WO2007020968A1 - 窒素酸化物精製方法および窒素酸化物精製装置 - Google Patents

窒素酸化物精製方法および窒素酸化物精製装置 Download PDF

Info

Publication number
WO2007020968A1
WO2007020968A1 PCT/JP2006/316153 JP2006316153W WO2007020968A1 WO 2007020968 A1 WO2007020968 A1 WO 2007020968A1 JP 2006316153 W JP2006316153 W JP 2006316153W WO 2007020968 A1 WO2007020968 A1 WO 2007020968A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
absorption
nitrogen
liquid
absorbing
Prior art date
Application number
PCT/JP2006/316153
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hata
Kenji Hamada
Shinichi Tai
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Priority to KR1020087006429A priority Critical patent/KR101279400B1/ko
Priority to US11/990,668 priority patent/US7776305B2/en
Priority to JP2007531020A priority patent/JP5108520B2/ja
Priority to EP06782766A priority patent/EP1930295A4/en
Priority to CN200680030113XA priority patent/CN101243012B/zh
Publication of WO2007020968A1 publication Critical patent/WO2007020968A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/22Nitrous oxide (N2O)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/36Nitrogen dioxide (NO2, N2O4)

Definitions

  • the present invention relates to a method and apparatus for purifying nitrogen monoxide, nitrogen dioxide, and nitrous oxide, which are nitrogen oxides.
  • Nitrogen oxide (N 2 O), which is a valence of 1 to 5 valences, can be taken by elemental nitrogen.
  • Nitrogen oxides normal gas at normal temperature and pressure
  • nitrogen (NO) diacid and nitrogen (NO)
  • Nitrogen oxide is a so-called endothermic compound, and in such a cryogenic process, it is known that, depending on the conditions, condensed nitrogen oxides may be shocked and explode, which is a safety aspect. There's a problem. In particular, the impact sensitivity of liquefied NO to explosion is comparable to that of troglycerin, so purification of NO by distillation is a major safety issue.
  • a method for purifying nitrogen oxides a method is known in which a crude nitrogen oxide gas (raw material gas) is passed through a column filled with an adsorbent such as zeolite under predetermined conditions. RU According to this method, the predetermined component in the raw material gas is adsorbed by the adsorbent and separated from the non-adsorbed component.
  • adsorbent such as zeolite under predetermined conditions.
  • Patent Document 1 Disclosure of the Invention of Japanese Patent Application Laid-Open No. 2004-10391
  • An object of the present invention is to provide a method for purifying nitrogen oxides that is highly safe and suitable for purifying nitrogen oxides efficiently.
  • Another object of the present invention is to provide a nitrogen oxide refiner suitable for purifying nitrogen oxides with high safety and efficiency.
  • a method for purifying nitrogen oxides uses nitrogen monoxide (NO) and nitrogen dioxide (NO).
  • the raw material gas containing 2 is cooled and Z or increased in pressure to condense dinitrogen trioxide (condensed N 2 O) and
  • Condensed N O means liquid or solid N
  • Condensed N O and condensed N 2 O is liquefied or solidified N 2 O. Condensed N O and condensed N
  • reaction that generates 23 is an exothermic reaction and the number of molecules decreases, the equilibrium of equation (1) shifts to the right side by cooling or pressurization.
  • the reaction that generates NO from NO is also an exothermic reaction and the reaction to decrease the number of molecules.
  • the raw material gas before being subjected to the condensation and separation step includes NO, NO, and NO, NO, and power gas in equilibrium with these.
  • the raw material gas is cooled and Z or boosted so that 2 3 2 4 is condensed and removed from the gas phase.
  • N 2 O and N 2 O are condensed and removed from the gas phase, they exist in the gas phase
  • the speed should be adjusted so as to satisfy the equilibrium state according to Equation (1) and Equation (2).
  • N O and N 2 O are formed, and the generated N 2 O and N 2 O are immediately condensed and removed from the gas phase.
  • the source gas contains more NO than NO, the source gas
  • NO in the source gas is NO
  • N 2 O 3 or NO 2 can be efficiently purified from a nitrogen oxides multi-component source gas containing 2 2 3 2 4 in a single process (condensation separation step).
  • Caro the first aspect way, NO
  • NO or NO can be purified with high safety because there is no need to go through a cryogenic process with a boiling point of 152 ° C or less.
  • the source gas contains N 2 O
  • the concentration adjustment step is performed before the condensation separation step.
  • both NO and NO can be sufficiently removed.
  • the ratio of NO concentration to NO concentration achieved in the process is NO ZNO ⁇ l in molar ratio.
  • the source gas contains NO and NO so N O
  • the nitrogen oxide multi-component raw material gas In the case of 2 2 3 and N 2 O, and further including N 2 O, the nitrogen oxide multi-component raw material gas
  • N 2 O can be efficiently purified from a single process (condensation separation step).
  • the purity of N 2 O is increased when the source gas contains N 2 O.
  • N 2 O must be purified with high safety.
  • the method for purifying nitrogen oxides according to the first aspect of the present invention is highly safe and efficiently purifies nitrogen oxides (NO, NO, or NO). Because it is suitable for
  • a method for purifying nitrogen oxides different from the first aspect includes an absorption step, a revaporization step, and a condensation separation step.
  • an absorption liquid containing liquid NO is allowed to act on the raw material gas containing NO, and NO is absorbed into the absorption gas.
  • the gas between the two is generated by the absorbed fluid force.
  • the intermediate gas is cooled and Z or boosted to produce condensed N 2 O and Z or condensed N 2 O.
  • NO is liquid N 2 O to generate N 2 O according to the reversible reaction of the following formula (3), and at a predetermined temperature.
  • the produced N 2 O is absorbed by liquefied N 2 O. Absorption process in the second aspect
  • an absorption liquid containing liquid N 2 O is added to the source gas containing NO.
  • the source gas contains N or CO, for example,
  • the soot is absorbed, and the absorbent is heated and heated.
  • This intermediate gas is also equivalent to NO, N and N in accordance with the NO and NO force equations (1) and (2).
  • N 2 O and N 2 O in such an intermediate gas are condensed to form a gas phase.
  • the intermediate gas is cooled and Z or increased in pressure so as to be removed.
  • the source gas contains NO, NO, N, and CO.
  • the method for purifying nitrogen oxides according to the second aspect of the present invention is highly safe and suitable for efficiently purifying nitrogen oxide (NO). It is.
  • the non-absorbed gas that is not absorbed by the absorbing liquid in the absorbing step is allowed to act on the non-absorbing liquid so that the non-absorbing liquid contains NO Absorption
  • An absorption step (second absorption step) for absorbing NO in the gas into the absorbent is performed in parallel with the first absorption step described above.
  • the two-stage absorption process is suitable for improving the net absorption amount or absorption rate of NO with respect to the absorption liquid, and is therefore suitable for improving the yield of NO.
  • the source gas contains N 2 O.
  • the NO power is separated without being absorbed by the absorbent, but depending on the temperature and pressure conditions, a part of the N 2 O in the raw material gas may be dissolved and absorbed by the absorbent. In this case,
  • the generated intermediate gas will contain NO in addition to NO and NO. Gatsutsu
  • the third absorption process is terminated in the middle of the revaporization process, and N 2 O is sufficiently removed in the revaporization process that does not involve the third absorption process.
  • the non-absorbing gas force that is not absorbed by the absorbing solution in at least one of the above-described absorption steps is at least N 2 O and impurity NO.
  • the collected gas is cooled and Z or boosted to produce condensed NO and Z or condensed NO.
  • the source gas contains N 2 O.
  • a nitrogen oxide refiner comprises a gas absorption tank and a condenser.
  • the gas absorption tank absorbs NO containing liquid
  • the condenser is configured to receive gas from the gas absorption tank and change the temperature and Z or pressure of the gas.
  • the apparatus according to the third aspect preferably further includes an intermediate absorption portion arranged in the gas flow path to the gas absorption tank force condenser and enabling gas-liquid contact, and the gas flow
  • the absorption liquid can be circulated between the gas absorption tank and the intermediate absorption section so that the absorption liquid flows in the direction opposite to the gas flow direction in the passage.
  • an absorption tower such as a column packed with a packing material or a bubble bell tower is preferably used.
  • Such a configuration is suitable for executing the nitrogen oxide purification method according to the second aspect described above.
