランスコンダクタンスアンプ 2と、電圧降下素 子 3と、一対の PN接合素子 4A、 4Bとから構成されており、 6つの端子、すなわち電 源端子 lOA(Vcc)、入力端子 lOC (INV)、入力端子 10D (NI)、入力端子 10E (BI AS)、出力端子 lOG (OUT)、グランドとなる電源端子 lOB (GND)を有している。電 源 Vccの一端 Vcclは電源端子 10Aに接続され、他端 Vcc2は電源端子 10Bに接続 される。 [0022] PN接合素子 4A、 4Bはそれぞれダイオード D、 D力もなる。電圧降下素子 3の一
1 2
端 3Aは電源端子 lOA (Vcc)に接続され、電源端子 10Aの電圧から電圧 V3だけ降 下した電圧が一端 3Bに現れる。ダイオード 、 Dのアノードは電圧降下素子 3の一
1 2
端 3Bに接続されている。ダイオード の力ソードは入力端子 lOC (INV)に接続され ている。入力端子 10Cには電流発生トランジスタ Trのコレクタが接続され、電流発生 トランジスタ Trのェミッタは抵抗 R の一端 R10Aに接続されている。抵抗 R の一端
I 10 10
R10Bは電源 Vcc (電源端子 10B)に接続されている。電流発生トランジスタ Trのべ 一スには入力信号源 501の電圧 Vsが印加されている。なお、入力信号源 501は DC バイアス Vbにてバイアスされている。入力端子 10D (NI)は抵抗 R を介して入力信
11
号源 501に接続されている。
[0023] ダイオード と電流発生トランジスタ Trのコレクタとの接続点の電位と、抵抗 R と
I I 11 ダイオード の接続点の電位がトランスコンダクタンスアンプ 2の差動入力として印加
2
される。
[0024] トランスコンダクタンスアンプ 2の初段の差動アンプを構成する初段トランジスタ Q、 Qの共通ェミッタの電流はカレントミラー 5Cを介して電流源である入力信号源 502
2
の電流 Icで制御される。
[0025] トランスコンダクタンスアンプ 2は、初段トランジスタ Q 初段トランジス
1、 Qを有する。
2
タ Qのェミッタは接続点 2Pで初段トランジスタ Qのェミッタと接続されている。初段ト
1 2
ランジスタ Qのベースと初段トランジスタ Qのベースとの間の電位差に応じた電流 Io
1 2
utが出力端子 10Gから出力される。 PN接合素子 4Aであるダイオード Dは初段トラ ンジスタ Qのベースに接続された端 (力ソード)と端 (アノード)を有する。 PN接合素 子 4Bであるダイオード Dは初段トランジスタ Qのベースに接続された端 (力ソード)と
2 2
端 (アノード)を有する。ダイオード 、 Dの力ソードは互いに接続されている。電圧
1 2
降下素子 3はダイオード D、 Dの力ソードと電源端子 10Aとの間に接続されている。
1 2
抵抗 R は、初段トランジスタ Qのベースと電圧源である入力信号源 501との間に接
11 2
続される。電流発生トランジスタ Trのコレクタは初段トランジスタ Qのベースに接続さ れている。電流発生トランジスタ Trのベースは入力信号源 501に接続されている。 抵抗 R は、電流発生トランジスタ Trのェミッタ電源端子 1 OBとの間に接続されてい る。カレントミラー 5Cは接続点 2Pに接続され、電流源である入力信号源 501から流 れる電流 Icと同じ電流を接続点 2Pに流す。すなわち、カレントミラー 5Cは、初段トラ ンジスタ Q、 Qのェミッタに流れる電流の和を電流 Icと同じにする。
1 2
[0026] 実施の形態における可変利得増幅器 1001においても、ダイオード 、 Dにそれ
1 2 ぞれ流れる電流 I と I との和(電流 I )を一定に保ちながら、 I に入力信号を印加
Dl D2 D D1
し、 BIAS端子に電流 Icを印加する。図 7に示す従来の乗算回路 5001と同様に、式 1〜式 7により Iが一定のとき、入力電流 Is、 Icの積が電流 loutとして出力端子 10G
D
力 得られ、乗算機能が得られる。
[0027] 電流 I 、1 の和(電流 I )を一定に保ちながら、電流 I として入力信号を印加する
Dl D2 D D1
方法を説明する。抵抗 R 、 R の抵抗値を Rとし、電流発生トランジスタ Trのベース
10 11 1
ェミッタ間電圧 (0. 7V)は無視する。
[0028] I = (Vb+Vs) /R
Dl
I = (Vcc - V3 - (Vb + Vs) ) /R
D2
I +1 = (Vcc-V3) /R
Dl D2
すなわち、電流 I 、1 の和 (I +1 )は入力信号源 501の電圧 Vsに関係なく
Dl D2 Dl D2 一 定である。