  • FIG. 1 is a schematic configuration diagram showing a condenser used for carrying out the method for purifying nitrogen oxides of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a purification apparatus used for carrying out the nitrogen oxide purification method of the present invention.
  • FIG. 3 is a schematic configuration diagram showing another purification apparatus used for carrying out the method for purifying nitrogen oxides of the present invention.
  • FIG. 1 represents a condenser X that can be used to perform the NO purification method according to the first embodiment of the present invention.
  • the condenser X has a predetermined content contained in the raw material gas introduced into it. It is for condensing (liquefying or solidifying) the components, and it is configured so that its internal temperature and internal pressure can be variably controlled.
  • the internal temperature variable region of the condenser X is, for example, 160 to 30 ° C, and the internal pressure variable region is, for example, 0.01 to 6 MPa.
  • the raw material gas is introduced into the condenser X, and the raw material gas is cooled and Z or increased in pressure from before the introduction to reduce the condensed raw material gas from the condensed NO or condensed NO.
  • N O and N O are condensed in the condenser X and removed from the gas phase.
  • N O and N O are generated quickly to satisfy the equilibrium state, and the generated N O and
  • the condenser X is also used to perform the NO purification method according to the second embodiment of the present invention.
  • the vessel is subjected to the predetermined condensation separation process in vessel X. Specifically, the raw material gas is introduced into the condenser X, and the raw material gas is condensed from the raw material gas by lowering and / or increasing the pressure of the raw material gas before introduction.
  • the Rukoto Therefore, the NO in the source gas can be highly purified by continuing the condensation and separation process until the NO in the source gas is sufficiently removed.
  • NO can be efficiently purified in the separation step).
  • NO can be efficiently purified in the separation step.
  • the condenser X is also used to perform the N 2 O purification method according to the third embodiment of the present invention.
  • N 2 O as a main component
  • the contained raw material gas is subjected to a predetermined condensation separation process in the condenser X. Specifically, the inside of the condenser X is introduced so that the raw material gas is introduced into the condenser X, and the raw material gas is cooled and Z or increased in pressure from before the introduction to produce condensed NO and condensed NO. Temperature and
  • N 2 O and N 2 O are condensed in the condenser X and removed from the gas phase.
  • the concentration of NO and NO in the source gas is adjusted.
  • the concentration adjustment step for the purpose is performed before the condensation separation step.
  • Both NO and NO in the catalyst can be removed sufficiently.
  • the concentration of NO and NO in the catalyst can be reduced sufficiently.
  • the concentration of NO and NO in the catalyst can be removed sufficiently.
  • the concentration of NO and NO in the catalyst can be removed sufficiently.
  • the concentration of NO and NO in the catalyst can be removed sufficiently.
  • the concentration of NO and NO in the catalyst can be removed sufficiently.
  • the concentration of NO and NO in the catalyst can be removed sufficiently.
  • the ratio of NO concentration to NO concentration achieved in the preparation process is NO ZNO ⁇ l in molar ratio.
  • N 2 O as a main component, a smaller amount of NO, and N
  • N 2 O can be efficiently purified in the condensation and separation step.
  • N O When separating NO and NO to purify N O, N O itself is condensed or liquid
  • Fig. 2 is a diagram schematically showing a purification apparatus Y according to the fourth embodiment of the present invention, and the apparatus expresses any of the above target nitrogen oxides (NO, NO, or NO). Place to refine
  • the purification apparatus Y shown in the figure includes a gas absorption tank 1, a temperature control unit 2, an absorption tower 3, a temperature control unit 4, circulation pumps 5a and 5b, a condenser 6, and introduction lines 7a and 7b. Line 7c, transfer lines 7d and 7e, lead-out line 7f, and pressure regulating valves 8a and 8b are provided.
  • the gas absorption tank 1 is for receiving the absorption liquid, and is configured to variably control its internal temperature and internal pressure.
  • the internal temperature variable region of the gas absorption tank 1 is, for example, ⁇ 80 to 30 ° C., and the internal pressure variable region is, for example, 0.01 to 6 MPa.
  • Absorption liquid and source gas are introduced into the gas absorption tank 1 through the introduction line 7a.
  • the absorption liquid received in the gas absorption tank 1 is pure liquefied NO or MON (Mixed Oxides of Nitrogen). MON
  • I is a mixture of liquid N 2 O and liquefied N 2 O, and is used as a liquid oxidant for rocket fuel
  • the temperature adjusting unit 2 is for variably controlling the internal temperature of the gas absorption tank 1 by heating or cooling from the outside of the tank.
  • the absorption tower 3 functions as an intermediate absorption section, and has a structure in which the gas phase and the liquid phase can contact with each other.
  • the absorption tower 3 for example, a column packed with a packing material or a bubble tower is preferably used.
  • the internal temperature variable region of the absorption tower 3 is, for example, ⁇ 80 to 30 ° C., and the internal pressure variable region is, for example, 0.01 to 6 MPa.
  • the temperature adjustment unit 4 variably controls the internal temperature of the absorption tower 3 by heating or cooling of the external force of the absorption tower 3.
  • the circulation pump 5a absorbs liquid from the gas absorption tank 1 to the upper part of the absorption tower 3 through the circulation line 7c. Are sequentially transferred. By operating the circulation pump 5a, the absorption liquid flows from the absorption tower 3 to the gas absorption tank 1 in the direction opposite to the gas flow direction, and the absorption liquid circulates between the gas absorption tank 1 and the absorption tower 3. It will be.
  • the condenser 6 is for condensing (liquefying or solidifying) predetermined components contained in the gas sent from the absorption tower 3 via the transfer line 7d, and its internal temperature and internal pressure. Is configured to be variably controllable.
  • the internal temperature variable region of the condenser 6 is, for example, ⁇ 120 to 0 ° C., and the internal pressure variable region is, for example, 0.1 to 6 MPa.
  • the composition of the gas introduced into the condenser 6 via the transfer line 7d can be adjusted by adding a desired gas component via the introduction line 7b.
  • the component condensed and separated by the condenser 6 can be returned from the condenser 6 to the absorption tower 3 via the transfer line 7e by the operation of the circulation pump 5b. Further, the gas that has passed through the condenser 6 without being condensed is led out of the apparatus through the lead-out line 7f.
  • the internal pressures of the gas absorption tank 1, the absorption tower 3 and the condenser 6 in the purifier Y are appropriately adjusted by the pressure regulating valve 8a provided on the transfer line 7d and the pressure regulating valve 8b provided on the outlet line 7f. This can be set arbitrarily.
  • the internal pressure depends on the composition and temperature of the liquid absorption in the gas absorption tank 1 and the composition and temperature of the condensate in the condenser 6. If necessary, the internal pressure of the condenser 6 may be set to a pressure different from the internal pressure of the gas absorption tank 1 and the absorption tower 3.
  • the absorbent is introduced into the gas absorption tank 1 through the introduction line 7a.
  • the amount of the absorbing solution introduced is, for example, 100 to: LOOOdm 3 .
  • the raw material gas is introduced into the gas absorption tank 1 through the introduction line 7a, and the absorption process (first absorption process) is executed.
  • the source gas includes NO as a main component, NO, NO, NO and NO in equilibrium with NO and NO, and N
  • the amount of the raw material gas introduced is, for example, 1 to 2000 with respect to the absorbent ldm 3
  • the internal temperature of the gas absorption tank 1 in the absorption process is, for example, ⁇ 40 to 30 ° C.
  • the internal pressure is, for example, 0.1 to 6 MPa.
  • NO generates N 2 O and liquefied N 2 O according to the reversible reaction of the above formula (3).
  • the absorbing solution is allowed to act, and NO is absorbed into the absorbing solution.
  • NO in the raw material gas is liquefied N 2 O or liquefied in the absorption liquid containing liquefied N 2 O.
  • the absorbing liquid has a lower temperature and a higher pressure. This is because the equilibrium is shifted to the right in the reversible reactions of the above formulas (1) and (2) to generate N O and N O.
  • N 2 O in the source gas is converted into an absorbent containing liquid N 2 O.
  • Part of 2 may be dissolved and absorbed in liquid N 2 O. N and CO in the source gas
  • an additional absorption step in which the absorption liquid further acts on the non-absorption gas that is not absorbed in the absorption liquid in the first absorption step.
  • the second absorption step may be executed.
  • the absorption liquid is circulated between the gas absorption tank 1 and the absorption tower 3 as described above by operating the circulation pump 5a.
  • the non-absorbed gas NO, NO
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the above two-stage absorption process (Ie, separated from other components in the non-absorbing gas).
  • the non-absorbed gas that is not absorbed by the absorbing liquid in the absorption process (the first absorption process or the second absorption process) reaches the condenser 6 from the gas absorption tank 1 through the absorption tower 3 and the transfer line 7d. From this non-absorbed gas, as in the third embodiment, N 2 O can be highly purified. High purity
  • the refined N 2 O is led out of the system via the lead-out line 7f and separated as purified gas
  • the condenser 6 separation process is performed in condenser 6.
  • the revaporization process is executed in the gas absorption tank 1 and the absorption tower 3. Specifically, the temperature of the absorption liquid in the gas absorption tank 1 and the absorption tower 3 is raised and Z or reduced by controlling the temperature control units 2 and 4 and the pressure regulating valves 8a and 8b as necessary. . Vaporization of NO in the absorption liquid is promoted by increasing the temperature of the absorption liquid and Z or pressure reduction. Most of the vaporized NO is immediately decomposed into NO and NO.
  • This intermediate gas that reaches an equilibrium state between O and N 2 O is generated. This intermediate gas is
  • an additional absorption step in which the absorbing liquid is allowed to act again on the generated intermediate gas may be executed.
  • the absorption liquid is circulated between the gas absorption tank 1 and the absorption tower 3 as described above by operating the circulation pump 5a as in the second absorption step. .
  • the third absorption step is executed following the second absorption step.
  • trace amounts of N 2 O and trace amounts of N 2, CO, etc. absorbed in the absorption liquid are N
  • the intermediate gas in such an initial stage is in gas-liquid contact with the circulating absorption liquid while rising in the absorption tower 3, and in this gas-liquid contact, NO and NO in the intermediate gas are the first.
  • the reaction absorption is preferentially absorbed by the circulating absorption liquid. Therefore, by executing the third absorption step in parallel with the revaporization step, NO, N, CO, etc. in the intermediate gas can be efficiently removed using the difference in the absorption rate of the gas component with respect to the absorption liquid.
  • the third absorption process is terminated in the middle of the revaporization process, and in the revaporization process without the third absorption process, NO, N, CO Is sufficiently removed and NO is concentrated in the absorbent.
  • the intermediate gas exiting the absorption tower 3 during the revaporization process is transferred to the condenser 6 via the transfer line 7d. Finally, the condenser 6 is subjected to the condensation separation process. In addition, the intermediate gas is supplied as needed through an introduction line 7b provided between the pressure regulating valve 8a and the condenser 6.
  • the condition is such that NO and NO in the intermediate gas are liquefied and removed from the gas phase.
  • N O and N O are quickly generated to satisfy the equilibrium state, and newly generated N O and
  • the highly purified NO is led out of the system via the lead-out line 7f and can be separated as purified gas.
  • the liquid pump N O and the liquefied N O are returned to the upper part of the absorption tower 3 through the transfer line 7e by the operation of the circulation pump 5b.
  • the internal temperature of the condenser 6 during execution of the condensation / separation process is, for example, 9 ° C. or less, preferably 102 to 150 ° C., and the internal pressure is, for example, 0.01 to 6 MPa.
  • the temperature of the absorption liquid in the gas absorption tank 1 and the absorption tower 3 is increased by controlling the temperature control units 2 and 4 and the pressure control valves 8a and 8b as necessary.
  • Z or the pressure is reduced to promote NO vaporization, high-purity NO is produced from NO. This NO is
  • the raw material gas is a multi-component gas containing NO, NO, NO, NO, N, CO. Also
  • N 2 O, NO, NO can be purified from the raw material gas sequentially and efficiently.
  • Caro this implementation
  • NO or N 2 O need not be condensed or liquefied in the purification process
  • nitrogen oxides can be purified with high safety.
  • FIG. 3 shows a purifying apparatus Y1 according to a modification obtained by simplifying the purifying apparatus Y shown in FIG.
  • the purification device Y1 shown in the figure omits the absorption tower 3, the temperature control unit 4, the circulation pump 5a, the circulation line 7c, and the pressure control valves 8a and 8b from the purification device Y shown in FIG.
  • the condensate from the condenser 6 is directly transferred to the absorption tank 1 through the circulation pump 5b and the transfer line 7e. It is configured to return. For this reason, absorption of a predetermined component from the raw material gas is performed only in the absorption tank 1, and adjustment of the equilibrium reaction shown in the above formulas (1) to (3) is performed through temperature adjustment and composition adjustment performed via the introduction line 7b. Only done by.
  • Example 1 the NO purification method was performed using the condenser X shown in FIG.
  • a glass trap 500 cm 3 cooled to ⁇ 80 ° C. is used as the condenser X, and the source gas is 5000 ppm NO.
  • the raw material gas was passed through the condenser X at a speed of 100 cm 3 Z (condensation separation step).
  • NO and NO in the source gas were passed through the condenser X at a speed of 100 cm 3 Z (condensation separation step).
  • Example 2 the N 2 O purification method was performed using the condenser X shown in FIG. In this example
  • the raw material gas whose concentration was adjusted in this way was passed through the condenser X at a rate of 100 cm 3 Z (condensation separation step). As a result, NO and NO power in the source gas was also generated.
  • N 2 2 3 and N 2 O are condensed in condenser X and in purified N 2 O gas derived from condenser X
  • the NO concentration was 50 ppm and the NO concentration was 30 ppm.
  • Example 3 the NO purification method was performed using the condenser Y1 shown in FIG.
  • a container 500 cm 3 ) cooled to ⁇ 10 ° C. is used as the gas absorption tank 1
  • a glass trap 500 cm 3 cooled to 70 ° C. is used as the condenser 6.
  • liquid ⁇ NO (90) As liquid ⁇ NO (90
  • Example 4 the purification method of N 2 O and NO was performed using the condenser Y shown in Fig. 2.
  • the first to third absorption steps and the revaporization step in the gas absorption tank 1 and the absorption tower 3 were performed, and the condensation separation step in the condenser 6 was performed.
  • a 3dm 3 container was used as the gas absorption tank 1, and a column (diameter 5cm, length 20cm) packed with 3mm ⁇ glass beads was attached to the top as the absorption tower 3. Also, the pressure regulating valve
  • the source gas was introduced over 2 hours (first absorption process). During this period, the circulation pump 5a was operated, and the absorption liquid in the gas absorption tank 1 was sent to the upper part of the absorption tower 3 at a rate of 60 cm 3 / min (second absorption step). The outlet gas pressure from the absorption tower 3 during execution of the absorption process was controlled to IMPa using the pressure regulating valve 8a. Then, NO is introduced into the gas derived from the pressure regulating valve 8a (a gas containing NO as the main component and containing less NO) through the introduction line 7b.
  • the purity of the purified N 2 O gas derived from the condenser 6 is 99.99% or more, and the recovered amount is 378 g,
  • the recovery rate was 95%.
  • reaction solution was first absorbed by the circulating absorbent, and N 2 O in the system could be extracted efficiently.
  • the intermediate gas contains more NO than NO.
  • the gas discharged through the outlet line 7f was recovered as purified NO gas.
  • the gas mainly derived from NO which is sequentially derived from the pressure regulating valve 8a, contains about 1% NO at the beginning of recovery.
  • the purity was 99.99% or more, the recovery amount was 280 g, and the recovery rate was 93%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Treating Waste Gases (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 窒素酸化物精製装置は、液化N2O4を含んでNOを吸収するための吸収液を受容し且つ原料ガスを受け入れて当該原料ガスおよび吸収液の温度および/または圧力を変化させることが可能な、ガス吸収槽(1)と、ガス吸収槽(1)からのガスを受け入れて当該ガスの温度および/または圧力を変化させることが可能な凝縮器(6)とを備える。ガス吸収槽(1)では、例えば、NOを含む原料ガスに液化N2O4を含む吸収液を作用させてNOを当該吸収液に吸収させる。その後、吸収液を昇温および/または降圧させて相対的に多量のNOおよび相対的に少量のNO2を含む中間ガスを当該吸収液から発生させる。凝縮器(6)では、中間ガスを降温および/または昇圧させて凝縮N2O3および/または凝縮N2O4を生じさせる。