[0029] オフセットを調整する必要のある場合、無信号時 (Vs = 0)での電流 I 、1 が互い
Dl D2 に等しくなるように抵抗 R
12を調整する。したがって、直流成分を考慮しない交流信号 を増幅する場合には R
12は不必要となる場合もある。
[0030] 図 1において、入力信号源 501の電圧 Vsは電流発生トランジスタ Tr、抵抗 R 、 R
1 10 1 により電流 Isとして入力端子 10C、 10Dに入力される。ダイオード 、 Dにそれぞれ
1 1 2
流れる電流 I 、1 は互いに逆位相である。
Dl D2
[0031] 図 1において式 7の項は以下で表される。
[0032] I =1 +1
D Dl D2
Ix=Is
Iy=Ic
したがって、出力電流 loutは式 7より以下で表される。
[0033] Iout = Is-Ic/ (l +1 )
Dl D2 (I +1 )は、電圧 Vsに関係なく一定の値となるので図 1に示す可変利得増幅器 1
Dl D2
001の増幅率は入力端子 10Eに入力される電流 Icにより決定される。この式は一次 関数の項のみを含むので、可変利得増幅器 1001は原理的に非直線ひずみを発生 しない。すなわち、トランスコンダクタンスアンプ 2の入力信号源 501の電圧 Vsに対し ての出力端子 10Gから出力される電流 loutの利得が入力信号源 502から流れる電 流 Icによって可変である。
[0034] ダイオード 、 Dおよび初段トランジスタ Q 確な乗算を行うために同一
1 2 1、 Qは、正
2
温度にしておく必要があり、同一のシリコン基板上に ICとして配置することが望ましい 。一対の PN接合素子 4A、 4Bのダイオード D、 Dは、同じ特性を有し、同じジャンク
1 2
シヨン温度を有することが望ましぐ ICの内部に存在させるのが最適である。
[0035] 以上のように、実施の形態によれば、 IC10は 6つの端子を有するので、 ICとして最 小の小信号トランジスタと同じパッケージに内蔵することができ、電子機器の軽薄短 小化の要求に対して非常に有効となる。また、端子の数が 6となることにより、 IC10の チップ面積が 8ピンのものに比べて非常に小さくなり、歩留まり、コスト面でも非常に有 利となる。
[0036] 図 2は集積回路 10の回路図であり、トランスコンダクタンスアンプ 2および電圧降下 素子 3を示す。 PN接合素子 4A、 4Bのダイオード D ICで構成される場合、実
1、 Dは
2
際にはコレクタとベースが接続されてダイオード接続されたトランジスタをダイオード D 、Dとして用いる。
1 2
[0037] トランスコンダクタンスアンプ 2は、 4つのカレントミラー 5A〜5Dと 2つの初段トランジ スタ Q、 Qとから構成されている。カレントミラー 5A〜5Dのそれぞれは 3つのトラン
1 2
ジスタ Q
5、 Q
6、 Q力 構成されている。
7
[0038] 電圧降下素子 3は、トランスコンダクタンスアンプ 2の入力すなわち初段トランジスタ Q に
1、 Qの
2 ベース 適切な電位を与える役割を果たす。ダイオードの順方向電圧降下 を利用した 2つのトランジスタ Q、 Qと、トランジスタ Q、 Qの間に接続されたインピ
8 9 8 9
一ダンス素子としての抵抗 R3よりなる。電圧降下素子 3はゼナーダイオード等の電圧 を降下させる素子であればょ 、。
[0039] 図 3は集積回路 10の他の回路図である。 PN接合素子 4A、 4Bは、図 3に示すよう に、トランジスタ Q、 Qのベース、ェミッタ間の PN接合を用いて実現することができる
3 4
[0040] 図 4Aは実施の形態における可変利得増幅器 1001Aの回路図である。可変利得 増幅器 1001Aは、図 1に示す可変利得増幅器 1001での電流発生トランジスタ Tr の代りに電界効果トランジスタ FETを備える。電流発生トランジスタ Trのコレクタ、ベ ース、ェミッタの代りに電界効果トランジスタ FETのドレイン、ゲート、ソースが接続さ れている。
[0041] 図 4Bは実施の形態における可変利得増幅器 1001の他の IC110の回路図である 。 IC110では、電圧降下素子 3、 PN接合素子 4A、 4B、電流発生トランジスタ Tr、 抵抗 R の配列を、図 1に示す IC10での配列と逆にしたものであり、それ以外の部分
10
は同じである。すなわち、ダイオード のアノードが入力端子 110Cと初段トランジス タ Qのベースに接続され、ダイオード Dのアノードが入力端子 110Dとトランジスタ Q
1 2
のベースに接続されている。ダイオード 、 Dの力ソードは電圧降下素子 3の一端 3
2 1 2