Description

明 細 書
窒素酸化物精製方法および窒素酸化物精製装置
技術分野
[0001] 本発明は、窒素酸化物である一酸化窒素や、二酸化窒素、亜酸化窒素を精製する ための方法および装置に関する。
背景技術
[0002] 窒素元素のとり得る原子価は 1価から 5価までと広ぐ亜酸化窒素 (N O)、一酸ィ匕
2
窒素 (NO)、二酸ィ匕窒素 (NO )など窒素酸ィ匕物(常温,常圧では通常は気体)の種
2
類は多い。また、窒素酸化物どうしの反応により、新たな窒素酸化物が容易に生成す る場合がある。そのため、窒素酸化物を含む系は、存在する窒素酸化物の種類や量 について複雑になりやすい。例えば、一般的な工業的 NO製造方法であるアンモ- ァ酸ィ匕法により NOを製造する場合、目的とする NOにカ卩え、 N O, NO , Nが副生
2 2 2 し、これらは不純物として NOガスに混入してしまう。
[0003] 窒素酸ィ匕物を高純度化ないし精製するための手法としては、蒸留が採用される場 合がある。し力しながら、 N Oと NOの沸点が相当程度に低温であることなどから (N
2 2
Oの沸点— 89°C, NOの沸点— 152°C)、窒素酸ィ匕物の蒸留では、多くの場合、極 低温でのプロセスを実行しなければならな 、。窒素酸ィ匕物は 、わゆる吸熱化合物で あるので、そのような極低温プロセスでは、条件によっては、凝縮した窒素酸化物が 衝撃を受けて爆発に至ることが知られており、安全面で問題がある。特に、液化 NO が爆発に至る衝撃感度は-トログリセリンのそれに匹敵するので、蒸留による NOの 精製は安全面での問題が大きい。
[0004] 一方、窒素酸ィ匕物の精製方法としては、ゼォライトなどの吸着剤が充填されたカラ ムに所定条件で窒素酸化物の粗ガス (原料ガス)を通流する手法が知られて 、る。こ の手法によると、原料ガス中の所定成分が、吸着剤に吸着され、非吸着成分と分離さ れる。ゼォライト吸着剤を用いた N Oと NOの分離技術については、例えば下記の特
2
許文献 1に記載されている。しかしながら、ゼォライト吸着剤を用いた分離技術では、 目的とする窒素酸ィ匕物を精製するにあたり、原料ガス中の窒素酸ィ匕物種が多いほど 、必要とされるゼォライト吸着剤の種類は多くなり且つカラムの本数も増大する傾向 にあるので、精製過程が煩雑となる。このような手法では、窒素酸化物 (精製前には 多成分系で存在する場合が多!、)を効率よく精製することができな!/、場合が多!、。
[0005] 特許文献 1:特開 2004— 10391号公報発明の開示
[0006] 本発明の目的は、安全性が高く且つ効率よく窒素酸ィ匕物を精製するのに適した窒 素酸化物精製方法を提供することにある。
[0007] 本発明の他の目的は、安全性が高く且つ効率よく窒素酸ィ匕物を精製するのに適し た窒素酸ィ匕物精製装置を提供することにある。
[0008] 本発明の第 1の側面によると窒素酸化物精製方法が提供される。この方法は、一酸 化窒素 (NO)および二酸化窒素 (NO )
2を含む原料ガスを降温および Zまたは昇圧 させて凝縮三酸化二窒素 (凝縮 N O )および
2 3 Zまたは凝縮四酸ィ匕ニ窒素 (凝縮 N O
2
)を生じさせるための凝縮分離工程を含む。凝縮 N Oとは、液ィ匕または固化した N
4 2 3 2
Oであり、凝縮 N Oとは、液化または固化した N Oである。凝縮 N Oおよび凝縮 N
3 2 4 2 4 2 4 2
Oは、衝撃を受けても爆発には至らない。
4
[0009] 気体状態においては、下記式(1)で表されるように、 NOおよび NOは N Oと平衡
2 2 3 状態に至り、且つ、下記式(2)で表されるように、 NOは N Oと平衡状態に至る。こ
2 2 4
れら平衡状態は速やかに達成される。 NOと NO
2から N O
2 3を生ずる反応は発熱反応 であり且つ分子数が減少する反応であるので、冷却や加圧により、式(1)の平衡は右 側にずれる。 NOから N Oを生ずる反応も発熱反応であり且つ分子数が減少する反
2 2 4
応であるので、冷却や加圧により、式(2)の平衡も右側にずれる。
[0010] [化 1]
NO + Νθ2 ^= , Ν203 +発熱 · · · · (1)
2ΝΘ2 c Ν2Ο4 +発熱' · · · (2)
[0011] 一方、各種窒素酸ィ匕物の融点および沸点を図 1の表にまとめる。 Ν Οは、沸点以
2 3
上では殆どが分解して NOと NOとなる。また、 NOと N Oは、常圧において広い温
2 2 2 4
度範囲で平衡状態にあり、当該平衡系における NOの存在率は、 N Oの融点(一 9
2 2 4
°C)で約 0.01%、 N Oの沸点(21°C)で約 0.1%、 100°Cで約 90%、 140°C以上で
2 4
略 100%である。 [表 1]
Figure imgf000005_0001
[0012] 上述の第 1の側面の窒素酸化物精製方法では、凝縮分離工程に付される前の原 料ガスには、 NOと、 NOと、これらと平衡状態にある N Oと N Oと力 気体の状態で
2 2 3 2 4
含まれている。そして、凝縮分離工程では、このような原料ガス中の N Oおよび N O
2 3 2 4 が凝縮して気相から除かれる条件となるように、当該原料ガスが降温および Zまたは 昇圧される。 N Oと N Oが凝縮して気相から除かれると、当該気相では、存在する
2 3 2 4
場合には NOと NOから、式(1)および式(2)に従って平衡状態を充たすように速や
2
かに N Oおよび N Oが生じ、生じた N Oおよび N Oは直ちに凝縮して気相から除
2 3 2 4 2 3 2 4
力ゝれることとなる。
[0013] したがって、原料ガスにおいて NOが NOより多く含まれている場合には、原料ガス
2
中の NOが充分に除去されるまで上述の凝縮分離工程を継続することにより、原料
2
ガス中の NOを高純度化することが可能である。また、原料ガスにおいて NOが NO
2 より多く含まれている場合には、原料ガス中の NOが充分に除去されるまで上述の凝 縮分離工程を継続することにより、原料ガス中の NOを高純度化することが可能であ
2
る。このような第 1の側面の方法によると、 NOおよび NOを含み従って N Oと N Oも
2 2 3 2 4 含む、窒素酸ィ匕物多成分系の原料ガスから、単一のプロセス (凝縮分離工程)にて N Oまたは NOを効率よく精製することができる。カロえて、第 1の側面の方法では、 NO
2
または NOを高純度化するにあたり、 NOを凝縮ないし液ィ匕する必要はないので (即
2
ち、 NOの沸点 152°C以下の極低温プロセスを経る必要はないので)、安全性高く NOまたは NOを精製することができる。
2
[0014] 一方、第 1の側面において原料ガスに N Oが含まれている場合、原料ガス中の NO および Zまたは NOが充分に除去されるまで上述の凝縮分離工程を継続することに
2
より、原料ガス中の N Oを高純度化することが可能である。原料ガスに N Oが含まれ
2 2 ている場合には、好ましくは、原料ガスにおける NOおよび NOの濃度を調整するた
2
めの濃度調整工程を、凝縮分離工程の前に行う。濃度調整工程にて原料ガス中の NOおよび NOの濃度を適切に設定することにより、凝縮分離工程にて、原料ガス中
2
の NOおよび NOを共に充分に除去することが可能である。好ましくは、濃度調整ェ
2
程で達成される、 NO濃度と NO濃度の比率は、モル比で NO ZNO≥lである。こ
2 2
のように、第 1の側面の方法によると、原料ガスが NOおよび NOを含み従って N O
2 2 3 と N Oも含み、更に N Oを含む場合において、当該窒素酸化物多成分系の原料ガ
2 4 2
スから、単一のプロセス (凝縮分離工程)にて N Oを効率よく精製することができる。
2
カロえて、第 1の側面の方法では、原料ガス中に N Oを含む場合に N Oを高純度化す
2 2
るにあたり、 N O自体を凝縮ないし液ィ匕する必要はないので (即ち、 N Oの沸点ー8
2 2
9°C以下の極低温プロセスを経る必要はないので)、安全性高く N Oを精製すること
2
ができる。
[0015] 以上のように、本発明の第 1の側面に係る窒素酸ィ匕物精製方法は、安全性が高ぐ 且つ、効率よく窒素酸ィ匕物 (NO、 NO、または N O)を精製するのに適しているので
2 2
ある。
[0016] 本発明の第 2の側面によると第 1の側面とは別の窒素酸ィ匕物精製方法が提供され る。この方法は、吸収工程と、再気化工程と、凝縮分離工程とを含む。吸収工程では 、 NOを含む原料ガスに、液ィ匕 N Oを含む吸収液を作用させて、 NOを当該吸収液
2 4
に吸収させる(第 1の吸収工程)。再気化工程では、吸収工程の後に吸収液を昇温 および Zまたは降圧させて、相対的に多い NOおよび相対的に少ない NOを含む中
2 間ガスを当該吸収液力 発生させる。凝縮分離工程では、中間ガスを降温および Z または昇圧させて凝縮 N Oおよび Zまたは凝縮 N Oを生じさせる。
2 3 2 4
[0017] NOは、液ィ匕 N Oとは下記の式(3)の可逆反応に従って N Oを生成し、所定温度
2 4 2 3
以下では、生成した N Oは液化 N Oに吸収される。第 2の側面における吸収工程
2 3 2 4
では、このような特性を利用して、 NOを含む原料ガスに、液ィ匕 N Oを含む吸収液を
2 4
作用させて、実質的に NOを当該吸収液に吸収させるのである。原料ガスに NOが 含まれている場合、吸収工程では、この NOは、液ィ匕 N Oを含む吸収液に液ィ匕 N
2 2 4 2
Oとして吸収される。また、原料ガスに例えば Nや COが含まれている場合、吸収ェ
4 2 2
程では、これら Nや COは、液ィ匕 N Oを含む吸収液に実質的には吸収されずに N
2 2 2 4
Oから分離される。
[0018] [化 2]
NO + 1 / 2N2Q4 3 N203 + 発熱 · · · · (3)
[0019] 再気化工程では、 Ν Οが吸収されて 、る吸収液を昇温および
2 3 Ζまたは降圧させ、 これにより吸収液中の Ν Οの気化が促進される。気化した Ν Οの殆どは直ちに NO
2 3 2 3
および NOに分解し、こうして生じた NOおよび NOから、上記の式(1)および式(2)
2 2
に従って NO, NO, N O, N O間で平衡状態に至った中間ガスが発生することと
2 2 3 2 4
なる。また、この中間ガスは、等量の NOおよび NO力 式(1), (2)に従って NO, N
2
O , N O , N O間の平衡状態に至ったものであるため、 NOより多くの NOを含むこ
2 2 3 2 4 2
ととなる。
[0020] 凝縮分離工程では、このような中間ガス中の N Oおよび N Oが凝縮して気相から
2 3 2 4
除かれる条件となるように、当該中間ガスが降温および Zまたは昇圧される。 N O
2 3と
N Oが凝縮して気相から除かれると、当該気相では、残存する NOと NOから式(1)
2 4 2 および式(2)に従って平衡状態を充たすように速やかに N Oおよび N Oが生じ、生
2 3 2 4 じた N Oおよび N Oは直ちに凝縮して気相から除かれることとなる。したがって、中
2 3 2 4
間ガス中の NOが充分に除去されるまで当該凝縮分離工程を継続することにより、
2
中間ガス中の NOを高純度化することが可能である。
[0021] このように、第 2の側面の方法によると、原料ガスが NO, NO , N , COを含む多
2 2 2 成分系ガスの場合であっても、最終的には凝縮分離工程にて NOを分離して、当該 原料ガス力 NOを効率よく精製することができる。加えて、第 2の側面の方法では、 NOを高純度化するにあたり、 NO自体を凝縮な!/ヽし液ィ匕する必要はな 、ので (即ち 、 NOの沸点 152°C以下の極低温プロセスを経る必要はないので)、安全性高く N Oを精製することができる。以上のように、本発明の第 2の側面に係る窒素酸ィ匕物精 製方法は、安全性が高ぐ且つ、効率よく窒素酸化物 (NO)を精製するのに適してい るのである。
[0022] 第 2の側面の窒素酸ィ匕物精製方法では、好ましくは、吸収工程にて吸収液に吸収 されない非吸収ガスに対して液ィ匕 N Oを含む吸収液を作用させて、当該非吸収ガ
2 4
ス中の NOを当該吸収液に吸収させるための吸収工程 (第 2の吸収工程)を、上述の 第 1の吸収工程と併行して行う。 2段階の吸収工程は、吸収液に対する NOの正味の 吸収量ないし吸収率を向上するのに好適であり、従って、 NOの収率を向上するのに 好適である。
[0023] 一方、第 2の側面の窒素酸ィ匕物精製方法においては、原料ガスに N Oが含まれて
2
いてもよい。この場合、上述の第 1の吸収工程では、当該 N Oの殆どは、液ィ匕 N Oを
2 2 4 含む吸収液に吸収されずに NO力 分離されるが、温度条件や圧力条件によっては 、原料ガス中の N Oの一部が、吸収液に溶解吸収される場合がある。この場合、上
2
述の再気化工程では、吸収液中に N Oが存在する限りにおいて、当該吸収液から
2
発生する中間ガスには、 NOおよび NOに加えて N Oも含まれることとなる。したがつ
2 2
て、原料ガスに N Oが含まれている場合には特に、再気化工程にて発生する中間ガ
2
スに対して液ィ匕 N Oを含む吸収液を作用させて、当該中間ガス中の NOおよび NO
2 4 2 を当該吸収液に吸収させるための吸収工程 (第 3の吸収工程)を、上述の再気化工 程と併行して行うのが好ま Uヽ。再気化工程と併行して第 3の吸収工程を実行するこ とにより、吸収液に対する NOおよび N Oの実質的吸収率の差 (相当程度に大きい)
2
を利用して、中間ガス中の N Oを効率よく NO力も分離することが可能である。また、
2
このような第 3の吸収工程を採用する場合、当該第 3の吸収工程は、再気化工程の 途中で終了され、第 3の吸収工程を伴わない再気化工程では、充分に N Oが除去さ
2 れて吸収液中に NOが濃縮された状態において、 NOおよび NOを含む中間ガスを
2
吸収液力 発生させる。
[0024] 第 2の側面の窒素酸ィ匕物精製方法において、上述の少なくとも何れか一つの吸収 工程にて吸収液に吸収されない非吸収ガス力 少なくとも N Oおよび不純物 NOを
2
含む場合、非吸収ガスに NOを加える組成調整工程と、組成調整工程を経た非吸
2
収ガスを降温および Zまたは昇圧させて凝縮 N Oおよび Zまたは凝縮 N Oを生じ
2 3 2 4 させるための凝縮分離工程と、を更に実行してもよい。これにより、第 2の側面の方法 において、 NOを精製するのに加えて N Oも精製することができる。当該 N O精製手
2 2 法については、具体的には、第 1の側面の方法において原料ガスに N Oが含まれて
2
いる場合と同様である。
[0025] 本発明の第 3の側面によると窒素酸ィ匕物精製装置が提供される。この装置は、ガス 吸収槽および凝縮器を備える。ガス吸収槽は、液ィ匕 N Oを含んで NOを吸収するた
2 4
めの吸収液を受容することが可能で、且つ、原料ガスを受け入れて当該原料ガスお よび吸収液の温度および Zまたは圧力を変化させることが可能に構成されたもので ある。凝縮器は、ガス吸収槽からのガスを受け入れて当該ガスの温度および Zまたは 圧力を変化させることが可能に構成されたものである。このような構成を有する装置 は、上述の第 2の側面に係る窒素酸ィ匕物精製方法を実行するうえで好適である。
[0026] 第 3の側面の装置は、好ましくは、ガス吸収槽力 凝縮器までのガス流路内に配さ れた、気液接触を可能ならしめる中間吸収部を更に備え、且つ、ガス流路内ではガ ス通流方向とは逆の方向に吸収液が流れるように、ガス吸収槽および中間吸収部の 間で吸収液が循環可能に構成されている。この中間吸収部には、例えば、充填剤を 詰めたカラムや泡鐘塔などの吸収塔が好適に用いられる。このような構成は、上述の 第 2の側面に係る窒素酸ィ匕物精製方法を実行するうえで、好適である。
[0027] 本発明のその他の目的、特徴および利点は、以下に添付図面に基づき説明する 実施形態から明らかとなろう。
図面の簡単な説明
[0028] [図 1]本発明の窒素酸ィ匕物精製方法を実施するために用いられる凝縮器を示す概略 構成図である。
[図 2]本発明の窒素酸ィ匕物精製方法を実施するために用いられる精製装置を示す概 略構成図である。
[図 3]本発明の窒素酸ィ匕物精製方法を実施するために用いられる別の精製装置を示 す概略構成図である。
発明を実施するための最良の形態
[0029] 図 1は、本発明の第 1の実施形態に係る NO精製方法を実行するのに使用すること のできる凝縮器 Xを表す。凝縮器 Xは、これに導入される原料ガスに含まれる所定の 成分を凝縮 (液化または固化)させるためのものであり、その内部温度および内部圧 力を可変制御可能に構成されている。凝縮器 Xの内部温度可変域は例えば 160 〜30°Cであり、内部圧力可変域は例えば 0.01〜6MPaである。
[0030] 第 1の実施形態の NO精製方法では、主成分としての NOと、これより少量の NOと
2
、これらと平衡状態にある N Oと N Oとが含まれる原料ガスを、凝縮器 Xにて所定の
2 3 2 4
凝縮分離工程に付す。具体的には、当該原料ガスを凝縮器 Xに導入し、導入前より も原料ガスを降温および Zまたは昇圧して当該原料ガスカゝら凝縮 N Oや凝縮 N O
2 3 2 4 が生じるように、凝縮器 Xの内部温度および Zまたは内部圧力を制御する。そして、 このような凝縮分離工程を経たガスを精製ガスとして分取する。
[0031] 凝縮分離工程にお!ヽては、凝縮器 X内で N Oと N Oが凝縮して気相から除かれ
2 3 2 4
る。し力しながら、当該気相に NOが残存する限り、上記の式(1)および式(2)に従
2
つて平衡状態を充たすように速やかに N Oおよび N Oが生じ、生じた N Oおよび
2 3 2 4 2 3
N Oは直ちに凝縮して気相から除かれることとなる。したがって、原料ガス中の NO
2 4 2 が充分に除去されるまで凝縮分離工程を継続することにより、原料ガス中の NOを高 純度化することが可能である。
[0032] このように、第 1の実施形態では、主成分としての NOと、これより少量の NOと、 N
2 2
O N O
3と、 2 4とを含む、窒素酸ィ匕物多成分系の原料ガスから、単一のプロセス (凝縮分 離工程)にて NOを効率よく精製することができる。カロえて、本実施形態では、 NOを 高純度化するにあたり、 NO自体を凝縮ないし液ィ匕する必要はないので、安全性高く NOを精製することができる。
[0033] 凝縮器 Xは、本発明の第 2の実施形態に係る NO精製方法を実行するのにも使用
2
することができる。第 2の実施形態の NO精製方法では、主成分としての NOと、これ
2 2 より少量の NOと、これらと平衡状態にある N Oと N Oとが含まれる原料ガスを、凝縮
2 3 2 4
器 Xにて所定の凝縮分離工程に付す。具体的には、当該原料ガスを凝縮器 Xに導 入し、導入前よりも原料ガスを降温および Zまたは昇圧して当該原料ガスから凝縮 N O
2 3や凝縮 N O
2 4が生じるように、凝縮器 Xの内部温度および Zまたは内部圧力を制 御する。そして、このような凝縮分離工程を経たガスを精製ガスとして分取する。
[0034] 凝縮分離工程にお!ヽては、凝縮器 X内で N Oと N Oが凝縮して気相から除かれ る。し力しながら、当該気相に NOが残存する限り、上記の式(1)に従って平衡状態 を充たすように速やかに N Oが生じ、生じた N Oは直ちに凝縮して気相から除かれ
2 3 2 3
ることとなる。したがって、原料ガス中の NOが充分に除去されるまで凝縮分離工程を 継続することにより、原料ガス中の NOを高純度化することが可能である。
2
[0035] このように、第 2の実施形態では、主成分としての NOと、これより少量の NOと、 N
2 2
Oと、 N Oとを含む、窒素酸ィ匕物多成分系の原料ガスから、単一のプロセス (凝縮分
3 2 4
離工程)にて NOを効率よく精製することができる。カロえて、本実施形態では、 NOを
2
分離して NOを高純度化するにあたり、 NO自体を凝縮ないし液化する必要はない
2
ので、安全性高く NOを精製することができる。
2
[0036] 凝縮器 Xは、本発明の第 3の実施形態に係る N O精製方法を実行するのにも使用
2
することができる。第 3の実施形態の N O精製方法では、主成分としての N Oと、これ
2 2 より少量の NOおよび NOと、当該 NOおよび NOと平衡状態にある N Oと N Oとが
2 2 2 3 2 4 含まれる原料ガスを、凝縮器 Xにて所定の凝縮分離工程に付す。具体的には、当該 原料ガスを凝縮器 Xに導入し、導入前よりも原料ガスを降温および Zまたは昇圧して 当該原料ガスカゝら凝縮 N Oや凝縮 N Oが生じるように、凝縮器 Xの内部温度および
2 3 2 4
Zまたは内部圧力を制御する。そして、このような凝縮分離工程を経たガスを精製ガ スとして分取する。