Aに接続され、電圧降下素子 3の一端 3Bはグランドとなる電源端子 110Bに接続され ている。 IC110は、図 1に示す IC10と同様の効果が得られる。図 4Bにおいて、オフ セット調整用抵抗 R
12は省略している。
[0042] 図 5は、可変利得増幅器 1001を利用した実施の形態による交流定電圧電源装置
2001の回路図である。波形発生器 11は出力として得たい交流電圧の波形を発生 する。正弦波の交流電圧を発生する場合は、波形発生器 11は正弦波電圧を発生す る。波形発生器 11が出力する正弦波電圧は電流発生トランジスタ Tr、抵抗 R に印
1 11 加され、 IC10の出力端子 10Gより正弦波電流 loutが得られる。抵抗 R は IC10が
17
出力する正弦波電流 loutを正弦波電圧に変換する。この正弦波電圧は電力増幅器 12に入力される。
[0043] 電力増幅器 12は入力された正弦波電圧を増幅してトランス 13の 1次卷線 N1に印 カロしてトランス 13を駆動する。トランス 13の 2次卷線 N2から出力端子 13A、 13Bを介 して正弦波交流電圧が出力される。
[0044] トランスの 3次卷線 N3は出力された交流電圧に比例した交流電圧が発生し、その 交流電圧はダイオード D 、D 、D 、D と抵抗 R で構成される整流回路で脈流に 変換される。抵抗 R
19は適切な脈流を得るためのダミー負荷抵抗である。その脈流は 抵抗 R とコンデンサ C で構成されるローパスフィルタで平滑され、出力端子 13A、
14 10
13Bから出力された交流電圧に比例した直流電圧が得られる。すなわち、この整流 回路とローパスフィルタは出力端子 13A、 13Bから出力された交流電圧を検出して 検出信号である直流電圧を発生する出力電圧検出回路 14を構成している。
[0045] 比較器 OP1は得られた直流電圧を基準電圧 Vrefと比較して、基準電圧 Vrefから その直流電圧を引いて得られた差に応じた電圧を出力する。出力された電圧は抵抗 R を介して IC10の入力端子 10Eに電流 Icとして入力される。直流電圧が低くなつて
13
基準電圧 Vrefとの差が大きくなると、比較器 OP1が出力する電圧は大きくなり、可変 利得増幅器 1001は出力端子 13A、 13Bから出力される交流電圧を大きくする。この ような負帰還により出力される交流電圧は一定に安定ィ匕される。出力電圧を変える場 合には基準電圧 Vrefを変えるカゝ、出力電圧検出回路 14が出力する電圧を分圧して 変える。抵抗 R 、R とコンデンサ C は負帰還を安定に行うための位相補償回路を
15 16 11
構成している。出力電圧検出回路 14と、比較器 ΟΡ1、基準電圧 Vref、抵抗 R 、 R
13 15
、 R 、コンデンサ C は、出力された交流電圧の振幅を電流 Icとして帰還する帰還回
16 11
路を形成している。
[0046] 図 6は、実施の形態による交流定電流電源装置 3001の回路図である。図 6におい て、図 5に示す交流定電圧電源装置 2001と同じ部分には同じ参照番号を付し、その 説明を省略する。抵抗 R は出力端子 13A, 13Bに流れる交流電流に比例した交流
18
電圧を発生する。発生した交流電圧はダイオード D 、 D で構成された整流回路と
15 14
コンデンサ C と抵抗 R で構成されたローパスフィルタにより直流電圧に変換される
10 14
。すなわち、この整流回路とローパスフィルタは出力端子 13A、 13Bに流れる交流電 流を検出してその電流に比例した直流電圧を出力する出力電流検出回路 15を構成 している。図 5に示す定電圧電源装置 2001と同様に、比較器 OP1は基準電圧 Vref 力もその直流電圧を引いて得られる差に応じた電圧を出力する、 IC 10は比較器 OP 1の出力する電圧に応じて、出力電流検出回路 15が出力する直流電圧が基準電圧 Vrefと同じになるように電力増幅器 12を介してトランス 13を駆動する。これにより、出 力端子 13A、 13Bに流れる電流を定電流に安定ィ匕させることができる。抵抗 R は整 流回路から出力される脈流を適切なレベルにするためのダミー負荷抵抗である。出 力電流検出回路 15と、比較器 ΟΡ1、基準電圧 Vref、抵抗 R は出力された交流電
19
圧の振幅を電流 Icとして帰還する帰還回路を形成している。
[0047] 実施の形態による可変利得増幅器 1001により、簡単な構成で定電圧または定電 流でかつ、その電圧、電流を可変できる交流電源装置 2001、 3001が得られる。 産業上の利用可能性
[0048] この可変利得増幅器は、非直線ひずみを発生せず、小型にできるので、電流を可 変できる交流電源装置等に好適であり、無停電電源装置、複写機、プリンタ等の電 子写真プロセス用電源等、あらゆる電源装置、電力装置に利用することができる。