[0037] 凝縮分離工程にお!ヽては、凝縮器 X内で N Oと N Oが凝縮して気相から除かれ
2 3 2 4
る。し力しながら、当該気相に NOや NOが残存する限り、上記の式(1)および式(2)
2
に従って平衡状態を充たすように速やかに N Oおよび N Oが生じ、生じた N Oお
2 3 2 4 2 3 よび N Oは直ちに凝縮して気相から除かれることとなる。したがって、原料ガス中の
2 4
NOおよび Zまたは NOが充分に除去されるまで凝縮分離工程を継続することにより
2
、原料ガス中の N Oを高純度化することが可能である。
2
[0038] 第 3の実施形態では、好ましくは、原料ガスにおける NOおよび NOの濃度を調整
2
するための濃度調整工程を、凝縮分離工程の前に行う。濃度調整工程にて原料ガス 中の NOおよび NOの濃度を適切に設定することにより、凝縮分離工程にて、原料ガ
2
ス中の NOおよび NOを共に充分に除去することが可能である。好ましくは、濃度調
2
整工程にて達成される、 NO濃度と NO濃度の比率は、モル比で NO ZNO≥lであ る。
[0039] このように、第 3の実施形態では、主成分としての N Oと、これより少量の NOと、 N
2
Oと、 N Oと、 N Oと含む窒素酸化物多成分系の原料ガスから、単一のプロセス(
2 2 3 2 4
凝縮分離工程)にて N Oを効率よく精製することができる。カロえて、本実施形態では
2
、 NOおよび NOを分離して N Oを高純度化するにあたり、 N O自体を凝縮ないし液
2 2 2
化したり、 NOを凝縮ないし液ィ匕する必要はないので、安全性高く N Oを精製するこ
2
とがでさる。
[0040] 図 2は、本発明の第 4の実施形態に係る精製装置 Yを模式的に表した図であり、当 該装置は、上記何れの目的窒素酸化物 (NOまたは N Oまたは NO )を精製する場
2 2
合にも使用することができる。図示の精製装置 Yは、ガス吸収槽 1と、温度調節部 2と 、吸収塔 3と、温度調節部 4と、循環ポンプ 5a, 5bと、凝縮器 6と、導入ライン 7a, 7bと 、循環ライン 7cと、移送ライン 7d, 7eと、導出ライン 7fと、圧力調整弁 8a, 8bとを備え ている。
[0041] ガス吸収槽 1は、吸収液を受容するためのものであり、その内部温度および内部圧 力を可変制御するように構成されている。ガス吸収槽 1の内部温度可変域は例えば — 80〜30°Cであり、内部圧力可変域は例えば 0.01〜6MPaである。ガス吸収槽 1 には、導入ライン 7aを介して吸収液や原料ガスが導入される。ガス吸収槽 1に受容さ れる吸収液は、純液化 N Oまたは MON (Mixed Oxides of Nitrogen)である。 MON
2 4
は、液ィ匕 N Oと液化 N Oの混合物であり、ロケット燃料用液体酸化剤としての用途
2 3 2 4
がある。
[0042] 温度調節部 2は、槽外からの加熱または冷却によりガス吸収槽 1の内部温度を可変 制御するためのものである。
[0043] 吸収塔 3は、中間吸収部として機能するものであり、その内部においてガス相と液 相が接触可能な構造を有する。吸収塔 3としては、例えば、充填剤を詰めたカラムや 泡鐘塔などが好適に用いられる。吸収塔 3の内部温度可変域は例えば— 80〜30°C であり、内部圧力可変域は例えば 0.01〜6MPaである。温度調節部 4は、吸収塔 3 の外部力もの加熱または冷却により吸収塔 3の内部温度を可変制御する。
[0044] 循環ポンプ 5aは、ガス吸収槽 1から循環ライン 7cを介して吸収塔 3の上部へ吸収液 を順次移送するためのものである。循環ポンプ 5aの稼働により、吸収塔 3からガス吸 収槽 1へと、ガス通流方向とは逆の方向に吸収液が流れ、ガス吸収槽 1および吸収 塔 3の間で吸収液が循環することとなる。
[0045] 凝縮器 6は、吸収塔 3から移送ライン 7dを介して送られてくるガスに含まれる所定の 成分を凝縮 (液化または固化)させるためのものであり、その内部温度および内部圧 力を可変制御可能に構成されている。凝縮器 6の内部温度可変域は例えば— 120 〜0°Cであり、内部圧力可変域は例えば 0.1〜6MPaである。移送ライン 7dを介して 凝縮器 6に導入されるガスについては、導入ライン 7bを介して所望のガス成分を添 加することにより、組成調整が可能である。また、凝縮器 6にて凝縮分離された成分 は、循環ポンプ 5bの稼働により、凝縮器 6から移送ライン 7eを介して吸収塔 3に戻さ れ得る。また、凝縮されずに凝縮器 6を通過したガスは、導出ライン 7fを介して装置 外に導出される。
[0046] 精製装置 Yにおけるガス吸収槽 1、吸収塔 3および凝縮器 6の内部圧力は、移送ラ イン 7dに設けた圧力調整弁 8aおよび導出ライン 7fに設けた圧力調整弁 8bを適宜調 整することにより任意に設定することができる。その内部圧力は、ガス吸収槽 1内の吸 収液の組成および温度、並びに凝縮器 6内の凝縮液の組成および温度に依存する 。必要に応じ、凝縮器 6の内部圧力をガス吸収槽 1および吸収塔 3の内部圧力とは異 なる圧力に設定してもよい。
[0047] 精製装置 Yを用いて窒素酸ィ匕物を精製するには、まず、導入ライン 7aを介してガス 吸収槽 1内に吸収液を導入する。吸収液の導入量は、例えば 100〜: LOOOdm3であ る。この後、導入ライン 7aを介してガス吸収槽 1内に原料ガスを導入して吸収工程( 第 1の吸収工程)を実行する。本実施形態では、原料ガスには、主成分としての NO と、 NOと、 N Oと、 NOおよび NOに対して平衡状態にある N Oおよび N Oと、 N
2 2 2 2 3 2 4 2 と、 COとが含まれる。原料ガスの導入量は、吸収液 ldm3に対して例えば 1〜2000
2
Ndm3Zhである。また、吸収工程におけるガス吸収槽 1の内部温度は例えばー40〜 30°Cであり、内部圧力は例えば 0.1〜6MPaである。
[0048] 上述したように、 NOは、液化 N Oとは上記の式(3)の可逆反応に従って N Oを生
2 4 2 3 成し、所定温度以下では、生成した N Oは液化 N Oに吸収される。ガス吸収槽 1で の吸収工程では、このような特性を利用して、 NOを含む原料ガスに、液ィ匕 N Oを含
2 4 む吸収液を作用させて、 NOを当該吸収液に反応吸収させるのである。また、当該吸 収工程では、原料ガス中の NOは、液化 N Oを含む吸収液に液化 N Oあるいは液
2 2 4 2 3 化 N Oとして吸収される。吸収液に対する NOおよび NOの吸収効率を向上させる
2 4 2
観点からは、吸収液はより低温で且つより高圧であることが望ましい。これは、上記の 式(1)および式(2)の可逆反応において平衡を右にずらして N Oおよび N Oの生
2 3 2 4 成および凝縮を促すためである。原料ガス中の N Oは、液ィ匕 N Oを含む吸収液に
2 2 4
対して殆ど吸収されないが、吸収工程の温度条件や圧力条件によっては、当該 N O
2 の一部は、液ィ匕 N Oに対して溶解吸収される場合がある。原料ガス中の Nや COは
2 4 2 2
、吸収液に対しては N Oよりも更に吸収されにくい。
2
[0049] このような吸収工程 (第 1の吸収工程)の実行中、第 1の吸収工程にて吸収液に吸 収されない非吸収ガスに対して更に吸収液を作用させる追加の吸収工程 (第 2の吸 収工程)を実行してもよい。第 2の吸収工程を実行するためには、循環ポンプ 5aを稼 働させることにより、ガス吸収槽 1および吸収塔 3の間で上述のように吸収液を循環さ せる。これにより、第 1の吸収工程にて吸収液に吸収されない非吸収ガス (NO, NO
2
, N O, N , COなどを含む)は、ガス吸収槽 1から吸収塔 3に移動して吸収塔 3内を
2 2 2
上昇中に、循環吸収液と気液接触することとなる。この気液接触により、非吸収ガス 中の NOおよび NOは、第 1の吸収工程と同様に、優先的に循環吸収液に反応吸収
2
される(即ち、非吸収ガス中の他成分から分離される)。以上の 2段階の吸収工程 (第 1および第 2の吸収工程)は、吸収液に対する NOの正味の吸収量ないし吸収率を向 上するのに好適であり、従って、 NOの収率を向上するのに好適である。
[0050] 吸収工程 (第 1の吸収工程や第 2の吸収工程)にて吸収液に吸収されない非吸収 ガスは、ガス吸収槽 1から吸収塔 3および移送ライン 7dを経て凝縮器 6に至る。この非 吸収ガスからは、第 3の実施形態と同様に、 N Oを高純度化することができる。高純
2
度化された N Oは導出ライン 7fを介して装置外に導出され、精製ガスとして分取する
2
ことができる。 N Oの高純度化にあたり、凝縮器 6にて凝縮分離工程を実行する前に
2
、 NOおよび NOの濃度を調整するには、移送ライン 7dを流れるガスに対し、導入ラ
2
イン 7bを介して NOや NOを添カ卩する。 [0051] 吸収工程 (第 1の吸収工程や第 2の吸収工程)の後、ガス吸収槽 1および吸収塔 3 にて再気化工程を実行する。具体的には、温度調節部 2, 4の制御や、必要に応じた 圧力調整弁 8a, 8bの制御により、ガス吸収槽 1内および吸収塔 3内の吸収液を昇温 および Zまたは降圧させる。吸収液の昇温および Zまたは降圧により、吸収液中の N Oの気化が促進される。気化した N Oの殆どは直ちに NOおよび NOに分解し、こ
2 3 2 3 2
うして生じた NOおよび NOから、上記の式(1)および式(2)に従って NO, NO, N
2 2 2
O , N O間で平衡状態に至った中間ガスが発生することとなる。この中間ガスは、等
3 2 4
量の NOおよび NOから式(1), (2)に従って NO, NO, N O, N O間の平衡状態
2 2 2 3 2 4
に至ったものであるため、 NOより多くの NOを含むこととなる。
2
[0052] このような再気化工程の初期段階では、発生する中間ガスに対して再び吸収液を 作用させる追加の吸収工程 (第 3の吸収工程)を実行してもよい。第 3の吸収工程を 実行するためには、第 2の吸収工程と同様に、循環ポンプ 5aを稼働させることにより、 ガス吸収槽 1および吸収塔 3の間で上述のように吸収液を循環させる。この際、第 3 の吸収工程は第 2の吸収工程に引き続き実行するのが好ましい。再気化工程の初期 段階においては、吸収液に吸収されていた微量の N Oや極微量の N , COなどが N
2 2 2
Oおよび NOに較べて優先的に気化してくるので、当該初期段階の中間ガスには N