Claims

請求の範囲
[1] 電源の第 1端が接続される第 1の電源端子と、
前記電源の第 2端が接続される第 2の電源端子と、
ェミッタと、ベースと、コレクタとを有する第 1の初段トランジスタと、 前記第 1の初段トランジスタの前記ェミッタに接続点で接続されたェミッタと、ベ ースと、コレクタとを有する第 2の初段トランジスタと、
前記第 1の初段トランジスタの前記ベースと前記第 2の初段トランジスタの前記 ベースとの間の電位差に応じた電流を出力する出力端子と、
を含むトランスコンダクタンスアンプと、
前記第 1の初段トランジスタの前記ベースに接続された第 1端と、第 2端とを有する第 1の PN接合素子と、
前記第 2の初段トランジスタの前記ベースに接続された第 1端と、前記第 1の PN接合 素子の前記第 2端に接続された第 2端とを有する第 2の PN接合素子と、 前記第 1の PN接合素子の前記第 2端と前記第 1の電源端子との間に接続された電 圧降下素子と、
前記第 2の初段トランジスタの前記ベースと電圧源である第 1の入力信号源との間に 接続された第 1の抵抗と、
前記第 1の初段トランジスタの前記ベースに接続されたコレクタと、前記第 1の入力信 号源に接続されたベースと、ェミッタとを有する電流発生トランジスタと、
前記電流発生トランジスタの前記ェミッタと前記第 2の電源端子との間に接続された 第 2の抵抗と、
前記接続点に接続され、電流源である第 2の入力信号源カゝら流れる電流と同じ電流 を前記接続点に流すカレントミラーと、
を備えた、可変利得増幅器。
[2] 前記トランスコンダクタンスアンプの前記第 1の入力信号源の電圧に対しての前記出 力端子から出力される前記電流の利得が前記第 2の入力信号源から流れる前記電 流によって可変である、請求項 1に記載の可変利得増幅器。
[3] 前記第 1の初段トランジスタの前記ベースに接続された第 1の入力端子と、 前記第 2の初段トランジスタの前記ベースに接続された第 2の入力端子と、 前記カレントミラーと前記第 2の入力信号源とが接続された接続点である第 3の入力 端子と、
前記第 1の電源端子と、
前記第 2の電源端子と、
前記トランスコンダクタンスアンプの前記出力端子と、
を有し、前記第 1の PN接合素子と前記第 2の PN接合素子と前記トランスコンダクタン スアンプと前記カレントミラーと^^積して収容する集積回路をさらに備えた、請求項 1に記載の可変利得増幅器。
[4] 前記電流発生トランジスタの代わりに電界効果トランジスタを備え、前記電流発生トラ ンジスタの前記コレクタと前記ベースと前記ェミッタの代りに前記電界効果トランジス タのドレインとゲートとソースがそれぞれ接続された、請求項 1記載の可変利得増幅
[5] 請求項 1から 3の 、ずれか一項に記載の可変利得増幅器と、
前記第 1の入力信号源である波形発生器と、
前記トランスコンダクタンスアンプの前記出力端子から出力された前記電流を増幅し て交流電力を出力する電力増幅器と、
前記出力された交流電力の振幅を前記第 2の信号入力として帰還する帰還回路と、 を備えた交流電源装置。
PCT/JP2006/316853 2005-08-31 2006-08-28 可変利得増幅器およびそれを用いた交流電源装置 WO2007026639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06783082.8A EP1892829B1 (en) 2005-08-31 2006-08-28 Variable gain amplifier and ac power supply device using the same
CN2006800259931A CN101223689B (zh) 2005-08-31 2006-08-28 可变增益放大器以及使用其的交流电源装置
US11/915,018 US7602247B2 (en) 2005-08-31 2006-08-28 Variable gain amplifier and AC power supply device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005251155A JP4997730B2 (ja) 2005-08-31 2005-08-31 可変利得増幅器およびそれを用いた交流電源装置
JP2005-251155 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007026639A1 true WO2007026639A1 (ja) 2007-03-08