2 2
O, N , COなどが比較的多く含まれる(NOおよび NOも含まれるが)。第 3の吸収
2 2 2
工程を実行すると、このような初期段階の中間ガスは、吸収塔 3内を上昇中に、循環 吸収液と気液接触し、この気液接触において、中間ガス中の NOおよび NOは、第 1
2 の吸収工程と同様に、優先的に循環吸収液に反応吸収されることとなる。そのため、 再気化工程と併行して第 3の吸収工程を実行することにより、吸収液に対するガス成 分間の吸収率の差を利用して、中間ガス中の N O, N , COなどを効率よく NOから
2 2 2
分離することが可能である。また、このような第 3の吸収工程を採用する場合、当該第 3の吸収工程は、再気化工程の途中で終了され、第 3の吸収工程を伴わない再気化 工程では、 N O, N , COなどが充分に除去されて吸収液中に NOが濃縮された状
2 2 2
態において、 NOおよび NOを含む中間ガスを吸収液力 発生させることが可能とな
2
る。
[0053] 再気化工程中に吸収塔 3を抜け出る中間ガスは、移送ライン 7dを介して凝縮器 6に 至り、凝縮器 6にて凝縮分離工程に付される。また、当該中間ガスは、必要に応じて 、圧力調整弁 8aと凝縮器 6との間に設けられた導入ライン 7bを介して供給される NO
2 と共に凝縮器6に至り、凝縮器 6にて凝縮分離工程に付される。具体的には、凝縮器 6では、中間ガス中の N Oおよび N Oが液化して気相から除かれる条件となるよう
2 3 2 4
に、当該中間ガスが降温および Zまたは昇圧される。 N O O
2 3と N
2 4が液ィ匕して気相か ら除力れると、当該気相に残存する NOと NOから、式(1)および式(2)に従って平
2
衡状態を充たすように速やかに N Oおよび N Oが生じ、新たに生じた N Oおよび
2 3 2 4 2 3
N Oは直ちに液化して気相から除かれることとなる。したがって、中間ガス中の NO
2 4 2 が充分に除去されるまで当該凝縮分離工程を継続することにより、中間ガス中の NO を高純度化することが可能である。高純度化された NOは導出ライン 7fを介して装置 外に導出され、精製ガスとして分取することができる。また、循環ポンプ 5bの稼働によ り、液ィ匕 N Oおよび液化 N Oは、移送ライン 7eを介して吸収塔 3の上部に戻される
2 3 2 4
。凝縮分離工程実行中の凝縮器 6の内部温度は例えば 9°C以下であって、好まし くは 102〜一 50°Cであり、内部圧力は例えば 0. 01〜6MPaである。
[0054] 凝縮分離工程の後、温度調節部 2, 4の制御や、必要に応じた圧力調整弁 8a, 8b の制御により、ガス吸収槽 1内および吸収塔 3内の吸収液を昇温および Zまたは降 圧させて N Oの気化を促進させると、 N Oから高純度の NOが生ずる。この NOは
2 4 2 4 2 2
、移送ライン 7d、凝縮器 6、および導出ライン 7fを介して装置外に導出され、精製ガ スとして分取することができる。
[0055] 以上のように、第 4の実施形態に係る精製装置 Yを用いることにより、原料ガスが N O, NO , N O , N O , N O, N , COを含む多成分系ガスの場合であっても、当該
2 2 3 2 4 2 2 2
原料ガスから N O, NO, NOを順次効率よく精製することができる。カロえて、本実施
2 2
形態では、当該精製プロセスにおいて NOや N Oを凝縮ないし液ィ匕する必要はない
2
ので、安全性高く窒素酸ィ匕物を精製することができる。
[0056] 図 3は、図 2に示した精製装置 Yを簡略ィ匕した変形例に係る精製装置 Y1を示す。
同図に示す精製装置 Y1は、図 2に示す精製装置 Yのうちの、吸収塔 3と、温度調節 部 4と、循環ポンプ 5aと、循環ライン 7cと、圧力調整弁 8a, 8bとを省略したものであり 、凝縮器 6からの凝縮液を循環ポンプ 5bおよび移送ライン 7eを介して吸収槽 1に直 接戻すように構成されている。このため、原料ガスからの所定成分の吸収は吸収槽 1 のみで行われ、上記式(1)〜(3)に示す平衡反応の調整は温度調整と導入ライン 7b を介して実行される組成調整によってのみ行われる。
実施例
[0057] 次に、本発明の実施例について説明する。
実施例 1
[0058] 実施例 1では、図 1に示した凝縮器 Xを用いて NO精製方法を行った。本実施例で は、凝縮器 Xとして、—80°Cに冷却したガラス製トラップ(500cm3)を用い、原料ガス として、 5000ppmの NO
2を含む粗 NOガスを用い、当該原料ガスを 100cm3Z分の 速度で凝縮器 Xに通流した (凝縮分離工程)。その結果、原料ガス中の NOおよび N O
2カゝら生じた N O
2 3および N O
2 4が凝縮器 X内に凝縮され、凝縮器 Xから導出された精 製 NOガスにおける NO濃度は 80ppmであった。
2
実施例 2
[0059] 実施例 2では、図 1に示した凝縮器 Xを用いて N O精製方法を行った。本実施例で
2
は、凝縮器 Xとして、—80°Cに冷却したガラス製トラップ(500cm3)を用い、原料ガス として、 2000ppmの NOを含む粗 N Oガスを用いた。本実施例では、まず、当該原
2
料ガスに、 2000ppmの最終濃度となるように NOをカ卩えた (濃度調整工程)。次に、
2
このようにして濃度調整がなされた原料ガスを、 100cm3Z分の速度で凝縮器 Xに通 流した (凝縮分離工程)。その結果、原料ガス中の NOおよび NO力も生じた N Oお
2 2 3 よび N Oが凝縮器 X内に凝縮され、凝縮器 Xから導出された精製 N Oガスにおける
2 4 2
NO濃度は 50ppmであり且つ NO濃度は 30ppmであった。
2
実施例 3
[0060] 実施例 3では、図 3に示した凝縮器 Y1を用いて NO精製方法を行った。本実施例 では、ガス吸収槽 1として、—10°Cに冷却した容器(500cm3)を用い、凝縮器 6として 、 一70°Cに冷却したガラス製トラップ(500cm3)を用い、吸収液として液ィ匕 N O (90
2 4 g)を用い、原料ガスとして、 lOOOppmの Nと lOOOppmの N Oと含む粗 NOガスを
2 2
用いた。
[0061] 本実施例では、ガス吸収槽 1での吸収工程および再気化工程、並びに凝縮器 6で の凝縮分離工程を行った。吸収工程では、常圧で、液ィ匕 N O (90g, - 10°C)に対
2 4
して 32gの原料ガスを吸収させた。再気化工程では、ガス吸収槽 1の内部温度を— 1 0°Cから 2°Cまで徐々に上げた。凝縮分離工程では、再気化工程にて気化したガスを 凝縮器 6に通流し、ガス中の NOおよび NO力も生じた N Oおよび N Oが凝縮器 6
2 2 3 2 4
内に凝縮された。凝縮器 6から導出される精製 NOガスの経時的な組成変化を調べ たところ、導出開始からの 2gのガス中には Nが検出されたが、その後に導出された 2
2
7gのガス中には Nは検出されな力つた。一方、導出ガス中の N O濃度は経時的に
2 2
漸減し、導出終了時に分取したガスにおける N O濃度は 80ppmであった。
2
実施例 4
[0062] 実施例 4では、図 2に示した凝縮器 Yを用いて N Oおよび NOの精製方法を行った
2
。本実施例では、ガス吸収槽 1および吸収塔 3での第 1〜第 3の吸収工程および再気 化工程を行 ヽ、並びに凝縮器 6での凝縮分離工程を行った。
[0063] ガス吸収槽 1として、 3dm3の容器を用い、その上部に吸収塔 3として、 3mm φのガ ラスビーズを充填したカラム (直径 5cm,長さ 20cm)を取り付けた。また、圧力調整弁
8bは用いず、凝縮器 6としては、ガラス製トラップ(500cm3)を用いた。
[0064] ガス吸収槽 1の内部温度を 5°Cに冷却した後、当該ガス吸収槽 1に NOを導入し
2
、 700gの液ィ匕 N Oをガス吸収槽 1内に仕込んだ。引き続き、ガス吸収槽 1の内部温
2 4
度を一 5°Cに維持しながら、 N O (400g)、 NO (300g)、および NO (460g)からなる
2 2
原料ガスを 2時間かけて導入した (第 1の吸収工程)。この期間中、循環ポンプ 5aを 稼働させ、ガス吸収槽 1の吸収液を 60cm3/分の速度で吸収塔 3の上部に送液した (第 2の吸収工程)。当該吸収工程実行中における吸収塔 3からの出口ガス圧力は圧 力調整弁 8aを用いて IMPaに制御した。そして、圧力調整弁 8aから導出されるガス( N Oを主成分とし、それより少ない NOを含むガス)に、導入ライン 7bを通じて NOを
2 2
20gZ時間の速度で加えて、 80°Cに冷却された凝縮器 6に導入した。このとき、凝 縮器 6から導出された精製 N Oガスの純度は 99.99%以上であり、回収量は 378g、
2
回収率は 95%であった。
[0065] 次に、導入ライン 7bからの NOの添加を止め、循環ポンプ 5aを稼動させたまま、系
2
内の圧力を IMPaに保持しつつ、ガス吸収槽 1および吸収塔 3の内部温度を徐々に 30°Cまで昇温することにより、 N Oが比較的多く含まれる中間ガスを発生させた (再
2
気化工程,第 3の吸収工程)。この中間ガスに含まれる NOと NOは、吸収塔 3にて優
2
先的に循環吸収液に反応吸収され、系内の N Oを効率よく抜き出すことができた。
2
その後、循環ポンプ 5aを停止し、凝縮器 6の内部温度を— 90°Cに更に低下させた うえで、圧力調整弁 8aの設定値を IMPaから 0.7MPaまで連続的に変化させること により、ガス吸収槽 1内および吸収塔 3内の吸収液中の N Oの気化を促進させつつ
2 3
中間ガスを発生させた (再気化工程)。気化した N Oの殆どは直ちに NOおよび NO
2 3 2 に分解し、等量の NOおよび NOから式(1), (2)に従って NO, NO, N O, N O
2 2 2 3 2 4 間の平衡状態に至ることから、当該中間ガスは NOより多くの NOを含んでいる。この
2
中間ガスを凝縮器 6に導入して、 NO , N O , N Oを凝縮させ (凝縮分離工程)、導
2 2 3 2 4
出ライン 7fを介して導出されるガスを精製 NOガスとして回収した。このとき、圧力調 整弁 8aから順次導出される、 NOを主成分とするガスには、回収当初は約 1%の NO
2 力 回収終了時には約 4%の NOが含まれていた。そして、回収された精製 NOガス
2
の純度は 99.99%以上であり、回収量は 280g、回収率は 93%であった。

Claims

請求の範囲
[1] 一酸化窒素および二酸化窒素を含む原料ガスを降温および Zまたは昇圧させて 凝縮三酸ィヒニ窒素および Zまたは凝縮四酸ィヒニ窒素を生じさせるための凝縮分離 工程を含む、窒素酸化物精製方法。
[2] 前記原料ガスにおいて、前記一酸ィ匕窒素は前記二酸ィ匕窒素より多く含まれている
、請求項 1に記載の窒素酸化物精製方法。
[3] 前記原料ガスにおいて、前記二酸ィ匕窒素は前記一酸ィ匕窒素より多く含まれている
、請求項 1に記載の窒素酸化物精製方法。
[4] 前記原料ガスは、更に亜酸化窒素を含む、請求項 1に記載の窒素酸化物精製方 法。
[5] 前記原料ガスにおける前記一酸化窒素および前記二酸化窒素の濃度を調整する ための濃度調整工程を、前記凝縮分離工程の前に含む、請求項 1に記載の窒素酸 化物精製方法。
[6] 一酸化窒素を含む原料ガスに、液ィ匕四酸ィ匕ニ窒素を含む吸収液を作用させて、一 酸ィ匕窒素を当該吸収液に吸収させるための初期の吸収工程と、
前記吸収工程の後に前記吸収液を昇温および Zまたは降圧させて、相対的に多 い一酸化窒素および相対的に少ない二酸化窒素を含む中間ガスを当該吸収液から 発生させるための、再気化工程と、
前記中間ガスを降温および Zまたは昇圧させて凝縮三酸ィヒニ窒素および Zまたは 凝縮四酸化二窒素を生じさせるための凝縮分離工程と、を含む、窒素酸化物精製方 法。
[7] 前記吸収工程にて前記吸収液に吸収されない非吸収ガスに対して液ィ匕四酸ィ匕ニ 窒素を含む吸収液を作用させて、当該非吸収ガス中の一酸化窒素を当該吸収液に 吸収させるための追加の吸収工程を、前記初期の吸収工程と併行して行う、請求項 6に記載の窒素酸化物精製方法。
[8] 前記再気化工程にて発生する前記中間ガスに対して液ィ匕四酸ィ匕ニ窒素を含む吸 収液を作用させて、当該中間ガス中の一酸化窒素および二酸化窒素を当該吸収液 に吸収させるための追加の吸収工程を、前記再気化工程と併行して行う、請求項 6 に記載の窒素酸化物精製方法。
[9] 前記原料ガスは、更に亜酸化窒素を含む、請求項 6に記載の窒素酸化物精製方 法。
[10] 前記吸収工程にて前記吸収液に吸収されない非吸収ガスは、少なくとも亜酸ィ匕窒 素および不純物一酸化窒素を含み、
前記非吸収ガスに二酸ィ匕窒素を加える組成調整工程と、
前記組成調整工程を経た非吸収ガスを降温および Zまたは昇圧させて凝縮三酸 化二窒素および Zまたは凝縮四酸ィ匕ニ窒素を生じさせるための凝縮分離工程と、を 更に含む、請求項 9に記載の窒素酸化物精製方法。
[11] 液ィ匕四酸ィ匕ニ窒素を含んで一酸ィ匕窒素を吸収するための吸収液を受容することが 可能で、且つ、原料ガスを受け入れて当該原料ガスおよび前記吸収液の温度および Zまたは圧力を変化させることが可能な、ガス吸収槽と、
前記ガス吸収槽カ のガスを受け入れて当該ガスの温度および Zまたは圧力を変 ィ匕させ
ることが可能な凝縮器と、を備える、窒素酸化物精製装置。
[12] 前記ガス吸収槽力 前記凝縮器までのガス流路内に配された中間吸収部を更に 備え、
前記ガス流路内ではガス通流方向とは逆の方向に前記吸収液が流れるように、前 記ガス吸収槽および前記中間吸収部の間で前記吸収液が循環可能に構成されてい る、請求項 11に記載の窒素酸化物精製装置。
PCT/JP2006/316153 2005-08-19 2006-08-17 窒素酸化物精製方法および窒素酸化物精製装置 WO2007020968A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087006429A KR101279400B1 (ko) 2005-08-19 2006-08-17 질소 산화물 정제 방법 및 질소 산화물 정제 장치
US11/990,668 US7776305B2 (en) 2005-08-19 2006-08-17 Method for purification of nitrogen oxide and apparatus for purification of nitrogen oxide
JP2007531020A JP5108520B2 (ja) 2005-08-19 2006-08-17 窒素酸化物精製方法および窒素酸化物精製装置
EP06782766A EP1930295A4 (en) 2005-08-19 2006-08-17 METHOD FOR CLEANING NITRIC OXIDE AND DEVICE FOR CLEANING NITRIC OXIDE
CN200680030113XA CN101243012B (zh) 2005-08-19 2006-08-17 氮氧化物精制方法和氮氧化物精制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-238510 2005-08-19
JP2005238510 2005-08-19

Publications (1)

Publication Number Publication Date
WO2007020968A1 true WO2007020968A1 (ja) 2007-02-22

Family

ID=37757625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316153 WO2007020968A1 (ja) 2005-08-19 2006-08-17 窒素酸化物精製方法および窒素酸化物精製装置

Country Status (7)

Country Link
US (1) US7776305B2 (ja)
EP (1) EP1930295A4 (ja)
JP (1) JP5108520B2 (ja)
KR (1) KR101279400B1 (ja)
CN (1) CN101243012B (ja)
TW (1) TW200714544A (ja)
WO (1) WO2007020968A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE548971T1 (de) 2004-07-13 2012-03-15 Dexcom Inc Transkutaner analytsensor
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
WO2007084130A1 (en) 2006-01-17 2007-07-26 Dexcom, Inc. Low oxygen in vivo analyte sensor
WO2009110492A1 (ja) 2008-03-07 2009-09-11 住友精化株式会社 オレフィンの精製方法および精製装置
CN105999981A (zh) * 2016-03-24 2016-10-12 中国人民解放军63605部队 一种用于四氧化二氮废气冷凝回收的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420994A (en) * 1977-07-16 1979-02-16 Bayer Ag Process for separating dinitrogen oxide
JP2572646B2 (ja) * 1989-05-19 1997-01-16 宇部興産株式会社 過酸化窒素の製造法
JPH09175804A (ja) * 1995-09-26 1997-07-08 Boc Group Inc:The 一酸化窒素の製造法
JP2001114504A (ja) * 1999-08-13 2001-04-24 L'air Liquide 一酸化二窒素の精製システムおよび方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568396A (en) * 1946-07-19 1951-09-18 Union Oil Co Process for producing and separating nitrogen oxides
GB855191A (en) 1956-03-06 1960-11-30 Rensselaer Polytech Inst Method of producing nitrogen dioxide in a nuclear reactor
US3063804A (en) 1959-06-10 1962-11-13 Hercules Powder Co Ltd Manufacture of dinitrogen tetroxide
US3070425A (en) * 1959-10-15 1962-12-25 Allied Chem Production of nitrogen tetroxide
JP3294390B2 (ja) 1993-07-26 2002-06-24 日本エア・リキード株式会社 超高純度亜酸化窒素製造方法及び装置
FR2789911B1 (fr) * 1999-02-18 2001-05-04 Grande Paroisse Sa Procede pour abattre simultanement les oxydes nitriques et le protoxyde d'azote dans les gaz qui en contiennent
JP2001235849A (ja) * 2000-02-24 2001-08-31 Shin Etsu Chem Co Ltd 位相シフトマスク及びその製造方法
JP4031293B2 (ja) 2002-06-05 2008-01-09 住友精化株式会社 亜酸化窒素の回収精製法および回収精製装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420994A (en) * 1977-07-16 1979-02-16 Bayer Ag Process for separating dinitrogen oxide
JP2572646B2 (ja) * 1989-05-19 1997-01-16 宇部興産株式会社 過酸化窒素の製造法
JPH09175804A (ja) * 1995-09-26 1997-07-08 Boc Group Inc:The 一酸化窒素の製造法
JP2001114504A (ja) * 1999-08-13 2001-04-24 L'air Liquide 一酸化二窒素の精製システムおよび方法

Also Published As

Publication number Publication date
EP1930295A4 (en) 2010-02-24
US7776305B2 (en) 2010-08-17
JP5108520B2 (ja) 2012-12-26
JPWO2007020968A1 (ja) 2009-02-26
US20090238749A1 (en) 2009-09-24
TWI306080B (ja) 2009-02-11
KR101279400B1 (ko) 2013-06-27
CN101243012A (zh) 2008-08-13
EP1930295A1 (en) 2008-06-11
CN101243012B (zh) 2013-02-13
KR20080039997A (ko) 2008-05-07
TW200714544A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
TWI542404B (zh) 一氧化二氮的回收和純化的系統及方法
KR930001207B1 (ko) 고순도 아르곤의 제조방법
JP5122443B2 (ja) 窒素同位体重成分の濃縮方法
KR101662895B1 (ko) 이소프로필 알코올의 정제 방법
WO2007020968A1 (ja) 窒素酸化物精製方法および窒素酸化物精製装置
CN107673351B (zh) 一种高纯度二氧化碳的生产方法
KR101662897B1 (ko) 이소프로필 알코올의 정제 방법
WO2010047942A2 (en) Helium recovery process
WO2022166270A1 (zh) 电子级三氟化氯的分离装置及分离方法
CA2216477A1 (en) Nitric acid production
JP6889644B2 (ja) 酸素同位体置換方法及び酸素同位体置換装置
JP2000088455A (ja) アルゴンの回収精製方法及び装置
JP2579261B2 (ja) 粗ネオン製造方法及び装置
KR101955015B1 (ko) 아산화질소 회수 방법 및 장치
CN112919437B (zh) 一种高含氢粗氦精制方法及系统
WO2013190731A1 (ja) アンモニア精製システム
KR102084294B1 (ko) 질산 제조공정을 이용한 반도체용 고순도 일산화질소의 제조방법 및 제조장치
TWI537214B (zh) 藉由連續或半連續製程製造高純度鍺烷的方法
EP2917666A2 (en) Process for the removal of co2 from acid gas
JP6935282B2 (ja) 酸素同位体置換方法及び酸素同位体置換装置
KR20110109036A (ko) 저순도 암모니아 원료로부터 고순도 일산화질소와 아산화질소의 제조방법 및 장치
JP5799871B2 (ja) 液化炭酸の高純度化方法
JP4783173B2 (ja) 水素製造方法
WO2016121622A1 (ja) プロパンの製造方法およびプロパン製造装置
CN206886672U (zh) 低温生产多级别n2o的系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030113.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007531020

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11990668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006782766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006782766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087006429

Country of ref document: KR