Family

ID=37808729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316853 WO2007026639A1 (ja) 2005-08-31 2006-08-28 可変利得増幅器およびそれを用いた交流電源装置

Country Status (5)

Country Link
US (1) US7602247B2 (ja)
EP (1) EP1892829B1 (ja)
JP (1) JP4997730B2 (ja)
CN (1) CN101223689B (ja)
WO (1) WO2007026639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469467C1 (ru) * 2011-10-21 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Многокаскадный усилитель переменного тока

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI442688B (zh) 2009-12-20 2014-06-21 Microsemi Corp 電源轉換器及控制電源轉換器之方法
US8970302B2 (en) * 2013-08-05 2015-03-03 Power Integrations, Inc. Operational amplifier with selective input
US11646720B2 (en) 2020-11-06 2023-05-09 Hong Kong Applied Science and Technology Research Institute Company Limited Active filter for electromagnetic interference (EMI) reduction using a single connection point and a negative impedance converter with cross-coupled transistors
CN114035103B (zh) * 2021-11-03 2024-04-16 苏州博创集成电路设计有限公司 电源系统检测装置及电源系统
WO2023151105A1 (en) * 2022-02-09 2023-08-17 Hong Kong Applied Science and Technology Research Institute Company Limited Active filter for electromagnetic interference (emi) reduction using single connection point and negative impedance converter with cross-coupled transistors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176971A2 (en) 1984-09-29 1986-04-09 Wakamoto Pharmaceutical Co., Ltd. Gene coding for thermostable beta-galactosidase, Bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof
JPS6175610A (ja) * 1984-09-21 1986-04-18 Toshiba Corp トランジスタ回路
JPS61157108A (ja) * 1984-12-28 1986-07-16 Rohm Co Ltd 電圧−電流変換回路
JPH0529853A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 直線性補正回路
JPH05110354A (ja) * 1991-10-16 1993-04-30 Sony Corp 増幅回路
JPH1079633A (ja) * 1996-07-11 1998-03-24 Nokia Mobile Phones Ltd 線形電力増幅器のための利得制御回路
JPH1168487A (ja) * 1997-08-14 1999-03-09 Sony Corp 利得制御回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408514A (en) * 1976-06-25 1983-10-11 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument having portaments property
JPS59172819A (ja) * 1983-03-19 1984-09-29 Rohm Co Ltd 利得可変増幅器
CA1231441A (en) * 1984-07-10 1988-01-12 Kazuyoshi Kuwahara Recording circuit having means to automatically set the recording current of a magnetic recording head
JPH0681108B2 (ja) * 1989-03-22 1994-10-12 株式会社東芝 Fmステレオマルチプレックス復調回路のマトリックス回路
US5497123A (en) * 1994-12-23 1996-03-05 Motorola, Inc. Amplifier circuit having high linearity for cancelling third order harmonic distortion
JPH10126178A (ja) * 1996-10-18 1998-05-15 Nec Corp 可変利得増幅器
JPH10209813A (ja) * 1997-01-24 1998-08-07 Murata Mfg Co Ltd 不平衡−平衡変換回路
US6084471A (en) * 1997-12-19 2000-07-04 Nokia Mobile Phones Soft-limiting control circuit for variable gain amplifiers
JP2001308662A (ja) 2000-04-27 2001-11-02 Matsushita Electric Ind Co Ltd 可変利得増幅回路
JP4315095B2 (ja) * 2004-11-04 2009-08-19 パナソニック株式会社 アナログ乗、除算回路およびそれらを用いた電力装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175610A (ja) * 1984-09-21 1986-04-18 Toshiba Corp トランジスタ回路
EP0176971A2 (en) 1984-09-29 1986-04-09 Wakamoto Pharmaceutical Co., Ltd. Gene coding for thermostable beta-galactosidase, Bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof
JPS61157108A (ja) * 1984-12-28 1986-07-16 Rohm Co Ltd 電圧−電流変換回路
JPH0529853A (ja) * 1991-07-22 1993-02-05 Toshiba Corp 直線性補正回路
JPH05110354A (ja) * 1991-10-16 1993-04-30 Sony Corp 増幅回路
JPH1079633A (ja) * 1996-07-11 1998-03-24 Nokia Mobile Phones Ltd 線形電力増幅器のための利得制御回路
JPH1168487A (ja) * 1997-08-14 1999-03-09 Sony Corp 利得制御回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892829A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469467C1 (ru) * 2011-10-21 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Многокаскадный усилитель переменного тока

Also Published As

Publication number Publication date
EP1892829A4 (en) 2010-02-24
JP4997730B2 (ja) 2012-08-08
US7602247B2 (en) 2009-10-13
JP2007067824A (ja) 2007-03-15
EP1892829A1 (en) 2008-02-27
US20080197822A1 (en) 2008-08-21
CN101223689A (zh) 2008-07-16
CN101223689B (zh) 2012-02-01
EP1892829B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP3841428B2 (ja) 電荷移送装置
EP1215807B1 (en) Adding a laplace transform zero to a linear integrated circuit for frequency stability
JP2003015750A5 (ja)
WO2007026639A1 (ja) 可変利得増幅器およびそれを用いた交流電源装置
US7231152B2 (en) Infrared remote control receiver (IRCR) having semiconductor signal processing device therein
WO2004008298A2 (en) Capacitive feedback circuit
US6867644B2 (en) Current control circuitry
US5682119A (en) Variable gain circuit
US20070152755A1 (en) Regulated Power Supply Unit
JP2006319388A (ja) 自動利得制御回路及びそれを用いた正弦波発振回路
US6781462B2 (en) Power amplifier
JPH0818394A (ja) 電流センサ回路およびその作動方法
EP0377978B1 (en) A PLL control apparatus
JP2006295551A (ja) 高出力増幅器および多段高出力増幅器
JP2001281183A (ja) 湿度センサユニット
US6239643B1 (en) Offset correction circuit and DC amplification circuit
JPH06276037A (ja) オーディオ用パワーアンプ
JPH05199045A (ja) 増幅回路
JP2010148111A (ja) 単一コンデンサを使用する調整可能な積分器
JPS58194417A (ja) ダイオ−ド
JP2004072250A (ja) 高周波増幅器
JP3398907B2 (ja) バイアス電流制御装置
JPS63142272A (ja) 偏移電圧検出装置
JP2001509992A (ja) 低電力高線形性対数線形制御の方法および装置
US7323928B1 (en) High capacitance integrated circuits

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025993.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006783082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915018

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006783082

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE